TPTP Problem File: SLH0506^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Prefix_Free_Code_Combinators/0000_Prefix_Free_Code_Combinators/prob_00464_015832__11938752_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1339 ( 639 unt;  65 typ;   0 def)
%            Number of atoms       : 3401 (1039 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 9726 ( 381   ~;  84   |; 114   &;7813   @)
%                                         (   0 <=>;1334  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   6 avg)
%            Number of types       :    7 (   6 usr)
%            Number of type conns  :  227 ( 227   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   62 (  59 usr;  13 con; 0-3 aty)
%            Number of variables   : 3120 ( 199   ^;2888   !;  33   ?;3120   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 09:58:36.588
%------------------------------------------------------------------------------
% Could-be-implicit typings (6)
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Extended____Nat__Oenat,type,
    extended_enat: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (59)
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor_001t__Real__Oreal,type,
    archim6058952711729229775r_real: real > int ).

thf(sy_c_Float_Oround__down,type,
    round_down: int > real > real ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
    abs_abs_int: int > int ).

thf(sy_c_Groups_Oabs__class_Oabs_001t__Real__Oreal,type,
    abs_abs_real: real > real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
    one_on7984719198319812577d_enat: extended_enat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
    plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
    zero_z5237406670263579293d_enat: extended_enat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Int__Oint,type,
    ring_1_of_int_int: int > int ).

thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
    ring_1_of_int_real: int > real ).

thf(sy_c_Log__Nat_Obitlen,type,
    log_bitlen: int > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
    numera1916890842035813515d_enat: num > extended_enat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
    ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
    ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Olog,type,
    log: real > real > real ).

thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
    powr_real: real > real > real ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_v_n,type,
    n: int ).

thf(sy_v_r,type,
    r: int ).

% Relevant facts (1266)
thf(fact_0_one__add__one,axiom,
    ( ( plus_plus_real @ one_one_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_1_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_2_one__add__one,axiom,
    ( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat )
    = ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_3_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_4_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_5_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_6_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
      = ( numera1916890842035813515d_enat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_7_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_8_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_9_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_10_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
      = ( numera1916890842035813515d_enat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_11_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_12_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_13_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_14_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_15_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_16_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_17_of__int__1__le__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ one_one_int @ Z ) ) ).

% of_int_1_le_iff
thf(fact_18_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_19_of__int__le__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
      = ( ord_less_eq_int @ Z @ one_one_int ) ) ).

% of_int_le_1_iff
thf(fact_20_of__int__le__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_21_of__int__le__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_le_numeral_iff
thf(fact_22_of__int__numeral__le__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_23_of__int__numeral__le__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_le_iff
thf(fact_24_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_real @ N )
        = one_one_real )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_25_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_nat @ N )
        = one_one_nat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_26_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numera1916890842035813515d_enat @ N )
        = one_on7984719198319812577d_enat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_27_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_int @ N )
        = one_one_int )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_28_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_real
        = ( numeral_numeral_real @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_29_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_30_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_on7984719198319812577d_enat
        = ( numera1916890842035813515d_enat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_31_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_32_calculation,axiom,
    ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( abs_abs_real @ ( ring_1_of_int_real @ n ) ) ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( abs_abs_real @ ( ring_1_of_int_real @ n ) ) ) ).

% calculation
thf(fact_33_of__int__abs,axiom,
    ! [X: int] :
      ( ( ring_1_of_int_real @ ( abs_abs_int @ X ) )
      = ( abs_abs_real @ ( ring_1_of_int_real @ X ) ) ) ).

% of_int_abs
thf(fact_34_of__int__abs,axiom,
    ! [X: int] :
      ( ( ring_1_of_int_int @ ( abs_abs_int @ X ) )
      = ( abs_abs_int @ ( ring_1_of_int_int @ X ) ) ) ).

% of_int_abs
thf(fact_35_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_real @ M )
        = ( numeral_numeral_real @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_36_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_37_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numera1916890842035813515d_enat @ M )
        = ( numera1916890842035813515d_enat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_38_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_39_assms,axiom,
    ord_less_eq_int @ ( abs_abs_int @ n ) @ r ).

% assms
thf(fact_40_of__int__eq__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ( ring_1_of_int_real @ W )
        = ( ring_1_of_int_real @ Z ) )
      = ( W = Z ) ) ).

% of_int_eq_iff
thf(fact_41_of__int__eq__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ( ring_1_of_int_int @ W )
        = ( ring_1_of_int_int @ Z ) )
      = ( W = Z ) ) ).

% of_int_eq_iff
thf(fact_42_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_numeral
thf(fact_43_abs__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_numeral
thf(fact_44_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_real @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_add
thf(fact_45_of__int__add,axiom,
    ! [W: int,Z: int] :
      ( ( ring_1_of_int_int @ ( plus_plus_int @ W @ Z ) )
      = ( plus_plus_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_add
thf(fact_46_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_47_of__int__le__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% of_int_le_iff
thf(fact_48_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ( ring_1_of_int_real @ Z )
        = ( numeral_numeral_real @ N ) )
      = ( Z
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_49_of__int__eq__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ( ring_1_of_int_int @ Z )
        = ( numeral_numeral_int @ N ) )
      = ( Z
        = ( numeral_numeral_int @ N ) ) ) ).

% of_int_eq_numeral_iff
thf(fact_50_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_real @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_real @ K ) ) ).

% of_int_numeral
thf(fact_51_of__int__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ K ) ) ).

% of_int_numeral
thf(fact_52_of__int__eq__1__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_real @ Z )
        = one_one_real )
      = ( Z = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_53_of__int__eq__1__iff,axiom,
    ! [Z: int] :
      ( ( ( ring_1_of_int_int @ Z )
        = one_one_int )
      = ( Z = one_one_int ) ) ).

% of_int_eq_1_iff
thf(fact_54_of__int__1,axiom,
    ( ( ring_1_of_int_real @ one_one_int )
    = one_one_real ) ).

% of_int_1
thf(fact_55_of__int__1,axiom,
    ( ( ring_1_of_int_int @ one_one_int )
    = one_one_int ) ).

% of_int_1
thf(fact_56_add__numeral__left,axiom,
    ! [V: num,W: num,Z: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_57_add__numeral__left,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_58_add__numeral__left,axiom,
    ! [V: num,W: num,Z: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
      = ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_59_add__numeral__left,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_60_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_61_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_62_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( numera1916890842035813515d_enat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_63_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_64_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_65_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_66_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_67_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_68_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_69_int__ge__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I )
     => ( ( P @ K )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ K @ I2 )
             => ( ( P @ I2 )
               => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_70_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_71_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_72_le__num__One__iff,axiom,
    ! [X: num] :
      ( ( ord_less_eq_num @ X @ one )
      = ( X = one ) ) ).

% le_num_One_iff
thf(fact_73_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_74_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_75_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_76_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_77_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_78_le__numeral__extra_I4_J,axiom,
    ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat ).

% le_numeral_extra(4)
thf(fact_79_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).

% one_le_numeral
thf(fact_80_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).

% one_le_numeral
thf(fact_81_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).

% one_le_numeral
thf(fact_82_one__le__numeral,axiom,
    ! [N: num] : ( ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) ) ).

% one_le_numeral
thf(fact_83_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).

% one_plus_numeral_commute
thf(fact_84_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_85_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X ) )
      = ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ X ) @ one_on7984719198319812577d_enat ) ) ).

% one_plus_numeral_commute
thf(fact_86_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_87_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_Bit0
thf(fact_88_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_Bit0
thf(fact_89_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numera1916890842035813515d_enat @ ( bit0 @ N ) )
      = ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N ) @ ( numera1916890842035813515d_enat @ N ) ) ) ).

% numeral_Bit0
thf(fact_90_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_Bit0
thf(fact_91_numeral__One,axiom,
    ( ( numeral_numeral_real @ one )
    = one_one_real ) ).

% numeral_One
thf(fact_92_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_93_numeral__One,axiom,
    ( ( numera1916890842035813515d_enat @ one )
    = one_on7984719198319812577d_enat ) ).

% numeral_One
thf(fact_94_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_95_one__le__floor,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ one_one_real @ X ) ) ).

% one_le_floor
thf(fact_96_numeral__le__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( numeral_numeral_real @ V ) @ X ) ) ).

% numeral_le_floor
thf(fact_97_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_98_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_99_floor__one,axiom,
    ( ( archim6058952711729229775r_real @ one_one_real )
    = one_one_int ) ).

% floor_one
thf(fact_100_floor__numeral,axiom,
    ! [V: num] :
      ( ( archim6058952711729229775r_real @ ( numeral_numeral_real @ V ) )
      = ( numeral_numeral_int @ V ) ) ).

% floor_numeral
thf(fact_101_semiring__norm_I68_J,axiom,
    ! [N: num] : ( ord_less_eq_num @ one @ N ) ).

% semiring_norm(68)
thf(fact_102_semiring__norm_I71_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(71)
thf(fact_103_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_104_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X2: real] : ( member_real @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_105_semiring__norm_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(6)
thf(fact_106_real__of__int__floor__add__one__ge,axiom,
    ! [R: real] : ( ord_less_eq_real @ R @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_ge
thf(fact_107_floor__of__int,axiom,
    ! [Z: int] :
      ( ( archim6058952711729229775r_real @ ( ring_1_of_int_real @ Z ) )
      = Z ) ).

% floor_of_int
thf(fact_108_of__int__floor__cancel,axiom,
    ! [X: real] :
      ( ( ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) )
        = X )
      = ( ? [N2: int] :
            ( X
            = ( ring_1_of_int_real @ N2 ) ) ) ) ).

% of_int_floor_cancel
thf(fact_109_semiring__norm_I87_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(87)
thf(fact_110_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_111_semiring__norm_I83_J,axiom,
    ! [N: num] :
      ( one
     != ( bit0 @ N ) ) ).

% semiring_norm(83)
thf(fact_112_complete__real,axiom,
    ! [S: set_real] :
      ( ? [X3: real] : ( member_real @ X3 @ S )
     => ( ? [Z2: real] :
          ! [X4: real] :
            ( ( member_real @ X4 @ S )
           => ( ord_less_eq_real @ X4 @ Z2 ) )
       => ? [Y: real] :
            ( ! [X3: real] :
                ( ( member_real @ X3 @ S )
               => ( ord_less_eq_real @ X3 @ Y ) )
            & ! [Z2: real] :
                ( ! [X4: real] :
                    ( ( member_real @ X4 @ S )
                   => ( ord_less_eq_real @ X4 @ Z2 ) )
               => ( ord_less_eq_real @ Y @ Z2 ) ) ) ) ) ).

% complete_real
thf(fact_113_ex__le__of__int,axiom,
    ! [X: real] :
    ? [Z3: int] : ( ord_less_eq_real @ X @ ( ring_1_of_int_real @ Z3 ) ) ).

% ex_le_of_int
thf(fact_114_of__int__floor__le,axiom,
    ! [X: real] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ X ) ) @ X ) ).

% of_int_floor_le
thf(fact_115_floor__mono,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) ) ).

% floor_mono
thf(fact_116_floor__add__int,axiom,
    ! [X: real,Z: int] :
      ( ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ Z )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ ( ring_1_of_int_real @ Z ) ) ) ) ).

% floor_add_int
thf(fact_117_int__add__floor,axiom,
    ! [Z: int,X: real] :
      ( ( plus_plus_int @ Z @ ( archim6058952711729229775r_real @ X ) )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ ( ring_1_of_int_real @ Z ) @ X ) ) ) ).

% int_add_floor
thf(fact_118_le__floor__add,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_int @ ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) ) @ ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ Y2 ) ) ) ).

% le_floor_add
thf(fact_119_one__add__floor,axiom,
    ! [X: real] :
      ( ( plus_plus_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( archim6058952711729229775r_real @ ( plus_plus_real @ X @ one_one_real ) ) ) ).

% one_add_floor
thf(fact_120_le__floor__iff,axiom,
    ! [Z: int,X: real] :
      ( ( ord_less_eq_int @ Z @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( ring_1_of_int_real @ Z ) @ X ) ) ).

% le_floor_iff
thf(fact_121_abs__1,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_1
thf(fact_122_abs__1,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_1
thf(fact_123_abs__add__abs,axiom,
    ! [A: real,B: real] :
      ( ( abs_abs_real @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) )
      = ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_add_abs
thf(fact_124_abs__add__abs,axiom,
    ! [A: int,B: int] :
      ( ( abs_abs_int @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) )
      = ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_add_abs
thf(fact_125_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_126_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_127_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_128_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_129_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_130_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_131_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_132_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_133_abs__triangle__ineq,axiom,
    ! [A: real,B: real] : ( ord_less_eq_real @ ( abs_abs_real @ ( plus_plus_real @ A @ B ) ) @ ( plus_plus_real @ ( abs_abs_real @ A ) @ ( abs_abs_real @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_134_abs__triangle__ineq,axiom,
    ! [A: int,B: int] : ( ord_less_eq_int @ ( abs_abs_int @ ( plus_plus_int @ A @ B ) ) @ ( plus_plus_int @ ( abs_abs_int @ A ) @ ( abs_abs_int @ B ) ) ) ).

% abs_triangle_ineq
thf(fact_135_estimate__by__abs,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C )
     => ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ ( abs_abs_real @ B ) ) ) ) ).

% estimate_by_abs
thf(fact_136_estimate__by__abs,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C )
     => ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ ( abs_abs_int @ B ) ) ) ) ).

% estimate_by_abs
thf(fact_137_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_138_abs__abs,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_abs
thf(fact_139_abs__abs,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_abs
thf(fact_140_abs__idempotent,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( abs_abs_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_idempotent
thf(fact_141_abs__idempotent,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( abs_abs_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_idempotent
thf(fact_142_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_143_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_144_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_145_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_146_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_147_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_148_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_149_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_150_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ B ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y3: nat] :
                ( ( P @ Y3 )
               => ( ord_less_eq_nat @ Y3 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_151_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_152_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_153_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_154_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_155_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_156_dbl__def,axiom,
    ( neg_numeral_dbl_real
    = ( ^ [X2: real] : ( plus_plus_real @ X2 @ X2 ) ) ) ).

% dbl_def
thf(fact_157_dbl__def,axiom,
    ( neg_numeral_dbl_int
    = ( ^ [X2: int] : ( plus_plus_int @ X2 @ X2 ) ) ) ).

