TPTP Problem File: SLH0548^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Pluennecke_Ruzsa_Inequality/0003_Pluennecke_Ruzsa_Inequality/prob_00137_004486__12067394_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1432 ( 551 unt; 163 typ; 0 def)
% Number of atoms : 3507 (1150 equ; 0 cnn)
% Maximal formula atoms : 12 ( 2 avg)
% Number of connectives : 10903 ( 395 ~; 47 |; 245 &;8562 @)
% ( 0 <=>;1654 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 7 avg)
% Number of types : 28 ( 27 usr)
% Number of type conns : 534 ( 534 >; 0 *; 0 +; 0 <<)
% Number of symbols : 137 ( 136 usr; 37 con; 0-5 aty)
% Number of variables : 3182 ( 153 ^;2938 !; 91 ?;3182 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-18 16:19:45.467
%------------------------------------------------------------------------------
% Could-be-implicit typings (27)
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Ounit_Mt__Product____Type__Ounit_J_J,type,
set_Pr5094982260447487303t_unit: $tType ).
thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_It__Product____Type__Ounit_Mt__Product____Type__Ounit_J_J,type,
set_Su4110612849109743515t_unit: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Ounit_Mt__Nat__Onat_J_J,type,
set_Pr1763845938948868674it_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Ounit_J_J,type,
set_Pr4334478416066269672t_unit: $tType ).
thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_It__Product____Type__Ounit_Mt__Nat__Onat_J_J,type,
set_Su4968945780807083758it_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_It__Nat__Onat_Mt__Product____Type__Ounit_J_J,type,
set_Su7539578257924484756t_unit: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mt__Product____Type__Ounit_J_J,type,
set_Pr6729990895049895446t_unit: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Ounit_Mtf__a_J_J,type,
set_Pr1310170126721327416unit_a: $tType ).
thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_Itf__a_Mt__Product____Type__Ounit_J_J,type,
set_Su5769964104898716778t_unit: $tType ).
thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_It__Product____Type__Ounit_Mtf__a_J_J,type,
set_Su350143336570148748unit_a: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
set_Pr1261947904930325089at_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
set_Sum_sum_nat_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mt__Nat__Onat_J_J,type,
set_Pr4934435412358123699_a_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mtf__a_J_J,type,
set_Pr4193341848836149977_nat_a: $tType ).
thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
set_Sum_sum_a_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_It__Nat__Onat_Mtf__a_J_J,type,
set_Sum_sum_nat_a: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Product____Type__Ounit_J_J,type,
set_set_Product_unit: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
set_Product_prod_a_a: $tType ).
thf(ty_n_t__Set__Oset_It__Sum____Type__Osum_Itf__a_Mtf__a_J_J,type,
set_Sum_sum_a_a: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
set_set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Product____Type__Ounit_J,type,
set_Product_unit: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
set_set_a: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Product____Type__Ounit,type,
product_unit: $tType ).
thf(ty_n_t__Set__Oset_Itf__a_J,type,
set_a: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_tf__a,type,
a: $tType ).
% Explicit typings (136)
thf(sy_c_Finite__Set_OFpow_001tf__a,type,
finite_Fpow_a: set_a > set_set_a ).
thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
finite_card_nat: set_nat > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Product____Type__Ounit,type,
finite410649719033368117t_unit: set_Product_unit > nat ).
thf(sy_c_Finite__Set_Ocard_001tf__a,type,
finite_card_a: set_a > nat ).
thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
finite_finite_nat: set_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
finite6177210948735845034at_nat: set_Pr1261947904930325089at_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Ounit_J,type,
finite5113082511001691337t_unit: set_Pr4334478416066269672t_unit > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Nat__Onat_Mtf__a_J,type,
finite659689790015031866_nat_a: set_Pr4193341848836149977_nat_a > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Product____Type__Ounit_Mt__Nat__Onat_J,type,
finite5187522816498166307it_nat: set_Pr1763845938948868674it_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Product____Type__Ounit_Mt__Product____Type__Ounit_J,type,
finite6816719414181127824t_unit: set_Pr5094982260447487303t_unit > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Product____Type__Ounit_Mtf__a_J,type,
finite616084418228309761unit_a: set_Pr1310170126721327416unit_a > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_Itf__a_Mt__Nat__Onat_J,type,
finite6644898363146130708_a_nat: set_Pr4934435412358123699_a_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_Itf__a_Mt__Product____Type__Ounit_J,type,
finite1408885517383445215t_unit: set_Pr6729990895049895446t_unit > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_Itf__a_Mtf__a_J,type,
finite6544458595007987280od_a_a: set_Product_prod_a_a > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Ounit,type,
finite4290736615968046902t_unit: set_Product_unit > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
finite1152437895449049373et_nat: set_set_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Product____Type__Ounit_J,type,
finite1772178364199683094t_unit: set_set_Product_unit > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_Itf__a_J,type,
finite_finite_set_a: set_set_a > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J,type,
finite6187706683773761046at_nat: set_Sum_sum_nat_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Sum____Type__Osum_It__Nat__Onat_Mt__Product____Type__Ounit_J,type,
finite4327512606132785245t_unit: set_Su7539578257924484756t_unit > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Sum____Type__Osum_It__Nat__Onat_Mtf__a_J,type,
finite3740268481367103950_nat_a: set_Sum_sum_nat_a > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Sum____Type__Osum_It__Product____Type__Ounit_Mt__Nat__Onat_J,type,
finite4401952911629260215it_nat: set_Su4968945780807083758it_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Sum____Type__Osum_It__Product____Type__Ounit_Mt__Product____Type__Ounit_J,type,
finite3146551501593861116t_unit: set_Su4110612849109743515t_unit > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Sum____Type__Osum_It__Product____Type__Ounit_Mtf__a_J,type,
finite1276461556078370925unit_a: set_Su350143336570148748unit_a > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J,type,
finite502105017643426984_a_nat: set_Sum_sum_a_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Sum____Type__Osum_Itf__a_Mt__Product____Type__Ounit_J,type,
finite2069262655233506379t_unit: set_Su5769964104898716778t_unit > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Sum____Type__Osum_Itf__a_Mtf__a_J,type,
finite51705147264084924um_a_a: set_Sum_sum_a_a > $o ).
thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
finite_finite_a: set_a > $o ).
thf(sy_c_Group__Theory_Oabelian__group_001tf__a,type,
group_201663378560352916roup_a: set_a > ( a > a > a ) > a > $o ).
thf(sy_c_Group__Theory_Ocommutative__monoid_001tf__a,type,
group_4866109990395492029noid_a: set_a > ( a > a > a ) > a > $o ).
thf(sy_c_Group__Theory_Ogroup_001tf__a,type,
group_group_a: set_a > ( a > a > a ) > a > $o ).
thf(sy_c_Group__Theory_Omonoid_001tf__a,type,
group_monoid_a: set_a > ( a > a > a ) > a > $o ).
thf(sy_c_Group__Theory_Omonoid_OUnits_001tf__a,type,
group_Units_a: set_a > ( a > a > a ) > a > set_a ).
thf(sy_c_Group__Theory_Omonoid_Oinverse_001tf__a,type,
group_inverse_a: set_a > ( a > a > a ) > a > a > a ).
thf(sy_c_Group__Theory_Omonoid_Oinvertible_001tf__a,type,
group_invertible_a: set_a > ( a > a > a ) > a > a > $o ).
thf(sy_c_Group__Theory_Osubgroup_001tf__a,type,
group_subgroup_a: set_a > set_a > ( a > a > a ) > a > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
minus_minus_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Product____Type__Ounit_J,type,
minus_6452836326544984404t_unit: set_Product_unit > set_Product_unit > set_Product_unit ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
minus_5736297505244876581_set_a: set_set_a > set_set_a > set_set_a ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
minus_minus_set_a: set_a > set_a > set_a ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_HOL_ONO__MATCH_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
nO_MATCH_set_a_set_a: set_a > set_a > $o ).
thf(sy_c_HOL_Oundefined_001tf__a,type,
undefined_a: a ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
inf_inf_nat: nat > nat > nat ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Nat__Onat_J,type,
inf_inf_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Product____Type__Ounit_J,type,
inf_in4660618365625256667t_unit: set_Product_unit > set_Product_unit > set_Product_unit ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
inf_inf_set_a: set_a > set_a > set_a ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
sup_sup_nat: nat > nat > nat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
sup_sup_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Product____Type__Ounit_J,type,
sup_su793286257634532545t_unit: set_Product_unit > set_Product_unit > set_Product_unit ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
sup_sup_set_set_a: set_set_a > set_set_a > set_set_a ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
sup_sup_set_a: set_a > set_a > set_a ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Nat__Onat,type,
lattic7446932960582359483at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001tf__a_001t__Nat__Onat,type,
lattic6340287419671400565_a_nat: ( a > nat ) > set_a > a ).
thf(sy_c_Lattices__Big_Osemilattice__inf__class_OInf__fin_001t__Nat__Onat,type,
lattic5238388535129920115in_nat: set_nat > nat ).
thf(sy_c_Lattices__Big_Osemilattice__inf__class_OInf__fin_001t__Set__Oset_Itf__a_J,type,
lattic8209813465164889211_set_a: set_set_a > set_a ).
thf(sy_c_Lattices__Big_Osemilattice__sup__class_OSup__fin_001t__Nat__Onat,type,
lattic1093996805478795353in_nat: set_nat > nat ).
thf(sy_c_Lattices__Big_Osemilattice__sup__class_OSup__fin_001t__Set__Oset_Itf__a_J,type,
lattic2918178356826803221_set_a: set_set_a > set_a ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
bot_bot_a_o: a > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
bot_bot_nat: nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
bot_bot_set_nat: set_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Ounit_J,type,
bot_bo3957492148770167129t_unit: set_Product_unit ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
bot_bot_set_set_a: set_set_a ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
bot_bot_set_a: set_a ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Product____Type__Ounit_J,type,
ord_le8056459307392131481t_unit: set_Product_unit > set_Product_unit > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__a_J,type,
ord_less_set_a: set_a > set_a > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Ounit_J,type,
ord_le3507040750410214029t_unit: set_Product_unit > set_Product_unit > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
ord_le3724670747650509150_set_a: set_set_a > set_set_a > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
ord_less_eq_set_a: set_a > set_a > $o ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
top_top_set_nat: set_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
top_to4669805908274784177at_nat: set_Pr1261947904930325089at_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Ounit_J_J,type,
top_to8544742955230171288t_unit: set_Pr4334478416066269672t_unit ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mtf__a_J_J,type,
top_to2612598781856825737_nat_a: set_Pr4193341848836149977_nat_a ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Ounit_Mt__Nat__Onat_J_J,type,
top_to5974110478112770290it_nat: set_Pr1763845938948868674it_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Ounit_Mt__Product____Type__Ounit_J_J,type,
top_to1835807148980544151t_unit: set_Pr5094982260447487303t_unit ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__Product____Type__Ounit_Mtf__a_J_J,type,
top_to1216281454841048712unit_a: set_Pr1310170126721327416unit_a ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mt__Nat__Onat_J_J,type,
top_to3353692345378799459_a_nat: set_Pr4934435412358123699_a_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mt__Product____Type__Ounit_J_J,type,
top_to6636102223169616742t_unit: set_Pr6729990895049895446t_unit ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_Itf__a_Mtf__a_J_J,type,
top_to8063371432257647191od_a_a: set_Product_prod_a_a ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Ounit_J,type,
top_to1996260823553986621t_unit: set_Product_unit ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
top_top_set_set_nat: set_set_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Product____Type__Ounit_J_J,type,
top_to1767297665138865437t_unit: set_set_Product_unit ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
top_top_set_set_a: set_set_a ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Sum____Type__Osum_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
top_to6661820994512907621at_nat: set_Sum_sum_nat_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Sum____Type__Osum_It__Nat__Onat_Mt__Product____Type__Ounit_J_J,type,
top_to5465250082899874788t_unit: set_Su7539578257924484756t_unit ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Sum____Type__Osum_It__Nat__Onat_Mtf__a_J_J,type,
top_to54524901450547413_nat_a: set_Sum_sum_nat_a ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Sum____Type__Osum_It__Product____Type__Ounit_Mt__Nat__Onat_J_J,type,
top_to2894617605782473790it_nat: set_Su4968945780807083758it_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Sum____Type__Osum_It__Product____Type__Ounit_Mt__Product____Type__Ounit_J_J,type,
top_to2771918933716375115t_unit: set_Su4110612849109743515t_unit ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Sum____Type__Osum_It__Product____Type__Ounit_Mtf__a_J_J,type,
top_to5559247480540603964unit_a: set_Su350143336570148748unit_a ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Sum____Type__Osum_Itf__a_Mt__Nat__Onat_J_J,type,
top_to795618464972521135_a_nat: set_Sum_sum_a_nat ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Sum____Type__Osum_Itf__a_Mt__Product____Type__Ounit_J_J,type,
top_to1755696212014396186t_unit: set_Su5769964104898716778t_unit ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Sum____Type__Osum_Itf__a_Mtf__a_J_J,type,
top_to8848906000605539851um_a_a: set_Sum_sum_a_a ).
thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_Itf__a_J,type,
top_top_set_a: set_a ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001t__Nat__Onat,type,
pluenn2073725187428264546up_nat: set_nat > ( nat > nat > nat ) > nat > $o ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001t__Product____Type__Ounit,type,
pluenn3635716580025208315t_unit: set_Product_unit > ( product_unit > product_unit > product_unit ) > product_unit > $o ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001tf__a,type,
pluenn1164192988769422572roup_a: set_a > ( a > a > a ) > a > $o ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001t__Nat__Onat,type,
pluenn3669378163024332905et_nat: set_nat > ( nat > nat > nat ) > set_nat > set_nat > set_nat ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001t__Product____Type__Ounit,type,
pluenn1407455289632237236t_unit: set_Product_unit > ( product_unit > product_unit > product_unit ) > set_Product_unit > set_Product_unit > set_Product_unit ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001tf__a,type,
pluenn3038260743871226533mset_a: set_a > ( a > a > a ) > set_a > set_a > set_a ).
thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumsetp_001tf__a,type,
pluenn895083305082786853setp_a: set_a > ( a > a > a ) > ( a > $o ) > ( a > $o ) > a > $o ).
thf(sy_c_Set_OCollect_001tf__a,type,
collect_a: ( a > $o ) > set_a ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
image_nat_nat: ( nat > nat ) > set_nat > set_nat ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Product____Type__Ounit,type,
image_8730104196221521654t_unit: ( nat > product_unit ) > set_nat > set_Product_unit ).
thf(sy_c_Set_Oimage_001t__Nat__Onat_001tf__a,type,
image_nat_a: ( nat > a ) > set_nat > set_a ).
thf(sy_c_Set_Oimage_001t__Product____Type__Ounit_001t__Nat__Onat,type,
image_875570014554754200it_nat: ( product_unit > nat ) > set_Product_unit > set_nat ).
thf(sy_c_Set_Oimage_001t__Product____Type__Ounit_001t__Product____Type__Ounit,type,
image_405062704495631173t_unit: ( product_unit > product_unit ) > set_Product_unit > set_Product_unit ).
thf(sy_c_Set_Oimage_001t__Product____Type__Ounit_001tf__a,type,
image_Product_unit_a: ( product_unit > a ) > set_Product_unit > set_a ).
thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
image_set_a_set_a: ( set_a > set_a ) > set_set_a > set_set_a ).
thf(sy_c_Set_Oimage_001tf__a_001t__Nat__Onat,type,
image_a_nat: ( a > nat ) > set_a > set_nat ).
thf(sy_c_Set_Oimage_001tf__a_001t__Product____Type__Ounit,type,
image_a_Product_unit: ( a > product_unit ) > set_a > set_Product_unit ).
thf(sy_c_Set_Oimage_001tf__a_001tf__a,type,
image_a_a: ( a > a ) > set_a > set_a ).
thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
insert_nat: nat > set_nat > set_nat ).
thf(sy_c_Set_Oinsert_001t__Product____Type__Ounit,type,
insert_Product_unit: product_unit > set_Product_unit > set_Product_unit ).
thf(sy_c_Set_Oinsert_001t__Set__Oset_Itf__a_J,type,
insert_set_a: set_a > set_set_a > set_set_a ).
thf(sy_c_Set_Oinsert_001tf__a,type,
insert_a: a > set_a > set_a ).
thf(sy_c_Set_Ois__singleton_001t__Product____Type__Ounit,type,
is_sin2160648248035936513t_unit: set_Product_unit > $o ).
thf(sy_c_Set_Ois__singleton_001tf__a,type,
is_singleton_a: set_a > $o ).
thf(sy_c_Set_Oremove_001tf__a,type,
remove_a: a > set_a > set_a ).
thf(sy_c_Set_Othe__elem_001tf__a,type,
the_elem_a: set_a > a ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Product____Type__Ounit,type,
member_Product_unit: product_unit > set_Product_unit > $o ).
thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
member_set_a: set_a > set_set_a > $o ).
thf(sy_c_member_001tf__a,type,
member_a: a > set_a > $o ).
thf(sy_v_A,type,
a2: set_a ).
thf(sy_v_B,type,
b: set_a ).
thf(sy_v_G,type,
g: set_a ).
thf(sy_v_addition,type,
addition: a > a > a ).
thf(sy_v_b____,type,
b2: a ).
thf(sy_v_zero,type,
zero: a ).
% Relevant facts (1268)
thf(fact_0_commutative,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ g )
=> ( ( member_a @ Y @ g )
=> ( ( addition @ X @ Y )
= ( addition @ Y @ X ) ) ) ) ).
% commutative
thf(fact_1_b_I2_J,axiom,
member_a @ b2 @ g ).
% b(2)
thf(fact_2_b_I1_J,axiom,
member_a @ b2 @ b ).
% b(1)
thf(fact_3_assms,axiom,
~ ( finite_finite_a @ ( inf_inf_set_a @ a2 @ g ) ) ).
% assms
thf(fact_4_sumset_Ocases,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
=> ~ ! [A3: a,B2: a] :
( ( A
= ( addition @ A3 @ B2 ) )
=> ( ( member_a @ A3 @ A2 )
=> ( ( member_a @ A3 @ g )
=> ( ( member_a @ B2 @ B )
=> ~ ( member_a @ B2 @ g ) ) ) ) ) ) ).
% sumset.cases
thf(fact_5_sumset_Osimps,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
= ( ? [A4: a,B3: a] :
( ( A
= ( addition @ A4 @ B3 ) )
& ( member_a @ A4 @ A2 )
& ( member_a @ A4 @ g )
& ( member_a @ B3 @ B )
& ( member_a @ B3 @ g ) ) ) ) ).
% sumset.simps
thf(fact_6_sumset_OsumsetI,axiom,
! [A: a,A2: set_a,B4: a,B: set_a] :
( ( member_a @ A @ A2 )
=> ( ( member_a @ A @ g )
=> ( ( member_a @ B4 @ B )
=> ( ( member_a @ B4 @ g )
=> ( member_a @ ( addition @ A @ B4 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ) ) ).
% sumset.sumsetI
thf(fact_7_sumset__assoc,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ C )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn3038260743871226533mset_a @ g @ addition @ B @ C ) ) ) ).
% sumset_assoc
thf(fact_8_sumset__commute,axiom,
! [A2: set_a,B: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
= ( pluenn3038260743871226533mset_a @ g @ addition @ B @ A2 ) ) ).
% sumset_commute
thf(fact_9__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062b_O_A_092_060lbrakk_062b_A_092_060in_062_AB_059_Ab_A_092_060in_062_AG_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
~ ! [B2: a] :
( ( member_a @ B2 @ b )
=> ~ ( member_a @ B2 @ g ) ) ).
% \<open>\<And>thesis. (\<And>b. \<lbrakk>b \<in> B; b \<in> G\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_10_sumset__mono,axiom,
! [A5: set_a,A2: set_a,B5: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A5 @ A2 )
=> ( ( ord_less_eq_set_a @ B5 @ B )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ B5 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).
% sumset_mono
thf(fact_11_sumset__subset__carrier,axiom,
! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ g ) ).
% sumset_subset_carrier
thf(fact_12_finite__sumset,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( finite_finite_a @ B )
=> ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).
% finite_sumset
thf(fact_13_finite__sumset_H,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
=> ( ( finite_finite_a @ ( inf_inf_set_a @ B @ g ) )
=> ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).
% finite_sumset'
thf(fact_14_associative,axiom,
! [A: a,B4: a,C2: a] :
( ( member_a @ A @ g )
=> ( ( member_a @ B4 @ g )
=> ( ( member_a @ C2 @ g )
=> ( ( addition @ ( addition @ A @ B4 ) @ C2 )
= ( addition @ A @ ( addition @ B4 @ C2 ) ) ) ) ) ) ).
% associative
thf(fact_15_composition__closed,axiom,
! [A: a,B4: a] :
( ( member_a @ A @ g )
=> ( ( member_a @ B4 @ g )
=> ( member_a @ ( addition @ A @ B4 ) @ g ) ) ) ).
% composition_closed
thf(fact_16_False,axiom,
( ( inf_inf_set_a @ b @ g )
!= bot_bot_set_a ) ).
% False
thf(fact_17_sumset__Int__carrier__eq_I2_J,axiom,
! [A2: set_a,B: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ ( inf_inf_set_a @ A2 @ g ) @ B )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ).
% sumset_Int_carrier_eq(2)
thf(fact_18_sumset__Int__carrier__eq_I1_J,axiom,
! [A2: set_a,B: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( inf_inf_set_a @ B @ g ) )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ).
% sumset_Int_carrier_eq(1)
thf(fact_19_sumset__Int__carrier,axiom,
! [A2: set_a,B: set_a] :
( ( inf_inf_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ g )
= ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ).
% sumset_Int_carrier
thf(fact_20_additive__abelian__group_Osumset_Ocong,axiom,
pluenn3038260743871226533mset_a = pluenn3038260743871226533mset_a ).
% additive_abelian_group.sumset.cong
thf(fact_21_sumsetp_Ocases,axiom,
! [A2: a > $o,B: a > $o,A: a] :
( ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B @ A )
=> ~ ! [A3: a,B2: a] :
( ( A
= ( addition @ A3 @ B2 ) )
=> ( ( A2 @ A3 )
=> ( ( member_a @ A3 @ g )
=> ( ( B @ B2 )
=> ~ ( member_a @ B2 @ g ) ) ) ) ) ) ).
% sumsetp.cases
thf(fact_22_sumsetp_Osimps,axiom,
! [A2: a > $o,B: a > $o,A: a] :
( ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B @ A )
= ( ? [A4: a,B3: a] :
( ( A
= ( addition @ A4 @ B3 ) )
& ( A2 @ A4 )
& ( member_a @ A4 @ g )
& ( B @ B3 )
& ( member_a @ B3 @ g ) ) ) ) ).
% sumsetp.simps
thf(fact_23_sumsetp_OsumsetI,axiom,
! [A2: a > $o,A: a,B: a > $o,B4: a] :
( ( A2 @ A )
=> ( ( member_a @ A @ g )
=> ( ( B @ B4 )
=> ( ( member_a @ B4 @ g )
=> ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B @ ( addition @ A @ B4 ) ) ) ) ) ) ).
% sumsetp.sumsetI
thf(fact_24_Int__subset__iff,axiom,
! [C: set_a,A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ C @ ( inf_inf_set_a @ A2 @ B ) )
= ( ( ord_less_eq_set_a @ C @ A2 )
& ( ord_less_eq_set_a @ C @ B ) ) ) ).
% Int_subset_iff
thf(fact_25_sumset__empty_H_I2_J,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ g )
= bot_bot_set_a )
=> ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
= bot_bot_set_a ) ) ).
% sumset_empty'(2)
thf(fact_26_sumset__empty_H_I1_J,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ g )
= bot_bot_set_a )
=> ( ( pluenn3038260743871226533mset_a @ g @ addition @ B @ A2 )
= bot_bot_set_a ) ) ).
% sumset_empty'(1)
thf(fact_27_le__inf__iff,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( ( ord_less_eq_set_a @ X @ Y )
& ( ord_less_eq_set_a @ X @ Z ) ) ) ).
% le_inf_iff
thf(fact_28_le__inf__iff,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) )
= ( ( ord_less_eq_nat @ X @ Y )
& ( ord_less_eq_nat @ X @ Z ) ) ) ).
% le_inf_iff
thf(fact_29_inf_Obounded__iff,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) )
= ( ( ord_less_eq_set_a @ A @ B4 )
& ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% inf.bounded_iff
thf(fact_30_inf_Obounded__iff,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) )
= ( ( ord_less_eq_nat @ A @ B4 )
& ( ord_less_eq_nat @ A @ C2 ) ) ) ).
% inf.bounded_iff
thf(fact_31_sumset__subset__insert_I2_J,axiom,
! [A2: set_a,B: set_a,X: a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ A2 ) @ B ) ) ).
% sumset_subset_insert(2)
thf(fact_32_sumset__subset__insert_I1_J,axiom,
! [A2: set_a,B: set_a,X: a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ B ) ) ) ).
% sumset_subset_insert(1)
thf(fact_33_sumset__subset__Un_I2_J,axiom,
! [A2: set_a,B: set_a,C: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( sup_sup_set_a @ A2 @ C ) @ B ) ) ).
% sumset_subset_Un(2)
thf(fact_34_image__eqI,axiom,
! [B4: a,F: a > a,X: a,A2: set_a] :
( ( B4
= ( F @ X ) )
=> ( ( member_a @ X @ A2 )
=> ( member_a @ B4 @ ( image_a_a @ F @ A2 ) ) ) ) ).
% image_eqI
thf(fact_35_empty__iff,axiom,
! [C2: a] :
~ ( member_a @ C2 @ bot_bot_set_a ) ).
% empty_iff
thf(fact_36_all__not__in__conv,axiom,
! [A2: set_a] :
( ( ! [X2: a] :
~ ( member_a @ X2 @ A2 ) )
= ( A2 = bot_bot_set_a ) ) ).
% all_not_in_conv
thf(fact_37_Collect__empty__eq,axiom,
! [P: a > $o] :
( ( ( collect_a @ P )
= bot_bot_set_a )
= ( ! [X2: a] :
~ ( P @ X2 ) ) ) ).
% Collect_empty_eq
thf(fact_38_empty__Collect__eq,axiom,
! [P: a > $o] :
( ( bot_bot_set_a
= ( collect_a @ P ) )
= ( ! [X2: a] :
~ ( P @ X2 ) ) ) ).
% empty_Collect_eq
thf(fact_39_subset__antisym,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_eq_set_a @ B @ A2 )
=> ( A2 = B ) ) ) ).
% subset_antisym
thf(fact_40_subsetI,axiom,
! [A2: set_a,B: set_a] :
( ! [X3: a] :
( ( member_a @ X3 @ A2 )
=> ( member_a @ X3 @ B ) )
=> ( ord_less_eq_set_a @ A2 @ B ) ) ).
% subsetI
thf(fact_41_insertCI,axiom,
! [A: a,B: set_a,B4: a] :
( ( ~ ( member_a @ A @ B )
=> ( A = B4 ) )
=> ( member_a @ A @ ( insert_a @ B4 @ B ) ) ) ).
% insertCI
thf(fact_42_insert__iff,axiom,
! [A: a,B4: a,A2: set_a] :
( ( member_a @ A @ ( insert_a @ B4 @ A2 ) )
= ( ( A = B4 )
| ( member_a @ A @ A2 ) ) ) ).
% insert_iff
thf(fact_43_insert__absorb2,axiom,
! [X: a,A2: set_a] :
( ( insert_a @ X @ ( insert_a @ X @ A2 ) )
= ( insert_a @ X @ A2 ) ) ).
% insert_absorb2
thf(fact_44_mem__Collect__eq,axiom,
! [A: a,P: a > $o] :
( ( member_a @ A @ ( collect_a @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_45_Collect__mem__eq,axiom,
! [A2: set_a] :
( ( collect_a
@ ^ [X2: a] : ( member_a @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_46_inf__right__idem,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y )
= ( inf_inf_set_a @ X @ Y ) ) ).
% inf_right_idem
thf(fact_47_inf_Oright__idem,axiom,
! [A: set_a,B4: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B4 ) @ B4 )
= ( inf_inf_set_a @ A @ B4 ) ) ).
% inf.right_idem
thf(fact_48_inf__left__idem,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
= ( inf_inf_set_a @ X @ Y ) ) ).
% inf_left_idem
thf(fact_49_inf_Oleft__idem,axiom,
! [A: set_a,B4: set_a] :
( ( inf_inf_set_a @ A @ ( inf_inf_set_a @ A @ B4 ) )
= ( inf_inf_set_a @ A @ B4 ) ) ).
% inf.left_idem
thf(fact_50_inf__idem,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ X )
= X ) ).
% inf_idem
thf(fact_51_inf_Oidem,axiom,
! [A: set_a] :
( ( inf_inf_set_a @ A @ A )
= A ) ).
% inf.idem
thf(fact_52_sup_Oidem,axiom,
! [A: set_a] :
( ( sup_sup_set_a @ A @ A )
= A ) ).
% sup.idem
thf(fact_53_sup__idem,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ X @ X )
= X ) ).
% sup_idem
thf(fact_54_sup_Oleft__idem,axiom,
! [A: set_a,B4: set_a] :
( ( sup_sup_set_a @ A @ ( sup_sup_set_a @ A @ B4 ) )
= ( sup_sup_set_a @ A @ B4 ) ) ).
% sup.left_idem
thf(fact_55_sup__left__idem,axiom,
! [X: set_a,Y: set_a] :
( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
= ( sup_sup_set_a @ X @ Y ) ) ).
% sup_left_idem
thf(fact_56_sup_Oright__idem,axiom,
! [A: set_a,B4: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B4 ) @ B4 )
= ( sup_sup_set_a @ A @ B4 ) ) ).
% sup.right_idem
thf(fact_57_Int__iff,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
= ( ( member_a @ C2 @ A2 )
& ( member_a @ C2 @ B ) ) ) ).
% Int_iff
thf(fact_58_IntI,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ A2 )
=> ( ( member_a @ C2 @ B )
=> ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% IntI
thf(fact_59_UnCI,axiom,
! [C2: a,B: set_a,A2: set_a] :
( ( ~ ( member_a @ C2 @ B )
=> ( member_a @ C2 @ A2 ) )
=> ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) ) ) ).
% UnCI
thf(fact_60_Un__iff,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) )
= ( ( member_a @ C2 @ A2 )
| ( member_a @ C2 @ B ) ) ) ).
% Un_iff
thf(fact_61_sumset__subset__Un2,axiom,
! [A2: set_a,B: set_a,B5: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( sup_sup_set_a @ B @ B5 ) )
= ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B5 ) ) ) ).
% sumset_subset_Un2
thf(fact_62_sumset__subset__Un1,axiom,
! [A2: set_a,A5: set_a,B: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ ( sup_sup_set_a @ A2 @ A5 ) @ B )
= ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ B ) ) ) ).
% sumset_subset_Un1
thf(fact_63_sumset__subset__Un_I1_J,axiom,
! [A2: set_a,B: set_a,C: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).
% sumset_subset_Un(1)
thf(fact_64_sup_Obounded__iff,axiom,
! [B4: set_a,C2: set_a,A: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B4 @ C2 ) @ A )
= ( ( ord_less_eq_set_a @ B4 @ A )
& ( ord_less_eq_set_a @ C2 @ A ) ) ) ).
% sup.bounded_iff
thf(fact_65_sup_Obounded__iff,axiom,
! [B4: nat,C2: nat,A: nat] :
( ( ord_less_eq_nat @ ( sup_sup_nat @ B4 @ C2 ) @ A )
= ( ( ord_less_eq_nat @ B4 @ A )
& ( ord_less_eq_nat @ C2 @ A ) ) ) ).
% sup.bounded_iff
thf(fact_66_le__sup__iff,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
= ( ( ord_less_eq_set_a @ X @ Z )
& ( ord_less_eq_set_a @ Y @ Z ) ) ) ).
% le_sup_iff
thf(fact_67_le__sup__iff,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ ( sup_sup_nat @ X @ Y ) @ Z )
= ( ( ord_less_eq_nat @ X @ Z )
& ( ord_less_eq_nat @ Y @ Z ) ) ) ).
% le_sup_iff
thf(fact_68_image__is__empty,axiom,
! [F: a > a,A2: set_a] :
( ( ( image_a_a @ F @ A2 )
= bot_bot_set_a )
= ( A2 = bot_bot_set_a ) ) ).
% image_is_empty
thf(fact_69_empty__is__image,axiom,
! [F: a > a,A2: set_a] :
( ( bot_bot_set_a
= ( image_a_a @ F @ A2 ) )
= ( A2 = bot_bot_set_a ) ) ).
% empty_is_image
thf(fact_70_image__empty,axiom,
! [F: a > a] :
( ( image_a_a @ F @ bot_bot_set_a )
= bot_bot_set_a ) ).
% image_empty
thf(fact_71_empty__subsetI,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A2 ) ).
% empty_subsetI
thf(fact_72_subset__empty,axiom,
! [A2: set_a] :
( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
= ( A2 = bot_bot_set_a ) ) ).
% subset_empty
thf(fact_73_insert__image,axiom,
! [X: a,A2: set_a,F: a > a] :
( ( member_a @ X @ A2 )
=> ( ( insert_a @ ( F @ X ) @ ( image_a_a @ F @ A2 ) )
= ( image_a_a @ F @ A2 ) ) ) ).
% insert_image
thf(fact_74_image__insert,axiom,
! [F: a > a,A: a,B: set_a] :
( ( image_a_a @ F @ ( insert_a @ A @ B ) )
= ( insert_a @ ( F @ A ) @ ( image_a_a @ F @ B ) ) ) ).
% image_insert
thf(fact_75_inf__bot__right,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ bot_bot_set_a )
= bot_bot_set_a ) ).
% inf_bot_right
thf(fact_76_inf__bot__left,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ bot_bot_set_a @ X )
= bot_bot_set_a ) ).
% inf_bot_left
thf(fact_77_singletonI,axiom,
! [A: a] : ( member_a @ A @ ( insert_a @ A @ bot_bot_set_a ) ) ).
% singletonI
thf(fact_78_sup__bot__left,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ bot_bot_set_a @ X )
= X ) ).
% sup_bot_left
thf(fact_79_sup__bot__right,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ X @ bot_bot_set_a )
= X ) ).
% sup_bot_right
thf(fact_80_bot__eq__sup__iff,axiom,
! [X: set_a,Y: set_a] :
( ( bot_bot_set_a
= ( sup_sup_set_a @ X @ Y ) )
= ( ( X = bot_bot_set_a )
& ( Y = bot_bot_set_a ) ) ) ).
% bot_eq_sup_iff
thf(fact_81_sup__eq__bot__iff,axiom,
! [X: set_a,Y: set_a] :
( ( ( sup_sup_set_a @ X @ Y )
= bot_bot_set_a )
= ( ( X = bot_bot_set_a )
& ( Y = bot_bot_set_a ) ) ) ).
% sup_eq_bot_iff
thf(fact_82_sup__bot_Oeq__neutr__iff,axiom,
! [A: set_a,B4: set_a] :
( ( ( sup_sup_set_a @ A @ B4 )
= bot_bot_set_a )
= ( ( A = bot_bot_set_a )
& ( B4 = bot_bot_set_a ) ) ) ).
% sup_bot.eq_neutr_iff
thf(fact_83_sup__bot_Oleft__neutral,axiom,
! [A: set_a] :
( ( sup_sup_set_a @ bot_bot_set_a @ A )
= A ) ).
% sup_bot.left_neutral
thf(fact_84_sup__bot_Oneutr__eq__iff,axiom,
! [A: set_a,B4: set_a] :
( ( bot_bot_set_a
= ( sup_sup_set_a @ A @ B4 ) )
= ( ( A = bot_bot_set_a )
& ( B4 = bot_bot_set_a ) ) ) ).
% sup_bot.neutr_eq_iff
thf(fact_85_sup__bot_Oright__neutral,axiom,
! [A: set_a] :
( ( sup_sup_set_a @ A @ bot_bot_set_a )
= A ) ).
% sup_bot.right_neutral
thf(fact_86_insert__subset,axiom,
! [X: a,A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ ( insert_a @ X @ A2 ) @ B )
= ( ( member_a @ X @ B )
& ( ord_less_eq_set_a @ A2 @ B ) ) ) ).
% insert_subset
thf(fact_87_sup__inf__absorb,axiom,
! [X: set_a,Y: set_a] :
( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
= X ) ).
% sup_inf_absorb
thf(fact_88_inf__sup__absorb,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
= X ) ).
% inf_sup_absorb
thf(fact_89_Un__empty,axiom,
! [A2: set_a,B: set_a] :
( ( ( sup_sup_set_a @ A2 @ B )
= bot_bot_set_a )
= ( ( A2 = bot_bot_set_a )
& ( B = bot_bot_set_a ) ) ) ).
% Un_empty
thf(fact_90_Int__insert__right__if1,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( member_a @ A @ A2 )
=> ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% Int_insert_right_if1
thf(fact_91_Int__insert__right__if0,axiom,
! [A: a,A2: set_a,B: set_a] :
( ~ ( member_a @ A @ A2 )
=> ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( inf_inf_set_a @ A2 @ B ) ) ) ).
% Int_insert_right_if0
thf(fact_92_insert__inter__insert,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ ( insert_a @ A @ B ) )
= ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B ) ) ) ).
% insert_inter_insert
thf(fact_93_Int__insert__left__if1,axiom,
! [A: a,C: set_a,B: set_a] :
( ( member_a @ A @ C )
=> ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
= ( insert_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ) ).
% Int_insert_left_if1
thf(fact_94_Int__insert__left__if0,axiom,
! [A: a,C: set_a,B: set_a] :
( ~ ( member_a @ A @ C )
=> ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
= ( inf_inf_set_a @ B @ C ) ) ) ).
% Int_insert_left_if0
thf(fact_95_Un__subset__iff,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C )
= ( ( ord_less_eq_set_a @ A2 @ C )
& ( ord_less_eq_set_a @ B @ C ) ) ) ).
% Un_subset_iff
thf(fact_96_Un__insert__left,axiom,
! [A: a,B: set_a,C: set_a] :
( ( sup_sup_set_a @ ( insert_a @ A @ B ) @ C )
= ( insert_a @ A @ ( sup_sup_set_a @ B @ C ) ) ) ).
% Un_insert_left
thf(fact_97_Un__insert__right,axiom,
! [A2: set_a,A: a,B: set_a] :
( ( sup_sup_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( insert_a @ A @ ( sup_sup_set_a @ A2 @ B ) ) ) ).
% Un_insert_right
thf(fact_98_Un__Int__eq_I1_J,axiom,
! [S: set_a,T: set_a] :
( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T ) @ S )
= S ) ).
% Un_Int_eq(1)
thf(fact_99_Un__Int__eq_I2_J,axiom,
! [S: set_a,T: set_a] :
( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T ) @ T )
= T ) ).
% Un_Int_eq(2)
thf(fact_100_Un__Int__eq_I3_J,axiom,
! [S: set_a,T: set_a] :
( ( inf_inf_set_a @ S @ ( sup_sup_set_a @ S @ T ) )
= S ) ).
% Un_Int_eq(3)
thf(fact_101_Un__Int__eq_I4_J,axiom,
! [T: set_a,S: set_a] :
( ( inf_inf_set_a @ T @ ( sup_sup_set_a @ S @ T ) )
= T ) ).
% Un_Int_eq(4)
thf(fact_102_Int__Un__eq_I1_J,axiom,
! [S: set_a,T: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T ) @ S )
= S ) ).
% Int_Un_eq(1)
thf(fact_103_Int__Un__eq_I2_J,axiom,
! [S: set_a,T: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T ) @ T )
= T ) ).
% Int_Un_eq(2)
thf(fact_104_Int__Un__eq_I3_J,axiom,
! [S: set_a,T: set_a] :
( ( sup_sup_set_a @ S @ ( inf_inf_set_a @ S @ T ) )
= S ) ).
% Int_Un_eq(3)
thf(fact_105_Int__Un__eq_I4_J,axiom,
! [T: set_a,S: set_a] :
( ( sup_sup_set_a @ T @ ( inf_inf_set_a @ S @ T ) )
= T ) ).
% Int_Un_eq(4)
thf(fact_106_singleton__insert__inj__eq,axiom,
! [B4: a,A: a,A2: set_a] :
( ( ( insert_a @ B4 @ bot_bot_set_a )
= ( insert_a @ A @ A2 ) )
= ( ( A = B4 )
& ( ord_less_eq_set_a @ A2 @ ( insert_a @ B4 @ bot_bot_set_a ) ) ) ) ).
