TPTP Problem File: SLH0436^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Number_Theoretic_Transform/0008_Butterfly/prob_00381_018814__14140070_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1351 ( 713 unt; 80 typ; 0 def)
% Number of atoms : 3111 (1647 equ; 0 cnn)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 9931 ( 312 ~; 76 |; 159 &;8484 @)
% ( 0 <=>; 900 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Number of types : 10 ( 9 usr)
% Number of type conns : 190 ( 190 >; 0 *; 0 +; 0 <<)
% Number of symbols : 74 ( 71 usr; 22 con; 0-3 aty)
% Number of variables : 2875 ( 95 ^;2724 !; 56 ?;2875 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-18 16:39:13.753
%------------------------------------------------------------------------------
% Could-be-implicit typings (9)
thf(ty_n_t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
list_F4626807571770296779ring_a: $tType ).
thf(ty_n_t__Finite____Field__Omod____ring_Itf__a_J,type,
finite_mod_ring_a: $tType ).
thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
list_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (71)
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Oset__bit_001t__Int__Oint,type,
bit_se7879613467334960850it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Int__Oint,type,
bit_se4203085406695923979it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Ounset__bit_001t__Nat__Onat,type,
bit_se4205575877204974255it_nat: nat > nat > nat ).
thf(sy_c_Discrete_Olog,type,
log: nat > nat ).
thf(sy_c_Fib_Ofib,type,
fib: nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_List_Ofilter_001t__Nat__Onat,type,
filter_nat: ( nat > $o ) > list_nat > list_nat ).
thf(sy_c_List_Olist_Omap_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Finite____Field__Omod____ring_Itf__a_J,type,
map_Fi7082711781076630404ring_a: ( finite_mod_ring_a > finite_mod_ring_a ) > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).
thf(sy_c_List_Olist_Omap_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Nat__Onat,type,
map_Fi4188601705611449169_a_nat: ( finite_mod_ring_a > nat ) > list_F4626807571770296779ring_a > list_nat ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Finite____Field__Omod____ring_Itf__a_J,type,
map_na1928064127006292399ring_a: ( nat > finite_mod_ring_a ) > list_nat > list_F4626807571770296779ring_a ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Nat__Onat,type,
map_nat_nat: ( nat > nat ) > list_nat > list_nat ).
thf(sy_c_List_Onth_001t__Finite____Field__Omod____ring_Itf__a_J,type,
nth_Fi694352073394265932ring_a: list_F4626807571770296779ring_a > nat > finite_mod_ring_a ).
thf(sy_c_List_Onth_001t__Nat__Onat,type,
nth_nat: list_nat > nat > nat ).
thf(sy_c_List_Oupt,type,
upt: nat > nat > list_nat ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
size_s7115545719440041015ring_a: list_F4626807571770296779ring_a > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
size_size_list_nat: list_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
size_size_num: num > nat ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
dvd_dvd_int: int > int > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
dvd_dvd_real: real > real > $o ).
thf(sy_c_Set_OCollect_001t__Int__Oint,type,
collect_int: ( int > $o ) > set_int ).
thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
collect_nat: ( nat > $o ) > set_nat ).
thf(sy_v_fntt1____,type,
fntt1: list_F4626807571770296779ring_a ).
thf(sy_v_fntt2____,type,
fntt2: list_F4626807571770296779ring_a ).
thf(sy_v_i____,type,
i: nat ).
thf(sy_v_j____,type,
j: nat ).
thf(sy_v_k,type,
k: nat ).
thf(sy_v_l1____,type,
l1: nat ).
thf(sy_v_l2____,type,
l2: nat ).
thf(sy_v_la____,type,
la: nat ).
thf(sy_v_numbers1____,type,
numbers1: list_F4626807571770296779ring_a ).
thf(sy_v_numbers2____,type,
numbers2: list_F4626807571770296779ring_a ).
thf(sy_v_numbersa____,type,
numbersa: list_F4626807571770296779ring_a ).
thf(sy_v_p,type,
p: nat ).
thf(sy_v_sum2____,type,
sum2: list_F4626807571770296779ring_a ).
% Relevant facts (1267)
thf(fact_0_ass,axiom,
ord_less_nat @ j @ l1 ).
% ass
thf(fact_1__092_060open_062numbers2_A_092_060equiv_062_Amap_A_I_I_B_J_Anumbers_J_A_Ifilter_Aodd_A_0910_O_O_060length_Anumbers_093_J_092_060close_062,axiom,
( numbers2
= ( map_na1928064127006292399ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa )
@ ( filter_nat
@ ^ [A: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
@ ( upt @ zero_zero_nat @ ( size_s7115545719440041015ring_a @ numbersa ) ) ) ) ) ).
% \<open>numbers2 \<equiv> map ((!) numbers) (filter odd [0..<length numbers])\<close>
thf(fact_2__092_060open_062numbers1_A_092_060equiv_062_Amap_A_I_I_B_J_Anumbers_J_A_Ifilter_Aeven_A_0910_O_O_060length_Anumbers_093_J_092_060close_062,axiom,
( numbers1
= ( map_na1928064127006292399ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa ) @ ( filter_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( upt @ zero_zero_nat @ ( size_s7115545719440041015ring_a @ numbersa ) ) ) ) ) ).
% \<open>numbers1 \<equiv> map ((!) numbers) (filter even [0..<length numbers])\<close>
thf(fact_3_numbers2__def,axiom,
( numbers2
= ( map_na1928064127006292399ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa )
@ ( filter_nat
@ ^ [A: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
@ ( upt @ zero_zero_nat @ ( size_s7115545719440041015ring_a @ numbersa ) ) ) ) ) ).
% numbers2_def
thf(fact_4_numbers1__def,axiom,
( numbers1
= ( map_na1928064127006292399ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa ) @ ( filter_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( upt @ zero_zero_nat @ ( size_s7115545719440041015ring_a @ numbersa ) ) ) ) ) ).
% numbers1_def
thf(fact_5_length__odd__filter,axiom,
! [F: nat > finite_mod_ring_a,L: nat] :
( ( size_s7115545719440041015ring_a
@ ( map_na1928064127006292399ring_a @ F
@ ( filter_nat
@ ^ [A: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
@ ( upt @ zero_zero_nat @ L ) ) ) )
= ( divide_divide_nat @ L @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% length_odd_filter
thf(fact_6_length__odd__filter,axiom,
! [F: nat > nat,L: nat] :
( ( size_size_list_nat
@ ( map_nat_nat @ F
@ ( filter_nat
@ ^ [A: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
@ ( upt @ zero_zero_nat @ L ) ) ) )
= ( divide_divide_nat @ L @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% length_odd_filter
thf(fact_7_map__nth,axiom,
! [Xs: list_F4626807571770296779ring_a] :
( ( map_na1928064127006292399ring_a @ ( nth_Fi694352073394265932ring_a @ Xs ) @ ( upt @ zero_zero_nat @ ( size_s7115545719440041015ring_a @ Xs ) ) )
= Xs ) ).
% map_nth
thf(fact_8_map__nth,axiom,
! [Xs: list_nat] :
( ( map_nat_nat @ ( nth_nat @ Xs ) @ ( upt @ zero_zero_nat @ ( size_size_list_nat @ Xs ) ) )
= Xs ) ).
% map_nth
thf(fact_9_length__map,axiom,
! [F: finite_mod_ring_a > finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
( ( size_s7115545719440041015ring_a @ ( map_Fi7082711781076630404ring_a @ F @ Xs ) )
= ( size_s7115545719440041015ring_a @ Xs ) ) ).
% length_map
thf(fact_10_length__map,axiom,
! [F: nat > finite_mod_ring_a,Xs: list_nat] :
( ( size_s7115545719440041015ring_a @ ( map_na1928064127006292399ring_a @ F @ Xs ) )
= ( size_size_list_nat @ Xs ) ) ).
% length_map
thf(fact_11_length__map,axiom,
! [F: finite_mod_ring_a > nat,Xs: list_F4626807571770296779ring_a] :
( ( size_size_list_nat @ ( map_Fi4188601705611449169_a_nat @ F @ Xs ) )
= ( size_s7115545719440041015ring_a @ Xs ) ) ).
% length_map
thf(fact_12_length__map,axiom,
! [F: nat > nat,Xs: list_nat] :
( ( size_size_list_nat @ ( map_nat_nat @ F @ Xs ) )
= ( size_size_list_nat @ Xs ) ) ).
% length_map
thf(fact_13_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_14_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_15_even__zero,axiom,
dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).
% even_zero
thf(fact_16_even__zero,axiom,
dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).
% even_zero
thf(fact_17_dvd__0__right,axiom,
! [A2: nat] : ( dvd_dvd_nat @ A2 @ zero_zero_nat ) ).
% dvd_0_right
thf(fact_18_dvd__0__right,axiom,
! [A2: int] : ( dvd_dvd_int @ A2 @ zero_zero_int ) ).
% dvd_0_right
thf(fact_19_dvd__0__right,axiom,
! [A2: real] : ( dvd_dvd_real @ A2 @ zero_zero_real ) ).
% dvd_0_right
thf(fact_20_dvd__0__left__iff,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
= ( A2 = zero_zero_nat ) ) ).
% dvd_0_left_iff
thf(fact_21_dvd__0__left__iff,axiom,
! [A2: int] :
( ( dvd_dvd_int @ zero_zero_int @ A2 )
= ( A2 = zero_zero_int ) ) ).
% dvd_0_left_iff
thf(fact_22_dvd__0__left__iff,axiom,
! [A2: real] :
( ( dvd_dvd_real @ zero_zero_real @ A2 )
= ( A2 = zero_zero_real ) ) ).
% dvd_0_left_iff
thf(fact_23_filter__even__nth,axiom,
! [J: nat,L: nat,X: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ L )
=> ( ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X )
= L )
=> ( ( nth_nat @ ( filter_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( upt @ zero_zero_nat @ L ) ) @ J )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) ) ) ).
