TPTP Problem File: SLH0514^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Risk_Free_Lending/0000_Risk_Free_Lending/prob_01388_044188__6001156_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1359 ( 548 unt;  85 typ;   0 def)
%            Number of atoms       : 3644 (1112 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 10558 ( 270   ~;  78   |; 164   &;8496   @)
%                                         (   0 <=>;1550  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   21 (   7 avg)
%            Number of types       :    9 (   8 usr)
%            Number of type conns  :  386 ( 386   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   80 (  77 usr;  16 con; 0-3 aty)
%            Number of variables   : 3514 ( 227   ^;3248   !;  39   ?;3514   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 15:57:50.856
%------------------------------------------------------------------------------
% Could-be-implicit typings (8)
thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_Mt__Real__Oreal_J_J,type,
    set_nat_real: $tType ).

thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
    set_complex: $tType ).

thf(ty_n_t__Risk____Free____Lending__Oaccount,type,
    risk_Free_account: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Complex__Ocomplex,type,
    complex: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

% Explicit typings (77)
thf(sy_c_Finite__Set_Ofinite_001t__Complex__Ocomplex,type,
    finite3207457112153483333omplex: set_complex > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Risk____Free____Lending__Oaccount,type,
    minus_4846202936726426316ccount: risk_Free_account > risk_Free_account > risk_Free_account ).

thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
    one_one_complex: complex ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Risk____Free____Lending__Oaccount,type,
    plus_p1863581527469039996ccount: risk_Free_account > risk_Free_account > risk_Free_account ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
    times_times_complex: complex > complex > complex ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
    zero_zero_complex: complex ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Risk____Free____Lending__Oaccount,type,
    zero_z1425366712893667068ccount: risk_Free_account ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
    groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Risk____Free____Lending__Oaccount,type,
    ord_le2131251472502387783ccount: risk_Free_account > risk_Free_account > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Real__Oreal_J_J,type,
    ord_le3527643927072297637t_real: set_nat_real > set_nat_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Risk____Free____Lending__Oaccount,type,
    ord_le4245800335709223507ccount: risk_Free_account > risk_Free_account > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Real__Oreal_J_J,type,
    ord_le2908806416726583473t_real: set_nat_real > set_nat_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    ord_le211207098394363844omplex: set_complex > set_complex > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_I_062_It__Nat__Onat_Mt__Real__Oreal_J_M_Eo_J,type,
    top_top_nat_real_o: ( nat > real ) > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Complex__Ocomplex_M_Eo_J,type,
    top_top_complex_o: complex > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Nat__Onat_M_Eo_J,type,
    top_top_nat_o: nat > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Real__Oreal_M_Eo_J,type,
    top_top_real_o: real > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Real__Oreal_J_J,type,
    top_top_set_nat_real: set_nat_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Complex__Ocomplex_J,type,
    top_top_set_complex: set_complex ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
    top_top_set_real: set_real ).

thf(sy_c_Ordinal__Arithmetic_Ofin__support_001t__Real__Oreal_001t__Nat__Onat,type,
    ordina1579063754167848977al_nat: real > set_nat > set_nat_real ).

thf(sy_c_Ordinal__Arithmetic_Osupport_001t__Real__Oreal_001t__Nat__Onat,type,
    ordina7525502726642723294al_nat: real > set_nat > ( nat > real ) > set_nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
    power_power_complex: complex > nat > complex ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Risk__Free__Lending_Oaccount_OAbs__account,type,
    risk_F5458100604530014700ccount: ( nat > real ) > risk_Free_account ).

thf(sy_c_Risk__Free__Lending_Oaccount_ORep__account,type,
    risk_F170160801229183585ccount: risk_Free_account > nat > real ).

thf(sy_c_Risk__Free__Lending_Ocash__reserve,type,
    risk_F1914734008469130493eserve: risk_Free_account > real ).

thf(sy_c_Risk__Free__Lending_Ojust__cash,type,
    risk_Free_just_cash: real > risk_Free_account ).

thf(sy_c_Risk__Free__Lending_Onet__asset__value,type,
    risk_F2906766666041932210_value: risk_Free_account > real ).

thf(sy_c_Risk__Free__Lending_Oreturn__loans,type,
    risk_F2121631595377017831_loans: ( nat > real ) > risk_Free_account > risk_Free_account ).

thf(sy_c_Risk__Free__Lending_Oshortest__period,type,
    risk_F4612863212915232279period: risk_Free_account > nat ).

thf(sy_c_Risk__Free__Lending_Ostrictly__solvent,type,
    risk_F1636578016437888323olvent: risk_Free_account > $o ).

thf(sy_c_Risk__Free__Lending_Oupdate__account,type,
    risk_F444380041991734328ccount: ( nat > real ) > real > risk_Free_account > risk_Free_account ).

thf(sy_c_Risk__Free__Lending_Ovalid__transfer,type,
    risk_F1023690899723030139ansfer: risk_Free_account > risk_Free_account > $o ).

thf(sy_c_Set_OCollect_001_062_It__Nat__Onat_Mt__Real__Oreal_J,type,
    collect_nat_real: ( ( nat > real ) > $o ) > set_nat_real ).

thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
    collect_complex: ( complex > $o ) > set_complex ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
    set_ord_atMost_nat: nat > set_nat ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_Typedef_Otype__definition_001t__Risk____Free____Lending__Oaccount_001_062_It__Nat__Onat_Mt__Real__Oreal_J,type,
    type_d8982087200295354172t_real: ( risk_Free_account > nat > real ) > ( ( nat > real ) > risk_Free_account ) > set_nat_real > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_Mt__Real__Oreal_J,type,
    member_nat_real: ( nat > real ) > set_nat_real > $o ).

thf(sy_c_member_001t__Complex__Ocomplex,type,
    member_complex: complex > set_complex > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_v__092_060alpha_062,type,
    alpha: risk_Free_account ).

thf(sy_v__092_060beta_062,type,
    beta: risk_Free_account ).

thf(sy_v__092_060rho_062,type,
    rho: nat > real ).

thf(sy_v_n____,type,
    n: nat ).

% Relevant facts (1268)
thf(fact_0_Rep__account__inject,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ( risk_F170160801229183585ccount @ X )
        = ( risk_F170160801229183585ccount @ Y ) )
      = ( X = Y ) ) ).

% Rep_account_inject
thf(fact_1_add__left__cancel,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ A @ B )
        = ( plus_p1863581527469039996ccount @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_2_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_3_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_4_add__right__cancel,axiom,
    ! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ B @ A )
        = ( plus_p1863581527469039996ccount @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_5_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_6_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_7_Rep__account__plus,axiom,
    ! [Alpha_1: risk_Free_account,Alpha_2: risk_Free_account] :
      ( ( risk_F170160801229183585ccount @ ( plus_p1863581527469039996ccount @ Alpha_1 @ Alpha_2 ) )
      = ( ^ [N: nat] : ( plus_plus_real @ ( risk_F170160801229183585ccount @ Alpha_1 @ N ) @ ( risk_F170160801229183585ccount @ Alpha_2 @ N ) ) ) ) ).

% Rep_account_plus
thf(fact_8_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ C )
      = ( plus_p1863581527469039996ccount @ A @ ( plus_p1863581527469039996ccount @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_9_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_10_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_11_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_12_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: risk_Free_account,J: risk_Free_account,K: risk_Free_account,L: risk_Free_account] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_p1863581527469039996ccount @ I @ K )
        = ( plus_p1863581527469039996ccount @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_13_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_14_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_15_group__cancel_Oadd1,axiom,
    ! [A2: risk_Free_account,K: risk_Free_account,A: risk_Free_account,B: risk_Free_account] :
      ( ( A2
        = ( plus_p1863581527469039996ccount @ K @ A ) )
     => ( ( plus_p1863581527469039996ccount @ A2 @ B )
        = ( plus_p1863581527469039996ccount @ K @ ( plus_p1863581527469039996ccount @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_16_group__cancel_Oadd1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_17_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_18_group__cancel_Oadd2,axiom,
    ! [B2: risk_Free_account,K: risk_Free_account,B: risk_Free_account,A: risk_Free_account] :
      ( ( B2
        = ( plus_p1863581527469039996ccount @ K @ B ) )
     => ( ( plus_p1863581527469039996ccount @ A @ B2 )
        = ( plus_p1863581527469039996ccount @ K @ ( plus_p1863581527469039996ccount @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_19_group__cancel_Oadd2,axiom,
    ! [B2: real,K: real,B: real,A: real] :
      ( ( B2
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B2 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_20_group__cancel_Oadd2,axiom,
    ! [B2: nat,K: nat,B: nat,A: nat] :
      ( ( B2
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B2 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_21_add_Oassoc,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ C )
      = ( plus_p1863581527469039996ccount @ A @ ( plus_p1863581527469039996ccount @ B @ C ) ) ) ).

% add.assoc
thf(fact_22_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_23_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_24_add_Oleft__cancel,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ A @ B )
        = ( plus_p1863581527469039996ccount @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_25_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_26_add_Oright__cancel,axiom,
    ! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ B @ A )
        = ( plus_p1863581527469039996ccount @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_27_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_28_add_Ocommute,axiom,
    ( plus_p1863581527469039996ccount
    = ( ^ [A3: risk_Free_account,B3: risk_Free_account] : ( plus_p1863581527469039996ccount @ B3 @ A3 ) ) ) ).

% add.commute
thf(fact_29_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A3: real,B3: real] : ( plus_plus_real @ B3 @ A3 ) ) ) ).

% add.commute
thf(fact_30_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B3: nat] : ( plus_plus_nat @ B3 @ A3 ) ) ) ).

% add.commute
thf(fact_31_add__right__imp__eq,axiom,
    ! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ B @ A )
        = ( plus_p1863581527469039996ccount @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_32_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_33_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_34_add__left__imp__eq,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ A @ B )
        = ( plus_p1863581527469039996ccount @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_35_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_36_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_37_add_Oleft__commute,axiom,
    ! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ B @ ( plus_p1863581527469039996ccount @ A @ C ) )
      = ( plus_p1863581527469039996ccount @ A @ ( plus_p1863581527469039996ccount @ B @ C ) ) ) ).

% add.left_commute
thf(fact_38_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_39_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_40_just__cash__plus,axiom,
    ! [A: real,B: real] :
      ( ( plus_p1863581527469039996ccount @ ( risk_Free_just_cash @ A ) @ ( risk_Free_just_cash @ B ) )
      = ( risk_Free_just_cash @ ( plus_plus_real @ A @ B ) ) ) ).

% just_cash_plus
thf(fact_41_net__asset__value__plus,axiom,
    ! [Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ( risk_F2906766666041932210_value @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
      = ( plus_plus_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).

% net_asset_value_plus
thf(fact_42_additive__strictly__solvent,axiom,
    ! [Alpha_1: risk_Free_account,Alpha_2: risk_Free_account] :
      ( ( risk_F1636578016437888323olvent @ Alpha_1 )
     => ( ( risk_F1636578016437888323olvent @ Alpha_2 )
       => ( risk_F1636578016437888323olvent @ ( plus_p1863581527469039996ccount @ Alpha_1 @ Alpha_2 ) ) ) ) ).

% additive_strictly_solvent
thf(fact_43_dbl__def,axiom,
    ( neg_numeral_dbl_real
    = ( ^ [X2: real] : ( plus_plus_real @ X2 @ X2 ) ) ) ).

% dbl_def
thf(fact_44_Rep__account__inverse,axiom,
    ! [X: risk_Free_account] :
      ( ( risk_F5458100604530014700ccount @ ( risk_F170160801229183585ccount @ X ) )
      = X ) ).

% Rep_account_inverse
thf(fact_45__092_060open_062_092_060pi_062_A_092_060beta_062_A_092_060in_062_Afin__support_A0_AUNIV_092_060close_062,axiom,
    member_nat_real @ ( risk_F170160801229183585ccount @ beta ) @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ).

% \<open>\<pi> \<beta> \<in> fin_support 0 UNIV\<close>
thf(fact_46__092_060open_062_092_060pi_062_A_092_060alpha_062_A_092_060in_062_Afin__support_A0_AUNIV_092_060close_062,axiom,
    member_nat_real @ ( risk_F170160801229183585ccount @ alpha ) @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ).

% \<open>\<pi> \<alpha> \<in> fin_support 0 UNIV\<close>
thf(fact_47_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_48_add__0,axiom,
    ! [A: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ zero_z1425366712893667068ccount @ A )
      = A ) ).

% add_0
thf(fact_49_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_50_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_51_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_52_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_53_add__cancel__right__right,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( A
        = ( plus_p1863581527469039996ccount @ A @ B ) )
      = ( B = zero_z1425366712893667068ccount ) ) ).

% add_cancel_right_right
thf(fact_54_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_55_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_56_add__cancel__right__left,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( A
        = ( plus_p1863581527469039996ccount @ B @ A ) )
      = ( B = zero_z1425366712893667068ccount ) ) ).

% add_cancel_right_left
thf(fact_57_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_58_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_59_add_Oright__neutral,axiom,
    ! [A: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ A @ zero_z1425366712893667068ccount )
      = A ) ).

% add.right_neutral
thf(fact_60_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_61_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_62_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_63_add__cancel__left__left,axiom,
    ! [B: risk_Free_account,A: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ B @ A )
        = A )
      = ( B = zero_z1425366712893667068ccount ) ) ).

% add_cancel_left_left
thf(fact_64_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_65_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_66_add__cancel__left__right,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ A @ B )
        = A )
      = ( B = zero_z1425366712893667068ccount ) ) ).

% add_cancel_left_right
thf(fact_67_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_68_Rep__account__zero,axiom,
    ( ( risk_F170160801229183585ccount @ zero_z1425366712893667068ccount )
    = ( ^ [Uu: nat] : zero_zero_real ) ) ).

% Rep_account_zero
thf(fact_69_net__asset__value__zero,axiom,
    ( ( risk_F2906766666041932210_value @ zero_z1425366712893667068ccount )
    = zero_zero_real ) ).

% net_asset_value_zero
thf(fact_70_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_real @ zero_zero_real )
    = zero_zero_real ) ).

% dbl_simps(2)
thf(fact_71_Rep__account__just__cash,axiom,
    ! [C: real] :
      ( ( risk_F170160801229183585ccount @ ( risk_Free_just_cash @ C ) )
      = ( ^ [N: nat] : ( if_real @ ( N = zero_zero_nat ) @ C @ zero_zero_real ) ) ) ).

% Rep_account_just_cash
thf(fact_72_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_73_zero__reorient,axiom,
    ! [X: risk_Free_account] :
      ( ( zero_z1425366712893667068ccount = X )
      = ( X = zero_z1425366712893667068ccount ) ) ).

% zero_reorient
thf(fact_74_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_75_net__asset__value__just__cash__left__inverse,axiom,
    ! [C: real] :
      ( ( risk_F2906766666041932210_value @ ( risk_Free_just_cash @ C ) )
      = C ) ).

% net_asset_value_just_cash_left_inverse
thf(fact_76_zero__account__alt__def,axiom,
    ( ( risk_Free_just_cash @ zero_zero_real )
    = zero_z1425366712893667068ccount ) ).

% zero_account_alt_def
thf(fact_77_just__cash__embed,axiom,
    ( ( ^ [Y2: real,Z: real] : ( Y2 = Z ) )
    = ( ^ [A3: real,B3: real] :
          ( ( risk_Free_just_cash @ A3 )
          = ( risk_Free_just_cash @ B3 ) ) ) ) ).

% just_cash_embed
thf(fact_78_Abs__account__inverse,axiom,
    ! [Y: nat > real] :
      ( ( member_nat_real @ Y @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
     => ( ( risk_F170160801229183585ccount @ ( risk_F5458100604530014700ccount @ Y ) )
        = Y ) ) ).

% Abs_account_inverse
thf(fact_79_Abs__account__inject,axiom,
    ! [X: nat > real,Y: nat > real] :
      ( ( member_nat_real @ X @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
     => ( ( member_nat_real @ Y @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
       => ( ( ( risk_F5458100604530014700ccount @ X )
            = ( risk_F5458100604530014700ccount @ Y ) )
          = ( X = Y ) ) ) ) ).