% dbl_def
thf(fact_158_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_159_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_160_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_161_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_162_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_163_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_164_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_165_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_166_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_167_add_Oleft__commute,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ B @ ( plus_p3455044024723400733d_enat @ A @ C ) )
      = ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_168_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_169_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_170_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_171_add_Ocommute,axiom,
    ( plus_p3455044024723400733d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] : ( plus_p3455044024723400733d_enat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_172_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_173_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_174_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_175_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_176_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_177_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_178_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_179_add_Oassoc,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
      = ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).

% add.assoc
thf(fact_180_group__cancel_Oadd2,axiom,
    ! [B3: real,K: real,B: real,A: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B3 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_181_group__cancel_Oadd2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B3 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_182_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B: nat,A: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_183_group__cancel_Oadd2,axiom,
    ! [B3: extended_enat,K: extended_enat,B: extended_enat,A: extended_enat] :
      ( ( B3
        = ( plus_p3455044024723400733d_enat @ K @ B ) )
     => ( ( plus_p3455044024723400733d_enat @ A @ B3 )
        = ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_184_group__cancel_Oadd1,axiom,
    ! [A2: real,K: real,A: real,B: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A2 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_185_group__cancel_Oadd1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_186_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_187_group__cancel_Oadd1,axiom,
    ! [A2: extended_enat,K: extended_enat,A: extended_enat,B: extended_enat] :
      ( ( A2
        = ( plus_p3455044024723400733d_enat @ K @ A ) )
     => ( ( plus_p3455044024723400733d_enat @ A2 @ B )
        = ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_188_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_189_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_190_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_191_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_p3455044024723400733d_enat @ I @ K )
        = ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_192_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_193_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_194_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_195_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
      = ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_196_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_197_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_198_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_199_one__reorient,axiom,
    ! [X: extended_enat] :
      ( ( one_on7984719198319812577d_enat = X )
      = ( X = one_on7984719198319812577d_enat ) ) ).

% one_reorient
thf(fact_200_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N2: nat] :
        ? [K2: nat] :
          ( N2
          = ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_201_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_202_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_203_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_204_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_205_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_206_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_207_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_208_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_209_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_210_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_211_add__le__imp__le__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_212_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_213_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_214_add__le__imp__le__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_215_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_216_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_217_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
        ? [C2: nat] :
          ( B2
          = ( plus_plus_nat @ A3 @ C2 ) ) ) ) ).

% le_iff_add
thf(fact_218_le__iff__add,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] :
        ? [C2: extended_enat] :
          ( B2
          = ( plus_p3455044024723400733d_enat @ A3 @ C2 ) ) ) ) ).

% le_iff_add
thf(fact_219_add__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_right_mono
thf(fact_220_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_221_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_222_add__right__mono,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ C ) @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_223_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_224_less__eqE,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ~ ! [C3: extended_enat] :
            ( B
           != ( plus_p3455044024723400733d_enat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_225_add__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_left_mono
thf(fact_226_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_227_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_228_add__left__mono,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ C @ A ) @ ( plus_p3455044024723400733d_enat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_229_add__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_mono
thf(fact_230_add__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_mono
thf(fact_231_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_232_add__mono,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat,D: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ( ord_le2932123472753598470d_enat @ C @ D )
       => ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ C ) @ ( plus_p3455044024723400733d_enat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_233_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_234_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_235_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_236_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
      ( ( ( ord_le2932123472753598470d_enat @ I @ J )
        & ( ord_le2932123472753598470d_enat @ K @ L ) )
     => ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ I @ K ) @ ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_237_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_238_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_239_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_240_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
      ( ( ( I = J )
        & ( ord_le2932123472753598470d_enat @ K @ L ) )
     => ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ I @ K ) @ ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_241_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_242_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_243_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_244_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
      ( ( ( ord_le2932123472753598470d_enat @ I @ J )
        & ( K = L ) )
     => ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ I @ K ) @ ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_245_abs__ge__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ ( abs_abs_real @ A ) ) ).

% abs_ge_self
thf(fact_246_abs__ge__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ ( abs_abs_int @ A ) ) ).

% abs_ge_self
thf(fact_247_abs__le__D1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% abs_le_D1
thf(fact_248_abs__le__D1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% abs_le_D1
thf(fact_249_abs__one,axiom,
    ( ( abs_abs_real @ one_one_real )
    = one_one_real ) ).

% abs_one
thf(fact_250_abs__one,axiom,
    ( ( abs_abs_int @ one_one_int )
    = one_one_int ) ).

% abs_one
thf(fact_251_enat__ord__number_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(1)
thf(fact_252_verit__eq__simplify_I8_J,axiom,
    ! [X22: num,Y22: num] :
      ( ( ( bit0 @ X22 )
        = ( bit0 @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% verit_eq_simplify(8)
thf(fact_253_dual__order_Orefl,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% dual_order.refl
thf(fact_254_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_255_dual__order_Orefl,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% dual_order.refl
thf(fact_256_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_257_dual__order_Orefl,axiom,
    ! [A: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ A ) ).

% dual_order.refl
thf(fact_258_order__refl,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ X ) ).

% order_refl
thf(fact_259_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_260_order__refl,axiom,
    ! [X: num] : ( ord_less_eq_num @ X @ X ) ).

% order_refl
thf(fact_261_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_262_order__refl,axiom,
    ! [X: extended_enat] : ( ord_le2932123472753598470d_enat @ X @ X ) ).

% order_refl
thf(fact_263_floor__le__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( ord_less_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% floor_le_one
thf(fact_264_floor__le__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_real @ X @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) ) ) ).

% floor_le_numeral
thf(fact_265_one__less__floor,axiom,
    ! [X: real] :
      ( ( ord_less_int @ one_one_int @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) ).

% one_less_floor
thf(fact_266_numeral__less__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_int @ ( numeral_numeral_int @ V ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( numeral_numeral_real @ V ) @ one_one_real ) @ X ) ) ).

% numeral_less_floor
thf(fact_267_verit__eq__simplify_I10_J,axiom,
    ! [X22: num] :
      ( one
     != ( bit0 @ X22 ) ) ).

% verit_eq_simplify(10)
thf(fact_268_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_269_dbl__simps_I4_J,axiom,
    ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% dbl_simps(4)
thf(fact_270_semiring__norm_I78_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(78)
thf(fact_271_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_272_add_Oinverse__inverse,axiom,
    ! [A: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_273_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_274_neg__equal__iff__equal,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_275_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_276_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_277_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_278_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_279_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_280_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_281_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_282_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_283_neg__le__iff__le,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_284_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_285_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_286_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_287_add__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_288_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_289_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_290_add__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_291_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_292_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_293_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_294_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_295_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_296_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_297_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_298_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_299_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_300_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_301_semiring__norm_I76_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).

% semiring_norm(76)
thf(fact_302_abs__minus,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus
thf(fact_303_abs__minus,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus
thf(fact_304_abs__minus__cancel,axiom,
    ! [A: int] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ A ) )
      = ( abs_abs_int @ A ) ) ).

% abs_minus_cancel
thf(fact_305_abs__minus__cancel,axiom,
    ! [A: real] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ A ) )
      = ( abs_abs_real @ A ) ) ).

% abs_minus_cancel
thf(fact_306_of__int__minus,axiom,
    ! [Z: int] :
      ( ( ring_1_of_int_int @ ( uminus_uminus_int @ Z ) )
      = ( uminus_uminus_int @ ( ring_1_of_int_int @ Z ) ) ) ).

% of_int_minus
thf(fact_307_of__int__minus,axiom,
    ! [Z: int] :
      ( ( ring_1_of_int_real @ ( uminus_uminus_int @ Z ) )
      = ( uminus_uminus_real @ ( ring_1_of_int_real @ Z ) ) ) ).

% of_int_minus
thf(fact_308_enat__ord__number_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% enat_ord_number(2)
thf(fact_309_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_310_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_311_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_312_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_313_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% abs_neg_numeral
thf(fact_314_abs__neg__numeral,axiom,
    ! [N: num] :
      ( ( abs_abs_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( numeral_numeral_real @ N ) ) ).

% abs_neg_numeral
thf(fact_315_abs__neg__one,axiom,
    ( ( abs_abs_int @ ( uminus_uminus_int @ one_one_int ) )
    = one_one_int ) ).

% abs_neg_one
thf(fact_316_abs__neg__one,axiom,
    ( ( abs_abs_real @ ( uminus_uminus_real @ one_one_real ) )
    = one_one_real ) ).

% abs_neg_one
thf(fact_317_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ W ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_318_of__int__less__iff,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ W ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ W @ Z ) ) ).

% of_int_less_iff
thf(fact_319_floor__uminus__of__int,axiom,
    ! [Z: int] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( ring_1_of_int_real @ Z ) ) )
      = ( uminus_uminus_int @ Z ) ) ).

% floor_uminus_of_int
thf(fact_320_True,axiom,
    ord_less_int @ zero_zero_int @ ( abs_abs_int @ n ) ).

% True
thf(fact_321_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_322_dbl__simps_I1_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
      = ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).

% dbl_simps(1)
thf(fact_323_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_324_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_325_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_326_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_327_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ one_one_int )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_328_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ one_one_real )
        = ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_329_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_330_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_331_floor__neg__numeral,axiom,
    ! [V: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) ) ).

% floor_neg_numeral
thf(fact_332_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y2: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y2 ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(167)
thf(fact_333_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y2: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y2 ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y2 ) ) ).

% semiring_norm(167)
thf(fact_334_zle__add1__eq__le,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% zle_add1_eq_le
thf(fact_335_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_336_neg__numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_eq_num @ N @ M ) ) ).

% neg_numeral_le_iff
thf(fact_337_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_338_not__neg__one__le__neg__numeral__iff,axiom,
    ! [M: num] :
      ( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
      = ( M != one ) ) ).

% not_neg_one_le_neg_numeral_iff
thf(fact_339_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_340_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_341_of__int__less__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_342_of__int__less__numeral__iff,axiom,
    ! [Z: int,N: num] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_int @ Z @ ( numeral_numeral_int @ N ) ) ) ).

% of_int_less_numeral_iff
thf(fact_343_of__int__numeral__less__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_real @ ( numeral_numeral_real @ N ) @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_344_of__int__numeral__less__iff,axiom,
    ! [N: num,Z: int] :
      ( ( ord_less_int @ ( numeral_numeral_int @ N ) @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ ( numeral_numeral_int @ N ) @ Z ) ) ).

% of_int_numeral_less_iff
thf(fact_345_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ one_one_int @ ( ring_1_of_int_int @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_346_of__int__1__less__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ one_one_real @ ( ring_1_of_int_real @ Z ) )
      = ( ord_less_int @ one_one_int @ Z ) ) ).

% of_int_1_less_iff
thf(fact_347_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( ring_1_of_int_int @ Z ) @ one_one_int )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_348_of__int__less__1__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ Z ) @ one_one_real )
      = ( ord_less_int @ Z @ one_one_int ) ) ).

% of_int_less_1_iff
thf(fact_349_floor__less__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( numeral_numeral_int @ V ) )
      = ( ord_less_real @ X @ ( numeral_numeral_real @ V ) ) ) ).

% floor_less_numeral
thf(fact_350_floor__less__one,axiom,
    ! [X: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ one_one_int )
      = ( ord_less_real @ X @ one_one_real ) ) ).

% floor_less_one
thf(fact_351_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_352_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_353_neg__numeral__le__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ X ) ) ).

% neg_numeral_le_floor
thf(fact_354_floor__less__neg__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) ) ) ).

% floor_less_neg_numeral
thf(fact_355_neg__numeral__less__floor,axiom,
    ! [V: num,X: real] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( archim6058952711729229775r_real @ X ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) @ X ) ) ).

% neg_numeral_less_floor
thf(fact_356_floor__le__neg__numeral,axiom,
    ! [X: real,V: num] :
      ( ( ord_less_eq_int @ ( archim6058952711729229775r_real @ X ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) )
      = ( ord_less_real @ X @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ one_one_real ) ) ) ).

% floor_le_neg_numeral
thf(fact_357_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_358_equation__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% equation_minus_iff
thf(fact_359_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_360_minus__equation__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( uminus_uminus_real @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_361_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_362_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_363_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_364_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_365_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y2: int] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_int @ X @ Y2 )
       => ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_366_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y2: real] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_real @ X @ Y2 )
       => ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_367_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_368_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_369_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_370_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_371_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_372_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_373_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_374_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_375_order__less__imp__not__less,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ~ ( ord_less_num @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_376_order__less__imp__not__less,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_377_order__less__imp__not__less,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ~ ( ord_le72135733267957522d_enat @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_378_order__less__imp__not__less,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_379_order__less__imp__not__less,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_380_order__less__imp__not__eq2,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_381_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_382_order__less__imp__not__eq2,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_383_order__less__imp__not__eq2,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_384_order__less__imp__not__eq2,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_385_order__less__imp__not__eq,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_386_order__less__imp__not__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_387_order__less__imp__not__eq,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_388_order__less__imp__not__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_389_order__less__imp__not__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_390_linorder__less__linear,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_num @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_391_linorder__less__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_392_linorder__less__linear,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_le72135733267957522d_enat @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_393_linorder__less__linear,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_int @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_394_linorder__less__linear,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_real @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_395_order__less__imp__triv,axiom,
    ! [X: num,Y2: num,P: $o] :
      ( ( ord_less_num @ X @ Y2 )
     => ( ( ord_less_num @ Y2 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_396_order__less__imp__triv,axiom,
    ! [X: nat,Y2: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_397_order__less__imp__triv,axiom,
    ! [X: extended_enat,Y2: extended_enat,P: $o] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ( ( ord_le72135733267957522d_enat @ Y2 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_398_order__less__imp__triv,axiom,
    ! [X: int,Y2: int,P: $o] :
      ( ( ord_less_int @ X @ Y2 )
     => ( ( ord_less_int @ Y2 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_399_order__less__imp__triv,axiom,
    ! [X: real,Y2: real,P: $o] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ( ord_less_real @ Y2 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_400_order__less__not__sym,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ~ ( ord_less_num @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_401_order__less__not__sym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_402_order__less__not__sym,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ~ ( ord_le72135733267957522d_enat @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_403_order__less__not__sym,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_404_order__less__not__sym,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_405_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_406_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_407_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > extended_enat,C: extended_enat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_le72135733267957522d_enat @ ( F @ B ) @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_408_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_409_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_410_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_411_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_412_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > extended_enat,C: extended_enat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_le72135733267957522d_enat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_413_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_414_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_415_order__less__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_416_order__less__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_417_order__less__subst1,axiom,
    ! [A: num,F: extended_enat > num,B: extended_enat,C: extended_enat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_le72135733267957522d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_418_order__less__subst1,axiom,
    ! [A: num,F: int > num,B: int,C: int] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_int @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_419_order__less__subst1,axiom,
    ! [A: num,F: real > num,B: real,C: real] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_real @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_420_order__less__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_421_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_422_order__less__subst1,axiom,
    ! [A: nat,F: extended_enat > nat,B: extended_enat,C: extended_enat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_le72135733267957522d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_423_order__less__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_int @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_424_order__less__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_real @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_425_order__less__irrefl,axiom,
    ! [X: num] :
      ~ ( ord_less_num @ X @ X ) ).