% filter_even_nth
thf(fact_24_even__numeral,axiom,
! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_25_even__numeral,axiom,
! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).
% even_numeral
thf(fact_26_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_27_l2__def,axiom,
( l2
= ( size_s7115545719440041015ring_a @ numbers2 ) ) ).
% l2_def
thf(fact_28_map__ident,axiom,
( ( map_nat_nat
@ ^ [X2: nat] : X2 )
= ( ^ [Xs2: list_nat] : Xs2 ) ) ).
% map_ident
thf(fact_29_map__ident,axiom,
( ( map_Fi7082711781076630404ring_a
@ ^ [X2: finite_mod_ring_a] : X2 )
= ( ^ [Xs2: list_F4626807571770296779ring_a] : Xs2 ) ) ).
% map_ident
thf(fact_30_l1__def,axiom,
( l1
= ( size_s7115545719440041015ring_a @ numbers1 ) ) ).
% l1_def
thf(fact_31_filter__filter,axiom,
! [P: nat > $o,Q: nat > $o,Xs: list_nat] :
( ( filter_nat @ P @ ( filter_nat @ Q @ Xs ) )
= ( filter_nat
@ ^ [X2: nat] :
( ( Q @ X2 )
& ( P @ X2 ) )
@ Xs ) ) ).
% filter_filter
thf(fact_32_mult__cancel__right,axiom,
! [A2: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A2 @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A2 = B ) ) ) ).
% mult_cancel_right
thf(fact_33_mult__cancel__right,axiom,
! [A2: int,C: int,B: int] :
( ( ( times_times_int @ A2 @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A2 = B ) ) ) ).
% mult_cancel_right
thf(fact_34_mult__cancel__right,axiom,
! [A2: real,C: real,B: real] :
( ( ( times_times_real @ A2 @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A2 = B ) ) ) ).
% mult_cancel_right
thf(fact_35_mult__cancel__left,axiom,
! [C: nat,A2: nat,B: nat] :
( ( ( times_times_nat @ C @ A2 )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A2 = B ) ) ) ).
% mult_cancel_left
thf(fact_36_mult__cancel__left,axiom,
! [C: int,A2: int,B: int] :
( ( ( times_times_int @ C @ A2 )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A2 = B ) ) ) ).
% mult_cancel_left
thf(fact_37_mult__cancel__left,axiom,
! [C: real,A2: real,B: real] :
( ( ( times_times_real @ C @ A2 )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A2 = B ) ) ) ).
% mult_cancel_left
thf(fact_38_mult__eq__0__iff,axiom,
! [A2: nat,B: nat] :
( ( ( times_times_nat @ A2 @ B )
= zero_zero_nat )
= ( ( A2 = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_39_mult__eq__0__iff,axiom,
! [A2: int,B: int] :
( ( ( times_times_int @ A2 @ B )
= zero_zero_int )
= ( ( A2 = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_40_mult__eq__0__iff,axiom,
! [A2: real,B: real] :
( ( ( times_times_real @ A2 @ B )
= zero_zero_real )
= ( ( A2 = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_41_mult__zero__right,axiom,
! [A2: nat] :
( ( times_times_nat @ A2 @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_42_mult__zero__right,axiom,
! [A2: int] :
( ( times_times_int @ A2 @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_43_mult__zero__right,axiom,
! [A2: real] :
( ( times_times_real @ A2 @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_44_mult__zero__left,axiom,
! [A2: nat] :
( ( times_times_nat @ zero_zero_nat @ A2 )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_45_mult__zero__left,axiom,
! [A2: int] :
( ( times_times_int @ zero_zero_int @ A2 )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_46_mult__zero__left,axiom,
! [A2: real] :
( ( times_times_real @ zero_zero_real @ A2 )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_47_div__by__0,axiom,
! [A2: nat] :
( ( divide_divide_nat @ A2 @ zero_zero_nat )
= zero_zero_nat ) ).
% div_by_0
thf(fact_48_div__by__0,axiom,
! [A2: int] :
( ( divide_divide_int @ A2 @ zero_zero_int )
= zero_zero_int ) ).
% div_by_0
thf(fact_49_div__by__0,axiom,
! [A2: real] :
( ( divide_divide_real @ A2 @ zero_zero_real )
= zero_zero_real ) ).
% div_by_0
thf(fact_50_div__0,axiom,
! [A2: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A2 )
= zero_zero_nat ) ).
% div_0
thf(fact_51_div__0,axiom,
! [A2: int] :
( ( divide_divide_int @ zero_zero_int @ A2 )
= zero_zero_int ) ).
% div_0
thf(fact_52_div__0,axiom,
! [A2: real] :
( ( divide_divide_real @ zero_zero_real @ A2 )
= zero_zero_real ) ).
% div_0
thf(fact_53_div__dvd__div,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( dvd_dvd_nat @ A2 @ C )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A2 ) @ ( divide_divide_nat @ C @ A2 ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_54_div__dvd__div,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ B )
=> ( ( dvd_dvd_int @ A2 @ C )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A2 ) @ ( divide_divide_int @ C @ A2 ) )
= ( dvd_dvd_int @ B @ C ) ) ) ) ).
% div_dvd_div
thf(fact_55_filter__even__map,axiom,
! [X: nat] :
( ( filter_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( upt @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) ) )
= ( map_nat_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( upt @ zero_zero_nat @ X ) ) ) ).
% filter_even_map
thf(fact_56_nonzero__mult__div__cancel__left,axiom,
! [A2: nat,B: nat] :
( ( A2 != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A2 @ B ) @ A2 )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_57_nonzero__mult__div__cancel__left,axiom,
! [A2: int,B: int] :
( ( A2 != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A2 @ B ) @ A2 )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_58_nonzero__mult__div__cancel__left,axiom,
! [A2: real,B: real] :
( ( A2 != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A2 @ B ) @ A2 )
= B ) ) ).
% nonzero_mult_div_cancel_left
thf(fact_59_nonzero__mult__div__cancel__right,axiom,
! [B: nat,A2: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A2 @ B ) @ B )
= A2 ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_60_nonzero__mult__div__cancel__right,axiom,
! [B: int,A2: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A2 @ B ) @ B )
= A2 ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_61_nonzero__mult__div__cancel__right,axiom,
! [B: real,A2: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A2 @ B ) @ B )
= A2 ) ) ).
% nonzero_mult_div_cancel_right
thf(fact_62_algebraic__semidom__class_Odvd__times__right__cancel__iff,axiom,
! [A2: nat,B: nat,C: nat] :
( ( A2 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A2 ) @ ( times_times_nat @ C @ A2 ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% algebraic_semidom_class.dvd_times_right_cancel_iff
thf(fact_63_algebraic__semidom__class_Odvd__times__right__cancel__iff,axiom,
! [A2: int,B: int,C: int] :
( ( A2 != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ B @ A2 ) @ ( times_times_int @ C @ A2 ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% algebraic_semidom_class.dvd_times_right_cancel_iff
thf(fact_64_algebraic__semidom__class_Odvd__times__left__cancel__iff,axiom,
! [A2: nat,B: nat,C: nat] :
( ( A2 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ ( times_times_nat @ A2 @ C ) )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% algebraic_semidom_class.dvd_times_left_cancel_iff
thf(fact_65_algebraic__semidom__class_Odvd__times__left__cancel__iff,axiom,
! [A2: int,B: int,C: int] :
( ( A2 != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ ( times_times_int @ A2 @ C ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% algebraic_semidom_class.dvd_times_left_cancel_iff
thf(fact_66_dvd__mult__cancel__right,axiom,
! [A2: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A2 @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_67_dvd__mult__cancel__right,axiom,
! [A2: real,C: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A2 @ B ) ) ) ).
% dvd_mult_cancel_right
thf(fact_68_dvd__mult__cancel__left,axiom,
! [C: int,A2: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( dvd_dvd_int @ A2 @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_69_dvd__mult__cancel__left,axiom,
! [C: real,A2: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( dvd_dvd_real @ A2 @ B ) ) ) ).
% dvd_mult_cancel_left
thf(fact_70_dvd__div__mult__self,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A2 ) @ A2 )
= B ) ) ).
% dvd_div_mult_self
thf(fact_71_dvd__div__mult__self,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A2 ) @ A2 )
= B ) ) ).
% dvd_div_mult_self
thf(fact_72_dvd__mult__div__cancel,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( times_times_nat @ A2 @ ( divide_divide_nat @ B @ A2 ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_73_dvd__mult__div__cancel,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ B )
=> ( ( times_times_int @ A2 @ ( divide_divide_int @ B @ A2 ) )
= B ) ) ).
% dvd_mult_div_cancel
thf(fact_74_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_75_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_76_nth__map,axiom,
! [N: nat,Xs: list_F4626807571770296779ring_a,F: finite_mod_ring_a > nat] :
( ( ord_less_nat @ N @ ( size_s7115545719440041015ring_a @ Xs ) )
=> ( ( nth_nat @ ( map_Fi4188601705611449169_a_nat @ F @ Xs ) @ N )
= ( F @ ( nth_Fi694352073394265932ring_a @ Xs @ N ) ) ) ) ).
% nth_map
thf(fact_77_nth__map,axiom,
! [N: nat,Xs: list_F4626807571770296779ring_a,F: finite_mod_ring_a > finite_mod_ring_a] :
( ( ord_less_nat @ N @ ( size_s7115545719440041015ring_a @ Xs ) )
=> ( ( nth_Fi694352073394265932ring_a @ ( map_Fi7082711781076630404ring_a @ F @ Xs ) @ N )
= ( F @ ( nth_Fi694352073394265932ring_a @ Xs @ N ) ) ) ) ).