% Abs_account_inject
thf(fact_80_Abs__account__induct,axiom,
    ! [P: risk_Free_account > $o,X: risk_Free_account] :
      ( ! [Y3: nat > real] :
          ( ( member_nat_real @ Y3 @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
         => ( P @ ( risk_F5458100604530014700ccount @ Y3 ) ) )
     => ( P @ X ) ) ).

% Abs_account_induct
thf(fact_81_Abs__account__cases,axiom,
    ! [X: risk_Free_account] :
      ~ ! [Y3: nat > real] :
          ( ( X
            = ( risk_F5458100604530014700ccount @ Y3 ) )
         => ~ ( member_nat_real @ Y3 @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ) ) ).

% Abs_account_cases
thf(fact_82_mem__Collect__eq,axiom,
    ! [A: nat > real,P: ( nat > real ) > $o] :
      ( ( member_nat_real @ A @ ( collect_nat_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_83_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_84_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_85_mem__Collect__eq,axiom,
    ! [A: complex,P: complex > $o] :
      ( ( member_complex @ A @ ( collect_complex @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_86_Collect__mem__eq,axiom,
    ! [A2: set_nat_real] :
      ( ( collect_nat_real
        @ ^ [X2: nat > real] : ( member_nat_real @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_87_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X2: real] : ( member_real @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_88_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X2: nat] : ( member_nat @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_89_Collect__mem__eq,axiom,
    ! [A2: set_complex] :
      ( ( collect_complex
        @ ^ [X2: complex] : ( member_complex @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_90_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_91_Collect__cong,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ! [X3: complex] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_complex @ P )
        = ( collect_complex @ Q ) ) ) ).

% Collect_cong
thf(fact_92_Rep__account,axiom,
    ! [X: risk_Free_account] : ( member_nat_real @ ( risk_F170160801229183585ccount @ X ) @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ) ).

% Rep_account
thf(fact_93_Rep__account__cases,axiom,
    ! [Y: nat > real] :
      ( ( member_nat_real @ Y @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
     => ~ ! [X3: risk_Free_account] :
            ( Y
           != ( risk_F170160801229183585ccount @ X3 ) ) ) ).

% Rep_account_cases
thf(fact_94_Rep__account__induct,axiom,
    ! [Y: nat > real,P: ( nat > real ) > $o] :
      ( ( member_nat_real @ Y @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
     => ( ! [X3: risk_Free_account] : ( P @ ( risk_F170160801229183585ccount @ X3 ) )
       => ( P @ Y ) ) ) ).

% Rep_account_induct
thf(fact_95_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_96_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ zero_z1425366712893667068ccount @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_97_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_98_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_99_add_Ocomm__neutral,axiom,
    ! [A: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ A @ zero_z1425366712893667068ccount )
      = A ) ).

% add.comm_neutral
thf(fact_100_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_101_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_102_add_Ogroup__left__neutral,axiom,
    ! [A: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ zero_z1425366712893667068ccount @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_103_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_104_iso__tuple__UNIV__I,axiom,
    ! [X: nat > real] : ( member_nat_real @ X @ top_top_set_nat_real ) ).

% iso_tuple_UNIV_I
thf(fact_105_iso__tuple__UNIV__I,axiom,
    ! [X: real] : ( member_real @ X @ top_top_set_real ) ).

% iso_tuple_UNIV_I
thf(fact_106_iso__tuple__UNIV__I,axiom,
    ! [X: nat] : ( member_nat @ X @ top_top_set_nat ) ).

% iso_tuple_UNIV_I
thf(fact_107_UNIV__I,axiom,
    ! [X: nat > real] : ( member_nat_real @ X @ top_top_set_nat_real ) ).

% UNIV_I
thf(fact_108_UNIV__I,axiom,
    ! [X: real] : ( member_real @ X @ top_top_set_real ) ).

% UNIV_I
thf(fact_109_UNIV__I,axiom,
    ! [X: nat] : ( member_nat @ X @ top_top_set_nat ) ).

% UNIV_I
thf(fact_110_add__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( B
        = ( plus_plus_real @ B @ A ) )
      = ( A = zero_zero_real ) ) ).

% add_0_iff
thf(fact_111_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_112_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_113_verit__sum__simplify,axiom,
    ! [A: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ A @ zero_z1425366712893667068ccount )
      = A ) ).

% verit_sum_simplify
thf(fact_114_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_115_type__definition__account,axiom,
    type_d8982087200295354172t_real @ risk_F170160801229183585ccount @ risk_F5458100604530014700ccount @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ).

% type_definition_account
thf(fact_116_update__account__def,axiom,
    ( risk_F444380041991734328ccount
    = ( ^ [Rho: nat > real,I2: real,Alpha2: risk_Free_account] : ( plus_p1863581527469039996ccount @ ( risk_Free_just_cash @ ( times_times_real @ I2 @ ( risk_F2906766666041932210_value @ Alpha2 ) ) ) @ ( risk_F2121631595377017831_loans @ Rho @ Alpha2 ) ) ) ) ).

% update_account_def
thf(fact_117_cash__reserve__def,axiom,
    ( risk_F1914734008469130493eserve
    = ( ^ [Alpha2: risk_Free_account] : ( risk_F170160801229183585ccount @ Alpha2 @ zero_zero_nat ) ) ) ).

% cash_reserve_def
thf(fact_118_strictly__solvent__net__asset__value,axiom,
    ! [Alpha: risk_Free_account] :
      ( ( risk_F1636578016437888323olvent @ Alpha )
     => ( ord_less_eq_real @ zero_zero_real @ ( risk_F2906766666041932210_value @ Alpha ) ) ) ).

% strictly_solvent_net_asset_value
thf(fact_119_strictly__solvent__just__cash__equiv,axiom,
    ! [C: real] :
      ( ( risk_F1636578016437888323olvent @ ( risk_Free_just_cash @ C ) )
      = ( ord_less_eq_real @ zero_zero_real @ C ) ) ).

% strictly_solvent_just_cash_equiv
thf(fact_120_order__refl,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ X ) ).

% order_refl
thf(fact_121_order__refl,axiom,
    ! [X: risk_Free_account] : ( ord_le4245800335709223507ccount @ X @ X ) ).

% order_refl
thf(fact_122_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_123_order__refl,axiom,
    ! [X: set_nat] : ( ord_less_eq_set_nat @ X @ X ) ).

% order_refl
thf(fact_124_dual__order_Orefl,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% dual_order.refl
thf(fact_125_dual__order_Orefl,axiom,
    ! [A: risk_Free_account] : ( ord_le4245800335709223507ccount @ A @ A ) ).

% dual_order.refl
thf(fact_126_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_127_dual__order_Orefl,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% dual_order.refl
thf(fact_128_le__zero__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_129_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_130_add__le__cancel__right,axiom,
    ! [A: risk_Free_account,C: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ C ) )
      = ( ord_le4245800335709223507ccount @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_131_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_132_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_133_add__le__cancel__left,axiom,
    ! [C: risk_Free_account,A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ C @ A ) @ ( plus_p1863581527469039996ccount @ C @ B ) )
      = ( ord_le4245800335709223507ccount @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_134_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_135_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_136_add__le__same__cancel1,axiom,
    ! [B: risk_Free_account,A: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ B @ A ) @ B )
      = ( ord_le4245800335709223507ccount @ A @ zero_z1425366712893667068ccount ) ) ).

% add_le_same_cancel1
thf(fact_137_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_138_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_139_add__le__same__cancel2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ B )
      = ( ord_le4245800335709223507ccount @ A @ zero_z1425366712893667068ccount ) ) ).

% add_le_same_cancel2
thf(fact_140_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_141_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_142_le__add__same__cancel1,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ ( plus_p1863581527469039996ccount @ A @ B ) )
      = ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ B ) ) ).

% le_add_same_cancel1
thf(fact_143_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_144_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_145_le__add__same__cancel2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ ( plus_p1863581527469039996ccount @ B @ A ) )
      = ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ B ) ) ).

% le_add_same_cancel2
thf(fact_146_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_147_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_148_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_149_verit__comp__simplify1_I2_J,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_150_verit__comp__simplify1_I2_J,axiom,
    ! [A: risk_Free_account] : ( ord_le4245800335709223507ccount @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_151_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_152_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_153_nle__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_eq_real @ A @ B ) )
      = ( ( ord_less_eq_real @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_154_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_155_le__cases3,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ( ord_less_eq_real @ X @ Y )
       => ~ ( ord_less_eq_real @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_real @ Y @ X )
         => ~ ( ord_less_eq_real @ X @ Z2 ) )
       => ( ( ( ord_less_eq_real @ X @ Z2 )
           => ~ ( ord_less_eq_real @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_real @ Z2 @ Y )
             => ~ ( ord_less_eq_real @ Y @ X ) )
           => ( ( ( ord_less_eq_real @ Y @ Z2 )
               => ~ ( ord_less_eq_real @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_real @ Z2 @ X )
                 => ~ ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_156_le__cases3,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z2 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z2 )
           => ~ ( ord_less_eq_nat @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z2 @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z2 )
               => ~ ( ord_less_eq_nat @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z2 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_157_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: real,Z: real] : ( Y2 = Z ) )
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ( ord_less_eq_real @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_158_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: risk_Free_account,Z: risk_Free_account] : ( Y2 = Z ) )
    = ( ^ [X2: risk_Free_account,Y4: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ X2 @ Y4 )
          & ( ord_le4245800335709223507ccount @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_159_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: nat,Z: nat] : ( Y2 = Z ) )
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_160_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: set_nat,Z: set_nat] : ( Y2 = Z ) )
    = ( ^ [X2: set_nat,Y4: set_nat] :
          ( ( ord_less_eq_set_nat @ X2 @ Y4 )
          & ( ord_less_eq_set_nat @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_161_ord__eq__le__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_162_ord__eq__le__trans,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( A = B )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ord_le4245800335709223507ccount @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_163_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_164_ord__eq__le__trans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( A = B )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ord_less_eq_set_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_165_ord__le__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_166_ord__le__eq__trans,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( B = C )
       => ( ord_le4245800335709223507ccount @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_167_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_168_ord__le__eq__trans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_169_order__antisym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_170_order__antisym,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ Y )
     => ( ( ord_le4245800335709223507ccount @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_171_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_172_order__antisym,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y )
     => ( ( ord_less_eq_set_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_173_order_Otrans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% order.trans
thf(fact_174_order_Otrans,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ord_le4245800335709223507ccount @ A @ C ) ) ) ).

% order.trans
thf(fact_175_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_176_order_Otrans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ord_less_eq_set_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_177_order__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ Z2 )
       => ( ord_less_eq_real @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_178_order__trans,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account,Z2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ Y )
     => ( ( ord_le4245800335709223507ccount @ Y @ Z2 )
       => ( ord_le4245800335709223507ccount @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_179_order__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z2 )
       => ( ord_less_eq_nat @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_180_order__trans,axiom,
    ! [X: set_nat,Y: set_nat,Z2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y )
     => ( ( ord_less_eq_set_nat @ Y @ Z2 )
       => ( ord_less_eq_set_nat @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_181_linorder__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A4: real,B4: real] :
          ( ( ord_less_eq_real @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: real,B4: real] :
            ( ( P @ B4 @ A4 )
           => ( P @ A4 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_182_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: nat,B4: nat] :
            ( ( P @ B4 @ A4 )
           => ( P @ A4 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_183_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y2: real,Z: real] : ( Y2 = Z ) )
    = ( ^ [A3: real,B3: real] :
          ( ( ord_less_eq_real @ B3 @ A3 )
          & ( ord_less_eq_real @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_184_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y2: risk_Free_account,Z: risk_Free_account] : ( Y2 = Z ) )
    = ( ^ [A3: risk_Free_account,B3: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ B3 @ A3 )
          & ( ord_le4245800335709223507ccount @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_185_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y2: nat,Z: nat] : ( Y2 = Z ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_186_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y2: set_nat,Z: set_nat] : ( Y2 = Z ) )
    = ( ^ [A3: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ B3 @ A3 )
          & ( ord_less_eq_set_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_187_dual__order_Oantisym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_188_dual__order_Oantisym,axiom,
    ! [B: risk_Free_account,A: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ B @ A )
     => ( ( ord_le4245800335709223507ccount @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_189_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_190_dual__order_Oantisym,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_191_dual__order_Otrans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_192_dual__order_Otrans,axiom,
    ! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ B @ A )
     => ( ( ord_le4245800335709223507ccount @ C @ B )
       => ( ord_le4245800335709223507ccount @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_193_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_194_dual__order_Otrans,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ C @ B )
       => ( ord_less_eq_set_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_195_antisym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_196_antisym,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_197_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_198_antisym,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_199_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: real,Z: real] : ( Y2 = Z ) )
    = ( ^ [A3: real,B3: real] :
          ( ( ord_less_eq_real @ A3 @ B3 )
          & ( ord_less_eq_real @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_200_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: risk_Free_account,Z: risk_Free_account] : ( Y2 = Z ) )
    = ( ^ [A3: risk_Free_account,B3: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ A3 @ B3 )
          & ( ord_le4245800335709223507ccount @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_201_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: nat,Z: nat] : ( Y2 = Z ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_202_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y2: set_nat,Z: set_nat] : ( Y2 = Z ) )
    = ( ^ [A3: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ A3 @ B3 )
          & ( ord_less_eq_set_nat @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_203_order__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_204_order__subst1,axiom,
    ! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_205_order__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_206_order__subst1,axiom,
    ! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
      ( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_207_order__subst1,axiom,
    ! [A: risk_Free_account,F: risk_Free_account > risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_208_order__subst1,axiom,
    ! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
      ( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_209_order__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_210_order__subst1,axiom,
    ! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_211_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_212_order__subst1,axiom,
    ! [A: real,F: set_nat > real,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_213_order__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_214_order__subst2,axiom,
    ! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_215_order__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_216_order__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_217_order__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_218_order__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_219_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_220_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_221_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_222_order__subst2,axiom,
    ! [A: real,B: real,F: real > set_nat,C: set_nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_223_order__eq__refl,axiom,
    ! [X: real,Y: real] :
      ( ( X = Y )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% order_eq_refl
thf(fact_224_order__eq__refl,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( X = Y )
     => ( ord_le4245800335709223507ccount @ X @ Y ) ) ).

% order_eq_refl
thf(fact_225_order__eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_226_order__eq__refl,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( X = Y )
     => ( ord_less_eq_set_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_227_verit__la__disequality,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
      | ~ ( ord_less_eq_real @ A @ B )
      | ~ ( ord_less_eq_real @ B @ A ) ) ).

% verit_la_disequality
thf(fact_228_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_229_linorder__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
      | ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_linear
thf(fact_230_linorder__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_linear
thf(fact_231_ord__eq__le__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_232_ord__eq__le__subst,axiom,
    ! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_233_ord__eq__le__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_234_ord__eq__le__subst,axiom,
    ! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_235_ord__eq__le__subst,axiom,
    ! [A: risk_Free_account,F: risk_Free_account > risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_236_ord__eq__le__subst,axiom,
    ! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_237_ord__eq__le__subst,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_238_ord__eq__le__subst,axiom,
    ! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_239_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_240_ord__eq__le__subst,axiom,
    ! [A: set_nat,F: real > set_nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_241_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_242_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_243_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_244_ord__le__eq__subst,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_245_ord__le__eq__subst,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_246_ord__le__eq__subst,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_247_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_248_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_249_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_250_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > set_nat,C: set_nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_251_linorder__le__cases,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_eq_real @ X @ Y )
     => ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_252_linorder__le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_253_order__antisym__conv,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ( ( ord_less_eq_real @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_254_order__antisym__conv,axiom,
    ! [Y: risk_Free_account,X: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ Y @ X )
     => ( ( ord_le4245800335709223507ccount @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_255_order__antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_256_order__antisym__conv,axiom,
    ! [Y: set_nat,X: set_nat] :
      ( ( ord_less_eq_set_nat @ Y @ X )
     => ( ( ord_less_eq_set_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_257_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_258_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_259_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A3: real,B3: real] : ( times_times_real @ B3 @ A3 ) ) ) ).

% mult.commute
thf(fact_260_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B3: nat] : ( times_times_nat @ B3 @ A3 ) ) ) ).

% mult.commute
thf(fact_261_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_262_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_263_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_264_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_265_top__set__def,axiom,
    ( top_top_set_complex
    = ( collect_complex @ top_top_complex_o ) ) ).

% top_set_def
thf(fact_266_top__set__def,axiom,
    ( top_top_set_nat
    = ( collect_nat @ top_top_nat_o ) ) ).