% order_less_irrefl
thf(fact_426_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_427_order__less__irrefl,axiom,
    ! [X: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ X @ X ) ).

% order_less_irrefl
thf(fact_428_order__less__irrefl,axiom,
    ! [X: int] :
      ~ ( ord_less_int @ X @ X ) ).

% order_less_irrefl
thf(fact_429_order__less__irrefl,axiom,
    ! [X: real] :
      ~ ( ord_less_real @ X @ X ) ).

% order_less_irrefl
thf(fact_430_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_431_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_432_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > extended_enat,C: extended_enat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_433_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_434_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_435_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_436_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_437_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > extended_enat,C: extended_enat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_438_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_439_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_440_ord__eq__less__subst,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_441_ord__eq__less__subst,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_442_ord__eq__less__subst,axiom,
    ! [A: extended_enat,F: num > extended_enat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_443_ord__eq__less__subst,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_444_ord__eq__less__subst,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_445_ord__eq__less__subst,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_446_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_447_ord__eq__less__subst,axiom,
    ! [A: extended_enat,F: nat > extended_enat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_448_ord__eq__less__subst,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_449_ord__eq__less__subst,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_450_order__less__trans,axiom,
    ! [X: num,Y2: num,Z: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( ( ord_less_num @ Y2 @ Z )
       => ( ord_less_num @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_451_order__less__trans,axiom,
    ! [X: nat,Y2: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_452_order__less__trans,axiom,
    ! [X: extended_enat,Y2: extended_enat,Z: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ( ( ord_le72135733267957522d_enat @ Y2 @ Z )
       => ( ord_le72135733267957522d_enat @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_453_order__less__trans,axiom,
    ! [X: int,Y2: int,Z: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z )
       => ( ord_less_int @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_454_order__less__trans,axiom,
    ! [X: real,Y2: real,Z: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ( ord_less_real @ Y2 @ Z )
       => ( ord_less_real @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_455_order__less__asym_H,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order_less_asym'
thf(fact_456_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_457_order__less__asym_H,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ~ ( ord_le72135733267957522d_enat @ B @ A ) ) ).

% order_less_asym'
thf(fact_458_order__less__asym_H,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order_less_asym'
thf(fact_459_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_460_linorder__neq__iff,axiom,
    ! [X: num,Y2: num] :
      ( ( X != Y2 )
      = ( ( ord_less_num @ X @ Y2 )
        | ( ord_less_num @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_461_linorder__neq__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
      = ( ( ord_less_nat @ X @ Y2 )
        | ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_462_linorder__neq__iff,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( X != Y2 )
      = ( ( ord_le72135733267957522d_enat @ X @ Y2 )
        | ( ord_le72135733267957522d_enat @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_463_linorder__neq__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( X != Y2 )
      = ( ( ord_less_int @ X @ Y2 )
        | ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_464_linorder__neq__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( X != Y2 )
      = ( ( ord_less_real @ X @ Y2 )
        | ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_465_order__less__asym,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ~ ( ord_less_num @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_466_order__less__asym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_467_order__less__asym,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ~ ( ord_le72135733267957522d_enat @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_468_order__less__asym,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ~ ( ord_less_int @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_469_order__less__asym,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ~ ( ord_less_real @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_470_linorder__neqE,axiom,
    ! [X: num,Y2: num] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_num @ X @ Y2 )
       => ( ord_less_num @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_471_linorder__neqE,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_nat @ X @ Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_472_linorder__neqE,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( X != Y2 )
     => ( ~ ( ord_le72135733267957522d_enat @ X @ Y2 )
       => ( ord_le72135733267957522d_enat @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_473_linorder__neqE,axiom,
    ! [X: int,Y2: int] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_int @ X @ Y2 )
       => ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_474_linorder__neqE,axiom,
    ! [X: real,Y2: real] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_real @ X @ Y2 )
       => ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_475_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_476_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_477_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_478_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_479_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_480_order_Ostrict__implies__not__eq,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_481_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_482_order_Ostrict__implies__not__eq,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_483_order_Ostrict__implies__not__eq,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_484_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_485_dual__order_Ostrict__trans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_486_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_487_dual__order_Ostrict__trans,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ B @ A )
     => ( ( ord_le72135733267957522d_enat @ C @ B )
       => ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_488_dual__order_Ostrict__trans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_489_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_490_not__less__iff__gr__or__eq,axiom,
    ! [X: num,Y2: num] :
      ( ( ~ ( ord_less_num @ X @ Y2 ) )
      = ( ( ord_less_num @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_491_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y2 ) )
      = ( ( ord_less_nat @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_492_not__less__iff__gr__or__eq,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ~ ( ord_le72135733267957522d_enat @ X @ Y2 ) )
      = ( ( ord_le72135733267957522d_enat @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_493_not__less__iff__gr__or__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( ~ ( ord_less_int @ X @ Y2 ) )
      = ( ( ord_less_int @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_494_not__less__iff__gr__or__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ~ ( ord_less_real @ X @ Y2 ) )
      = ( ( ord_less_real @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_495_order_Ostrict__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_496_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_497_order_Ostrict__trans,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( ord_le72135733267957522d_enat @ B @ C )
       => ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_498_order_Ostrict__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_499_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_500_linorder__less__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A4: num,B4: num] :
          ( ( ord_less_num @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: num] : ( P @ A4 @ A4 )
       => ( ! [A4: num,B4: num] :
              ( ( P @ B4 @ A4 )
             => ( P @ A4 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_501_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( ord_less_nat @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: nat] : ( P @ A4 @ A4 )
       => ( ! [A4: nat,B4: nat] :
              ( ( P @ B4 @ A4 )
             => ( P @ A4 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_502_linorder__less__wlog,axiom,
    ! [P: extended_enat > extended_enat > $o,A: extended_enat,B: extended_enat] :
      ( ! [A4: extended_enat,B4: extended_enat] :
          ( ( ord_le72135733267957522d_enat @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: extended_enat] : ( P @ A4 @ A4 )
       => ( ! [A4: extended_enat,B4: extended_enat] :
              ( ( P @ B4 @ A4 )
             => ( P @ A4 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_503_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A4: int,B4: int] :
          ( ( ord_less_int @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: int] : ( P @ A4 @ A4 )
       => ( ! [A4: int,B4: int] :
              ( ( P @ B4 @ A4 )
             => ( P @ A4 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_504_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A4: real,B4: real] :
          ( ( ord_less_real @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: real] : ( P @ A4 @ A4 )
       => ( ! [A4: real,B4: real] :
              ( ( P @ B4 @ A4 )
             => ( P @ A4 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_505_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X5: nat] : ( P2 @ X5 ) )
    = ( ^ [P3: nat > $o] :
        ? [N2: nat] :
          ( ( P3 @ N2 )
          & ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
             => ~ ( P3 @ M2 ) ) ) ) ) ).

% exists_least_iff
thf(fact_506_exists__least__iff,axiom,
    ( ( ^ [P2: extended_enat > $o] :
        ? [X5: extended_enat] : ( P2 @ X5 ) )
    = ( ^ [P3: extended_enat > $o] :
        ? [N2: extended_enat] :
          ( ( P3 @ N2 )
          & ! [M2: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ M2 @ N2 )
             => ~ ( P3 @ M2 ) ) ) ) ) ).

% exists_least_iff
thf(fact_507_dual__order_Oirrefl,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% dual_order.irrefl
thf(fact_508_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_509_dual__order_Oirrefl,axiom,
    ! [A: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ A @ A ) ).

% dual_order.irrefl
thf(fact_510_dual__order_Oirrefl,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% dual_order.irrefl
thf(fact_511_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_512_dual__order_Oasym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ~ ( ord_less_num @ A @ B ) ) ).

% dual_order.asym
thf(fact_513_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_514_dual__order_Oasym,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ B @ A )
     => ~ ( ord_le72135733267957522d_enat @ A @ B ) ) ).

% dual_order.asym
thf(fact_515_dual__order_Oasym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ~ ( ord_less_int @ A @ B ) ) ).

% dual_order.asym
thf(fact_516_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_517_linorder__cases,axiom,
    ! [X: num,Y2: num] :
      ( ~ ( ord_less_num @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_num @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_518_linorder__cases,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_519_linorder__cases,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ~ ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_le72135733267957522d_enat @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_520_linorder__cases,axiom,
    ! [X: int,Y2: int] :
      ( ~ ( ord_less_int @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_int @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_521_linorder__cases,axiom,
    ! [X: real,Y2: real] :
      ( ~ ( ord_less_real @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_real @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_522_antisym__conv3,axiom,
    ! [Y2: num,X: num] :
      ( ~ ( ord_less_num @ Y2 @ X )
     => ( ( ~ ( ord_less_num @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_523_antisym__conv3,axiom,
    ! [Y2: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y2 @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_524_antisym__conv3,axiom,
    ! [Y2: extended_enat,X: extended_enat] :
      ( ~ ( ord_le72135733267957522d_enat @ Y2 @ X )
     => ( ( ~ ( ord_le72135733267957522d_enat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_525_antisym__conv3,axiom,
    ! [Y2: int,X: int] :
      ( ~ ( ord_less_int @ Y2 @ X )
     => ( ( ~ ( ord_less_int @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_526_antisym__conv3,axiom,
    ! [Y2: real,X: real] :
      ( ~ ( ord_less_real @ Y2 @ X )
     => ( ( ~ ( ord_less_real @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_527_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X4: nat] :
          ( ! [Y3: nat] :
              ( ( ord_less_nat @ Y3 @ X4 )
             => ( P @ Y3 ) )
         => ( P @ X4 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_528_less__induct,axiom,
    ! [P: extended_enat > $o,A: extended_enat] :
      ( ! [X4: extended_enat] :
          ( ! [Y3: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ Y3 @ X4 )
             => ( P @ Y3 ) )
         => ( P @ X4 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_529_ord__less__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_530_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_531_ord__less__eq__trans,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( B = C )
       => ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_532_ord__less__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_533_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_534_ord__eq__less__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_535_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_536_ord__eq__less__trans,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( A = B )
     => ( ( ord_le72135733267957522d_enat @ B @ C )
       => ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_537_ord__eq__less__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_538_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_539_order_Oasym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order.asym
thf(fact_540_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_541_order_Oasym,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ~ ( ord_le72135733267957522d_enat @ B @ A ) ) ).

% order.asym
thf(fact_542_order_Oasym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order.asym
thf(fact_543_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_544_less__imp__neq,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_545_less__imp__neq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_546_less__imp__neq,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_547_less__imp__neq,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_548_less__imp__neq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_549_dense,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ? [Z3: real] :
          ( ( ord_less_real @ X @ Z3 )
          & ( ord_less_real @ Z3 @ Y2 ) ) ) ).

% dense
thf(fact_550_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_551_gt__ex,axiom,
    ! [X: int] :
    ? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).

% gt_ex
thf(fact_552_gt__ex,axiom,
    ! [X: real] :
    ? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).

% gt_ex
thf(fact_553_lt__ex,axiom,
    ! [X: int] :
    ? [Y: int] : ( ord_less_int @ Y @ X ) ).

% lt_ex
thf(fact_554_lt__ex,axiom,
    ! [X: real] :
    ? [Y: real] : ( ord_less_real @ Y @ X ) ).

% lt_ex
thf(fact_555_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_556_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_557_verit__negate__coefficient_I3_J,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_558_verit__negate__coefficient_I3_J,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
     => ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_559_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_560_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_561_verit__comp__simplify1_I1_J,axiom,
    ! [A: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_562_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_563_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_564_abs__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_int @ A @ B )
        & ( ord_less_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_565_abs__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_real @ A @ B )
        & ( ord_less_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_less_iff
thf(fact_566_floor__less__cancel,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ ( archim6058952711729229775r_real @ Y2 ) )
     => ( ord_less_real @ X @ Y2 ) ) ).

% floor_less_cancel
thf(fact_567_verit__comp__simplify1_I3_J,axiom,
    ! [B5: real,A5: real] :
      ( ( ~ ( ord_less_eq_real @ B5 @ A5 ) )
      = ( ord_less_real @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_568_verit__comp__simplify1_I3_J,axiom,
    ! [B5: int,A5: int] :
      ( ( ~ ( ord_less_eq_int @ B5 @ A5 ) )
      = ( ord_less_int @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_569_verit__comp__simplify1_I3_J,axiom,
    ! [B5: num,A5: num] :
      ( ( ~ ( ord_less_eq_num @ B5 @ A5 ) )
      = ( ord_less_num @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_570_verit__comp__simplify1_I3_J,axiom,
    ! [B5: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B5 @ A5 ) )
      = ( ord_less_nat @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_571_verit__comp__simplify1_I3_J,axiom,
    ! [B5: extended_enat,A5: extended_enat] :
      ( ( ~ ( ord_le2932123472753598470d_enat @ B5 @ A5 ) )
      = ( ord_le72135733267957522d_enat @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_572_leD,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_eq_real @ Y2 @ X )
     => ~ ( ord_less_real @ X @ Y2 ) ) ).

% leD
thf(fact_573_leD,axiom,
    ! [Y2: int,X: int] :
      ( ( ord_less_eq_int @ Y2 @ X )
     => ~ ( ord_less_int @ X @ Y2 ) ) ).

% leD
thf(fact_574_leD,axiom,
    ! [Y2: num,X: num] :
      ( ( ord_less_eq_num @ Y2 @ X )
     => ~ ( ord_less_num @ X @ Y2 ) ) ).

% leD
thf(fact_575_leD,axiom,
    ! [Y2: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X )
     => ~ ( ord_less_nat @ X @ Y2 ) ) ).

% leD
thf(fact_576_leD,axiom,
    ! [Y2: extended_enat,X: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ Y2 @ X )
     => ~ ( ord_le72135733267957522d_enat @ X @ Y2 ) ) ).

% leD
thf(fact_577_leI,axiom,
    ! [X: real,Y2: real] :
      ( ~ ( ord_less_real @ X @ Y2 )
     => ( ord_less_eq_real @ Y2 @ X ) ) ).

% leI
thf(fact_578_leI,axiom,
    ! [X: int,Y2: int] :
      ( ~ ( ord_less_int @ X @ Y2 )
     => ( ord_less_eq_int @ Y2 @ X ) ) ).