% singleton_insert_inj_eq
thf(fact_107_singleton__insert__inj__eq_H,axiom,
! [A: a,A2: set_a,B4: a] :
( ( ( insert_a @ A @ A2 )
= ( insert_a @ B4 @ bot_bot_set_a ) )
= ( ( A = B4 )
& ( ord_less_eq_set_a @ A2 @ ( insert_a @ B4 @ bot_bot_set_a ) ) ) ) ).
% singleton_insert_inj_eq'
thf(fact_108_disjoint__insert_I2_J,axiom,
! [A2: set_a,B4: a,B: set_a] :
( ( bot_bot_set_a
= ( inf_inf_set_a @ A2 @ ( insert_a @ B4 @ B ) ) )
= ( ~ ( member_a @ B4 @ A2 )
& ( bot_bot_set_a
= ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% disjoint_insert(2)
thf(fact_109_disjoint__insert_I1_J,axiom,
! [B: set_a,A: a,A2: set_a] :
( ( ( inf_inf_set_a @ B @ ( insert_a @ A @ A2 ) )
= bot_bot_set_a )
= ( ~ ( member_a @ A @ B )
& ( ( inf_inf_set_a @ B @ A2 )
= bot_bot_set_a ) ) ) ).
% disjoint_insert(1)
thf(fact_110_insert__disjoint_I2_J,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( bot_bot_set_a
= ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ B ) )
= ( ~ ( member_a @ A @ B )
& ( bot_bot_set_a
= ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% insert_disjoint(2)
thf(fact_111_insert__disjoint_I1_J,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ B )
= bot_bot_set_a )
= ( ~ ( member_a @ A @ B )
& ( ( inf_inf_set_a @ A2 @ B )
= bot_bot_set_a ) ) ) ).
% insert_disjoint(1)
thf(fact_112_sumset__empty_I1_J,axiom,
! [A2: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ bot_bot_set_a )
= bot_bot_set_a ) ).
% sumset_empty(1)
thf(fact_113_sumset__empty_I2_J,axiom,
! [A2: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ bot_bot_set_a @ A2 )
= bot_bot_set_a ) ).
% sumset_empty(2)
thf(fact_114_sumset__is__empty__iff,axiom,
! [A2: set_a,B: set_a] :
( ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
= bot_bot_set_a )
= ( ( ( inf_inf_set_a @ A2 @ g )
= bot_bot_set_a )
| ( ( inf_inf_set_a @ B @ g )
= bot_bot_set_a ) ) ) ).
% sumset_is_empty_iff
thf(fact_115_inf__sup__aci_I8_J,axiom,
! [X: set_a,Y: set_a] :
( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
= ( sup_sup_set_a @ X @ Y ) ) ).
% inf_sup_aci(8)
thf(fact_116_inf__sup__aci_I7_J,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
= ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z ) ) ) ).
% inf_sup_aci(7)
thf(fact_117_inf__sup__aci_I6_J,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
= ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).
% inf_sup_aci(6)
thf(fact_118_inf__sup__aci_I5_J,axiom,
( sup_sup_set_a
= ( ^ [X2: set_a,Y2: set_a] : ( sup_sup_set_a @ Y2 @ X2 ) ) ) ).
% inf_sup_aci(5)
thf(fact_119_sup_Oassoc,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B4 ) @ C2 )
= ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B4 @ C2 ) ) ) ).
% sup.assoc
thf(fact_120_sup__assoc,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
= ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).
% sup_assoc
thf(fact_121_sup_Ocommute,axiom,
( sup_sup_set_a
= ( ^ [A4: set_a,B3: set_a] : ( sup_sup_set_a @ B3 @ A4 ) ) ) ).
% sup.commute
thf(fact_122_sup__commute,axiom,
( sup_sup_set_a
= ( ^ [X2: set_a,Y2: set_a] : ( sup_sup_set_a @ Y2 @ X2 ) ) ) ).
% sup_commute
thf(fact_123_sup_Oleft__commute,axiom,
! [B4: set_a,A: set_a,C2: set_a] :
( ( sup_sup_set_a @ B4 @ ( sup_sup_set_a @ A @ C2 ) )
= ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B4 @ C2 ) ) ) ).
% sup.left_commute
thf(fact_124_sup__left__commute,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
= ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z ) ) ) ).
% sup_left_commute
thf(fact_125_UnE,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) )
=> ( ~ ( member_a @ C2 @ A2 )
=> ( member_a @ C2 @ B ) ) ) ).
% UnE
thf(fact_126_UnI1,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ A2 )
=> ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) ) ) ).
% UnI1
thf(fact_127_UnI2,axiom,
! [C2: a,B: set_a,A2: set_a] :
( ( member_a @ C2 @ B )
=> ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) ) ) ).
% UnI2
thf(fact_128_bex__Un,axiom,
! [A2: set_a,B: set_a,P: a > $o] :
( ( ? [X2: a] :
( ( member_a @ X2 @ ( sup_sup_set_a @ A2 @ B ) )
& ( P @ X2 ) ) )
= ( ? [X2: a] :
( ( member_a @ X2 @ A2 )
& ( P @ X2 ) )
| ? [X2: a] :
( ( member_a @ X2 @ B )
& ( P @ X2 ) ) ) ) ).
% bex_Un
thf(fact_129_emptyE,axiom,
! [A: a] :
~ ( member_a @ A @ bot_bot_set_a ) ).
% emptyE
thf(fact_130_ball__Un,axiom,
! [A2: set_a,B: set_a,P: a > $o] :
( ( ! [X2: a] :
( ( member_a @ X2 @ ( sup_sup_set_a @ A2 @ B ) )
=> ( P @ X2 ) ) )
= ( ! [X2: a] :
( ( member_a @ X2 @ A2 )
=> ( P @ X2 ) )
& ! [X2: a] :
( ( member_a @ X2 @ B )
=> ( P @ X2 ) ) ) ) ).
% ball_Un
thf(fact_131_insertE,axiom,
! [A: a,B4: a,A2: set_a] :
( ( member_a @ A @ ( insert_a @ B4 @ A2 ) )
=> ( ( A != B4 )
=> ( member_a @ A @ A2 ) ) ) ).
% insertE
thf(fact_132_Un__assoc,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C )
= ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).
% Un_assoc
thf(fact_133_equals0D,axiom,
! [A2: set_a,A: a] :
( ( A2 = bot_bot_set_a )
=> ~ ( member_a @ A @ A2 ) ) ).
% equals0D
thf(fact_134_equals0I,axiom,
! [A2: set_a] :
( ! [Y3: a] :
~ ( member_a @ Y3 @ A2 )
=> ( A2 = bot_bot_set_a ) ) ).
% equals0I
thf(fact_135_insertI1,axiom,
! [A: a,B: set_a] : ( member_a @ A @ ( insert_a @ A @ B ) ) ).
% insertI1
thf(fact_136_insertI2,axiom,
! [A: a,B: set_a,B4: a] :
( ( member_a @ A @ B )
=> ( member_a @ A @ ( insert_a @ B4 @ B ) ) ) ).
% insertI2
thf(fact_137_Un__absorb,axiom,
! [A2: set_a] :
( ( sup_sup_set_a @ A2 @ A2 )
= A2 ) ).
% Un_absorb
thf(fact_138_Un__commute,axiom,
( sup_sup_set_a
= ( ^ [A6: set_a,B6: set_a] : ( sup_sup_set_a @ B6 @ A6 ) ) ) ).
% Un_commute
thf(fact_139_ex__in__conv,axiom,
! [A2: set_a] :
( ( ? [X2: a] : ( member_a @ X2 @ A2 ) )
= ( A2 != bot_bot_set_a ) ) ).
% ex_in_conv
thf(fact_140_Set_Oset__insert,axiom,
! [X: a,A2: set_a] :
( ( member_a @ X @ A2 )
=> ~ ! [B7: set_a] :
( ( A2
= ( insert_a @ X @ B7 ) )
=> ( member_a @ X @ B7 ) ) ) ).
% Set.set_insert
thf(fact_141_singletonD,axiom,
! [B4: a,A: a] :
( ( member_a @ B4 @ ( insert_a @ A @ bot_bot_set_a ) )
=> ( B4 = A ) ) ).
% singletonD
thf(fact_142_insert__ident,axiom,
! [X: a,A2: set_a,B: set_a] :
( ~ ( member_a @ X @ A2 )
=> ( ~ ( member_a @ X @ B )
=> ( ( ( insert_a @ X @ A2 )
= ( insert_a @ X @ B ) )
= ( A2 = B ) ) ) ) ).
% insert_ident
thf(fact_143_insert__is__Un,axiom,
( insert_a
= ( ^ [A4: a] : ( sup_sup_set_a @ ( insert_a @ A4 @ bot_bot_set_a ) ) ) ) ).
% insert_is_Un
thf(fact_144_Un__empty__left,axiom,
! [B: set_a] :
( ( sup_sup_set_a @ bot_bot_set_a @ B )
= B ) ).
% Un_empty_left
thf(fact_145_insert__absorb,axiom,
! [A: a,A2: set_a] :
( ( member_a @ A @ A2 )
=> ( ( insert_a @ A @ A2 )
= A2 ) ) ).
% insert_absorb
thf(fact_146_insert__eq__iff,axiom,
! [A: a,A2: set_a,B4: a,B: set_a] :
( ~ ( member_a @ A @ A2 )
=> ( ~ ( member_a @ B4 @ B )
=> ( ( ( insert_a @ A @ A2 )
= ( insert_a @ B4 @ B ) )
= ( ( ( A = B4 )
=> ( A2 = B ) )
& ( ( A != B4 )
=> ? [C3: set_a] :
( ( A2
= ( insert_a @ B4 @ C3 ) )
& ~ ( member_a @ B4 @ C3 )
& ( B
= ( insert_a @ A @ C3 ) )
& ~ ( member_a @ A @ C3 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_147_singleton__iff,axiom,
! [B4: a,A: a] :
( ( member_a @ B4 @ ( insert_a @ A @ bot_bot_set_a ) )
= ( B4 = A ) ) ).
% singleton_iff
thf(fact_148_Un__empty__right,axiom,
! [A2: set_a] :
( ( sup_sup_set_a @ A2 @ bot_bot_set_a )
= A2 ) ).
% Un_empty_right
thf(fact_149_Un__left__absorb,axiom,
! [A2: set_a,B: set_a] :
( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B ) )
= ( sup_sup_set_a @ A2 @ B ) ) ).
% Un_left_absorb
thf(fact_150_insert__commute,axiom,
! [X: a,Y: a,A2: set_a] :
( ( insert_a @ X @ ( insert_a @ Y @ A2 ) )
= ( insert_a @ Y @ ( insert_a @ X @ A2 ) ) ) ).
% insert_commute
thf(fact_151_Un__left__commute,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) )
= ( sup_sup_set_a @ B @ ( sup_sup_set_a @ A2 @ C ) ) ) ).
% Un_left_commute
thf(fact_152_Un__singleton__iff,axiom,
! [A2: set_a,B: set_a,X: a] :
( ( ( sup_sup_set_a @ A2 @ B )
= ( insert_a @ X @ bot_bot_set_a ) )
= ( ( ( A2 = bot_bot_set_a )
& ( B
= ( insert_a @ X @ bot_bot_set_a ) ) )
| ( ( A2
= ( insert_a @ X @ bot_bot_set_a ) )
& ( B = bot_bot_set_a ) )
| ( ( A2
= ( insert_a @ X @ bot_bot_set_a ) )
& ( B
= ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).
% Un_singleton_iff
thf(fact_153_doubleton__eq__iff,axiom,
! [A: a,B4: a,C2: a,D: a] :
( ( ( insert_a @ A @ ( insert_a @ B4 @ bot_bot_set_a ) )
= ( insert_a @ C2 @ ( insert_a @ D @ bot_bot_set_a ) ) )
= ( ( ( A = C2 )
& ( B4 = D ) )
| ( ( A = D )
& ( B4 = C2 ) ) ) ) ).
% doubleton_eq_iff
thf(fact_154_insert__not__empty,axiom,
! [A: a,A2: set_a] :
( ( insert_a @ A @ A2 )
!= bot_bot_set_a ) ).
% insert_not_empty
thf(fact_155_singleton__Un__iff,axiom,
! [X: a,A2: set_a,B: set_a] :
( ( ( insert_a @ X @ bot_bot_set_a )
= ( sup_sup_set_a @ A2 @ B ) )
= ( ( ( A2 = bot_bot_set_a )
& ( B
= ( insert_a @ X @ bot_bot_set_a ) ) )
| ( ( A2
= ( insert_a @ X @ bot_bot_set_a ) )
& ( B = bot_bot_set_a ) )
| ( ( A2
= ( insert_a @ X @ bot_bot_set_a ) )
& ( B
= ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).
% singleton_Un_iff
thf(fact_156_singleton__inject,axiom,
! [A: a,B4: a] :
( ( ( insert_a @ A @ bot_bot_set_a )
= ( insert_a @ B4 @ bot_bot_set_a ) )
=> ( A = B4 ) ) ).
% singleton_inject
thf(fact_157_subset__singletonD,axiom,
! [A2: set_a,X: a] :
( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) )
=> ( ( A2 = bot_bot_set_a )
| ( A2
= ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).
% subset_singletonD
thf(fact_158_mk__disjoint__insert,axiom,
! [A: a,A2: set_a] :
( ( member_a @ A @ A2 )
=> ? [B7: set_a] :
( ( A2
= ( insert_a @ A @ B7 ) )
& ~ ( member_a @ A @ B7 ) ) ) ).
% mk_disjoint_insert
thf(fact_159_subset__singleton__iff,axiom,
! [X4: set_a,A: a] :
( ( ord_less_eq_set_a @ X4 @ ( insert_a @ A @ bot_bot_set_a ) )
= ( ( X4 = bot_bot_set_a )
| ( X4
= ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).
% subset_singleton_iff
thf(fact_160_additive__abelian__group_Osumsetp_Ocong,axiom,
pluenn895083305082786853setp_a = pluenn895083305082786853setp_a ).
% additive_abelian_group.sumsetp.cong
thf(fact_161_sup_OcoboundedI2,axiom,
! [C2: set_a,B4: set_a,A: set_a] :
( ( ord_less_eq_set_a @ C2 @ B4 )
=> ( ord_less_eq_set_a @ C2 @ ( sup_sup_set_a @ A @ B4 ) ) ) ).
% sup.coboundedI2
thf(fact_162_sup_OcoboundedI2,axiom,
! [C2: nat,B4: nat,A: nat] :
( ( ord_less_eq_nat @ C2 @ B4 )
=> ( ord_less_eq_nat @ C2 @ ( sup_sup_nat @ A @ B4 ) ) ) ).
% sup.coboundedI2
thf(fact_163_sup_OcoboundedI1,axiom,
! [C2: set_a,A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ C2 @ A )
=> ( ord_less_eq_set_a @ C2 @ ( sup_sup_set_a @ A @ B4 ) ) ) ).
% sup.coboundedI1
thf(fact_164_sup_OcoboundedI1,axiom,
! [C2: nat,A: nat,B4: nat] :
( ( ord_less_eq_nat @ C2 @ A )
=> ( ord_less_eq_nat @ C2 @ ( sup_sup_nat @ A @ B4 ) ) ) ).
% sup.coboundedI1
thf(fact_165_sup_Oabsorb__iff2,axiom,
( ord_less_eq_set_a
= ( ^ [A4: set_a,B3: set_a] :
( ( sup_sup_set_a @ A4 @ B3 )
= B3 ) ) ) ).
% sup.absorb_iff2
thf(fact_166_sup_Oabsorb__iff2,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B3: nat] :
( ( sup_sup_nat @ A4 @ B3 )
= B3 ) ) ) ).
% sup.absorb_iff2
thf(fact_167_sup_Oabsorb__iff1,axiom,
( ord_less_eq_set_a
= ( ^ [B3: set_a,A4: set_a] :
( ( sup_sup_set_a @ A4 @ B3 )
= A4 ) ) ) ).
% sup.absorb_iff1
thf(fact_168_sup_Oabsorb__iff1,axiom,
( ord_less_eq_nat
= ( ^ [B3: nat,A4: nat] :
( ( sup_sup_nat @ A4 @ B3 )
= A4 ) ) ) ).
% sup.absorb_iff1
thf(fact_169_sup_Ocobounded2,axiom,
! [B4: set_a,A: set_a] : ( ord_less_eq_set_a @ B4 @ ( sup_sup_set_a @ A @ B4 ) ) ).
% sup.cobounded2
thf(fact_170_sup_Ocobounded2,axiom,
! [B4: nat,A: nat] : ( ord_less_eq_nat @ B4 @ ( sup_sup_nat @ A @ B4 ) ) ).
% sup.cobounded2
thf(fact_171_sup_Ocobounded1,axiom,
! [A: set_a,B4: set_a] : ( ord_less_eq_set_a @ A @ ( sup_sup_set_a @ A @ B4 ) ) ).
% sup.cobounded1
thf(fact_172_sup_Ocobounded1,axiom,
! [A: nat,B4: nat] : ( ord_less_eq_nat @ A @ ( sup_sup_nat @ A @ B4 ) ) ).
% sup.cobounded1
thf(fact_173_sup_Oorder__iff,axiom,
( ord_less_eq_set_a
= ( ^ [B3: set_a,A4: set_a] :
( A4
= ( sup_sup_set_a @ A4 @ B3 ) ) ) ) ).
% sup.order_iff
thf(fact_174_sup_Oorder__iff,axiom,
( ord_less_eq_nat
= ( ^ [B3: nat,A4: nat] :
( A4
= ( sup_sup_nat @ A4 @ B3 ) ) ) ) ).
% sup.order_iff
thf(fact_175_sup_OboundedI,axiom,
! [B4: set_a,A: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ B4 @ A )
=> ( ( ord_less_eq_set_a @ C2 @ A )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ B4 @ C2 ) @ A ) ) ) ).
% sup.boundedI
thf(fact_176_sup_OboundedI,axiom,
! [B4: nat,A: nat,C2: nat] :
( ( ord_less_eq_nat @ B4 @ A )
=> ( ( ord_less_eq_nat @ C2 @ A )
=> ( ord_less_eq_nat @ ( sup_sup_nat @ B4 @ C2 ) @ A ) ) ) ).
% sup.boundedI
thf(fact_177_sup_OboundedE,axiom,
! [B4: set_a,C2: set_a,A: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B4 @ C2 ) @ A )
=> ~ ( ( ord_less_eq_set_a @ B4 @ A )
=> ~ ( ord_less_eq_set_a @ C2 @ A ) ) ) ).
% sup.boundedE
thf(fact_178_sup_OboundedE,axiom,
! [B4: nat,C2: nat,A: nat] :
( ( ord_less_eq_nat @ ( sup_sup_nat @ B4 @ C2 ) @ A )
=> ~ ( ( ord_less_eq_nat @ B4 @ A )
=> ~ ( ord_less_eq_nat @ C2 @ A ) ) ) ).
% sup.boundedE
thf(fact_179_sup__absorb2,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( sup_sup_set_a @ X @ Y )
= Y ) ) ).
% sup_absorb2
thf(fact_180_sup__absorb2,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( sup_sup_nat @ X @ Y )
= Y ) ) ).
% sup_absorb2
thf(fact_181_sup__absorb1,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( sup_sup_set_a @ X @ Y )
= X ) ) ).
% sup_absorb1
thf(fact_182_sup__absorb1,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( sup_sup_nat @ X @ Y )
= X ) ) ).
% sup_absorb1
thf(fact_183_sup_Oabsorb2,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( sup_sup_set_a @ A @ B4 )
= B4 ) ) ).
% sup.absorb2
thf(fact_184_sup_Oabsorb2,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( sup_sup_nat @ A @ B4 )
= B4 ) ) ).
% sup.absorb2
thf(fact_185_sup_Oabsorb1,axiom,
! [B4: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B4 @ A )
=> ( ( sup_sup_set_a @ A @ B4 )
= A ) ) ).
% sup.absorb1
thf(fact_186_sup_Oabsorb1,axiom,
! [B4: nat,A: nat] :
( ( ord_less_eq_nat @ B4 @ A )
=> ( ( sup_sup_nat @ A @ B4 )
= A ) ) ).
% sup.absorb1
thf(fact_187_sup__unique,axiom,
! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ X3 @ ( F @ X3 @ Y3 ) )
=> ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ Y3 @ ( F @ X3 @ Y3 ) )
=> ( ! [X3: set_a,Y3: set_a,Z2: set_a] :
( ( ord_less_eq_set_a @ Y3 @ X3 )
=> ( ( ord_less_eq_set_a @ Z2 @ X3 )
=> ( ord_less_eq_set_a @ ( F @ Y3 @ Z2 ) @ X3 ) ) )
=> ( ( sup_sup_set_a @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% sup_unique
thf(fact_188_sup__unique,axiom,
! [F: nat > nat > nat,X: nat,Y: nat] :
( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ X3 @ ( F @ X3 @ Y3 ) )
=> ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ Y3 @ ( F @ X3 @ Y3 ) )
=> ( ! [X3: nat,Y3: nat,Z2: nat] :
( ( ord_less_eq_nat @ Y3 @ X3 )
=> ( ( ord_less_eq_nat @ Z2 @ X3 )
=> ( ord_less_eq_nat @ ( F @ Y3 @ Z2 ) @ X3 ) ) )
=> ( ( sup_sup_nat @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% sup_unique
thf(fact_189_sup_OorderI,axiom,
! [A: set_a,B4: set_a] :
( ( A
= ( sup_sup_set_a @ A @ B4 ) )
=> ( ord_less_eq_set_a @ B4 @ A ) ) ).
% sup.orderI
thf(fact_190_sup_OorderI,axiom,
! [A: nat,B4: nat] :
( ( A
= ( sup_sup_nat @ A @ B4 ) )
=> ( ord_less_eq_nat @ B4 @ A ) ) ).
% sup.orderI
thf(fact_191_sup_OorderE,axiom,
! [B4: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B4 @ A )
=> ( A
= ( sup_sup_set_a @ A @ B4 ) ) ) ).
% sup.orderE
thf(fact_192_sup_OorderE,axiom,
! [B4: nat,A: nat] :
( ( ord_less_eq_nat @ B4 @ A )
=> ( A
= ( sup_sup_nat @ A @ B4 ) ) ) ).
% sup.orderE
thf(fact_193_le__iff__sup,axiom,
( ord_less_eq_set_a
= ( ^ [X2: set_a,Y2: set_a] :
( ( sup_sup_set_a @ X2 @ Y2 )
= Y2 ) ) ) ).
% le_iff_sup
thf(fact_194_le__iff__sup,axiom,
( ord_less_eq_nat
= ( ^ [X2: nat,Y2: nat] :
( ( sup_sup_nat @ X2 @ Y2 )
= Y2 ) ) ) ).
% le_iff_sup
thf(fact_195_sup__least,axiom,
! [Y: set_a,X: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( ord_less_eq_set_a @ Z @ X )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X ) ) ) ).
% sup_least
thf(fact_196_sup__least,axiom,
! [Y: nat,X: nat,Z: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( ord_less_eq_nat @ Z @ X )
=> ( ord_less_eq_nat @ ( sup_sup_nat @ Y @ Z ) @ X ) ) ) ).
% sup_least
thf(fact_197_sup__mono,axiom,
! [A: set_a,C2: set_a,B4: set_a,D: set_a] :
( ( ord_less_eq_set_a @ A @ C2 )
=> ( ( ord_less_eq_set_a @ B4 @ D )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B4 ) @ ( sup_sup_set_a @ C2 @ D ) ) ) ) ).
% sup_mono
thf(fact_198_sup__mono,axiom,
! [A: nat,C2: nat,B4: nat,D: nat] :
( ( ord_less_eq_nat @ A @ C2 )
=> ( ( ord_less_eq_nat @ B4 @ D )
=> ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B4 ) @ ( sup_sup_nat @ C2 @ D ) ) ) ) ).
% sup_mono
thf(fact_199_sup_Omono,axiom,
! [C2: set_a,A: set_a,D: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ C2 @ A )
=> ( ( ord_less_eq_set_a @ D @ B4 )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ C2 @ D ) @ ( sup_sup_set_a @ A @ B4 ) ) ) ) ).
% sup.mono
thf(fact_200_sup_Omono,axiom,
! [C2: nat,A: nat,D: nat,B4: nat] :
( ( ord_less_eq_nat @ C2 @ A )
=> ( ( ord_less_eq_nat @ D @ B4 )
=> ( ord_less_eq_nat @ ( sup_sup_nat @ C2 @ D ) @ ( sup_sup_nat @ A @ B4 ) ) ) ) ).
% sup.mono
thf(fact_201_le__supI2,axiom,
! [X: set_a,B4: set_a,A: set_a] :
( ( ord_less_eq_set_a @ X @ B4 )
=> ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A @ B4 ) ) ) ).
% le_supI2
thf(fact_202_le__supI2,axiom,
! [X: nat,B4: nat,A: nat] :
( ( ord_less_eq_nat @ X @ B4 )
=> ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A @ B4 ) ) ) ).
% le_supI2
thf(fact_203_le__supI1,axiom,
! [X: set_a,A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ X @ A )
=> ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A @ B4 ) ) ) ).
% le_supI1
thf(fact_204_le__supI1,axiom,
! [X: nat,A: nat,B4: nat] :
( ( ord_less_eq_nat @ X @ A )
=> ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A @ B4 ) ) ) ).
% le_supI1
thf(fact_205_sup__ge2,axiom,
! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).
% sup_ge2
thf(fact_206_sup__ge2,axiom,
! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).
% sup_ge2
thf(fact_207_sup__ge1,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).
% sup_ge1
thf(fact_208_sup__ge1,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).
% sup_ge1
thf(fact_209_le__supI,axiom,
! [A: set_a,X: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ X )
=> ( ( ord_less_eq_set_a @ B4 @ X )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B4 ) @ X ) ) ) ).
% le_supI
thf(fact_210_le__supI,axiom,
! [A: nat,X: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ X )
=> ( ( ord_less_eq_nat @ B4 @ X )
=> ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B4 ) @ X ) ) ) ).
% le_supI
thf(fact_211_le__supE,axiom,
! [A: set_a,B4: set_a,X: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B4 ) @ X )
=> ~ ( ( ord_less_eq_set_a @ A @ X )
=> ~ ( ord_less_eq_set_a @ B4 @ X ) ) ) ).
% le_supE
thf(fact_212_le__supE,axiom,
! [A: nat,B4: nat,X: nat] :
( ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B4 ) @ X )
=> ~ ( ( ord_less_eq_nat @ A @ X )
=> ~ ( ord_less_eq_nat @ B4 @ X ) ) ) ).
% le_supE
thf(fact_213_inf__sup__ord_I3_J,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).
% inf_sup_ord(3)
thf(fact_214_inf__sup__ord_I3_J,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).
% inf_sup_ord(3)
thf(fact_215_inf__sup__ord_I4_J,axiom,
! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).
% inf_sup_ord(4)
thf(fact_216_inf__sup__ord_I4_J,axiom,
! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).
% inf_sup_ord(4)
thf(fact_217_sup__inf__distrib2,axiom,
! [Y: set_a,Z: set_a,X: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ Z ) @ X )
= ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ X ) @ ( sup_sup_set_a @ Z @ X ) ) ) ).
% sup_inf_distrib2
thf(fact_218_sup__inf__distrib1,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).
% sup_inf_distrib1
thf(fact_219_inf__sup__distrib2,axiom,
! [Y: set_a,Z: set_a,X: set_a] :
( ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X )
= ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ X ) @ ( inf_inf_set_a @ Z @ X ) ) ) ).
% inf_sup_distrib2
thf(fact_220_inf__sup__distrib1,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
= ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ).
% inf_sup_distrib1
thf(fact_221_distrib__imp2,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ! [X3: set_a,Y3: set_a,Z2: set_a] :
( ( sup_sup_set_a @ X3 @ ( inf_inf_set_a @ Y3 @ Z2 ) )
= ( inf_inf_set_a @ ( sup_sup_set_a @ X3 @ Y3 ) @ ( sup_sup_set_a @ X3 @ Z2 ) ) )
=> ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
= ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ) ).
% distrib_imp2
thf(fact_222_distrib__imp1,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ! [X3: set_a,Y3: set_a,Z2: set_a] :
( ( inf_inf_set_a @ X3 @ ( sup_sup_set_a @ Y3 @ Z2 ) )
= ( sup_sup_set_a @ ( inf_inf_set_a @ X3 @ Y3 ) @ ( inf_inf_set_a @ X3 @ Z2 ) ) )
=> ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ) ).
% distrib_imp1
thf(fact_223_image__Un,axiom,
! [F: a > a,A2: set_a,B: set_a] :
( ( image_a_a @ F @ ( sup_sup_set_a @ A2 @ B ) )
= ( sup_sup_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B ) ) ) ).
% image_Un
thf(fact_224_subset__Un__eq,axiom,
( ord_less_eq_set_a
= ( ^ [A6: set_a,B6: set_a] :
( ( sup_sup_set_a @ A6 @ B6 )
= B6 ) ) ) ).
% subset_Un_eq
thf(fact_225_subset__UnE,axiom,
! [C: set_a,A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A2 @ B ) )
=> ~ ! [A7: set_a] :
( ( ord_less_eq_set_a @ A7 @ A2 )
=> ! [B8: set_a] :
( ( ord_less_eq_set_a @ B8 @ B )
=> ( C
!= ( sup_sup_set_a @ A7 @ B8 ) ) ) ) ) ).
% subset_UnE
thf(fact_226_Un__absorb2,axiom,
! [B: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ B @ A2 )
=> ( ( sup_sup_set_a @ A2 @ B )
= A2 ) ) ).
% Un_absorb2
thf(fact_227_Un__absorb1,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( sup_sup_set_a @ A2 @ B )
= B ) ) ).
% Un_absorb1
thf(fact_228_Un__upper2,axiom,
! [B: set_a,A2: set_a] : ( ord_less_eq_set_a @ B @ ( sup_sup_set_a @ A2 @ B ) ) ).
% Un_upper2
thf(fact_229_Un__upper1,axiom,
! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B ) ) ).
% Un_upper1
thf(fact_230_Un__least,axiom,
! [A2: set_a,C: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ C )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C ) ) ) ).
% Un_least
thf(fact_231_Un__mono,axiom,
! [A2: set_a,C: set_a,B: set_a,D2: set_a] :
( ( ord_less_eq_set_a @ A2 @ C )
=> ( ( ord_less_eq_set_a @ B @ D2 )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B ) @ ( sup_sup_set_a @ C @ D2 ) ) ) ) ).
% Un_mono
thf(fact_232_subset__insertI2,axiom,
! [A2: set_a,B: set_a,B4: a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ord_less_eq_set_a @ A2 @ ( insert_a @ B4 @ B ) ) ) ).
% subset_insertI2
thf(fact_233_subset__insertI,axiom,
! [B: set_a,A: a] : ( ord_less_eq_set_a @ B @ ( insert_a @ A @ B ) ) ).
% subset_insertI
thf(fact_234_subset__insert,axiom,
! [X: a,A2: set_a,B: set_a] :
( ~ ( member_a @ X @ A2 )
=> ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B ) )
= ( ord_less_eq_set_a @ A2 @ B ) ) ) ).
% subset_insert
thf(fact_235_insert__mono,axiom,
! [C: set_a,D2: set_a,A: a] :
( ( ord_less_eq_set_a @ C @ D2 )
=> ( ord_less_eq_set_a @ ( insert_a @ A @ C ) @ ( insert_a @ A @ D2 ) ) ) ).
% insert_mono
thf(fact_236_Un__Int__distrib2,axiom,
! [B: set_a,C: set_a,A2: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ B @ C ) @ A2 )
= ( inf_inf_set_a @ ( sup_sup_set_a @ B @ A2 ) @ ( sup_sup_set_a @ C @ A2 ) ) ) ).
% Un_Int_distrib2
thf(fact_237_Int__Un__distrib2,axiom,
! [B: set_a,C: set_a,A2: set_a] :
( ( inf_inf_set_a @ ( sup_sup_set_a @ B @ C ) @ A2 )
= ( sup_sup_set_a @ ( inf_inf_set_a @ B @ A2 ) @ ( inf_inf_set_a @ C @ A2 ) ) ) ).
% Int_Un_distrib2
thf(fact_238_Un__Int__distrib,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( sup_sup_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) )
= ( inf_inf_set_a @ ( sup_sup_set_a @ A2 @ B ) @ ( sup_sup_set_a @ A2 @ C ) ) ) ).
% Un_Int_distrib
thf(fact_239_Int__Un__distrib,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( inf_inf_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) )
= ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( inf_inf_set_a @ A2 @ C ) ) ) ).
% Int_Un_distrib
thf(fact_240_Un__Int__crazy,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( inf_inf_set_a @ B @ C ) ) @ ( inf_inf_set_a @ C @ A2 ) )
= ( inf_inf_set_a @ ( inf_inf_set_a @ ( sup_sup_set_a @ A2 @ B ) @ ( sup_sup_set_a @ B @ C ) ) @ ( sup_sup_set_a @ C @ A2 ) ) ) ).
% Un_Int_crazy
thf(fact_241_Int__insert__right,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( ( member_a @ A @ A2 )
=> ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B ) ) ) )
& ( ~ ( member_a @ A @ A2 )
=> ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% Int_insert_right
thf(fact_242_Int__insert__left,axiom,
! [A: a,C: set_a,B: set_a] :
( ( ( member_a @ A @ C )
=> ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
= ( insert_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) )
& ( ~ ( member_a @ A @ C )
=> ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
= ( inf_inf_set_a @ B @ C ) ) ) ) ).
% Int_insert_left
thf(fact_243_disjoint__iff__not__equal,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ B )
= bot_bot_set_a )
= ( ! [X2: a] :
( ( member_a @ X2 @ A2 )
=> ! [Y2: a] :
( ( member_a @ Y2 @ B )
=> ( X2 != Y2 ) ) ) ) ) ).
% disjoint_iff_not_equal
thf(fact_244_Int__empty__right,axiom,
! [A2: set_a] :
( ( inf_inf_set_a @ A2 @ bot_bot_set_a )
= bot_bot_set_a ) ).
% Int_empty_right
thf(fact_245_Int__empty__left,axiom,
! [B: set_a] :
( ( inf_inf_set_a @ bot_bot_set_a @ B )
= bot_bot_set_a ) ).
% Int_empty_left
thf(fact_246_disjoint__iff,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ B )
= bot_bot_set_a )
= ( ! [X2: a] :
( ( member_a @ X2 @ A2 )
=> ~ ( member_a @ X2 @ B ) ) ) ) ).
% disjoint_iff
thf(fact_247_Int__emptyI,axiom,
! [A2: set_a,B: set_a] :
( ! [X3: a] :
( ( member_a @ X3 @ A2 )
=> ~ ( member_a @ X3 @ B ) )
=> ( ( inf_inf_set_a @ A2 @ B )
= bot_bot_set_a ) ) ).
% Int_emptyI
thf(fact_248_distrib__sup__le,axiom,
! [X: set_a,Y: set_a,Z: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) @ ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).
% distrib_sup_le
thf(fact_249_distrib__sup__le,axiom,
! [X: nat,Y: nat,Z: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ X @ ( inf_inf_nat @ Y @ Z ) ) @ ( inf_inf_nat @ ( sup_sup_nat @ X @ Y ) @ ( sup_sup_nat @ X @ Z ) ) ) ).
% distrib_sup_le
thf(fact_250_distrib__inf__le,axiom,
! [X: set_a,Y: set_a,Z: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) @ ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).
% distrib_inf_le
thf(fact_251_distrib__inf__le,axiom,
! [X: nat,Y: nat,Z: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ ( inf_inf_nat @ X @ Y ) @ ( inf_inf_nat @ X @ Z ) ) @ ( inf_inf_nat @ X @ ( sup_sup_nat @ Y @ Z ) ) ) ).
% distrib_inf_le
thf(fact_252_Un__Int__assoc__eq,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
= ( inf_inf_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) )
= ( ord_less_eq_set_a @ C @ A2 ) ) ).
% Un_Int_assoc_eq
thf(fact_253_rev__image__eqI,axiom,
! [X: a,A2: set_a,B4: a,F: a > a] :
( ( member_a @ X @ A2 )
=> ( ( B4
= ( F @ X ) )
=> ( member_a @ B4 @ ( image_a_a @ F @ A2 ) ) ) ) ).
% rev_image_eqI
thf(fact_254_ball__imageD,axiom,
! [F: a > a,A2: set_a,P: a > $o] :
( ! [X3: a] :
( ( member_a @ X3 @ ( image_a_a @ F @ A2 ) )
=> ( P @ X3 ) )
=> ! [X5: a] :
( ( member_a @ X5 @ A2 )
=> ( P @ ( F @ X5 ) ) ) ) ).
% ball_imageD
thf(fact_255_image__cong,axiom,
! [M: set_a,N: set_a,F: a > a,G: a > a] :
( ( M = N )
=> ( ! [X3: a] :
( ( member_a @ X3 @ N )
=> ( ( F @ X3 )
= ( G @ X3 ) ) )
=> ( ( image_a_a @ F @ M )
= ( image_a_a @ G @ N ) ) ) ) ).
% image_cong
thf(fact_256_bex__imageD,axiom,
! [F: a > a,A2: set_a,P: a > $o] :
( ? [X5: a] :
( ( member_a @ X5 @ ( image_a_a @ F @ A2 ) )
& ( P @ X5 ) )
=> ? [X3: a] :
( ( member_a @ X3 @ A2 )
& ( P @ ( F @ X3 ) ) ) ) ).
% bex_imageD
thf(fact_257_image__iff,axiom,
! [Z: a,F: a > a,A2: set_a] :
( ( member_a @ Z @ ( image_a_a @ F @ A2 ) )
= ( ? [X2: a] :
( ( member_a @ X2 @ A2 )
& ( Z
= ( F @ X2 ) ) ) ) ) ).
% image_iff
thf(fact_258_imageI,axiom,
! [X: a,A2: set_a,F: a > a] :
( ( member_a @ X @ A2 )
=> ( member_a @ ( F @ X ) @ ( image_a_a @ F @ A2 ) ) ) ).
% imageI
thf(fact_259_Collect__mono__iff,axiom,
! [P: a > $o,Q: a > $o] :
( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
= ( ! [X2: a] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_260_set__eq__subset,axiom,
( ( ^ [Y4: set_a,Z3: set_a] : ( Y4 = Z3 ) )
= ( ^ [A6: set_a,B6: set_a] :
( ( ord_less_eq_set_a @ A6 @ B6 )
& ( ord_less_eq_set_a @ B6 @ A6 ) ) ) ) ).
% set_eq_subset
thf(fact_261_subset__trans,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ord_less_eq_set_a @ A2 @ C ) ) ) ).
% subset_trans
thf(fact_262_Collect__mono,axiom,
! [P: a > $o,Q: a > $o] :
( ! [X3: a] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).
% Collect_mono
thf(fact_263_subset__refl,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).
% subset_refl
thf(fact_264_subset__iff,axiom,
( ord_less_eq_set_a
= ( ^ [A6: set_a,B6: set_a] :
! [T2: a] :
( ( member_a @ T2 @ A6 )
=> ( member_a @ T2 @ B6 ) ) ) ) ).
% subset_iff
thf(fact_265_equalityD2,axiom,
! [A2: set_a,B: set_a] :
( ( A2 = B )
=> ( ord_less_eq_set_a @ B @ A2 ) ) ).
% equalityD2
thf(fact_266_equalityD1,axiom,
! [A2: set_a,B: set_a] :
( ( A2 = B )
=> ( ord_less_eq_set_a @ A2 @ B ) ) ).
% equalityD1
thf(fact_267_subset__eq,axiom,
( ord_less_eq_set_a
= ( ^ [A6: set_a,B6: set_a] :
! [X2: a] :
( ( member_a @ X2 @ A6 )
=> ( member_a @ X2 @ B6 ) ) ) ) ).
% subset_eq
thf(fact_268_equalityE,axiom,
! [A2: set_a,B: set_a] :
( ( A2 = B )
=> ~ ( ( ord_less_eq_set_a @ A2 @ B )
=> ~ ( ord_less_eq_set_a @ B @ A2 ) ) ) ).
% equalityE
thf(fact_269_subsetD,axiom,
! [A2: set_a,B: set_a,C2: a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( member_a @ C2 @ A2 )
=> ( member_a @ C2 @ B ) ) ) ).
% subsetD
thf(fact_270_in__mono,axiom,
! [A2: set_a,B: set_a,X: a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( member_a @ X @ A2 )
=> ( member_a @ X @ B ) ) ) ).
% in_mono
thf(fact_271_inf__left__commute,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z ) ) ) ).