% top_set_def
thf(fact_267_crossproduct__noteq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) )
       != ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_268_crossproduct__noteq,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
       != ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_269_crossproduct__eq,axiom,
    ! [W: real,Y: real,X: real,Z2: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ W @ Y ) @ ( times_times_real @ X @ Z2 ) )
        = ( plus_plus_real @ ( times_times_real @ W @ Z2 ) @ ( times_times_real @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z2 ) ) ) ).

% crossproduct_eq
thf(fact_270_crossproduct__eq,axiom,
    ! [W: nat,Y: nat,X: nat,Z2: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y ) @ ( times_times_nat @ X @ Z2 ) )
        = ( plus_plus_nat @ ( times_times_nat @ W @ Z2 ) @ ( times_times_nat @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z2 ) ) ) ).

% crossproduct_eq
thf(fact_271_top__greatest,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ top_top_set_nat ) ).

% top_greatest
thf(fact_272_top_Oextremum__unique,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ top_top_set_nat @ A )
      = ( A = top_top_set_nat ) ) ).

% top.extremum_unique
thf(fact_273_top_Oextremum__uniqueI,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ top_top_set_nat @ A )
     => ( A = top_top_set_nat ) ) ).

% top.extremum_uniqueI
thf(fact_274_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_275_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_276_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_277_add__le__imp__le__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_278_add__le__imp__le__right,axiom,
    ! [A: risk_Free_account,C: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ C ) )
     => ( ord_le4245800335709223507ccount @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_279_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_280_add__le__imp__le__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_281_add__le__imp__le__left,axiom,
    ! [C: risk_Free_account,A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ C @ A ) @ ( plus_p1863581527469039996ccount @ C @ B ) )
     => ( ord_le4245800335709223507ccount @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_282_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_283_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
        ? [C2: nat] :
          ( B3
          = ( plus_plus_nat @ A3 @ C2 ) ) ) ) ).

% le_iff_add
thf(fact_284_add__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_right_mono
thf(fact_285_add__right__mono,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ C ) ) ) ).

% add_right_mono
thf(fact_286_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_287_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_288_add__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_left_mono
thf(fact_289_add__left__mono,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ C @ A ) @ ( plus_p1863581527469039996ccount @ C @ B ) ) ) ).

% add_left_mono
thf(fact_290_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_291_add__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_mono
thf(fact_292_add__mono,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account,D: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ C @ D )
       => ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ D ) ) ) ) ).

% add_mono
thf(fact_293_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_294_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_295_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: risk_Free_account,J: risk_Free_account,K: risk_Free_account,L: risk_Free_account] :
      ( ( ( ord_le4245800335709223507ccount @ I @ J )
        & ( ord_le4245800335709223507ccount @ K @ L ) )
     => ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ I @ K ) @ ( plus_p1863581527469039996ccount @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_296_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_297_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_298_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: risk_Free_account,J: risk_Free_account,K: risk_Free_account,L: risk_Free_account] :
      ( ( ( I = J )
        & ( ord_le4245800335709223507ccount @ K @ L ) )
     => ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ I @ K ) @ ( plus_p1863581527469039996ccount @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_299_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_300_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_301_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: risk_Free_account,J: risk_Free_account,K: risk_Free_account,L: risk_Free_account] :
      ( ( ( ord_le4245800335709223507ccount @ I @ J )
        & ( K = L ) )
     => ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ I @ K ) @ ( plus_p1863581527469039996ccount @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_302_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_303_add__scale__eq__noteq,axiom,
    ! [R: real,A: real,B: real,C: real,D: real] :
      ( ( R != zero_zero_real )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_real @ A @ ( times_times_real @ R @ C ) )
         != ( plus_plus_real @ B @ ( times_times_real @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_304_add__scale__eq__noteq,axiom,
    ! [R: nat,A: nat,B: nat,C: nat,D: nat] :
      ( ( R != zero_zero_nat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_nat @ A @ ( times_times_nat @ R @ C ) )
         != ( plus_plus_nat @ B @ ( times_times_nat @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_305_strictly__solvent__non__negative__cash,axiom,
    ! [Alpha: risk_Free_account] :
      ( ( risk_F1636578016437888323olvent @ Alpha )
     => ( ord_less_eq_real @ zero_zero_real @ ( risk_F1914734008469130493eserve @ Alpha ) ) ) ).

% strictly_solvent_non_negative_cash
thf(fact_306_add__decreasing,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_307_add__decreasing,axiom,
    ! [A: risk_Free_account,C: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ zero_z1425366712893667068ccount )
     => ( ( ord_le4245800335709223507ccount @ C @ B )
       => ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_308_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_309_add__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_310_add__increasing,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ A )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ord_le4245800335709223507ccount @ B @ ( plus_p1863581527469039996ccount @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_311_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_312_add__decreasing2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_313_add__decreasing2,axiom,
    ! [C: risk_Free_account,A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ C @ zero_z1425366712893667068ccount )
     => ( ( ord_le4245800335709223507ccount @ A @ B )
       => ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_314_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_315_add__increasing2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_316_add__increasing2,axiom,
    ! [C: risk_Free_account,B: risk_Free_account,A: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ C )
     => ( ( ord_le4245800335709223507ccount @ B @ A )
       => ( ord_le4245800335709223507ccount @ B @ ( plus_p1863581527469039996ccount @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_317_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_318_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_319_add__nonneg__nonneg,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ A )
     => ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ B )
       => ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ ( plus_p1863581527469039996ccount @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_320_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_321_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_322_add__nonpos__nonpos,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ zero_z1425366712893667068ccount )
     => ( ( ord_le4245800335709223507ccount @ B @ zero_z1425366712893667068ccount )
       => ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ zero_z1425366712893667068ccount ) ) ) ).

% add_nonpos_nonpos
thf(fact_323_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_324_add__nonneg__eq__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ X @ Y )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_325_add__nonneg__eq__0__iff,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ X )
     => ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ Y )
       => ( ( ( plus_p1863581527469039996ccount @ X @ Y )
            = zero_z1425366712893667068ccount )
          = ( ( X = zero_z1425366712893667068ccount )
            & ( Y = zero_z1425366712893667068ccount ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_326_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_327_add__nonpos__eq__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ( plus_plus_real @ X @ Y )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_328_add__nonpos__eq__0__iff,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ zero_z1425366712893667068ccount )
     => ( ( ord_le4245800335709223507ccount @ Y @ zero_z1425366712893667068ccount )
       => ( ( ( plus_p1863581527469039996ccount @ X @ Y )
            = zero_z1425366712893667068ccount )
          = ( ( X = zero_z1425366712893667068ccount )
            & ( Y = zero_z1425366712893667068ccount ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_329_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_330_UNIV__eq__I,axiom,
    ! [A2: set_nat_real] :
      ( ! [X3: nat > real] : ( member_nat_real @ X3 @ A2 )
     => ( top_top_set_nat_real = A2 ) ) ).

% UNIV_eq_I
thf(fact_331_UNIV__eq__I,axiom,
    ! [A2: set_real] :
      ( ! [X3: real] : ( member_real @ X3 @ A2 )
     => ( top_top_set_real = A2 ) ) ).

% UNIV_eq_I
thf(fact_332_UNIV__eq__I,axiom,
    ! [A2: set_nat] :
      ( ! [X3: nat] : ( member_nat @ X3 @ A2 )
     => ( top_top_set_nat = A2 ) ) ).

% UNIV_eq_I
thf(fact_333_UNIV__witness,axiom,
    ? [X3: nat > real] : ( member_nat_real @ X3 @ top_top_set_nat_real ) ).

% UNIV_witness
thf(fact_334_UNIV__witness,axiom,
    ? [X3: real] : ( member_real @ X3 @ top_top_set_real ) ).

% UNIV_witness
thf(fact_335_UNIV__witness,axiom,
    ? [X3: nat] : ( member_nat @ X3 @ top_top_set_nat ) ).

% UNIV_witness
thf(fact_336_sum__squares__eq__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_337_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_338_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_339_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_340_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_341_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_342_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_343_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_344_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_345_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_346_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_347_sum__squares__le__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_348_sum__squares__ge__zero,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) ) ).

% sum_squares_ge_zero
thf(fact_349_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_350_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_351_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_352_subset__UNIV,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ A2 @ top_top_set_nat ) ).

% subset_UNIV
thf(fact_353_just__cash__order__embed,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B3: real] : ( ord_le4245800335709223507ccount @ ( risk_Free_just_cash @ A3 ) @ ( risk_Free_just_cash @ B3 ) ) ) ) ).

% just_cash_order_embed
thf(fact_354_net__asset__value__mono,axiom,
    ! [Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
     => ( ord_less_eq_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).

% net_asset_value_mono
thf(fact_355_strictly__solvent__alt__def,axiom,
    ( risk_F1636578016437888323olvent
    = ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount ) ) ).

% strictly_solvent_alt_def
thf(fact_356_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_357_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_358_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_359_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_360_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_361_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_362_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_363_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_364_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_365_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_366_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_367_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_368_comm__semiring__class_Odistrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_369_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_370_distrib__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% distrib_left
thf(fact_371_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_372_distrib__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% distrib_right
thf(fact_373_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_374_combine__common__factor,axiom,
    ! [A: real,E: real,B: real,C: real] :
      ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_375_combine__common__factor,axiom,
    ! [A: nat,E: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_376_mult__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_377_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_378_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_379_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_380_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_381_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_382_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_383_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_384_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_385_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_386_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_387_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_388_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_389_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_390_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_391_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_392_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_393_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_394_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_395_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_396_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_397_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_398_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_399_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_400_mult__is__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N2 = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_401_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_402_mult__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N2 ) )
      = ( ( M = N2 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_403_mult__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N2 @ K ) )
      = ( ( M = N2 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_404_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_405_le0,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% le0
thf(fact_406_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_407_add__is__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N2 = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_408_subsetI,axiom,
    ! [A2: set_nat_real,B2: set_nat_real] :
      ( ! [X3: nat > real] :
          ( ( member_nat_real @ X3 @ A2 )
         => ( member_nat_real @ X3 @ B2 ) )
     => ( ord_le2908806416726583473t_real @ A2 @ B2 ) ) ).

% subsetI
thf(fact_409_subsetI,axiom,
    ! [A2: set_real,B2: set_real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A2 )
         => ( member_real @ X3 @ B2 ) )
     => ( ord_less_eq_set_real @ A2 @ B2 ) ) ).

% subsetI
thf(fact_410_subsetI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( member_nat @ X3 @ B2 ) )
     => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% subsetI
thf(fact_411_subset__antisym,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% subset_antisym
thf(fact_412_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% nat_add_left_cancel_le
thf(fact_413_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_414_le__refl,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).

% le_refl
thf(fact_415_in__mono,axiom,
    ! [A2: set_nat_real,B2: set_nat_real,X: nat > real] :
      ( ( ord_le2908806416726583473t_real @ A2 @ B2 )
     => ( ( member_nat_real @ X @ A2 )
       => ( member_nat_real @ X @ B2 ) ) ) ).

% in_mono
thf(fact_416_in__mono,axiom,
    ! [A2: set_real,B2: set_real,X: real] :
      ( ( ord_less_eq_set_real @ A2 @ B2 )
     => ( ( member_real @ X @ A2 )
       => ( member_real @ X @ B2 ) ) ) ).

% in_mono
thf(fact_417_in__mono,axiom,
    ! [A2: set_nat,B2: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( member_nat @ X @ A2 )
       => ( member_nat @ X @ B2 ) ) ) ).

% in_mono
thf(fact_418_subsetD,axiom,
    ! [A2: set_nat_real,B2: set_nat_real,C: nat > real] :
      ( ( ord_le2908806416726583473t_real @ A2 @ B2 )
     => ( ( member_nat_real @ C @ A2 )
       => ( member_nat_real @ C @ B2 ) ) ) ).

% subsetD
thf(fact_419_subsetD,axiom,
    ! [A2: set_real,B2: set_real,C: real] :
      ( ( ord_less_eq_set_real @ A2 @ B2 )
     => ( ( member_real @ C @ A2 )
       => ( member_real @ C @ B2 ) ) ) ).

% subsetD
thf(fact_420_subsetD,axiom,
    ! [A2: set_nat,B2: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B2 ) ) ) ).

% subsetD
thf(fact_421_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_422_eq__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( M = N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% eq_imp_le
thf(fact_423_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_424_equalityE,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( A2 = B2 )
     => ~ ( ( ord_less_eq_set_nat @ A2 @ B2 )
         => ~ ( ord_less_eq_set_nat @ B2 @ A2 ) ) ) ).

% equalityE
thf(fact_425_subset__eq,axiom,
    ( ord_le2908806416726583473t_real
    = ( ^ [A5: set_nat_real,B5: set_nat_real] :
        ! [X2: nat > real] :
          ( ( member_nat_real @ X2 @ A5 )
         => ( member_nat_real @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_426_subset__eq,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A5: set_real,B5: set_real] :
        ! [X2: real] :
          ( ( member_real @ X2 @ A5 )
         => ( member_real @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_427_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
        ! [X2: nat] :
          ( ( member_nat @ X2 @ A5 )
         => ( member_nat @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_428_le__antisym,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ M )
       => ( M = N2 ) ) ) ).

% le_antisym
thf(fact_429_equalityD1,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% equalityD1
thf(fact_430_equalityD2,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_nat @ B2 @ A2 ) ) ).

% equalityD2
thf(fact_431_subset__iff,axiom,
    ( ord_le2908806416726583473t_real
    = ( ^ [A5: set_nat_real,B5: set_nat_real] :
        ! [T: nat > real] :
          ( ( member_nat_real @ T @ A5 )
         => ( member_nat_real @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_432_subset__iff,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A5: set_real,B5: set_real] :
        ! [T: real] :
          ( ( member_real @ T @ A5 )
         => ( member_real @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_433_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
        ! [T: nat] :
          ( ( member_nat @ T @ A5 )
         => ( member_nat @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_434_subset__refl,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ A2 @ A2 ) ).

% subset_refl
thf(fact_435_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_436_Collect__mono,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ! [X3: complex] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_le211207098394363844omplex @ ( collect_complex @ P ) @ ( collect_complex @ Q ) ) ) ).

% Collect_mono
thf(fact_437_Collect__mono,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_438_subset__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C4: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C4 )
       => ( ord_less_eq_set_nat @ A2 @ C4 ) ) ) ).

% subset_trans
thf(fact_439_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_440_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_441_nat__le__linear,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
      | ( ord_less_eq_nat @ N2 @ M ) ) ).

% nat_le_linear
thf(fact_442_set__eq__subset,axiom,
    ( ( ^ [Y2: set_nat,Z: set_nat] : ( Y2 = Z ) )
    = ( ^ [A5: set_nat,B5: set_nat] :
          ( ( ord_less_eq_set_nat @ A5 @ B5 )
          & ( ord_less_eq_set_nat @ B5 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_443_Collect__mono__iff,axiom,
    ! [P: complex > $o,Q: complex > $o] :
      ( ( ord_le211207098394363844omplex @ ( collect_complex @ P ) @ ( collect_complex @ Q ) )
      = ( ! [X2: complex] :
            ( ( P @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_444_Collect__mono__iff,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) )
      = ( ! [X2: nat] :
            ( ( P @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_445_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_446_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% add_mult_distrib2
thf(fact_447_add__mult__distrib,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N2 ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).

% add_mult_distrib
thf(fact_448_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N: nat] :
        ? [K2: nat] :
          ( N
          = ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_449_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_450_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_451_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_452_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_453_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_454_add__leD2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ( ord_less_eq_nat @ K @ N2 ) ) ).

% add_leD2
thf(fact_455_add__leD1,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% add_leD1
thf(fact_456_le__add2,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ M @ N2 ) ) ).

% le_add2
thf(fact_457_le__add1,axiom,
    ! [N2: nat,M: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) ) ).

% le_add1
thf(fact_458_add__leE,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N2 )
     => ~ ( ( ord_less_eq_nat @ M @ N2 )
         => ~ ( ord_less_eq_nat @ K @ N2 ) ) ) ).

% add_leE
thf(fact_459_plus__nat_Oadd__0,axiom,
    ! [N2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N2 )
      = N2 ) ).