% leI
thf(fact_579_leI,axiom,
    ! [X: num,Y2: num] :
      ( ~ ( ord_less_num @ X @ Y2 )
     => ( ord_less_eq_num @ Y2 @ X ) ) ).

% leI
thf(fact_580_leI,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X ) ) ).

% leI
thf(fact_581_leI,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ~ ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ( ord_le2932123472753598470d_enat @ Y2 @ X ) ) ).

% leI
thf(fact_582_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_583_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_584_nless__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_585_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_586_nless__le,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ~ ( ord_le72135733267957522d_enat @ A @ B ) )
      = ( ~ ( ord_le2932123472753598470d_enat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_587_antisym__conv1,axiom,
    ! [X: real,Y2: real] :
      ( ~ ( ord_less_real @ X @ Y2 )
     => ( ( ord_less_eq_real @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_588_antisym__conv1,axiom,
    ! [X: int,Y2: int] :
      ( ~ ( ord_less_int @ X @ Y2 )
     => ( ( ord_less_eq_int @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_589_antisym__conv1,axiom,
    ! [X: num,Y2: num] :
      ( ~ ( ord_less_num @ X @ Y2 )
     => ( ( ord_less_eq_num @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_590_antisym__conv1,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_591_antisym__conv1,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ~ ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_592_antisym__conv2,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ~ ( ord_less_real @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_593_antisym__conv2,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ~ ( ord_less_int @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_594_antisym__conv2,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
     => ( ( ~ ( ord_less_num @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_595_antisym__conv2,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ~ ( ord_less_nat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_596_antisym__conv2,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
     => ( ( ~ ( ord_le72135733267957522d_enat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_597_dense__ge,axiom,
    ! [Z: real,Y2: real] :
      ( ! [X4: real] :
          ( ( ord_less_real @ Z @ X4 )
         => ( ord_less_eq_real @ Y2 @ X4 ) )
     => ( ord_less_eq_real @ Y2 @ Z ) ) ).

% dense_ge
thf(fact_598_dense__le,axiom,
    ! [Y2: real,Z: real] :
      ( ! [X4: real] :
          ( ( ord_less_real @ X4 @ Y2 )
         => ( ord_less_eq_real @ X4 @ Z ) )
     => ( ord_less_eq_real @ Y2 @ Z ) ) ).

% dense_le
thf(fact_599_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ~ ( ord_less_eq_real @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_600_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X2: int,Y4: int] :
          ( ( ord_less_eq_int @ X2 @ Y4 )
          & ~ ( ord_less_eq_int @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_601_less__le__not__le,axiom,
    ( ord_less_num
    = ( ^ [X2: num,Y4: num] :
          ( ( ord_less_eq_num @ X2 @ Y4 )
          & ~ ( ord_less_eq_num @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_602_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ~ ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_603_less__le__not__le,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [X2: extended_enat,Y4: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ X2 @ Y4 )
          & ~ ( ord_le2932123472753598470d_enat @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_604_not__le__imp__less,axiom,
    ! [Y2: real,X: real] :
      ( ~ ( ord_less_eq_real @ Y2 @ X )
     => ( ord_less_real @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_605_not__le__imp__less,axiom,
    ! [Y2: int,X: int] :
      ( ~ ( ord_less_eq_int @ Y2 @ X )
     => ( ord_less_int @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_606_not__le__imp__less,axiom,
    ! [Y2: num,X: num] :
      ( ~ ( ord_less_eq_num @ Y2 @ X )
     => ( ord_less_num @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_607_not__le__imp__less,axiom,
    ! [Y2: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y2 @ X )
     => ( ord_less_nat @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_608_not__le__imp__less,axiom,
    ! [Y2: extended_enat,X: extended_enat] :
      ( ~ ( ord_le2932123472753598470d_enat @ Y2 @ X )
     => ( ord_le72135733267957522d_enat @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_609_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_real @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_610_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_int @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_611_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [A3: num,B2: num] :
          ( ( ord_less_num @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_612_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_nat @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_613_order_Oorder__iff__strict,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] :
          ( ( ord_le72135733267957522d_enat @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_614_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_eq_real @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_615_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_616_order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [A3: num,B2: num] :
          ( ( ord_less_eq_num @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_617_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_618_order_Ostrict__iff__order,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_619_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_620_order_Ostrict__trans1,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_621_order_Ostrict__trans1,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_622_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_623_order_Ostrict__trans1,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ( ord_le72135733267957522d_enat @ B @ C )
       => ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_624_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_625_order_Ostrict__trans2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_626_order_Ostrict__trans2,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_627_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_628_order_Ostrict__trans2,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_629_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_eq_real @ A3 @ B2 )
          & ~ ( ord_less_eq_real @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_630_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
          & ~ ( ord_less_eq_int @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_631_order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [A3: num,B2: num] :
          ( ( ord_less_eq_num @ A3 @ B2 )
          & ~ ( ord_less_eq_num @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_632_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ~ ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_633_order_Ostrict__iff__not,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [A3: extended_enat,B2: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ A3 @ B2 )
          & ~ ( ord_le2932123472753598470d_enat @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_634_dense__ge__bounded,axiom,
    ! [Z: real,X: real,Y2: real] :
      ( ( ord_less_real @ Z @ X )
     => ( ! [W2: real] :
            ( ( ord_less_real @ Z @ W2 )
           => ( ( ord_less_real @ W2 @ X )
             => ( ord_less_eq_real @ Y2 @ W2 ) ) )
       => ( ord_less_eq_real @ Y2 @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_635_dense__le__bounded,axiom,
    ! [X: real,Y2: real,Z: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ! [W2: real] :
            ( ( ord_less_real @ X @ W2 )
           => ( ( ord_less_real @ W2 @ Y2 )
             => ( ord_less_eq_real @ W2 @ Z ) ) )
       => ( ord_less_eq_real @ Y2 @ Z ) ) ) ).

% dense_le_bounded
thf(fact_636_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B2: real,A3: real] :
          ( ( ord_less_real @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_637_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B2: int,A3: int] :
          ( ( ord_less_int @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_638_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [B2: num,A3: num] :
          ( ( ord_less_num @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_639_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_nat @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_640_dual__order_Oorder__iff__strict,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [B2: extended_enat,A3: extended_enat] :
          ( ( ord_le72135733267957522d_enat @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_641_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A3: real] :
          ( ( ord_less_eq_real @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_642_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B2: int,A3: int] :
          ( ( ord_less_eq_int @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_643_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [B2: num,A3: num] :
          ( ( ord_less_eq_num @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_644_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_645_dual__order_Ostrict__iff__order,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [B2: extended_enat,A3: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_646_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_647_dual__order_Ostrict__trans1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_648_dual__order_Ostrict__trans1,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_649_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_650_dual__order_Ostrict__trans1,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_le72135733267957522d_enat @ C @ B )
       => ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_651_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_652_dual__order_Ostrict__trans2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_653_dual__order_Ostrict__trans2,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_654_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_655_dual__order_Ostrict__trans2,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ B @ A )
     => ( ( ord_le2932123472753598470d_enat @ C @ B )
       => ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_656_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A3: real] :
          ( ( ord_less_eq_real @ B2 @ A3 )
          & ~ ( ord_less_eq_real @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_657_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B2: int,A3: int] :
          ( ( ord_less_eq_int @ B2 @ A3 )
          & ~ ( ord_less_eq_int @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_658_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [B2: num,A3: num] :
          ( ( ord_less_eq_num @ B2 @ A3 )
          & ~ ( ord_less_eq_num @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_659_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_660_dual__order_Ostrict__iff__not,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [B2: extended_enat,A3: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ B2 @ A3 )
          & ~ ( ord_le2932123472753598470d_enat @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_661_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_662_order_Ostrict__implies__order,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_663_order_Ostrict__implies__order,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ord_less_eq_num @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_664_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_665_order_Ostrict__implies__order,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ord_le2932123472753598470d_enat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_666_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_667_dual__order_Ostrict__implies__order,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_eq_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_668_dual__order_Ostrict__implies__order,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ord_less_eq_num @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_669_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_670_dual__order_Ostrict__implies__order,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ B @ A )
     => ( ord_le2932123472753598470d_enat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_671_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_real @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_672_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X2: int,Y4: int] :
          ( ( ord_less_int @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_673_order__le__less,axiom,
    ( ord_less_eq_num
    = ( ^ [X2: num,Y4: num] :
          ( ( ord_less_num @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_674_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_nat @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_675_order__le__less,axiom,
    ( ord_le2932123472753598470d_enat
    = ( ^ [X2: extended_enat,Y4: extended_enat] :
          ( ( ord_le72135733267957522d_enat @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_676_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_677_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X2: int,Y4: int] :
          ( ( ord_less_eq_int @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_678_order__less__le,axiom,
    ( ord_less_num
    = ( ^ [X2: num,Y4: num] :
          ( ( ord_less_eq_num @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_679_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_680_order__less__le,axiom,
    ( ord_le72135733267957522d_enat
    = ( ^ [X2: extended_enat,Y4: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_681_linorder__not__le,axiom,
    ! [X: real,Y2: real] :
      ( ( ~ ( ord_less_eq_real @ X @ Y2 ) )
      = ( ord_less_real @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_682_linorder__not__le,axiom,
    ! [X: int,Y2: int] :
      ( ( ~ ( ord_less_eq_int @ X @ Y2 ) )
      = ( ord_less_int @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_683_linorder__not__le,axiom,
    ! [X: num,Y2: num] :
      ( ( ~ ( ord_less_eq_num @ X @ Y2 ) )
      = ( ord_less_num @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_684_linorder__not__le,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y2 ) )
      = ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_685_linorder__not__le,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ~ ( ord_le2932123472753598470d_enat @ X @ Y2 ) )
      = ( ord_le72135733267957522d_enat @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_686_linorder__not__less,axiom,
    ! [X: real,Y2: real] :
      ( ( ~ ( ord_less_real @ X @ Y2 ) )
      = ( ord_less_eq_real @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_687_linorder__not__less,axiom,
    ! [X: int,Y2: int] :
      ( ( ~ ( ord_less_int @ X @ Y2 ) )
      = ( ord_less_eq_int @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_688_linorder__not__less,axiom,
    ! [X: num,Y2: num] :
      ( ( ~ ( ord_less_num @ X @ Y2 ) )
      = ( ord_less_eq_num @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_689_linorder__not__less,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y2 ) )
      = ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_690_linorder__not__less,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ~ ( ord_le72135733267957522d_enat @ X @ Y2 ) )
      = ( ord_le2932123472753598470d_enat @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_691_order__less__imp__le,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ord_less_eq_real @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_692_order__less__imp__le,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( ord_less_eq_int @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_693_order__less__imp__le,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( ord_less_eq_num @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_694_order__less__imp__le,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ord_less_eq_nat @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_695_order__less__imp__le,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ( ord_le2932123472753598470d_enat @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_696_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_697_order__le__neq__trans,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_698_order__le__neq__trans,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( A != B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_699_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_700_order__le__neq__trans,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ( A != B )
       => ( ord_le72135733267957522d_enat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_701_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_702_order__neq__le__trans,axiom,
    ! [A: int,B: int] :
      ( ( A != B )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_703_order__neq__le__trans,axiom,
    ! [A: num,B: num] :
      ( ( A != B )
     => ( ( ord_less_eq_num @ A @ B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_704_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_705_order__neq__le__trans,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( A != B )
     => ( ( ord_le2932123472753598470d_enat @ A @ B )
       => ( ord_le72135733267957522d_enat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_706_order__le__less__trans,axiom,
    ! [X: real,Y2: real,Z: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ord_less_real @ Y2 @ Z )
       => ( ord_less_real @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_707_order__le__less__trans,axiom,
    ! [X: int,Y2: int,Z: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_int @ Y2 @ Z )
       => ( ord_less_int @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_708_order__le__less__trans,axiom,
    ! [X: num,Y2: num,Z: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
     => ( ( ord_less_num @ Y2 @ Z )
       => ( ord_less_num @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_709_order__le__less__trans,axiom,
    ! [X: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_710_order__le__less__trans,axiom,
    ! [X: extended_enat,Y2: extended_enat,Z: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
     => ( ( ord_le72135733267957522d_enat @ Y2 @ Z )
       => ( ord_le72135733267957522d_enat @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_711_order__less__le__trans,axiom,
    ! [X: real,Y2: real,Z: real] :
      ( ( ord_less_real @ X @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ Z )
       => ( ord_less_real @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_712_order__less__le__trans,axiom,
    ! [X: int,Y2: int,Z: int] :
      ( ( ord_less_int @ X @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z )
       => ( ord_less_int @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_713_order__less__le__trans,axiom,
    ! [X: num,Y2: num,Z: num] :
      ( ( ord_less_num @ X @ Y2 )
     => ( ( ord_less_eq_num @ Y2 @ Z )
       => ( ord_less_num @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_714_order__less__le__trans,axiom,
    ! [X: nat,Y2: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_715_order__less__le__trans,axiom,
    ! [X: extended_enat,Y2: extended_enat,Z: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ X @ Y2 )
     => ( ( ord_le2932123472753598470d_enat @ Y2 @ Z )
       => ( ord_le72135733267957522d_enat @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_716_order__le__less__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_717_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_718_order__le__less__subst1,axiom,
    ! [A: real,F: extended_enat > real,B: extended_enat,C: extended_enat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_le72135733267957522d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_719_order__le__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_int @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_720_order__le__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_real @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_721_order__le__less__subst1,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_722_order__le__less__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_723_order__le__less__subst1,axiom,
    ! [A: int,F: extended_enat > int,B: extended_enat,C: extended_enat] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_le72135733267957522d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_724_order__le__less__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_int @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_725_order__le__less__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_real @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_726_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_727_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_728_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > num,C: num] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_729_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_730_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > extended_enat,C: extended_enat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_le72135733267957522d_enat @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_731_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_732_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_733_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > num,C: num] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_734_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_735_order__le__less__subst2,axiom,
    ! [A: int,B: int,F: int > extended_enat,C: extended_enat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_le72135733267957522d_enat @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_736_order__less__le__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_737_order__less__le__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_738_order__less__le__subst1,axiom,
    ! [A: num,F: real > num,B: real,C: real] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_739_order__less__le__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_740_order__less__le__subst1,axiom,
    ! [A: extended_enat,F: real > extended_enat,B: real,C: real] :
      ( ( ord_le72135733267957522d_enat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_741_order__less__le__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_742_order__less__le__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_743_order__less__le__subst1,axiom,
    ! [A: num,F: int > num,B: int,C: int] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_744_order__less__le__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_745_order__less__le__subst1,axiom,
    ! [A: extended_enat,F: int > extended_enat,B: int,C: int] :
      ( ( ord_le72135733267957522d_enat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_746_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > real,C: real] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_747_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_748_order__less__le__subst2,axiom,
    ! [A: extended_enat,B: extended_enat,F: extended_enat > real,C: real] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_749_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_int @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_750_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_real @ X4 @ Y )
             => ( ord_less_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_751_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > int,C: int] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_num @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_752_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_nat @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_753_order__less__le__subst2,axiom,
    ! [A: extended_enat,B: extended_enat,F: extended_enat > int,C: int] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_754_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_int @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_755_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_real @ X4 @ Y )
             => ( ord_less_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_756_linorder__le__less__linear,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
      | ( ord_less_real @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_757_linorder__le__less__linear,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
      | ( ord_less_int @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_758_linorder__le__less__linear,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
      | ( ord_less_num @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_759_linorder__le__less__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
      | ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_760_linorder__le__less__linear,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
      | ( ord_le72135733267957522d_enat @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_761_order__le__imp__less__or__eq,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ord_less_real @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_762_order__le__imp__less__or__eq,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_int @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_763_order__le__imp__less__or__eq,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
     => ( ( ord_less_num @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_764_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_nat @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_765_order__le__imp__less__or__eq,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
     => ( ( ord_le72135733267957522d_enat @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_766_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_less_one
thf(fact_767_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_less_one
thf(fact_768_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_less_numeral
thf(fact_769_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_less_numeral
thf(fact_770_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_less_neg_one
thf(fact_771_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_less_neg_one
thf(fact_772_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_773_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_774_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_775_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_776_floor__less__iff,axiom,
    ! [X: real,Z: int] :
      ( ( ord_less_int @ ( archim6058952711729229775r_real @ X ) @ Z )
      = ( ord_less_real @ X @ ( ring_1_of_int_real @ Z ) ) ) ).