% inf_left_commute
thf(fact_272_inf_Oleft__commute,axiom,
! [B4: set_a,A: set_a,C2: set_a] :
( ( inf_inf_set_a @ B4 @ ( inf_inf_set_a @ A @ C2 ) )
= ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) ) ) ).
% inf.left_commute
thf(fact_273_inf__commute,axiom,
( inf_inf_set_a
= ( ^ [X2: set_a,Y2: set_a] : ( inf_inf_set_a @ Y2 @ X2 ) ) ) ).
% inf_commute
thf(fact_274_inf_Ocommute,axiom,
( inf_inf_set_a
= ( ^ [A4: set_a,B3: set_a] : ( inf_inf_set_a @ B3 @ A4 ) ) ) ).
% inf.commute
thf(fact_275_inf__assoc,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z )
= ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ).
% inf_assoc
thf(fact_276_inf_Oassoc,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 )
= ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) ) ) ).
% inf.assoc
thf(fact_277_inf__sup__aci_I1_J,axiom,
( inf_inf_set_a
= ( ^ [X2: set_a,Y2: set_a] : ( inf_inf_set_a @ Y2 @ X2 ) ) ) ).
% inf_sup_aci(1)
thf(fact_278_inf__sup__aci_I2_J,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z )
= ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ).
% inf_sup_aci(2)
thf(fact_279_inf__sup__aci_I3_J,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z ) ) ) ).
% inf_sup_aci(3)
thf(fact_280_inf__sup__aci_I4_J,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
= ( inf_inf_set_a @ X @ Y ) ) ).
% inf_sup_aci(4)
thf(fact_281_Int__left__commute,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) )
= ( inf_inf_set_a @ B @ ( inf_inf_set_a @ A2 @ C ) ) ) ).
% Int_left_commute
thf(fact_282_Int__left__absorb,axiom,
! [A2: set_a,B: set_a] :
( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ A2 @ B ) )
= ( inf_inf_set_a @ A2 @ B ) ) ).
% Int_left_absorb
thf(fact_283_Int__commute,axiom,
( inf_inf_set_a
= ( ^ [A6: set_a,B6: set_a] : ( inf_inf_set_a @ B6 @ A6 ) ) ) ).
% Int_commute
thf(fact_284_Int__absorb,axiom,
! [A2: set_a] :
( ( inf_inf_set_a @ A2 @ A2 )
= A2 ) ).
% Int_absorb
thf(fact_285_Int__assoc,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
= ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) ) ) ).
% Int_assoc
thf(fact_286_IntD2,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
=> ( member_a @ C2 @ B ) ) ).
% IntD2
thf(fact_287_IntD1,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
=> ( member_a @ C2 @ A2 ) ) ).
% IntD1
thf(fact_288_IntE,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
=> ~ ( ( member_a @ C2 @ A2 )
=> ~ ( member_a @ C2 @ B ) ) ) ).
% IntE
thf(fact_289_inf_OcoboundedI2,axiom,
! [B4: set_a,C2: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 ) ) ).
% inf.coboundedI2
thf(fact_290_inf_OcoboundedI2,axiom,
! [B4: nat,C2: nat,A: nat] :
( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ C2 ) ) ).
% inf.coboundedI2
thf(fact_291_inf_OcoboundedI1,axiom,
! [A: set_a,C2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ C2 )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 ) ) ).
% inf.coboundedI1
thf(fact_292_inf_OcoboundedI1,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ C2 )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ C2 ) ) ).
% inf.coboundedI1
thf(fact_293_inf_Oabsorb__iff2,axiom,
( ord_less_eq_set_a
= ( ^ [B3: set_a,A4: set_a] :
( ( inf_inf_set_a @ A4 @ B3 )
= B3 ) ) ) ).
% inf.absorb_iff2
thf(fact_294_inf_Oabsorb__iff2,axiom,
( ord_less_eq_nat
= ( ^ [B3: nat,A4: nat] :
( ( inf_inf_nat @ A4 @ B3 )
= B3 ) ) ) ).
% inf.absorb_iff2
thf(fact_295_inf_Oabsorb__iff1,axiom,
( ord_less_eq_set_a
= ( ^ [A4: set_a,B3: set_a] :
( ( inf_inf_set_a @ A4 @ B3 )
= A4 ) ) ) ).
% inf.absorb_iff1
thf(fact_296_inf_Oabsorb__iff1,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B3: nat] :
( ( inf_inf_nat @ A4 @ B3 )
= A4 ) ) ) ).
% inf.absorb_iff1
thf(fact_297_inf_Ocobounded2,axiom,
! [A: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ B4 ) ).
% inf.cobounded2
thf(fact_298_inf_Ocobounded2,axiom,
! [A: nat,B4: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ B4 ) ).
% inf.cobounded2
thf(fact_299_inf_Ocobounded1,axiom,
! [A: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ A ) ).
% inf.cobounded1
thf(fact_300_inf_Ocobounded1,axiom,
! [A: nat,B4: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ A ) ).
% inf.cobounded1
thf(fact_301_inf_Oorder__iff,axiom,
( ord_less_eq_set_a
= ( ^ [A4: set_a,B3: set_a] :
( A4
= ( inf_inf_set_a @ A4 @ B3 ) ) ) ) ).
% inf.order_iff
thf(fact_302_inf_Oorder__iff,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B3: nat] :
( A4
= ( inf_inf_nat @ A4 @ B3 ) ) ) ) ).
% inf.order_iff
thf(fact_303_inf__greatest,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ X @ Z )
=> ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ) ).
% inf_greatest
thf(fact_304_inf__greatest,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ X @ Z )
=> ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) ) ) ) ).
% inf_greatest
thf(fact_305_inf_OboundedI,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_set_a @ A @ C2 )
=> ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) ) ) ) ).
% inf.boundedI
thf(fact_306_inf_OboundedI,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ A @ C2 )
=> ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) ) ) ) ).
% inf.boundedI
thf(fact_307_inf_OboundedE,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) )
=> ~ ( ( ord_less_eq_set_a @ A @ B4 )
=> ~ ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% inf.boundedE
thf(fact_308_inf_OboundedE,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) )
=> ~ ( ( ord_less_eq_nat @ A @ B4 )
=> ~ ( ord_less_eq_nat @ A @ C2 ) ) ) ).
% inf.boundedE
thf(fact_309_inf__absorb2,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( inf_inf_set_a @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_310_inf__absorb2,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( inf_inf_nat @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_311_inf__absorb1,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( inf_inf_set_a @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_312_inf__absorb1,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( inf_inf_nat @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_313_inf_Oabsorb2,axiom,
! [B4: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B4 @ A )
=> ( ( inf_inf_set_a @ A @ B4 )
= B4 ) ) ).
% inf.absorb2
thf(fact_314_inf_Oabsorb2,axiom,
! [B4: nat,A: nat] :
( ( ord_less_eq_nat @ B4 @ A )
=> ( ( inf_inf_nat @ A @ B4 )
= B4 ) ) ).
% inf.absorb2
thf(fact_315_inf_Oabsorb1,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( inf_inf_set_a @ A @ B4 )
= A ) ) ).
% inf.absorb1
thf(fact_316_inf_Oabsorb1,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( inf_inf_nat @ A @ B4 )
= A ) ) ).
% inf.absorb1
thf(fact_317_le__iff__inf,axiom,
( ord_less_eq_set_a
= ( ^ [X2: set_a,Y2: set_a] :
( ( inf_inf_set_a @ X2 @ Y2 )
= X2 ) ) ) ).
% le_iff_inf
thf(fact_318_le__iff__inf,axiom,
( ord_less_eq_nat
= ( ^ [X2: nat,Y2: nat] :
( ( inf_inf_nat @ X2 @ Y2 )
= X2 ) ) ) ).
% le_iff_inf
thf(fact_319_inf__unique,axiom,
! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ ( F @ X3 @ Y3 ) @ X3 )
=> ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ ( F @ X3 @ Y3 ) @ Y3 )
=> ( ! [X3: set_a,Y3: set_a,Z2: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ( ord_less_eq_set_a @ X3 @ Z2 )
=> ( ord_less_eq_set_a @ X3 @ ( F @ Y3 @ Z2 ) ) ) )
=> ( ( inf_inf_set_a @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_320_inf__unique,axiom,
! [F: nat > nat > nat,X: nat,Y: nat] :
( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ ( F @ X3 @ Y3 ) @ X3 )
=> ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ ( F @ X3 @ Y3 ) @ Y3 )
=> ( ! [X3: nat,Y3: nat,Z2: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ( ord_less_eq_nat @ X3 @ Z2 )
=> ( ord_less_eq_nat @ X3 @ ( F @ Y3 @ Z2 ) ) ) )
=> ( ( inf_inf_nat @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_321_inf_OorderI,axiom,
! [A: set_a,B4: set_a] :
( ( A
= ( inf_inf_set_a @ A @ B4 ) )
=> ( ord_less_eq_set_a @ A @ B4 ) ) ).
% inf.orderI
thf(fact_322_inf_OorderI,axiom,
! [A: nat,B4: nat] :
( ( A
= ( inf_inf_nat @ A @ B4 ) )
=> ( ord_less_eq_nat @ A @ B4 ) ) ).
% inf.orderI
thf(fact_323_inf_OorderE,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( A
= ( inf_inf_set_a @ A @ B4 ) ) ) ).
% inf.orderE
thf(fact_324_inf_OorderE,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( A
= ( inf_inf_nat @ A @ B4 ) ) ) ).
% inf.orderE
thf(fact_325_le__infI2,axiom,
! [B4: set_a,X: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B4 @ X )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ X ) ) ).
% le_infI2
thf(fact_326_le__infI2,axiom,
! [B4: nat,X: nat,A: nat] :
( ( ord_less_eq_nat @ B4 @ X )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ X ) ) ).
% le_infI2
thf(fact_327_le__infI1,axiom,
! [A: set_a,X: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ X )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ X ) ) ).
% le_infI1
thf(fact_328_le__infI1,axiom,
! [A: nat,X: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ X )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ X ) ) ).
% le_infI1
thf(fact_329_inf__mono,axiom,
! [A: set_a,C2: set_a,B4: set_a,D: set_a] :
( ( ord_less_eq_set_a @ A @ C2 )
=> ( ( ord_less_eq_set_a @ B4 @ D )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ ( inf_inf_set_a @ C2 @ D ) ) ) ) ).
% inf_mono
thf(fact_330_inf__mono,axiom,
! [A: nat,C2: nat,B4: nat,D: nat] :
( ( ord_less_eq_nat @ A @ C2 )
=> ( ( ord_less_eq_nat @ B4 @ D )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ ( inf_inf_nat @ C2 @ D ) ) ) ) ).
% inf_mono
thf(fact_331_le__infI,axiom,
! [X: set_a,A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ X @ A )
=> ( ( ord_less_eq_set_a @ X @ B4 )
=> ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B4 ) ) ) ) ).
% le_infI
thf(fact_332_le__infI,axiom,
! [X: nat,A: nat,B4: nat] :
( ( ord_less_eq_nat @ X @ A )
=> ( ( ord_less_eq_nat @ X @ B4 )
=> ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B4 ) ) ) ) ).
% le_infI
thf(fact_333_le__infE,axiom,
! [X: set_a,A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B4 ) )
=> ~ ( ( ord_less_eq_set_a @ X @ A )
=> ~ ( ord_less_eq_set_a @ X @ B4 ) ) ) ).
% le_infE
thf(fact_334_le__infE,axiom,
! [X: nat,A: nat,B4: nat] :
( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B4 ) )
=> ~ ( ( ord_less_eq_nat @ X @ A )
=> ~ ( ord_less_eq_nat @ X @ B4 ) ) ) ).
% le_infE
thf(fact_335_inf__le2,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_336_inf__le2,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_337_inf__le1,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_338_inf__le1,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_339_inf__sup__ord_I1_J,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_340_inf__sup__ord_I1_J,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_341_inf__sup__ord_I2_J,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_342_inf__sup__ord_I2_J,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_343_subset__image__iff,axiom,
! [B: set_a,F: a > a,A2: set_a] :
( ( ord_less_eq_set_a @ B @ ( image_a_a @ F @ A2 ) )
= ( ? [AA: set_a] :
( ( ord_less_eq_set_a @ AA @ A2 )
& ( B
= ( image_a_a @ F @ AA ) ) ) ) ) ).
% subset_image_iff
thf(fact_344_image__subset__iff,axiom,
! [F: a > a,A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ B )
= ( ! [X2: a] :
( ( member_a @ X2 @ A2 )
=> ( member_a @ ( F @ X2 ) @ B ) ) ) ) ).
% image_subset_iff
thf(fact_345_subset__imageE,axiom,
! [B: set_a,F: a > a,A2: set_a] :
( ( ord_less_eq_set_a @ B @ ( image_a_a @ F @ A2 ) )
=> ~ ! [C4: set_a] :
( ( ord_less_eq_set_a @ C4 @ A2 )
=> ( B
!= ( image_a_a @ F @ C4 ) ) ) ) ).
% subset_imageE
thf(fact_346_image__subsetI,axiom,
! [A2: set_a,F: a > a,B: set_a] :
( ! [X3: a] :
( ( member_a @ X3 @ A2 )
=> ( member_a @ ( F @ X3 ) @ B ) )
=> ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ B ) ) ).
% image_subsetI
thf(fact_347_image__mono,axiom,
! [A2: set_a,B: set_a,F: a > a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B ) ) ) ).
% image_mono
thf(fact_348_Int__Collect__mono,axiom,
! [A2: set_a,B: set_a,P: a > $o,Q: a > $o] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ! [X3: a] :
( ( member_a @ X3 @ A2 )
=> ( ( P @ X3 )
=> ( Q @ X3 ) ) )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B @ ( collect_a @ Q ) ) ) ) ) ).
% Int_Collect_mono
thf(fact_349_Int__greatest,axiom,
! [C: set_a,A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ C @ A2 )
=> ( ( ord_less_eq_set_a @ C @ B )
=> ( ord_less_eq_set_a @ C @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).
% Int_greatest
thf(fact_350_Int__absorb2,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( inf_inf_set_a @ A2 @ B )
= A2 ) ) ).
% Int_absorb2
thf(fact_351_Int__absorb1,axiom,
! [B: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ B @ A2 )
=> ( ( inf_inf_set_a @ A2 @ B )
= B ) ) ).
% Int_absorb1
thf(fact_352_Int__lower2,axiom,
! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ B ) ).
% Int_lower2
thf(fact_353_Int__lower1,axiom,
! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ A2 ) ).
% Int_lower1
thf(fact_354_Int__mono,axiom,
! [A2: set_a,C: set_a,B: set_a,D2: set_a] :
( ( ord_less_eq_set_a @ A2 @ C )
=> ( ( ord_less_eq_set_a @ B @ D2 )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( inf_inf_set_a @ C @ D2 ) ) ) ) ).
% Int_mono
thf(fact_355_image__Int__subset,axiom,
! [F: a > a,A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( image_a_a @ F @ ( inf_inf_set_a @ A2 @ B ) ) @ ( inf_inf_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B ) ) ) ).
% image_Int_subset
thf(fact_356_sumset__insert2,axiom,
! [B: set_a,A2: set_a,X: a] :
( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ B )
=> ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ B ) )
= ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).
% sumset_insert2
thf(fact_357_sumset__insert1,axiom,
! [A2: set_a,X: a,B: set_a] :
( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ A2 )
=> ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ A2 ) @ B )
= ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ bot_bot_set_a ) @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).
% sumset_insert1
thf(fact_358_card__sumset__le,axiom,
! [A2: set_a,A: a] :
( ( finite_finite_a @ A2 )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ).
% card_sumset_le
thf(fact_359_sumsetdiff__sing,axiom,
! [A2: set_a,B: set_a,X: a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ ( minus_minus_set_a @ A2 @ B ) @ ( insert_a @ X @ bot_bot_set_a ) )
= ( minus_minus_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ B @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).
% sumsetdiff_sing
thf(fact_360_finite__Un,axiom,
! [F2: set_nat,G2: set_nat] :
( ( finite_finite_nat @ ( sup_sup_set_nat @ F2 @ G2 ) )
= ( ( finite_finite_nat @ F2 )
& ( finite_finite_nat @ G2 ) ) ) ).
% finite_Un
thf(fact_361_finite__Un,axiom,
! [F2: set_a,G2: set_a] :
( ( finite_finite_a @ ( sup_sup_set_a @ F2 @ G2 ) )
= ( ( finite_finite_a @ F2 )
& ( finite_finite_a @ G2 ) ) ) ).
% finite_Un
thf(fact_362_finite__Int,axiom,
! [F2: set_nat,G2: set_nat] :
( ( ( finite_finite_nat @ F2 )
| ( finite_finite_nat @ G2 ) )
=> ( finite_finite_nat @ ( inf_inf_set_nat @ F2 @ G2 ) ) ) ).
% finite_Int
thf(fact_363_finite__Int,axiom,
! [F2: set_a,G2: set_a] :
( ( ( finite_finite_a @ F2 )
| ( finite_finite_a @ G2 ) )
=> ( finite_finite_a @ ( inf_inf_set_a @ F2 @ G2 ) ) ) ).
% finite_Int
thf(fact_364_finite__insert,axiom,
! [A: a,A2: set_a] :
( ( finite_finite_a @ ( insert_a @ A @ A2 ) )
= ( finite_finite_a @ A2 ) ) ).
% finite_insert
thf(fact_365_finite__insert,axiom,
! [A: nat,A2: set_nat] :
( ( finite_finite_nat @ ( insert_nat @ A @ A2 ) )
= ( finite_finite_nat @ A2 ) ) ).
% finite_insert
thf(fact_366_boolean__algebra_Oconj__zero__right,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ bot_bot_set_a )
= bot_bot_set_a ) ).
% boolean_algebra.conj_zero_right
thf(fact_367_boolean__algebra_Oconj__zero__left,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ bot_bot_set_a @ X )
= bot_bot_set_a ) ).
% boolean_algebra.conj_zero_left
thf(fact_368_finite__imageI,axiom,
! [F2: set_a,H: a > a] :
( ( finite_finite_a @ F2 )
=> ( finite_finite_a @ ( image_a_a @ H @ F2 ) ) ) ).
% finite_imageI
thf(fact_369_finite__imageI,axiom,
! [F2: set_a,H: a > nat] :
( ( finite_finite_a @ F2 )
=> ( finite_finite_nat @ ( image_a_nat @ H @ F2 ) ) ) ).
% finite_imageI
thf(fact_370_finite__imageI,axiom,
! [F2: set_nat,H: nat > a] :
( ( finite_finite_nat @ F2 )
=> ( finite_finite_a @ ( image_nat_a @ H @ F2 ) ) ) ).
% finite_imageI
thf(fact_371_finite__imageI,axiom,
! [F2: set_nat,H: nat > nat] :
( ( finite_finite_nat @ F2 )
=> ( finite_finite_nat @ ( image_nat_nat @ H @ F2 ) ) ) ).
% finite_imageI
thf(fact_372_finite__subset__induct,axiom,
! [F2: set_nat,A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F2 )
=> ( ( ord_less_eq_set_nat @ F2 @ A2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [A3: nat,F3: set_nat] :
( ( finite_finite_nat @ F3 )
=> ( ( member_nat @ A3 @ A2 )
=> ( ~ ( member_nat @ A3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_nat @ A3 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_373_finite__subset__induct,axiom,
! [F2: set_a,A2: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( ord_less_eq_set_a @ F2 @ A2 )
=> ( ( P @ bot_bot_set_a )
=> ( ! [A3: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ( member_a @ A3 @ A2 )
=> ( ~ ( member_a @ A3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ A3 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_374_DiffI,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ A2 )
=> ( ~ ( member_a @ C2 @ B )
=> ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) ) ) ) ).
% DiffI
thf(fact_375_Diff__iff,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
= ( ( member_a @ C2 @ A2 )
& ~ ( member_a @ C2 @ B ) ) ) ).
% Diff_iff
thf(fact_376_Diff__idemp,axiom,
! [A2: set_a,B: set_a] :
( ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B ) @ B )
= ( minus_minus_set_a @ A2 @ B ) ) ).
% Diff_idemp
thf(fact_377_Diff__cancel,axiom,
! [A2: set_a] :
( ( minus_minus_set_a @ A2 @ A2 )
= bot_bot_set_a ) ).
% Diff_cancel
thf(fact_378_empty__Diff,axiom,
! [A2: set_a] :
( ( minus_minus_set_a @ bot_bot_set_a @ A2 )
= bot_bot_set_a ) ).
% empty_Diff
thf(fact_379_Diff__empty,axiom,
! [A2: set_a] :
( ( minus_minus_set_a @ A2 @ bot_bot_set_a )
= A2 ) ).
% Diff_empty
thf(fact_380_finite__Diff2,axiom,
! [B: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B ) )
= ( finite_finite_nat @ A2 ) ) ) ).
% finite_Diff2
thf(fact_381_finite__Diff2,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B ) )
= ( finite_finite_a @ A2 ) ) ) ).
% finite_Diff2
thf(fact_382_finite__Diff,axiom,
! [A2: set_nat,B: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B ) ) ) ).
% finite_Diff
thf(fact_383_finite__Diff,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ A2 )
=> ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B ) ) ) ).
% finite_Diff
thf(fact_384_insert__Diff1,axiom,
! [X: a,B: set_a,A2: set_a] :
( ( member_a @ X @ B )
=> ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B )
= ( minus_minus_set_a @ A2 @ B ) ) ) ).
% insert_Diff1
thf(fact_385_Diff__insert0,axiom,
! [X: a,A2: set_a,B: set_a] :
( ~ ( member_a @ X @ A2 )
=> ( ( minus_minus_set_a @ A2 @ ( insert_a @ X @ B ) )
= ( minus_minus_set_a @ A2 @ B ) ) ) ).
% Diff_insert0
thf(fact_386_Un__Diff__cancel2,axiom,
! [B: set_a,A2: set_a] :
( ( sup_sup_set_a @ ( minus_minus_set_a @ B @ A2 ) @ A2 )
= ( sup_sup_set_a @ B @ A2 ) ) ).
% Un_Diff_cancel2
thf(fact_387_Un__Diff__cancel,axiom,
! [A2: set_a,B: set_a] :
( ( sup_sup_set_a @ A2 @ ( minus_minus_set_a @ B @ A2 ) )
= ( sup_sup_set_a @ A2 @ B ) ) ).
% Un_Diff_cancel
thf(fact_388_Diff__eq__empty__iff,axiom,
! [A2: set_a,B: set_a] :
( ( ( minus_minus_set_a @ A2 @ B )
= bot_bot_set_a )
= ( ord_less_eq_set_a @ A2 @ B ) ) ).
% Diff_eq_empty_iff
thf(fact_389_insert__Diff__single,axiom,
! [A: a,A2: set_a] :
( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= ( insert_a @ A @ A2 ) ) ).
% insert_Diff_single
thf(fact_390_finite__Diff__insert,axiom,
! [A2: set_nat,A: nat,B: set_nat] :
( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B ) ) )
= ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B ) ) ) ).
% finite_Diff_insert
thf(fact_391_finite__Diff__insert,axiom,
! [A2: set_a,A: a,B: set_a] :
( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) ) )
= ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B ) ) ) ).
% finite_Diff_insert
thf(fact_392_Diff__disjoint,axiom,
! [A2: set_a,B: set_a] :
( ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B @ A2 ) )
= bot_bot_set_a ) ).
% Diff_disjoint
thf(fact_393_DiffE,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
=> ~ ( ( member_a @ C2 @ A2 )
=> ( member_a @ C2 @ B ) ) ) ).
% DiffE
thf(fact_394_DiffD1,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
=> ( member_a @ C2 @ A2 ) ) ).
% DiffD1
thf(fact_395_DiffD2,axiom,
! [C2: a,A2: set_a,B: set_a] :
( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
=> ~ ( member_a @ C2 @ B ) ) ).
% DiffD2
thf(fact_396_card__le__sym__Diff,axiom,
! [A2: set_Product_unit,B: set_Product_unit] :
( ( finite4290736615968046902t_unit @ A2 )
=> ( ( finite4290736615968046902t_unit @ B )
=> ( ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B ) )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B ) ) @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ B @ A2 ) ) ) ) ) ) ).
% card_le_sym_Diff
thf(fact_397_card__le__sym__Diff,axiom,
! [A2: set_nat,B: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) )
=> ( ord_less_eq_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ B @ A2 ) ) ) ) ) ) ).
% card_le_sym_Diff
thf(fact_398_card__le__sym__Diff,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( finite_finite_a @ B )
=> ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) ) @ ( finite_card_a @ ( minus_minus_set_a @ B @ A2 ) ) ) ) ) ) ).
% card_le_sym_Diff
thf(fact_399_card__insert__le,axiom,
! [A2: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ ( insert_a @ X @ A2 ) ) ) ).
% card_insert_le
thf(fact_400_card__insert__le,axiom,
! [A2: set_Product_unit,X: product_unit] : ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ ( insert_Product_unit @ X @ A2 ) ) ) ).
% card_insert_le
thf(fact_401_Diff__infinite__finite,axiom,
! [T: set_nat,S: set_nat] :
( ( finite_finite_nat @ T )
=> ( ~ ( finite_finite_nat @ S )
=> ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ T ) ) ) ) ).
% Diff_infinite_finite
thf(fact_402_Diff__infinite__finite,axiom,
! [T: set_a,S: set_a] :
( ( finite_finite_a @ T )
=> ( ~ ( finite_finite_a @ S )
=> ~ ( finite_finite_a @ ( minus_minus_set_a @ S @ T ) ) ) ) ).
% Diff_infinite_finite
thf(fact_403_card__Diff1__le,axiom,
! [A2: set_Product_unit,X: product_unit] : ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ).
% card_Diff1_le
thf(fact_404_card__Diff1__le,axiom,
! [A2: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ).
% card_Diff1_le
thf(fact_405_in__image__insert__iff,axiom,
! [B: set_set_a,X: a,A2: set_a] :
( ! [C4: set_a] :
( ( member_set_a @ C4 @ B )
=> ~ ( member_a @ X @ C4 ) )
=> ( ( member_set_a @ A2 @ ( image_set_a_set_a @ ( insert_a @ X ) @ B ) )
= ( ( member_a @ X @ A2 )
& ( member_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B ) ) ) ) ).
% in_image_insert_iff
thf(fact_406_bot__set__def,axiom,
( bot_bot_set_a
= ( collect_a @ bot_bot_a_o ) ) ).
% bot_set_def
thf(fact_407_Diff__mono,axiom,
! [A2: set_a,C: set_a,D2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ C )
=> ( ( ord_less_eq_set_a @ D2 @ B )
=> ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( minus_minus_set_a @ C @ D2 ) ) ) ) ).
% Diff_mono
thf(fact_408_Diff__subset,axiom,
! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ A2 ) ).
% Diff_subset
thf(fact_409_double__diff,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ( minus_minus_set_a @ B @ ( minus_minus_set_a @ C @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_410_insert__Diff__if,axiom,
! [X: a,B: set_a,A2: set_a] :
( ( ( member_a @ X @ B )
=> ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B )
= ( minus_minus_set_a @ A2 @ B ) ) )
& ( ~ ( member_a @ X @ B )
=> ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B )
= ( insert_a @ X @ ( minus_minus_set_a @ A2 @ B ) ) ) ) ) ).
% insert_Diff_if
thf(fact_411_Int__Diff,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
= ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B @ C ) ) ) ).
% Int_Diff
thf(fact_412_Diff__Int2,axiom,
! [A2: set_a,C: set_a,B: set_a] :
( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ ( inf_inf_set_a @ B @ C ) )
= ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ B ) ) ).
% Diff_Int2
thf(fact_413_Diff__Diff__Int,axiom,
! [A2: set_a,B: set_a] :
( ( minus_minus_set_a @ A2 @ ( minus_minus_set_a @ A2 @ B ) )
= ( inf_inf_set_a @ A2 @ B ) ) ).
% Diff_Diff_Int
thf(fact_414_Diff__Int__distrib,axiom,
! [C: set_a,A2: set_a,B: set_a] :
( ( inf_inf_set_a @ C @ ( minus_minus_set_a @ A2 @ B ) )
= ( minus_minus_set_a @ ( inf_inf_set_a @ C @ A2 ) @ ( inf_inf_set_a @ C @ B ) ) ) ).
% Diff_Int_distrib
thf(fact_415_Diff__Int__distrib2,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B ) @ C )
= ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ ( inf_inf_set_a @ B @ C ) ) ) ).
% Diff_Int_distrib2
thf(fact_416_Un__Diff,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( minus_minus_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C )
= ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ C ) @ ( minus_minus_set_a @ B @ C ) ) ) ).
% Un_Diff
thf(fact_417_card__image__le,axiom,
! [A2: set_Product_unit,F: product_unit > a] :
( ( finite4290736615968046902t_unit @ A2 )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( image_Product_unit_a @ F @ A2 ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ).
% card_image_le
thf(fact_418_card__image__le,axiom,
! [A2: set_Product_unit,F: product_unit > product_unit] :
( ( finite4290736615968046902t_unit @ A2 )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( image_405062704495631173t_unit @ F @ A2 ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ).
% card_image_le
thf(fact_419_card__image__le,axiom,
! [A2: set_a,F: a > a] :
( ( finite_finite_a @ A2 )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( image_a_a @ F @ A2 ) ) @ ( finite_card_a @ A2 ) ) ) ).
% card_image_le
thf(fact_420_card__image__le,axiom,
! [A2: set_a,F: a > product_unit] :
( ( finite_finite_a @ A2 )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( image_a_Product_unit @ F @ A2 ) ) @ ( finite_card_a @ A2 ) ) ) ).
% card_image_le
thf(fact_421_card__image__le,axiom,
! [A2: set_nat,F: nat > a] :
( ( finite_finite_nat @ A2 )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( image_nat_a @ F @ A2 ) ) @ ( finite_card_nat @ A2 ) ) ) ).
% card_image_le
thf(fact_422_card__image__le,axiom,
! [A2: set_nat,F: nat > product_unit] :
( ( finite_finite_nat @ A2 )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( image_8730104196221521654t_unit @ F @ A2 ) ) @ ( finite_card_nat @ A2 ) ) ) ).
% card_image_le
thf(fact_423_card__subset__eq,axiom,
! [B: set_Product_unit,A2: set_Product_unit] :
( ( finite4290736615968046902t_unit @ B )
=> ( ( ord_le3507040750410214029t_unit @ A2 @ B )
=> ( ( ( finite410649719033368117t_unit @ A2 )
= ( finite410649719033368117t_unit @ B ) )
=> ( A2 = B ) ) ) ) ).
% card_subset_eq
thf(fact_424_card__subset__eq,axiom,
! [B: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ A2 @ B )
=> ( ( ( finite_card_nat @ A2 )
= ( finite_card_nat @ B ) )
=> ( A2 = B ) ) ) ) ).
% card_subset_eq
thf(fact_425_card__subset__eq,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ( finite_card_a @ A2 )
= ( finite_card_a @ B ) )
=> ( A2 = B ) ) ) ) ).
% card_subset_eq
thf(fact_426_infinite__arbitrarily__large,axiom,
! [A2: set_Product_unit,N2: nat] :
( ~ ( finite4290736615968046902t_unit @ A2 )
=> ? [B7: set_Product_unit] :
( ( finite4290736615968046902t_unit @ B7 )
& ( ( finite410649719033368117t_unit @ B7 )
= N2 )
& ( ord_le3507040750410214029t_unit @ B7 @ A2 ) ) ) ).
% infinite_arbitrarily_large
thf(fact_427_infinite__arbitrarily__large,axiom,
! [A2: set_nat,N2: nat] :
( ~ ( finite_finite_nat @ A2 )
=> ? [B7: set_nat] :
( ( finite_finite_nat @ B7 )
& ( ( finite_card_nat @ B7 )
= N2 )
& ( ord_less_eq_set_nat @ B7 @ A2 ) ) ) ).
% infinite_arbitrarily_large
thf(fact_428_infinite__arbitrarily__large,axiom,
! [A2: set_a,N2: nat] :
( ~ ( finite_finite_a @ A2 )
=> ? [B7: set_a] :
( ( finite_finite_a @ B7 )
& ( ( finite_card_a @ B7 )
= N2 )
& ( ord_less_eq_set_a @ B7 @ A2 ) ) ) ).
% infinite_arbitrarily_large
thf(fact_429_finite__if__finite__subsets__card__bdd,axiom,
! [F2: set_Product_unit,C: nat] :
( ! [G3: set_Product_unit] :
( ( ord_le3507040750410214029t_unit @ G3 @ F2 )
=> ( ( finite4290736615968046902t_unit @ G3 )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ G3 ) @ C ) ) )
=> ( ( finite4290736615968046902t_unit @ F2 )
& ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ F2 ) @ C ) ) ) ).
% finite_if_finite_subsets_card_bdd
thf(fact_430_finite__if__finite__subsets__card__bdd,axiom,
! [F2: set_nat,C: nat] :
( ! [G3: set_nat] :
( ( ord_less_eq_set_nat @ G3 @ F2 )
=> ( ( finite_finite_nat @ G3 )
=> ( ord_less_eq_nat @ ( finite_card_nat @ G3 ) @ C ) ) )
=> ( ( finite_finite_nat @ F2 )
& ( ord_less_eq_nat @ ( finite_card_nat @ F2 ) @ C ) ) ) ).
% finite_if_finite_subsets_card_bdd
thf(fact_431_finite__if__finite__subsets__card__bdd,axiom,
! [F2: set_a,C: nat] :
( ! [G3: set_a] :
( ( ord_less_eq_set_a @ G3 @ F2 )
=> ( ( finite_finite_a @ G3 )
=> ( ord_less_eq_nat @ ( finite_card_a @ G3 ) @ C ) ) )
=> ( ( finite_finite_a @ F2 )
& ( ord_less_eq_nat @ ( finite_card_a @ F2 ) @ C ) ) ) ).
% finite_if_finite_subsets_card_bdd
thf(fact_432_obtain__subset__with__card__n,axiom,
! [N2: nat,S: set_Product_unit] :
( ( ord_less_eq_nat @ N2 @ ( finite410649719033368117t_unit @ S ) )
=> ~ ! [T3: set_Product_unit] :
( ( ord_le3507040750410214029t_unit @ T3 @ S )
=> ( ( ( finite410649719033368117t_unit @ T3 )
= N2 )
=> ~ ( finite4290736615968046902t_unit @ T3 ) ) ) ) ).
% obtain_subset_with_card_n
thf(fact_433_obtain__subset__with__card__n,axiom,
! [N2: nat,S: set_nat] :
( ( ord_less_eq_nat @ N2 @ ( finite_card_nat @ S ) )
=> ~ ! [T3: set_nat] :
( ( ord_less_eq_set_nat @ T3 @ S )
=> ( ( ( finite_card_nat @ T3 )
= N2 )
=> ~ ( finite_finite_nat @ T3 ) ) ) ) ).
% obtain_subset_with_card_n
thf(fact_434_obtain__subset__with__card__n,axiom,
! [N2: nat,S: set_a] :
( ( ord_less_eq_nat @ N2 @ ( finite_card_a @ S ) )
=> ~ ! [T3: set_a] :
( ( ord_less_eq_set_a @ T3 @ S )
=> ( ( ( finite_card_a @ T3 )
= N2 )
=> ~ ( finite_finite_a @ T3 ) ) ) ) ).
% obtain_subset_with_card_n
thf(fact_435_exists__subset__between,axiom,
! [A2: set_Product_unit,N2: nat,C: set_Product_unit] :
( ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ ( finite410649719033368117t_unit @ C ) )
=> ( ( ord_le3507040750410214029t_unit @ A2 @ C )
=> ( ( finite4290736615968046902t_unit @ C )
=> ? [B7: set_Product_unit] :
( ( ord_le3507040750410214029t_unit @ A2 @ B7 )
& ( ord_le3507040750410214029t_unit @ B7 @ C )
& ( ( finite410649719033368117t_unit @ B7 )
= N2 ) ) ) ) ) ) ).
% exists_subset_between
thf(fact_436_exists__subset__between,axiom,
! [A2: set_nat,N2: nat,C: set_nat] :
( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ ( finite_card_nat @ C ) )
=> ( ( ord_less_eq_set_nat @ A2 @ C )
=> ( ( finite_finite_nat @ C )
=> ? [B7: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B7 )
& ( ord_less_eq_set_nat @ B7 @ C )
& ( ( finite_card_nat @ B7 )
= N2 ) ) ) ) ) ) ).
% exists_subset_between
thf(fact_437_exists__subset__between,axiom,
! [A2: set_a,N2: nat,C: set_a] :
( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ ( finite_card_a @ C ) )
=> ( ( ord_less_eq_set_a @ A2 @ C )
=> ( ( finite_finite_a @ C )
=> ? [B7: set_a] :
( ( ord_less_eq_set_a @ A2 @ B7 )
& ( ord_less_eq_set_a @ B7 @ C )
& ( ( finite_card_a @ B7 )
= N2 ) ) ) ) ) ) ).
% exists_subset_between
thf(fact_438_card__seteq,axiom,
! [B: set_Product_unit,A2: set_Product_unit] :
( ( finite4290736615968046902t_unit @ B )
=> ( ( ord_le3507040750410214029t_unit @ A2 @ B )
=> ( ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ B ) @ ( finite410649719033368117t_unit @ A2 ) )
=> ( A2 = B ) ) ) ) ).
% card_seteq
thf(fact_439_card__seteq,axiom,
! [B: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ A2 @ B )
=> ( ( ord_less_eq_nat @ ( finite_card_nat @ B ) @ ( finite_card_nat @ A2 ) )
=> ( A2 = B ) ) ) ) ).
% card_seteq
thf(fact_440_card__seteq,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite_card_a @ A2 ) )
=> ( A2 = B ) ) ) ) ).
% card_seteq
thf(fact_441_card__mono,axiom,
! [B: set_Product_unit,A2: set_Product_unit] :
( ( finite4290736615968046902t_unit @ B )
=> ( ( ord_le3507040750410214029t_unit @ A2 @ B )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B ) ) ) ) ).
% card_mono
thf(fact_442_card__mono,axiom,
! [B: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ A2 @ B )
=> ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) ) ) ) ).
% card_mono
thf(fact_443_card__mono,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A2 @ B )
=> ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) ) ) ).
% card_mono
thf(fact_444_diff__shunt__var,axiom,
! [X: set_a,Y: set_a] :
( ( ( minus_minus_set_a @ X @ Y )
= bot_bot_set_a )
= ( ord_less_eq_set_a @ X @ Y ) ) ).
% diff_shunt_var
thf(fact_445_surj__card__le,axiom,
! [A2: set_Product_unit,B: set_Product_unit,F: product_unit > product_unit] :
( ( finite4290736615968046902t_unit @ A2 )
=> ( ( ord_le3507040750410214029t_unit @ B @ ( image_405062704495631173t_unit @ F @ A2 ) )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ B ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ).
% surj_card_le
thf(fact_446_surj__card__le,axiom,
! [A2: set_a,B: set_Product_unit,F: a > product_unit] :
( ( finite_finite_a @ A2 )
=> ( ( ord_le3507040750410214029t_unit @ B @ ( image_a_Product_unit @ F @ A2 ) )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ B ) @ ( finite_card_a @ A2 ) ) ) ) ).
% surj_card_le
thf(fact_447_surj__card__le,axiom,
! [A2: set_nat,B: set_Product_unit,F: nat > product_unit] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_le3507040750410214029t_unit @ B @ ( image_8730104196221521654t_unit @ F @ A2 ) )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ B ) @ ( finite_card_nat @ A2 ) ) ) ) ).
% surj_card_le
thf(fact_448_surj__card__le,axiom,
! [A2: set_Product_unit,B: set_a,F: product_unit > a] :
( ( finite4290736615968046902t_unit @ A2 )
=> ( ( ord_less_eq_set_a @ B @ ( image_Product_unit_a @ F @ A2 ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ).
% surj_card_le
thf(fact_449_surj__card__le,axiom,
! [A2: set_a,B: set_a,F: a > a] :
( ( finite_finite_a @ A2 )
=> ( ( ord_less_eq_set_a @ B @ ( image_a_a @ F @ A2 ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite_card_a @ A2 ) ) ) ) ).
% surj_card_le
thf(fact_450_surj__card__le,axiom,
! [A2: set_nat,B: set_a,F: nat > a] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_a @ B @ ( image_nat_a @ F @ A2 ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite_card_nat @ A2 ) ) ) ) ).
% surj_card_le
thf(fact_451_finite__empty__induct,axiom,
! [A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( P @ A2 )
=> ( ! [A3: nat,A8: set_nat] :
( ( finite_finite_nat @ A8 )
=> ( ( member_nat @ A3 @ A8 )
=> ( ( P @ A8 )
=> ( P @ ( minus_minus_set_nat @ A8 @ ( insert_nat @ A3 @ bot_bot_set_nat ) ) ) ) ) )
=> ( P @ bot_bot_set_nat ) ) ) ) ).