% plus_nat.add_0
thf(fact_460_add__eq__self__zero,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M @ N2 )
        = M )
     => ( N2 = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_461_le__0__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_462_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_463_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_464_less__eq__nat_Osimps_I1_J,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% less_eq_nat.simps(1)
thf(fact_465_mult__0,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% mult_0
thf(fact_466_top__empty__eq,axiom,
    ( top_top_nat_real_o
    = ( ^ [X2: nat > real] : ( member_nat_real @ X2 @ top_top_set_nat_real ) ) ) ).

% top_empty_eq
thf(fact_467_top__empty__eq,axiom,
    ( top_top_real_o
    = ( ^ [X2: real] : ( member_real @ X2 @ top_top_set_real ) ) ) ).

% top_empty_eq
thf(fact_468_top__empty__eq,axiom,
    ( top_top_nat_o
    = ( ^ [X2: nat] : ( member_nat @ X2 @ top_top_set_nat ) ) ) ).

% top_empty_eq
thf(fact_469_just__cash__valid__transfer,axiom,
    ! [C: real,T2: real] :
      ( ( risk_F1023690899723030139ansfer @ ( risk_Free_just_cash @ C ) @ ( risk_Free_just_cash @ T2 ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ T2 )
        & ( ord_less_eq_real @ T2 @ C ) ) ) ).

% just_cash_valid_transfer
thf(fact_470_type__copy__ex__RepI,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,F2: ( nat > real ) > $o] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ top_top_set_nat_real )
     => ( ( ? [X4: nat > real] : ( F2 @ X4 ) )
        = ( ? [B3: risk_Free_account] : ( F2 @ ( Rep @ B3 ) ) ) ) ) ).

% type_copy_ex_RepI
thf(fact_471_type__copy__obj__one__point__absE,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,S: risk_Free_account] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ top_top_set_nat_real )
     => ~ ! [X3: nat > real] :
            ( S
           != ( Abs @ X3 ) ) ) ).

% type_copy_obj_one_point_absE
thf(fact_472_left__add__mult__distrib,axiom,
    ! [I: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_473_valid__transfer__alt__def,axiom,
    ( risk_F1023690899723030139ansfer
    = ( ^ [Alpha2: risk_Free_account,Tau: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ Tau )
          & ( ord_le4245800335709223507ccount @ Tau @ Alpha2 ) ) ) ) ).

% valid_transfer_alt_def
thf(fact_474_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N2 ) )
      = ( ( K = zero_zero_nat )
        | ( M = N2 ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_475_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( P @ A4 @ B4 )
          = ( P @ B4 @ A4 ) )
     => ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
       => ( ! [A4: nat,B4: nat] :
              ( ( P @ A4 @ B4 )
             => ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_476_only__strictly__solvent__accounts__can__transfer,axiom,
    ! [Alpha: risk_Free_account,Tau2: risk_Free_account] :
      ( ( risk_F1023690899723030139ansfer @ Alpha @ Tau2 )
     => ( risk_F1636578016437888323olvent @ Alpha ) ) ).

% only_strictly_solvent_accounts_can_transfer
thf(fact_477_shortest__period__bound,axiom,
    ! [Alpha: risk_Free_account,I: nat] :
      ( ( ( risk_F170160801229183585ccount @ Alpha @ I )
       != zero_zero_real )
     => ( ord_less_eq_nat @ I @ ( risk_F4612863212915232279period @ Alpha ) ) ) ).

% shortest_period_bound
thf(fact_478_convex__bound__le,axiom,
    ! [X: real,A: real,Y: real,U: real,V: real] :
      ( ( ord_less_eq_real @ X @ A )
     => ( ( ord_less_eq_real @ Y @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_479_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_480_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% mult_le_cancel2
thf(fact_481_type__definition__def,axiom,
    ( type_d8982087200295354172t_real
    = ( ^ [Rep2: risk_Free_account > nat > real,Abs2: ( nat > real ) > risk_Free_account,A5: set_nat_real] :
          ( ! [X2: risk_Free_account] : ( member_nat_real @ ( Rep2 @ X2 ) @ A5 )
          & ! [X2: risk_Free_account] :
              ( ( Abs2 @ ( Rep2 @ X2 ) )
              = X2 )
          & ! [Y4: nat > real] :
              ( ( member_nat_real @ Y4 @ A5 )
             => ( ( Rep2 @ ( Abs2 @ Y4 ) )
                = Y4 ) ) ) ) ) ).

% type_definition_def
thf(fact_482_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N2 ) )
      = ( ( M = one_one_nat )
        & ( N2 = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_483_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( times_times_nat @ M @ N2 )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N2 = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_484_not__gr__zero,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_485_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_486_add__less__cancel__right,axiom,
    ! [A: risk_Free_account,C: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ C ) )
      = ( ord_le2131251472502387783ccount @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_487_add__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_488_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_489_add__less__cancel__left,axiom,
    ! [C: risk_Free_account,A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ C @ A ) @ ( plus_p1863581527469039996ccount @ C @ B ) )
      = ( ord_le2131251472502387783ccount @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_490_add__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_491_mult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% mult_1
thf(fact_492_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_493_mult_Oright__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.right_neutral
thf(fact_494_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_495_less__one,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ one_one_nat )
      = ( N2 = zero_zero_nat ) ) ).

% less_one
thf(fact_496_less__nat__zero__code,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_497_neq0__conv,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% neq0_conv
thf(fact_498_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_499_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% nat_add_left_cancel_less
thf(fact_500_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_501_add__less__same__cancel1,axiom,
    ! [B: risk_Free_account,A: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ B @ A ) @ B )
      = ( ord_le2131251472502387783ccount @ A @ zero_z1425366712893667068ccount ) ) ).

% add_less_same_cancel1
thf(fact_502_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_503_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_504_add__less__same__cancel2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ B )
      = ( ord_le2131251472502387783ccount @ A @ zero_z1425366712893667068ccount ) ) ).

% add_less_same_cancel2
thf(fact_505_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_506_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_507_less__add__same__cancel1,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ ( plus_p1863581527469039996ccount @ A @ B ) )
      = ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ B ) ) ).

% less_add_same_cancel1
thf(fact_508_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_509_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_510_less__add__same__cancel2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ ( plus_p1863581527469039996ccount @ B @ A ) )
      = ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ B ) ) ).

% less_add_same_cancel2
thf(fact_511_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_512_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_513_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_514_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_515_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_516_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_517_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_518_add__gr__0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% add_gr_0
thf(fact_519_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N2 ) ) ) ).

% mult_less_cancel2
thf(fact_520_nat__0__less__mult__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% nat_0_less_mult_iff
thf(fact_521_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_522_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_523_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_524_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_525_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_526_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_527_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_528_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_529_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_530_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_531_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_532_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_533_order__less__imp__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_534_order__less__imp__not__less,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ~ ( ord_le2131251472502387783ccount @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_535_order__less__imp__not__less,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_536_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_537_order__less__imp__not__eq2,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_538_order__less__imp__not__eq2,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_539_order__less__imp__not__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_540_order__less__imp__not__eq,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_541_order__less__imp__not__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_542_linorder__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
      | ( X = Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_543_linorder__less__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
      | ( X = Y )
      | ( ord_less_real @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_544_order__less__imp__triv,axiom,
    ! [X: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_545_order__less__imp__triv,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account,P: $o] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( ( ord_le2131251472502387783ccount @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_546_order__less__imp__triv,axiom,
    ! [X: real,Y: real,P: $o] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_real @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_547_order__less__not__sym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_548_order__less__not__sym,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ~ ( ord_le2131251472502387783ccount @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_549_order__less__not__sym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_550_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_551_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_552_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_553_order__less__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_554_order__less__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_555_order__less__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_556_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_557_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_558_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_559_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_560_order__less__subst1,axiom,
    ! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_561_order__less__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_562_order__less__subst1,axiom,
    ! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
      ( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_563_order__less__subst1,axiom,
    ! [A: risk_Free_account,F: risk_Free_account > risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_564_order__less__subst1,axiom,
    ! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
      ( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_565_order__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_566_order__less__subst1,axiom,
    ! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_567_order__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_568_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_569_order__less__irrefl,axiom,
    ! [X: risk_Free_account] :
      ~ ( ord_le2131251472502387783ccount @ X @ X ) ).

% order_less_irrefl
thf(fact_570_order__less__irrefl,axiom,
    ! [X: real] :
      ~ ( ord_less_real @ X @ X ) ).

% order_less_irrefl
thf(fact_571_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_572_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_573_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_574_ord__less__eq__subst,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_575_ord__less__eq__subst,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_576_ord__less__eq__subst,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_577_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_578_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_579_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_580_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_581_ord__eq__less__subst,axiom,
    ! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_582_ord__eq__less__subst,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_583_ord__eq__less__subst,axiom,
    ! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_584_ord__eq__less__subst,axiom,
    ! [A: risk_Free_account,F: risk_Free_account > risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_585_ord__eq__less__subst,axiom,
    ! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_586_ord__eq__less__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_587_ord__eq__less__subst,axiom,
    ! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_588_ord__eq__less__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_589_order__less__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_590_order__less__trans,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account,Z2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( ( ord_le2131251472502387783ccount @ Y @ Z2 )
       => ( ord_le2131251472502387783ccount @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_591_order__less__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_real @ Y @ Z2 )
       => ( ord_less_real @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_592_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_593_order__less__asym_H,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ~ ( ord_le2131251472502387783ccount @ B @ A ) ) ).

% order_less_asym'
thf(fact_594_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_595_linorder__neq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
      = ( ( ord_less_nat @ X @ Y )
        | ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_596_linorder__neq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
      = ( ( ord_less_real @ X @ Y )
        | ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_597_order__less__asym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_asym
thf(fact_598_order__less__asym,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ~ ( ord_le2131251472502387783ccount @ Y @ X ) ) ).

% order_less_asym
thf(fact_599_order__less__asym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_asym
thf(fact_600_linorder__neqE,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_601_linorder__neqE,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_602_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_603_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: risk_Free_account,A: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_604_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_605_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_606_order_Ostrict__implies__not__eq,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_607_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_608_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_609_dual__order_Ostrict__trans,axiom,
    ! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ B @ A )
     => ( ( ord_le2131251472502387783ccount @ C @ B )
       => ( ord_le2131251472502387783ccount @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_610_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_611_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_612_not__less__iff__gr__or__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_real @ X @ Y ) )
      = ( ( ord_less_real @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_613_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_614_order_Ostrict__trans,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_615_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_616_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( ord_less_nat @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: nat] : ( P @ A4 @ A4 )
       => ( ! [A4: nat,B4: nat] :
              ( ( P @ B4 @ A4 )
             => ( P @ A4 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_617_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A4: real,B4: real] :
          ( ( ord_less_real @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: real] : ( P @ A4 @ A4 )
       => ( ! [A4: real,B4: real] :
              ( ( P @ B4 @ A4 )
             => ( P @ A4 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_618_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X5: nat] : ( P2 @ X5 ) )
    = ( ^ [P3: nat > $o] :
        ? [N: nat] :
          ( ( P3 @ N )
          & ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N )
             => ~ ( P3 @ M2 ) ) ) ) ) ).

% exists_least_iff
thf(fact_619_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_620_dual__order_Oirrefl,axiom,
    ! [A: risk_Free_account] :
      ~ ( ord_le2131251472502387783ccount @ A @ A ) ).

% dual_order.irrefl
thf(fact_621_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_622_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_623_dual__order_Oasym,axiom,
    ! [B: risk_Free_account,A: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ B @ A )
     => ~ ( ord_le2131251472502387783ccount @ A @ B ) ) ).

% dual_order.asym
thf(fact_624_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_625_linorder__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_626_linorder__cases,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_627_antisym__conv3,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_628_antisym__conv3,axiom,
    ! [Y: real,X: real] :
      ( ~ ( ord_less_real @ Y @ X )
     => ( ( ~ ( ord_less_real @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_629_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X3: nat] :
          ( ! [Y5: nat] :
              ( ( ord_less_nat @ Y5 @ X3 )
             => ( P @ Y5 ) )
         => ( P @ X3 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_630_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_631_ord__less__eq__trans,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( B = C )
       => ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_632_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_633_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_634_ord__eq__less__trans,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( A = B )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_635_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_636_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_637_order_Oasym,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ~ ( ord_le2131251472502387783ccount @ B @ A ) ) ).

% order.asym
thf(fact_638_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_639_less__imp__neq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_640_less__imp__neq,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_641_less__imp__neq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_642_dense,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ? [Z3: real] :
          ( ( ord_less_real @ X @ Z3 )
          & ( ord_less_real @ Z3 @ Y ) ) ) ).

% dense
thf(fact_643_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_644_gt__ex,axiom,
    ! [X: real] :
    ? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).

% gt_ex
thf(fact_645_lt__ex,axiom,
    ! [X: real] :
    ? [Y3: real] : ( ord_less_real @ Y3 @ X ) ).

% lt_ex
thf(fact_646_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_647_verit__comp__simplify1_I1_J,axiom,
    ! [A: risk_Free_account] :
      ~ ( ord_le2131251472502387783ccount @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_648_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_649_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_650_infinite__descent,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
              & ~ ( P @ M3 ) ) )
     => ( P @ N2 ) ) ).

% infinite_descent
thf(fact_651_nat__less__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ( P @ M3 ) )
         => ( P @ N3 ) )
     => ( P @ N2 ) ) ).

% nat_less_induct
thf(fact_652_less__irrefl__nat,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_irrefl_nat
thf(fact_653_less__not__refl3,axiom,
    ! [S: nat,T2: nat] :
      ( ( ord_less_nat @ S @ T2 )
     => ( S != T2 ) ) ).

% less_not_refl3
thf(fact_654_less__not__refl2,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ N2 @ M )
     => ( M != N2 ) ) ).

% less_not_refl2
thf(fact_655_less__not__refl,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_not_refl
thf(fact_656_nat__neq__iff,axiom,
    ! [M: nat,N2: nat] :
      ( ( M != N2 )
      = ( ( ord_less_nat @ M @ N2 )
        | ( ord_less_nat @ N2 @ M ) ) ) ).

% nat_neq_iff
thf(fact_657_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_658_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_659_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_660_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_661_less__1__mult,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N2 )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_662_less__1__mult,axiom,
    ! [M: real,N2: real] :
      ( ( ord_less_real @ one_one_real @ M )
     => ( ( ord_less_real @ one_one_real @ N2 )
       => ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N2 ) ) ) ) ).

% less_1_mult
thf(fact_663_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_664_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_665_verit__comp__simplify1_I3_J,axiom,
    ! [B6: real,A6: real] :
      ( ( ~ ( ord_less_eq_real @ B6 @ A6 ) )
      = ( ord_less_real @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_666_verit__comp__simplify1_I3_J,axiom,
    ! [B6: nat,A6: nat] :
      ( ( ~ ( ord_less_eq_nat @ B6 @ A6 ) )
      = ( ord_less_nat @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_667_leD,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ~ ( ord_less_real @ X @ Y ) ) ).

% leD
thf(fact_668_leD,axiom,
    ! [Y: risk_Free_account,X: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ Y @ X )
     => ~ ( ord_le2131251472502387783ccount @ X @ Y ) ) ).

% leD
thf(fact_669_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_670_leD,axiom,
    ! [Y: set_nat,X: set_nat] :
      ( ( ord_less_eq_set_nat @ Y @ X )
     => ~ ( ord_less_set_nat @ X @ Y ) ) ).

% leD
thf(fact_671_leI,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ Y @ X ) ) ).

% leI
thf(fact_672_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_673_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_674_nless__le,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ~ ( ord_le2131251472502387783ccount @ A @ B ) )
      = ( ~ ( ord_le4245800335709223507ccount @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_675_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_676_nless__le,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ~ ( ord_less_set_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_set_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_677_antisym__conv1,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ( ord_less_eq_real @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_678_antisym__conv1,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ~ ( ord_le2131251472502387783ccount @ X @ Y )
     => ( ( ord_le4245800335709223507ccount @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_679_antisym__conv1,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_680_antisym__conv1,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ~ ( ord_less_set_nat @ X @ Y )
     => ( ( ord_less_eq_set_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_681_antisym__conv2,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ~ ( ord_less_real @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_682_antisym__conv2,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ Y )
     => ( ( ~ ( ord_le2131251472502387783ccount @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_683_antisym__conv2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_684_antisym__conv2,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y )
     => ( ( ~ ( ord_less_set_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_685_dense__ge,axiom,
    ! [Z2: real,Y: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ Z2 @ X3 )
         => ( ord_less_eq_real @ Y @ X3 ) )
     => ( ord_less_eq_real @ Y @ Z2 ) ) ).