% floor_less_iff
thf(fact_777_le__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% le_minus_iff
thf(fact_778_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_779_minus__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_780_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_781_le__imp__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% le_imp_neg_le
thf(fact_782_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_783_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
     != ( numeral_numeral_int @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_784_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
     != ( numeral_numeral_real @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_785_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ M )
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_786_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_real @ M )
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_787_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_788_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_789_group__cancel_Oneg1,axiom,
    ! [A2: int,K: int,A: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_790_group__cancel_Oneg1,axiom,
    ! [A2: real,K: real,A: real] :
      ( ( A2
        = ( plus_plus_real @ K @ A ) )
     => ( ( uminus_uminus_real @ A2 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_791_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_792_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_793_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_794_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_795_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_796_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_797_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_798_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_799_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_800_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_801_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_802_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_803_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_804_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_805_add__strict__mono,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat,D: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ( ord_le72135733267957522d_enat @ C @ D )
       => ( ord_le72135733267957522d_enat @ ( plus_p3455044024723400733d_enat @ A @ C ) @ ( plus_p3455044024723400733d_enat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_806_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_807_add__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_808_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_809_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_810_add__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_811_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_812_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_813_add__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_814_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_815_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_816_add__less__imp__less__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_817_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_818_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_819_add__less__imp__less__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_820_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_821_less__numeral__extra_I4_J,axiom,
    ~ ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat ) ).

% less_numeral_extra(4)
thf(fact_822_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_823_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_824_abs__eq__iff,axiom,
    ! [X: int,Y2: int] :
      ( ( ( abs_abs_int @ X )
        = ( abs_abs_int @ Y2 ) )
      = ( ( X = Y2 )
        | ( X
          = ( uminus_uminus_int @ Y2 ) ) ) ) ).

% abs_eq_iff
thf(fact_825_abs__eq__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ( abs_abs_real @ X )
        = ( abs_abs_real @ Y2 ) )
      = ( ( X = Y2 )
        | ( X
          = ( uminus_uminus_real @ Y2 ) ) ) ) ).

% abs_eq_iff
thf(fact_826_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_real @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% less_eq_real_def
thf(fact_827_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M2 @ N2 )
          & ( M2 != N2 ) ) ) ) ).

% nat_less_le
thf(fact_828_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_829_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N2: nat] :
          ( ( ord_less_nat @ M2 @ N2 )
          | ( M2 = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_830_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_831_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_832_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_833_ex__less__of__int,axiom,
    ! [X: real] :
    ? [Z3: int] : ( ord_less_real @ X @ ( ring_1_of_int_real @ Z3 ) ) ).

% ex_less_of_int
thf(fact_834_ex__of__int__less,axiom,
    ! [X: real] :
    ? [Z3: int] : ( ord_less_real @ ( ring_1_of_int_real @ Z3 ) @ X ) ).

% ex_of_int_less
thf(fact_835_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_836_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_837_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_838_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_839_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_840_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_841_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_842_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_843_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_844_of__int__neg__numeral,axiom,
    ! [K: num] :
      ( ( ring_1_of_int_real @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
      = ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) ) ).

% of_int_neg_numeral
thf(fact_845_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_846_neg__numeral__le__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_le_numeral
thf(fact_847_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_848_not__numeral__le__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_le_neg_numeral
thf(fact_849_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(4)
thf(fact_850_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_851_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% le_minus_one_simps(2)
thf(fact_852_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_853_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ N )
     != ( uminus_uminus_int @ one_one_int ) ) ).

% numeral_neq_neg_one
thf(fact_854_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ N )
     != ( uminus_uminus_real @ one_one_real ) ) ).

% numeral_neq_neg_one
thf(fact_855_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_856_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_real
     != ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_857_abs__leI,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
       => ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_858_abs__leI,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
       => ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B ) ) ) ).

% abs_leI
thf(fact_859_abs__le__D2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_860_abs__le__D2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% abs_le_D2
thf(fact_861_abs__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( abs_abs_real @ A ) @ B )
      = ( ( ord_less_eq_real @ A @ B )
        & ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_862_abs__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( abs_abs_int @ A ) @ B )
      = ( ( ord_less_eq_int @ A @ B )
        & ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B ) ) ) ).

% abs_le_iff
thf(fact_863_abs__ge__minus__self,axiom,
    ! [A: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ ( abs_abs_real @ A ) ) ).

% abs_ge_minus_self
thf(fact_864_abs__ge__minus__self,axiom,
    ! [A: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ ( abs_abs_int @ A ) ) ).

% abs_ge_minus_self
thf(fact_865_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_866_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_867_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_868_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_869_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_870_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_871_add__le__less__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_872_add__le__less__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_873_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_874_add__less__le__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_875_add__less__le__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_876_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_877_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).

% not_numeral_less_one
thf(fact_878_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_879_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat ) ).

% not_numeral_less_one
thf(fact_880_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).

% not_numeral_less_one
thf(fact_881_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_882_less__add__one,axiom,
    ! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).

% less_add_one
thf(fact_883_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_884_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_885_add__mono1,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ A @ B )
     => ( ord_le72135733267957522d_enat @ ( plus_p3455044024723400733d_enat @ A @ one_on7984719198319812577d_enat ) @ ( plus_p3455044024723400733d_enat @ B @ one_on7984719198319812577d_enat ) ) ) ).

% add_mono1
thf(fact_886_add__mono1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_887_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_888_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M3: nat,N3: nat] :
          ( ( ord_less_nat @ M3 @ N3 )
         => ( ord_less_nat @ ( F @ M3 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_889_zless__add1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z )
        | ( W = Z ) ) ) ).

% zless_add1_eq
thf(fact_890_int__gr__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K @ I )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I2: int] :
              ( ( ord_less_int @ K @ I2 )
             => ( ( P @ I2 )
               => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_891_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).

% neg_numeral_le_one
thf(fact_892_neg__numeral__le__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_le_one
thf(fact_893_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).

% neg_one_le_numeral
thf(fact_894_neg__one__le__numeral,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_le_numeral
thf(fact_895_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% neg_numeral_le_neg_one
thf(fact_896_neg__numeral__le__neg__one,axiom,
    ! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% neg_numeral_le_neg_one
thf(fact_897_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).

% not_numeral_le_neg_one
thf(fact_898_not__numeral__le__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_le_neg_one
thf(fact_899_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_900_not__one__le__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_le_neg_numeral
thf(fact_901_uminus__numeral__One,axiom,
    ( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% uminus_numeral_One
thf(fact_902_uminus__numeral__One,axiom,
    ( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% uminus_numeral_One
thf(fact_903_verit__comp__simplify1_I2_J,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_904_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_905_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_906_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_907_verit__comp__simplify1_I2_J,axiom,
    ! [A: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_908_nle__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_eq_real @ A @ B ) )
      = ( ( ord_less_eq_real @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_909_nle__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B ) )
      = ( ( ord_less_eq_int @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_910_nle__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_eq_num @ A @ B ) )
      = ( ( ord_less_eq_num @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_911_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_912_nle__le,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ~ ( ord_le2932123472753598470d_enat @ A @ B ) )
      = ( ( ord_le2932123472753598470d_enat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_913_le__cases3,axiom,
    ! [X: real,Y2: real,Z: real] :
      ( ( ( ord_less_eq_real @ X @ Y2 )
       => ~ ( ord_less_eq_real @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_real @ Y2 @ X )
         => ~ ( ord_less_eq_real @ X @ Z ) )
       => ( ( ( ord_less_eq_real @ X @ Z )
           => ~ ( ord_less_eq_real @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_real @ Z @ Y2 )
             => ~ ( ord_less_eq_real @ Y2 @ X ) )
           => ( ( ( ord_less_eq_real @ Y2 @ Z )
               => ~ ( ord_less_eq_real @ Z @ X ) )
             => ~ ( ( ord_less_eq_real @ Z @ X )
                 => ~ ( ord_less_eq_real @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_914_le__cases3,axiom,
    ! [X: int,Y2: int,Z: int] :
      ( ( ( ord_less_eq_int @ X @ Y2 )
       => ~ ( ord_less_eq_int @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_int @ Y2 @ X )
         => ~ ( ord_less_eq_int @ X @ Z ) )
       => ( ( ( ord_less_eq_int @ X @ Z )
           => ~ ( ord_less_eq_int @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_int @ Z @ Y2 )
             => ~ ( ord_less_eq_int @ Y2 @ X ) )
           => ( ( ( ord_less_eq_int @ Y2 @ Z )
               => ~ ( ord_less_eq_int @ Z @ X ) )
             => ~ ( ( ord_less_eq_int @ Z @ X )
                 => ~ ( ord_less_eq_int @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_915_le__cases3,axiom,
    ! [X: num,Y2: num,Z: num] :
      ( ( ( ord_less_eq_num @ X @ Y2 )
       => ~ ( ord_less_eq_num @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_num @ Y2 @ X )
         => ~ ( ord_less_eq_num @ X @ Z ) )
       => ( ( ( ord_less_eq_num @ X @ Z )
           => ~ ( ord_less_eq_num @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_num @ Z @ Y2 )
             => ~ ( ord_less_eq_num @ Y2 @ X ) )
           => ( ( ( ord_less_eq_num @ Y2 @ Z )
               => ~ ( ord_less_eq_num @ Z @ X ) )
             => ~ ( ( ord_less_eq_num @ Z @ X )
                 => ~ ( ord_less_eq_num @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_916_le__cases3,axiom,
    ! [X: nat,Y2: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X )
         => ~ ( ord_less_eq_nat @ X @ Z ) )
       => ( ( ( ord_less_eq_nat @ X @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_917_le__cases3,axiom,
    ! [X: extended_enat,Y2: extended_enat,Z: extended_enat] :
      ( ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
       => ~ ( ord_le2932123472753598470d_enat @ Y2 @ Z ) )
     => ( ( ( ord_le2932123472753598470d_enat @ Y2 @ X )
         => ~ ( ord_le2932123472753598470d_enat @ X @ Z ) )
       => ( ( ( ord_le2932123472753598470d_enat @ X @ Z )
           => ~ ( ord_le2932123472753598470d_enat @ Z @ Y2 ) )
         => ( ( ( ord_le2932123472753598470d_enat @ Z @ Y2 )
             => ~ ( ord_le2932123472753598470d_enat @ Y2 @ X ) )
           => ( ( ( ord_le2932123472753598470d_enat @ Y2 @ Z )
               => ~ ( ord_le2932123472753598470d_enat @ Z @ X ) )
             => ~ ( ( ord_le2932123472753598470d_enat @ Z @ X )
                 => ~ ( ord_le2932123472753598470d_enat @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_918_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: real,Z4: real] : ( Y5 = Z4 ) )
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ( ord_less_eq_real @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_919_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
    = ( ^ [X2: int,Y4: int] :
          ( ( ord_less_eq_int @ X2 @ Y4 )
          & ( ord_less_eq_int @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_920_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: num,Z4: num] : ( Y5 = Z4 ) )
    = ( ^ [X2: num,Y4: num] :
          ( ( ord_less_eq_num @ X2 @ Y4 )
          & ( ord_less_eq_num @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_921_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_922_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: extended_enat,Z4: extended_enat] : ( Y5 = Z4 ) )
    = ( ^ [X2: extended_enat,Y4: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ X2 @ Y4 )
          & ( ord_le2932123472753598470d_enat @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_923_ord__eq__le__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_924_ord__eq__le__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_925_ord__eq__le__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_926_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_927_ord__eq__le__trans,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( A = B )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ord_le2932123472753598470d_enat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_928_ord__le__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_929_ord__le__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_930_ord__le__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_931_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_932_ord__le__eq__trans,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ( B = C )
       => ( ord_le2932123472753598470d_enat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_933_order__antisym,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_934_order__antisym,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_935_order__antisym,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
     => ( ( ord_less_eq_num @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_936_order__antisym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_937_order__antisym,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
     => ( ( ord_le2932123472753598470d_enat @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_938_order_Otrans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% order.trans
thf(fact_939_order_Otrans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% order.trans
thf(fact_940_order_Otrans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% order.trans
thf(fact_941_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_942_order_Otrans,axiom,
    ! [A: extended_enat,B: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ord_le2932123472753598470d_enat @ A @ C ) ) ) ).

% order.trans
thf(fact_943_order__trans,axiom,
    ! [X: real,Y2: real,Z: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
     => ( ( ord_less_eq_real @ Y2 @ Z )
       => ( ord_less_eq_real @ X @ Z ) ) ) ).

% order_trans
thf(fact_944_order__trans,axiom,
    ! [X: int,Y2: int,Z: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
     => ( ( ord_less_eq_int @ Y2 @ Z )
       => ( ord_less_eq_int @ X @ Z ) ) ) ).