% finite_empty_induct
thf(fact_452_finite__empty__induct,axiom,
! [A2: set_a,P: set_a > $o] :
( ( finite_finite_a @ A2 )
=> ( ( P @ A2 )
=> ( ! [A3: a,A8: set_a] :
( ( finite_finite_a @ A8 )
=> ( ( member_a @ A3 @ A8 )
=> ( ( P @ A8 )
=> ( P @ ( minus_minus_set_a @ A8 @ ( insert_a @ A3 @ bot_bot_set_a ) ) ) ) ) )
=> ( P @ bot_bot_set_a ) ) ) ) ).
% finite_empty_induct
thf(fact_453_infinite__coinduct,axiom,
! [X4: set_nat > $o,A2: set_nat] :
( ( X4 @ A2 )
=> ( ! [A8: set_nat] :
( ( X4 @ A8 )
=> ? [X5: nat] :
( ( member_nat @ X5 @ A8 )
& ( ( X4 @ ( minus_minus_set_nat @ A8 @ ( insert_nat @ X5 @ bot_bot_set_nat ) ) )
| ~ ( finite_finite_nat @ ( minus_minus_set_nat @ A8 @ ( insert_nat @ X5 @ bot_bot_set_nat ) ) ) ) ) )
=> ~ ( finite_finite_nat @ A2 ) ) ) ).
% infinite_coinduct
thf(fact_454_infinite__coinduct,axiom,
! [X4: set_a > $o,A2: set_a] :
( ( X4 @ A2 )
=> ( ! [A8: set_a] :
( ( X4 @ A8 )
=> ? [X5: a] :
( ( member_a @ X5 @ A8 )
& ( ( X4 @ ( minus_minus_set_a @ A8 @ ( insert_a @ X5 @ bot_bot_set_a ) ) )
| ~ ( finite_finite_a @ ( minus_minus_set_a @ A8 @ ( insert_a @ X5 @ bot_bot_set_a ) ) ) ) ) )
=> ~ ( finite_finite_a @ A2 ) ) ) ).
% infinite_coinduct
thf(fact_455_infinite__remove,axiom,
! [S: set_nat,A: nat] :
( ~ ( finite_finite_nat @ S )
=> ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ).
% infinite_remove
thf(fact_456_infinite__remove,axiom,
! [S: set_a,A: a] :
( ~ ( finite_finite_a @ S )
=> ~ ( finite_finite_a @ ( minus_minus_set_a @ S @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).
% infinite_remove
thf(fact_457_image__diff__subset,axiom,
! [F: a > a,A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B ) ) @ ( image_a_a @ F @ ( minus_minus_set_a @ A2 @ B ) ) ) ).
% image_diff_subset
thf(fact_458_Diff__insert__absorb,axiom,
! [X: a,A2: set_a] :
( ~ ( member_a @ X @ A2 )
=> ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ ( insert_a @ X @ bot_bot_set_a ) )
= A2 ) ) ).
% Diff_insert_absorb
thf(fact_459_Diff__insert2,axiom,
! [A2: set_a,A: a,B: set_a] :
( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) @ B ) ) ).
% Diff_insert2
thf(fact_460_insert__Diff,axiom,
! [A: a,A2: set_a] :
( ( member_a @ A @ A2 )
=> ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= A2 ) ) ).
% insert_Diff
thf(fact_461_Diff__insert,axiom,
! [A2: set_a,A: a,B: set_a] :
( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) )
= ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( insert_a @ A @ bot_bot_set_a ) ) ) ).
% Diff_insert
thf(fact_462_subset__Diff__insert,axiom,
! [A2: set_a,B: set_a,X: a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B @ ( insert_a @ X @ C ) ) )
= ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B @ C ) )
& ~ ( member_a @ X @ A2 ) ) ) ).
% subset_Diff_insert
thf(fact_463_Int__Diff__disjoint,axiom,
! [A2: set_a,B: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ B ) )
= bot_bot_set_a ) ).
% Int_Diff_disjoint
thf(fact_464_Diff__triv,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ B )
= bot_bot_set_a )
=> ( ( minus_minus_set_a @ A2 @ B )
= A2 ) ) ).
% Diff_triv
thf(fact_465_Diff__subset__conv,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ C )
= ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).
% Diff_subset_conv
thf(fact_466_Diff__partition,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( sup_sup_set_a @ A2 @ ( minus_minus_set_a @ B @ A2 ) )
= B ) ) ).
% Diff_partition
thf(fact_467_Un__Diff__Int,axiom,
! [A2: set_a,B: set_a] :
( ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( inf_inf_set_a @ A2 @ B ) )
= A2 ) ).
% Un_Diff_Int
thf(fact_468_Int__Diff__Un,axiom,
! [A2: set_a,B: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ B ) )
= A2 ) ).
% Int_Diff_Un
thf(fact_469_Diff__Int,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( minus_minus_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) )
= ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ C ) ) ) ).
% Diff_Int
thf(fact_470_Diff__Un,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( minus_minus_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) )
= ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ C ) ) ) ).
% Diff_Un
thf(fact_471_finite__remove__induct,axiom,
! [B: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ B )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [A8: set_nat] :
( ( finite_finite_nat @ A8 )
=> ( ( A8 != bot_bot_set_nat )
=> ( ( ord_less_eq_set_nat @ A8 @ B )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A8 )
=> ( P @ ( minus_minus_set_nat @ A8 @ ( insert_nat @ X5 @ bot_bot_set_nat ) ) ) )
=> ( P @ A8 ) ) ) ) )
=> ( P @ B ) ) ) ) ).
% finite_remove_induct
thf(fact_472_finite__remove__induct,axiom,
! [B: set_a,P: set_a > $o] :
( ( finite_finite_a @ B )
=> ( ( P @ bot_bot_set_a )
=> ( ! [A8: set_a] :
( ( finite_finite_a @ A8 )
=> ( ( A8 != bot_bot_set_a )
=> ( ( ord_less_eq_set_a @ A8 @ B )
=> ( ! [X5: a] :
( ( member_a @ X5 @ A8 )
=> ( P @ ( minus_minus_set_a @ A8 @ ( insert_a @ X5 @ bot_bot_set_a ) ) ) )
=> ( P @ A8 ) ) ) ) )
=> ( P @ B ) ) ) ) ).
% finite_remove_induct
thf(fact_473_remove__induct,axiom,
! [P: set_nat > $o,B: set_nat] :
( ( P @ bot_bot_set_nat )
=> ( ( ~ ( finite_finite_nat @ B )
=> ( P @ B ) )
=> ( ! [A8: set_nat] :
( ( finite_finite_nat @ A8 )
=> ( ( A8 != bot_bot_set_nat )
=> ( ( ord_less_eq_set_nat @ A8 @ B )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A8 )
=> ( P @ ( minus_minus_set_nat @ A8 @ ( insert_nat @ X5 @ bot_bot_set_nat ) ) ) )
=> ( P @ A8 ) ) ) ) )
=> ( P @ B ) ) ) ) ).
% remove_induct
thf(fact_474_remove__induct,axiom,
! [P: set_a > $o,B: set_a] :
( ( P @ bot_bot_set_a )
=> ( ( ~ ( finite_finite_a @ B )
=> ( P @ B ) )
=> ( ! [A8: set_a] :
( ( finite_finite_a @ A8 )
=> ( ( A8 != bot_bot_set_a )
=> ( ( ord_less_eq_set_a @ A8 @ B )
=> ( ! [X5: a] :
( ( member_a @ X5 @ A8 )
=> ( P @ ( minus_minus_set_a @ A8 @ ( insert_a @ X5 @ bot_bot_set_a ) ) ) )
=> ( P @ A8 ) ) ) ) )
=> ( P @ B ) ) ) ) ).
% remove_induct
thf(fact_475_Diff__single__insert,axiom,
! [A2: set_a,X: a,B: set_a] :
( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B )
=> ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B ) ) ) ).
% Diff_single_insert
thf(fact_476_subset__insert__iff,axiom,
! [A2: set_a,X: a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B ) )
= ( ( ( member_a @ X @ A2 )
=> ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B ) )
& ( ~ ( member_a @ X @ A2 )
=> ( ord_less_eq_set_a @ A2 @ B ) ) ) ) ).
% subset_insert_iff
thf(fact_477_boolean__algebra__cancel_Oinf1,axiom,
! [A2: set_a,K: set_a,A: set_a,B4: set_a] :
( ( A2
= ( inf_inf_set_a @ K @ A ) )
=> ( ( inf_inf_set_a @ A2 @ B4 )
= ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B4 ) ) ) ) ).
% boolean_algebra_cancel.inf1
thf(fact_478_boolean__algebra__cancel_Oinf2,axiom,
! [B: set_a,K: set_a,B4: set_a,A: set_a] :
( ( B
= ( inf_inf_set_a @ K @ B4 ) )
=> ( ( inf_inf_set_a @ A @ B )
= ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B4 ) ) ) ) ).
% boolean_algebra_cancel.inf2
thf(fact_479_boolean__algebra__cancel_Osup2,axiom,
! [B: set_a,K: set_a,B4: set_a,A: set_a] :
( ( B
= ( sup_sup_set_a @ K @ B4 ) )
=> ( ( sup_sup_set_a @ A @ B )
= ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A @ B4 ) ) ) ) ).
% boolean_algebra_cancel.sup2
thf(fact_480_boolean__algebra__cancel_Osup1,axiom,
! [A2: set_a,K: set_a,A: set_a,B4: set_a] :
( ( A2
= ( sup_sup_set_a @ K @ A ) )
=> ( ( sup_sup_set_a @ A2 @ B4 )
= ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A @ B4 ) ) ) ) ).
% boolean_algebra_cancel.sup1
thf(fact_481_finite__has__maximal2,axiom,
! [A2: set_set_a,A: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ A @ A2 )
=> ? [X3: set_a] :
( ( member_set_a @ X3 @ A2 )
& ( ord_less_eq_set_a @ A @ X3 )
& ! [Xa: set_a] :
( ( member_set_a @ Xa @ A2 )
=> ( ( ord_less_eq_set_a @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_482_finite__has__maximal2,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ( ord_less_eq_nat @ A @ X3 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_483_finite__has__minimal2,axiom,
! [A2: set_set_a,A: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ A @ A2 )
=> ? [X3: set_a] :
( ( member_set_a @ X3 @ A2 )
& ( ord_less_eq_set_a @ X3 @ A )
& ! [Xa: set_a] :
( ( member_set_a @ Xa @ A2 )
=> ( ( ord_less_eq_set_a @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_484_finite__has__minimal2,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ( ord_less_eq_nat @ X3 @ A )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_485_all__subset__image,axiom,
! [F: a > a,A2: set_a,P: set_a > $o] :
( ( ! [B6: set_a] :
( ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) )
=> ( P @ B6 ) ) )
= ( ! [B6: set_a] :
( ( ord_less_eq_set_a @ B6 @ A2 )
=> ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).
% all_subset_image
thf(fact_486_infinite__imp__nonempty,axiom,
! [S: set_nat] :
( ~ ( finite_finite_nat @ S )
=> ( S != bot_bot_set_nat ) ) ).
% infinite_imp_nonempty
thf(fact_487_infinite__imp__nonempty,axiom,
! [S: set_a] :
( ~ ( finite_finite_a @ S )
=> ( S != bot_bot_set_a ) ) ).
% infinite_imp_nonempty
thf(fact_488_finite_OemptyI,axiom,
finite_finite_nat @ bot_bot_set_nat ).
% finite.emptyI
thf(fact_489_finite_OemptyI,axiom,
finite_finite_a @ bot_bot_set_a ).
% finite.emptyI
thf(fact_490_finite__subset,axiom,
! [A2: set_nat,B: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B )
=> ( ( finite_finite_nat @ B )
=> ( finite_finite_nat @ A2 ) ) ) ).
% finite_subset
thf(fact_491_finite__subset,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( finite_finite_a @ B )
=> ( finite_finite_a @ A2 ) ) ) ).
% finite_subset
thf(fact_492_infinite__super,axiom,
! [S: set_nat,T: set_nat] :
( ( ord_less_eq_set_nat @ S @ T )
=> ( ~ ( finite_finite_nat @ S )
=> ~ ( finite_finite_nat @ T ) ) ) ).
% infinite_super
thf(fact_493_infinite__super,axiom,
! [S: set_a,T: set_a] :
( ( ord_less_eq_set_a @ S @ T )
=> ( ~ ( finite_finite_a @ S )
=> ~ ( finite_finite_a @ T ) ) ) ).
% infinite_super
thf(fact_494_rev__finite__subset,axiom,
! [B: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ A2 @ B )
=> ( finite_finite_nat @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_495_rev__finite__subset,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A2 @ B )
=> ( finite_finite_a @ A2 ) ) ) ).
% rev_finite_subset
thf(fact_496_boolean__algebra_Odisj__zero__right,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ X @ bot_bot_set_a )
= X ) ).
% boolean_algebra.disj_zero_right
thf(fact_497_finite_OinsertI,axiom,
! [A2: set_a,A: a] :
( ( finite_finite_a @ A2 )
=> ( finite_finite_a @ ( insert_a @ A @ A2 ) ) ) ).
% finite.insertI
thf(fact_498_finite_OinsertI,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( finite_finite_nat @ ( insert_nat @ A @ A2 ) ) ) ).
% finite.insertI
thf(fact_499_boolean__algebra_Oconj__disj__distrib,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
= ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ).
% boolean_algebra.conj_disj_distrib
thf(fact_500_boolean__algebra_Odisj__conj__distrib,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).
% boolean_algebra.disj_conj_distrib
thf(fact_501_boolean__algebra_Oconj__disj__distrib2,axiom,
! [Y: set_a,Z: set_a,X: set_a] :
( ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X )
= ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ X ) @ ( inf_inf_set_a @ Z @ X ) ) ) ).
% boolean_algebra.conj_disj_distrib2
thf(fact_502_boolean__algebra_Odisj__conj__distrib2,axiom,
! [Y: set_a,Z: set_a,X: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ Z ) @ X )
= ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ X ) @ ( sup_sup_set_a @ Z @ X ) ) ) ).
% boolean_algebra.disj_conj_distrib2
thf(fact_503_infinite__Un,axiom,
! [S: set_nat,T: set_nat] :
( ( ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T ) ) )
= ( ~ ( finite_finite_nat @ S )
| ~ ( finite_finite_nat @ T ) ) ) ).
% infinite_Un
thf(fact_504_infinite__Un,axiom,
! [S: set_a,T: set_a] :
( ( ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T ) ) )
= ( ~ ( finite_finite_a @ S )
| ~ ( finite_finite_a @ T ) ) ) ).
% infinite_Un
thf(fact_505_Un__infinite,axiom,
! [S: set_nat,T: set_nat] :
( ~ ( finite_finite_nat @ S )
=> ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T ) ) ) ).
% Un_infinite
thf(fact_506_Un__infinite,axiom,
! [S: set_a,T: set_a] :
( ~ ( finite_finite_a @ S )
=> ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T ) ) ) ).
% Un_infinite
thf(fact_507_finite__UnI,axiom,
! [F2: set_nat,G2: set_nat] :
( ( finite_finite_nat @ F2 )
=> ( ( finite_finite_nat @ G2 )
=> ( finite_finite_nat @ ( sup_sup_set_nat @ F2 @ G2 ) ) ) ) ).
% finite_UnI
thf(fact_508_finite__UnI,axiom,
! [F2: set_a,G2: set_a] :
( ( finite_finite_a @ F2 )
=> ( ( finite_finite_a @ G2 )
=> ( finite_finite_a @ ( sup_sup_set_a @ F2 @ G2 ) ) ) ) ).
% finite_UnI
thf(fact_509_finite__has__maximal,axiom,
! [A2: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ? [X3: set_a] :
( ( member_set_a @ X3 @ A2 )
& ! [Xa: set_a] :
( ( member_set_a @ Xa @ A2 )
=> ( ( ord_less_eq_set_a @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_510_finite__has__maximal,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ X3 @ Xa )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_511_finite__has__minimal,axiom,
! [A2: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ? [X3: set_a] :
( ( member_set_a @ X3 @ A2 )
& ! [Xa: set_a] :
( ( member_set_a @ Xa @ A2 )
=> ( ( ord_less_eq_set_a @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_512_finite__has__minimal,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ? [X3: nat] :
( ( member_nat @ X3 @ A2 )
& ! [Xa: nat] :
( ( member_nat @ Xa @ A2 )
=> ( ( ord_less_eq_nat @ Xa @ X3 )
=> ( X3 = Xa ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_513_finite__surj,axiom,
! [A2: set_a,B: set_nat,F: a > nat] :
( ( finite_finite_a @ A2 )
=> ( ( ord_less_eq_set_nat @ B @ ( image_a_nat @ F @ A2 ) )
=> ( finite_finite_nat @ B ) ) ) ).
% finite_surj
thf(fact_514_finite__surj,axiom,
! [A2: set_nat,B: set_nat,F: nat > nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_nat @ B @ ( image_nat_nat @ F @ A2 ) )
=> ( finite_finite_nat @ B ) ) ) ).
% finite_surj
thf(fact_515_finite__surj,axiom,
! [A2: set_a,B: set_a,F: a > a] :
( ( finite_finite_a @ A2 )
=> ( ( ord_less_eq_set_a @ B @ ( image_a_a @ F @ A2 ) )
=> ( finite_finite_a @ B ) ) ) ).
% finite_surj
thf(fact_516_finite__surj,axiom,
! [A2: set_nat,B: set_a,F: nat > a] :
( ( finite_finite_nat @ A2 )
=> ( ( ord_less_eq_set_a @ B @ ( image_nat_a @ F @ A2 ) )
=> ( finite_finite_a @ B ) ) ) ).
% finite_surj
thf(fact_517_finite__subset__image,axiom,
! [B: set_nat,F: nat > nat,A2: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ B @ ( image_nat_nat @ F @ A2 ) )
=> ? [C4: set_nat] :
( ( ord_less_eq_set_nat @ C4 @ A2 )
& ( finite_finite_nat @ C4 )
& ( B
= ( image_nat_nat @ F @ C4 ) ) ) ) ) ).
% finite_subset_image
thf(fact_518_finite__subset__image,axiom,
! [B: set_nat,F: a > nat,A2: set_a] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ B @ ( image_a_nat @ F @ A2 ) )
=> ? [C4: set_a] :
( ( ord_less_eq_set_a @ C4 @ A2 )
& ( finite_finite_a @ C4 )
& ( B
= ( image_a_nat @ F @ C4 ) ) ) ) ) ).
% finite_subset_image
thf(fact_519_finite__subset__image,axiom,
! [B: set_a,F: nat > a,A2: set_nat] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ B @ ( image_nat_a @ F @ A2 ) )
=> ? [C4: set_nat] :
( ( ord_less_eq_set_nat @ C4 @ A2 )
& ( finite_finite_nat @ C4 )
& ( B
= ( image_nat_a @ F @ C4 ) ) ) ) ) ).
% finite_subset_image
thf(fact_520_finite__subset__image,axiom,
! [B: set_a,F: a > a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ B @ ( image_a_a @ F @ A2 ) )
=> ? [C4: set_a] :
( ( ord_less_eq_set_a @ C4 @ A2 )
& ( finite_finite_a @ C4 )
& ( B
= ( image_a_a @ F @ C4 ) ) ) ) ) ).
% finite_subset_image
thf(fact_521_ex__finite__subset__image,axiom,
! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
( ( ? [B6: set_nat] :
( ( finite_finite_nat @ B6 )
& ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) )
& ( P @ B6 ) ) )
= ( ? [B6: set_nat] :
( ( finite_finite_nat @ B6 )
& ( ord_less_eq_set_nat @ B6 @ A2 )
& ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).
% ex_finite_subset_image
thf(fact_522_ex__finite__subset__image,axiom,
! [F: a > nat,A2: set_a,P: set_nat > $o] :
( ( ? [B6: set_nat] :
( ( finite_finite_nat @ B6 )
& ( ord_less_eq_set_nat @ B6 @ ( image_a_nat @ F @ A2 ) )
& ( P @ B6 ) ) )
= ( ? [B6: set_a] :
( ( finite_finite_a @ B6 )
& ( ord_less_eq_set_a @ B6 @ A2 )
& ( P @ ( image_a_nat @ F @ B6 ) ) ) ) ) ).
% ex_finite_subset_image
thf(fact_523_ex__finite__subset__image,axiom,
! [F: nat > a,A2: set_nat,P: set_a > $o] :
( ( ? [B6: set_a] :
( ( finite_finite_a @ B6 )
& ( ord_less_eq_set_a @ B6 @ ( image_nat_a @ F @ A2 ) )
& ( P @ B6 ) ) )
= ( ? [B6: set_nat] :
( ( finite_finite_nat @ B6 )
& ( ord_less_eq_set_nat @ B6 @ A2 )
& ( P @ ( image_nat_a @ F @ B6 ) ) ) ) ) ).
% ex_finite_subset_image
thf(fact_524_ex__finite__subset__image,axiom,
! [F: a > a,A2: set_a,P: set_a > $o] :
( ( ? [B6: set_a] :
( ( finite_finite_a @ B6 )
& ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) )
& ( P @ B6 ) ) )
= ( ? [B6: set_a] :
( ( finite_finite_a @ B6 )
& ( ord_less_eq_set_a @ B6 @ A2 )
& ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).
% ex_finite_subset_image
thf(fact_525_all__finite__subset__image,axiom,
! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
( ( ! [B6: set_nat] :
( ( ( finite_finite_nat @ B6 )
& ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) ) )
=> ( P @ B6 ) ) )
= ( ! [B6: set_nat] :
( ( ( finite_finite_nat @ B6 )
& ( ord_less_eq_set_nat @ B6 @ A2 ) )
=> ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).
% all_finite_subset_image
thf(fact_526_all__finite__subset__image,axiom,
! [F: a > nat,A2: set_a,P: set_nat > $o] :
( ( ! [B6: set_nat] :
( ( ( finite_finite_nat @ B6 )
& ( ord_less_eq_set_nat @ B6 @ ( image_a_nat @ F @ A2 ) ) )
=> ( P @ B6 ) ) )
= ( ! [B6: set_a] :
( ( ( finite_finite_a @ B6 )
& ( ord_less_eq_set_a @ B6 @ A2 ) )
=> ( P @ ( image_a_nat @ F @ B6 ) ) ) ) ) ).
% all_finite_subset_image
thf(fact_527_all__finite__subset__image,axiom,
! [F: nat > a,A2: set_nat,P: set_a > $o] :
( ( ! [B6: set_a] :
( ( ( finite_finite_a @ B6 )
& ( ord_less_eq_set_a @ B6 @ ( image_nat_a @ F @ A2 ) ) )
=> ( P @ B6 ) ) )
= ( ! [B6: set_nat] :
( ( ( finite_finite_nat @ B6 )
& ( ord_less_eq_set_nat @ B6 @ A2 ) )
=> ( P @ ( image_nat_a @ F @ B6 ) ) ) ) ) ).
% all_finite_subset_image
thf(fact_528_all__finite__subset__image,axiom,
! [F: a > a,A2: set_a,P: set_a > $o] :
( ( ! [B6: set_a] :
( ( ( finite_finite_a @ B6 )
& ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) ) )
=> ( P @ B6 ) ) )
= ( ! [B6: set_a] :
( ( ( finite_finite_a @ B6 )
& ( ord_less_eq_set_a @ B6 @ A2 ) )
=> ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).
% all_finite_subset_image
thf(fact_529_infinite__finite__induct,axiom,
! [P: set_nat > $o,A2: set_nat] :
( ! [A8: set_nat] :
( ~ ( finite_finite_nat @ A8 )
=> ( P @ A8 ) )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [X3: nat,F3: set_nat] :
( ( finite_finite_nat @ F3 )
=> ( ~ ( member_nat @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_nat @ X3 @ F3 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% infinite_finite_induct
thf(fact_530_infinite__finite__induct,axiom,
! [P: set_a > $o,A2: set_a] :
( ! [A8: set_a] :
( ~ ( finite_finite_a @ A8 )
=> ( P @ A8 ) )
=> ( ( P @ bot_bot_set_a )
=> ( ! [X3: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ~ ( member_a @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ X3 @ F3 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% infinite_finite_induct
thf(fact_531_finite__ne__induct,axiom,
! [F2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F2 )
=> ( ( F2 != bot_bot_set_nat )
=> ( ! [X3: nat] : ( P @ ( insert_nat @ X3 @ bot_bot_set_nat ) )
=> ( ! [X3: nat,F3: set_nat] :
( ( finite_finite_nat @ F3 )
=> ( ( F3 != bot_bot_set_nat )
=> ( ~ ( member_nat @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_nat @ X3 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_532_finite__ne__induct,axiom,
! [F2: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( F2 != bot_bot_set_a )
=> ( ! [X3: a] : ( P @ ( insert_a @ X3 @ bot_bot_set_a ) )
=> ( ! [X3: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ( F3 != bot_bot_set_a )
=> ( ~ ( member_a @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ X3 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_533_finite__induct,axiom,
! [F2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [X3: nat,F3: set_nat] :
( ( finite_finite_nat @ F3 )
=> ( ~ ( member_nat @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_nat @ X3 @ F3 ) ) ) ) )
=> ( P @ F2 ) ) ) ) ).
% finite_induct
thf(fact_534_finite__induct,axiom,
! [F2: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( P @ bot_bot_set_a )
=> ( ! [X3: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ~ ( member_a @ X3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ X3 @ F3 ) ) ) ) )
=> ( P @ F2 ) ) ) ) ).
% finite_induct
thf(fact_535_finite_Osimps,axiom,
( finite_finite_nat
= ( ^ [A4: set_nat] :
( ( A4 = bot_bot_set_nat )
| ? [A6: set_nat,B3: nat] :
( ( A4
= ( insert_nat @ B3 @ A6 ) )
& ( finite_finite_nat @ A6 ) ) ) ) ) ).
% finite.simps
thf(fact_536_finite_Osimps,axiom,
( finite_finite_a
= ( ^ [A4: set_a] :
( ( A4 = bot_bot_set_a )
| ? [A6: set_a,B3: a] :
( ( A4
= ( insert_a @ B3 @ A6 ) )
& ( finite_finite_a @ A6 ) ) ) ) ) ).
% finite.simps
thf(fact_537_finite_Ocases,axiom,
! [A: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ~ ! [A8: set_nat] :
( ? [A3: nat] :
( A
= ( insert_nat @ A3 @ A8 ) )
=> ~ ( finite_finite_nat @ A8 ) ) ) ) ).
% finite.cases
thf(fact_538_finite_Ocases,axiom,
! [A: set_a] :
( ( finite_finite_a @ A )
=> ( ( A != bot_bot_set_a )
=> ~ ! [A8: set_a] :
( ? [A3: a] :
( A
= ( insert_a @ A3 @ A8 ) )
=> ~ ( finite_finite_a @ A8 ) ) ) ) ).
% finite.cases
thf(fact_539_finite__subset__induct_H,axiom,
! [F2: set_nat,A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F2 )
=> ( ( ord_less_eq_set_nat @ F2 @ A2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [A3: nat,F3: set_nat] :
( ( finite_finite_nat @ F3 )
=> ( ( member_nat @ A3 @ A2 )
=> ( ( ord_less_eq_set_nat @ F3 @ A2 )
=> ( ~ ( member_nat @ A3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_nat @ A3 @ F3 ) ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_540_finite__subset__induct_H,axiom,
! [F2: set_a,A2: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( ord_less_eq_set_a @ F2 @ A2 )
=> ( ( P @ bot_bot_set_a )
=> ( ! [A3: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ( member_a @ A3 @ A2 )
=> ( ( ord_less_eq_set_a @ F3 @ A2 )
=> ( ~ ( member_a @ A3 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ A3 @ F3 ) ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_541_card__sumset__singleton__eq,axiom,
! [A2: set_a,A: a] :
( ( finite_finite_a @ A2 )
=> ( ( ( member_a @ A @ g )
=> ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) ) ) )
& ( ~ ( member_a @ A @ g )
=> ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= zero_zero_nat ) ) ) ) ).
% card_sumset_singleton_eq
thf(fact_542_finite__ranking__induct,axiom,
! [S: set_nat,P: set_nat > $o,F: nat > nat] :
( ( finite_finite_nat @ S )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [X3: nat,S2: set_nat] :
( ( finite_finite_nat @ S2 )
=> ( ! [Y5: nat] :
( ( member_nat @ Y5 @ S2 )
=> ( ord_less_eq_nat @ ( F @ Y5 ) @ ( F @ X3 ) ) )
=> ( ( P @ S2 )
=> ( P @ ( insert_nat @ X3 @ S2 ) ) ) ) )
=> ( P @ S ) ) ) ) ).
% finite_ranking_induct
thf(fact_543_finite__ranking__induct,axiom,
! [S: set_a,P: set_a > $o,F: a > nat] :
( ( finite_finite_a @ S )
=> ( ( P @ bot_bot_set_a )
=> ( ! [X3: a,S2: set_a] :
( ( finite_finite_a @ S2 )
=> ( ! [Y5: a] :
( ( member_a @ Y5 @ S2 )
=> ( ord_less_eq_nat @ ( F @ Y5 ) @ ( F @ X3 ) ) )
=> ( ( P @ S2 )
=> ( P @ ( insert_a @ X3 @ S2 ) ) ) ) )
=> ( P @ S ) ) ) ) ).
% finite_ranking_induct
thf(fact_544_card__le__if__inj__on__rel,axiom,
! [B: set_Product_unit,A2: set_a,R: a > product_unit > $o] :
( ( finite4290736615968046902t_unit @ B )
=> ( ! [A3: a] :
( ( member_a @ A3 @ A2 )
=> ? [B9: product_unit] :
( ( member_Product_unit @ B9 @ B )
& ( R @ A3 @ B9 ) ) )
=> ( ! [A1: a,A22: a,B2: product_unit] :
( ( member_a @ A1 @ A2 )
=> ( ( member_a @ A22 @ A2 )
=> ( ( member_Product_unit @ B2 @ B )
=> ( ( R @ A1 @ B2 )
=> ( ( R @ A22 @ B2 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite410649719033368117t_unit @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_545_card__le__if__inj__on__rel,axiom,
! [B: set_Product_unit,A2: set_Product_unit,R: product_unit > product_unit > $o] :
( ( finite4290736615968046902t_unit @ B )
=> ( ! [A3: product_unit] :
( ( member_Product_unit @ A3 @ A2 )
=> ? [B9: product_unit] :
( ( member_Product_unit @ B9 @ B )
& ( R @ A3 @ B9 ) ) )
=> ( ! [A1: product_unit,A22: product_unit,B2: product_unit] :
( ( member_Product_unit @ A1 @ A2 )
=> ( ( member_Product_unit @ A22 @ A2 )
=> ( ( member_Product_unit @ B2 @ B )
=> ( ( R @ A1 @ B2 )
=> ( ( R @ A22 @ B2 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_546_card__le__if__inj__on__rel,axiom,
! [B: set_a,A2: set_a,R: a > a > $o] :
( ( finite_finite_a @ B )
=> ( ! [A3: a] :
( ( member_a @ A3 @ A2 )
=> ? [B9: a] :
( ( member_a @ B9 @ B )
& ( R @ A3 @ B9 ) ) )
=> ( ! [A1: a,A22: a,B2: a] :
( ( member_a @ A1 @ A2 )
=> ( ( member_a @ A22 @ A2 )
=> ( ( member_a @ B2 @ B )
=> ( ( R @ A1 @ B2 )
=> ( ( R @ A22 @ B2 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_547_card__le__if__inj__on__rel,axiom,
! [B: set_a,A2: set_Product_unit,R: product_unit > a > $o] :
( ( finite_finite_a @ B )
=> ( ! [A3: product_unit] :
( ( member_Product_unit @ A3 @ A2 )
=> ? [B9: a] :
( ( member_a @ B9 @ B )
& ( R @ A3 @ B9 ) ) )
=> ( ! [A1: product_unit,A22: product_unit,B2: a] :
( ( member_Product_unit @ A1 @ A2 )
=> ( ( member_Product_unit @ A22 @ A2 )
=> ( ( member_a @ B2 @ B )
=> ( ( R @ A1 @ B2 )
=> ( ( R @ A22 @ B2 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite_card_a @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_548_card__le__if__inj__on__rel,axiom,
! [B: set_nat,A2: set_a,R: a > nat > $o] :
( ( finite_finite_nat @ B )
=> ( ! [A3: a] :
( ( member_a @ A3 @ A2 )
=> ? [B9: nat] :
( ( member_nat @ B9 @ B )
& ( R @ A3 @ B9 ) ) )
=> ( ! [A1: a,A22: a,B2: nat] :
( ( member_a @ A1 @ A2 )
=> ( ( member_a @ A22 @ A2 )
=> ( ( member_nat @ B2 @ B )
=> ( ( R @ A1 @ B2 )
=> ( ( R @ A22 @ B2 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_nat @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_549_card__le__if__inj__on__rel,axiom,
! [B: set_nat,A2: set_Product_unit,R: product_unit > nat > $o] :
( ( finite_finite_nat @ B )
=> ( ! [A3: product_unit] :
( ( member_Product_unit @ A3 @ A2 )
=> ? [B9: nat] :
( ( member_nat @ B9 @ B )
& ( R @ A3 @ B9 ) ) )
=> ( ! [A1: product_unit,A22: product_unit,B2: nat] :
( ( member_Product_unit @ A1 @ A2 )
=> ( ( member_Product_unit @ A22 @ A2 )
=> ( ( member_nat @ B2 @ B )
=> ( ( R @ A1 @ B2 )
=> ( ( R @ A22 @ B2 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite_card_nat @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_550_the__elem__eq,axiom,
! [X: a] :
( ( the_elem_a @ ( insert_a @ X @ bot_bot_set_a ) )
= X ) ).
% the_elem_eq
thf(fact_551_order__refl,axiom,
! [X: set_a] : ( ord_less_eq_set_a @ X @ X ) ).
% order_refl
thf(fact_552_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_553_dual__order_Orefl,axiom,
! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).
% dual_order.refl
thf(fact_554_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_555_card_Oempty,axiom,
( ( finite410649719033368117t_unit @ bot_bo3957492148770167129t_unit )
= zero_zero_nat ) ).
% card.empty
thf(fact_556_card_Oempty,axiom,
( ( finite_card_a @ bot_bot_set_a )
= zero_zero_nat ) ).
% card.empty
thf(fact_557_card_Oinfinite,axiom,
! [A2: set_Product_unit] :
( ~ ( finite4290736615968046902t_unit @ A2 )
=> ( ( finite410649719033368117t_unit @ A2 )
= zero_zero_nat ) ) ).
% card.infinite
thf(fact_558_card_Oinfinite,axiom,
! [A2: set_a] :
( ~ ( finite_finite_a @ A2 )
=> ( ( finite_card_a @ A2 )
= zero_zero_nat ) ) ).
% card.infinite
thf(fact_559_card_Oinfinite,axiom,
! [A2: set_nat] :
( ~ ( finite_finite_nat @ A2 )
=> ( ( finite_card_nat @ A2 )
= zero_zero_nat ) ) ).
% card.infinite
thf(fact_560_card__0__eq,axiom,
! [A2: set_Product_unit] :
( ( finite4290736615968046902t_unit @ A2 )
=> ( ( ( finite410649719033368117t_unit @ A2 )
= zero_zero_nat )
= ( A2 = bot_bo3957492148770167129t_unit ) ) ) ).
% card_0_eq
thf(fact_561_card__0__eq,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( finite_card_nat @ A2 )
= zero_zero_nat )
= ( A2 = bot_bot_set_nat ) ) ) ).
% card_0_eq
thf(fact_562_card__0__eq,axiom,
! [A2: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( ( finite_card_a @ A2 )
= zero_zero_nat )
= ( A2 = bot_bot_set_a ) ) ) ).
% card_0_eq
thf(fact_563_order__antisym__conv,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( ord_less_eq_set_a @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_564_order__antisym__conv,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( ord_less_eq_nat @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_565_linorder__le__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_566_ord__le__eq__subst,axiom,
! [A: set_a,B4: set_a,F: set_a > set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_567_ord__le__eq__subst,axiom,
! [A: set_a,B4: set_a,F: set_a > nat,C2: nat] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_568_ord__le__eq__subst,axiom,
! [A: nat,B4: nat,F: nat > set_a,C2: set_a] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_569_ord__le__eq__subst,axiom,
! [A: nat,B4: nat,F: nat > nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_le_eq_subst
thf(fact_570_ord__eq__le__subst,axiom,
! [A: set_a,F: set_a > set_a,B4: set_a,C2: set_a] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_571_ord__eq__le__subst,axiom,
! [A: nat,F: set_a > nat,B4: set_a,C2: set_a] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_572_ord__eq__le__subst,axiom,
! [A: set_a,F: nat > set_a,B4: nat,C2: nat] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_573_ord__eq__le__subst,axiom,
! [A: nat,F: nat > nat,B4: nat,C2: nat] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_574_linorder__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
| ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_linear
thf(fact_575_order__eq__refl,axiom,
! [X: set_a,Y: set_a] :
( ( X = Y )
=> ( ord_less_eq_set_a @ X @ Y ) ) ).
% order_eq_refl
thf(fact_576_order__eq__refl,axiom,
! [X: nat,Y: nat] :
( ( X = Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ).
% order_eq_refl
thf(fact_577_order__subst2,axiom,
! [A: set_a,B4: set_a,F: set_a > set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_set_a @ ( F @ B4 ) @ C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_578_order__subst2,axiom,
! [A: set_a,B4: set_a,F: set_a > nat,C2: nat] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_nat @ ( F @ B4 ) @ C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_579_order__subst2,axiom,
! [A: nat,B4: nat,F: nat > set_a,C2: set_a] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_set_a @ ( F @ B4 ) @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_580_order__subst2,axiom,
! [A: nat,B4: nat,F: nat > nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ ( F @ B4 ) @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% order_subst2
thf(fact_581_order__subst1,axiom,
! [A: set_a,F: set_a > set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_582_order__subst1,axiom,
! [A: set_a,F: nat > set_a,B4: nat,C2: nat] :
( ( ord_less_eq_set_a @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_583_order__subst1,axiom,
! [A: nat,F: set_a > nat,B4: set_a,C2: set_a] :
( ( ord_less_eq_nat @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_584_order__subst1,axiom,
! [A: nat,F: nat > nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% order_subst1
thf(fact_585_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: set_a,Z3: set_a] : ( Y4 = Z3 ) )
= ( ^ [A4: set_a,B3: set_a] :
( ( ord_less_eq_set_a @ A4 @ B3 )
& ( ord_less_eq_set_a @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_586_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ A4 @ B3 )
& ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_587_antisym,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_set_a @ B4 @ A )
=> ( A = B4 ) ) ) ).
% antisym
thf(fact_588_antisym,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ B4 @ A )
=> ( A = B4 ) ) ) ).
% antisym
thf(fact_589_dual__order_Otrans,axiom,
! [B4: set_a,A: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ B4 @ A )
=> ( ( ord_less_eq_set_a @ C2 @ B4 )
=> ( ord_less_eq_set_a @ C2 @ A ) ) ) ).
% dual_order.trans
thf(fact_590_dual__order_Otrans,axiom,
! [B4: nat,A: nat,C2: nat] :
( ( ord_less_eq_nat @ B4 @ A )
=> ( ( ord_less_eq_nat @ C2 @ B4 )
=> ( ord_less_eq_nat @ C2 @ A ) ) ) ).
% dual_order.trans
thf(fact_591_dual__order_Oantisym,axiom,
! [B4: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B4 @ A )
=> ( ( ord_less_eq_set_a @ A @ B4 )
=> ( A = B4 ) ) ) ).
% dual_order.antisym
thf(fact_592_dual__order_Oantisym,axiom,
! [B4: nat,A: nat] :
( ( ord_less_eq_nat @ B4 @ A )
=> ( ( ord_less_eq_nat @ A @ B4 )
=> ( A = B4 ) ) ) ).
% dual_order.antisym
thf(fact_593_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: set_a,Z3: set_a] : ( Y4 = Z3 ) )
= ( ^ [A4: set_a,B3: set_a] :
( ( ord_less_eq_set_a @ B3 @ A4 )
& ( ord_less_eq_set_a @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_594_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ B3 @ A4 )
& ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_595_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B4: nat] :
( ! [A3: nat,B2: nat] :
( ( ord_less_eq_nat @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: nat,B2: nat] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B4 ) ) ) ).