% dense_ge
thf(fact_686_dense__le,axiom,
    ! [Y: real,Z2: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ X3 @ Y )
         => ( ord_less_eq_real @ X3 @ Z2 ) )
     => ( ord_less_eq_real @ Y @ Z2 ) ) ).

% dense_le
thf(fact_687_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ~ ( ord_less_eq_real @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_688_less__le__not__le,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [X2: risk_Free_account,Y4: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ X2 @ Y4 )
          & ~ ( ord_le4245800335709223507ccount @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_689_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ~ ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_690_less__le__not__le,axiom,
    ( ord_less_set_nat
    = ( ^ [X2: set_nat,Y4: set_nat] :
          ( ( ord_less_eq_set_nat @ X2 @ Y4 )
          & ~ ( ord_less_eq_set_nat @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_691_not__le__imp__less,axiom,
    ! [Y: real,X: real] :
      ( ~ ( ord_less_eq_real @ Y @ X )
     => ( ord_less_real @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_692_not__le__imp__less,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X )
     => ( ord_less_nat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_693_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B3: real] :
          ( ( ord_less_real @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_694_order_Oorder__iff__strict,axiom,
    ( ord_le4245800335709223507ccount
    = ( ^ [A3: risk_Free_account,B3: risk_Free_account] :
          ( ( ord_le2131251472502387783ccount @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_695_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_nat @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_696_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A3: set_nat,B3: set_nat] :
          ( ( ord_less_set_nat @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_697_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B3: real] :
          ( ( ord_less_eq_real @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_698_order_Ostrict__iff__order,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [A3: risk_Free_account,B3: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_699_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_700_order_Ostrict__iff__order,axiom,
    ( ord_less_set_nat
    = ( ^ [A3: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_701_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_702_order_Ostrict__trans1,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_703_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_704_order_Ostrict__trans1,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ord_less_set_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_705_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_706_order_Ostrict__trans2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_707_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_708_order_Ostrict__trans2,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ord_less_set_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_709_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B3: real] :
          ( ( ord_less_eq_real @ A3 @ B3 )
          & ~ ( ord_less_eq_real @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_710_order_Ostrict__iff__not,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [A3: risk_Free_account,B3: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ A3 @ B3 )
          & ~ ( ord_le4245800335709223507ccount @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_711_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ~ ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_712_order_Ostrict__iff__not,axiom,
    ( ord_less_set_nat
    = ( ^ [A3: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ A3 @ B3 )
          & ~ ( ord_less_eq_set_nat @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_713_dense__ge__bounded,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ Z2 @ X )
     => ( ! [W2: real] :
            ( ( ord_less_real @ Z2 @ W2 )
           => ( ( ord_less_real @ W2 @ X )
             => ( ord_less_eq_real @ Y @ W2 ) ) )
       => ( ord_less_eq_real @ Y @ Z2 ) ) ) ).

% dense_ge_bounded
thf(fact_714_dense__le__bounded,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ! [W2: real] :
            ( ( ord_less_real @ X @ W2 )
           => ( ( ord_less_real @ W2 @ Y )
             => ( ord_less_eq_real @ W2 @ Z2 ) ) )
       => ( ord_less_eq_real @ Y @ Z2 ) ) ) ).

% dense_le_bounded
thf(fact_715_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B3: real,A3: real] :
          ( ( ord_less_real @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_716_dual__order_Oorder__iff__strict,axiom,
    ( ord_le4245800335709223507ccount
    = ( ^ [B3: risk_Free_account,A3: risk_Free_account] :
          ( ( ord_le2131251472502387783ccount @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_717_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_nat @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_718_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [B3: set_nat,A3: set_nat] :
          ( ( ord_less_set_nat @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_719_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A3: real] :
          ( ( ord_less_eq_real @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_720_dual__order_Ostrict__iff__order,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [B3: risk_Free_account,A3: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_721_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_722_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_nat
    = ( ^ [B3: set_nat,A3: set_nat] :
          ( ( ord_less_eq_set_nat @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_723_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_724_dual__order_Ostrict__trans1,axiom,
    ! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ B @ A )
     => ( ( ord_le2131251472502387783ccount @ C @ B )
       => ( ord_le2131251472502387783ccount @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_725_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_726_dual__order_Ostrict__trans1,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_set_nat @ C @ B )
       => ( ord_less_set_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_727_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_728_dual__order_Ostrict__trans2,axiom,
    ! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ B @ A )
     => ( ( ord_le4245800335709223507ccount @ C @ B )
       => ( ord_le2131251472502387783ccount @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_729_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_730_dual__order_Ostrict__trans2,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ C @ B )
       => ( ord_less_set_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_731_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A3: real] :
          ( ( ord_less_eq_real @ B3 @ A3 )
          & ~ ( ord_less_eq_real @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_732_dual__order_Ostrict__iff__not,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [B3: risk_Free_account,A3: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ B3 @ A3 )
          & ~ ( ord_le4245800335709223507ccount @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_733_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_734_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_nat
    = ( ^ [B3: set_nat,A3: set_nat] :
          ( ( ord_less_eq_set_nat @ B3 @ A3 )
          & ~ ( ord_less_eq_set_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_735_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_736_order_Ostrict__implies__order,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ord_le4245800335709223507ccount @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_737_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_738_order_Ostrict__implies__order,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ord_less_eq_set_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_739_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_740_dual__order_Ostrict__implies__order,axiom,
    ! [B: risk_Free_account,A: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ B @ A )
     => ( ord_le4245800335709223507ccount @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_741_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_742_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( ord_less_set_nat @ B @ A )
     => ( ord_less_eq_set_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_743_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_real @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_744_order__le__less,axiom,
    ( ord_le4245800335709223507ccount
    = ( ^ [X2: risk_Free_account,Y4: risk_Free_account] :
          ( ( ord_le2131251472502387783ccount @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_745_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_nat @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_746_order__le__less,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [X2: set_nat,Y4: set_nat] :
          ( ( ord_less_set_nat @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_747_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_748_order__less__le,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [X2: risk_Free_account,Y4: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_749_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_750_order__less__le,axiom,
    ( ord_less_set_nat
    = ( ^ [X2: set_nat,Y4: set_nat] :
          ( ( ord_less_eq_set_nat @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_751_linorder__not__le,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_eq_real @ X @ Y ) )
      = ( ord_less_real @ Y @ X ) ) ).

% linorder_not_le
thf(fact_752_linorder__not__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y ) )
      = ( ord_less_nat @ Y @ X ) ) ).

% linorder_not_le
thf(fact_753_linorder__not__less,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_real @ X @ Y ) )
      = ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_not_less
thf(fact_754_linorder__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_not_less
thf(fact_755_order__less__imp__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_756_order__less__imp__le,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( ord_le4245800335709223507ccount @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_757_order__less__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_758_order__less__imp__le,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( ord_less_set_nat @ X @ Y )
     => ( ord_less_eq_set_nat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_759_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_760_order__le__neq__trans,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( A != B )
       => ( ord_le2131251472502387783ccount @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_761_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_762_order__le__neq__trans,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_763_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_764_order__neq__le__trans,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( A != B )
     => ( ( ord_le4245800335709223507ccount @ A @ B )
       => ( ord_le2131251472502387783ccount @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_765_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_766_order__neq__le__trans,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( A != B )
     => ( ( ord_less_eq_set_nat @ A @ B )
       => ( ord_less_set_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_767_order__le__less__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_real @ Y @ Z2 )
       => ( ord_less_real @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_768_order__le__less__trans,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account,Z2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ Y )
     => ( ( ord_le2131251472502387783ccount @ Y @ Z2 )
       => ( ord_le2131251472502387783ccount @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_769_order__le__less__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_770_order__le__less__trans,axiom,
    ! [X: set_nat,Y: set_nat,Z2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y )
     => ( ( ord_less_set_nat @ Y @ Z2 )
       => ( ord_less_set_nat @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_771_order__less__le__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ Z2 )
       => ( ord_less_real @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_772_order__less__le__trans,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account,Z2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( ( ord_le4245800335709223507ccount @ Y @ Z2 )
       => ( ord_le2131251472502387783ccount @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_773_order__less__le__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_774_order__less__le__trans,axiom,
    ! [X: set_nat,Y: set_nat,Z2: set_nat] :
      ( ( ord_less_set_nat @ X @ Y )
     => ( ( ord_less_eq_set_nat @ Y @ Z2 )
       => ( ord_less_set_nat @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_775_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_776_order__le__less__subst1,axiom,
    ! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_777_order__le__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_778_order__le__less__subst1,axiom,
    ! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
      ( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_779_order__le__less__subst1,axiom,
    ! [A: risk_Free_account,F: risk_Free_account > risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_780_order__le__less__subst1,axiom,
    ! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
      ( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_781_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_782_order__le__less__subst1,axiom,
    ! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_783_order__le__less__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_784_order__le__less__subst1,axiom,
    ! [A: set_nat,F: nat > set_nat,B: nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_785_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_786_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_787_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_788_order__le__less__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_789_order__le__less__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_790_order__le__less__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_791_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_792_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_793_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_794_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > set_nat,C: set_nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_795_order__less__le__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_796_order__less__le__subst1,axiom,
    ! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
      ( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_797_order__less__le__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_798_order__less__le__subst1,axiom,
    ! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_799_order__less__le__subst1,axiom,
    ! [A: risk_Free_account,F: risk_Free_account > risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_800_order__less__le__subst1,axiom,
    ! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_801_order__less__le__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_802_order__less__le__subst1,axiom,
    ! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
      ( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_803_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_804_order__less__le__subst1,axiom,
    ! [A: set_nat,F: real > set_nat,B: real,C: real] :
      ( ( ord_less_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_805_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_806_order__less__le__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_807_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_808_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_809_order__less__le__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_810_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_811_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_812_order__less__le__subst2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: risk_Free_account,Y3: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_813_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y3: real] :
              ( ( ord_less_real @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_814_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_815_linorder__le__less__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
      | ( ord_less_real @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_816_linorder__le__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_817_order__le__imp__less__or__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_real @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_818_order__le__imp__less__or__eq,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ Y )
     => ( ( ord_le2131251472502387783ccount @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_819_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_820_order__le__imp__less__or__eq,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y )
     => ( ( ord_less_set_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_821_zero__less__iff__neq__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( N2 != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_822_gr__implies__not__zero,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_823_not__less__zero,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less_zero
thf(fact_824_gr__zeroI,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr_zeroI
thf(fact_825_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_826_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_827_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_828_add__less__imp__less__right,axiom,
    ! [A: risk_Free_account,C: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ C ) )
     => ( ord_le2131251472502387783ccount @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_829_add__less__imp__less__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_830_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_831_add__less__imp__less__left,axiom,
    ! [C: risk_Free_account,A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ C @ A ) @ ( plus_p1863581527469039996ccount @ C @ B ) )
     => ( ord_le2131251472502387783ccount @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_832_add__less__imp__less__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_833_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_834_add__strict__right__mono,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_835_add__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_836_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_837_add__strict__left__mono,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ C @ A ) @ ( plus_p1863581527469039996ccount @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_838_add__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_839_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_840_add__strict__mono,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account,D: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ord_le2131251472502387783ccount @ C @ D )
       => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_841_add__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_842_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_843_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: risk_Free_account,J: risk_Free_account,K: risk_Free_account,L: risk_Free_account] :
      ( ( ( ord_le2131251472502387783ccount @ I @ J )
        & ( K = L ) )
     => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ I @ K ) @ ( plus_p1863581527469039996ccount @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_844_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_845_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_846_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: risk_Free_account,J: risk_Free_account,K: risk_Free_account,L: risk_Free_account] :
      ( ( ( I = J )
        & ( ord_le2131251472502387783ccount @ K @ L ) )
     => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ I @ K ) @ ( plus_p1863581527469039996ccount @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_847_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_848_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_849_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: risk_Free_account,J: risk_Free_account,K: risk_Free_account,L: risk_Free_account] :
      ( ( ( ord_le2131251472502387783ccount @ I @ J )
        & ( ord_le2131251472502387783ccount @ K @ L ) )
     => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ I @ K ) @ ( plus_p1863581527469039996ccount @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_850_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_851_top_Oextremum__strict,axiom,
    ! [A: set_nat] :
      ~ ( ord_less_set_nat @ top_top_set_nat @ A ) ).

% top.extremum_strict
thf(fact_852_top_Onot__eq__extremum,axiom,
    ! [A: set_nat] :
      ( ( A != top_top_set_nat )
      = ( ord_less_set_nat @ A @ top_top_set_nat ) ) ).

% top.not_eq_extremum
thf(fact_853_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_854_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_855_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_856_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_857_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_858_gr0I,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr0I
thf(fact_859_not__gr0,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr0
thf(fact_860_not__less0,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less0
thf(fact_861_less__zeroE,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_zeroE
thf(fact_862_gr__implies__not0,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_863_infinite__descent0,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M3: nat] :
                  ( ( ord_less_nat @ M3 @ N3 )
                  & ~ ( P @ M3 ) ) ) )
       => ( P @ N2 ) ) ) ).

% infinite_descent0
thf(fact_864_mult_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.comm_neutral
thf(fact_865_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_866_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_867_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_868_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N: nat] :
          ( ( ord_less_eq_nat @ M2 @ N )
          & ( M2 != N ) ) ) ) ).

% nat_less_le
thf(fact_869_less__imp__le__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_imp_le_nat
thf(fact_870_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N: nat] :
          ( ( ord_less_nat @ M2 @ N )
          | ( M2 = N ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_871_less__or__eq__imp__le,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( ord_less_nat @ M @ N2 )
        | ( M = N2 ) )
     => ( ord_less_eq_nat @ M @ N2 ) ) ).

% less_or_eq_imp_le
thf(fact_872_le__neq__implies__less,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( M != N2 )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% le_neq_implies_less
thf(fact_873_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_874_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% less_add_eq_less
thf(fact_875_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_876_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_877_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_878_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_879_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_880_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_881_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_882_nat__mult__1,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ one_one_nat @ N2 )
      = N2 ) ).

% nat_mult_1
thf(fact_883_nat__mult__1__right,axiom,
    ! [N2: nat] :
      ( ( times_times_nat @ N2 @ one_one_nat )
      = N2 ) ).

% nat_mult_1_right
thf(fact_884_greater__than__shortest__period__zero,axiom,
    ! [Alpha: risk_Free_account,M: nat] :
      ( ( ord_less_nat @ ( risk_F4612863212915232279period @ Alpha ) @ M )
     => ( ( risk_F170160801229183585ccount @ Alpha @ M )
        = zero_zero_real ) ) ).

% greater_than_shortest_period_zero
thf(fact_885_mult__less__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_886_mult__less__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_887_mult__less__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ one_one_real ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ one_one_real @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_888_mult__less__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ one_one_real @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ one_one_real ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_889_mult__le__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_890_mult__le__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_891_mult__le__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ one_one_real ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_892_mult__le__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ one_one_real @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_893_convex__bound__lt,axiom,
    ! [X: real,A: real,Y: real,U: real,V: real] :
      ( ( ord_less_real @ X @ A )
     => ( ( ord_less_real @ Y @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ U )
         => ( ( ord_less_eq_real @ zero_zero_real @ V )
           => ( ( ( plus_plus_real @ U @ V )
                = one_one_real )
             => ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_894_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_895_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_896_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_897_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_898_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_899_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_900_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_901_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_902_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_903_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_904_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_905_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_906_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_907_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_908_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_909_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_910_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_911_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_912_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_913_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_914_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_915_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_916_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_917_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_918_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_919_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_920_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_921_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_922_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_923_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: risk_Free_account,J: risk_Free_account,K: risk_Free_account,L: risk_Free_account] :
      ( ( ( ord_le4245800335709223507ccount @ I @ J )
        & ( ord_le2131251472502387783ccount @ K @ L ) )
     => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ I @ K ) @ ( plus_p1863581527469039996ccount @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_924_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_925_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_926_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: risk_Free_account,J: risk_Free_account,K: risk_Free_account,L: risk_Free_account] :
      ( ( ( ord_le2131251472502387783ccount @ I @ J )
        & ( ord_le4245800335709223507ccount @ K @ L ) )
     => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ I @ K ) @ ( plus_p1863581527469039996ccount @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_927_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_928_add__le__less__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_929_add__le__less__mono,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account,D: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_le2131251472502387783ccount @ C @ D )
       => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_930_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_931_add__less__le__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_932_add__less__le__mono,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account,D: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ C @ D )
       => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_933_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_934_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_935_add__neg__neg,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ zero_z1425366712893667068ccount )
     => ( ( ord_le2131251472502387783ccount @ B @ zero_z1425366712893667068ccount )
       => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ zero_z1425366712893667068ccount ) ) ) ).