% order_trans
thf(fact_945_order__trans,axiom,
    ! [X: num,Y2: num,Z: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
     => ( ( ord_less_eq_num @ Y2 @ Z )
       => ( ord_less_eq_num @ X @ Z ) ) ) ).

% order_trans
thf(fact_946_order__trans,axiom,
    ! [X: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z )
       => ( ord_less_eq_nat @ X @ Z ) ) ) ).

% order_trans
thf(fact_947_order__trans,axiom,
    ! [X: extended_enat,Y2: extended_enat,Z: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
     => ( ( ord_le2932123472753598470d_enat @ Y2 @ Z )
       => ( ord_le2932123472753598470d_enat @ X @ Z ) ) ) ).

% order_trans
thf(fact_948_linorder__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A4: real,B4: real] :
          ( ( ord_less_eq_real @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: real,B4: real] :
            ( ( P @ B4 @ A4 )
           => ( P @ A4 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_949_linorder__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A4: int,B4: int] :
          ( ( ord_less_eq_int @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: int,B4: int] :
            ( ( P @ B4 @ A4 )
           => ( P @ A4 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_950_linorder__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A4: num,B4: num] :
          ( ( ord_less_eq_num @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: num,B4: num] :
            ( ( P @ B4 @ A4 )
           => ( P @ A4 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_951_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: nat,B4: nat] :
            ( ( P @ B4 @ A4 )
           => ( P @ A4 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_952_linorder__wlog,axiom,
    ! [P: extended_enat > extended_enat > $o,A: extended_enat,B: extended_enat] :
      ( ! [A4: extended_enat,B4: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: extended_enat,B4: extended_enat] :
            ( ( P @ B4 @ A4 )
           => ( P @ A4 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_953_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: real,Z4: real] : ( Y5 = Z4 ) )
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_eq_real @ B2 @ A3 )
          & ( ord_less_eq_real @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_954_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ B2 @ A3 )
          & ( ord_less_eq_int @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_955_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: num,Z4: num] : ( Y5 = Z4 ) )
    = ( ^ [A3: num,B2: num] :
          ( ( ord_less_eq_num @ B2 @ A3 )
          & ( ord_less_eq_num @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_956_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_957_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: extended_enat,Z4: extended_enat] : ( Y5 = Z4 ) )
    = ( ^ [A3: extended_enat,B2: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ B2 @ A3 )
          & ( ord_le2932123472753598470d_enat @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_958_dual__order_Oantisym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_959_dual__order_Oantisym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_960_dual__order_Oantisym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_961_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_962_dual__order_Oantisym,axiom,
    ! [B: extended_enat,A: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_le2932123472753598470d_enat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_963_dual__order_Otrans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_964_dual__order_Otrans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_965_dual__order_Otrans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_eq_num @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_966_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_967_dual__order_Otrans,axiom,
    ! [B: extended_enat,A: extended_enat,C: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ B @ A )
     => ( ( ord_le2932123472753598470d_enat @ C @ B )
       => ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_968_antisym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_969_antisym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_970_antisym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_971_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_972_antisym,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ A @ B )
     => ( ( ord_le2932123472753598470d_enat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_973_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: real,Z4: real] : ( Y5 = Z4 ) )
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_eq_real @ A3 @ B2 )
          & ( ord_less_eq_real @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_974_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: int,Z4: int] : ( Y5 = Z4 ) )
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
          & ( ord_less_eq_int @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_975_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: num,Z4: num] : ( Y5 = Z4 ) )
    = ( ^ [A3: num,B2: num] :
          ( ( ord_less_eq_num @ A3 @ B2 )
          & ( ord_less_eq_num @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_976_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_977_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: extended_enat,Z4: extended_enat] : ( Y5 = Z4 ) )
    = ( ^ [A3: extended_enat,B2: extended_enat] :
          ( ( ord_le2932123472753598470d_enat @ A3 @ B2 )
          & ( ord_le2932123472753598470d_enat @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_978_order__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_979_order__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_980_order__subst1,axiom,
    ! [A: real,F: num > real,B: num,C: num] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_eq_num @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_981_order__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_982_order__subst1,axiom,
    ! [A: real,F: extended_enat > real,B: extended_enat,C: extended_enat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_983_order__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_984_order__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_985_order__subst1,axiom,
    ! [A: int,F: num > int,B: num,C: num] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X4: num,Y: num] :
              ( ( ord_less_eq_num @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_986_order__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_987_order__subst1,axiom,
    ! [A: int,F: extended_enat > int,B: extended_enat,C: extended_enat] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_988_order__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_989_order__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_990_order__subst2,axiom,
    ! [A: real,B: real,F: real > num,C: num] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_991_order__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_992_order__subst2,axiom,
    ! [A: real,B: real,F: real > extended_enat,C: extended_enat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
       => ( ! [X4: real,Y: real] :
              ( ( ord_less_eq_real @ X4 @ Y )
             => ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2932123472753598470d_enat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_993_order__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_994_order__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_995_order__subst2,axiom,
    ! [A: int,B: int,F: int > num,C: num] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_996_order__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_997_order__subst2,axiom,
    ! [A: int,B: int,F: int > extended_enat,C: extended_enat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
       => ( ! [X4: int,Y: int] :
              ( ( ord_less_eq_int @ X4 @ Y )
             => ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2932123472753598470d_enat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_998_order__eq__refl,axiom,
    ! [X: real,Y2: real] :
      ( ( X = Y2 )
     => ( ord_less_eq_real @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_999_order__eq__refl,axiom,
    ! [X: int,Y2: int] :
      ( ( X = Y2 )
     => ( ord_less_eq_int @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_1000_order__eq__refl,axiom,
    ! [X: num,Y2: num] :
      ( ( X = Y2 )
     => ( ord_less_eq_num @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_1001_order__eq__refl,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X = Y2 )
     => ( ord_less_eq_nat @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_1002_order__eq__refl,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( X = Y2 )
     => ( ord_le2932123472753598470d_enat @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_1003_verit__la__disequality,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
      | ~ ( ord_less_eq_real @ A @ B )
      | ~ ( ord_less_eq_real @ B @ A ) ) ).

% verit_la_disequality
thf(fact_1004_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_1005_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_1006_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_1007_verit__la__disequality,axiom,
    ! [A: extended_enat,B: extended_enat] :
      ( ( A = B )
      | ~ ( ord_le2932123472753598470d_enat @ A @ B )
      | ~ ( ord_le2932123472753598470d_enat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_1008_linorder__linear,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ X @ Y2 )
      | ( ord_less_eq_real @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_1009_linorder__linear,axiom,
    ! [X: int,Y2: int] :
      ( ( ord_less_eq_int @ X @ Y2 )
      | ( ord_less_eq_int @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_1010_linorder__linear,axiom,
    ! [X: num,Y2: num] :
      ( ( ord_less_eq_num @ X @ Y2 )
      | ( ord_less_eq_num @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_1011_linorder__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_1012_linorder__linear,axiom,
    ! [X: extended_enat,Y2: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ X @ Y2 )
      | ( ord_le2932123472753598470d_enat @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_1013_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1014_ord__eq__le__subst,axiom,
    ! [A: extended_enat,F: nat > extended_enat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1015_ord__eq__le__subst,axiom,
    ! [A: real,F: extended_enat > real,B: extended_enat,C: extended_enat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X4 @ Y )
             => ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1016_ord__eq__le__subst,axiom,
    ! [A: int,F: extended_enat > int,B: extended_enat,C: extended_enat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X4 @ Y )
             => ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1017_ord__eq__le__subst,axiom,
    ! [A: num,F: extended_enat > num,B: extended_enat,C: extended_enat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X4 @ Y )
             => ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1018_ord__eq__le__subst,axiom,
    ! [A: nat,F: extended_enat > nat,B: extended_enat,C: extended_enat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1019_ord__eq__le__subst,axiom,
    ! [A: extended_enat,F: extended_enat > extended_enat,B: extended_enat,C: extended_enat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2932123472753598470d_enat @ B @ C )
       => ( ! [X4: extended_enat,Y: extended_enat] :
              ( ( ord_le2932123472753598470d_enat @ X4 @ Y )
             => ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1020_zless__imp__add1__zle,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ Z )
     => ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).

% zless_imp_add1_zle
thf(fact_1021_add1__zle__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
      = ( ord_less_int @ W @ Z ) ) ).

% add1_zle_eq
thf(fact_1022_verit__la__generic,axiom,
    ! [A: int,X: int] :
      ( ( ord_less_eq_int @ A @ X )
      | ( A = X )
      | ( ord_less_eq_int @ X @ A ) ) ).

% verit_la_generic
thf(fact_1023_int__less__real__le,axiom,
    ( ord_less_int
    = ( ^ [N2: int,M2: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N2 ) @ one_one_real ) @ ( ring_1_of_int_real @ M2 ) ) ) ) ).

% int_less_real_le
thf(fact_1024_int__le__real__less,axiom,
    ( ord_less_eq_int
    = ( ^ [N2: int,M2: int] : ( ord_less_real @ ( ring_1_of_int_real @ N2 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M2 ) @ one_one_real ) ) ) ) ).

% int_le_real_less
thf(fact_1025_floor__eq,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = N ) ) ) ).

% floor_eq
thf(fact_1026_real__of__int__floor__add__one__gt,axiom,
    ! [R: real] : ( ord_less_real @ R @ ( plus_plus_real @ ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ R ) ) @ one_one_real ) ) ).

% real_of_int_floor_add_one_gt
thf(fact_1027_floor__eq2,axiom,
    ! [N: int,X: real] :
      ( ( ord_less_eq_real @ ( ring_1_of_int_real @ N ) @ X )
     => ( ( ord_less_real @ X @ ( plus_plus_real @ ( ring_1_of_int_real @ N ) @ one_one_real ) )
       => ( ( archim6058952711729229775r_real @ X )
          = N ) ) ) ).

% floor_eq2
thf(fact_1028_int__induct__abs,axiom,
    ! [P: int > $o,J: int] :
      ( ! [N3: int] :
          ( ! [I3: int] :
              ( ( ord_less_int @ ( abs_abs_int @ I3 ) @ ( abs_abs_int @ N3 ) )
             => ( P @ I3 ) )
         => ( P @ N3 ) )
     => ( P @ J ) ) ).

% int_induct_abs
thf(fact_1029_zabs__less__one__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( abs_abs_int @ Z ) @ one_one_int )
      = ( Z = zero_zero_int ) ) ).

% zabs_less_one_iff
thf(fact_1030_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_1031_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_1032_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_1033_less__not__refl3,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( S2 != T ) ) ).

% less_not_refl3
thf(fact_1034_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_1035_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_nat @ M4 @ N3 )
             => ( P @ M4 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_1036_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M4: nat] :
              ( ( ord_less_nat @ M4 @ N3 )
              & ~ ( P @ M4 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_1037_linorder__neqE__nat,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_nat @ X @ Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_1038_uminus__int__code_I1_J,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% uminus_int_code(1)
thf(fact_1039_enat__less__induct,axiom,
    ! [P: extended_enat > $o,N: extended_enat] :
      ( ! [N3: extended_enat] :
          ( ! [M4: extended_enat] :
              ( ( ord_le72135733267957522d_enat @ M4 @ N3 )
             => ( P @ M4 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% enat_less_induct
thf(fact_1040_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_1041_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_1042_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_1043_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_1044_odd__nonzero,axiom,
    ! [Z: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_1045_zabs__def,axiom,
    ( abs_abs_int
    = ( ^ [I4: int] : ( if_int @ ( ord_less_int @ I4 @ zero_zero_int ) @ ( uminus_uminus_int @ I4 ) @ I4 ) ) ) ).

% zabs_def
thf(fact_1046_int__one__le__iff__zero__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z )
      = ( ord_less_int @ zero_zero_int @ Z ) ) ).

% int_one_le_iff_zero_less
thf(fact_1047_odd__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_1048_le__imp__0__less,axiom,
    ! [Z: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).

% le_imp_0_less
thf(fact_1049_round__down__ge1,axiom,
    ! [X: real,P4: int] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ ( uminus_uminus_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) ) @ ( ring_1_of_int_real @ P4 ) )
       => ( ord_less_eq_real @ one_one_real @ ( round_down @ P4 @ X ) ) ) ) ).

% round_down_ge1
thf(fact_1050_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_1051_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_1052_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_1053_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_1054_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_1055_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1056_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_1057_i0__less,axiom,
    ! [N: extended_enat] :
      ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
      = ( N != zero_z5237406670263579293d_enat ) ) ).

% i0_less
thf(fact_1058_round__down__0,axiom,
    ! [P4: int] :
      ( ( round_down @ P4 @ zero_zero_real )
      = zero_zero_real ) ).

% round_down_0
thf(fact_1059_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_1060_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_1061_real__add__minus__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X = A ) ) ).

% real_add_minus_iff
thf(fact_1062_round__down__nonneg,axiom,
    ! [S2: real,P4: int] :
      ( ( ord_less_eq_real @ zero_zero_real @ S2 )
     => ( ord_less_eq_real @ zero_zero_real @ ( round_down @ P4 @ S2 ) ) ) ).

% round_down_nonneg
thf(fact_1063_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M4: nat] :
                  ( ( ord_less_nat @ M4 @ N3 )
                  & ~ ( P @ M4 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_1064_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_1065_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_1066_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_1067_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_1068_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_1069_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_1070_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_1071_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_1072_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_1073_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_1074_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_1075_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1076_not__iless0,axiom,
    ! [N: extended_enat] :
      ~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).

% not_iless0
thf(fact_1077_ile0__eq,axiom,
    ! [N: extended_enat] :
      ( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
      = ( N = zero_z5237406670263579293d_enat ) ) ).

% ile0_eq
thf(fact_1078_i0__lb,axiom,
    ! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).

% i0_lb
thf(fact_1079_round__down,axiom,
    ! [Prec: int,X: real] : ( ord_less_eq_real @ ( round_down @ Prec @ X ) @ X ) ).

% round_down
thf(fact_1080_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ K3 )
               => ~ ( P @ I3 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1081_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I @ K3 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_1082_real__0__le__add__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y2 ) ) ).

% real_0_le_add_iff
thf(fact_1083_real__add__le__0__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y2 @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_1084_real__add__less__0__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y2 ) @ zero_zero_real )
      = ( ord_less_real @ Y2 @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_1085_real__0__less__add__iff,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y2 ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y2 ) ) ).