% nth_map
thf(fact_78_nth__map,axiom,
! [N: nat,Xs: list_nat,F: nat > finite_mod_ring_a] :
( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
=> ( ( nth_Fi694352073394265932ring_a @ ( map_na1928064127006292399ring_a @ F @ Xs ) @ N )
= ( F @ ( nth_nat @ Xs @ N ) ) ) ) ).
% nth_map
thf(fact_79_nth__map,axiom,
! [N: nat,Xs: list_nat,F: nat > nat] :
( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
=> ( ( nth_nat @ ( map_nat_nat @ F @ Xs ) @ N )
= ( F @ ( nth_nat @ Xs @ N ) ) ) ) ).
% nth_map
thf(fact_80_even__mult__iff,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A2 @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_81_even__mult__iff,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A2 @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_82_dvd__div__mult,axiom,
! [C: nat,B: nat,A2: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ C ) @ A2 )
= ( divide_divide_nat @ ( times_times_nat @ B @ A2 ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_83_dvd__div__mult,axiom,
! [C: int,B: int,A2: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ ( divide_divide_int @ B @ C ) @ A2 )
= ( divide_divide_int @ ( times_times_int @ B @ A2 ) @ C ) ) ) ).
% dvd_div_mult
thf(fact_84_div__mult__swap,axiom,
! [C: nat,B: nat,A2: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( times_times_nat @ A2 @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A2 @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_85_div__mult__swap,axiom,
! [C: int,B: int,A2: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( times_times_int @ A2 @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A2 @ B ) @ C ) ) ) ).
% div_mult_swap
thf(fact_86_div__div__eq__right,axiom,
! [C: nat,B: nat,A2: nat] :
( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ B @ A2 )
=> ( ( divide_divide_nat @ A2 @ ( divide_divide_nat @ B @ C ) )
= ( times_times_nat @ ( divide_divide_nat @ A2 @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_87_div__div__eq__right,axiom,
! [C: int,B: int,A2: int] :
( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ B @ A2 )
=> ( ( divide_divide_int @ A2 @ ( divide_divide_int @ B @ C ) )
= ( times_times_int @ ( divide_divide_int @ A2 @ B ) @ C ) ) ) ) ).
% div_div_eq_right
thf(fact_88_dvd__div__mult2__eq,axiom,
! [B: nat,C: nat,A2: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ B @ C ) @ A2 )
=> ( ( divide_divide_nat @ A2 @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A2 @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_89_dvd__div__mult2__eq,axiom,
! [B: int,C: int,A2: int] :
( ( dvd_dvd_int @ ( times_times_int @ B @ C ) @ A2 )
=> ( ( divide_divide_int @ A2 @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A2 @ B ) @ C ) ) ) ).
% dvd_div_mult2_eq
thf(fact_90_dvd__mult__imp__div,axiom,
! [A2: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ C ) @ B )
=> ( dvd_dvd_nat @ A2 @ ( divide_divide_nat @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_91_dvd__mult__imp__div,axiom,
! [A2: int,C: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A2 @ C ) @ B )
=> ( dvd_dvd_int @ A2 @ ( divide_divide_int @ B @ C ) ) ) ).
% dvd_mult_imp_div
thf(fact_92_div__mult__div__if__dvd,axiom,
! [B: nat,A2: nat,D: nat,C: nat] :
( ( dvd_dvd_nat @ B @ A2 )
=> ( ( dvd_dvd_nat @ D @ C )
=> ( ( times_times_nat @ ( divide_divide_nat @ A2 @ B ) @ ( divide_divide_nat @ C @ D ) )
= ( divide_divide_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_93_div__mult__div__if__dvd,axiom,
! [B: int,A2: int,D: int,C: int] :
( ( dvd_dvd_int @ B @ A2 )
=> ( ( dvd_dvd_int @ D @ C )
=> ( ( times_times_int @ ( divide_divide_int @ A2 @ B ) @ ( divide_divide_int @ C @ D ) )
= ( divide_divide_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ).
% div_mult_div_if_dvd
thf(fact_94_linorder__neqE__linordered__idom,axiom,
! [X: int,Y: int] :
( ( X != Y )
=> ( ~ ( ord_less_int @ X @ Y )
=> ( ord_less_int @ Y @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_95_linorder__neqE__linordered__idom,axiom,
! [X: real,Y: real] :
( ( X != Y )
=> ( ~ ( ord_less_real @ X @ Y )
=> ( ord_less_real @ Y @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_96_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ).
% nat_mult_div_cancel1
thf(fact_97_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( K = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= zero_zero_nat ) )
& ( ( K != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_98_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A2: nat,B: nat,C: nat] :
( ( ord_less_nat @ A2 @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_99_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A2: int,B: int,C: int] :
( ( ord_less_int @ A2 @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_100_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A2: real,B: real,C: real] :
( ( ord_less_real @ A2 @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_101_mult__less__cancel__right__disj,axiom,
! [A2: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A2 @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A2 ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_102_mult__less__cancel__right__disj,axiom,
! [A2: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A2 @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A2 ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_103_mult__strict__right__mono,axiom,
! [A2: nat,B: nat,C: nat] :
( ( ord_less_nat @ A2 @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_104_mult__strict__right__mono,axiom,
! [A2: int,B: int,C: int] :
( ( ord_less_int @ A2 @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_105_mult__strict__right__mono,axiom,
! [A2: real,B: real,C: real] :
( ( ord_less_real @ A2 @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_106_mult__strict__right__mono__neg,axiom,
! [B: int,A2: int,C: int] :
( ( ord_less_int @ B @ A2 )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_107_mult__strict__right__mono__neg,axiom,
! [B: real,A2: real,C: real] :
( ( ord_less_real @ B @ A2 )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_108_mult__less__cancel__left__disj,axiom,
! [C: int,A2: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A2 @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A2 ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_109_mult__less__cancel__left__disj,axiom,
! [C: real,A2: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A2 @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A2 ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_110_mult__strict__left__mono,axiom,
! [A2: nat,B: nat,C: nat] :
( ( ord_less_nat @ A2 @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_111_mult__strict__left__mono,axiom,
! [A2: int,B: int,C: int] :
( ( ord_less_int @ A2 @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_112_mult__strict__left__mono,axiom,
! [A2: real,B: real,C: real] :
( ( ord_less_real @ A2 @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_113_mult__strict__left__mono__neg,axiom,
! [B: int,A2: int,C: int] :
( ( ord_less_int @ B @ A2 )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_114_mult__strict__left__mono__neg,axiom,
! [B: real,A2: real,C: real] :
( ( ord_less_real @ B @ A2 )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_115_mult__less__cancel__left__pos,axiom,
! [C: int,A2: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ A2 @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_116_mult__less__cancel__left__pos,axiom,
! [C: real,A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ A2 @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_117_mult__less__cancel__left__neg,axiom,
! [C: int,A2: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ B @ A2 ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_118_mult__less__cancel__left__neg,axiom,
! [C: real,A2: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ B @ A2 ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_119_zero__less__mult__pos2,axiom,
! [B: nat,A2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A2 ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_120_zero__less__mult__pos2,axiom,
! [B: int,A2: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A2 ) )
=> ( ( ord_less_int @ zero_zero_int @ A2 )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_121_zero__less__mult__pos2,axiom,
! [B: real,A2: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A2 ) )
=> ( ( ord_less_real @ zero_zero_real @ A2 )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_122_zero__less__mult__pos,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A2 )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_123_zero__less__mult__pos,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ A2 )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_124_zero__less__mult__pos,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A2 @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A2 )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_125_zero__less__mult__iff,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ A2 )
& ( ord_less_int @ zero_zero_int @ B ) )
| ( ( ord_less_int @ A2 @ zero_zero_int )
& ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).
% zero_less_mult_iff
thf(fact_126_zero__less__mult__iff,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A2 @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A2 )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A2 @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_mult_iff
thf(fact_127_mult__pos__neg2,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B @ A2 ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_128_mult__pos__neg2,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A2 )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ B @ A2 ) @ zero_zero_int ) ) ) ).
% mult_pos_neg2
thf(fact_129_mult__pos__neg2,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A2 )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ B @ A2 ) @ zero_zero_real ) ) ) ).
% mult_pos_neg2
thf(fact_130_mult__pos__pos,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A2 @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_131_mult__pos__pos,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A2 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_132_mult__pos__pos,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A2 )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A2 @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_133_mult__pos__neg,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A2 @ B ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg
thf(fact_134_mult__pos__neg,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A2 )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A2 @ B ) @ zero_zero_int ) ) ) ).
% mult_pos_neg
thf(fact_135_mult__pos__neg,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A2 )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A2 @ B ) @ zero_zero_real ) ) ) ).
% mult_pos_neg
thf(fact_136_mult__neg__pos,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ A2 @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( times_times_nat @ A2 @ B ) @ zero_zero_nat ) ) ) ).
% mult_neg_pos
thf(fact_137_mult__neg__pos,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ A2 @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( times_times_int @ A2 @ B ) @ zero_zero_int ) ) ) ).
% mult_neg_pos
thf(fact_138_mult__neg__pos,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ A2 @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ ( times_times_real @ A2 @ B ) @ zero_zero_real ) ) ) ).
% mult_neg_pos
thf(fact_139_mult__less__0__iff,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A2 @ B ) @ zero_zero_int )
= ( ( ( ord_less_int @ zero_zero_int @ A2 )
& ( ord_less_int @ B @ zero_zero_int ) )
| ( ( ord_less_int @ A2 @ zero_zero_int )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_140_mult__less__0__iff,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A2 @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A2 )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A2 @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_141_not__square__less__zero,axiom,
! [A2: int] :
~ ( ord_less_int @ ( times_times_int @ A2 @ A2 ) @ zero_zero_int ) ).
% not_square_less_zero
thf(fact_142_not__square__less__zero,axiom,
! [A2: real] :
~ ( ord_less_real @ ( times_times_real @ A2 @ A2 ) @ zero_zero_real ) ).