% add_neg_neg
thf(fact_936_add__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_937_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_938_add__pos__pos,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ A )
     => ( ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ B )
       => ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ ( plus_p1863581527469039996ccount @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_939_add__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_940_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C3 ) )
           => ( C3 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_941_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_942_pos__add__strict,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ A )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ord_le2131251472502387783ccount @ B @ ( plus_p1863581527469039996ccount @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_943_pos__add__strict,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_944_add__less__zeroD,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
     => ( ( ord_less_real @ X @ zero_zero_real )
        | ( ord_less_real @ Y @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_945_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_946_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_947_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_948_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_949_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_950_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_951_ex__least__nat__le,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N2 )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K3 )
               => ~ ( P @ I4 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_952_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I @ K3 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_953_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_nat @ M4 @ N3 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_954_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_955_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_956_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_mult_less_cancel1
thf(fact_957_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N2 ) )
        = ( M = N2 ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_958_mult__eq__self__implies__10,axiom,
    ! [M: nat,N2: nat] :
      ( ( M
        = ( times_times_nat @ M @ N2 ) )
     => ( ( N2 = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_959_mult__less__le__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_960_mult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_961_mult__le__less__imp__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_962_mult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_963_mult__right__le__imp__le,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_964_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_965_mult__left__le__imp__le,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_966_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_967_mult__le__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_968_mult__le__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_969_mult__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_970_mult__strict__mono_H,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_971_mult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_972_mult__right__less__imp__less,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_973_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_974_mult__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_975_mult__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_976_mult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_977_mult__left__less__imp__less,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_978_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_979_mult__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_980_mult__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_981_add__strict__increasing2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_982_add__strict__increasing2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ A )
     => ( ( ord_le2131251472502387783ccount @ B @ C )
       => ( ord_le2131251472502387783ccount @ B @ ( plus_p1863581527469039996ccount @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_983_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_984_add__strict__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_985_add__strict__increasing,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ A )
     => ( ( ord_le4245800335709223507ccount @ B @ C )
       => ( ord_le2131251472502387783ccount @ B @ ( plus_p1863581527469039996ccount @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_986_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_987_add__pos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_988_add__pos__nonneg,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ A )
     => ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ B )
       => ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ ( plus_p1863581527469039996ccount @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_989_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_990_add__nonpos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_neg
thf(fact_991_add__nonpos__neg,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ zero_z1425366712893667068ccount )
     => ( ( ord_le2131251472502387783ccount @ B @ zero_z1425366712893667068ccount )
       => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ zero_z1425366712893667068ccount ) ) ) ).

% add_nonpos_neg
thf(fact_992_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_993_add__nonneg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_994_add__nonneg__pos,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ A )
     => ( ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ B )
       => ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ ( plus_p1863581527469039996ccount @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_995_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_996_add__neg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_nonpos
thf(fact_997_add__neg__nonpos,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A @ zero_z1425366712893667068ccount )
     => ( ( ord_le4245800335709223507ccount @ B @ zero_z1425366712893667068ccount )
       => ( ord_le2131251472502387783ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ zero_z1425366712893667068ccount ) ) ) ).

% add_neg_nonpos
thf(fact_998_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_999_sum__squares__gt__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) )
      = ( ( X != zero_zero_real )
        | ( Y != zero_zero_real ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_1000_not__sum__squares__lt__zero,axiom,
    ! [X: real,Y: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real ) ).

% not_sum_squares_lt_zero
thf(fact_1001_mult__left__le,axiom,
    ! [C: real,A: real] :
      ( ( ord_less_eq_real @ C @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_1002_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_1003_mult__le__one,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ B @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).

% mult_le_one
thf(fact_1004_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_1005_mult__right__le__one__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ X @ Y ) @ X ) ) ) ) ).

% mult_right_le_one_le
thf(fact_1006_mult__left__le__one__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ Y @ one_one_real )
         => ( ord_less_eq_real @ ( times_times_real @ Y @ X ) @ X ) ) ) ) ).

% mult_left_le_one_le
thf(fact_1007_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
        = ( ord_less_eq_nat @ M @ N2 ) ) ) ).

% nat_mult_le_cancel1
thf(fact_1008_shortest__period___092_060pi_062,axiom,
    ! [Alpha: risk_Free_account,I: nat] :
      ( ( ( risk_F170160801229183585ccount @ Alpha @ I )
       != zero_zero_real )
     => ( ( risk_F170160801229183585ccount @ Alpha @ ( risk_F4612863212915232279period @ Alpha ) )
       != zero_zero_real ) ) ).

% shortest_period_\<pi>
thf(fact_1009_type__definition_ORep,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,A2: set_nat_real,X: risk_Free_account] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ A2 )
     => ( member_nat_real @ ( Rep @ X ) @ A2 ) ) ).

% type_definition.Rep
thf(fact_1010_type__definition_Ointro,axiom,
    ! [Rep: risk_Free_account > nat > real,A2: set_nat_real,Abs: ( nat > real ) > risk_Free_account] :
      ( ! [X3: risk_Free_account] : ( member_nat_real @ ( Rep @ X3 ) @ A2 )
     => ( ! [X3: risk_Free_account] :
            ( ( Abs @ ( Rep @ X3 ) )
            = X3 )
       => ( ! [Y3: nat > real] :
              ( ( member_nat_real @ Y3 @ A2 )
             => ( ( Rep @ ( Abs @ Y3 ) )
                = Y3 ) )
         => ( type_d8982087200295354172t_real @ Rep @ Abs @ A2 ) ) ) ) ).

% type_definition.intro
thf(fact_1011_type__definition_OAbs__cases,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,A2: set_nat_real,X: risk_Free_account] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ A2 )
     => ~ ! [Y3: nat > real] :
            ( ( X
              = ( Abs @ Y3 ) )
           => ~ ( member_nat_real @ Y3 @ A2 ) ) ) ).

% type_definition.Abs_cases
thf(fact_1012_type__definition_ORep__cases,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,A2: set_nat_real,Y: nat > real] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ A2 )
     => ( ( member_nat_real @ Y @ A2 )
       => ~ ! [X3: risk_Free_account] :
              ( Y
             != ( Rep @ X3 ) ) ) ) ).

% type_definition.Rep_cases
thf(fact_1013_type__definition_OAbs__induct,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,A2: set_nat_real,P: risk_Free_account > $o,X: risk_Free_account] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ A2 )
     => ( ! [Y3: nat > real] :
            ( ( member_nat_real @ Y3 @ A2 )
           => ( P @ ( Abs @ Y3 ) ) )
       => ( P @ X ) ) ) ).

% type_definition.Abs_induct
thf(fact_1014_type__definition_OAbs__inject,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,A2: set_nat_real,X: nat > real,Y: nat > real] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ A2 )
     => ( ( member_nat_real @ X @ A2 )
       => ( ( member_nat_real @ Y @ A2 )
         => ( ( ( Abs @ X )
              = ( Abs @ Y ) )
            = ( X = Y ) ) ) ) ) ).

% type_definition.Abs_inject
thf(fact_1015_type__definition_ORep__induct,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,A2: set_nat_real,Y: nat > real,P: ( nat > real ) > $o] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ A2 )
     => ( ( member_nat_real @ Y @ A2 )
       => ( ! [X3: risk_Free_account] : ( P @ ( Rep @ X3 ) )
         => ( P @ Y ) ) ) ) ).

% type_definition.Rep_induct
thf(fact_1016_type__definition_ORep__inject,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,A2: set_nat_real,X: risk_Free_account,Y: risk_Free_account] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ A2 )
     => ( ( ( Rep @ X )
          = ( Rep @ Y ) )
        = ( X = Y ) ) ) ).

% type_definition.Rep_inject
thf(fact_1017_type__definition_OAbs__inverse,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,A2: set_nat_real,Y: nat > real] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ A2 )
     => ( ( member_nat_real @ Y @ A2 )
       => ( ( Rep @ ( Abs @ Y ) )
          = Y ) ) ) ).

% type_definition.Abs_inverse
thf(fact_1018_type__definition_ORep__inverse,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,A2: set_nat_real,X: risk_Free_account] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ A2 )
     => ( ( Abs @ ( Rep @ X ) )
        = X ) ) ).

% type_definition.Rep_inverse
thf(fact_1019_field__le__mult__one__interval,axiom,
    ! [X: real,Y: real] :
      ( ! [Z3: real] :
          ( ( ord_less_real @ zero_zero_real @ Z3 )
         => ( ( ord_less_real @ Z3 @ one_one_real )
           => ( ord_less_eq_real @ ( times_times_real @ Z3 @ X ) @ Y ) ) )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% field_le_mult_one_interval
thf(fact_1020_field__le__epsilon,axiom,
    ! [X: real,Y: real] :
      ( ! [E2: real] :
          ( ( ord_less_real @ zero_zero_real @ E2 )
         => ( ord_less_eq_real @ X @ ( plus_plus_real @ Y @ E2 ) ) )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% field_le_epsilon
thf(fact_1021_mult__le__cancel__iff2,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z2 )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z2 @ X ) @ ( times_times_real @ Z2 @ Y ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% mult_le_cancel_iff2
thf(fact_1022_mult__le__cancel__iff1,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z2 )
     => ( ( ord_less_eq_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y @ Z2 ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% mult_le_cancel_iff1
thf(fact_1023_mult__less__iff1,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z2 )
     => ( ( ord_less_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y @ Z2 ) )
        = ( ord_less_real @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_1024_psubsetI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_set_nat @ A2 @ B2 ) ) ) ).

% psubsetI
thf(fact_1025_subset__iff__psubset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
          ( ( ord_less_set_nat @ A5 @ B5 )
          | ( A5 = B5 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_1026_subset__psubset__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C4: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_set_nat @ B2 @ C4 )
       => ( ord_less_set_nat @ A2 @ C4 ) ) ) ).

% subset_psubset_trans
thf(fact_1027_subset__not__subset__eq,axiom,
    ( ord_less_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
          ( ( ord_less_eq_set_nat @ A5 @ B5 )
          & ~ ( ord_less_eq_set_nat @ B5 @ A5 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_1028_psubset__subset__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C4: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C4 )
       => ( ord_less_set_nat @ A2 @ C4 ) ) ) ).

% psubset_subset_trans
thf(fact_1029_psubset__imp__subset,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% psubset_imp_subset
thf(fact_1030_psubset__eq,axiom,
    ( ord_less_set_nat
    = ( ^ [A5: set_nat,B5: set_nat] :
          ( ( ord_less_eq_set_nat @ A5 @ B5 )
          & ( A5 != B5 ) ) ) ) ).

% psubset_eq
thf(fact_1031_psubsetE,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ~ ( ( ord_less_eq_set_nat @ A2 @ B2 )
         => ( ord_less_eq_set_nat @ B2 @ A2 ) ) ) ).

% psubsetE
thf(fact_1032_less__account__def,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [Alpha_12: risk_Free_account,Alpha_22: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ Alpha_12 @ Alpha_22 )
          & ~ ( ord_le4245800335709223507ccount @ Alpha_22 @ Alpha_12 ) ) ) ) ).

% less_account_def
thf(fact_1033_not__real__square__gt__zero,axiom,
    ! [X: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
      = ( X = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_1034_nat__descend__induct,axiom,
    ! [N2: nat,P: nat > $o,M: nat] :
      ( ! [K3: nat] :
          ( ( ord_less_nat @ N2 @ K3 )
         => ( P @ K3 ) )
     => ( ! [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N2 )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K3 @ I4 )
                 => ( P @ I4 ) )
             => ( P @ K3 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_1035_psubsetD,axiom,
    ! [A2: set_nat_real,B2: set_nat_real,C: nat > real] :
      ( ( ord_le3527643927072297637t_real @ A2 @ B2 )
     => ( ( member_nat_real @ C @ A2 )
       => ( member_nat_real @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1036_psubsetD,axiom,
    ! [A2: set_real,B2: set_real,C: real] :
      ( ( ord_less_set_real @ A2 @ B2 )
     => ( ( member_real @ C @ A2 )
       => ( member_real @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1037_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M5: nat] :
      ( ( P @ X )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M5 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X6: nat] :
                    ( ( P @ X6 )
                   => ( ord_less_eq_nat @ X6 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_1038_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_real @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% less_eq_real_def
thf(fact_1039_field__lbound__gt__zero,axiom,
    ! [D1: real,D2: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ? [E2: real] :
            ( ( ord_less_real @ zero_zero_real @ E2 )
            & ( ord_less_real @ E2 @ D1 )
            & ( ord_less_real @ E2 @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_1040_minf_I8_J,axiom,
    ! [T2: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ~ ( ord_less_eq_real @ T2 @ X6 ) ) ).

% minf(8)
thf(fact_1041_minf_I8_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ~ ( ord_less_eq_nat @ T2 @ X6 ) ) ).

% minf(8)
thf(fact_1042_minf_I6_J,axiom,
    ! [T2: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( ord_less_eq_real @ X6 @ T2 ) ) ).

% minf(6)
thf(fact_1043_minf_I6_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( ord_less_eq_nat @ X6 @ T2 ) ) ).

% minf(6)
thf(fact_1044_complete__real,axiom,
    ! [S2: set_real] :
      ( ? [X6: real] : ( member_real @ X6 @ S2 )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( member_real @ X3 @ S2 )
           => ( ord_less_eq_real @ X3 @ Z4 ) )
       => ? [Y3: real] :
            ( ! [X6: real] :
                ( ( member_real @ X6 @ S2 )
               => ( ord_less_eq_real @ X6 @ Y3 ) )
            & ! [Z4: real] :
                ( ! [X3: real] :
                    ( ( member_real @ X3 @ S2 )
                   => ( ord_less_eq_real @ X3 @ Z4 ) )
               => ( ord_less_eq_real @ Y3 @ Z4 ) ) ) ) ) ).

% complete_real
thf(fact_1045_pinf_I6_J,axiom,
    ! [T2: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ~ ( ord_less_eq_real @ X6 @ T2 ) ) ).

% pinf(6)
thf(fact_1046_pinf_I6_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ~ ( ord_less_eq_nat @ X6 @ T2 ) ) ).

% pinf(6)
thf(fact_1047_pinf_I8_J,axiom,
    ! [T2: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( ord_less_eq_real @ T2 @ X6 ) ) ).

% pinf(8)
thf(fact_1048_pinf_I8_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( ord_less_eq_nat @ T2 @ X6 ) ) ).

% pinf(8)
thf(fact_1049_complete__interval,axiom,
    ! [A: real,B: real,P: real > $o] :
      ( ( ord_less_real @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C3: real] :
              ( ( ord_less_eq_real @ A @ C3 )
              & ( ord_less_eq_real @ C3 @ B )
              & ! [X6: real] :
                  ( ( ( ord_less_eq_real @ A @ X6 )
                    & ( ord_less_real @ X6 @ C3 ) )
                 => ( P @ X6 ) )
              & ! [D3: real] :
                  ( ! [X3: real] :
                      ( ( ( ord_less_eq_real @ A @ X3 )
                        & ( ord_less_real @ X3 @ D3 ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_real @ D3 @ C3 ) ) ) ) ) ) ).

% complete_interval
thf(fact_1050_complete__interval,axiom,
    ! [A: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C3: nat] :
              ( ( ord_less_eq_nat @ A @ C3 )
              & ( ord_less_eq_nat @ C3 @ B )
              & ! [X6: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X6 )
                    & ( ord_less_nat @ X6 @ C3 ) )
                 => ( P @ X6 ) )
              & ! [D3: nat] :
                  ( ! [X3: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X3 )
                        & ( ord_less_nat @ X3 @ D3 ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_nat @ D3 @ C3 ) ) ) ) ) ) ).