% real_0_less_add_iff
thf(fact_1086_abs__real__def,axiom,
    ( abs_abs_real
    = ( ^ [A3: real] : ( if_real @ ( ord_less_real @ A3 @ zero_zero_real ) @ ( uminus_uminus_real @ A3 ) @ A3 ) ) ) ).

% abs_real_def
thf(fact_1087_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M5: nat] :
      ( ( P @ X )
     => ( ! [X4: nat] :
            ( ( P @ X4 )
           => ( ord_less_eq_nat @ X4 @ M5 ) )
       => ~ ! [M3: nat] :
              ( ( P @ M3 )
             => ~ ! [X3: nat] :
                    ( ( P @ X3 )
                   => ( ord_less_eq_nat @ X3 @ M3 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_1088_sum__neq__zeroI_I2_J,axiom,
    ! [K: real,A: real,B: real] :
      ( ( ord_less_real @ K @ ( abs_abs_real @ A ) )
     => ( ( ord_less_eq_real @ ( abs_abs_real @ B ) @ K )
       => ( ( plus_plus_real @ A @ B )
         != zero_zero_real ) ) ) ).

% sum_neq_zeroI(2)
thf(fact_1089_sum__neq__zeroI_I1_J,axiom,
    ! [K: real,A: real,B: real] :
      ( ( ord_less_eq_real @ K @ ( abs_abs_real @ A ) )
     => ( ( ord_less_real @ ( abs_abs_real @ B ) @ K )
       => ( ( plus_plus_real @ A @ B )
         != zero_zero_real ) ) ) ).

% sum_neq_zeroI(1)
thf(fact_1090_log__le__cancel__iff,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_eq_real @ ( log @ A @ X ) @ ( log @ A @ Y2 ) )
            = ( ord_less_eq_real @ X @ Y2 ) ) ) ) ) ).

% log_le_cancel_iff
thf(fact_1091_log__le__one__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log @ A @ X ) @ one_one_real )
          = ( ord_less_eq_real @ X @ A ) ) ) ) ).

% log_le_one_cancel_iff
thf(fact_1092_one__le__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ one_one_real @ ( log @ A @ X ) )
          = ( ord_less_eq_real @ A @ X ) ) ) ) ).

% one_le_log_cancel_iff
thf(fact_1093_log__one,axiom,
    ! [A: real] :
      ( ( log @ A @ one_one_real )
      = zero_zero_real ) ).

% log_one
thf(fact_1094_zero__less__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ ( log @ A @ X ) )
          = ( ord_less_real @ one_one_real @ X ) ) ) ) ).

% zero_less_log_cancel_iff
thf(fact_1095_log__less__zero__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( log @ A @ X ) @ zero_zero_real )
          = ( ord_less_real @ X @ one_one_real ) ) ) ) ).

% log_less_zero_cancel_iff
thf(fact_1096_one__less__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ one_one_real @ ( log @ A @ X ) )
          = ( ord_less_real @ A @ X ) ) ) ) ).

% one_less_log_cancel_iff
thf(fact_1097_log__less__one__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( log @ A @ X ) @ one_one_real )
          = ( ord_less_real @ X @ A ) ) ) ) ).

% log_less_one_cancel_iff
thf(fact_1098_log__less__cancel__iff,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ Y2 )
         => ( ( ord_less_real @ ( log @ A @ X ) @ ( log @ A @ Y2 ) )
            = ( ord_less_real @ X @ Y2 ) ) ) ) ) ).

% log_less_cancel_iff
thf(fact_1099_log__eq__one,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ A )
          = one_one_real ) ) ) ).

% log_eq_one
thf(fact_1100_zero__le__log__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ ( log @ A @ X ) )
          = ( ord_less_eq_real @ one_one_real @ X ) ) ) ) ).

% zero_le_log_cancel_iff
thf(fact_1101_log__le__zero__cancel__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log @ A @ X ) @ zero_zero_real )
          = ( ord_less_eq_real @ X @ one_one_real ) ) ) ) ).

% log_le_zero_cancel_iff
thf(fact_1102_iadd__is__0,axiom,
    ! [M: extended_enat,N: extended_enat] :
      ( ( ( plus_p3455044024723400733d_enat @ M @ N )
        = zero_z5237406670263579293d_enat )
      = ( ( M = zero_z5237406670263579293d_enat )
        & ( N = zero_z5237406670263579293d_enat ) ) ) ).

% iadd_is_0
thf(fact_1103_zero__one__enat__neq_I1_J,axiom,
    zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).

% zero_one_enat_neq(1)
thf(fact_1104_nat__induct2,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( P @ N3 )
             => ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct2
thf(fact_1105_pos2,axiom,
    ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).

% pos2
thf(fact_1106_bitlen__alt__def,axiom,
    ( log_bitlen
    = ( ^ [A3: int] : ( if_int @ ( ord_less_int @ zero_zero_int @ A3 ) @ ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ A3 ) ) ) @ one_one_int ) @ zero_zero_int ) ) ) ).

% bitlen_alt_def
thf(fact_1107_arsinh__minus__real,axiom,
    ! [X: real] :
      ( ( arsinh_real @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( arsinh_real @ X ) ) ) ).

% arsinh_minus_real
thf(fact_1108_bitlen__zero,axiom,
    ( ( log_bitlen @ zero_zero_int )
    = zero_zero_int ) ).

% bitlen_zero
thf(fact_1109_artanh__minus__real,axiom,
    ! [X: real] :
      ( ( ord_less_real @ ( abs_abs_real @ X ) @ one_one_real )
     => ( ( artanh_real @ ( uminus_uminus_real @ X ) )
        = ( uminus_uminus_real @ ( artanh_real @ X ) ) ) ) ).

% artanh_minus_real
thf(fact_1110_bitlen__1,axiom,
    ( ( log_bitlen @ one_one_int )
    = one_one_int ) ).

% bitlen_1
thf(fact_1111_bitlen__eq__zero__iff,axiom,
    ! [X: int] :
      ( ( ( log_bitlen @ X )
        = zero_zero_int )
      = ( ord_less_eq_int @ X @ zero_zero_int ) ) ).

% bitlen_eq_zero_iff
thf(fact_1112_bitlen__nonneg,axiom,
    ! [X: int] : ( ord_less_eq_int @ zero_zero_int @ ( log_bitlen @ X ) ) ).

% bitlen_nonneg
thf(fact_1113_floor__log__add__eqI,axiom,
    ! [B: nat,A: nat,R: real] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ one_one_nat @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ R )
         => ( ( ord_less_real @ R @ one_one_real )
           => ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ A ) @ R ) ) )
              = ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ A ) ) ) ) ) ) ) ) ).

% floor_log_add_eqI
thf(fact_1114_floor__log__eq__powr__iff,axiom,
    ! [X: real,B: real,K: int] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ( archim6058952711729229775r_real @ ( log @ B @ X ) )
            = K )
          = ( ( ord_less_eq_real @ ( powr_real @ B @ ( ring_1_of_int_real @ K ) ) @ X )
            & ( ord_less_real @ X @ ( powr_real @ B @ ( ring_1_of_int_real @ ( plus_plus_int @ K @ one_one_int ) ) ) ) ) ) ) ) ).

% floor_log_eq_powr_iff
thf(fact_1115_powr__nonneg__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ ( powr_real @ A @ X ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% powr_nonneg_iff
thf(fact_1116_powr__gt__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( powr_real @ X @ A ) )
      = ( X != zero_zero_real ) ) ).

% powr_gt_zero
thf(fact_1117_powr__less__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel_iff
thf(fact_1118_powr__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ one_one_real )
        = X ) ) ).

% powr_one
thf(fact_1119_powr__one__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ( powr_real @ X @ one_one_real )
        = X )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% powr_one_gt_zero_iff
thf(fact_1120_powr__eq__one__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( powr_real @ A @ X )
          = one_one_real )
        = ( X = zero_zero_real ) ) ) ).

% powr_eq_one_iff
thf(fact_1121_powr__le__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% powr_le_cancel_iff
thf(fact_1122_numeral__less__real__of__nat__iff,axiom,
    ! [W: num,N: nat] :
      ( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).

% numeral_less_real_of_nat_iff
thf(fact_1123_real__of__nat__less__numeral__iff,axiom,
    ! [N: nat,W: num] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
      = ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).

% real_of_nat_less_numeral_iff
thf(fact_1124_numeral__le__real__of__nat__iff,axiom,
    ! [N: num,M: nat] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
      = ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).

% numeral_le_real_of_nat_iff
thf(fact_1125_powr__log__cancel,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( powr_real @ A @ ( log @ A @ X ) )
            = X ) ) ) ) ).

% powr_log_cancel
thf(fact_1126_log__powr__cancel,axiom,
    ! [A: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( powr_real @ A @ Y2 ) )
          = Y2 ) ) ) ).

% log_powr_cancel
thf(fact_1127_powr__mono2,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ Y2 )
         => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_mono2
thf(fact_1128_powr__ge__pzero,axiom,
    ! [X: real,Y2: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X @ Y2 ) ) ).

% powr_ge_pzero
thf(fact_1129_powr__non__neg,axiom,
    ! [A: real,X: real] :
      ~ ( ord_less_real @ ( powr_real @ A @ X ) @ zero_zero_real ) ).

% powr_non_neg
thf(fact_1130_powr__less__mono2__neg,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ X @ Y2 )
         => ( ord_less_real @ ( powr_real @ Y2 @ A ) @ ( powr_real @ X @ A ) ) ) ) ) ).

% powr_less_mono2_neg
thf(fact_1131_powr__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ one_one_real @ X )
       => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).

% powr_mono
thf(fact_1132_powr__less__cancel,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
     => ( ( ord_less_real @ one_one_real @ X )
       => ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel
thf(fact_1133_powr__less__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ one_one_real @ X )
       => ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).

% powr_less_mono
thf(fact_1134_powr__mono2_H,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ Y2 )
         => ( ord_less_eq_real @ ( powr_real @ Y2 @ A ) @ ( powr_real @ X @ A ) ) ) ) ) ).

% powr_mono2'
thf(fact_1135_powr__less__mono2,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ X @ Y2 )
         => ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_less_mono2
thf(fact_1136_powr__le1,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ one_one_real )
         => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ one_one_real ) ) ) ) ).

% powr_le1
thf(fact_1137_powr__mono__both,axiom,
    ! [A: real,B: real,X: real,Y2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ( ord_less_eq_real @ one_one_real @ X )
         => ( ( ord_less_eq_real @ X @ Y2 )
           => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y2 @ B ) ) ) ) ) ) ).

% powr_mono_both
thf(fact_1138_ge__one__powr__ge__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_eq_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ one_one_real @ ( powr_real @ X @ A ) ) ) ) ).

% ge_one_powr_ge_zero
thf(fact_1139_powr__inj,axiom,
    ! [A: real,X: real,Y2: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ( powr_real @ A @ X )
            = ( powr_real @ A @ Y2 ) )
          = ( X = Y2 ) ) ) ) ).

% powr_inj
thf(fact_1140_gr__one__powr,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y2 )
       => ( ord_less_real @ one_one_real @ ( powr_real @ X @ Y2 ) ) ) ) ).

% gr_one_powr
thf(fact_1141_powr__less__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( powr_real @ B @ Y2 ) @ X )
          = ( ord_less_real @ Y2 @ ( log @ B @ X ) ) ) ) ) ).

% powr_less_iff
thf(fact_1142_less__powr__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ X @ ( powr_real @ B @ Y2 ) )
          = ( ord_less_real @ ( log @ B @ X ) @ Y2 ) ) ) ) ).

% less_powr_iff
thf(fact_1143_log__less__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ ( log @ B @ X ) @ Y2 )
          = ( ord_less_real @ X @ ( powr_real @ B @ Y2 ) ) ) ) ) ).

% log_less_iff
thf(fact_1144_less__log__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ Y2 @ ( log @ B @ X ) )
          = ( ord_less_real @ ( powr_real @ B @ Y2 ) @ X ) ) ) ) ).

% less_log_iff
thf(fact_1145_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat,M2: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ).

% nat_less_real_le
thf(fact_1146_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N2: nat,M2: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M2 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_1147_le__log__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ Y2 @ ( log @ B @ X ) )
          = ( ord_less_eq_real @ ( powr_real @ B @ Y2 ) @ X ) ) ) ) ).

% le_log_iff
thf(fact_1148_log__le__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( log @ B @ X ) @ Y2 )
          = ( ord_less_eq_real @ X @ ( powr_real @ B @ Y2 ) ) ) ) ) ).

% log_le_iff
thf(fact_1149_le__powr__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ ( powr_real @ B @ Y2 ) )
          = ( ord_less_eq_real @ ( log @ B @ X ) @ Y2 ) ) ) ) ).

% le_powr_iff
thf(fact_1150_powr__le__iff,axiom,
    ! [B: real,X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ ( powr_real @ B @ Y2 ) @ X )
          = ( ord_less_eq_real @ Y2 @ ( log @ B @ X ) ) ) ) ) ).

% powr_le_iff
thf(fact_1151_abs__real__le__2__powr__bitlen,axiom,
    ! [M22: int] : ( ord_less_real @ ( abs_abs_real @ ( ring_1_of_int_real @ M22 ) ) @ ( powr_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( ring_1_of_int_real @ ( log_bitlen @ ( abs_abs_int @ M22 ) ) ) ) ) ).

% abs_real_le_2_powr_bitlen
thf(fact_1152_floor__log2__div2,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ N ) ) )
        = ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) @ one_one_int ) ) ) ).

% floor_log2_div2
thf(fact_1153_int__eq__iff__numeral,axiom,
    ! [M: nat,V: num] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( numeral_numeral_int @ V ) )
      = ( M
        = ( numeral_numeral_nat @ V ) ) ) ).

% int_eq_iff_numeral
thf(fact_1154_negative__eq__positive,axiom,
    ! [N: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_1155_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_1156_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_1157_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y5: nat,Z4: nat] : ( Y5 = Z4 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( semiri1314217659103216013at_int @ A3 )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_1158_int__if,axiom,
    ! [P: $o,A: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_1159_int__cases2,axiom,
    ! [Z: int] :
      ( ! [N3: nat] :
          ( Z
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( Z
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% int_cases2
thf(fact_1160_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_1161_int__ops_I3_J,axiom,
    ! [N: num] :
      ( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_int @ N ) ) ).

% int_ops(3)
thf(fact_1162_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_1163_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_1164_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_1165_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N3: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_1166_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N3: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% nonneg_int_cases
thf(fact_1167_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).