% not_square_less_zero
thf(fact_143_mult__neg__neg,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ A2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A2 @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_144_mult__neg__neg,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ A2 @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A2 @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_145_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_146_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_147_mult__right__cancel,axiom,
! [C: nat,A2: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A2 @ C )
= ( times_times_nat @ B @ C ) )
= ( A2 = B ) ) ) ).
% mult_right_cancel
thf(fact_148_mult__right__cancel,axiom,
! [C: int,A2: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A2 @ C )
= ( times_times_int @ B @ C ) )
= ( A2 = B ) ) ) ).
% mult_right_cancel
thf(fact_149_mult__right__cancel,axiom,
! [C: real,A2: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A2 @ C )
= ( times_times_real @ B @ C ) )
= ( A2 = B ) ) ) ).
% mult_right_cancel
thf(fact_150_mult__left__cancel,axiom,
! [C: nat,A2: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A2 )
= ( times_times_nat @ C @ B ) )
= ( A2 = B ) ) ) ).
% mult_left_cancel
thf(fact_151_mult__left__cancel,axiom,
! [C: int,A2: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A2 )
= ( times_times_int @ C @ B ) )
= ( A2 = B ) ) ) ).
% mult_left_cancel
thf(fact_152_mult__left__cancel,axiom,
! [C: real,A2: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A2 )
= ( times_times_real @ C @ B ) )
= ( A2 = B ) ) ) ).
% mult_left_cancel
thf(fact_153_no__zero__divisors,axiom,
! [A2: nat,B: nat] :
( ( A2 != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A2 @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_154_no__zero__divisors,axiom,
! [A2: int,B: int] :
( ( A2 != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A2 @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_155_no__zero__divisors,axiom,
! [A2: real,B: real] :
( ( A2 != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A2 @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_156_divisors__zero,axiom,
! [A2: nat,B: nat] :
( ( ( times_times_nat @ A2 @ B )
= zero_zero_nat )
=> ( ( A2 = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_157_divisors__zero,axiom,
! [A2: int,B: int] :
( ( ( times_times_int @ A2 @ B )
= zero_zero_int )
=> ( ( A2 = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_158_divisors__zero,axiom,
! [A2: real,B: real] :
( ( ( times_times_real @ A2 @ B )
= zero_zero_real )
=> ( ( A2 = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_159_mult__not__zero,axiom,
! [A2: nat,B: nat] :
( ( ( times_times_nat @ A2 @ B )
!= zero_zero_nat )
=> ( ( A2 != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_160_mult__not__zero,axiom,
! [A2: int,B: int] :
( ( ( times_times_int @ A2 @ B )
!= zero_zero_int )
=> ( ( A2 != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_161_mult__not__zero,axiom,
! [A2: real,B: real] :
( ( ( times_times_real @ A2 @ B )
!= zero_zero_real )
=> ( ( A2 != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_162_div__div__div__same,axiom,
! [D: nat,B: nat,A2: nat] :
( ( dvd_dvd_nat @ D @ B )
=> ( ( dvd_dvd_nat @ B @ A2 )
=> ( ( divide_divide_nat @ ( divide_divide_nat @ A2 @ D ) @ ( divide_divide_nat @ B @ D ) )
= ( divide_divide_nat @ A2 @ B ) ) ) ) ).
% div_div_div_same
thf(fact_163_div__div__div__same,axiom,
! [D: int,B: int,A2: int] :
( ( dvd_dvd_int @ D @ B )
=> ( ( dvd_dvd_int @ B @ A2 )
=> ( ( divide_divide_int @ ( divide_divide_int @ A2 @ D ) @ ( divide_divide_int @ B @ D ) )
= ( divide_divide_int @ A2 @ B ) ) ) ) ).
% div_div_div_same
thf(fact_164_dvd__div__eq__cancel,axiom,
! [A2: nat,C: nat,B: nat] :
( ( ( divide_divide_nat @ A2 @ C )
= ( divide_divide_nat @ B @ C ) )
=> ( ( dvd_dvd_nat @ C @ A2 )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( A2 = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_165_dvd__div__eq__cancel,axiom,
! [A2: int,C: int,B: int] :
( ( ( divide_divide_int @ A2 @ C )
= ( divide_divide_int @ B @ C ) )
=> ( ( dvd_dvd_int @ C @ A2 )
=> ( ( dvd_dvd_int @ C @ B )
=> ( A2 = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_166_dvd__div__eq__cancel,axiom,
! [A2: real,C: real,B: real] :
( ( ( divide_divide_real @ A2 @ C )
= ( divide_divide_real @ B @ C ) )
=> ( ( dvd_dvd_real @ C @ A2 )
=> ( ( dvd_dvd_real @ C @ B )
=> ( A2 = B ) ) ) ) ).
% dvd_div_eq_cancel
thf(fact_167_dvd__div__eq__iff,axiom,
! [C: nat,A2: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A2 )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( ( divide_divide_nat @ A2 @ C )
= ( divide_divide_nat @ B @ C ) )
= ( A2 = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_168_dvd__div__eq__iff,axiom,
! [C: int,A2: int,B: int] :
( ( dvd_dvd_int @ C @ A2 )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( ( divide_divide_int @ A2 @ C )
= ( divide_divide_int @ B @ C ) )
= ( A2 = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_169_dvd__div__eq__iff,axiom,
! [C: real,A2: real,B: real] :
( ( dvd_dvd_real @ C @ A2 )
=> ( ( dvd_dvd_real @ C @ B )
=> ( ( ( divide_divide_real @ A2 @ C )
= ( divide_divide_real @ B @ C ) )
= ( A2 = B ) ) ) ) ).
% dvd_div_eq_iff
thf(fact_170_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_171_dvd__triv__right,axiom,
! [A2: nat,B: nat] : ( dvd_dvd_nat @ A2 @ ( times_times_nat @ B @ A2 ) ) ).
% dvd_triv_right
thf(fact_172_dvd__triv__right,axiom,
! [A2: int,B: int] : ( dvd_dvd_int @ A2 @ ( times_times_int @ B @ A2 ) ) ).
% dvd_triv_right
thf(fact_173_dvd__triv__right,axiom,
! [A2: real,B: real] : ( dvd_dvd_real @ A2 @ ( times_times_real @ B @ A2 ) ) ).
% dvd_triv_right
thf(fact_174_dvd__mult__right,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ C )
=> ( dvd_dvd_nat @ B @ C ) ) ).
% dvd_mult_right
thf(fact_175_dvd__mult__right,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ C )
=> ( dvd_dvd_int @ B @ C ) ) ).
% dvd_mult_right
thf(fact_176_dvd__mult__right,axiom,
! [A2: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A2 @ B ) @ C )
=> ( dvd_dvd_real @ B @ C ) ) ).
% dvd_mult_right
thf(fact_177_mult__dvd__mono,axiom,
! [A2: nat,B: nat,C: nat,D: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( dvd_dvd_nat @ C @ D )
=> ( dvd_dvd_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_178_mult__dvd__mono,axiom,
! [A2: int,B: int,C: int,D: int] :
( ( dvd_dvd_int @ A2 @ B )
=> ( ( dvd_dvd_int @ C @ D )
=> ( dvd_dvd_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_179_mult__dvd__mono,axiom,
! [A2: real,B: real,C: real,D: real] :
( ( dvd_dvd_real @ A2 @ B )
=> ( ( dvd_dvd_real @ C @ D )
=> ( dvd_dvd_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ B @ D ) ) ) ) ).
% mult_dvd_mono
thf(fact_180_dvd__triv__left,axiom,
! [A2: nat,B: nat] : ( dvd_dvd_nat @ A2 @ ( times_times_nat @ A2 @ B ) ) ).
% dvd_triv_left
thf(fact_181_dvd__triv__left,axiom,
! [A2: int,B: int] : ( dvd_dvd_int @ A2 @ ( times_times_int @ A2 @ B ) ) ).
% dvd_triv_left
thf(fact_182_dvd__triv__left,axiom,
! [A2: real,B: real] : ( dvd_dvd_real @ A2 @ ( times_times_real @ A2 @ B ) ) ).
% dvd_triv_left
thf(fact_183_dvd__mult__left,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ C )
=> ( dvd_dvd_nat @ A2 @ C ) ) ).
% dvd_mult_left
thf(fact_184_dvd__mult__left,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ C )
=> ( dvd_dvd_int @ A2 @ C ) ) ).
% dvd_mult_left
thf(fact_185_dvd__mult__left,axiom,
! [A2: real,B: real,C: real] :
( ( dvd_dvd_real @ ( times_times_real @ A2 @ B ) @ C )
=> ( dvd_dvd_real @ A2 @ C ) ) ).
% dvd_mult_left
thf(fact_186_dvd__mult2,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( dvd_dvd_nat @ A2 @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_187_dvd__mult2,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ B )
=> ( dvd_dvd_int @ A2 @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_188_dvd__mult2,axiom,
! [A2: real,B: real,C: real] :
( ( dvd_dvd_real @ A2 @ B )
=> ( dvd_dvd_real @ A2 @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult2
thf(fact_189_dvd__mult,axiom,
! [A2: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ C )
=> ( dvd_dvd_nat @ A2 @ ( times_times_nat @ B @ C ) ) ) ).
% dvd_mult
thf(fact_190_dvd__mult,axiom,
! [A2: int,C: int,B: int] :
( ( dvd_dvd_int @ A2 @ C )
=> ( dvd_dvd_int @ A2 @ ( times_times_int @ B @ C ) ) ) ).
% dvd_mult
thf(fact_191_dvd__mult,axiom,
! [A2: real,C: real,B: real] :
( ( dvd_dvd_real @ A2 @ C )
=> ( dvd_dvd_real @ A2 @ ( times_times_real @ B @ C ) ) ) ).