% linorder_wlog
thf(fact_596_order__trans,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ Y @ Z )
=> ( ord_less_eq_set_a @ X @ Z ) ) ) ).
% order_trans
thf(fact_597_order__trans,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z )
=> ( ord_less_eq_nat @ X @ Z ) ) ) ).
% order_trans
thf(fact_598_order_Otrans,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% order.trans
thf(fact_599_order_Otrans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ord_less_eq_nat @ A @ C2 ) ) ) ).
% order.trans
thf(fact_600_order__antisym,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_601_order__antisym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_602_ord__le__eq__trans,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( B4 = C2 )
=> ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% ord_le_eq_trans
thf(fact_603_ord__le__eq__trans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( B4 = C2 )
=> ( ord_less_eq_nat @ A @ C2 ) ) ) ).
% ord_le_eq_trans
thf(fact_604_ord__eq__le__trans,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( A = B4 )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% ord_eq_le_trans
thf(fact_605_ord__eq__le__trans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( A = B4 )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ord_less_eq_nat @ A @ C2 ) ) ) ).
% ord_eq_le_trans
thf(fact_606_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: set_a,Z3: set_a] : ( Y4 = Z3 ) )
= ( ^ [X2: set_a,Y2: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y2 )
& ( ord_less_eq_set_a @ Y2 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_607_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
= ( ^ [X2: nat,Y2: nat] :
( ( ord_less_eq_nat @ X2 @ Y2 )
& ( ord_less_eq_nat @ Y2 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_608_le__cases3,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ( ord_less_eq_nat @ X @ Y )
=> ~ ( ord_less_eq_nat @ Y @ Z ) )
=> ( ( ( ord_less_eq_nat @ Y @ X )
=> ~ ( ord_less_eq_nat @ X @ Z ) )
=> ( ( ( ord_less_eq_nat @ X @ Z )
=> ~ ( ord_less_eq_nat @ Z @ Y ) )
=> ( ( ( ord_less_eq_nat @ Z @ Y )
=> ~ ( ord_less_eq_nat @ Y @ X ) )
=> ( ( ( ord_less_eq_nat @ Y @ Z )
=> ~ ( ord_less_eq_nat @ Z @ X ) )
=> ~ ( ( ord_less_eq_nat @ Z @ X )
=> ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_609_nle__le,axiom,
! [A: nat,B4: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B4 ) )
= ( ( ord_less_eq_nat @ B4 @ A )
& ( B4 != A ) ) ) ).
% nle_le
thf(fact_610_finite__nat__set__iff__bounded__le,axiom,
( finite_finite_nat
= ( ^ [N3: set_nat] :
? [M2: nat] :
! [X2: nat] :
( ( member_nat @ X2 @ N3 )
=> ( ord_less_eq_nat @ X2 @ M2 ) ) ) ) ).
% finite_nat_set_iff_bounded_le
thf(fact_611_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M: nat] :
( ( P @ X )
=> ( ! [X3: nat] :
( ( P @ X3 )
=> ( ord_less_eq_nat @ X3 @ M ) )
=> ~ ! [M3: nat] :
( ( P @ M3 )
=> ~ ! [X5: nat] :
( ( P @ X5 )
=> ( ord_less_eq_nat @ X5 @ M3 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_612_card__eq__0__iff,axiom,
! [A2: set_Product_unit] :
( ( ( finite410649719033368117t_unit @ A2 )
= zero_zero_nat )
= ( ( A2 = bot_bo3957492148770167129t_unit )
| ~ ( finite4290736615968046902t_unit @ A2 ) ) ) ).
% card_eq_0_iff
thf(fact_613_card__eq__0__iff,axiom,
! [A2: set_nat] :
( ( ( finite_card_nat @ A2 )
= zero_zero_nat )
= ( ( A2 = bot_bot_set_nat )
| ~ ( finite_finite_nat @ A2 ) ) ) ).
% card_eq_0_iff
thf(fact_614_card__eq__0__iff,axiom,
! [A2: set_a] :
( ( ( finite_card_a @ A2 )
= zero_zero_nat )
= ( ( A2 = bot_bot_set_a )
| ~ ( finite_finite_a @ A2 ) ) ) ).
% card_eq_0_iff
thf(fact_615_card__Diff__subset,axiom,
! [B: set_Product_unit,A2: set_Product_unit] :
( ( finite4290736615968046902t_unit @ B )
=> ( ( ord_le3507040750410214029t_unit @ B @ A2 )
=> ( ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B ) )
= ( minus_minus_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B ) ) ) ) ) ).
% card_Diff_subset
thf(fact_616_card__Diff__subset,axiom,
! [B: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ B @ A2 )
=> ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B ) )
= ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) ) ) ) ) ).
% card_Diff_subset
thf(fact_617_card__Diff__subset,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ B @ A2 )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) )
= ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) ) ) ) ).
% card_Diff_subset
thf(fact_618_diff__card__le__card__Diff,axiom,
! [B: set_Product_unit,A2: set_Product_unit] :
( ( finite4290736615968046902t_unit @ B )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B ) ) @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B ) ) ) ) ).
% diff_card_le_card_Diff
thf(fact_619_diff__card__le__card__Diff,axiom,
! [B: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B ) ) ) ) ).
% diff_card_le_card_Diff
thf(fact_620_diff__card__le__card__Diff,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) ) ) ) ).
% diff_card_le_card_Diff
thf(fact_621_card__Diff__subset__Int,axiom,
! [A2: set_Product_unit,B: set_Product_unit] :
( ( finite4290736615968046902t_unit @ ( inf_in4660618365625256667t_unit @ A2 @ B ) )
=> ( ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B ) )
= ( minus_minus_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ ( inf_in4660618365625256667t_unit @ A2 @ B ) ) ) ) ) ).
% card_Diff_subset_Int
thf(fact_622_card__Diff__subset__Int,axiom,
! [A2: set_nat,B: set_nat] :
( ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ B ) )
=> ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B ) )
= ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ ( inf_inf_set_nat @ A2 @ B ) ) ) ) ) ).
% card_Diff_subset_Int
thf(fact_623_card__Diff__subset__Int,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ B ) )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) )
= ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ) ).
% card_Diff_subset_Int
thf(fact_624_the__elem__image__unique,axiom,
! [A2: set_a,F: a > a,X: a] :
( ( A2 != bot_bot_set_a )
=> ( ! [Y3: a] :
( ( member_a @ Y3 @ A2 )
=> ( ( F @ Y3 )
= ( F @ X ) ) )
=> ( ( the_elem_a @ ( image_a_a @ F @ A2 ) )
= ( F @ X ) ) ) ) ).
% the_elem_image_unique
thf(fact_625_bot_Oextremum__uniqueI,axiom,
! [A: set_a] :
( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
=> ( A = bot_bot_set_a ) ) ).
% bot.extremum_uniqueI
thf(fact_626_bot_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ bot_bot_nat )
=> ( A = bot_bot_nat ) ) ).
% bot.extremum_uniqueI
thf(fact_627_bot_Oextremum__unique,axiom,
! [A: set_a] :
( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
= ( A = bot_bot_set_a ) ) ).
% bot.extremum_unique
thf(fact_628_bot_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ bot_bot_nat )
= ( A = bot_bot_nat ) ) ).
% bot.extremum_unique
thf(fact_629_bot_Oextremum,axiom,
! [A: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A ) ).
% bot.extremum
thf(fact_630_bot_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).
% bot.extremum
thf(fact_631_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_632_le0,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).
% le0
thf(fact_633_diff__is__0__eq,axiom,
! [M4: nat,N2: nat] :
( ( ( minus_minus_nat @ M4 @ N2 )
= zero_zero_nat )
= ( ord_less_eq_nat @ M4 @ N2 ) ) ).
% diff_is_0_eq
thf(fact_634_diff__is__0__eq_H,axiom,
! [M4: nat,N2: nat] :
( ( ord_less_eq_nat @ M4 @ N2 )
=> ( ( minus_minus_nat @ M4 @ N2 )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_635_le__zero__eq,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
= ( N2 = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_636_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_637_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_638_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_639_diff__0__eq__0,axiom,
! [N2: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_640_diff__self__eq__0,axiom,
! [M4: nat] :
( ( minus_minus_nat @ M4 @ M4 )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_641_diff__diff__cancel,axiom,
! [I: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_642_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_643_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_644_diff__right__commute,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C2 ) @ B4 )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B4 ) @ C2 ) ) ).
% diff_right_commute
thf(fact_645_minus__nat_Odiff__0,axiom,
! [M4: nat] :
( ( minus_minus_nat @ M4 @ zero_zero_nat )
= M4 ) ).
% minus_nat.diff_0
thf(fact_646_diffs0__imp__equal,axiom,
! [M4: nat,N2: nat] :
( ( ( minus_minus_nat @ M4 @ N2 )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N2 @ M4 )
= zero_zero_nat )
=> ( M4 = N2 ) ) ) ).
% diffs0_imp_equal
thf(fact_647_bot__nat__def,axiom,
bot_bot_nat = zero_zero_nat ).
% bot_nat_def
thf(fact_648_le__refl,axiom,
! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).
% le_refl
thf(fact_649_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_650_eq__imp__le,axiom,
! [M4: nat,N2: nat] :
( ( M4 = N2 )
=> ( ord_less_eq_nat @ M4 @ N2 ) ) ).
% eq_imp_le
thf(fact_651_le__antisym,axiom,
! [M4: nat,N2: nat] :
( ( ord_less_eq_nat @ M4 @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ M4 )
=> ( M4 = N2 ) ) ) ).
% le_antisym
thf(fact_652_nat__le__linear,axiom,
! [M4: nat,N2: nat] :
( ( ord_less_eq_nat @ M4 @ N2 )
| ( ord_less_eq_nat @ N2 @ M4 ) ) ).
% nat_le_linear
thf(fact_653_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B4: nat] :
( ( P @ K )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B4 ) )
=> ? [X3: nat] :
( ( P @ X3 )
& ! [Y5: nat] :
( ( P @ Y5 )
=> ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_654_diff__le__mono2,axiom,
! [M4: nat,N2: nat,L: nat] :
( ( ord_less_eq_nat @ M4 @ N2 )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M4 ) ) ) ).
% diff_le_mono2
thf(fact_655_le__diff__iff_H,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ C2 )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C2 @ A ) @ ( minus_minus_nat @ C2 @ B4 ) )
= ( ord_less_eq_nat @ B4 @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_656_diff__le__self,axiom,
! [M4: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M4 @ N2 ) @ M4 ) ).
% diff_le_self
thf(fact_657_diff__le__mono,axiom,
! [M4: nat,N2: nat,L: nat] :
( ( ord_less_eq_nat @ M4 @ N2 )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M4 @ L ) @ ( minus_minus_nat @ N2 @ L ) ) ) ).
% diff_le_mono
thf(fact_658_Nat_Odiff__diff__eq,axiom,
! [K: nat,M4: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M4 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M4 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( minus_minus_nat @ M4 @ N2 ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_659_le__diff__iff,axiom,
! [K: nat,M4: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M4 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M4 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( ord_less_eq_nat @ M4 @ N2 ) ) ) ) ).
% le_diff_iff
thf(fact_660_eq__diff__iff,axiom,
! [K: nat,M4: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M4 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ( minus_minus_nat @ M4 @ K )
= ( minus_minus_nat @ N2 @ K ) )
= ( M4 = N2 ) ) ) ) ).
% eq_diff_iff
thf(fact_661_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_662_le__0__eq,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
= ( N2 = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_663_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_664_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_665_less__eq__nat_Osimps_I1_J,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).
% less_eq_nat.simps(1)
thf(fact_666_Collect__empty__eq__bot,axiom,
! [P: a > $o] :
( ( ( collect_a @ P )
= bot_bot_set_a )
= ( P = bot_bot_a_o ) ) ).
% Collect_empty_eq_bot
thf(fact_667_bot__empty__eq,axiom,
( bot_bot_a_o
= ( ^ [X2: a] : ( member_a @ X2 @ bot_bot_set_a ) ) ) ).
% bot_empty_eq
thf(fact_668_is__singleton__the__elem,axiom,
( is_singleton_a
= ( ^ [A6: set_a] :
( A6
= ( insert_a @ ( the_elem_a @ A6 ) @ bot_bot_set_a ) ) ) ) ).
% is_singleton_the_elem
thf(fact_669_is__singletonI,axiom,
! [X: a] : ( is_singleton_a @ ( insert_a @ X @ bot_bot_set_a ) ) ).
% is_singletonI
thf(fact_670_is__singletonI_H,axiom,
! [A2: set_a] :
( ( A2 != bot_bot_set_a )
=> ( ! [X3: a,Y3: a] :
( ( member_a @ X3 @ A2 )
=> ( ( member_a @ Y3 @ A2 )
=> ( X3 = Y3 ) ) )
=> ( is_singleton_a @ A2 ) ) ) ).
% is_singletonI'
thf(fact_671_is__singletonE,axiom,
! [A2: set_a] :
( ( is_singleton_a @ A2 )
=> ~ ! [X3: a] :
( A2
!= ( insert_a @ X3 @ bot_bot_set_a ) ) ) ).
% is_singletonE
thf(fact_672_is__singleton__def,axiom,
( is_singleton_a
= ( ^ [A6: set_a] :
? [X2: a] :
( A6
= ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ).
% is_singleton_def
thf(fact_673_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
! [G2: set_Product_unit,Addition: product_unit > product_unit > product_unit,Zero: product_unit,A2: set_Product_unit,A: product_unit] :
( ( pluenn3635716580025208315t_unit @ G2 @ Addition @ Zero )
=> ( ( finite4290736615968046902t_unit @ A2 )
=> ( ( ( member_Product_unit @ A @ G2 )
=> ( ( finite410649719033368117t_unit @ ( pluenn1407455289632237236t_unit @ G2 @ Addition @ A2 @ ( insert_Product_unit @ A @ bot_bo3957492148770167129t_unit ) ) )
= ( finite410649719033368117t_unit @ ( inf_in4660618365625256667t_unit @ A2 @ G2 ) ) ) )
& ( ~ ( member_Product_unit @ A @ G2 )
=> ( ( finite410649719033368117t_unit @ ( pluenn1407455289632237236t_unit @ G2 @ Addition @ A2 @ ( insert_Product_unit @ A @ bot_bo3957492148770167129t_unit ) ) )
= zero_zero_nat ) ) ) ) ) ).
% additive_abelian_group.card_sumset_singleton_eq
thf(fact_674_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
! [G2: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat] :
( ( pluenn2073725187428264546up_nat @ G2 @ Addition @ Zero )
=> ( ( finite_finite_nat @ A2 )
=> ( ( ( member_nat @ A @ G2 )
=> ( ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G2 @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
= ( finite_card_nat @ ( inf_inf_set_nat @ A2 @ G2 ) ) ) )
& ( ~ ( member_nat @ A @ G2 )
=> ( ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G2 @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
= zero_zero_nat ) ) ) ) ) ).
% additive_abelian_group.card_sumset_singleton_eq
thf(fact_675_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( finite_finite_a @ A2 )
=> ( ( ( member_a @ A @ G2 )
=> ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= ( finite_card_a @ ( inf_inf_set_a @ A2 @ G2 ) ) ) )
& ( ~ ( member_a @ A @ G2 )
=> ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
= zero_zero_nat ) ) ) ) ) ).
% additive_abelian_group.card_sumset_singleton_eq
thf(fact_676_arg__min__least,axiom,
! [S: set_nat,Y: nat,F: nat > nat] :
( ( finite_finite_nat @ S )
=> ( ( S != bot_bot_set_nat )
=> ( ( member_nat @ Y @ S )
=> ( ord_less_eq_nat @ ( F @ ( lattic7446932960582359483at_nat @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_677_arg__min__least,axiom,
! [S: set_a,Y: a,F: a > nat] :
( ( finite_finite_a @ S )
=> ( ( S != bot_bot_set_a )
=> ( ( member_a @ Y @ S )
=> ( ord_less_eq_nat @ ( F @ ( lattic6340287419671400565_a_nat @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_678_insert__subsetI,axiom,
! [X: a,A2: set_a,X4: set_a] :
( ( member_a @ X @ A2 )
=> ( ( ord_less_eq_set_a @ X4 @ A2 )
=> ( ord_less_eq_set_a @ ( insert_a @ X @ X4 ) @ A2 ) ) ) ).
% insert_subsetI
thf(fact_679_subset__emptyI,axiom,
! [A2: set_a] :
( ! [X3: a] :
~ ( member_a @ X3 @ A2 )
=> ( ord_less_eq_set_a @ A2 @ bot_bot_set_a ) ) ).
% subset_emptyI
thf(fact_680_additive__abelian__group_Osumset__commute,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B )
= ( pluenn3038260743871226533mset_a @ G2 @ Addition @ B @ A2 ) ) ) ).
% additive_abelian_group.sumset_commute
thf(fact_681_additive__abelian__group_Osumset_OsumsetI,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B4: a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( member_a @ A @ A2 )
=> ( ( member_a @ A @ G2 )
=> ( ( member_a @ B4 @ B )
=> ( ( member_a @ B4 @ G2 )
=> ( member_a @ ( Addition @ A @ B4 ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) ) ) ) ) ) ) ).
% additive_abelian_group.sumset.sumsetI
thf(fact_682_additive__abelian__group_Osumset__assoc,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,C: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) @ C )
= ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ B @ C ) ) ) ) ).
% additive_abelian_group.sumset_assoc
thf(fact_683_additive__abelian__group_Osumset_Osimps,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) )
= ( ? [A4: a,B3: a] :
( ( A
= ( Addition @ A4 @ B3 ) )
& ( member_a @ A4 @ A2 )
& ( member_a @ A4 @ G2 )
& ( member_a @ B3 @ B )
& ( member_a @ B3 @ G2 ) ) ) ) ) ).
% additive_abelian_group.sumset.simps
thf(fact_684_additive__abelian__group_Osumset_Ocases,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) )
=> ~ ! [A3: a,B2: a] :
( ( A
= ( Addition @ A3 @ B2 ) )
=> ( ( member_a @ A3 @ A2 )
=> ( ( member_a @ A3 @ G2 )
=> ( ( member_a @ B2 @ B )
=> ~ ( member_a @ B2 @ G2 ) ) ) ) ) ) ) ).
% additive_abelian_group.sumset.cases
thf(fact_685_additive__abelian__group_Osumsetp_OsumsetI,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: a > $o,A: a,B: a > $o,B4: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( A2 @ A )
=> ( ( member_a @ A @ G2 )
=> ( ( B @ B4 )
=> ( ( member_a @ B4 @ G2 )
=> ( pluenn895083305082786853setp_a @ G2 @ Addition @ A2 @ B @ ( Addition @ A @ B4 ) ) ) ) ) ) ) ).
% additive_abelian_group.sumsetp.sumsetI
thf(fact_686_additive__abelian__group_Osumsetp_Osimps,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: a > $o,B: a > $o,A: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn895083305082786853setp_a @ G2 @ Addition @ A2 @ B @ A )
= ( ? [A4: a,B3: a] :
( ( A
= ( Addition @ A4 @ B3 ) )
& ( A2 @ A4 )
& ( member_a @ A4 @ G2 )
& ( B @ B3 )
& ( member_a @ B3 @ G2 ) ) ) ) ) ).
% additive_abelian_group.sumsetp.simps
thf(fact_687_additive__abelian__group_Osumsetp_Ocases,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: a > $o,B: a > $o,A: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn895083305082786853setp_a @ G2 @ Addition @ A2 @ B @ A )
=> ~ ! [A3: a,B2: a] :
( ( A
= ( Addition @ A3 @ B2 ) )
=> ( ( A2 @ A3 )
=> ( ( member_a @ A3 @ G2 )
=> ( ( B @ B2 )
=> ~ ( member_a @ B2 @ G2 ) ) ) ) ) ) ) ).
% additive_abelian_group.sumsetp.cases
thf(fact_688_additive__abelian__group_Osumset__empty_I2_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ bot_bot_set_a @ A2 )
= bot_bot_set_a ) ) ).
% additive_abelian_group.sumset_empty(2)
thf(fact_689_additive__abelian__group_Osumset__empty_I1_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ bot_bot_set_a )
= bot_bot_set_a ) ) ).
% additive_abelian_group.sumset_empty(1)
thf(fact_690_additive__abelian__group_Ofinite__sumset,axiom,
! [G2: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
( ( pluenn2073725187428264546up_nat @ G2 @ Addition @ Zero )
=> ( ( finite_finite_nat @ A2 )
=> ( ( finite_finite_nat @ B )
=> ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G2 @ Addition @ A2 @ B ) ) ) ) ) ).
% additive_abelian_group.finite_sumset
thf(fact_691_additive__abelian__group_Ofinite__sumset,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( finite_finite_a @ A2 )
=> ( ( finite_finite_a @ B )
=> ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) ) ) ) ) ).
% additive_abelian_group.finite_sumset
thf(fact_692_additive__abelian__group_Osumset__mono,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A5: set_a,A2: set_a,B5: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( ord_less_eq_set_a @ A5 @ A2 )
=> ( ( ord_less_eq_set_a @ B5 @ B )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A5 @ B5 ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) ) ) ) ) ).
% additive_abelian_group.sumset_mono
thf(fact_693_additive__abelian__group_Osumset__subset__carrier,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) @ G2 ) ) ).
% additive_abelian_group.sumset_subset_carrier
thf(fact_694_additive__abelian__group_Osumset__Int__carrier__eq_I2_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ ( inf_inf_set_a @ A2 @ G2 ) @ B )
= ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) ) ) ).
% additive_abelian_group.sumset_Int_carrier_eq(2)
thf(fact_695_additive__abelian__group_Osumset__Int__carrier__eq_I1_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( inf_inf_set_a @ B @ G2 ) )
= ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) ) ) ).
% additive_abelian_group.sumset_Int_carrier_eq(1)
thf(fact_696_additive__abelian__group_Osumset__Int__carrier,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( inf_inf_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) @ G2 )
= ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) ) ) ).
% additive_abelian_group.sumset_Int_carrier
thf(fact_697_additive__abelian__group_Osumset__subset__Un1,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,A5: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ ( sup_sup_set_a @ A2 @ A5 ) @ B )
= ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A5 @ B ) ) ) ) ).
% additive_abelian_group.sumset_subset_Un1
thf(fact_698_additive__abelian__group_Osumset__subset__Un2,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,B5: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( sup_sup_set_a @ B @ B5 ) )
= ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B5 ) ) ) ) ).
% additive_abelian_group.sumset_subset_Un2
thf(fact_699_additive__abelian__group_Osumset__subset__insert_I2_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,X: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ ( insert_a @ X @ A2 ) @ B ) ) ) ).
% additive_abelian_group.sumset_subset_insert(2)
thf(fact_700_additive__abelian__group_Osumset__subset__insert_I1_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,X: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( insert_a @ X @ B ) ) ) ) ).
% additive_abelian_group.sumset_subset_insert(1)
thf(fact_701_additive__abelian__group_Osumset__empty_H_I2_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( ( inf_inf_set_a @ A2 @ G2 )
= bot_bot_set_a )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B )
= bot_bot_set_a ) ) ) ).
% additive_abelian_group.sumset_empty'(2)
thf(fact_702_additive__abelian__group_Osumset__empty_H_I1_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( ( inf_inf_set_a @ A2 @ G2 )
= bot_bot_set_a )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ B @ A2 )
= bot_bot_set_a ) ) ) ).
% additive_abelian_group.sumset_empty'(1)
thf(fact_703_additive__abelian__group_Osumset__is__empty__iff,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B )
= bot_bot_set_a )
= ( ( ( inf_inf_set_a @ A2 @ G2 )
= bot_bot_set_a )
| ( ( inf_inf_set_a @ B @ G2 )
= bot_bot_set_a ) ) ) ) ).
% additive_abelian_group.sumset_is_empty_iff
thf(fact_704_additive__abelian__group_Ofinite__sumset_H,axiom,
! [G2: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
( ( pluenn2073725187428264546up_nat @ G2 @ Addition @ Zero )
=> ( ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ G2 ) )
=> ( ( finite_finite_nat @ ( inf_inf_set_nat @ B @ G2 ) )
=> ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G2 @ Addition @ A2 @ B ) ) ) ) ) ).
% additive_abelian_group.finite_sumset'
thf(fact_705_additive__abelian__group_Ofinite__sumset_H,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G2 ) )
=> ( ( finite_finite_a @ ( inf_inf_set_a @ B @ G2 ) )
=> ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) ) ) ) ) ).
% additive_abelian_group.finite_sumset'
thf(fact_706_additive__abelian__group_Osumset__subset__Un_I2_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,C: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ ( sup_sup_set_a @ A2 @ C ) @ B ) ) ) ).
% additive_abelian_group.sumset_subset_Un(2)
thf(fact_707_additive__abelian__group_Osumset__subset__Un_I1_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,C: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ) ).
% additive_abelian_group.sumset_subset_Un(1)
thf(fact_708_additive__abelian__group_Osumset__D_I2_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ ( insert_a @ Zero @ bot_bot_set_a ) @ A2 )
= ( inf_inf_set_a @ A2 @ G2 ) ) ) ).
% additive_abelian_group.sumset_D(2)
thf(fact_709_additive__abelian__group_Osumset__D_I1_J,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( insert_a @ Zero @ bot_bot_set_a ) )
= ( inf_inf_set_a @ A2 @ G2 ) ) ) ).
% additive_abelian_group.sumset_D(1)
thf(fact_710_additive__abelian__group_Osumsetdiff__sing,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,X: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ ( minus_minus_set_a @ A2 @ B ) @ ( insert_a @ X @ bot_bot_set_a ) )
= ( minus_minus_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ B @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).
% additive_abelian_group.sumsetdiff_sing
thf(fact_711_additive__abelian__group_Osumset__insert2,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,B: set_a,A2: set_a,X: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ B )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( insert_a @ X @ B ) )
= ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) ) ) ) ) ).
% additive_abelian_group.sumset_insert2
thf(fact_712_additive__abelian__group_Osumset__insert1,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,X: a,B: set_a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ A2 )
=> ( ( pluenn3038260743871226533mset_a @ G2 @ Addition @ ( insert_a @ X @ A2 ) @ B )
= ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ ( insert_a @ X @ bot_bot_set_a ) @ B ) @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ B ) ) ) ) ) ).
% additive_abelian_group.sumset_insert1
thf(fact_713_additive__abelian__group_Ocard__sumset__le,axiom,
! [G2: set_Product_unit,Addition: product_unit > product_unit > product_unit,Zero: product_unit,A2: set_Product_unit,A: product_unit] :
( ( pluenn3635716580025208315t_unit @ G2 @ Addition @ Zero )
=> ( ( finite4290736615968046902t_unit @ A2 )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( pluenn1407455289632237236t_unit @ G2 @ Addition @ A2 @ ( insert_Product_unit @ A @ bot_bo3957492148770167129t_unit ) ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ).
% additive_abelian_group.card_sumset_le
thf(fact_714_additive__abelian__group_Ocard__sumset__le,axiom,
! [G2: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat] :
( ( pluenn2073725187428264546up_nat @ G2 @ Addition @ Zero )
=> ( ( finite_finite_nat @ A2 )
=> ( ord_less_eq_nat @ ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G2 @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ) ) ).
% additive_abelian_group.card_sumset_le
thf(fact_715_additive__abelian__group_Ocard__sumset__le,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( finite_finite_a @ A2 )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G2 @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ).
% additive_abelian_group.card_sumset_le
thf(fact_716_additive__abelian__group__axioms,axiom,
pluenn1164192988769422572roup_a @ g @ addition @ zero ).
% additive_abelian_group_axioms
thf(fact_717_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_718_remove__def,axiom,
( remove_a
= ( ^ [X2: a,A6: set_a] : ( minus_minus_set_a @ A6 @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ).
% remove_def
thf(fact_719_sumset__D_I2_J,axiom,
! [A2: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ zero @ bot_bot_set_a ) @ A2 )
= ( inf_inf_set_a @ A2 @ g ) ) ).
% sumset_D(2)
thf(fact_720_local_Oinverse__unique,axiom,
! [U: a,V: a,V2: a] :
( ( ( addition @ U @ V )
= zero )
=> ( ( ( addition @ V2 @ U )
= zero )
=> ( ( member_a @ U @ g )
=> ( ( member_a @ V2 @ g )
=> ( ( member_a @ V @ g )
=> ( V2 = V ) ) ) ) ) ) ).
% local.inverse_unique
thf(fact_721_member__remove,axiom,
! [X: a,Y: a,A2: set_a] :
( ( member_a @ X @ ( remove_a @ Y @ A2 ) )
= ( ( member_a @ X @ A2 )
& ( X != Y ) ) ) ).
% member_remove
thf(fact_722_unit__closed,axiom,
member_a @ zero @ g ).
% unit_closed
thf(fact_723_right__unit,axiom,
! [A: a] :
( ( member_a @ A @ g )
=> ( ( addition @ A @ zero )
= A ) ) ).
% right_unit
thf(fact_724_left__unit,axiom,
! [A: a] :
( ( member_a @ A @ g )
=> ( ( addition @ zero @ A )
= A ) ) ).
% left_unit
thf(fact_725_sumset__D_I1_J,axiom,
! [A2: set_a] :
( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ zero @ bot_bot_set_a ) )
= ( inf_inf_set_a @ A2 @ g ) ) ).
% sumset_D(1)
thf(fact_726_commutative__monoid__axioms,axiom,
group_4866109990395492029noid_a @ g @ addition @ zero ).
% commutative_monoid_axioms
thf(fact_727_abelian__group__axioms,axiom,
group_201663378560352916roup_a @ g @ addition @ zero ).
% abelian_group_axioms
thf(fact_728_group__axioms,axiom,
group_group_a @ g @ addition @ zero ).
% group_axioms
thf(fact_729_unit__invertible,axiom,
group_invertible_a @ g @ addition @ zero @ zero ).
% unit_invertible
thf(fact_730_invertible__def,axiom,
! [U: a] :
( ( member_a @ U @ g )
=> ( ( group_invertible_a @ g @ addition @ zero @ U )
= ( ? [X2: a] :
( ( member_a @ X2 @ g )
& ( ( addition @ U @ X2 )
= zero )
& ( ( addition @ X2 @ U )
= zero ) ) ) ) ) ).
% invertible_def
thf(fact_731_invertibleE,axiom,
! [U: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ! [V3: a] :
( ( ( ( addition @ U @ V3 )
= zero )
& ( ( addition @ V3 @ U )
= zero ) )
=> ~ ( member_a @ V3 @ g ) )
=> ~ ( member_a @ U @ g ) ) ) ).
% invertibleE
thf(fact_732_invertible__right__cancel,axiom,
! [X: a,Y: a,Z: a] :
( ( group_invertible_a @ g @ addition @ zero @ X )
=> ( ( member_a @ X @ g )
=> ( ( member_a @ Y @ g )
=> ( ( member_a @ Z @ g )
=> ( ( ( addition @ Y @ X )
= ( addition @ Z @ X ) )
= ( Y = Z ) ) ) ) ) ) ).
% invertible_right_cancel
thf(fact_733_invertible__left__cancel,axiom,
! [X: a,Y: a,Z: a] :
( ( group_invertible_a @ g @ addition @ zero @ X )
=> ( ( member_a @ X @ g )
=> ( ( member_a @ Y @ g )
=> ( ( member_a @ Z @ g )
=> ( ( ( addition @ X @ Y )
= ( addition @ X @ Z ) )
= ( Y = Z ) ) ) ) ) ) ).
% invertible_left_cancel
thf(fact_734_invertibleI,axiom,
! [U: a,V2: a] :
( ( ( addition @ U @ V2 )
= zero )
=> ( ( ( addition @ V2 @ U )
= zero )
=> ( ( member_a @ U @ g )
=> ( ( member_a @ V2 @ g )
=> ( group_invertible_a @ g @ addition @ zero @ U ) ) ) ) ) ).
% invertibleI
thf(fact_735_invertible,axiom,
! [U: a] :
( ( member_a @ U @ g )
=> ( group_invertible_a @ g @ addition @ zero @ U ) ) ).
% invertible
thf(fact_736_composition__invertible,axiom,
! [X: a,Y: a] :
( ( group_invertible_a @ g @ addition @ zero @ X )
=> ( ( group_invertible_a @ g @ addition @ zero @ Y )
=> ( ( member_a @ X @ g )
=> ( ( member_a @ Y @ g )
=> ( group_invertible_a @ g @ addition @ zero @ ( addition @ X @ Y ) ) ) ) ) ) ).
% composition_invertible
thf(fact_737_additive__abelian__group__def,axiom,
pluenn1164192988769422572roup_a = group_201663378560352916roup_a ).
% additive_abelian_group_def
thf(fact_738_additive__abelian__group_Oaxioms,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( group_201663378560352916roup_a @ G2 @ Addition @ Zero ) ) ).
% additive_abelian_group.axioms
thf(fact_739_additive__abelian__group_Ointro,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a] :
( ( group_201663378560352916roup_a @ G2 @ Addition @ Zero )
=> ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero ) ) ).
% additive_abelian_group.intro
thf(fact_740_mem__UnitsI,axiom,
! [U: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ( member_a @ U @ g )
=> ( member_a @ U @ ( group_Units_a @ g @ addition @ zero ) ) ) ) ).
% mem_UnitsI
thf(fact_741_mem__UnitsD,axiom,
! [U: a] :
( ( member_a @ U @ ( group_Units_a @ g @ addition @ zero ) )
=> ( ( group_invertible_a @ g @ addition @ zero @ U )
& ( member_a @ U @ g ) ) ) ).
% mem_UnitsD
thf(fact_742_group__of__Units,axiom,
group_group_a @ ( group_Units_a @ g @ addition @ zero ) @ addition @ zero ).
% group_of_Units
thf(fact_743_invertible__right__inverse2,axiom,
! [U: a,V2: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ( member_a @ U @ g )
=> ( ( member_a @ V2 @ g )
=> ( ( addition @ U @ ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ V2 ) )
= V2 ) ) ) ) ).
% invertible_right_inverse2
thf(fact_744_inverse__equality,axiom,
! [U: a,V2: a] :
( ( ( addition @ U @ V2 )
= zero )
=> ( ( ( addition @ V2 @ U )
= zero )
=> ( ( member_a @ U @ g )
=> ( ( member_a @ V2 @ g )
=> ( ( group_inverse_a @ g @ addition @ zero @ U )
= V2 ) ) ) ) ) ).
% inverse_equality
thf(fact_745_inverse__closed,axiom,
! [X: a] :
( ( member_a @ X @ g )
=> ( member_a @ ( group_inverse_a @ g @ addition @ zero @ X ) @ g ) ) ).
% inverse_closed
thf(fact_746_inverse__composition__commute,axiom,
! [X: a,Y: a] :
( ( group_invertible_a @ g @ addition @ zero @ X )
=> ( ( group_invertible_a @ g @ addition @ zero @ Y )
=> ( ( member_a @ X @ g )
=> ( ( member_a @ Y @ g )
=> ( ( group_inverse_a @ g @ addition @ zero @ ( addition @ X @ Y ) )
= ( addition @ ( group_inverse_a @ g @ addition @ zero @ Y ) @ ( group_inverse_a @ g @ addition @ zero @ X ) ) ) ) ) ) ) ).
% inverse_composition_commute
thf(fact_747_invertible__left__inverse2,axiom,
! [U: a,V2: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ( member_a @ U @ g )
=> ( ( member_a @ V2 @ g )
=> ( ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ ( addition @ U @ V2 ) )
= V2 ) ) ) ) ).
% invertible_left_inverse2
thf(fact_748_inverse__unit,axiom,
( ( group_inverse_a @ g @ addition @ zero @ zero )
= zero ) ).
% inverse_unit
thf(fact_749_invertible__inverse__closed,axiom,
! [U: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ( member_a @ U @ g )
=> ( member_a @ ( group_inverse_a @ g @ addition @ zero @ U ) @ g ) ) ) ).
% invertible_inverse_closed
thf(fact_750_invertible__inverse__inverse,axiom,
! [U: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ( member_a @ U @ g )
=> ( ( group_inverse_a @ g @ addition @ zero @ ( group_inverse_a @ g @ addition @ zero @ U ) )
= U ) ) ) ).
% invertible_inverse_inverse
thf(fact_751_invertible__inverse__invertible,axiom,
! [U: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ( member_a @ U @ g )
=> ( group_invertible_a @ g @ addition @ zero @ ( group_inverse_a @ g @ addition @ zero @ U ) ) ) ) ).
% invertible_inverse_invertible
thf(fact_752_invertible__left__inverse,axiom,
! [U: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ( member_a @ U @ g )
=> ( ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ U )
= zero ) ) ) ).
% invertible_left_inverse
thf(fact_753_invertible__right__inverse,axiom,
! [U: a] :
( ( group_invertible_a @ g @ addition @ zero @ U )
=> ( ( member_a @ U @ g )
=> ( ( addition @ U @ ( group_inverse_a @ g @ addition @ zero @ U ) )
= zero ) ) ) ).
% invertible_right_inverse
thf(fact_754_additive__abelian__group_Oinverse__closed,axiom,
! [G2: set_a,Addition: a > a > a,Zero: a,X: a] :
( ( pluenn1164192988769422572roup_a @ G2 @ Addition @ Zero )
=> ( ( member_a @ X @ G2 )
=> ( member_a @ ( group_inverse_a @ G2 @ Addition @ Zero @ X ) @ G2 ) ) ) ).
% additive_abelian_group.inverse_closed
thf(fact_755_inverse__subgroupD,axiom,
! [H2: set_a] :
( ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ g @ addition @ zero ) @ H2 ) @ g @ addition @ zero )
=> ( ( ord_less_eq_set_a @ H2 @ ( group_Units_a @ g @ addition @ zero ) )
=> ( group_subgroup_a @ H2 @ g @ addition @ zero ) ) ) ).
% inverse_subgroupD
thf(fact_756_subgroupI,axiom,
! [G2: set_a] :
( ( ord_less_eq_set_a @ G2 @ g )
=> ( ( member_a @ zero @ G2 )
=> ( ! [G4: a,H3: a] :
( ( member_a @ G4 @ G2 )
=> ( ( member_a @ H3 @ G2 )
=> ( member_a @ ( addition @ G4 @ H3 ) @ G2 ) ) )
=> ( ! [G4: a] :
( ( member_a @ G4 @ G2 )
=> ( group_invertible_a @ g @ addition @ zero @ G4 ) )
=> ( ! [G4: a] :
( ( member_a @ G4 @ G2 )
=> ( member_a @ ( group_inverse_a @ g @ addition @ zero @ G4 ) @ G2 ) )
=> ( group_subgroup_a @ G2 @ g @ addition @ zero ) ) ) ) ) ) ).
% subgroupI
thf(fact_757_inverse__subgroupI,axiom,
! [H2: set_a] :
( ( group_subgroup_a @ H2 @ g @ addition @ zero )
=> ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ g @ addition @ zero ) @ H2 ) @ g @ addition @ zero ) ) ).
% inverse_subgroupI
thf(fact_758_group_Oinverse__subgroupD,axiom,
! [G2: set_a,Composition: a > a > a,Unit: a,H2: set_a] :
( ( group_group_a @ G2 @ Composition @ Unit )
=> ( ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ G2 @ Composition @ Unit ) @ H2 ) @ G2 @ Composition @ Unit )
=> ( ( ord_less_eq_set_a @ H2 @ ( group_Units_a @ G2 @ Composition @ Unit ) )
=> ( group_subgroup_a @ H2 @ G2 @ Composition @ Unit ) ) ) ) ).
% group.inverse_subgroupD
thf(fact_759_group_Oinverse__subgroupI,axiom,
! [G2: set_a,Composition: a > a > a,Unit: a,H2: set_a] :
( ( group_group_a @ G2 @ Composition @ Unit )
=> ( ( group_subgroup_a @ H2 @ G2 @ Composition @ Unit )
=> ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ G2 @ Composition @ Unit ) @ H2 ) @ G2 @ Composition @ Unit ) ) ) ).
% group.inverse_subgroupI
thf(fact_760_subgroup_Oimage__of__inverse,axiom,
! [G2: set_a,M: set_a,Composition: a > a > a,Unit: a,X: a] :
( ( group_subgroup_a @ G2 @ M @ Composition @ Unit )
=> ( ( member_a @ X @ G2 )
=> ( member_a @ X @ ( image_a_a @ ( group_inverse_a @ M @ Composition @ Unit ) @ G2 ) ) ) ) ).
% subgroup.image_of_inverse
thf(fact_761_monoid__axioms,axiom,
group_monoid_a @ g @ addition @ zero ).
% monoid_axioms
thf(fact_762_inverse__undefined,axiom,
! [U: a] :
( ~ ( member_a @ U @ g )
=> ( ( group_inverse_a @ g @ addition @ zero @ U )
= undefined_a ) ) ).