% zadd_int_left
thf(fact_1168_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_1169_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_1170_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_1171_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W3: int,Z5: int] :
        ? [N2: nat] :
          ( Z5
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_1172_not__int__zless__negative,axiom,
    ! [N: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_1173_int__cases4,axiom,
    ! [M: int] :
      ( ! [N3: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% int_cases4
thf(fact_1174_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_1175_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% nonpos_int_cases
thf(fact_1176_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_1177_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N3: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% pos_int_cases
thf(fact_1178_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( K
            = ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_1179_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N3: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) )
       => ~ ! [N3: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ) ).

% int_cases3
thf(fact_1180_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% neg_int_cases
thf(fact_1181_floor__log__eq__if,axiom,
    ! [X: nat,B: nat,Y2: nat] :
      ( ( ( divide_divide_nat @ X @ B )
        = ( divide_divide_nat @ Y2 @ B ) )
     => ( ( ord_less_nat @ one_one_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ X )
         => ( ( ord_less_eq_nat @ one_one_nat @ ( divide_divide_nat @ X @ B ) )
           => ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ X ) ) )
              = ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ Y2 ) ) ) ) ) ) ) ) ).

% floor_log_eq_if
thf(fact_1182_floor__log__div,axiom,
    ! [B: nat,X: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ X )
       => ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ X @ B ) )
         => ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ X ) ) )
            = ( plus_plus_int @ ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ X @ B ) ) ) ) @ one_one_int ) ) ) ) ) ).

% floor_log_div
thf(fact_1183_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_1184_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_1185_zdiv__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_1186_div__pos__pos__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_1187_div__neg__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_1188_floor__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ A ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_divide_eq_div_numeral
thf(fact_1189_half__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% half_nonnegative_int_iff
thf(fact_1190_half__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_1191_floor__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) )
      = ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ B ) ) ) ).

% floor_one_divide_eq_div_numeral
thf(fact_1192_floor__minus__divide__eq__div__numeral,axiom,
    ! [A: num,B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ ( numeral_numeral_real @ A ) @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ A ) ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_divide_eq_div_numeral
thf(fact_1193_floor__minus__one__divide__eq__div__numeral,axiom,
    ! [B: num] :
      ( ( archim6058952711729229775r_real @ ( uminus_uminus_real @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ B ) ) ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ B ) ) ) ).

% floor_minus_one_divide_eq_div_numeral
thf(fact_1194_real__of__int__div4,axiom,
    ! [N: int,X: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) ) ).

% real_of_int_div4
thf(fact_1195_pos__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% pos_imp_zdiv_neg_iff
thf(fact_1196_neg__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% neg_imp_zdiv_neg_iff
thf(fact_1197_div__neg__pos__less0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_neg_pos_less0
thf(fact_1198_floor__divide__real__eq__div,axiom,
    ! [B: int,A: real] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( archim6058952711729229775r_real @ ( divide_divide_real @ A @ ( ring_1_of_int_real @ B ) ) )
        = ( divide_divide_int @ ( archim6058952711729229775r_real @ A ) @ B ) ) ) ).

% floor_divide_real_eq_div
thf(fact_1199_zdiv__mono1,axiom,
    ! [A: int,A5: int,B: int] :
      ( ( ord_less_eq_int @ A @ A5 )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A5 @ B ) ) ) ) ).

% zdiv_mono1
thf(fact_1200_zdiv__mono2,axiom,
    ! [A: int,B5: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B5 )
       => ( ( ord_less_eq_int @ B5 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B5 ) ) ) ) ) ).

% zdiv_mono2
thf(fact_1201_zdiv__eq__0__iff,axiom,
    ! [I: int,K: int] :
      ( ( ( divide_divide_int @ I @ K )
        = zero_zero_int )
      = ( ( K = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K @ I ) ) ) ) ).

% zdiv_eq_0_iff
thf(fact_1202_zdiv__mono1__neg,axiom,
    ! [A: int,A5: int,B: int] :
      ( ( ord_less_eq_int @ A @ A5 )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A5 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).

% zdiv_mono1_neg
thf(fact_1203_zdiv__mono2__neg,axiom,
    ! [A: int,B5: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B5 )
       => ( ( ord_less_eq_int @ B5 @ B )
         => ( ord_less_eq_int @ ( divide_divide_int @ A @ B5 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).

% zdiv_mono2_neg
thf(fact_1204_div__int__pos__iff,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
      = ( ( K = zero_zero_int )
        | ( L = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ K )
          & ( ord_less_eq_int @ zero_zero_int @ L ) )
        | ( ( ord_less_int @ K @ zero_zero_int )
          & ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).

% div_int_pos_iff
thf(fact_1205_div__nonneg__neg__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonneg_neg_le0
thf(fact_1206_div__nonpos__pos__le0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_nonpos_pos_le0
thf(fact_1207_pos__imp__zdiv__pos__iff,axiom,
    ! [K: int,I: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
        = ( ord_less_eq_int @ K @ I ) ) ) ).

% pos_imp_zdiv_pos_iff
thf(fact_1208_neg__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).

% neg_imp_zdiv_nonneg_iff
thf(fact_1209_pos__imp__zdiv__nonneg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% pos_imp_zdiv_nonneg_iff
thf(fact_1210_nonneg1__imp__zdiv__pos__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
        = ( ( ord_less_eq_int @ B @ A )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% nonneg1_imp_zdiv_pos_iff
thf(fact_1211_int__div__less__self,axiom,
    ! [X: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ one_one_int @ K )
       => ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).

% int_div_less_self
thf(fact_1212_int__ops_I8_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(8)
thf(fact_1213_div__eq__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% div_eq_minus1
thf(fact_1214_powr__divide,axiom,
    ! [X: real,Y2: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
       => ( ( powr_real @ ( divide_divide_real @ X @ Y2 ) @ A )
          = ( divide_divide_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y2 @ A ) ) ) ) ) ).

% powr_divide
thf(fact_1215_real__of__nat__div4,axiom,
    ! [N: nat,X: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N @ X ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N ) @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% real_of_nat_div4
thf(fact_1216_log__base__powr,axiom,
    ! [A: real,B: real,X: real] :
      ( ( A != zero_zero_real )
     => ( ( log @ ( powr_real @ A @ B ) @ X )
        = ( divide_divide_real @ ( log @ A @ X ) @ B ) ) ) ).

% log_base_powr
thf(fact_1217_verit__less__mono__div__int2,axiom,
    ! [A2: int,B3: int,N: int] :
      ( ( ord_less_eq_int @ A2 @ B3 )
     => ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N ) )
       => ( ord_less_eq_int @ ( divide_divide_int @ B3 @ N ) @ ( divide_divide_int @ A2 @ N ) ) ) ) ).

% verit_less_mono_div_int2
thf(fact_1218_log__base__change,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ B @ X )
          = ( divide_divide_real @ ( log @ A @ X ) @ ( log @ A @ B ) ) ) ) ) ).

% log_base_change
thf(fact_1219_real__div__nat__eq__floor__of__divide,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri5074537144036343181t_real @ ( divide_divide_nat @ A @ B ) )
      = ( ring_1_of_int_real @ ( archim6058952711729229775r_real @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ A ) @ ( semiri5074537144036343181t_real @ B ) ) ) ) ) ).

% real_div_nat_eq_floor_of_divide
thf(fact_1220_div__pos__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
       => ( ( divide_divide_int @ K @ L )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% div_pos_neg_trivial
thf(fact_1221_powr__neg__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( uminus_uminus_real @ one_one_real ) )
        = ( divide_divide_real @ one_one_real @ X ) ) ) ).

% powr_neg_one
thf(fact_1222_div__le__mono,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).

% div_le_mono
thf(fact_1223_div__le__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).

% div_le_dividend
thf(fact_1224_abs__div__2__less,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( A
         != ( uminus_uminus_int @ one_one_int ) )
       => ( ord_less_int @ ( abs_abs_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ ( abs_abs_int @ A ) ) ) ) ).

% abs_div_2_less
thf(fact_1225_compute__bitlen,axiom,
    ( log_bitlen
    = ( ^ [X2: int] : ( if_int @ ( ord_less_int @ zero_zero_int @ X2 ) @ ( plus_plus_int @ ( log_bitlen @ ( divide_divide_int @ X2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int ) @ zero_zero_int ) ) ) ).

% compute_bitlen
thf(fact_1226_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_1227_div__le__mono2,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).

% div_le_mono2
thf(fact_1228_div__greater__zero__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ N @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% div_greater_zero_iff
thf(fact_1229_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_1230_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_1231_floor__log__nat__eq__powr__iff,axiom,
    ! [B: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N ) )
          = ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) ) ) ) ) ) ).

% floor_log_nat_eq_powr_iff
thf(fact_1232_bitlen__twopow__add__eq,axiom,
    ! [B: int,W: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ W ) )
       => ( ( log_bitlen @ ( plus_plus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ W ) @ B ) )
          = ( semiri1314217659103216013at_int @ ( plus_plus_nat @ W @ one_one_nat ) ) ) ) ) ).

% bitlen_twopow_add_eq
thf(fact_1233_not__exp__less__eq__0__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).

% not_exp_less_eq_0_int
thf(fact_1234_minus__1__div__exp__eq__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_exp_eq_int
thf(fact_1235_log2__of__power__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( semiri5074537144036343181t_real @ N )
        = ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% log2_of_power_eq
thf(fact_1236_less__power__nat__iff__bitlen,axiom,
    ! [X: nat,W: nat] :
      ( ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ W ) )
      = ( ord_less_eq_int @ ( log_bitlen @ ( semiri1314217659103216013at_int @ X ) ) @ ( semiri1314217659103216013at_int @ W ) ) ) ).

% less_power_nat_iff_bitlen
thf(fact_1237_less__log2__of__power,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% less_log2_of_power
thf(fact_1238_le__log2__of__power,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ M )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% le_log2_of_power
thf(fact_1239_log2__of__power__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log2_of_power_less
thf(fact_1240_log2__of__power__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log2_of_power_le
thf(fact_1241_floor__log__nat__eq__if,axiom,
    ! [B: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N ) @ K )
     => ( ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N @ one_one_nat ) ) )
       => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
         => ( ( archim6058952711729229775r_real @ ( log @ ( semiri5074537144036343181t_real @ B ) @ ( semiri5074537144036343181t_real @ K ) ) )
            = ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% floor_log_nat_eq_if
thf(fact_1242_nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_1243_numeral__powr__numeral__real,axiom,
    ! [M: num,N: num] :
      ( ( powr_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( power_power_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_powr_numeral_real
thf(fact_1244_powr__numeral,axiom,
    ! [X: real,N: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( numeral_numeral_real @ N ) )
        = ( power_power_real @ X @ ( numeral_numeral_nat @ N ) ) ) ) ).

% powr_numeral
thf(fact_1245_log__pow__cancel,axiom,
    ! [A: real,B: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( log @ A @ ( power_power_real @ A @ B ) )
          = ( semiri5074537144036343181t_real @ B ) ) ) ) ).

% log_pow_cancel
thf(fact_1246_square__powr__half,axiom,
    ! [X: real] :
      ( ( powr_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ one_one_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = ( abs_abs_real @ X ) ) ).

% square_powr_half
thf(fact_1247_real__arch__pow,axiom,
    ! [X: real,Y2: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ? [N3: nat] : ( ord_less_real @ Y2 @ ( power_power_real @ X @ N3 ) ) ) ).

% real_arch_pow
thf(fact_1248_real__arch__pow__inv,axiom,
    ! [Y2: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y2 )
     => ( ( ord_less_real @ X @ one_one_real )
       => ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X @ N3 ) @ Y2 ) ) ) ).

% real_arch_pow_inv
thf(fact_1249_realpow__pos__nth,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R2: real] :
            ( ( ord_less_real @ zero_zero_real @ R2 )
            & ( ( power_power_real @ R2 @ N )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_1250_realpow__pos__nth__unique,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X4: real] :
            ( ( ord_less_real @ zero_zero_real @ X4 )
            & ( ( power_power_real @ X4 @ N )
              = A )
            & ! [Y3: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y3 )
                  & ( ( power_power_real @ Y3 @ N )
                    = A ) )
               => ( Y3 = X4 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_1251_powr__realpow,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( semiri5074537144036343181t_real @ N ) )
        = ( power_power_real @ X @ N ) ) ) ).

% powr_realpow
thf(fact_1252_less__log__of__power,axiom,
    ! [B: real,N: nat,M: real] :
      ( ( ord_less_real @ ( power_power_real @ B @ N ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).

% less_log_of_power
thf(fact_1253_log__of__power__eq,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( semiri5074537144036343181t_real @ N )
          = ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).

% log_of_power_eq
thf(fact_1254_two__realpow__ge__one,axiom,
    ! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).

% two_realpow_ge_one
thf(fact_1255_realpow__square__minus__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% realpow_square_minus_le
thf(fact_1256_le__log__of__power,axiom,
    ! [B: real,N: nat,M: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ B @ N ) @ M )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ N ) @ ( log @ B @ M ) ) ) ) ).

% le_log_of_power
thf(fact_1257_log__base__pow,axiom,
    ! [A: real,N: nat,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( log @ ( power_power_real @ A @ N ) @ X )
        = ( divide_divide_real @ ( log @ A @ X ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).

% log_base_pow
thf(fact_1258_log__of__power__less,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_of_power_less
thf(fact_1259_log__of__power__le,axiom,
    ! [M: nat,B: real,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( power_power_real @ B @ N ) )
     => ( ( ord_less_real @ one_one_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ M )
         => ( ord_less_eq_real @ ( log @ B @ ( semiri5074537144036343181t_real @ M ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% log_of_power_le
thf(fact_1260_powr__neg__numeral,axiom,
    ! [X: real,N: num] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
        = ( divide_divide_real @ one_one_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ N ) ) ) ) ) ).

% powr_neg_numeral
thf(fact_1261_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_1262_less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% less_exp
thf(fact_1263_self__le__ge2__pow,axiom,
    ! [K: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).

% self_le_ge2_pow
thf(fact_1264_power2__nat__le__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_eq_le
thf(fact_1265_power2__nat__le__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_imp_le

% Helper facts (7)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y2: int] :
      ( ( if_int @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y2: int] :
      ( ( if_int @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y2: nat] :
      ( ( if_nat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y2: nat] :
      ( ( if_nat @ $true @ X @ Y2 )
      = X ) ).

thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y2: real] :
      ( ( if_real @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y2: real] :
      ( ( if_real @ $true @ X @ Y2 )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ord_less_eq_real @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( abs_abs_real @ ( ring_1_of_int_real @ n ) ) ) @ ( log @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( plus_plus_real @ ( ring_1_of_int_real @ r ) @ one_one_real ) ) ).

%------------------------------------------------------------------------------