% dvd_mult
thf(fact_192_dvd__def,axiom,
( dvd_dvd_nat
= ( ^ [B2: nat,A: nat] :
? [K2: nat] :
( A
= ( times_times_nat @ B2 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_193_dvd__def,axiom,
( dvd_dvd_int
= ( ^ [B2: int,A: int] :
? [K2: int] :
( A
= ( times_times_int @ B2 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_194_dvd__def,axiom,
( dvd_dvd_real
= ( ^ [B2: real,A: real] :
? [K2: real] :
( A
= ( times_times_real @ B2 @ K2 ) ) ) ) ).
% dvd_def
thf(fact_195_dvdI,axiom,
! [A2: nat,B: nat,K: nat] :
( ( A2
= ( times_times_nat @ B @ K ) )
=> ( dvd_dvd_nat @ B @ A2 ) ) ).
% dvdI
thf(fact_196_dvdI,axiom,
! [A2: int,B: int,K: int] :
( ( A2
= ( times_times_int @ B @ K ) )
=> ( dvd_dvd_int @ B @ A2 ) ) ).
% dvdI
thf(fact_197_dvdI,axiom,
! [A2: real,B: real,K: real] :
( ( A2
= ( times_times_real @ B @ K ) )
=> ( dvd_dvd_real @ B @ A2 ) ) ).
% dvdI
thf(fact_198_dvdE,axiom,
! [B: nat,A2: nat] :
( ( dvd_dvd_nat @ B @ A2 )
=> ~ ! [K3: nat] :
( A2
!= ( times_times_nat @ B @ K3 ) ) ) ).
% dvdE
thf(fact_199_dvdE,axiom,
! [B: int,A2: int] :
( ( dvd_dvd_int @ B @ A2 )
=> ~ ! [K3: int] :
( A2
!= ( times_times_int @ B @ K3 ) ) ) ).
% dvdE
thf(fact_200_dvdE,axiom,
! [B: real,A2: real] :
( ( dvd_dvd_real @ B @ A2 )
=> ~ ! [K3: real] :
( A2
!= ( times_times_real @ B @ K3 ) ) ) ).
% dvdE
thf(fact_201_dvd__div__div__eq__mult,axiom,
! [A2: nat,C: nat,B: nat,D: nat] :
( ( A2 != zero_zero_nat )
=> ( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A2 @ B )
=> ( ( dvd_dvd_nat @ C @ D )
=> ( ( ( divide_divide_nat @ B @ A2 )
= ( divide_divide_nat @ D @ C ) )
= ( ( times_times_nat @ B @ C )
= ( times_times_nat @ A2 @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_202_dvd__div__div__eq__mult,axiom,
! [A2: int,C: int,B: int,D: int] :
( ( A2 != zero_zero_int )
=> ( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ A2 @ B )
=> ( ( dvd_dvd_int @ C @ D )
=> ( ( ( divide_divide_int @ B @ A2 )
= ( divide_divide_int @ D @ C ) )
= ( ( times_times_int @ B @ C )
= ( times_times_int @ A2 @ D ) ) ) ) ) ) ) ).
% dvd_div_div_eq_mult
thf(fact_203_dvd__div__iff__mult,axiom,
! [C: nat,B: nat,A2: nat] :
( ( C != zero_zero_nat )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( dvd_dvd_nat @ A2 @ ( divide_divide_nat @ B @ C ) )
= ( dvd_dvd_nat @ ( times_times_nat @ A2 @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_204_dvd__div__iff__mult,axiom,
! [C: int,B: int,A2: int] :
( ( C != zero_zero_int )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( dvd_dvd_int @ A2 @ ( divide_divide_int @ B @ C ) )
= ( dvd_dvd_int @ ( times_times_int @ A2 @ C ) @ B ) ) ) ) ).
% dvd_div_iff_mult
thf(fact_205_div__dvd__iff__mult,axiom,
! [B: nat,A2: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ A2 )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A2 @ B ) @ C )
= ( dvd_dvd_nat @ A2 @ ( times_times_nat @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_206_div__dvd__iff__mult,axiom,
! [B: int,A2: int,C: int] :
( ( B != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ A2 )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A2 @ B ) @ C )
= ( dvd_dvd_int @ A2 @ ( times_times_int @ C @ B ) ) ) ) ) ).
% div_dvd_iff_mult
thf(fact_207_dvd__div__eq__mult,axiom,
! [A2: nat,B: nat,C: nat] :
( ( A2 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ A2 @ B )
=> ( ( ( divide_divide_nat @ B @ A2 )
= C )
= ( B
= ( times_times_nat @ C @ A2 ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_208_dvd__div__eq__mult,axiom,
! [A2: int,B: int,C: int] :
( ( A2 != zero_zero_int )
=> ( ( dvd_dvd_int @ A2 @ B )
=> ( ( ( divide_divide_int @ B @ A2 )
= C )
= ( B
= ( times_times_int @ C @ A2 ) ) ) ) ) ).
% dvd_div_eq_mult
thf(fact_209_lambda__zero,axiom,
( ( ^ [H: nat] : zero_zero_nat )
= ( times_times_nat @ zero_zero_nat ) ) ).
% lambda_zero
thf(fact_210_lambda__zero,axiom,
( ( ^ [H: int] : zero_zero_int )
= ( times_times_int @ zero_zero_int ) ) ).
% lambda_zero
thf(fact_211_lambda__zero,axiom,
( ( ^ [H: real] : zero_zero_real )
= ( times_times_real @ zero_zero_real ) ) ).
% lambda_zero
thf(fact_212_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel1
thf(fact_213_dvd__div__eq__0__iff,axiom,
! [B: nat,A2: nat] :
( ( dvd_dvd_nat @ B @ A2 )
=> ( ( ( divide_divide_nat @ A2 @ B )
= zero_zero_nat )
= ( A2 = zero_zero_nat ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_214_dvd__div__eq__0__iff,axiom,
! [B: int,A2: int] :
( ( dvd_dvd_int @ B @ A2 )
=> ( ( ( divide_divide_int @ A2 @ B )
= zero_zero_int )
= ( A2 = zero_zero_int ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_215_dvd__div__eq__0__iff,axiom,
! [B: real,A2: real] :
( ( dvd_dvd_real @ B @ A2 )
=> ( ( ( divide_divide_real @ A2 @ B )
= zero_zero_real )
= ( A2 = zero_zero_real ) ) ) ).
% dvd_div_eq_0_iff
thf(fact_216_even__two__times__div__two,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= A2 ) ) ).
% even_two_times_div_two
thf(fact_217_even__two__times__div__two,axiom,
! [A2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
=> ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= A2 ) ) ).
% even_two_times_div_two
thf(fact_218_length__induct,axiom,
! [P: list_F4626807571770296779ring_a > $o,Xs: list_F4626807571770296779ring_a] :
( ! [Xs3: list_F4626807571770296779ring_a] :
( ! [Ys: list_F4626807571770296779ring_a] :
( ( ord_less_nat @ ( size_s7115545719440041015ring_a @ Ys ) @ ( size_s7115545719440041015ring_a @ Xs3 ) )
=> ( P @ Ys ) )
=> ( P @ Xs3 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_219_length__induct,axiom,
! [P: list_nat > $o,Xs: list_nat] :
( ! [Xs3: list_nat] :
( ! [Ys: list_nat] :
( ( ord_less_nat @ ( size_size_list_nat @ Ys ) @ ( size_size_list_nat @ Xs3 ) )
=> ( P @ Ys ) )
=> ( P @ Xs3 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_220_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_221_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_222_evenE,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
=> ~ ! [B3: nat] :
( A2
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B3 ) ) ) ).
% evenE
thf(fact_223_evenE,axiom,
! [A2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
=> ~ ! [B3: int] :
( A2
!= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B3 ) ) ) ).
% evenE
thf(fact_224_dvd__trans,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A2 @ C ) ) ) ).
% dvd_trans
thf(fact_225_dvd__trans,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ B )
=> ( ( dvd_dvd_int @ B @ C )
=> ( dvd_dvd_int @ A2 @ C ) ) ) ).
% dvd_trans
thf(fact_226_dvd__refl,axiom,
! [A2: nat] : ( dvd_dvd_nat @ A2 @ A2 ) ).
% dvd_refl
thf(fact_227_dvd__refl,axiom,
! [A2: int] : ( dvd_dvd_int @ A2 @ A2 ) ).
% dvd_refl
thf(fact_228_neq__if__length__neq,axiom,
! [Xs: list_F4626807571770296779ring_a,Ys2: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ Xs )
!= ( size_s7115545719440041015ring_a @ Ys2 ) )
=> ( Xs != Ys2 ) ) ).
% neq_if_length_neq
thf(fact_229_neq__if__length__neq,axiom,
! [Xs: list_nat,Ys2: list_nat] :
( ( ( size_size_list_nat @ Xs )
!= ( size_size_list_nat @ Ys2 ) )
=> ( Xs != Ys2 ) ) ).
% neq_if_length_neq
thf(fact_230_Ex__list__of__length,axiom,
! [N: nat] :
? [Xs3: list_F4626807571770296779ring_a] :
( ( size_s7115545719440041015ring_a @ Xs3 )
= N ) ).
% Ex_list_of_length
thf(fact_231_Ex__list__of__length,axiom,
! [N: nat] :
? [Xs3: list_nat] :
( ( size_size_list_nat @ Xs3 )
= N ) ).