% inverse_undefined
thf(fact_763_image__Fpow__mono,axiom,
! [F: a > a,A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ B )
=> ( ord_le3724670747650509150_set_a @ ( image_set_a_set_a @ ( image_a_a @ F ) @ ( finite_Fpow_a @ A2 ) ) @ ( finite_Fpow_a @ B ) ) ) ).
% image_Fpow_mono
thf(fact_764_empty__in__Fpow,axiom,
! [A2: set_a] : ( member_set_a @ bot_bot_set_a @ ( finite_Fpow_a @ A2 ) ) ).
% empty_in_Fpow
thf(fact_765_Fpow__mono,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ord_le3724670747650509150_set_a @ ( finite_Fpow_a @ A2 ) @ ( finite_Fpow_a @ B ) ) ) ).
% Fpow_mono
thf(fact_766_monoid_OsubgroupI,axiom,
! [M: set_a,Composition: a > a > a,Unit: a,G2: set_a] :
( ( group_monoid_a @ M @ Composition @ Unit )
=> ( ( ord_less_eq_set_a @ G2 @ M )
=> ( ( member_a @ Unit @ G2 )
=> ( ! [G4: a,H3: a] :
( ( member_a @ G4 @ G2 )
=> ( ( member_a @ H3 @ G2 )
=> ( member_a @ ( Composition @ G4 @ H3 ) @ G2 ) ) )
=> ( ! [G4: a] :
( ( member_a @ G4 @ G2 )
=> ( group_invertible_a @ M @ Composition @ Unit @ G4 ) )
=> ( ! [G4: a] :
( ( member_a @ G4 @ G2 )
=> ( member_a @ ( group_inverse_a @ M @ Composition @ Unit @ G4 ) @ G2 ) )
=> ( group_subgroup_a @ G2 @ M @ Composition @ Unit ) ) ) ) ) ) ) ).
% monoid.subgroupI
thf(fact_767_Sup__fin_Oinsert__remove,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) )
= bot_bot_set_nat )
=> ( ( lattic1093996805478795353in_nat @ ( insert_nat @ X @ A2 ) )
= X ) )
& ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) )
!= bot_bot_set_nat )
=> ( ( lattic1093996805478795353in_nat @ ( insert_nat @ X @ A2 ) )
= ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ) ) ) ).
% Sup_fin.insert_remove
thf(fact_768_Sup__fin_Oinsert__remove,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( ( ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) )
= bot_bot_set_set_a )
=> ( ( lattic2918178356826803221_set_a @ ( insert_set_a @ X @ A2 ) )
= X ) )
& ( ( ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) )
!= bot_bot_set_set_a )
=> ( ( lattic2918178356826803221_set_a @ ( insert_set_a @ X @ A2 ) )
= ( sup_sup_set_a @ X @ ( lattic2918178356826803221_set_a @ ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) ) ) ) ) ) ) ) ).
% Sup_fin.insert_remove
thf(fact_769_Sup__fin_Oremove,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ X @ A2 )
=> ( ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) )
= bot_bot_set_nat )
=> ( ( lattic1093996805478795353in_nat @ A2 )
= X ) )
& ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) )
!= bot_bot_set_nat )
=> ( ( lattic1093996805478795353in_nat @ A2 )
= ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ) ) ) ) ).
% Sup_fin.remove
thf(fact_770_Sup__fin_Oremove,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ X @ A2 )
=> ( ( ( ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) )
= bot_bot_set_set_a )
=> ( ( lattic2918178356826803221_set_a @ A2 )
= X ) )
& ( ( ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) )
!= bot_bot_set_set_a )
=> ( ( lattic2918178356826803221_set_a @ A2 )
= ( sup_sup_set_a @ X @ ( lattic2918178356826803221_set_a @ ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) ) ) ) ) ) ) ) ) ).
% Sup_fin.remove
thf(fact_771_Inf__fin_Oinsert__remove,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) )
= bot_bot_set_nat )
=> ( ( lattic5238388535129920115in_nat @ ( insert_nat @ X @ A2 ) )
= X ) )
& ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) )
!= bot_bot_set_nat )
=> ( ( lattic5238388535129920115in_nat @ ( insert_nat @ X @ A2 ) )
= ( inf_inf_nat @ X @ ( lattic5238388535129920115in_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ) ) ) ).
% Inf_fin.insert_remove
thf(fact_772_Inf__fin_Oinsert__remove,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( ( ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) )
= bot_bot_set_set_a )
=> ( ( lattic8209813465164889211_set_a @ ( insert_set_a @ X @ A2 ) )
= X ) )
& ( ( ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) )
!= bot_bot_set_set_a )
=> ( ( lattic8209813465164889211_set_a @ ( insert_set_a @ X @ A2 ) )
= ( inf_inf_set_a @ X @ ( lattic8209813465164889211_set_a @ ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) ) ) ) ) ) ) ) ).
% Inf_fin.insert_remove
thf(fact_773_inf__Sup__absorb,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ( ( inf_inf_nat @ A @ ( lattic1093996805478795353in_nat @ A2 ) )
= A ) ) ) ).
% inf_Sup_absorb
thf(fact_774_inf__Sup__absorb,axiom,
! [A2: set_set_a,A: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ A @ A2 )
=> ( ( inf_inf_set_a @ A @ ( lattic2918178356826803221_set_a @ A2 ) )
= A ) ) ) ).
% inf_Sup_absorb
thf(fact_775_sup__Inf__absorb,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ( ( sup_sup_nat @ ( lattic5238388535129920115in_nat @ A2 ) @ A )
= A ) ) ) ).
% sup_Inf_absorb
thf(fact_776_sup__Inf__absorb,axiom,
! [A2: set_set_a,A: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ A @ A2 )
=> ( ( sup_sup_set_a @ ( lattic8209813465164889211_set_a @ A2 ) @ A )
= A ) ) ) ).
% sup_Inf_absorb
thf(fact_777_Inf__fin_Oinsert,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( lattic5238388535129920115in_nat @ ( insert_nat @ X @ A2 ) )
= ( inf_inf_nat @ X @ ( lattic5238388535129920115in_nat @ A2 ) ) ) ) ) ).
% Inf_fin.insert
thf(fact_778_Inf__fin_Oinsert,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( lattic8209813465164889211_set_a @ ( insert_set_a @ X @ A2 ) )
= ( inf_inf_set_a @ X @ ( lattic8209813465164889211_set_a @ A2 ) ) ) ) ) ).
% Inf_fin.insert
thf(fact_779_Sup__fin_Oinsert,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( lattic1093996805478795353in_nat @ ( insert_nat @ X @ A2 ) )
= ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ A2 ) ) ) ) ) ).
% Sup_fin.insert
thf(fact_780_Sup__fin_Oinsert,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( lattic2918178356826803221_set_a @ ( insert_set_a @ X @ A2 ) )
= ( sup_sup_set_a @ X @ ( lattic2918178356826803221_set_a @ A2 ) ) ) ) ) ).
% Sup_fin.insert
thf(fact_781_Inf__fin__le__Sup__fin,axiom,
! [A2: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ord_less_eq_set_a @ ( lattic8209813465164889211_set_a @ A2 ) @ ( lattic2918178356826803221_set_a @ A2 ) ) ) ) ).
% Inf_fin_le_Sup_fin
thf(fact_782_Inf__fin__le__Sup__fin,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ord_less_eq_nat @ ( lattic5238388535129920115in_nat @ A2 ) @ ( lattic1093996805478795353in_nat @ A2 ) ) ) ) ).
% Inf_fin_le_Sup_fin
thf(fact_783_Sup__fin_OcoboundedI,axiom,
! [A2: set_set_a,A: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ A @ A2 )
=> ( ord_less_eq_set_a @ A @ ( lattic2918178356826803221_set_a @ A2 ) ) ) ) ).
% Sup_fin.coboundedI
thf(fact_784_Sup__fin_OcoboundedI,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ( ord_less_eq_nat @ A @ ( lattic1093996805478795353in_nat @ A2 ) ) ) ) ).
% Sup_fin.coboundedI
thf(fact_785_Inf__fin_OcoboundedI,axiom,
! [A2: set_set_a,A: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ A @ A2 )
=> ( ord_less_eq_set_a @ ( lattic8209813465164889211_set_a @ A2 ) @ A ) ) ) ).
% Inf_fin.coboundedI
thf(fact_786_Inf__fin_OcoboundedI,axiom,
! [A2: set_nat,A: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ A @ A2 )
=> ( ord_less_eq_nat @ ( lattic5238388535129920115in_nat @ A2 ) @ A ) ) ) ).
% Inf_fin.coboundedI
thf(fact_787_Inf__fin_Oin__idem,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ X @ A2 )
=> ( ( inf_inf_nat @ X @ ( lattic5238388535129920115in_nat @ A2 ) )
= ( lattic5238388535129920115in_nat @ A2 ) ) ) ) ).
% Inf_fin.in_idem
thf(fact_788_Inf__fin_Oin__idem,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ X @ A2 )
=> ( ( inf_inf_set_a @ X @ ( lattic8209813465164889211_set_a @ A2 ) )
= ( lattic8209813465164889211_set_a @ A2 ) ) ) ) ).
% Inf_fin.in_idem
thf(fact_789_Sup__fin_Oin__idem,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ X @ A2 )
=> ( ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ A2 ) )
= ( lattic1093996805478795353in_nat @ A2 ) ) ) ) ).
% Sup_fin.in_idem
thf(fact_790_Sup__fin_Oin__idem,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ X @ A2 )
=> ( ( sup_sup_set_a @ X @ ( lattic2918178356826803221_set_a @ A2 ) )
= ( lattic2918178356826803221_set_a @ A2 ) ) ) ) ).
% Sup_fin.in_idem
thf(fact_791_Inf__fin_OboundedE,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( ord_less_eq_set_a @ X @ ( lattic8209813465164889211_set_a @ A2 ) )
=> ! [A9: set_a] :
( ( member_set_a @ A9 @ A2 )
=> ( ord_less_eq_set_a @ X @ A9 ) ) ) ) ) ).
% Inf_fin.boundedE
thf(fact_792_Inf__fin_OboundedE,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( ord_less_eq_nat @ X @ ( lattic5238388535129920115in_nat @ A2 ) )
=> ! [A9: nat] :
( ( member_nat @ A9 @ A2 )
=> ( ord_less_eq_nat @ X @ A9 ) ) ) ) ) ).
% Inf_fin.boundedE
thf(fact_793_Inf__fin_OboundedI,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ! [A3: set_a] :
( ( member_set_a @ A3 @ A2 )
=> ( ord_less_eq_set_a @ X @ A3 ) )
=> ( ord_less_eq_set_a @ X @ ( lattic8209813465164889211_set_a @ A2 ) ) ) ) ) ).
% Inf_fin.boundedI
thf(fact_794_Inf__fin_OboundedI,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ! [A3: nat] :
( ( member_nat @ A3 @ A2 )
=> ( ord_less_eq_nat @ X @ A3 ) )
=> ( ord_less_eq_nat @ X @ ( lattic5238388535129920115in_nat @ A2 ) ) ) ) ) ).
% Inf_fin.boundedI
thf(fact_795_Sup__fin_OboundedE,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( ord_less_eq_set_a @ ( lattic2918178356826803221_set_a @ A2 ) @ X )
=> ! [A9: set_a] :
( ( member_set_a @ A9 @ A2 )
=> ( ord_less_eq_set_a @ A9 @ X ) ) ) ) ) ).
% Sup_fin.boundedE
thf(fact_796_Sup__fin_OboundedE,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A2 ) @ X )
=> ! [A9: nat] :
( ( member_nat @ A9 @ A2 )
=> ( ord_less_eq_nat @ A9 @ X ) ) ) ) ) ).
% Sup_fin.boundedE
thf(fact_797_Sup__fin_OboundedI,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ! [A3: set_a] :
( ( member_set_a @ A3 @ A2 )
=> ( ord_less_eq_set_a @ A3 @ X ) )
=> ( ord_less_eq_set_a @ ( lattic2918178356826803221_set_a @ A2 ) @ X ) ) ) ) ).
% Sup_fin.boundedI
thf(fact_798_Sup__fin_OboundedI,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ! [A3: nat] :
( ( member_nat @ A3 @ A2 )
=> ( ord_less_eq_nat @ A3 @ X ) )
=> ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A2 ) @ X ) ) ) ) ).
% Sup_fin.boundedI
thf(fact_799_Inf__fin_Obounded__iff,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( ord_less_eq_set_a @ X @ ( lattic8209813465164889211_set_a @ A2 ) )
= ( ! [X2: set_a] :
( ( member_set_a @ X2 @ A2 )
=> ( ord_less_eq_set_a @ X @ X2 ) ) ) ) ) ) ).
% Inf_fin.bounded_iff
thf(fact_800_Inf__fin_Obounded__iff,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( ord_less_eq_nat @ X @ ( lattic5238388535129920115in_nat @ A2 ) )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ A2 )
=> ( ord_less_eq_nat @ X @ X2 ) ) ) ) ) ) ).
% Inf_fin.bounded_iff
thf(fact_801_Sup__fin_Obounded__iff,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( ord_less_eq_set_a @ ( lattic2918178356826803221_set_a @ A2 ) @ X )
= ( ! [X2: set_a] :
( ( member_set_a @ X2 @ A2 )
=> ( ord_less_eq_set_a @ X2 @ X ) ) ) ) ) ) ).
% Sup_fin.bounded_iff
thf(fact_802_Sup__fin_Obounded__iff,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A2 ) @ X )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ A2 )
=> ( ord_less_eq_nat @ X2 @ X ) ) ) ) ) ) ).
% Sup_fin.bounded_iff
thf(fact_803_Sup__fin_Osubset__imp,axiom,
! [A2: set_set_a,B: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ B )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( finite_finite_set_a @ B )
=> ( ord_less_eq_set_a @ ( lattic2918178356826803221_set_a @ A2 ) @ ( lattic2918178356826803221_set_a @ B ) ) ) ) ) ).
% Sup_fin.subset_imp
thf(fact_804_Sup__fin_Osubset__imp,axiom,
! [A2: set_nat,B: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( finite_finite_nat @ B )
=> ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A2 ) @ ( lattic1093996805478795353in_nat @ B ) ) ) ) ) ).
% Sup_fin.subset_imp
thf(fact_805_Inf__fin_Osubset__imp,axiom,
! [A2: set_set_a,B: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ B )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( finite_finite_set_a @ B )
=> ( ord_less_eq_set_a @ ( lattic8209813465164889211_set_a @ B ) @ ( lattic8209813465164889211_set_a @ A2 ) ) ) ) ) ).
% Inf_fin.subset_imp
thf(fact_806_Inf__fin_Osubset__imp,axiom,
! [A2: set_nat,B: set_nat] :
( ( ord_less_eq_set_nat @ A2 @ B )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( finite_finite_nat @ B )
=> ( ord_less_eq_nat @ ( lattic5238388535129920115in_nat @ B ) @ ( lattic5238388535129920115in_nat @ A2 ) ) ) ) ) ).
% Inf_fin.subset_imp
thf(fact_807_Inf__fin_Ohom__commute,axiom,
! [H: nat > nat,N: set_nat] :
( ! [X3: nat,Y3: nat] :
( ( H @ ( inf_inf_nat @ X3 @ Y3 ) )
= ( inf_inf_nat @ ( H @ X3 ) @ ( H @ Y3 ) ) )
=> ( ( finite_finite_nat @ N )
=> ( ( N != bot_bot_set_nat )
=> ( ( H @ ( lattic5238388535129920115in_nat @ N ) )
= ( lattic5238388535129920115in_nat @ ( image_nat_nat @ H @ N ) ) ) ) ) ) ).
% Inf_fin.hom_commute
thf(fact_808_Inf__fin_Ohom__commute,axiom,
! [H: set_a > set_a,N: set_set_a] :
( ! [X3: set_a,Y3: set_a] :
( ( H @ ( inf_inf_set_a @ X3 @ Y3 ) )
= ( inf_inf_set_a @ ( H @ X3 ) @ ( H @ Y3 ) ) )
=> ( ( finite_finite_set_a @ N )
=> ( ( N != bot_bot_set_set_a )
=> ( ( H @ ( lattic8209813465164889211_set_a @ N ) )
= ( lattic8209813465164889211_set_a @ ( image_set_a_set_a @ H @ N ) ) ) ) ) ) ).
% Inf_fin.hom_commute
thf(fact_809_Sup__fin_Ohom__commute,axiom,
! [H: nat > nat,N: set_nat] :
( ! [X3: nat,Y3: nat] :
( ( H @ ( sup_sup_nat @ X3 @ Y3 ) )
= ( sup_sup_nat @ ( H @ X3 ) @ ( H @ Y3 ) ) )
=> ( ( finite_finite_nat @ N )
=> ( ( N != bot_bot_set_nat )
=> ( ( H @ ( lattic1093996805478795353in_nat @ N ) )
= ( lattic1093996805478795353in_nat @ ( image_nat_nat @ H @ N ) ) ) ) ) ) ).
% Sup_fin.hom_commute
thf(fact_810_Sup__fin_Ohom__commute,axiom,
! [H: set_a > set_a,N: set_set_a] :
( ! [X3: set_a,Y3: set_a] :
( ( H @ ( sup_sup_set_a @ X3 @ Y3 ) )
= ( sup_sup_set_a @ ( H @ X3 ) @ ( H @ Y3 ) ) )
=> ( ( finite_finite_set_a @ N )
=> ( ( N != bot_bot_set_set_a )
=> ( ( H @ ( lattic2918178356826803221_set_a @ N ) )
= ( lattic2918178356826803221_set_a @ ( image_set_a_set_a @ H @ N ) ) ) ) ) ) ).
% Sup_fin.hom_commute
thf(fact_811_Inf__fin_Osubset,axiom,
! [A2: set_nat,B: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( B != bot_bot_set_nat )
=> ( ( ord_less_eq_set_nat @ B @ A2 )
=> ( ( inf_inf_nat @ ( lattic5238388535129920115in_nat @ B ) @ ( lattic5238388535129920115in_nat @ A2 ) )
= ( lattic5238388535129920115in_nat @ A2 ) ) ) ) ) ).
% Inf_fin.subset
thf(fact_812_Inf__fin_Osubset,axiom,
! [A2: set_set_a,B: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( B != bot_bot_set_set_a )
=> ( ( ord_le3724670747650509150_set_a @ B @ A2 )
=> ( ( inf_inf_set_a @ ( lattic8209813465164889211_set_a @ B ) @ ( lattic8209813465164889211_set_a @ A2 ) )
= ( lattic8209813465164889211_set_a @ A2 ) ) ) ) ) ).
% Inf_fin.subset
thf(fact_813_Sup__fin_Osubset,axiom,
! [A2: set_nat,B: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( B != bot_bot_set_nat )
=> ( ( ord_less_eq_set_nat @ B @ A2 )
=> ( ( sup_sup_nat @ ( lattic1093996805478795353in_nat @ B ) @ ( lattic1093996805478795353in_nat @ A2 ) )
= ( lattic1093996805478795353in_nat @ A2 ) ) ) ) ) ).
% Sup_fin.subset
thf(fact_814_Sup__fin_Osubset,axiom,
! [A2: set_set_a,B: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( B != bot_bot_set_set_a )
=> ( ( ord_le3724670747650509150_set_a @ B @ A2 )
=> ( ( sup_sup_set_a @ ( lattic2918178356826803221_set_a @ B ) @ ( lattic2918178356826803221_set_a @ A2 ) )
= ( lattic2918178356826803221_set_a @ A2 ) ) ) ) ) ).
% Sup_fin.subset
thf(fact_815_Inf__fin_Oclosed,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ! [X3: nat,Y3: nat] : ( member_nat @ ( inf_inf_nat @ X3 @ Y3 ) @ ( insert_nat @ X3 @ ( insert_nat @ Y3 @ bot_bot_set_nat ) ) )
=> ( member_nat @ ( lattic5238388535129920115in_nat @ A2 ) @ A2 ) ) ) ) ).
% Inf_fin.closed
thf(fact_816_Inf__fin_Oclosed,axiom,
! [A2: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ! [X3: set_a,Y3: set_a] : ( member_set_a @ ( inf_inf_set_a @ X3 @ Y3 ) @ ( insert_set_a @ X3 @ ( insert_set_a @ Y3 @ bot_bot_set_set_a ) ) )
=> ( member_set_a @ ( lattic8209813465164889211_set_a @ A2 ) @ A2 ) ) ) ) ).
% Inf_fin.closed
thf(fact_817_Inf__fin_Oinsert__not__elem,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ~ ( member_nat @ X @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( lattic5238388535129920115in_nat @ ( insert_nat @ X @ A2 ) )
= ( inf_inf_nat @ X @ ( lattic5238388535129920115in_nat @ A2 ) ) ) ) ) ) ).
% Inf_fin.insert_not_elem
thf(fact_818_Inf__fin_Oinsert__not__elem,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ~ ( member_set_a @ X @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( lattic8209813465164889211_set_a @ ( insert_set_a @ X @ A2 ) )
= ( inf_inf_set_a @ X @ ( lattic8209813465164889211_set_a @ A2 ) ) ) ) ) ) ).
% Inf_fin.insert_not_elem
thf(fact_819_Sup__fin_Oclosed,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ! [X3: nat,Y3: nat] : ( member_nat @ ( sup_sup_nat @ X3 @ Y3 ) @ ( insert_nat @ X3 @ ( insert_nat @ Y3 @ bot_bot_set_nat ) ) )
=> ( member_nat @ ( lattic1093996805478795353in_nat @ A2 ) @ A2 ) ) ) ) ).
% Sup_fin.closed
thf(fact_820_Sup__fin_Oclosed,axiom,
! [A2: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ! [X3: set_a,Y3: set_a] : ( member_set_a @ ( sup_sup_set_a @ X3 @ Y3 ) @ ( insert_set_a @ X3 @ ( insert_set_a @ Y3 @ bot_bot_set_set_a ) ) )
=> ( member_set_a @ ( lattic2918178356826803221_set_a @ A2 ) @ A2 ) ) ) ) ).
% Sup_fin.closed
thf(fact_821_Sup__fin_Oinsert__not__elem,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ~ ( member_nat @ X @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( lattic1093996805478795353in_nat @ ( insert_nat @ X @ A2 ) )
= ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ A2 ) ) ) ) ) ) ).
% Sup_fin.insert_not_elem
thf(fact_822_Sup__fin_Oinsert__not__elem,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ~ ( member_set_a @ X @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( lattic2918178356826803221_set_a @ ( insert_set_a @ X @ A2 ) )
= ( sup_sup_set_a @ X @ ( lattic2918178356826803221_set_a @ A2 ) ) ) ) ) ) ).
% Sup_fin.insert_not_elem
thf(fact_823_Inf__fin_Ounion,axiom,
! [A2: set_nat,B: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( finite_finite_nat @ B )
=> ( ( B != bot_bot_set_nat )
=> ( ( lattic5238388535129920115in_nat @ ( sup_sup_set_nat @ A2 @ B ) )
= ( inf_inf_nat @ ( lattic5238388535129920115in_nat @ A2 ) @ ( lattic5238388535129920115in_nat @ B ) ) ) ) ) ) ) ).
% Inf_fin.union
thf(fact_824_Inf__fin_Ounion,axiom,
! [A2: set_set_a,B: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( finite_finite_set_a @ B )
=> ( ( B != bot_bot_set_set_a )
=> ( ( lattic8209813465164889211_set_a @ ( sup_sup_set_set_a @ A2 @ B ) )
= ( inf_inf_set_a @ ( lattic8209813465164889211_set_a @ A2 ) @ ( lattic8209813465164889211_set_a @ B ) ) ) ) ) ) ) ).
% Inf_fin.union
thf(fact_825_Sup__fin_Ounion,axiom,
! [A2: set_nat,B: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ( ( finite_finite_nat @ B )
=> ( ( B != bot_bot_set_nat )
=> ( ( lattic1093996805478795353in_nat @ ( sup_sup_set_nat @ A2 @ B ) )
= ( sup_sup_nat @ ( lattic1093996805478795353in_nat @ A2 ) @ ( lattic1093996805478795353in_nat @ B ) ) ) ) ) ) ) ).
% Sup_fin.union
thf(fact_826_Sup__fin_Ounion,axiom,
! [A2: set_set_a,B: set_set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( A2 != bot_bot_set_set_a )
=> ( ( finite_finite_set_a @ B )
=> ( ( B != bot_bot_set_set_a )
=> ( ( lattic2918178356826803221_set_a @ ( sup_sup_set_set_a @ A2 @ B ) )
= ( sup_sup_set_a @ ( lattic2918178356826803221_set_a @ A2 ) @ ( lattic2918178356826803221_set_a @ B ) ) ) ) ) ) ) ).
% Sup_fin.union
thf(fact_827_Inf__fin_Oremove,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ X @ A2 )
=> ( ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) )
= bot_bot_set_nat )
=> ( ( lattic5238388535129920115in_nat @ A2 )
= X ) )
& ( ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) )
!= bot_bot_set_nat )
=> ( ( lattic5238388535129920115in_nat @ A2 )
= ( inf_inf_nat @ X @ ( lattic5238388535129920115in_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ) ) ) ) ).
% Inf_fin.remove
thf(fact_828_Inf__fin_Oremove,axiom,
! [A2: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A2 )
=> ( ( member_set_a @ X @ A2 )
=> ( ( ( ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) )
= bot_bot_set_set_a )
=> ( ( lattic8209813465164889211_set_a @ A2 )
= X ) )
& ( ( ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) )
!= bot_bot_set_set_a )
=> ( ( lattic8209813465164889211_set_a @ A2 )
= ( inf_inf_set_a @ X @ ( lattic8209813465164889211_set_a @ ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) ) ) ) ) ) ) ) ) ).
% Inf_fin.remove
thf(fact_829_card__Diff__singleton__if,axiom,
! [X: product_unit,A2: set_Product_unit] :
( ( ( member_Product_unit @ X @ A2 )
=> ( ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) )
= ( minus_minus_nat @ ( finite410649719033368117t_unit @ A2 ) @ one_one_nat ) ) )
& ( ~ ( member_Product_unit @ X @ A2 )
=> ( ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) )
= ( finite410649719033368117t_unit @ A2 ) ) ) ) ).
% card_Diff_singleton_if
thf(fact_830_card__Diff__singleton__if,axiom,
! [X: a,A2: set_a] :
( ( ( member_a @ X @ A2 )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) )
= ( minus_minus_nat @ ( finite_card_a @ A2 ) @ one_one_nat ) ) )
& ( ~ ( member_a @ X @ A2 )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) )
= ( finite_card_a @ A2 ) ) ) ) ).
% card_Diff_singleton_if
thf(fact_831_card__Diff__singleton,axiom,
! [X: product_unit,A2: set_Product_unit] :
( ( member_Product_unit @ X @ A2 )
=> ( ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) )
= ( minus_minus_nat @ ( finite410649719033368117t_unit @ A2 ) @ one_one_nat ) ) ) ).
% card_Diff_singleton
thf(fact_832_card__Diff__singleton,axiom,
! [X: a,A2: set_a] :
( ( member_a @ X @ A2 )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) )
= ( minus_minus_nat @ ( finite_card_a @ A2 ) @ one_one_nat ) ) ) ).
% card_Diff_singleton
thf(fact_833_card__Diff__insert,axiom,
! [A: product_unit,A2: set_Product_unit,B: set_Product_unit] :
( ( member_Product_unit @ A @ A2 )
=> ( ~ ( member_Product_unit @ A @ B )
=> ( ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ A @ B ) ) )
= ( minus_minus_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B ) ) @ one_one_nat ) ) ) ) ).
% card_Diff_insert
thf(fact_834_card__Diff__insert,axiom,
! [A: a,A2: set_a,B: set_a] :
( ( member_a @ A @ A2 )
=> ( ~ ( member_a @ A @ B )
=> ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) ) )
= ( minus_minus_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) ) @ one_one_nat ) ) ) ) ).
% card_Diff_insert
thf(fact_835_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_836_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_837_is__singleton__altdef,axiom,
( is_singleton_a
= ( ^ [A6: set_a] :
( ( finite_card_a @ A6 )
= one_one_nat ) ) ) ).
% is_singleton_altdef
thf(fact_838_is__singleton__altdef,axiom,
( is_sin2160648248035936513t_unit
= ( ^ [A6: set_Product_unit] :
( ( finite410649719033368117t_unit @ A6 )
= one_one_nat ) ) ) ).
% is_singleton_altdef
thf(fact_839_card__1__singletonE,axiom,
! [A2: set_Product_unit] :
( ( ( finite410649719033368117t_unit @ A2 )
= one_one_nat )
=> ~ ! [X3: product_unit] :
( A2
!= ( insert_Product_unit @ X3 @ bot_bo3957492148770167129t_unit ) ) ) ).
% card_1_singletonE
thf(fact_840_card__1__singletonE,axiom,
! [A2: set_a] :
( ( ( finite_card_a @ A2 )
= one_one_nat )
=> ~ ! [X3: a] :
( A2
!= ( insert_a @ X3 @ bot_bot_set_a ) ) ) ).
% card_1_singletonE
thf(fact_841_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_842_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_843_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_844_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_845_card__insert__le__m1,axiom,
! [N2: nat,Y: set_a,X: a] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ ( finite_card_a @ Y ) @ ( minus_minus_nat @ N2 @ one_one_nat ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ ( insert_a @ X @ Y ) ) @ N2 ) ) ) ).
% card_insert_le_m1
thf(fact_846_card__insert__le__m1,axiom,
! [N2: nat,Y: set_Product_unit,X: product_unit] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ Y ) @ ( minus_minus_nat @ N2 @ one_one_nat ) )
=> ( ord_less_eq_nat @ ( finite410649719033368117t_unit @ ( insert_Product_unit @ X @ Y ) ) @ N2 ) ) ) ).
% card_insert_le_m1
thf(fact_847_card__Diff1__less,axiom,
! [A2: set_Product_unit,X: product_unit] :
( ( finite4290736615968046902t_unit @ A2 )
=> ( ( member_Product_unit @ X @ A2 )
=> ( ord_less_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ).
% card_Diff1_less
thf(fact_848_card__Diff1__less,axiom,
! [A2: set_nat,X: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ X @ A2 )
=> ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ) ) ).
% card_Diff1_less
thf(fact_849_card__Diff1__less,axiom,
! [A2: set_a,X: a] :
( ( finite_finite_a @ A2 )
=> ( ( member_a @ X @ A2 )
=> ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ).
% card_Diff1_less
thf(fact_850_not__gr__zero,axiom,
! [N2: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
= ( N2 = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_851_less__nat__zero__code,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_852_neq0__conv,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% neq0_conv
thf(fact_853_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_854_zero__less__diff,axiom,
! [N2: nat,M4: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M4 ) )
= ( ord_less_nat @ M4 @ N2 ) ) ).
% zero_less_diff
thf(fact_855_less__one,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ one_one_nat )
= ( N2 = zero_zero_nat ) ) ).
% less_one
thf(fact_856_bot_Onot__eq__extremum,axiom,
! [A: set_a] :
( ( A != bot_bot_set_a )
= ( ord_less_set_a @ bot_bot_set_a @ A ) ) ).
% bot.not_eq_extremum
thf(fact_857_bot_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != bot_bot_nat )
= ( ord_less_nat @ bot_bot_nat @ A ) ) ).
% bot.not_eq_extremum
thf(fact_858_bot_Oextremum__strict,axiom,
! [A: set_a] :
~ ( ord_less_set_a @ A @ bot_bot_set_a ) ).
% bot.extremum_strict
thf(fact_859_bot_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ bot_bot_nat ) ).
% bot.extremum_strict
thf(fact_860_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_861_finite__nat__set__iff__bounded,axiom,
( finite_finite_nat
= ( ^ [N3: set_nat] :
? [M2: nat] :
! [X2: nat] :
( ( member_nat @ X2 @ N3 )
=> ( ord_less_nat @ X2 @ M2 ) ) ) ) ).
% finite_nat_set_iff_bounded
thf(fact_862_bounded__nat__set__is__finite,axiom,
! [N: set_nat,N2: nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ N )
=> ( ord_less_nat @ X3 @ N2 ) )
=> ( finite_finite_nat @ N ) ) ).
% bounded_nat_set_is_finite
thf(fact_863_gt__ex,axiom,
! [X: nat] :
? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).
% gt_ex
thf(fact_864_less__imp__neq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_865_order_Oasym,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ A @ B4 )
=> ~ ( ord_less_nat @ B4 @ A ) ) ).
% order.asym
thf(fact_866_ord__eq__less__trans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( A = B4 )
=> ( ( ord_less_nat @ B4 @ C2 )
=> ( ord_less_nat @ A @ C2 ) ) ) ).
% ord_eq_less_trans
thf(fact_867_ord__less__eq__trans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( B4 = C2 )
=> ( ord_less_nat @ A @ C2 ) ) ) ).
% ord_less_eq_trans
thf(fact_868_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X3: nat] :
( ! [Y5: nat] :
( ( ord_less_nat @ Y5 @ X3 )
=> ( P @ Y5 ) )
=> ( P @ X3 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_869_antisym__conv3,axiom,
! [Y: nat,X: nat] :
( ~ ( ord_less_nat @ Y @ X )
=> ( ( ~ ( ord_less_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_870_linorder__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_871_dual__order_Oasym,axiom,
! [B4: nat,A: nat] :
( ( ord_less_nat @ B4 @ A )
=> ~ ( ord_less_nat @ A @ B4 ) ) ).
% dual_order.asym
thf(fact_872_dual__order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% dual_order.irrefl
thf(fact_873_exists__least__iff,axiom,
( ( ^ [P2: nat > $o] :
? [X6: nat] : ( P2 @ X6 ) )
= ( ^ [P3: nat > $o] :
? [N4: nat] :
( ( P3 @ N4 )
& ! [M2: nat] :
( ( ord_less_nat @ M2 @ N4 )
=> ~ ( P3 @ M2 ) ) ) ) ) ).
% exists_least_iff
thf(fact_874_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B4: nat] :
( ! [A3: nat,B2: nat] :
( ( ord_less_nat @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: nat] : ( P @ A3 @ A3 )
=> ( ! [A3: nat,B2: nat] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B4 ) ) ) ) ).
% linorder_less_wlog
thf(fact_875_order_Ostrict__trans,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_nat @ B4 @ C2 )
=> ( ord_less_nat @ A @ C2 ) ) ) ).
% order.strict_trans
thf(fact_876_not__less__iff__gr__or__eq,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X @ Y ) )
= ( ( ord_less_nat @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_877_dual__order_Ostrict__trans,axiom,
! [B4: nat,A: nat,C2: nat] :
( ( ord_less_nat @ B4 @ A )
=> ( ( ord_less_nat @ C2 @ B4 )
=> ( ord_less_nat @ C2 @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_878_order_Ostrict__implies__not__eq,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( A != B4 ) ) ).
% order.strict_implies_not_eq
thf(fact_879_dual__order_Ostrict__implies__not__eq,axiom,
! [B4: nat,A: nat] :
( ( ord_less_nat @ B4 @ A )
=> ( A != B4 ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_880_linorder__neqE,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE
thf(fact_881_order__less__asym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_asym
thf(fact_882_linorder__neq__iff,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
= ( ( ord_less_nat @ X @ Y )
| ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neq_iff
thf(fact_883_order__less__asym_H,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ A @ B4 )
=> ~ ( ord_less_nat @ B4 @ A ) ) ).
% order_less_asym'
thf(fact_884_order__less__trans,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ Z )
=> ( ord_less_nat @ X @ Z ) ) ) ).
% order_less_trans
thf(fact_885_ord__eq__less__subst,axiom,
! [A: nat,F: nat > nat,B4: nat,C2: nat] :
( ( A
= ( F @ B4 ) )
=> ( ( ord_less_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_886_ord__less__eq__subst,axiom,
! [A: nat,B4: nat,F: nat > nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ( F @ B4 )
= C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% ord_less_eq_subst
thf(fact_887_order__less__irrefl,axiom,
! [X: nat] :
~ ( ord_less_nat @ X @ X ) ).
% order_less_irrefl
thf(fact_888_order__less__subst1,axiom,
! [A: nat,F: nat > nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ ( F @ B4 ) )
=> ( ( ord_less_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% order_less_subst1
thf(fact_889_order__less__subst2,axiom,
! [A: nat,B4: nat,F: nat > nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_nat @ ( F @ B4 ) @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% order_less_subst2
thf(fact_890_order__less__not__sym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_not_sym
thf(fact_891_order__less__imp__triv,axiom,
! [X: nat,Y: nat,P: $o] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_892_linorder__less__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
| ( X = Y )
| ( ord_less_nat @ Y @ X ) ) ).
% linorder_less_linear
thf(fact_893_order__less__imp__not__eq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( X != Y ) ) ).
% order_less_imp_not_eq
thf(fact_894_order__less__imp__not__eq2,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( Y != X ) ) ).
% order_less_imp_not_eq2
thf(fact_895_order__less__imp__not__less,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_imp_not_less
thf(fact_896_inf_Ostrict__coboundedI2,axiom,
! [B4: set_a,C2: set_a,A: set_a] :
( ( ord_less_set_a @ B4 @ C2 )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 ) ) ).
% inf.strict_coboundedI2
thf(fact_897_inf_Ostrict__coboundedI2,axiom,
! [B4: nat,C2: nat,A: nat] :
( ( ord_less_nat @ B4 @ C2 )
=> ( ord_less_nat @ ( inf_inf_nat @ A @ B4 ) @ C2 ) ) ).
% inf.strict_coboundedI2
thf(fact_898_inf_Ostrict__coboundedI1,axiom,
! [A: set_a,C2: set_a,B4: set_a] :
( ( ord_less_set_a @ A @ C2 )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 ) ) ).
% inf.strict_coboundedI1
thf(fact_899_inf_Ostrict__coboundedI1,axiom,
! [A: nat,C2: nat,B4: nat] :
( ( ord_less_nat @ A @ C2 )
=> ( ord_less_nat @ ( inf_inf_nat @ A @ B4 ) @ C2 ) ) ).
% inf.strict_coboundedI1
thf(fact_900_inf_Ostrict__order__iff,axiom,
( ord_less_set_a
= ( ^ [A4: set_a,B3: set_a] :
( ( A4
= ( inf_inf_set_a @ A4 @ B3 ) )
& ( A4 != B3 ) ) ) ) ).
% inf.strict_order_iff
thf(fact_901_inf_Ostrict__order__iff,axiom,
( ord_less_nat
= ( ^ [A4: nat,B3: nat] :
( ( A4
= ( inf_inf_nat @ A4 @ B3 ) )
& ( A4 != B3 ) ) ) ) ).
% inf.strict_order_iff
thf(fact_902_inf_Ostrict__boundedE,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) )
=> ~ ( ( ord_less_set_a @ A @ B4 )
=> ~ ( ord_less_set_a @ A @ C2 ) ) ) ).
% inf.strict_boundedE
thf(fact_903_inf_Ostrict__boundedE,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) )
=> ~ ( ( ord_less_nat @ A @ B4 )
=> ~ ( ord_less_nat @ A @ C2 ) ) ) ).
% inf.strict_boundedE
thf(fact_904_inf_Oabsorb4,axiom,
! [B4: set_a,A: set_a] :
( ( ord_less_set_a @ B4 @ A )
=> ( ( inf_inf_set_a @ A @ B4 )
= B4 ) ) ).
% inf.absorb4
thf(fact_905_inf_Oabsorb4,axiom,
! [B4: nat,A: nat] :
( ( ord_less_nat @ B4 @ A )
=> ( ( inf_inf_nat @ A @ B4 )
= B4 ) ) ).
% inf.absorb4
thf(fact_906_inf_Oabsorb3,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_set_a @ A @ B4 )
=> ( ( inf_inf_set_a @ A @ B4 )
= A ) ) ).
% inf.absorb3
thf(fact_907_inf_Oabsorb3,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( inf_inf_nat @ A @ B4 )
= A ) ) ).
% inf.absorb3
thf(fact_908_less__infI2,axiom,
! [B4: set_a,X: set_a,A: set_a] :
( ( ord_less_set_a @ B4 @ X )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A @ B4 ) @ X ) ) ).
% less_infI2
thf(fact_909_less__infI2,axiom,
! [B4: nat,X: nat,A: nat] :
( ( ord_less_nat @ B4 @ X )
=> ( ord_less_nat @ ( inf_inf_nat @ A @ B4 ) @ X ) ) ).
% less_infI2
thf(fact_910_less__infI1,axiom,
! [A: set_a,X: set_a,B4: set_a] :
( ( ord_less_set_a @ A @ X )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A @ B4 ) @ X ) ) ).