% complete_interval
thf(fact_1051_Rep__account__return__loans,axiom,
    ! [Rho2: nat > real,Alpha: risk_Free_account] :
      ( ( risk_F170160801229183585ccount @ ( risk_F2121631595377017831_loans @ Rho2 @ Alpha ) )
      = ( ^ [N: nat] : ( times_times_real @ ( minus_minus_real @ one_one_real @ ( Rho2 @ N ) ) @ ( risk_F170160801229183585ccount @ Alpha @ N ) ) ) ) ).

% Rep_account_return_loans
thf(fact_1052_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_1053_power__decreasing__iff,axiom,
    ! [B: real,M: nat,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N2 ) )
          = ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1054_power__decreasing__iff,axiom,
    ! [B: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N2 ) )
          = ( ord_less_eq_nat @ N2 @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_1055_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_1056_diff__self,axiom,
    ! [A: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ A @ A )
      = zero_z1425366712893667068ccount ) ).

% diff_self
thf(fact_1057_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_1058_diff__0__right,axiom,
    ! [A: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ A @ zero_z1425366712893667068ccount )
      = A ) ).

% diff_0_right
thf(fact_1059_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_1060_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_1061_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_1062_diff__zero,axiom,
    ! [A: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ A @ zero_z1425366712893667068ccount )
      = A ) ).

% diff_zero
thf(fact_1063_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1064_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1065_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ A @ A )
      = zero_z1425366712893667068ccount ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1066_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1067_add__diff__cancel,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_1068_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1069_diff__add__cancel,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ ( minus_4846202936726426316ccount @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_1070_add__diff__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1071_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1072_add__diff__cancel__left,axiom,
    ! [C: risk_Free_account,A: risk_Free_account,B: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ ( plus_p1863581527469039996ccount @ C @ A ) @ ( plus_p1863581527469039996ccount @ C @ B ) )
      = ( minus_4846202936726426316ccount @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1073_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1074_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1075_add__diff__cancel__left_H,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1076_add__diff__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1077_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1078_add__diff__cancel__right,axiom,
    ! [A: risk_Free_account,C: risk_Free_account,B: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ C ) )
      = ( minus_4846202936726426316ccount @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1079_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1080_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1081_add__diff__cancel__right_H,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1082_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_nat @ one_one_nat @ N2 )
      = one_one_nat ) ).

% power_one
thf(fact_1083_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_real @ one_one_real @ N2 )
      = one_one_real ) ).

% power_one
thf(fact_1084_power__one,axiom,
    ! [N2: nat] :
      ( ( power_power_complex @ one_one_complex @ N2 )
      = one_one_complex ) ).

% power_one
thf(fact_1085_nat__zero__less__power__iff,axiom,
    ! [X: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N2 = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_1086_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1087_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1088_power__one__right,axiom,
    ! [A: complex] :
      ( ( power_power_complex @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_1089_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1090_diff__ge__0__iff__ge,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ ( minus_4846202936726426316ccount @ A @ B ) )
      = ( ord_le4245800335709223507ccount @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1091_diff__gt__0__iff__gt,axiom,
    ! [A: risk_Free_account,B: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ ( minus_4846202936726426316ccount @ A @ B ) )
      = ( ord_le2131251472502387783ccount @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1092_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_1093_le__add__diff__inverse2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1094_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1095_le__add__diff__inverse,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1096_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1097_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_1098_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_1099_power__inject__exp,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N2 ) )
        = ( M = N2 ) ) ) ).

% power_inject_exp
thf(fact_1100_power__inject__exp,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( power_power_real @ A @ M )
          = ( power_power_real @ A @ N2 ) )
        = ( M = N2 ) ) ) ).

% power_inject_exp
thf(fact_1101_power__strict__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_1102_power__strict__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_1103_power__eq__0__iff,axiom,
    ! [A: nat,N2: nat] :
      ( ( ( power_power_nat @ A @ N2 )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_1104_power__eq__0__iff,axiom,
    ! [A: real,N2: nat] :
      ( ( ( power_power_real @ A @ N2 )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_1105_power__eq__0__iff,axiom,
    ! [A: complex,N2: nat] :
      ( ( ( power_power_complex @ A @ N2 )
        = zero_zero_complex )
      = ( ( A = zero_zero_complex )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% power_eq_0_iff
thf(fact_1106_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N2 ) )
          = ( ord_less_nat @ N2 @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1107_power__strict__decreasing__iff,axiom,
    ! [B: real,M: nat,N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N2 ) )
          = ( ord_less_nat @ N2 @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_1108_power__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_1109_power__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_1110_power__mono__iff,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) )
            = ( ord_less_eq_real @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_1111_power__mono__iff,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N2 )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_1112_inf__period_I1_J,axiom,
    ! [P: real > $o,D4: real,Q: real > $o] :
      ( ! [X3: real,K3: real] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
     => ( ! [X3: real,K3: real] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
       => ! [X6: real,K4: real] :
            ( ( ( P @ X6 )
              & ( Q @ X6 ) )
            = ( ( P @ ( minus_minus_real @ X6 @ ( times_times_real @ K4 @ D4 ) ) )
              & ( Q @ ( minus_minus_real @ X6 @ ( times_times_real @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_1113_inf__period_I2_J,axiom,
    ! [P: real > $o,D4: real,Q: real > $o] :
      ( ! [X3: real,K3: real] :
          ( ( P @ X3 )
          = ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
     => ( ! [X3: real,K3: real] :
            ( ( Q @ X3 )
            = ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D4 ) ) ) )
       => ! [X6: real,K4: real] :
            ( ( ( P @ X6 )
              | ( Q @ X6 ) )
            = ( ( P @ ( minus_minus_real @ X6 @ ( times_times_real @ K4 @ D4 ) ) )
              | ( Q @ ( minus_minus_real @ X6 @ ( times_times_real @ K4 @ D4 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_1114_add__diff__add,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) )
      = ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1115_add__diff__add,axiom,
    ! [A: risk_Free_account,C: risk_Free_account,B: risk_Free_account,D: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ ( plus_p1863581527469039996ccount @ B @ D ) )
      = ( plus_p1863581527469039996ccount @ ( minus_4846202936726426316ccount @ A @ B ) @ ( minus_4846202936726426316ccount @ C @ D ) ) ) ).

% add_diff_add
thf(fact_1116_diff__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_1117_diff__mono,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,D: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ( ord_le4245800335709223507ccount @ D @ C )
       => ( ord_le4245800335709223507ccount @ ( minus_4846202936726426316ccount @ A @ C ) @ ( minus_4846202936726426316ccount @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_1118_diff__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_1119_diff__left__mono,axiom,
    ! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ B @ A )
     => ( ord_le4245800335709223507ccount @ ( minus_4846202936726426316ccount @ C @ A ) @ ( minus_4846202936726426316ccount @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_1120_diff__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_1121_diff__right__mono,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A @ B )
     => ( ord_le4245800335709223507ccount @ ( minus_4846202936726426316ccount @ A @ C ) @ ( minus_4846202936726426316ccount @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_1122_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_1123_diff__eq__diff__less__eq,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account,D: risk_Free_account] :
      ( ( ( minus_4846202936726426316ccount @ A @ B )
        = ( minus_4846202936726426316ccount @ C @ D ) )
     => ( ( ord_le4245800335709223507ccount @ A @ B )
        = ( ord_le4245800335709223507ccount @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_1124_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y2: real,Z: real] : ( Y2 = Z ) )
    = ( ^ [A3: real,B3: real] :
          ( ( minus_minus_real @ A3 @ B3 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_1125_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y2: risk_Free_account,Z: risk_Free_account] : ( Y2 = Z ) )
    = ( ^ [A3: risk_Free_account,B3: risk_Free_account] :
          ( ( minus_4846202936726426316ccount @ A3 @ B3 )
          = zero_z1425366712893667068ccount ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_1126_power__not__zero,axiom,
    ! [A: nat,N2: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N2 )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_1127_power__not__zero,axiom,
    ! [A: real,N2: nat] :
      ( ( A != zero_zero_real )
     => ( ( power_power_real @ A @ N2 )
       != zero_zero_real ) ) ).

% power_not_zero
thf(fact_1128_power__not__zero,axiom,
    ! [A: complex,N2: nat] :
      ( ( A != zero_zero_complex )
     => ( ( power_power_complex @ A @ N2 )
       != zero_zero_complex ) ) ).

% power_not_zero
thf(fact_1129_right__diff__distrib_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1130_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_1131_left__diff__distrib_H,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
      = ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_1132_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_1133_right__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_1134_left__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_1135_power__commuting__commutes,axiom,
    ! [X: complex,Y: complex,N2: nat] :
      ( ( ( times_times_complex @ X @ Y )
        = ( times_times_complex @ Y @ X ) )
     => ( ( times_times_complex @ ( power_power_complex @ X @ N2 ) @ Y )
        = ( times_times_complex @ Y @ ( power_power_complex @ X @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_1136_power__commuting__commutes,axiom,
    ! [X: real,Y: real,N2: nat] :
      ( ( ( times_times_real @ X @ Y )
        = ( times_times_real @ Y @ X ) )
     => ( ( times_times_real @ ( power_power_real @ X @ N2 ) @ Y )
        = ( times_times_real @ Y @ ( power_power_real @ X @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_1137_power__commuting__commutes,axiom,
    ! [X: nat,Y: nat,N2: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = ( times_times_nat @ Y @ X ) )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N2 ) @ Y )
        = ( times_times_nat @ Y @ ( power_power_nat @ X @ N2 ) ) ) ) ).

% power_commuting_commutes
thf(fact_1138_power__mult__distrib,axiom,
    ! [A: complex,B: complex,N2: nat] :
      ( ( power_power_complex @ ( times_times_complex @ A @ B ) @ N2 )
      = ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ ( power_power_complex @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_1139_power__mult__distrib,axiom,
    ! [A: real,B: real,N2: nat] :
      ( ( power_power_real @ ( times_times_real @ A @ B ) @ N2 )
      = ( times_times_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_1140_power__mult__distrib,axiom,
    ! [A: nat,B: nat,N2: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N2 )
      = ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ).

% power_mult_distrib
thf(fact_1141_power__commutes,axiom,
    ! [A: complex,N2: nat] :
      ( ( times_times_complex @ ( power_power_complex @ A @ N2 ) @ A )
      = ( times_times_complex @ A @ ( power_power_complex @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_1142_power__commutes,axiom,
    ! [A: real,N2: nat] :
      ( ( times_times_real @ ( power_power_real @ A @ N2 ) @ A )
      = ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_1143_power__commutes,axiom,
    ! [A: nat,N2: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ A )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ).

% power_commutes
thf(fact_1144_group__cancel_Osub1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_1145_group__cancel_Osub1,axiom,
    ! [A2: risk_Free_account,K: risk_Free_account,A: risk_Free_account,B: risk_Free_account] :
      ( ( A2
        = ( plus_p1863581527469039996ccount @ K @ A ) )
     => ( ( minus_4846202936726426316ccount @ A2 @ B )
        = ( plus_p1863581527469039996ccount @ K @ ( minus_4846202936726426316ccount @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_1146_diff__eq__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C )
      = ( A
        = ( plus_plus_real @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_1147_diff__eq__eq,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( ( minus_4846202936726426316ccount @ A @ B )
        = C )
      = ( A
        = ( plus_p1863581527469039996ccount @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_1148_eq__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_1149_eq__diff__eq,axiom,
    ! [A: risk_Free_account,C: risk_Free_account,B: risk_Free_account] :
      ( ( A
        = ( minus_4846202936726426316ccount @ C @ B ) )
      = ( ( plus_p1863581527469039996ccount @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_1150_add__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_1151_add__diff__eq,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ A @ ( minus_4846202936726426316ccount @ B @ C ) )
      = ( minus_4846202936726426316ccount @ ( plus_p1863581527469039996ccount @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_1152_diff__diff__eq2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_1153_diff__diff__eq2,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ A @ ( minus_4846202936726426316ccount @ B @ C ) )
      = ( minus_4846202936726426316ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_1154_diff__add__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_1155_diff__add__eq,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( plus_p1863581527469039996ccount @ ( minus_4846202936726426316ccount @ A @ B ) @ C )
      = ( minus_4846202936726426316ccount @ ( plus_p1863581527469039996ccount @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_1156_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_1157_diff__add__eq__diff__diff__swap,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ A @ ( plus_p1863581527469039996ccount @ B @ C ) )
      = ( minus_4846202936726426316ccount @ ( minus_4846202936726426316ccount @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_1158_add__implies__diff,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C @ B )
        = A )
     => ( C
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1159_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1160_add__implies__diff,axiom,
    ! [C: risk_Free_account,B: risk_Free_account,A: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ C @ B )
        = A )
     => ( C
        = ( minus_4846202936726426316ccount @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_1161_diff__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1162_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1163_diff__diff__eq,axiom,
    ! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ ( minus_4846202936726426316ccount @ A @ B ) @ C )
      = ( minus_4846202936726426316ccount @ A @ ( plus_p1863581527469039996ccount @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_1164_power__mult,axiom,
    ! [A: nat,M: nat,N2: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_nat @ ( power_power_nat @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_1165_power__mult,axiom,
    ! [A: real,M: nat,N2: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_real @ ( power_power_real @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_1166_power__mult,axiom,
    ! [A: complex,M: nat,N2: nat] :
      ( ( power_power_complex @ A @ ( times_times_nat @ M @ N2 ) )
      = ( power_power_complex @ ( power_power_complex @ A @ M ) @ N2 ) ) ).

% power_mult
thf(fact_1167_diff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_1168_diff__right__commute,axiom,
    ! [A: risk_Free_account,C: risk_Free_account,B: risk_Free_account] :
      ( ( minus_4846202936726426316ccount @ ( minus_4846202936726426316ccount @ A @ C ) @ B )
      = ( minus_4846202936726426316ccount @ ( minus_4846202936726426316ccount @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_1169_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N2 ) )
       => ( ord_less_nat @ M @ N2 ) ) ) ).

% nat_power_less_imp_less
thf(fact_1170_real__arch__pow__inv,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X @ one_one_real )
       => ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X @ N3 ) @ Y ) ) ) ).

% real_arch_pow_inv
thf(fact_1171_realpow__pos__nth,axiom,
    ! [N2: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R2: real] :
            ( ( ord_less_real @ zero_zero_real @ R2 )
            & ( ( power_power_real @ R2 @ N2 )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_1172_realpow__pos__nth__unique,axiom,
    ! [N2: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X3: real] :
            ( ( ord_less_real @ zero_zero_real @ X3 )
            & ( ( power_power_real @ X3 @ N2 )
              = A )
            & ! [Y5: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y5 )
                  & ( ( power_power_real @ Y5 @ N2 )
                    = A ) )
               => ( Y5 = X3 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_1173_Bolzano,axiom,
    ! [A: real,B: real,P: real > real > $o] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ! [A4: real,B4: real,C3: real] :
            ( ( P @ A4 @ B4 )
           => ( ( P @ B4 @ C3 )
             => ( ( ord_less_eq_real @ A4 @ B4 )
               => ( ( ord_less_eq_real @ B4 @ C3 )
                 => ( P @ A4 @ C3 ) ) ) ) )
       => ( ! [X3: real] :
              ( ( ord_less_eq_real @ A @ X3 )
             => ( ( ord_less_eq_real @ X3 @ B )
               => ? [D3: real] :
                    ( ( ord_less_real @ zero_zero_real @ D3 )
                    & ! [A4: real,B4: real] :
                        ( ( ( ord_less_eq_real @ A4 @ X3 )
                          & ( ord_less_eq_real @ X3 @ B4 )
                          & ( ord_less_real @ ( minus_minus_real @ B4 @ A4 ) @ D3 ) )
                       => ( P @ A4 @ B4 ) ) ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Bolzano
thf(fact_1174__C_092_060star_062_C_I3_J,axiom,
    ( member_nat_real
    @ ^ [N: nat] : ( times_times_real @ ( minus_minus_real @ one_one_real @ ( rho @ N ) ) @ ( plus_plus_real @ ( risk_F170160801229183585ccount @ alpha @ N ) @ ( risk_F170160801229183585ccount @ beta @ N ) ) )
    @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ) ).

% "\<star>"(3)
thf(fact_1175__C_092_060star_062_C_I1_J,axiom,
    ( member_nat_real
    @ ^ [N: nat] : ( times_times_real @ ( minus_minus_real @ one_one_real @ ( rho @ N ) ) @ ( risk_F170160801229183585ccount @ alpha @ N ) )
    @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ) ).