% Ex_list_of_length
thf(fact_232_list__eq__iff__nth__eq,axiom,
( ( ^ [Y2: list_F4626807571770296779ring_a,Z: list_F4626807571770296779ring_a] : ( Y2 = Z ) )
= ( ^ [Xs2: list_F4626807571770296779ring_a,Ys3: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ Xs2 )
= ( size_s7115545719440041015ring_a @ Ys3 ) )
& ! [I: nat] :
( ( ord_less_nat @ I @ ( size_s7115545719440041015ring_a @ Xs2 ) )
=> ( ( nth_Fi694352073394265932ring_a @ Xs2 @ I )
= ( nth_Fi694352073394265932ring_a @ Ys3 @ I ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_233_list__eq__iff__nth__eq,axiom,
( ( ^ [Y2: list_nat,Z: list_nat] : ( Y2 = Z ) )
= ( ^ [Xs2: list_nat,Ys3: list_nat] :
( ( ( size_size_list_nat @ Xs2 )
= ( size_size_list_nat @ Ys3 ) )
& ! [I: nat] :
( ( ord_less_nat @ I @ ( size_size_list_nat @ Xs2 ) )
=> ( ( nth_nat @ Xs2 @ I )
= ( nth_nat @ Ys3 @ I ) ) ) ) ) ) ).
% list_eq_iff_nth_eq
thf(fact_234_Skolem__list__nth,axiom,
! [K: nat,P: nat > finite_mod_ring_a > $o] :
( ( ! [I: nat] :
( ( ord_less_nat @ I @ K )
=> ? [X3: finite_mod_ring_a] : ( P @ I @ X3 ) ) )
= ( ? [Xs2: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ Xs2 )
= K )
& ! [I: nat] :
( ( ord_less_nat @ I @ K )
=> ( P @ I @ ( nth_Fi694352073394265932ring_a @ Xs2 @ I ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_235_Skolem__list__nth,axiom,
! [K: nat,P: nat > nat > $o] :
( ( ! [I: nat] :
( ( ord_less_nat @ I @ K )
=> ? [X3: nat] : ( P @ I @ X3 ) ) )
= ( ? [Xs2: list_nat] :
( ( ( size_size_list_nat @ Xs2 )
= K )
& ! [I: nat] :
( ( ord_less_nat @ I @ K )
=> ( P @ I @ ( nth_nat @ Xs2 @ I ) ) ) ) ) ) ).
% Skolem_list_nth
thf(fact_236_nth__equalityI,axiom,
! [Xs: list_F4626807571770296779ring_a,Ys2: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ Xs )
= ( size_s7115545719440041015ring_a @ Ys2 ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_s7115545719440041015ring_a @ Xs ) )
=> ( ( nth_Fi694352073394265932ring_a @ Xs @ I2 )
= ( nth_Fi694352073394265932ring_a @ Ys2 @ I2 ) ) )
=> ( Xs = Ys2 ) ) ) ).
% nth_equalityI
thf(fact_237_nth__equalityI,axiom,
! [Xs: list_nat,Ys2: list_nat] :
( ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys2 ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( size_size_list_nat @ Xs ) )
=> ( ( nth_nat @ Xs @ I2 )
= ( nth_nat @ Ys2 @ I2 ) ) )
=> ( Xs = Ys2 ) ) ) ).
% nth_equalityI
thf(fact_238_list_Omap__ident,axiom,
! [T: list_nat] :
( ( map_nat_nat
@ ^ [X2: nat] : X2
@ T )
= T ) ).
% list.map_ident
thf(fact_239_list_Omap__ident,axiom,
! [T: list_F4626807571770296779ring_a] :
( ( map_Fi7082711781076630404ring_a
@ ^ [X2: finite_mod_ring_a] : X2
@ T )
= T ) ).
% list.map_ident
thf(fact_240_map__equality__iff,axiom,
! [F: finite_mod_ring_a > nat,Xs: list_F4626807571770296779ring_a,G: finite_mod_ring_a > nat,Ys2: list_F4626807571770296779ring_a] :
( ( ( map_Fi4188601705611449169_a_nat @ F @ Xs )
= ( map_Fi4188601705611449169_a_nat @ G @ Ys2 ) )
= ( ( ( size_s7115545719440041015ring_a @ Xs )
= ( size_s7115545719440041015ring_a @ Ys2 ) )
& ! [I: nat] :
( ( ord_less_nat @ I @ ( size_s7115545719440041015ring_a @ Ys2 ) )
=> ( ( F @ ( nth_Fi694352073394265932ring_a @ Xs @ I ) )
= ( G @ ( nth_Fi694352073394265932ring_a @ Ys2 @ I ) ) ) ) ) ) ).
% map_equality_iff
thf(fact_241_map__equality__iff,axiom,
! [F: finite_mod_ring_a > finite_mod_ring_a,Xs: list_F4626807571770296779ring_a,G: finite_mod_ring_a > finite_mod_ring_a,Ys2: list_F4626807571770296779ring_a] :
( ( ( map_Fi7082711781076630404ring_a @ F @ Xs )
= ( map_Fi7082711781076630404ring_a @ G @ Ys2 ) )
= ( ( ( size_s7115545719440041015ring_a @ Xs )
= ( size_s7115545719440041015ring_a @ Ys2 ) )
& ! [I: nat] :
( ( ord_less_nat @ I @ ( size_s7115545719440041015ring_a @ Ys2 ) )
=> ( ( F @ ( nth_Fi694352073394265932ring_a @ Xs @ I ) )
= ( G @ ( nth_Fi694352073394265932ring_a @ Ys2 @ I ) ) ) ) ) ) ).
% map_equality_iff
thf(fact_242_map__equality__iff,axiom,
! [F: finite_mod_ring_a > nat,Xs: list_F4626807571770296779ring_a,G: nat > nat,Ys2: list_nat] :
( ( ( map_Fi4188601705611449169_a_nat @ F @ Xs )
= ( map_nat_nat @ G @ Ys2 ) )
= ( ( ( size_s7115545719440041015ring_a @ Xs )
= ( size_size_list_nat @ Ys2 ) )
& ! [I: nat] :
( ( ord_less_nat @ I @ ( size_size_list_nat @ Ys2 ) )
=> ( ( F @ ( nth_Fi694352073394265932ring_a @ Xs @ I ) )
= ( G @ ( nth_nat @ Ys2 @ I ) ) ) ) ) ) ).
% map_equality_iff
thf(fact_243_map__equality__iff,axiom,
! [F: finite_mod_ring_a > finite_mod_ring_a,Xs: list_F4626807571770296779ring_a,G: nat > finite_mod_ring_a,Ys2: list_nat] :
( ( ( map_Fi7082711781076630404ring_a @ F @ Xs )
= ( map_na1928064127006292399ring_a @ G @ Ys2 ) )
= ( ( ( size_s7115545719440041015ring_a @ Xs )
= ( size_size_list_nat @ Ys2 ) )
& ! [I: nat] :
( ( ord_less_nat @ I @ ( size_size_list_nat @ Ys2 ) )
=> ( ( F @ ( nth_Fi694352073394265932ring_a @ Xs @ I ) )
= ( G @ ( nth_nat @ Ys2 @ I ) ) ) ) ) ) ).
% map_equality_iff
thf(fact_244_map__equality__iff,axiom,
! [F: nat > finite_mod_ring_a,Xs: list_nat,G: finite_mod_ring_a > finite_mod_ring_a,Ys2: list_F4626807571770296779ring_a] :
( ( ( map_na1928064127006292399ring_a @ F @ Xs )
= ( map_Fi7082711781076630404ring_a @ G @ Ys2 ) )
= ( ( ( size_size_list_nat @ Xs )
= ( size_s7115545719440041015ring_a @ Ys2 ) )
& ! [I: nat] :
( ( ord_less_nat @ I @ ( size_s7115545719440041015ring_a @ Ys2 ) )
=> ( ( F @ ( nth_nat @ Xs @ I ) )
= ( G @ ( nth_Fi694352073394265932ring_a @ Ys2 @ I ) ) ) ) ) ) ).
% map_equality_iff
thf(fact_245_map__equality__iff,axiom,
! [F: nat > nat,Xs: list_nat,G: finite_mod_ring_a > nat,Ys2: list_F4626807571770296779ring_a] :
( ( ( map_nat_nat @ F @ Xs )
= ( map_Fi4188601705611449169_a_nat @ G @ Ys2 ) )
= ( ( ( size_size_list_nat @ Xs )
= ( size_s7115545719440041015ring_a @ Ys2 ) )
& ! [I: nat] :
( ( ord_less_nat @ I @ ( size_s7115545719440041015ring_a @ Ys2 ) )
=> ( ( F @ ( nth_nat @ Xs @ I ) )
= ( G @ ( nth_Fi694352073394265932ring_a @ Ys2 @ I ) ) ) ) ) ) ).
% map_equality_iff
thf(fact_246_map__equality__iff,axiom,
! [F: nat > finite_mod_ring_a,Xs: list_nat,G: nat > finite_mod_ring_a,Ys2: list_nat] :
( ( ( map_na1928064127006292399ring_a @ F @ Xs )
= ( map_na1928064127006292399ring_a @ G @ Ys2 ) )
= ( ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys2 ) )
& ! [I: nat] :
( ( ord_less_nat @ I @ ( size_size_list_nat @ Ys2 ) )
=> ( ( F @ ( nth_nat @ Xs @ I ) )
= ( G @ ( nth_nat @ Ys2 @ I ) ) ) ) ) ) ).
% map_equality_iff
thf(fact_247_map__equality__iff,axiom,
! [F: nat > nat,Xs: list_nat,G: nat > nat,Ys2: list_nat] :
( ( ( map_nat_nat @ F @ Xs )
= ( map_nat_nat @ G @ Ys2 ) )
= ( ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys2 ) )
& ! [I: nat] :
( ( ord_less_nat @ I @ ( size_size_list_nat @ Ys2 ) )
=> ( ( F @ ( nth_nat @ Xs @ I ) )
= ( G @ ( nth_nat @ Ys2 @ I ) ) ) ) ) ) ).
% map_equality_iff
thf(fact_248_dvd__0__left,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
=> ( A2 = zero_zero_nat ) ) ).