% less_infI1
thf(fact_911_less__infI1,axiom,
! [A: nat,X: nat,B4: nat] :
( ( ord_less_nat @ A @ X )
=> ( ord_less_nat @ ( inf_inf_nat @ A @ B4 ) @ X ) ) ).
% less_infI1
thf(fact_912_less__supI1,axiom,
! [X: set_a,A: set_a,B4: set_a] :
( ( ord_less_set_a @ X @ A )
=> ( ord_less_set_a @ X @ ( sup_sup_set_a @ A @ B4 ) ) ) ).
% less_supI1
thf(fact_913_less__supI1,axiom,
! [X: nat,A: nat,B4: nat] :
( ( ord_less_nat @ X @ A )
=> ( ord_less_nat @ X @ ( sup_sup_nat @ A @ B4 ) ) ) ).
% less_supI1
thf(fact_914_less__supI2,axiom,
! [X: set_a,B4: set_a,A: set_a] :
( ( ord_less_set_a @ X @ B4 )
=> ( ord_less_set_a @ X @ ( sup_sup_set_a @ A @ B4 ) ) ) ).
% less_supI2
thf(fact_915_less__supI2,axiom,
! [X: nat,B4: nat,A: nat] :
( ( ord_less_nat @ X @ B4 )
=> ( ord_less_nat @ X @ ( sup_sup_nat @ A @ B4 ) ) ) ).
% less_supI2
thf(fact_916_sup_Oabsorb3,axiom,
! [B4: set_a,A: set_a] :
( ( ord_less_set_a @ B4 @ A )
=> ( ( sup_sup_set_a @ A @ B4 )
= A ) ) ).
% sup.absorb3
thf(fact_917_sup_Oabsorb3,axiom,
! [B4: nat,A: nat] :
( ( ord_less_nat @ B4 @ A )
=> ( ( sup_sup_nat @ A @ B4 )
= A ) ) ).
% sup.absorb3
thf(fact_918_sup_Oabsorb4,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_set_a @ A @ B4 )
=> ( ( sup_sup_set_a @ A @ B4 )
= B4 ) ) ).
% sup.absorb4
thf(fact_919_sup_Oabsorb4,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( sup_sup_nat @ A @ B4 )
= B4 ) ) ).
% sup.absorb4
thf(fact_920_sup_Ostrict__boundedE,axiom,
! [B4: set_a,C2: set_a,A: set_a] :
( ( ord_less_set_a @ ( sup_sup_set_a @ B4 @ C2 ) @ A )
=> ~ ( ( ord_less_set_a @ B4 @ A )
=> ~ ( ord_less_set_a @ C2 @ A ) ) ) ).
% sup.strict_boundedE
thf(fact_921_sup_Ostrict__boundedE,axiom,
! [B4: nat,C2: nat,A: nat] :
( ( ord_less_nat @ ( sup_sup_nat @ B4 @ C2 ) @ A )
=> ~ ( ( ord_less_nat @ B4 @ A )
=> ~ ( ord_less_nat @ C2 @ A ) ) ) ).
% sup.strict_boundedE
thf(fact_922_sup_Ostrict__order__iff,axiom,
( ord_less_set_a
= ( ^ [B3: set_a,A4: set_a] :
( ( A4
= ( sup_sup_set_a @ A4 @ B3 ) )
& ( A4 != B3 ) ) ) ) ).
% sup.strict_order_iff
thf(fact_923_sup_Ostrict__order__iff,axiom,
( ord_less_nat
= ( ^ [B3: nat,A4: nat] :
( ( A4
= ( sup_sup_nat @ A4 @ B3 ) )
& ( A4 != B3 ) ) ) ) ).
% sup.strict_order_iff
thf(fact_924_sup_Ostrict__coboundedI1,axiom,
! [C2: set_a,A: set_a,B4: set_a] :
( ( ord_less_set_a @ C2 @ A )
=> ( ord_less_set_a @ C2 @ ( sup_sup_set_a @ A @ B4 ) ) ) ).
% sup.strict_coboundedI1
thf(fact_925_sup_Ostrict__coboundedI1,axiom,
! [C2: nat,A: nat,B4: nat] :
( ( ord_less_nat @ C2 @ A )
=> ( ord_less_nat @ C2 @ ( sup_sup_nat @ A @ B4 ) ) ) ).
% sup.strict_coboundedI1
thf(fact_926_sup_Ostrict__coboundedI2,axiom,
! [C2: set_a,B4: set_a,A: set_a] :
( ( ord_less_set_a @ C2 @ B4 )
=> ( ord_less_set_a @ C2 @ ( sup_sup_set_a @ A @ B4 ) ) ) ).
% sup.strict_coboundedI2
thf(fact_927_sup_Ostrict__coboundedI2,axiom,
! [C2: nat,B4: nat,A: nat] :
( ( ord_less_nat @ C2 @ B4 )
=> ( ord_less_nat @ C2 @ ( sup_sup_nat @ A @ B4 ) ) ) ).
% sup.strict_coboundedI2
thf(fact_928_nat__neq__iff,axiom,
! [M4: nat,N2: nat] :
( ( M4 != N2 )
= ( ( ord_less_nat @ M4 @ N2 )
| ( ord_less_nat @ N2 @ M4 ) ) ) ).
% nat_neq_iff
thf(fact_929_less__not__refl,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ N2 ) ).
% less_not_refl
thf(fact_930_less__not__refl2,axiom,
! [N2: nat,M4: nat] :
( ( ord_less_nat @ N2 @ M4 )
=> ( M4 != N2 ) ) ).
% less_not_refl2
thf(fact_931_less__not__refl3,axiom,
! [S3: nat,T4: nat] :
( ( ord_less_nat @ S3 @ T4 )
=> ( S3 != T4 ) ) ).
% less_not_refl3
thf(fact_932_less__irrefl__nat,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ N2 ) ).
% less_irrefl_nat
thf(fact_933_nat__less__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N5: nat] :
( ! [M5: nat] :
( ( ord_less_nat @ M5 @ N5 )
=> ( P @ M5 ) )
=> ( P @ N5 ) )
=> ( P @ N2 ) ) ).
% nat_less_induct
thf(fact_934_infinite__descent,axiom,
! [P: nat > $o,N2: nat] :
( ! [N5: nat] :
( ~ ( P @ N5 )
=> ? [M5: nat] :
( ( ord_less_nat @ M5 @ N5 )
& ~ ( P @ M5 ) ) )
=> ( P @ N2 ) ) ).
% infinite_descent
thf(fact_935_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_936_infinite__descent0,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N5: nat] :
( ( ord_less_nat @ zero_zero_nat @ N5 )
=> ( ~ ( P @ N5 )
=> ? [M5: nat] :
( ( ord_less_nat @ M5 @ N5 )
& ~ ( P @ M5 ) ) ) )
=> ( P @ N2 ) ) ) ).
% infinite_descent0
thf(fact_937_gr__implies__not0,axiom,
! [M4: nat,N2: nat] :
( ( ord_less_nat @ M4 @ N2 )
=> ( N2 != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_938_less__zeroE,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% less_zeroE
thf(fact_939_not__less0,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% not_less0
thf(fact_940_not__gr0,axiom,
! [N2: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
= ( N2 = zero_zero_nat ) ) ).
% not_gr0
thf(fact_941_gr0I,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% gr0I
thf(fact_942_zero__less__iff__neq__zero,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
= ( N2 != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_943_gr__implies__not__zero,axiom,
! [M4: nat,N2: nat] :
( ( ord_less_nat @ M4 @ N2 )
=> ( N2 != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_944_not__less__zero,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% not_less_zero
thf(fact_945_gr__zeroI,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% gr_zeroI
thf(fact_946_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_947_diff__less__mono2,axiom,
! [M4: nat,N2: nat,L: nat] :
( ( ord_less_nat @ M4 @ N2 )
=> ( ( ord_less_nat @ M4 @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M4 ) ) ) ) ).
% diff_less_mono2
thf(fact_948_less__imp__diff__less,axiom,
! [J: nat,K: nat,N2: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).
% less_imp_diff_less
thf(fact_949_leD,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ~ ( ord_less_set_a @ X @ Y ) ) ).
% leD
thf(fact_950_leD,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ~ ( ord_less_nat @ X @ Y ) ) ).
% leD
thf(fact_951_leI,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_eq_nat @ Y @ X ) ) ).
% leI
thf(fact_952_nless__le,axiom,
! [A: set_a,B4: set_a] :
( ( ~ ( ord_less_set_a @ A @ B4 ) )
= ( ~ ( ord_less_eq_set_a @ A @ B4 )
| ( A = B4 ) ) ) ).
% nless_le
thf(fact_953_nless__le,axiom,
! [A: nat,B4: nat] :
( ( ~ ( ord_less_nat @ A @ B4 ) )
= ( ~ ( ord_less_eq_nat @ A @ B4 )
| ( A = B4 ) ) ) ).
% nless_le
thf(fact_954_antisym__conv1,axiom,
! [X: set_a,Y: set_a] :
( ~ ( ord_less_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_955_antisym__conv1,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_956_antisym__conv2,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ~ ( ord_less_set_a @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_957_antisym__conv2,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ~ ( ord_less_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_958_less__le__not__le,axiom,
( ord_less_set_a
= ( ^ [X2: set_a,Y2: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y2 )
& ~ ( ord_less_eq_set_a @ Y2 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_959_less__le__not__le,axiom,
( ord_less_nat
= ( ^ [X2: nat,Y2: nat] :
( ( ord_less_eq_nat @ X2 @ Y2 )
& ~ ( ord_less_eq_nat @ Y2 @ X2 ) ) ) ) ).
% less_le_not_le
thf(fact_960_not__le__imp__less,axiom,
! [Y: nat,X: nat] :
( ~ ( ord_less_eq_nat @ Y @ X )
=> ( ord_less_nat @ X @ Y ) ) ).
% not_le_imp_less
thf(fact_961_order_Oorder__iff__strict,axiom,
( ord_less_eq_set_a
= ( ^ [A4: set_a,B3: set_a] :
( ( ord_less_set_a @ A4 @ B3 )
| ( A4 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_962_order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_nat @ A4 @ B3 )
| ( A4 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_963_order_Ostrict__iff__order,axiom,
( ord_less_set_a
= ( ^ [A4: set_a,B3: set_a] :
( ( ord_less_eq_set_a @ A4 @ B3 )
& ( A4 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_964_order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ A4 @ B3 )
& ( A4 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_965_order_Ostrict__trans1,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_set_a @ B4 @ C2 )
=> ( ord_less_set_a @ A @ C2 ) ) ) ).
% order.strict_trans1
thf(fact_966_order_Ostrict__trans1,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_nat @ B4 @ C2 )
=> ( ord_less_nat @ A @ C2 ) ) ) ).
% order.strict_trans1
thf(fact_967_order_Ostrict__trans2,axiom,
! [A: set_a,B4: set_a,C2: set_a] :
( ( ord_less_set_a @ A @ B4 )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ord_less_set_a @ A @ C2 ) ) ) ).
% order.strict_trans2
thf(fact_968_order_Ostrict__trans2,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ord_less_nat @ A @ C2 ) ) ) ).
% order.strict_trans2
thf(fact_969_order_Ostrict__iff__not,axiom,
( ord_less_set_a
= ( ^ [A4: set_a,B3: set_a] :
( ( ord_less_eq_set_a @ A4 @ B3 )
& ~ ( ord_less_eq_set_a @ B3 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_970_order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ A4 @ B3 )
& ~ ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_971_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_set_a
= ( ^ [B3: set_a,A4: set_a] :
( ( ord_less_set_a @ B3 @ A4 )
| ( A4 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_972_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [B3: nat,A4: nat] :
( ( ord_less_nat @ B3 @ A4 )
| ( A4 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_973_dual__order_Ostrict__iff__order,axiom,
( ord_less_set_a
= ( ^ [B3: set_a,A4: set_a] :
( ( ord_less_eq_set_a @ B3 @ A4 )
& ( A4 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_974_dual__order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [B3: nat,A4: nat] :
( ( ord_less_eq_nat @ B3 @ A4 )
& ( A4 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_975_dual__order_Ostrict__trans1,axiom,
! [B4: set_a,A: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ B4 @ A )
=> ( ( ord_less_set_a @ C2 @ B4 )
=> ( ord_less_set_a @ C2 @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_976_dual__order_Ostrict__trans1,axiom,
! [B4: nat,A: nat,C2: nat] :
( ( ord_less_eq_nat @ B4 @ A )
=> ( ( ord_less_nat @ C2 @ B4 )
=> ( ord_less_nat @ C2 @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_977_dual__order_Ostrict__trans2,axiom,
! [B4: set_a,A: set_a,C2: set_a] :
( ( ord_less_set_a @ B4 @ A )
=> ( ( ord_less_eq_set_a @ C2 @ B4 )
=> ( ord_less_set_a @ C2 @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_978_dual__order_Ostrict__trans2,axiom,
! [B4: nat,A: nat,C2: nat] :
( ( ord_less_nat @ B4 @ A )
=> ( ( ord_less_eq_nat @ C2 @ B4 )
=> ( ord_less_nat @ C2 @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_979_dual__order_Ostrict__iff__not,axiom,
( ord_less_set_a
= ( ^ [B3: set_a,A4: set_a] :
( ( ord_less_eq_set_a @ B3 @ A4 )
& ~ ( ord_less_eq_set_a @ A4 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_980_dual__order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [B3: nat,A4: nat] :
( ( ord_less_eq_nat @ B3 @ A4 )
& ~ ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_981_order_Ostrict__implies__order,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_set_a @ A @ B4 )
=> ( ord_less_eq_set_a @ A @ B4 ) ) ).
% order.strict_implies_order
thf(fact_982_order_Ostrict__implies__order,axiom,
! [A: nat,B4: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ord_less_eq_nat @ A @ B4 ) ) ).
% order.strict_implies_order
thf(fact_983_dual__order_Ostrict__implies__order,axiom,
! [B4: set_a,A: set_a] :
( ( ord_less_set_a @ B4 @ A )
=> ( ord_less_eq_set_a @ B4 @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_984_dual__order_Ostrict__implies__order,axiom,
! [B4: nat,A: nat] :
( ( ord_less_nat @ B4 @ A )
=> ( ord_less_eq_nat @ B4 @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_985_order__le__less,axiom,
( ord_less_eq_set_a
= ( ^ [X2: set_a,Y2: set_a] :
( ( ord_less_set_a @ X2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_986_order__le__less,axiom,
( ord_less_eq_nat
= ( ^ [X2: nat,Y2: nat] :
( ( ord_less_nat @ X2 @ Y2 )
| ( X2 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_987_order__less__le,axiom,
( ord_less_set_a
= ( ^ [X2: set_a,Y2: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y2 )
& ( X2 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_988_order__less__le,axiom,
( ord_less_nat
= ( ^ [X2: nat,Y2: nat] :
( ( ord_less_eq_nat @ X2 @ Y2 )
& ( X2 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_989_linorder__not__le,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_eq_nat @ X @ Y ) )
= ( ord_less_nat @ Y @ X ) ) ).
% linorder_not_le
thf(fact_990_linorder__not__less,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X @ Y ) )
= ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_not_less
thf(fact_991_order__less__imp__le,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_set_a @ X @ Y )
=> ( ord_less_eq_set_a @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_992_order__less__imp__le,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_993_order__le__neq__trans,axiom,
! [A: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( A != B4 )
=> ( ord_less_set_a @ A @ B4 ) ) ) ).
% order_le_neq_trans
thf(fact_994_order__le__neq__trans,axiom,
! [A: nat,B4: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( A != B4 )
=> ( ord_less_nat @ A @ B4 ) ) ) ).
% order_le_neq_trans
thf(fact_995_order__neq__le__trans,axiom,
! [A: set_a,B4: set_a] :
( ( A != B4 )
=> ( ( ord_less_eq_set_a @ A @ B4 )
=> ( ord_less_set_a @ A @ B4 ) ) ) ).
% order_neq_le_trans
thf(fact_996_order__neq__le__trans,axiom,
! [A: nat,B4: nat] :
( ( A != B4 )
=> ( ( ord_less_eq_nat @ A @ B4 )
=> ( ord_less_nat @ A @ B4 ) ) ) ).
% order_neq_le_trans
thf(fact_997_order__le__less__trans,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_set_a @ Y @ Z )
=> ( ord_less_set_a @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_998_order__le__less__trans,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ Z )
=> ( ord_less_nat @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_999_order__less__le__trans,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ Y @ Z )
=> ( ord_less_set_a @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_1000_order__less__le__trans,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z )
=> ( ord_less_nat @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_1001_order__le__less__subst1,axiom,
! [A: set_a,F: nat > set_a,B4: nat,C2: nat] :
( ( ord_less_eq_set_a @ A @ ( F @ B4 ) )
=> ( ( ord_less_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1002_order__le__less__subst1,axiom,
! [A: nat,F: nat > nat,B4: nat,C2: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B4 ) )
=> ( ( ord_less_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_1003_order__le__less__subst2,axiom,
! [A: set_a,B4: set_a,F: set_a > set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_set_a @ ( F @ B4 ) @ C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% order_le_less_subst2
thf(fact_1004_order__le__less__subst2,axiom,
! [A: set_a,B4: set_a,F: set_a > nat,C2: nat] :
( ( ord_less_eq_set_a @ A @ B4 )
=> ( ( ord_less_nat @ ( F @ B4 ) @ C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% order_le_less_subst2
thf(fact_1005_order__le__less__subst2,axiom,
! [A: nat,B4: nat,F: nat > set_a,C2: set_a] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_set_a @ ( F @ B4 ) @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% order_le_less_subst2
thf(fact_1006_order__le__less__subst2,axiom,
! [A: nat,B4: nat,F: nat > nat,C2: nat] :
( ( ord_less_eq_nat @ A @ B4 )
=> ( ( ord_less_nat @ ( F @ B4 ) @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% order_le_less_subst2
thf(fact_1007_order__less__le__subst1,axiom,
! [A: set_a,F: set_a > set_a,B4: set_a,C2: set_a] :
( ( ord_less_set_a @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1008_order__less__le__subst1,axiom,
! [A: nat,F: set_a > nat,B4: set_a,C2: set_a] :
( ( ord_less_nat @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_set_a @ B4 @ C2 )
=> ( ! [X3: set_a,Y3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1009_order__less__le__subst1,axiom,
! [A: set_a,F: nat > set_a,B4: nat,C2: nat] :
( ( ord_less_set_a @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_set_a @ A @ ( F @ C2 ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1010_order__less__le__subst1,axiom,
! [A: nat,F: nat > nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ ( F @ B4 ) )
=> ( ( ord_less_eq_nat @ B4 @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C2 ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_1011_order__less__le__subst2,axiom,
! [A: nat,B4: nat,F: nat > set_a,C2: set_a] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_eq_set_a @ ( F @ B4 ) @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_set_a @ ( F @ A ) @ C2 ) ) ) ) ).
% order_less_le_subst2
thf(fact_1012_order__less__le__subst2,axiom,
! [A: nat,B4: nat,F: nat > nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ ( F @ B4 ) @ C2 )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C2 ) ) ) ) ).
% order_less_le_subst2
thf(fact_1013_linorder__le__less__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
| ( ord_less_nat @ Y @ X ) ) ).
% linorder_le_less_linear
thf(fact_1014_order__le__imp__less__or__eq,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_set_a @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1015_order__le__imp__less__or__eq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_nat @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_1016_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_1017_le__neq__implies__less,axiom,
! [M4: nat,N2: nat] :
( ( ord_less_eq_nat @ M4 @ N2 )
=> ( ( M4 != N2 )
=> ( ord_less_nat @ M4 @ N2 ) ) ) ).
% le_neq_implies_less
thf(fact_1018_less__or__eq__imp__le,axiom,
! [M4: nat,N2: nat] :
( ( ( ord_less_nat @ M4 @ N2 )
| ( M4 = N2 ) )
=> ( ord_less_eq_nat @ M4 @ N2 ) ) ).
% less_or_eq_imp_le
thf(fact_1019_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N4: nat] :
( ( ord_less_nat @ M2 @ N4 )
| ( M2 = N4 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_1020_less__imp__le__nat,axiom,
! [M4: nat,N2: nat] :
( ( ord_less_nat @ M4 @ N2 )
=> ( ord_less_eq_nat @ M4 @ N2 ) ) ).
% less_imp_le_nat
thf(fact_1021_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M2: nat,N4: nat] :
( ( ord_less_eq_nat @ M2 @ N4 )
& ( M2 != N4 ) ) ) ) ).
% nat_less_le
thf(fact_1022_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_1023_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_1024_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_1025_ex__min__if__finite,axiom,
! [S: set_nat] :
( ( finite_finite_nat @ S )
=> ( ( S != bot_bot_set_nat )
=> ? [X3: nat] :
( ( member_nat @ X3 @ S )
& ~ ? [Xa: nat] :
( ( member_nat @ Xa @ S )
& ( ord_less_nat @ Xa @ X3 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_1026_infinite__growing,axiom,
! [X4: set_nat] :
( ( X4 != bot_bot_set_nat )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ X4 )
=> ? [Xa: nat] :
( ( member_nat @ Xa @ X4 )
& ( ord_less_nat @ X3 @ Xa ) ) )
=> ~ ( finite_finite_nat @ X4 ) ) ) ).
% infinite_growing
thf(fact_1027_ex__least__nat__le,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ N2 )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N2 )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K2 )
=> ~ ( P @ I3 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_1028_diff__less,axiom,
! [N2: nat,M4: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ M4 )
=> ( ord_less_nat @ ( minus_minus_nat @ M4 @ N2 ) @ M4 ) ) ) ).
% diff_less
thf(fact_1029_less__diff__iff,axiom,
! [K: nat,M4: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M4 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M4 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( ord_less_nat @ M4 @ N2 ) ) ) ) ).
% less_diff_iff
thf(fact_1030_diff__less__mono,axiom,
! [A: nat,B4: nat,C2: nat] :
( ( ord_less_nat @ A @ B4 )
=> ( ( ord_less_eq_nat @ C2 @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C2 ) @ ( minus_minus_nat @ B4 @ C2 ) ) ) ) ).
% diff_less_mono
thf(fact_1031_finite__linorder__min__induct,axiom,
! [A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [B2: nat,A8: set_nat] :
( ( finite_finite_nat @ A8 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A8 )
=> ( ord_less_nat @ B2 @ X5 ) )
=> ( ( P @ A8 )
=> ( P @ ( insert_nat @ B2 @ A8 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_min_induct
thf(fact_1032_finite__linorder__max__induct,axiom,
! [A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [B2: nat,A8: set_nat] :
( ( finite_finite_nat @ A8 )
=> ( ! [X5: nat] :
( ( member_nat @ X5 @ A8 )
=> ( ord_less_nat @ X5 @ B2 ) )
=> ( ( P @ A8 )
=> ( P @ ( insert_nat @ B2 @ A8 ) ) ) ) )
=> ( P @ A2 ) ) ) ) ).
% finite_linorder_max_induct
thf(fact_1033_card__ge__0__finite,axiom,
! [A2: set_Product_unit] :
( ( ord_less_nat @ zero_zero_nat @ ( finite410649719033368117t_unit @ A2 ) )
=> ( finite4290736615968046902t_unit @ A2 ) ) ).
% card_ge_0_finite
thf(fact_1034_card__ge__0__finite,axiom,
! [A2: set_a] :
( ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ A2 ) )
=> ( finite_finite_a @ A2 ) ) ).
% card_ge_0_finite
thf(fact_1035_card__ge__0__finite,axiom,
! [A2: set_nat] :
( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A2 ) )
=> ( finite_finite_nat @ A2 ) ) ).
% card_ge_0_finite
thf(fact_1036_card__less__sym__Diff,axiom,
! [A2: set_Product_unit,B: set_Product_unit] :
( ( finite4290736615968046902t_unit @ A2 )
=> ( ( finite4290736615968046902t_unit @ B )
=> ( ( ord_less_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B ) )
=> ( ord_less_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ B ) ) @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ B @ A2 ) ) ) ) ) ) ).
% card_less_sym_Diff
thf(fact_1037_card__less__sym__Diff,axiom,
! [A2: set_nat,B: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( finite_finite_nat @ B )
=> ( ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) )
=> ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ B @ A2 ) ) ) ) ) ) ).
% card_less_sym_Diff
thf(fact_1038_card__less__sym__Diff,axiom,
! [A2: set_a,B: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( finite_finite_a @ B )
=> ( ( ord_less_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) )
=> ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) ) @ ( finite_card_a @ ( minus_minus_set_a @ B @ A2 ) ) ) ) ) ) ).
% card_less_sym_Diff
thf(fact_1039_arg__min__if__finite_I2_J,axiom,
! [S: set_nat,F: nat > nat] :
( ( finite_finite_nat @ S )
=> ( ( S != bot_bot_set_nat )
=> ~ ? [X5: nat] :
( ( member_nat @ X5 @ S )
& ( ord_less_nat @ ( F @ X5 ) @ ( F @ ( lattic7446932960582359483at_nat @ F @ S ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1040_arg__min__if__finite_I2_J,axiom,
! [S: set_a,F: a > nat] :
( ( finite_finite_a @ S )
=> ( ( S != bot_bot_set_a )
=> ~ ? [X5: a] :
( ( member_a @ X5 @ S )
& ( ord_less_nat @ ( F @ X5 ) @ ( F @ ( lattic6340287419671400565_a_nat @ F @ S ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_1041_card__gt__0__iff,axiom,
! [A2: set_Product_unit] :
( ( ord_less_nat @ zero_zero_nat @ ( finite410649719033368117t_unit @ A2 ) )
= ( ( A2 != bot_bo3957492148770167129t_unit )
& ( finite4290736615968046902t_unit @ A2 ) ) ) ).
% card_gt_0_iff
thf(fact_1042_card__gt__0__iff,axiom,
! [A2: set_nat] :
( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A2 ) )
= ( ( A2 != bot_bot_set_nat )
& ( finite_finite_nat @ A2 ) ) ) ).
% card_gt_0_iff
thf(fact_1043_card__gt__0__iff,axiom,
! [A2: set_a] :
( ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ A2 ) )
= ( ( A2 != bot_bot_set_a )
& ( finite_finite_a @ A2 ) ) ) ).
% card_gt_0_iff
thf(fact_1044_card__Diff1__less__iff,axiom,
! [A2: set_Product_unit,X: product_unit] :
( ( ord_less_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) ) @ ( finite410649719033368117t_unit @ A2 ) )
= ( ( finite4290736615968046902t_unit @ A2 )
& ( member_Product_unit @ X @ A2 ) ) ) ).
% card_Diff1_less_iff
thf(fact_1045_card__Diff1__less__iff,axiom,
! [A2: set_nat,X: nat] :
( ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) )
= ( ( finite_finite_nat @ A2 )
& ( member_nat @ X @ A2 ) ) ) ).
% card_Diff1_less_iff
thf(fact_1046_card__Diff1__less__iff,axiom,
! [A2: set_a,X: a] :
( ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) )
= ( ( finite_finite_a @ A2 )
& ( member_a @ X @ A2 ) ) ) ).
% card_Diff1_less_iff
thf(fact_1047_card__Diff2__less,axiom,
! [A2: set_Product_unit,X: product_unit,Y: product_unit] :
( ( finite4290736615968046902t_unit @ A2 )
=> ( ( member_Product_unit @ X @ A2 )
=> ( ( member_Product_unit @ Y @ A2 )
=> ( ord_less_nat @ ( finite410649719033368117t_unit @ ( minus_6452836326544984404t_unit @ ( minus_6452836326544984404t_unit @ A2 @ ( insert_Product_unit @ X @ bot_bo3957492148770167129t_unit ) ) @ ( insert_Product_unit @ Y @ bot_bo3957492148770167129t_unit ) ) ) @ ( finite410649719033368117t_unit @ A2 ) ) ) ) ) ).
% card_Diff2_less
thf(fact_1048_card__Diff2__less,axiom,
! [A2: set_nat,X: nat,Y: nat] :
( ( finite_finite_nat @ A2 )
=> ( ( member_nat @ X @ A2 )
=> ( ( member_nat @ Y @ A2 )
=> ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ ( insert_nat @ Y @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ) ) ) ).
% card_Diff2_less
thf(fact_1049_card__Diff2__less,axiom,
! [A2: set_a,X: a,Y: a] :
( ( finite_finite_a @ A2 )
=> ( ( member_a @ X @ A2 )
=> ( ( member_a @ Y @ A2 )
=> ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( insert_a @ Y @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ) ).
% card_Diff2_less
thf(fact_1050_nat__descend__induct,axiom,
! [N2: nat,P: nat > $o,M4: nat] :
( ! [K2: nat] :
( ( ord_less_nat @ N2 @ K2 )
=> ( P @ K2 ) )
=> ( ! [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N2 )
=> ( ! [I3: nat] :
( ( ord_less_nat @ K2 @ I3 )
=> ( P @ I3 ) )
=> ( P @ K2 ) ) )
=> ( P @ M4 ) ) ) ).
% nat_descend_induct
thf(fact_1051_complete__interval,axiom,
! [A: nat,B4: nat,P: nat > $o] :
( ( ord_less_nat @ A @ B4 )
=> ( ( P @ A )
=> ( ~ ( P @ B4 )
=> ? [C5: nat] :
( ( ord_less_eq_nat @ A @ C5 )
& ( ord_less_eq_nat @ C5 @ B4 )
& ! [X5: nat] :
( ( ( ord_less_eq_nat @ A @ X5 )
& ( ord_less_nat @ X5 @ C5 ) )
=> ( P @ X5 ) )
& ! [D3: nat] :
( ! [X3: nat] :
( ( ( ord_less_eq_nat @ A @ X3 )
& ( ord_less_nat @ X3 @ D3 ) )
=> ( P @ X3 ) )
=> ( ord_less_eq_nat @ D3 @ C5 ) ) ) ) ) ) ).
% complete_interval
thf(fact_1052_psubsetI,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( A2 != B )
=> ( ord_less_set_a @ A2 @ B ) ) ) ).
% psubsetI
thf(fact_1053_not__psubset__empty,axiom,
! [A2: set_a] :
~ ( ord_less_set_a @ A2 @ bot_bot_set_a ) ).
% not_psubset_empty
thf(fact_1054_psubset__imp__ex__mem,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_set_a @ A2 @ B )
=> ? [B2: a] : ( member_a @ B2 @ ( minus_minus_set_a @ B @ A2 ) ) ) ).
% psubset_imp_ex_mem
thf(fact_1055_finite__psubset__induct,axiom,
! [A2: set_a,P: set_a > $o] :
( ( finite_finite_a @ A2 )
=> ( ! [A8: set_a] :
( ( finite_finite_a @ A8 )
=> ( ! [B10: set_a] :
( ( ord_less_set_a @ B10 @ A8 )
=> ( P @ B10 ) )
=> ( P @ A8 ) ) )
=> ( P @ A2 ) ) ) ).
% finite_psubset_induct
thf(fact_1056_finite__psubset__induct,axiom,
! [A2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A2 )
=> ( ! [A8: set_nat] :
( ( finite_finite_nat @ A8 )
=> ( ! [B10: set_nat] :
( ( ord_less_set_nat @ B10 @ A8 )
=> ( P @ B10 ) )
=> ( P @ A8 ) ) )
=> ( P @ A2 ) ) ) ).
% finite_psubset_induct
thf(fact_1057_subset__iff__psubset__eq,axiom,
( ord_less_eq_set_a
= ( ^ [A6: set_a,B6: set_a] :
( ( ord_less_set_a @ A6 @ B6 )
| ( A6 = B6 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_1058_subset__psubset__trans,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_set_a @ B @ C )
=> ( ord_less_set_a @ A2 @ C ) ) ) ).
% subset_psubset_trans
thf(fact_1059_subset__not__subset__eq,axiom,
( ord_less_set_a
= ( ^ [A6: set_a,B6: set_a] :
( ( ord_less_eq_set_a @ A6 @ B6 )
& ~ ( ord_less_eq_set_a @ B6 @ A6 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_1060_psubset__subset__trans,axiom,
! [A2: set_a,B: set_a,C: set_a] :
( ( ord_less_set_a @ A2 @ B )
=> ( ( ord_less_eq_set_a @ B @ C )
=> ( ord_less_set_a @ A2 @ C ) ) ) ).
% psubset_subset_trans
thf(fact_1061_psubset__imp__subset,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_set_a @ A2 @ B )
=> ( ord_less_eq_set_a @ A2 @ B ) ) ).
% psubset_imp_subset
thf(fact_1062_psubset__eq,axiom,
( ord_less_set_a
= ( ^ [A6: set_a,B6: set_a] :
( ( ord_less_eq_set_a @ A6 @ B6 )
& ( A6 != B6 ) ) ) ) ).
% psubset_eq
thf(fact_1063_psubsetE,axiom,
! [A2: set_a,B: set_a] :
( ( ord_less_set_a @ A2 @ B )
=> ~ ( ( ord_less_eq_set_a @ A2 @ B )
=> ( ord_less_eq_set_a @ B @ A2 ) ) ) ).
% psubsetE
thf(fact_1064_psubset__card__mono,axiom,
! [B: set_Product_unit,A2: set_Product_unit] :
( ( finite4290736615968046902t_unit @ B )
=> ( ( ord_le8056459307392131481t_unit @ A2 @ B )
=> ( ord_less_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B ) ) ) ) ).
% psubset_card_mono
thf(fact_1065_psubset__card__mono,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_set_a @ A2 @ B )
=> ( ord_less_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) ) ) ).
% psubset_card_mono
thf(fact_1066_psubset__card__mono,axiom,
! [B: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_set_nat @ A2 @ B )
=> ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) ) ) ) ).
% psubset_card_mono
thf(fact_1067_finite__induct__select,axiom,
! [S: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ S )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [T3: set_nat] :
( ( ord_less_set_nat @ T3 @ S )
=> ( ( P @ T3 )
=> ? [X5: nat] :
( ( member_nat @ X5 @ ( minus_minus_set_nat @ S @ T3 ) )
& ( P @ ( insert_nat @ X5 @ T3 ) ) ) ) )
=> ( P @ S ) ) ) ) ).
% finite_induct_select
thf(fact_1068_finite__induct__select,axiom,
! [S: set_a,P: set_a > $o] :
( ( finite_finite_a @ S )
=> ( ( P @ bot_bot_set_a )
=> ( ! [T3: set_a] :
( ( ord_less_set_a @ T3 @ S )
=> ( ( P @ T3 )
=> ? [X5: a] :
( ( member_a @ X5 @ ( minus_minus_set_a @ S @ T3 ) )
& ( P @ ( insert_a @ X5 @ T3 ) ) ) ) )
=> ( P @ S ) ) ) ) ).
% finite_induct_select
thf(fact_1069_psubset__insert__iff,axiom,
! [A2: set_a,X: a,B: set_a] :
( ( ord_less_set_a @ A2 @ ( insert_a @ X @ B ) )
= ( ( ( member_a @ X @ B )
=> ( ord_less_set_a @ A2 @ B ) )
& ( ~ ( member_a @ X @ B )
=> ( ( ( member_a @ X @ A2 )
=> ( ord_less_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B ) )
& ( ~ ( member_a @ X @ A2 )
=> ( ord_less_eq_set_a @ A2 @ B ) ) ) ) ) ) ).
% psubset_insert_iff
thf(fact_1070_card__psubset,axiom,
! [B: set_Product_unit,A2: set_Product_unit] :
( ( finite4290736615968046902t_unit @ B )
=> ( ( ord_le3507040750410214029t_unit @ A2 @ B )
=> ( ( ord_less_nat @ ( finite410649719033368117t_unit @ A2 ) @ ( finite410649719033368117t_unit @ B ) )
=> ( ord_le8056459307392131481t_unit @ A2 @ B ) ) ) ) ).
% card_psubset
thf(fact_1071_card__psubset,axiom,
! [B: set_nat,A2: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ A2 @ B )
=> ( ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) )
=> ( ord_less_set_nat @ A2 @ B ) ) ) ) ).
% card_psubset
thf(fact_1072_card__psubset,axiom,
! [B: set_a,A2: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A2 @ B )
=> ( ( ord_less_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) )
=> ( ord_less_set_a @ A2 @ B ) ) ) ) ).
% card_psubset
thf(fact_1073_minf_I8_J,axiom,
! [T4: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z2 )
=> ~ ( ord_less_eq_nat @ T4 @ X5 ) ) ).
% minf(8)
thf(fact_1074_minf_I6_J,axiom,
! [T4: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ X5 @ Z2 )
=> ( ord_less_eq_nat @ X5 @ T4 ) ) ).
% minf(6)
thf(fact_1075_psubsetD,axiom,
! [A2: set_a,B: set_a,C2: a] :
( ( ord_less_set_a @ A2 @ B )
=> ( ( member_a @ C2 @ A2 )
=> ( member_a @ C2 @ B ) ) ) ).
% psubsetD
thf(fact_1076_pinf_I6_J,axiom,
! [T4: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z2 @ X5 )
=> ~ ( ord_less_eq_nat @ X5 @ T4 ) ) ).
% pinf(6)
thf(fact_1077_pinf_I8_J,axiom,
! [T4: nat] :
? [Z2: nat] :
! [X5: nat] :
( ( ord_less_nat @ Z2 @ X5 )
=> ( ord_less_eq_nat @ T4 @ X5 ) ) ).
% pinf(8)
thf(fact_1078_verit__comp__simplify1_I3_J,axiom,
! [B11: nat,A10: nat] :
( ( ~ ( ord_less_eq_nat @ B11 @ A10 ) )
= ( ord_less_nat @ A10 @ B11 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1079_card__range__greater__zero,axiom,
! [F: a > a] :
( ( finite_finite_a @ ( image_a_a @ F @ top_top_set_a ) )
=> ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ ( image_a_a @ F @ top_top_set_a ) ) ) ) ).
% card_range_greater_zero
thf(fact_1080_card__range__greater__zero,axiom,
! [F: product_unit > product_unit] :
( ( finite4290736615968046902t_unit @ ( image_405062704495631173t_unit @ F @ top_to1996260823553986621t_unit ) )
=> ( ord_less_nat @ zero_zero_nat @ ( finite410649719033368117t_unit @ ( image_405062704495631173t_unit @ F @ top_to1996260823553986621t_unit ) ) ) ) ).
% card_range_greater_zero
thf(fact_1081_card__range__greater__zero,axiom,
! [F: product_unit > a] :
( ( finite_finite_a @ ( image_Product_unit_a @ F @ top_to1996260823553986621t_unit ) )
=> ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ ( image_Product_unit_a @ F @ top_to1996260823553986621t_unit ) ) ) ) ).
% card_range_greater_zero
thf(fact_1082_card__range__greater__zero,axiom,
! [F: product_unit > nat] :
( ( finite_finite_nat @ ( image_875570014554754200it_nat @ F @ top_to1996260823553986621t_unit ) )
=> ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ ( image_875570014554754200it_nat @ F @ top_to1996260823553986621t_unit ) ) ) ) ).
% card_range_greater_zero
thf(fact_1083_card__range__greater__zero,axiom,
! [F: nat > product_unit] :
( ( finite4290736615968046902t_unit @ ( image_8730104196221521654t_unit @ F @ top_top_set_nat ) )
=> ( ord_less_nat @ zero_zero_nat @ ( finite410649719033368117t_unit @ ( image_8730104196221521654t_unit @ F @ top_top_set_nat ) ) ) ) ).
% card_range_greater_zero
thf(fact_1084_card__range__greater__zero,axiom,
! [F: nat > a] :
( ( finite_finite_a @ ( image_nat_a @ F @ top_top_set_nat ) )
=> ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ ( image_nat_a @ F @ top_top_set_nat ) ) ) ) ).
% card_range_greater_zero
thf(fact_1085_card__range__greater__zero,axiom,
! [F: nat > nat] :
( ( finite_finite_nat @ ( image_nat_nat @ F @ top_top_set_nat ) )
=> ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ ( image_nat_nat @ F @ top_top_set_nat ) ) ) ) ).
% card_range_greater_zero
thf(fact_1086_UNIV__I,axiom,
! [X: a] : ( member_a @ X @ top_top_set_a ) ).
% UNIV_I
thf(fact_1087_UNIV__I,axiom,
! [X: product_unit] : ( member_Product_unit @ X @ top_to1996260823553986621t_unit ) ).
% UNIV_I
thf(fact_1088_UNIV__I,axiom,
! [X: nat] : ( member_nat @ X @ top_top_set_nat ) ).
% UNIV_I
thf(fact_1089_card__UNIV__unit,axiom,
( ( finite410649719033368117t_unit @ top_to1996260823553986621t_unit )
= one_one_nat ) ).