% "\<star>"(1)
thf(fact_1176__C_092_060star_062_C_I2_J,axiom,
    ( member_nat_real
    @ ^ [N: nat] : ( times_times_real @ ( minus_minus_real @ one_one_real @ ( rho @ N ) ) @ ( risk_F170160801229183585ccount @ beta @ N ) )
    @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ) ).

% "\<star>"(2)
thf(fact_1177_diff__0__eq__0,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_1178_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_1179_diff__diff__cancel,axiom,
    ! [I: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ N2 )
     => ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_1180_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_1181_zero__less__diff,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M ) )
      = ( ord_less_nat @ M @ N2 ) ) ).

% zero_less_diff
thf(fact_1182_diff__is__0__eq_H,axiom,
    ! [M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1183_diff__is__0__eq,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N2 ) ) ).

% diff_is_0_eq
thf(fact_1184_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1185_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1186_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1187_just__cash__subtract,axiom,
    ! [A: real,B: real] :
      ( ( minus_4846202936726426316ccount @ ( risk_Free_just_cash @ A ) @ ( risk_Free_just_cash @ B ) )
      = ( risk_Free_just_cash @ ( minus_minus_real @ A @ B ) ) ) ).

% just_cash_subtract
thf(fact_1188_diffs0__imp__equal,axiom,
    ! [M: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M @ N2 )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N2 @ M )
          = zero_zero_nat )
       => ( M = N2 ) ) ) ).

% diffs0_imp_equal
thf(fact_1189_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_1190_diff__le__mono2,axiom,
    ! [M: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_1191_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_1192_diff__le__self,axiom,
    ! [M: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ).

% diff_le_self
thf(fact_1193_diff__le__mono,axiom,
    ! [M: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N2 @ L ) ) ) ).

% diff_le_mono
thf(fact_1194_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( minus_minus_nat @ M @ N2 ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1195_le__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_eq_nat @ M @ N2 ) ) ) ) ).

% le_diff_iff
thf(fact_1196_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N2 @ K ) )
          = ( M = N2 ) ) ) ) ).

% eq_diff_iff
thf(fact_1197_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N2 ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% Nat.diff_cancel
thf(fact_1198_diff__cancel2,axiom,
    ! [M: nat,K: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N2 @ K ) )
      = ( minus_minus_nat @ M @ N2 ) ) ).

% diff_cancel2
thf(fact_1199_diff__add__inverse,axiom,
    ! [N2: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N2 @ M ) @ N2 )
      = M ) ).

% diff_add_inverse
thf(fact_1200_diff__add__inverse2,axiom,
    ! [M: nat,N2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N2 ) @ N2 )
      = M ) ).

% diff_add_inverse2
thf(fact_1201_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N2 ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) ) ) ).

% diff_mult_distrib2
thf(fact_1202_diff__mult__distrib,axiom,
    ! [M: nat,N2: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N2 ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).

% diff_mult_distrib
thf(fact_1203_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).

% less_imp_diff_less
thf(fact_1204_diff__less__mono2,axiom,
    ! [M: nat,N2: nat,L: nat] :
      ( ( ord_less_nat @ M @ N2 )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_1205_zero__account__def,axiom,
    ( zero_z1425366712893667068ccount
    = ( risk_F5458100604530014700ccount
      @ ^ [Uu: nat] : zero_zero_real ) ) ).

% zero_account_def
thf(fact_1206_just__cash__def,axiom,
    ( risk_Free_just_cash
    = ( ^ [C2: real] :
          ( risk_F5458100604530014700ccount
          @ ^ [N: nat] : ( if_real @ ( N = zero_zero_nat ) @ C2 @ zero_zero_real ) ) ) ) ).

% just_cash_def
thf(fact_1207_diff__less,axiom,
    ! [N2: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N2 ) @ M ) ) ) ).

% diff_less
thf(fact_1208_less__diff__iff,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_nat @ M @ N2 ) ) ) ) ).

% less_diff_iff
thf(fact_1209_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1210_diff__add__0,axiom,
    ! [N2: nat,M: nat] :
      ( ( minus_minus_nat @ N2 @ ( plus_plus_nat @ N2 @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_1211_add__diff__inverse__nat,axiom,
    ! [M: nat,N2: nat] :
      ( ~ ( ord_less_nat @ M @ N2 )
     => ( ( plus_plus_nat @ N2 @ ( minus_minus_nat @ M @ N2 ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_1212_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_1213_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_1214_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1215_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1216_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1217_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1218_plus__account__def,axiom,
    ( plus_p1863581527469039996ccount
    = ( ^ [Alpha_12: risk_Free_account,Alpha_22: risk_Free_account] :
          ( risk_F5458100604530014700ccount
          @ ^ [N: nat] : ( plus_plus_real @ ( risk_F170160801229183585ccount @ Alpha_12 @ N ) @ ( risk_F170160801229183585ccount @ Alpha_22 @ N ) ) ) ) ) ).

% plus_account_def
thf(fact_1219_net__asset__value__minus,axiom,
    ! [Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ( risk_F2906766666041932210_value @ ( minus_4846202936726426316ccount @ Alpha @ Beta ) )
      = ( minus_minus_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).

% net_asset_value_minus
thf(fact_1220_valid__transfer__def,axiom,
    ( risk_F1023690899723030139ansfer
    = ( ^ [Alpha2: risk_Free_account,Tau: risk_Free_account] :
          ( ( risk_F1636578016437888323olvent @ Tau )
          & ( risk_F1636578016437888323olvent @ ( minus_4846202936726426316ccount @ Alpha2 @ Tau ) ) ) ) ) ).

% valid_transfer_def
thf(fact_1221_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D5: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D5 ) )
           => ( P @ D5 ) ) ) ) ).

% nat_diff_split
thf(fact_1222_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D5: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D5 ) )
                & ~ ( P @ D5 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_1223_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1224_nat__eq__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
          = N2 ) ) ) ).

% nat_eq_add_iff1
thf(fact_1225_nat__eq__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
          = ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( M
          = ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).

% nat_eq_add_iff2
thf(fact_1226_nat__le__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).

% nat_le_add_iff1
thf(fact_1227_nat__le__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).

% nat_le_add_iff2
thf(fact_1228_nat__diff__add__eq1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).

% nat_diff_add_eq1
thf(fact_1229_nat__diff__add__eq2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).

% nat_diff_add_eq2
thf(fact_1230_return__loans__def,axiom,
    ( risk_F2121631595377017831_loans
    = ( ^ [Rho: nat > real,Alpha2: risk_Free_account] :
          ( risk_F5458100604530014700ccount
          @ ^ [N: nat] : ( times_times_real @ ( minus_minus_real @ one_one_real @ ( Rho @ N ) ) @ ( risk_F170160801229183585ccount @ Alpha2 @ N ) ) ) ) ) ).

% return_loans_def
thf(fact_1231_nat__less__add__iff1,axiom,
    ! [J: nat,I: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ J @ I )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N2 ) ) ) ).

% nat_less_add_iff1
thf(fact_1232_nat__less__add__iff2,axiom,
    ! [I: nat,J: nat,U: nat,M: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
        = ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).

% nat_less_add_iff2
thf(fact_1233_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M2: nat,N: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N @ ( times_times_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N ) ) ) ) ) ).

% mult_eq_if
thf(fact_1234__092_060open_062support_A0_AUNIV_A_I_092_060lambda_062n_O_A_I1_A_N_A_092_060rho_062_An_J_A_K_A_092_060pi_062_A_092_060alpha_062_An_J_A_092_060subseteq_062_Asupport_A0_AUNIV_A_I_092_060pi_062_A_092_060alpha_062_J_092_060close_062,axiom,
    ( ord_less_eq_set_nat
    @ ( ordina7525502726642723294al_nat @ zero_zero_real @ top_top_set_nat
      @ ^ [N: nat] : ( times_times_real @ ( minus_minus_real @ one_one_real @ ( rho @ N ) ) @ ( risk_F170160801229183585ccount @ alpha @ N ) ) )
    @ ( ordina7525502726642723294al_nat @ zero_zero_real @ top_top_set_nat @ ( risk_F170160801229183585ccount @ alpha ) ) ) ).

% \<open>support 0 UNIV (\<lambda>n. (1 - \<rho> n) * \<pi> \<alpha> n) \<subseteq> support 0 UNIV (\<pi> \<alpha>)\<close>
thf(fact_1235__092_060open_062support_A0_AUNIV_A_I_092_060lambda_062n_O_A_I1_A_N_A_092_060rho_062_An_J_A_K_A_092_060pi_062_A_092_060beta_062_An_J_A_092_060subseteq_062_Asupport_A0_AUNIV_A_I_092_060pi_062_A_092_060beta_062_J_092_060close_062,axiom,
    ( ord_less_eq_set_nat
    @ ( ordina7525502726642723294al_nat @ zero_zero_real @ top_top_set_nat
      @ ^ [N: nat] : ( times_times_real @ ( minus_minus_real @ one_one_real @ ( rho @ N ) ) @ ( risk_F170160801229183585ccount @ beta @ N ) ) )
    @ ( ordina7525502726642723294al_nat @ zero_zero_real @ top_top_set_nat @ ( risk_F170160801229183585ccount @ beta ) ) ) ).

% \<open>support 0 UNIV (\<lambda>n. (1 - \<rho> n) * \<pi> \<beta> n) \<subseteq> support 0 UNIV (\<pi> \<beta>)\<close>
thf(fact_1236__092_060open_062support_A0_AUNIV_A_I_092_060lambda_062n_O_A_I1_A_N_A_092_060rho_062_An_J_A_K_A_I_092_060pi_062_A_092_060alpha_062_An_A_L_A_092_060pi_062_A_092_060beta_062_An_J_J_A_092_060subseteq_062_Asupport_A0_AUNIV_A_I_092_060pi_062_A_092_060alpha_062_J_A_092_060union_062_Asupport_A0_AUNIV_A_I_092_060pi_062_A_092_060beta_062_J_092_060close_062,axiom,
    ( ord_less_eq_set_nat
    @ ( ordina7525502726642723294al_nat @ zero_zero_real @ top_top_set_nat
      @ ^ [N: nat] : ( times_times_real @ ( minus_minus_real @ one_one_real @ ( rho @ N ) ) @ ( plus_plus_real @ ( risk_F170160801229183585ccount @ alpha @ N ) @ ( risk_F170160801229183585ccount @ beta @ N ) ) ) )
    @ ( sup_sup_set_nat @ ( ordina7525502726642723294al_nat @ zero_zero_real @ top_top_set_nat @ ( risk_F170160801229183585ccount @ alpha ) ) @ ( ordina7525502726642723294al_nat @ zero_zero_real @ top_top_set_nat @ ( risk_F170160801229183585ccount @ beta ) ) ) ) ).

% \<open>support 0 UNIV (\<lambda>n. (1 - \<rho> n) * (\<pi> \<alpha> n + \<pi> \<beta> n)) \<subseteq> support 0 UNIV (\<pi> \<alpha>) \<union> support 0 UNIV (\<pi> \<beta>)\<close>
thf(fact_1237_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_1238_eq__diff__eq_H,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( X
        = ( minus_minus_real @ Y @ Z2 ) )
      = ( Y
        = ( plus_plus_real @ X @ Z2 ) ) ) ).

% eq_diff_eq'
thf(fact_1239_net__asset__value__def,axiom,
    ( risk_F2906766666041932210_value
    = ( ^ [Alpha2: risk_Free_account] :
          ( groups6591440286371151544t_real @ ( risk_F170160801229183585ccount @ Alpha2 )
          @ ( collect_nat
            @ ^ [I2: nat] :
                ( ( risk_F170160801229183585ccount @ Alpha2 @ I2 )
               != zero_zero_real ) ) ) ) ) ).

% net_asset_value_def
thf(fact_1240_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N4: set_nat] :
        ? [M2: nat] :
        ! [X2: nat] :
          ( ( member_nat @ X2 @ N4 )
         => ( ord_less_eq_nat @ X2 @ M2 ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_1241_finite__less__ub,axiom,
    ! [F: nat > nat,U: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ N3 @ ( F @ N3 ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [N: nat] : ( ord_less_eq_nat @ ( F @ N ) @ U ) ) ) ) ).

% finite_less_ub
thf(fact_1242_finite__account__support,axiom,
    ! [Alpha: risk_Free_account] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [I2: nat] :
            ( ( risk_F170160801229183585ccount @ Alpha @ I2 )
           != zero_zero_real ) ) ) ).

% finite_account_support
thf(fact_1243_finite__Collect__le__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N: nat] : ( ord_less_eq_nat @ N @ K ) ) ) ).

% finite_Collect_le_nat
thf(fact_1244_infinite__UNIV__nat,axiom,
    ~ ( finite_finite_nat @ top_top_set_nat ) ).

% infinite_UNIV_nat
thf(fact_1245_finite__nth__roots,axiom,
    ! [N2: nat,C: complex] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( finite3207457112153483333omplex
        @ ( collect_complex
          @ ^ [Z5: complex] :
              ( ( power_power_complex @ Z5 @ N2 )
              = C ) ) ) ) ).

% finite_nth_roots
thf(fact_1246_ln__inj__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ( ln_ln_real @ X )
            = ( ln_ln_real @ Y ) )
          = ( X = Y ) ) ) ) ).

% ln_inj_iff
thf(fact_1247_ln__less__cancel__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_real @ X @ Y ) ) ) ) ).

% ln_less_cancel_iff
thf(fact_1248_ln__le__cancel__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_eq_real @ X @ Y ) ) ) ) ).

% ln_le_cancel_iff
thf(fact_1249_ln__eq__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = zero_zero_real )
        = ( X = one_one_real ) ) ) ).

% ln_eq_zero_iff
thf(fact_1250_ln__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_iff
thf(fact_1251_ln__less__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% ln_less_zero_iff
thf(fact_1252_ln__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_1253_ln__ge__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_iff
thf(fact_1254_ln__less__self,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_less_self
thf(fact_1255_ln__ge__zero,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_ge_zero
thf(fact_1256_ln__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_gt_zero
thf(fact_1257_ln__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real ) ) ) ).

% ln_less_zero
thf(fact_1258_ln__gt__zero__imp__gt__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_imp_gt_one
thf(fact_1259_ln__bound,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_bound
thf(fact_1260_ln__ge__zero__imp__ge__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_imp_ge_one
thf(fact_1261_ln__add__one__self__le__self,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ ( plus_plus_real @ one_one_real @ X ) ) @ X ) ) ).

% ln_add_one_self_le_self
thf(fact_1262_ln__mult,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ln_ln_real @ ( times_times_real @ X @ Y ) )
          = ( plus_plus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) ) ) ) ).

% ln_mult
thf(fact_1263_ln__eq__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = ( minus_minus_real @ X @ one_one_real ) )
       => ( X = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_1264_ln__le__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% ln_le_minus_one
thf(fact_1265_real__divide__square__eq,axiom,
    ! [R: real,A: real] :
      ( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
      = ( divide_divide_real @ A @ R ) ) ).

% real_divide_square_eq
thf(fact_1266_partial__nav__just__cash,axiom,
    ! [A: real,N2: nat] :
      ( ( groups6591440286371151544t_real @ ( risk_F170160801229183585ccount @ ( risk_Free_just_cash @ A ) ) @ ( set_ord_atMost_nat @ N2 ) )
      = A ) ).

% partial_nav_just_cash
thf(fact_1267_nat__mult__div__cancel__disj,axiom,
    ! [K: nat,M: nat,N2: nat] :
      ( ( ( K = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
          = zero_zero_nat ) )
      & ( ( K != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N2 ) )
          = ( divide_divide_nat @ M @ N2 ) ) ) ) ).

% nat_mult_div_cancel_disj

% Helper facts (5)
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( risk_F170160801229183585ccount @ ( risk_F2121631595377017831_loans @ rho @ ( plus_p1863581527469039996ccount @ alpha @ beta ) ) @ n )
    = ( risk_F170160801229183585ccount @ ( plus_p1863581527469039996ccount @ ( risk_F2121631595377017831_loans @ rho @ alpha ) @ ( risk_F2121631595377017831_loans @ rho @ beta ) ) @ n ) ) ).

%------------------------------------------------------------------------------