% dvd_0_left
thf(fact_249_dvd__0__left,axiom,
! [A2: int] :
( ( dvd_dvd_int @ zero_zero_int @ A2 )
=> ( A2 = zero_zero_int ) ) ).
% dvd_0_left
thf(fact_250_dvd__0__left,axiom,
! [A2: real] :
( ( dvd_dvd_real @ zero_zero_real @ A2 )
=> ( A2 = zero_zero_real ) ) ).
% dvd_0_left
thf(fact_251_map__eq__imp__length__eq,axiom,
! [F: finite_mod_ring_a > nat,Xs: list_F4626807571770296779ring_a,G: finite_mod_ring_a > nat,Ys2: list_F4626807571770296779ring_a] :
( ( ( map_Fi4188601705611449169_a_nat @ F @ Xs )
= ( map_Fi4188601705611449169_a_nat @ G @ Ys2 ) )
=> ( ( size_s7115545719440041015ring_a @ Xs )
= ( size_s7115545719440041015ring_a @ Ys2 ) ) ) ).
% map_eq_imp_length_eq
thf(fact_252_map__eq__imp__length__eq,axiom,
! [F: finite_mod_ring_a > finite_mod_ring_a,Xs: list_F4626807571770296779ring_a,G: finite_mod_ring_a > finite_mod_ring_a,Ys2: list_F4626807571770296779ring_a] :
( ( ( map_Fi7082711781076630404ring_a @ F @ Xs )
= ( map_Fi7082711781076630404ring_a @ G @ Ys2 ) )
=> ( ( size_s7115545719440041015ring_a @ Xs )
= ( size_s7115545719440041015ring_a @ Ys2 ) ) ) ).
% map_eq_imp_length_eq
thf(fact_253_map__eq__imp__length__eq,axiom,
! [F: finite_mod_ring_a > nat,Xs: list_F4626807571770296779ring_a,G: nat > nat,Ys2: list_nat] :
( ( ( map_Fi4188601705611449169_a_nat @ F @ Xs )
= ( map_nat_nat @ G @ Ys2 ) )
=> ( ( size_s7115545719440041015ring_a @ Xs )
= ( size_size_list_nat @ Ys2 ) ) ) ).
% map_eq_imp_length_eq
thf(fact_254_map__eq__imp__length__eq,axiom,
! [F: finite_mod_ring_a > finite_mod_ring_a,Xs: list_F4626807571770296779ring_a,G: nat > finite_mod_ring_a,Ys2: list_nat] :
( ( ( map_Fi7082711781076630404ring_a @ F @ Xs )
= ( map_na1928064127006292399ring_a @ G @ Ys2 ) )
=> ( ( size_s7115545719440041015ring_a @ Xs )
= ( size_size_list_nat @ Ys2 ) ) ) ).
% map_eq_imp_length_eq
thf(fact_255_map__eq__imp__length__eq,axiom,
! [F: nat > finite_mod_ring_a,Xs: list_nat,G: finite_mod_ring_a > finite_mod_ring_a,Ys2: list_F4626807571770296779ring_a] :
( ( ( map_na1928064127006292399ring_a @ F @ Xs )
= ( map_Fi7082711781076630404ring_a @ G @ Ys2 ) )
=> ( ( size_size_list_nat @ Xs )
= ( size_s7115545719440041015ring_a @ Ys2 ) ) ) ).
% map_eq_imp_length_eq
thf(fact_256_map__eq__imp__length__eq,axiom,
! [F: nat > nat,Xs: list_nat,G: finite_mod_ring_a > nat,Ys2: list_F4626807571770296779ring_a] :
( ( ( map_nat_nat @ F @ Xs )
= ( map_Fi4188601705611449169_a_nat @ G @ Ys2 ) )
=> ( ( size_size_list_nat @ Xs )
= ( size_s7115545719440041015ring_a @ Ys2 ) ) ) ).
% map_eq_imp_length_eq
thf(fact_257_map__eq__imp__length__eq,axiom,
! [F: nat > finite_mod_ring_a,Xs: list_nat,G: nat > finite_mod_ring_a,Ys2: list_nat] :
( ( ( map_na1928064127006292399ring_a @ F @ Xs )
= ( map_na1928064127006292399ring_a @ G @ Ys2 ) )
=> ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys2 ) ) ) ).
% map_eq_imp_length_eq
thf(fact_258_map__eq__imp__length__eq,axiom,
! [F: nat > nat,Xs: list_nat,G: nat > nat,Ys2: list_nat] :
( ( ( map_nat_nat @ F @ Xs )
= ( map_nat_nat @ G @ Ys2 ) )
=> ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys2 ) ) ) ).
% map_eq_imp_length_eq
thf(fact_259_odd__pos,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% odd_pos
thf(fact_260_k__bound,axiom,
ord_less_nat @ zero_zero_nat @ k ).
% k_bound
thf(fact_261_div__mult__self__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
= M ) ) ).
% div_mult_self_is_m
thf(fact_262_div__mult__self1__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_263_divide__less__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A2: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A2 )
= ( ord_less_real @ B @ ( times_times_real @ A2 @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_264_less__divide__eq__numeral1_I1_J,axiom,
! [A2: real,B: real,W: num] :
( ( ord_less_real @ A2 @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_real @ ( times_times_real @ A2 @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_265_eq__divide__eq__numeral1_I1_J,axiom,
! [A2: real,B: real,W: num] :
( ( A2
= ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( ( times_times_real @ A2 @ ( numeral_numeral_real @ W ) )
= B ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A2 = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_266_divide__eq__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A2: real] :
( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
= A2 )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A2 @ ( numeral_numeral_real @ W ) ) ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A2 = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_267_length__even__filter,axiom,
! [F: nat > finite_mod_ring_a,L: nat] :
( ( size_s7115545719440041015ring_a @ ( map_na1928064127006292399ring_a @ F @ ( filter_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( upt @ zero_zero_nat @ L ) ) ) )
= ( minus_minus_nat @ L @ ( divide_divide_nat @ L @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% length_even_filter
thf(fact_268_length__even__filter,axiom,
! [F: nat > nat,L: nat] :
( ( size_size_list_nat @ ( map_nat_nat @ F @ ( filter_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( upt @ zero_zero_nat @ L ) ) ) )
= ( minus_minus_nat @ L @ ( divide_divide_nat @ L @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% length_even_filter
thf(fact_269_div__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( divide_divide_nat @ M @ N )
= zero_zero_nat ) ) ).
% div_less
thf(fact_270_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_271_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_272_dvd__imp__mult__div__cancel__left,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( times_times_nat @ A2 @ ( divide_divide_nat @ B @ A2 ) )
= B ) ) ).
% dvd_imp_mult_div_cancel_left
thf(fact_273_dvd__imp__mult__div__cancel__left,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ B )
=> ( ( times_times_int @ A2 @ ( divide_divide_int @ B @ A2 ) )
= B ) ) ).
% dvd_imp_mult_div_cancel_left
thf(fact_274_dvd__imp__mult__div__cancel__left,axiom,
! [A2: real,B: real] :
( ( dvd_dvd_real @ A2 @ B )
=> ( ( times_times_real @ A2 @ ( divide_divide_real @ B @ A2 ) )
= B ) ) ).
% dvd_imp_mult_div_cancel_left
thf(fact_275_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_276_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_277_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_278_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_279_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_280_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_281_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_282_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times_num @ one @ N )
= N ) ).
% semiring_norm(12)
thf(fact_283_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_284_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_285_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_286_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_287_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z2: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z2 ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z2 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_288_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z2: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z2 ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z2 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_289_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z2: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z2 ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z2 ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_290_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_291_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_292_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_293_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% half_negative_int_iff
thf(fact_294_num__double,axiom,
! [N: num] :
( ( times_times_num @ ( bit0 @ one ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_295_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_296_bot__nat__0_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2 != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A2 ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_297_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_298_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_299_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_300_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_301_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_302_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_303_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_304_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_305_length__upt,axiom,
! [I3: nat,J: nat] :
( ( size_size_list_nat @ ( upt @ I3 @ J ) )
= ( minus_minus_nat @ J @ I3 ) ) ).
% length_upt
thf(fact_306_div__mult__mult1__if,axiom,
! [C: nat,A2: nat,B: nat] :
( ( ( C = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B ) )
= zero_zero_nat ) )
& ( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A2 @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_307_div__mult__mult1__if,axiom,
! [C: int,A2: int,B: int] :
( ( ( C = zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B ) )
= zero_zero_int ) )
& ( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A2 @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_308_div__mult__mult2,axiom,
! [C: nat,A2: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ A2 @ B ) ) ) ).
% div_mult_mult2
thf(fact_309_div__mult__mult2,axiom,
! [C: int,A2: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ A2 @ B ) ) ) ).
% div_mult_mult2
thf(fact_310_div__mult__mult1,axiom,
! [C: nat,A2: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A2 ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A2 @ B ) ) ) ).
% div_mult_mult1
thf(fact_311_div__mult__mult1,axiom,
! [C: int,A2: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A2 ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A2 @ B ) ) ) ).
% div_mult_mult1
thf(fact_312_idom__class_Odvd__times__left__cancel__iff,axiom,
! [A2: int,B: int,C: int] :
( ( A2 != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ ( times_times_int @ A2 @ C ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% idom_class.dvd_times_left_cancel_iff
thf(fact_313_idom__class_Odvd__times__left__cancel__iff,axiom,
! [A2: real,B: real,C: real] :
( ( A2 != zero_zero_real )
=> ( ( dvd_dvd_real @ ( times_times_real @ A2 @ B ) @ ( times_times_real @ A2 @ C ) )
= ( dvd_dvd_real @ B @ C ) ) ) ).