% card_UNIV_unit
thf(fact_1090_finite__Plus__UNIV__iff,axiom,
( ( finite51705147264084924um_a_a @ top_to8848906000605539851um_a_a )
= ( ( finite_finite_a @ top_top_set_a )
& ( finite_finite_a @ top_top_set_a ) ) ) ).
% finite_Plus_UNIV_iff
thf(fact_1091_finite__Plus__UNIV__iff,axiom,
( ( finite2069262655233506379t_unit @ top_to1755696212014396186t_unit )
= ( ( finite_finite_a @ top_top_set_a )
& ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit ) ) ) ).
% finite_Plus_UNIV_iff
thf(fact_1092_finite__Plus__UNIV__iff,axiom,
( ( finite502105017643426984_a_nat @ top_to795618464972521135_a_nat )
= ( ( finite_finite_a @ top_top_set_a )
& ( finite_finite_nat @ top_top_set_nat ) ) ) ).
% finite_Plus_UNIV_iff
thf(fact_1093_finite__Plus__UNIV__iff,axiom,
( ( finite1276461556078370925unit_a @ top_to5559247480540603964unit_a )
= ( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
& ( finite_finite_a @ top_top_set_a ) ) ) ).
% finite_Plus_UNIV_iff
thf(fact_1094_finite__Plus__UNIV__iff,axiom,
( ( finite3146551501593861116t_unit @ top_to2771918933716375115t_unit )
= ( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
& ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit ) ) ) ).
% finite_Plus_UNIV_iff
thf(fact_1095_finite__Plus__UNIV__iff,axiom,
( ( finite4401952911629260215it_nat @ top_to2894617605782473790it_nat )
= ( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
& ( finite_finite_nat @ top_top_set_nat ) ) ) ).
% finite_Plus_UNIV_iff
thf(fact_1096_finite__Plus__UNIV__iff,axiom,
( ( finite3740268481367103950_nat_a @ top_to54524901450547413_nat_a )
= ( ( finite_finite_nat @ top_top_set_nat )
& ( finite_finite_a @ top_top_set_a ) ) ) ).
% finite_Plus_UNIV_iff
thf(fact_1097_finite__Plus__UNIV__iff,axiom,
( ( finite4327512606132785245t_unit @ top_to5465250082899874788t_unit )
= ( ( finite_finite_nat @ top_top_set_nat )
& ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit ) ) ) ).
% finite_Plus_UNIV_iff
thf(fact_1098_finite__Plus__UNIV__iff,axiom,
( ( finite6187706683773761046at_nat @ top_to6661820994512907621at_nat )
= ( ( finite_finite_nat @ top_top_set_nat )
& ( finite_finite_nat @ top_top_set_nat ) ) ) ).
% finite_Plus_UNIV_iff
thf(fact_1099_inf__top__left,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ top_top_set_a @ X )
= X ) ).
% inf_top_left
thf(fact_1100_inf__top__left,axiom,
! [X: set_Product_unit] :
( ( inf_in4660618365625256667t_unit @ top_to1996260823553986621t_unit @ X )
= X ) ).
% inf_top_left
thf(fact_1101_inf__top__left,axiom,
! [X: set_nat] :
( ( inf_inf_set_nat @ top_top_set_nat @ X )
= X ) ).
% inf_top_left
thf(fact_1102_inf__top__right,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ top_top_set_a )
= X ) ).
% inf_top_right
thf(fact_1103_inf__top__right,axiom,
! [X: set_Product_unit] :
( ( inf_in4660618365625256667t_unit @ X @ top_to1996260823553986621t_unit )
= X ) ).
% inf_top_right
thf(fact_1104_inf__top__right,axiom,
! [X: set_nat] :
( ( inf_inf_set_nat @ X @ top_top_set_nat )
= X ) ).
% inf_top_right
thf(fact_1105_inf__eq__top__iff,axiom,
! [X: set_a,Y: set_a] :
( ( ( inf_inf_set_a @ X @ Y )
= top_top_set_a )
= ( ( X = top_top_set_a )
& ( Y = top_top_set_a ) ) ) ).
% inf_eq_top_iff
thf(fact_1106_inf__eq__top__iff,axiom,
! [X: set_Product_unit,Y: set_Product_unit] :
( ( ( inf_in4660618365625256667t_unit @ X @ Y )
= top_to1996260823553986621t_unit )
= ( ( X = top_to1996260823553986621t_unit )
& ( Y = top_to1996260823553986621t_unit ) ) ) ).
% inf_eq_top_iff
thf(fact_1107_inf__eq__top__iff,axiom,
! [X: set_nat,Y: set_nat] :
( ( ( inf_inf_set_nat @ X @ Y )
= top_top_set_nat )
= ( ( X = top_top_set_nat )
& ( Y = top_top_set_nat ) ) ) ).
% inf_eq_top_iff
thf(fact_1108_top__eq__inf__iff,axiom,
! [X: set_a,Y: set_a] :
( ( top_top_set_a
= ( inf_inf_set_a @ X @ Y ) )
= ( ( X = top_top_set_a )
& ( Y = top_top_set_a ) ) ) ).
% top_eq_inf_iff
thf(fact_1109_top__eq__inf__iff,axiom,
! [X: set_Product_unit,Y: set_Product_unit] :
( ( top_to1996260823553986621t_unit
= ( inf_in4660618365625256667t_unit @ X @ Y ) )
= ( ( X = top_to1996260823553986621t_unit )
& ( Y = top_to1996260823553986621t_unit ) ) ) ).
% top_eq_inf_iff
thf(fact_1110_top__eq__inf__iff,axiom,
! [X: set_nat,Y: set_nat] :
( ( top_top_set_nat
= ( inf_inf_set_nat @ X @ Y ) )
= ( ( X = top_top_set_nat )
& ( Y = top_top_set_nat ) ) ) ).
% top_eq_inf_iff
thf(fact_1111_inf__top_Oeq__neutr__iff,axiom,
! [A: set_a,B4: set_a] :
( ( ( inf_inf_set_a @ A @ B4 )
= top_top_set_a )
= ( ( A = top_top_set_a )
& ( B4 = top_top_set_a ) ) ) ).
% inf_top.eq_neutr_iff
thf(fact_1112_inf__top_Oeq__neutr__iff,axiom,
! [A: set_Product_unit,B4: set_Product_unit] :
( ( ( inf_in4660618365625256667t_unit @ A @ B4 )
= top_to1996260823553986621t_unit )
= ( ( A = top_to1996260823553986621t_unit )
& ( B4 = top_to1996260823553986621t_unit ) ) ) ).
% inf_top.eq_neutr_iff
thf(fact_1113_inf__top_Oeq__neutr__iff,axiom,
! [A: set_nat,B4: set_nat] :
( ( ( inf_inf_set_nat @ A @ B4 )
= top_top_set_nat )
= ( ( A = top_top_set_nat )
& ( B4 = top_top_set_nat ) ) ) ).
% inf_top.eq_neutr_iff
thf(fact_1114_inf__top_Oleft__neutral,axiom,
! [A: set_a] :
( ( inf_inf_set_a @ top_top_set_a @ A )
= A ) ).
% inf_top.left_neutral
thf(fact_1115_inf__top_Oleft__neutral,axiom,
! [A: set_Product_unit] :
( ( inf_in4660618365625256667t_unit @ top_to1996260823553986621t_unit @ A )
= A ) ).
% inf_top.left_neutral
thf(fact_1116_inf__top_Oleft__neutral,axiom,
! [A: set_nat] :
( ( inf_inf_set_nat @ top_top_set_nat @ A )
= A ) ).
% inf_top.left_neutral
thf(fact_1117_inf__top_Oneutr__eq__iff,axiom,
! [A: set_a,B4: set_a] :
( ( top_top_set_a
= ( inf_inf_set_a @ A @ B4 ) )
= ( ( A = top_top_set_a )
& ( B4 = top_top_set_a ) ) ) ).
% inf_top.neutr_eq_iff
thf(fact_1118_inf__top_Oneutr__eq__iff,axiom,
! [A: set_Product_unit,B4: set_Product_unit] :
( ( top_to1996260823553986621t_unit
= ( inf_in4660618365625256667t_unit @ A @ B4 ) )
= ( ( A = top_to1996260823553986621t_unit )
& ( B4 = top_to1996260823553986621t_unit ) ) ) ).
% inf_top.neutr_eq_iff
thf(fact_1119_inf__top_Oneutr__eq__iff,axiom,
! [A: set_nat,B4: set_nat] :
( ( top_top_set_nat
= ( inf_inf_set_nat @ A @ B4 ) )
= ( ( A = top_top_set_nat )
& ( B4 = top_top_set_nat ) ) ) ).
% inf_top.neutr_eq_iff
thf(fact_1120_inf__top_Oright__neutral,axiom,
! [A: set_a] :
( ( inf_inf_set_a @ A @ top_top_set_a )
= A ) ).
% inf_top.right_neutral
thf(fact_1121_inf__top_Oright__neutral,axiom,
! [A: set_Product_unit] :
( ( inf_in4660618365625256667t_unit @ A @ top_to1996260823553986621t_unit )
= A ) ).
% inf_top.right_neutral
thf(fact_1122_inf__top_Oright__neutral,axiom,
! [A: set_nat] :
( ( inf_inf_set_nat @ A @ top_top_set_nat )
= A ) ).
% inf_top.right_neutral
thf(fact_1123_boolean__algebra_Odisj__one__right,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ X @ top_top_set_a )
= top_top_set_a ) ).
% boolean_algebra.disj_one_right
thf(fact_1124_boolean__algebra_Odisj__one__right,axiom,
! [X: set_Product_unit] :
( ( sup_su793286257634532545t_unit @ X @ top_to1996260823553986621t_unit )
= top_to1996260823553986621t_unit ) ).
% boolean_algebra.disj_one_right
thf(fact_1125_boolean__algebra_Odisj__one__right,axiom,
! [X: set_nat] :
( ( sup_sup_set_nat @ X @ top_top_set_nat )
= top_top_set_nat ) ).
% boolean_algebra.disj_one_right
thf(fact_1126_boolean__algebra_Odisj__one__left,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ top_top_set_a @ X )
= top_top_set_a ) ).
% boolean_algebra.disj_one_left
thf(fact_1127_boolean__algebra_Odisj__one__left,axiom,
! [X: set_Product_unit] :
( ( sup_su793286257634532545t_unit @ top_to1996260823553986621t_unit @ X )
= top_to1996260823553986621t_unit ) ).
% boolean_algebra.disj_one_left
thf(fact_1128_boolean__algebra_Odisj__one__left,axiom,
! [X: set_nat] :
( ( sup_sup_set_nat @ top_top_set_nat @ X )
= top_top_set_nat ) ).
% boolean_algebra.disj_one_left
thf(fact_1129_sup__top__right,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ X @ top_top_set_a )
= top_top_set_a ) ).
% sup_top_right
thf(fact_1130_sup__top__right,axiom,
! [X: set_Product_unit] :
( ( sup_su793286257634532545t_unit @ X @ top_to1996260823553986621t_unit )
= top_to1996260823553986621t_unit ) ).
% sup_top_right
thf(fact_1131_sup__top__right,axiom,
! [X: set_nat] :
( ( sup_sup_set_nat @ X @ top_top_set_nat )
= top_top_set_nat ) ).
% sup_top_right
thf(fact_1132_sup__top__left,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ top_top_set_a @ X )
= top_top_set_a ) ).
% sup_top_left
thf(fact_1133_sup__top__left,axiom,
! [X: set_Product_unit] :
( ( sup_su793286257634532545t_unit @ top_to1996260823553986621t_unit @ X )
= top_to1996260823553986621t_unit ) ).
% sup_top_left
thf(fact_1134_sup__top__left,axiom,
! [X: set_nat] :
( ( sup_sup_set_nat @ top_top_set_nat @ X )
= top_top_set_nat ) ).
% sup_top_left
thf(fact_1135_Int__UNIV,axiom,
! [A2: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A2 @ B )
= top_top_set_a )
= ( ( A2 = top_top_set_a )
& ( B = top_top_set_a ) ) ) ).
% Int_UNIV
thf(fact_1136_Int__UNIV,axiom,
! [A2: set_Product_unit,B: set_Product_unit] :
( ( ( inf_in4660618365625256667t_unit @ A2 @ B )
= top_to1996260823553986621t_unit )
= ( ( A2 = top_to1996260823553986621t_unit )
& ( B = top_to1996260823553986621t_unit ) ) ) ).
% Int_UNIV
thf(fact_1137_Int__UNIV,axiom,
! [A2: set_nat,B: set_nat] :
( ( ( inf_inf_set_nat @ A2 @ B )
= top_top_set_nat )
= ( ( A2 = top_top_set_nat )
& ( B = top_top_set_nat ) ) ) ).
% Int_UNIV
thf(fact_1138_Diff__UNIV,axiom,
! [A2: set_Product_unit] :
( ( minus_6452836326544984404t_unit @ A2 @ top_to1996260823553986621t_unit )
= bot_bo3957492148770167129t_unit ) ).
% Diff_UNIV
thf(fact_1139_Diff__UNIV,axiom,
! [A2: set_nat] :
( ( minus_minus_set_nat @ A2 @ top_top_set_nat )
= bot_bot_set_nat ) ).
% Diff_UNIV
thf(fact_1140_Diff__UNIV,axiom,
! [A2: set_a] :
( ( minus_minus_set_a @ A2 @ top_top_set_a )
= bot_bot_set_a ) ).
% Diff_UNIV
thf(fact_1141_top_Oextremum__strict,axiom,
! [A: set_Product_unit] :
~ ( ord_le8056459307392131481t_unit @ top_to1996260823553986621t_unit @ A ) ).
% top.extremum_strict
thf(fact_1142_top_Oextremum__strict,axiom,
! [A: set_nat] :
~ ( ord_less_set_nat @ top_top_set_nat @ A ) ).
% top.extremum_strict
thf(fact_1143_top_Onot__eq__extremum,axiom,
! [A: set_Product_unit] :
( ( A != top_to1996260823553986621t_unit )
= ( ord_le8056459307392131481t_unit @ A @ top_to1996260823553986621t_unit ) ) ).
% top.not_eq_extremum
thf(fact_1144_top_Onot__eq__extremum,axiom,
! [A: set_nat] :
( ( A != top_top_set_nat )
= ( ord_less_set_nat @ A @ top_top_set_nat ) ) ).
% top.not_eq_extremum
thf(fact_1145_subset__UNIV,axiom,
! [A2: set_Product_unit] : ( ord_le3507040750410214029t_unit @ A2 @ top_to1996260823553986621t_unit ) ).
% subset_UNIV
thf(fact_1146_subset__UNIV,axiom,
! [A2: set_nat] : ( ord_less_eq_set_nat @ A2 @ top_top_set_nat ) ).
% subset_UNIV
thf(fact_1147_subset__UNIV,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ top_top_set_a ) ).
% subset_UNIV
thf(fact_1148_top_Oextremum__uniqueI,axiom,
! [A: set_Product_unit] :
( ( ord_le3507040750410214029t_unit @ top_to1996260823553986621t_unit @ A )
=> ( A = top_to1996260823553986621t_unit ) ) ).
% top.extremum_uniqueI
thf(fact_1149_top_Oextremum__uniqueI,axiom,
! [A: set_nat] :
( ( ord_less_eq_set_nat @ top_top_set_nat @ A )
=> ( A = top_top_set_nat ) ) ).
% top.extremum_uniqueI
thf(fact_1150_top_Oextremum__uniqueI,axiom,
! [A: set_a] :
( ( ord_less_eq_set_a @ top_top_set_a @ A )
=> ( A = top_top_set_a ) ) ).
% top.extremum_uniqueI
thf(fact_1151_top_Oextremum__unique,axiom,
! [A: set_Product_unit] :
( ( ord_le3507040750410214029t_unit @ top_to1996260823553986621t_unit @ A )
= ( A = top_to1996260823553986621t_unit ) ) ).
% top.extremum_unique
thf(fact_1152_top_Oextremum__unique,axiom,
! [A: set_nat] :
( ( ord_less_eq_set_nat @ top_top_set_nat @ A )
= ( A = top_top_set_nat ) ) ).
% top.extremum_unique
thf(fact_1153_top_Oextremum__unique,axiom,
! [A: set_a] :
( ( ord_less_eq_set_a @ top_top_set_a @ A )
= ( A = top_top_set_a ) ) ).
% top.extremum_unique
thf(fact_1154_top__greatest,axiom,
! [A: set_Product_unit] : ( ord_le3507040750410214029t_unit @ A @ top_to1996260823553986621t_unit ) ).
% top_greatest
thf(fact_1155_top__greatest,axiom,
! [A: set_nat] : ( ord_less_eq_set_nat @ A @ top_top_set_nat ) ).
% top_greatest
thf(fact_1156_top__greatest,axiom,
! [A: set_a] : ( ord_less_eq_set_a @ A @ top_top_set_a ) ).
% top_greatest
thf(fact_1157_finite__Prod__UNIV,axiom,
( ( finite_finite_a @ top_top_set_a )
=> ( ( finite_finite_a @ top_top_set_a )
=> ( finite6544458595007987280od_a_a @ top_to8063371432257647191od_a_a ) ) ) ).
% finite_Prod_UNIV
thf(fact_1158_finite__Prod__UNIV,axiom,
( ( finite_finite_a @ top_top_set_a )
=> ( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
=> ( finite1408885517383445215t_unit @ top_to6636102223169616742t_unit ) ) ) ).
% finite_Prod_UNIV
thf(fact_1159_finite__Prod__UNIV,axiom,
( ( finite_finite_a @ top_top_set_a )
=> ( ( finite_finite_nat @ top_top_set_nat )
=> ( finite6644898363146130708_a_nat @ top_to3353692345378799459_a_nat ) ) ) ).
% finite_Prod_UNIV
thf(fact_1160_finite__Prod__UNIV,axiom,
( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
=> ( ( finite_finite_a @ top_top_set_a )
=> ( finite616084418228309761unit_a @ top_to1216281454841048712unit_a ) ) ) ).
% finite_Prod_UNIV
thf(fact_1161_finite__Prod__UNIV,axiom,
( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
=> ( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
=> ( finite6816719414181127824t_unit @ top_to1835807148980544151t_unit ) ) ) ).
% finite_Prod_UNIV
thf(fact_1162_finite__Prod__UNIV,axiom,
( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
=> ( ( finite_finite_nat @ top_top_set_nat )
=> ( finite5187522816498166307it_nat @ top_to5974110478112770290it_nat ) ) ) ).
% finite_Prod_UNIV
thf(fact_1163_finite__Prod__UNIV,axiom,
( ( finite_finite_nat @ top_top_set_nat )
=> ( ( finite_finite_a @ top_top_set_a )
=> ( finite659689790015031866_nat_a @ top_to2612598781856825737_nat_a ) ) ) ).
% finite_Prod_UNIV
thf(fact_1164_finite__Prod__UNIV,axiom,
( ( finite_finite_nat @ top_top_set_nat )
=> ( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
=> ( finite5113082511001691337t_unit @ top_to8544742955230171288t_unit ) ) ) ).
% finite_Prod_UNIV
thf(fact_1165_finite__Prod__UNIV,axiom,
( ( finite_finite_nat @ top_top_set_nat )
=> ( ( finite_finite_nat @ top_top_set_nat )
=> ( finite6177210948735845034at_nat @ top_to4669805908274784177at_nat ) ) ) ).
% finite_Prod_UNIV
thf(fact_1166_finite__prod,axiom,
( ( finite6544458595007987280od_a_a @ top_to8063371432257647191od_a_a )
= ( ( finite_finite_a @ top_top_set_a )
& ( finite_finite_a @ top_top_set_a ) ) ) ).
% finite_prod
thf(fact_1167_finite__prod,axiom,
( ( finite1408885517383445215t_unit @ top_to6636102223169616742t_unit )
= ( ( finite_finite_a @ top_top_set_a )
& ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit ) ) ) ).
% finite_prod
thf(fact_1168_finite__prod,axiom,
( ( finite6644898363146130708_a_nat @ top_to3353692345378799459_a_nat )
= ( ( finite_finite_a @ top_top_set_a )
& ( finite_finite_nat @ top_top_set_nat ) ) ) ).
% finite_prod
thf(fact_1169_finite__prod,axiom,
( ( finite616084418228309761unit_a @ top_to1216281454841048712unit_a )
= ( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
& ( finite_finite_a @ top_top_set_a ) ) ) ).
% finite_prod
thf(fact_1170_finite__prod,axiom,
( ( finite6816719414181127824t_unit @ top_to1835807148980544151t_unit )
= ( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
& ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit ) ) ) ).
% finite_prod
thf(fact_1171_finite__prod,axiom,
( ( finite5187522816498166307it_nat @ top_to5974110478112770290it_nat )
= ( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
& ( finite_finite_nat @ top_top_set_nat ) ) ) ).
% finite_prod
thf(fact_1172_finite__prod,axiom,
( ( finite659689790015031866_nat_a @ top_to2612598781856825737_nat_a )
= ( ( finite_finite_nat @ top_top_set_nat )
& ( finite_finite_a @ top_top_set_a ) ) ) ).
% finite_prod
thf(fact_1173_finite__prod,axiom,
( ( finite5113082511001691337t_unit @ top_to8544742955230171288t_unit )
= ( ( finite_finite_nat @ top_top_set_nat )
& ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit ) ) ) ).
% finite_prod
thf(fact_1174_finite__prod,axiom,
( ( finite6177210948735845034at_nat @ top_to4669805908274784177at_nat )
= ( ( finite_finite_nat @ top_top_set_nat )
& ( finite_finite_nat @ top_top_set_nat ) ) ) ).
% finite_prod
thf(fact_1175_Finite__Set_Ofinite__set,axiom,
( ( finite_finite_set_a @ top_top_set_set_a )
= ( finite_finite_a @ top_top_set_a ) ) ).
% Finite_Set.finite_set
thf(fact_1176_Finite__Set_Ofinite__set,axiom,
( ( finite1772178364199683094t_unit @ top_to1767297665138865437t_unit )
= ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit ) ) ).
% Finite_Set.finite_set
thf(fact_1177_Finite__Set_Ofinite__set,axiom,
( ( finite1152437895449049373et_nat @ top_top_set_set_nat )
= ( finite_finite_nat @ top_top_set_nat ) ) ).
% Finite_Set.finite_set
thf(fact_1178_rangeI,axiom,
! [F: a > a,X: a] : ( member_a @ ( F @ X ) @ ( image_a_a @ F @ top_top_set_a ) ) ).
% rangeI
thf(fact_1179_rangeI,axiom,
! [F: product_unit > a,X: product_unit] : ( member_a @ ( F @ X ) @ ( image_Product_unit_a @ F @ top_to1996260823553986621t_unit ) ) ).
% rangeI
thf(fact_1180_rangeI,axiom,
! [F: nat > a,X: nat] : ( member_a @ ( F @ X ) @ ( image_nat_a @ F @ top_top_set_nat ) ) ).
% rangeI
thf(fact_1181_range__eqI,axiom,
! [B4: a,F: a > a,X: a] :
( ( B4
= ( F @ X ) )
=> ( member_a @ B4 @ ( image_a_a @ F @ top_top_set_a ) ) ) ).
% range_eqI
thf(fact_1182_range__eqI,axiom,
! [B4: a,F: product_unit > a,X: product_unit] :
( ( B4
= ( F @ X ) )
=> ( member_a @ B4 @ ( image_Product_unit_a @ F @ top_to1996260823553986621t_unit ) ) ) ).
% range_eqI
thf(fact_1183_range__eqI,axiom,
! [B4: a,F: nat > a,X: nat] :
( ( B4
= ( F @ X ) )
=> ( member_a @ B4 @ ( image_nat_a @ F @ top_top_set_nat ) ) ) ).
% range_eqI
thf(fact_1184_infinite__UNIV__char__0,axiom,
~ ( finite_finite_nat @ top_top_set_nat ) ).
% infinite_UNIV_char_0
thf(fact_1185_ex__new__if__finite,axiom,
! [A2: set_a] :
( ~ ( finite_finite_a @ top_top_set_a )
=> ( ( finite_finite_a @ A2 )
=> ? [A3: a] :
~ ( member_a @ A3 @ A2 ) ) ) ).
% ex_new_if_finite
thf(fact_1186_ex__new__if__finite,axiom,
! [A2: set_Product_unit] :
( ~ ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
=> ( ( finite4290736615968046902t_unit @ A2 )
=> ? [A3: product_unit] :
~ ( member_Product_unit @ A3 @ A2 ) ) ) ).
% ex_new_if_finite
thf(fact_1187_ex__new__if__finite,axiom,
! [A2: set_nat] :
( ~ ( finite_finite_nat @ top_top_set_nat )
=> ( ( finite_finite_nat @ A2 )
=> ? [A3: nat] :
~ ( member_nat @ A3 @ A2 ) ) ) ).
% ex_new_if_finite
thf(fact_1188_finite__UNIV,axiom,
finite4290736615968046902t_unit @ top_to1996260823553986621t_unit ).
% finite_UNIV
thf(fact_1189_insert__UNIV,axiom,
! [X: a] :
( ( insert_a @ X @ top_top_set_a )
= top_top_set_a ) ).
% insert_UNIV
thf(fact_1190_insert__UNIV,axiom,
! [X: product_unit] :
( ( insert_Product_unit @ X @ top_to1996260823553986621t_unit )
= top_to1996260823553986621t_unit ) ).
% insert_UNIV
thf(fact_1191_insert__UNIV,axiom,
! [X: nat] :
( ( insert_nat @ X @ top_top_set_nat )
= top_top_set_nat ) ).
% insert_UNIV
thf(fact_1192_Int__UNIV__left,axiom,
! [B: set_a] :
( ( inf_inf_set_a @ top_top_set_a @ B )
= B ) ).
% Int_UNIV_left
thf(fact_1193_Int__UNIV__left,axiom,
! [B: set_Product_unit] :
( ( inf_in4660618365625256667t_unit @ top_to1996260823553986621t_unit @ B )
= B ) ).
% Int_UNIV_left
thf(fact_1194_Int__UNIV__left,axiom,
! [B: set_nat] :
( ( inf_inf_set_nat @ top_top_set_nat @ B )
= B ) ).
% Int_UNIV_left
thf(fact_1195_Int__UNIV__right,axiom,
! [A2: set_a] :
( ( inf_inf_set_a @ A2 @ top_top_set_a )
= A2 ) ).
% Int_UNIV_right
thf(fact_1196_Int__UNIV__right,axiom,
! [A2: set_Product_unit] :
( ( inf_in4660618365625256667t_unit @ A2 @ top_to1996260823553986621t_unit )
= A2 ) ).
% Int_UNIV_right
thf(fact_1197_Int__UNIV__right,axiom,
! [A2: set_nat] :
( ( inf_inf_set_nat @ A2 @ top_top_set_nat )
= A2 ) ).
% Int_UNIV_right
thf(fact_1198_Un__UNIV__right,axiom,
! [A2: set_a] :
( ( sup_sup_set_a @ A2 @ top_top_set_a )
= top_top_set_a ) ).
% Un_UNIV_right
thf(fact_1199_Un__UNIV__right,axiom,
! [A2: set_Product_unit] :
( ( sup_su793286257634532545t_unit @ A2 @ top_to1996260823553986621t_unit )
= top_to1996260823553986621t_unit ) ).
% Un_UNIV_right
thf(fact_1200_Un__UNIV__right,axiom,
! [A2: set_nat] :
( ( sup_sup_set_nat @ A2 @ top_top_set_nat )
= top_top_set_nat ) ).
% Un_UNIV_right
thf(fact_1201_Un__UNIV__left,axiom,
! [B: set_a] :
( ( sup_sup_set_a @ top_top_set_a @ B )
= top_top_set_a ) ).
% Un_UNIV_left
thf(fact_1202_Un__UNIV__left,axiom,
! [B: set_Product_unit] :
( ( sup_su793286257634532545t_unit @ top_to1996260823553986621t_unit @ B )
= top_to1996260823553986621t_unit ) ).
% Un_UNIV_left
thf(fact_1203_Un__UNIV__left,axiom,
! [B: set_nat] :
( ( sup_sup_set_nat @ top_top_set_nat @ B )
= top_top_set_nat ) ).
% Un_UNIV_left
thf(fact_1204_UNIV__witness,axiom,
? [X3: a] : ( member_a @ X3 @ top_top_set_a ) ).
% UNIV_witness
thf(fact_1205_UNIV__witness,axiom,
? [X3: product_unit] : ( member_Product_unit @ X3 @ top_to1996260823553986621t_unit ) ).
% UNIV_witness
thf(fact_1206_UNIV__witness,axiom,
? [X3: nat] : ( member_nat @ X3 @ top_top_set_nat ) ).
% UNIV_witness
thf(fact_1207_UNIV__eq__I,axiom,
! [A2: set_a] :
( ! [X3: a] : ( member_a @ X3 @ A2 )
=> ( top_top_set_a = A2 ) ) ).
% UNIV_eq_I
thf(fact_1208_UNIV__eq__I,axiom,
! [A2: set_Product_unit] :
( ! [X3: product_unit] : ( member_Product_unit @ X3 @ A2 )
=> ( top_to1996260823553986621t_unit = A2 ) ) ).
% UNIV_eq_I
thf(fact_1209_UNIV__eq__I,axiom,
! [A2: set_nat] :
( ! [X3: nat] : ( member_nat @ X3 @ A2 )
=> ( top_top_set_nat = A2 ) ) ).
% UNIV_eq_I
thf(fact_1210_boolean__algebra_Oconj__one__right,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ top_top_set_a )
= X ) ).
% boolean_algebra.conj_one_right
thf(fact_1211_boolean__algebra_Oconj__one__right,axiom,
! [X: set_Product_unit] :
( ( inf_in4660618365625256667t_unit @ X @ top_to1996260823553986621t_unit )
= X ) ).
% boolean_algebra.conj_one_right
thf(fact_1212_boolean__algebra_Oconj__one__right,axiom,
! [X: set_nat] :
( ( inf_inf_set_nat @ X @ top_top_set_nat )
= X ) ).
% boolean_algebra.conj_one_right
thf(fact_1213_infinite__UNIV__nat,axiom,
~ ( finite_finite_nat @ top_top_set_nat ) ).
% infinite_UNIV_nat
thf(fact_1214_empty__not__UNIV,axiom,
bot_bot_set_a != top_top_set_a ).
% empty_not_UNIV
thf(fact_1215_empty__not__UNIV,axiom,
bot_bo3957492148770167129t_unit != top_to1996260823553986621t_unit ).
% empty_not_UNIV
thf(fact_1216_empty__not__UNIV,axiom,
bot_bot_set_nat != top_top_set_nat ).
% empty_not_UNIV
thf(fact_1217_card__eq__UNIV__imp__eq__UNIV,axiom,
! [A2: set_a] :
( ( finite_finite_a @ top_top_set_a )
=> ( ( ( finite_card_a @ A2 )
= ( finite_card_a @ top_top_set_a ) )
=> ( A2 = top_top_set_a ) ) ) ).
% card_eq_UNIV_imp_eq_UNIV
thf(fact_1218_card__eq__UNIV__imp__eq__UNIV,axiom,
! [A2: set_Product_unit] :
( ( finite4290736615968046902t_unit @ top_to1996260823553986621t_unit )
=> ( ( ( finite410649719033368117t_unit @ A2 )
= ( finite410649719033368117t_unit @ top_to1996260823553986621t_unit ) )
=> ( A2 = top_to1996260823553986621t_unit ) ) ) ).
% card_eq_UNIV_imp_eq_UNIV
thf(fact_1219_card__eq__UNIV__imp__eq__UNIV,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ top_top_set_nat )
=> ( ( ( finite_card_nat @ A2 )
= ( finite_card_nat @ top_top_set_nat ) )
=> ( A2 = top_top_set_nat ) ) ) ).
% card_eq_UNIV_imp_eq_UNIV
thf(fact_1220_range__subsetD,axiom,
! [F: a > a,B: set_a,I: a] :
( ( ord_less_eq_set_a @ ( image_a_a @ F @ top_top_set_a ) @ B )
=> ( member_a @ ( F @ I ) @ B ) ) ).
% range_subsetD
thf(fact_1221_range__subsetD,axiom,
! [F: product_unit > a,B: set_a,I: product_unit] :
( ( ord_less_eq_set_a @ ( image_Product_unit_a @ F @ top_to1996260823553986621t_unit ) @ B )
=> ( member_a @ ( F @ I ) @ B ) ) ).
% range_subsetD
thf(fact_1222_range__subsetD,axiom,
! [F: nat > a,B: set_a,I: nat] :
( ( ord_less_eq_set_a @ ( image_nat_a @ F @ top_top_set_nat ) @ B )
=> ( member_a @ ( F @ I ) @ B ) ) ).
% range_subsetD
thf(fact_1223_boolean__algebra_Ocomplement__unique,axiom,
! [A: set_a,X: set_a,Y: set_a] :
( ( ( inf_inf_set_a @ A @ X )
= bot_bot_set_a )
=> ( ( ( sup_sup_set_a @ A @ X )
= top_top_set_a )
=> ( ( ( inf_inf_set_a @ A @ Y )
= bot_bot_set_a )
=> ( ( ( sup_sup_set_a @ A @ Y )
= top_top_set_a )
=> ( X = Y ) ) ) ) ) ).
% boolean_algebra.complement_unique
thf(fact_1224_boolean__algebra_Ocomplement__unique,axiom,
! [A: set_Product_unit,X: set_Product_unit,Y: set_Product_unit] :
( ( ( inf_in4660618365625256667t_unit @ A @ X )
= bot_bo3957492148770167129t_unit )
=> ( ( ( sup_su793286257634532545t_unit @ A @ X )
= top_to1996260823553986621t_unit )
=> ( ( ( inf_in4660618365625256667t_unit @ A @ Y )
= bot_bo3957492148770167129t_unit )
=> ( ( ( sup_su793286257634532545t_unit @ A @ Y )
= top_to1996260823553986621t_unit )
=> ( X = Y ) ) ) ) ) ).
% boolean_algebra.complement_unique
thf(fact_1225_boolean__algebra_Ocomplement__unique,axiom,
! [A: set_nat,X: set_nat,Y: set_nat] :
( ( ( inf_inf_set_nat @ A @ X )
= bot_bot_set_nat )
=> ( ( ( sup_sup_set_nat @ A @ X )
= top_top_set_nat )
=> ( ( ( inf_inf_set_nat @ A @ Y )
= bot_bot_set_nat )
=> ( ( ( sup_sup_set_nat @ A @ Y )
= top_top_set_nat )
=> ( X = Y ) ) ) ) ) ).
% boolean_algebra.complement_unique
thf(fact_1226_verit__la__disequality,axiom,
! [A: nat,B4: nat] :
( ( A = B4 )
| ~ ( ord_less_eq_nat @ A @ B4 )
| ~ ( ord_less_eq_nat @ B4 @ A ) ) ).
% verit_la_disequality
thf(fact_1227_verit__comp__simplify1_I2_J,axiom,
! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_1228_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_1229_range__eq__singletonD,axiom,
! [F: nat > a,A: a,X: nat] :
( ( ( image_nat_a @ F @ top_top_set_nat )
= ( insert_a @ A @ bot_bot_set_a ) )
=> ( ( F @ X )
= A ) ) ).
% range_eq_singletonD
thf(fact_1230_add__is__0,axiom,
! [M4: nat,N2: nat] :
( ( ( plus_plus_nat @ M4 @ N2 )
= zero_zero_nat )
= ( ( M4 = zero_zero_nat )
& ( N2 = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_1231_Nat_Oadd__0__right,axiom,
! [M4: nat] :
( ( plus_plus_nat @ M4 @ zero_zero_nat )
= M4 ) ).
% Nat.add_0_right
thf(fact_1232_nat__add__left__cancel__less,axiom,
! [K: nat,M4: nat,N2: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M4 ) @ ( plus_plus_nat @ K @ N2 ) )
= ( ord_less_nat @ M4 @ N2 ) ) ).
% nat_add_left_cancel_less
thf(fact_1233_nat__add__left__cancel__le,axiom,
! [K: nat,M4: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M4 ) @ ( plus_plus_nat @ K @ N2 ) )
= ( ord_less_eq_nat @ M4 @ N2 ) ) ).
% nat_add_left_cancel_le
thf(fact_1234_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_1235_add__gr__0,axiom,
! [M4: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M4 @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ M4 )
| ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% add_gr_0
thf(fact_1236_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1237_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1238_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_1239_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_1240_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1241_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_1242_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_1243_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1244_trans__less__add1,axiom,
! [I: nat,J: nat,M4: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M4 ) ) ) ).
% trans_less_add1
thf(fact_1245_trans__less__add2,axiom,
! [I: nat,J: nat,M4: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M4 @ J ) ) ) ).
% trans_less_add2
thf(fact_1246_less__add__eq__less,axiom,
! [K: nat,L: nat,M4: nat,N2: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M4 @ L )
= ( plus_plus_nat @ K @ N2 ) )
=> ( ord_less_nat @ M4 @ N2 ) ) ) ).
% less_add_eq_less
thf(fact_1247_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1248_mono__nat__linear__lb,axiom,
! [F: nat > nat,M4: nat,K: nat] :
( ! [M3: nat,N5: nat] :
( ( ord_less_nat @ M3 @ N5 )
=> ( ord_less_nat @ ( F @ M3 ) @ ( F @ N5 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M4 ) @ K ) @ ( F @ ( plus_plus_nat @ M4 @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1249_add__diff__inverse__nat,axiom,
! [M4: nat,N2: nat] :
( ~ ( ord_less_nat @ M4 @ N2 )
=> ( ( plus_plus_nat @ N2 @ ( minus_minus_nat @ M4 @ N2 ) )
= M4 ) ) ).
% add_diff_inverse_nat
thf(fact_1250_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_1251_add__leE,axiom,
! [M4: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M4 @ K ) @ N2 )
=> ~ ( ( ord_less_eq_nat @ M4 @ N2 )
=> ~ ( ord_less_eq_nat @ K @ N2 ) ) ) ).
% add_leE
thf(fact_1252_le__add1,axiom,
! [N2: nat,M4: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ N2 @ M4 ) ) ).
% le_add1
thf(fact_1253_le__add2,axiom,
! [N2: nat,M4: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ M4 @ N2 ) ) ).
% le_add2
thf(fact_1254_add__leD1,axiom,
! [M4: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M4 @ K ) @ N2 )
=> ( ord_less_eq_nat @ M4 @ N2 ) ) ).
% add_leD1
thf(fact_1255_add__leD2,axiom,
! [M4: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M4 @ K ) @ N2 )
=> ( ord_less_eq_nat @ K @ N2 ) ) ).
% add_leD2
thf(fact_1256_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N5: nat] :
( L
= ( plus_plus_nat @ K @ N5 ) ) ) ).
% le_Suc_ex
thf(fact_1257_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_1258_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_1259_trans__le__add1,axiom,
! [I: nat,J: nat,M4: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M4 ) ) ) ).
% trans_le_add1
thf(fact_1260_trans__le__add2,axiom,
! [I: nat,J: nat,M4: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M4 @ J ) ) ) ).
% trans_le_add2
thf(fact_1261_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N4: nat] :
? [K3: nat] :
( N4
= ( plus_plus_nat @ M2 @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_1262_diff__add__inverse2,axiom,
! [M4: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M4 @ N2 ) @ N2 )
= M4 ) ).
% diff_add_inverse2
thf(fact_1263_diff__add__inverse,axiom,
! [N2: nat,M4: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N2 @ M4 ) @ N2 )
= M4 ) ).
% diff_add_inverse
thf(fact_1264_diff__cancel2,axiom,
! [M4: nat,K: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M4 @ K ) @ ( plus_plus_nat @ N2 @ K ) )
= ( minus_minus_nat @ M4 @ N2 ) ) ).
% diff_cancel2
thf(fact_1265_Nat_Odiff__cancel,axiom,
! [K: nat,M4: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M4 ) @ ( plus_plus_nat @ K @ N2 ) )
= ( minus_minus_nat @ M4 @ N2 ) ) ).
% Nat.diff_cancel
thf(fact_1266_plus__nat_Oadd__0,axiom,
! [N2: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N2 )
= N2 ) ).
% plus_nat.add_0
thf(fact_1267_add__eq__self__zero,axiom,
! [M4: nat,N2: nat] :
( ( ( plus_plus_nat @ M4 @ N2 )
= M4 )
=> ( N2 = zero_zero_nat ) ) ).
% add_eq_self_zero
% Conjectures (1)
thf(conj_0,conjecture,
ord_less_eq_set_a @ ( image_a_a @ ( addition @ b2 ) @ ( inf_inf_set_a @ a2 @ g ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ a2 @ b ) ).
%------------------------------------------------------------------------------