% idom_class.dvd_times_left_cancel_iff
thf(fact_314_idom__class_Odvd__times__right__cancel__iff,axiom,
! [A2: int,B: int,C: int] :
( ( A2 != zero_zero_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ B @ A2 ) @ ( times_times_int @ C @ A2 ) )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% idom_class.dvd_times_right_cancel_iff
thf(fact_315_idom__class_Odvd__times__right__cancel__iff,axiom,
! [A2: real,B: real,C: real] :
( ( A2 != zero_zero_real )
=> ( ( dvd_dvd_real @ ( times_times_real @ B @ A2 ) @ ( times_times_real @ C @ A2 ) )
= ( dvd_dvd_real @ B @ C ) ) ) ).
% idom_class.dvd_times_right_cancel_iff
thf(fact_316_right__diff__distrib__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_317_right__diff__distrib__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_318_left__diff__distrib__numeral,axiom,
! [A2: int,B: int,V: num] :
( ( times_times_int @ ( minus_minus_int @ A2 @ B ) @ ( numeral_numeral_int @ V ) )
= ( minus_minus_int @ ( times_times_int @ A2 @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_319_left__diff__distrib__numeral,axiom,
! [A2: real,B: real,V: num] :
( ( times_times_real @ ( minus_minus_real @ A2 @ B ) @ ( numeral_numeral_real @ V ) )
= ( minus_minus_real @ ( times_times_real @ A2 @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_320_div__diff,axiom,
! [C: int,A2: int,B: int] :
( ( dvd_dvd_int @ C @ A2 )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( minus_minus_int @ A2 @ B ) @ C )
= ( minus_minus_int @ ( divide_divide_int @ A2 @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_diff
thf(fact_321_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_322_diff__commute,axiom,
! [I3: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I3 @ K ) @ J ) ) ).
% diff_commute
thf(fact_323_dvd__diff__commute,axiom,
! [A2: int,C: int,B: int] :
( ( dvd_dvd_int @ A2 @ ( minus_minus_int @ C @ B ) )
= ( dvd_dvd_int @ A2 @ ( minus_minus_int @ B @ C ) ) ) ).
% dvd_diff_commute
thf(fact_324_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_325_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_326_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_327_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_328_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_329_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_330_dvd__diff__nat,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ M )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% dvd_diff_nat
thf(fact_331_right__diff__distrib_H,axiom,
! [A2: nat,B: nat,C: nat] :
( ( times_times_nat @ A2 @ ( minus_minus_nat @ B @ C ) )
= ( minus_minus_nat @ ( times_times_nat @ A2 @ B ) @ ( times_times_nat @ A2 @ C ) ) ) ).
% right_diff_distrib'
thf(fact_332_right__diff__distrib_H,axiom,
! [A2: int,B: int,C: int] :
( ( times_times_int @ A2 @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A2 @ B ) @ ( times_times_int @ A2 @ C ) ) ) ).
% right_diff_distrib'
thf(fact_333_right__diff__distrib_H,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ A2 @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A2 @ B ) @ ( times_times_real @ A2 @ C ) ) ) ).
% right_diff_distrib'
thf(fact_334_left__diff__distrib_H,axiom,
! [B: nat,C: nat,A2: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A2 )
= ( minus_minus_nat @ ( times_times_nat @ B @ A2 ) @ ( times_times_nat @ C @ A2 ) ) ) ).
% left_diff_distrib'
thf(fact_335_left__diff__distrib_H,axiom,
! [B: int,C: int,A2: int] :
( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A2 )
= ( minus_minus_int @ ( times_times_int @ B @ A2 ) @ ( times_times_int @ C @ A2 ) ) ) ).
% left_diff_distrib'
thf(fact_336_left__diff__distrib_H,axiom,
! [B: real,C: real,A2: real] :
( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A2 )
= ( minus_minus_real @ ( times_times_real @ B @ A2 ) @ ( times_times_real @ C @ A2 ) ) ) ).
% left_diff_distrib'
thf(fact_337_right__diff__distrib,axiom,
! [A2: int,B: int,C: int] :
( ( times_times_int @ A2 @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A2 @ B ) @ ( times_times_int @ A2 @ C ) ) ) ).
% right_diff_distrib
thf(fact_338_right__diff__distrib,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ A2 @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A2 @ B ) @ ( times_times_real @ A2 @ C ) ) ) ).
% right_diff_distrib
thf(fact_339_left__diff__distrib,axiom,
! [A2: int,B: int,C: int] :
( ( times_times_int @ ( minus_minus_int @ A2 @ B ) @ C )
= ( minus_minus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_340_left__diff__distrib,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ ( minus_minus_real @ A2 @ B ) @ C )
= ( minus_minus_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_341_dvd__diff,axiom,
! [X: int,Y: int,Z2: int] :
( ( dvd_dvd_int @ X @ Y )
=> ( ( dvd_dvd_int @ X @ Z2 )
=> ( dvd_dvd_int @ X @ ( minus_minus_int @ Y @ Z2 ) ) ) ) ).
% dvd_diff
thf(fact_342_dvd__diff,axiom,
! [X: real,Y: real,Z2: real] :
( ( dvd_dvd_real @ X @ Y )
=> ( ( dvd_dvd_real @ X @ Z2 )
=> ( dvd_dvd_real @ X @ ( minus_minus_real @ Y @ Z2 ) ) ) ) ).
% dvd_diff
thf(fact_343_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_344_dvd__minus__self,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
= ( ( ord_less_nat @ N @ M )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_minus_self
thf(fact_345_strict__subset__divisors__dvd,axiom,
! [A2: nat,B: nat] :
( ( ord_less_set_nat
@ ( collect_nat
@ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ A2 ) )
@ ( collect_nat
@ ^ [C2: nat] : ( dvd_dvd_nat @ C2 @ B ) ) )
= ( ( dvd_dvd_nat @ A2 @ B )
& ~ ( dvd_dvd_nat @ B @ A2 ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_346_strict__subset__divisors__dvd,axiom,
! [A2: int,B: int] :
( ( ord_less_set_int
@ ( collect_int
@ ^ [C2: int] : ( dvd_dvd_int @ C2 @ A2 ) )
@ ( collect_int
@ ^ [C2: int] : ( dvd_dvd_int @ C2 @ B ) ) )
= ( ( dvd_dvd_int @ A2 @ B )
& ~ ( dvd_dvd_int @ B @ A2 ) ) ) ).
% strict_subset_divisors_dvd
thf(fact_347_div__mult2__numeral__eq,axiom,
! [A2: nat,K: num,L: num] :
( ( divide_divide_nat @ ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L ) )
= ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( times_times_num @ K @ L ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_348_div__mult2__numeral__eq,axiom,
! [A2: int,K: num,L: num] :
( ( divide_divide_int @ ( divide_divide_int @ A2 @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L ) )
= ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( times_times_num @ K @ L ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_349_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_350_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_351_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_352_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_353_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_354_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_355_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_356_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_357_size__neq__size__imp__neq,axiom,
! [X: list_F4626807571770296779ring_a,Y: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ X )
!= ( size_s7115545719440041015ring_a @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_358_size__neq__size__imp__neq,axiom,
! [X: list_nat,Y: list_nat] :
( ( ( size_size_list_nat @ X )
!= ( size_size_list_nat @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_359_size__neq__size__imp__neq,axiom,
! [X: num,Y: num] :
( ( ( size_size_num @ X )
!= ( size_size_num @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_360_dvd__antisym,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ N )
=> ( ( dvd_dvd_nat @ N @ M )
=> ( M = N ) ) ) ).
% dvd_antisym
thf(fact_361_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_362_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_363_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_364_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_nat
!= ( numeral_numeral_nat @ N ) ) ).
% zero_neq_numeral
thf(fact_365_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( numeral_numeral_int @ N ) ) ).
% zero_neq_numeral
thf(fact_366_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( numeral_numeral_real @ N ) ) ).
% zero_neq_numeral
thf(fact_367_bot__nat__0_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ord_less_nat @ A2 @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_368_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_369_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_370_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_371_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_372_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_373_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_374_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_375_div__mult2__eq,axiom,
! [M: nat,N: nat,Q2: nat] :
( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q2 ) )
= ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) ).
% div_mult2_eq
thf(fact_376_zero__less__numeral,axiom,
! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_less_numeral
thf(fact_377_zero__less__numeral,axiom,
! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_less_numeral
thf(fact_378_zero__less__numeral,axiom,
! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_less_numeral
thf(fact_379_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_less_zero
thf(fact_380_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_less_zero
thf(fact_381_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_less_zero
thf(fact_382_mult__numeral__1,axiom,
! [A2: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A2 )
= A2 ) ).
% mult_numeral_1
thf(fact_383_mult__numeral__1,axiom,
! [A2: int] :
( ( times_times_int @ ( numeral_numeral_int @ one ) @ A2 )
= A2 ) ).
% mult_numeral_1
thf(fact_384_mult__numeral__1,axiom,
! [A2: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A2 )
= A2 ) ).
% mult_numeral_1
thf(fact_385_mult__numeral__1__right,axiom,
! [A2: nat] :
( ( times_times_nat @ A2 @ ( numeral_numeral_nat @ one ) )
= A2 ) ).
% mult_numeral_1_right
thf(fact_386_mult__numeral__1__right,axiom,
! [A2: int] :
( ( times_times_int @ A2 @ ( numeral_numeral_int @ one ) )
= A2 ) ).
% mult_numeral_1_right
thf(fact_387_mult__numeral__1__right,axiom,
! [A2: real] :
( ( times_times_real @ A2 @ ( numeral_numeral_real @ one ) )
= A2 ) ).
% mult_numeral_1_right
thf(fact_388_divide__numeral__1,axiom,
! [A2: real] :
( ( divide_divide_real @ A2 @ ( numeral_numeral_real @ one ) )
= A2 ) ).
% divide_numeral_1
thf(fact_389_mult__less__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I3 @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_390_mult__less__mono2,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I3 ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_391_nat__dvd__not__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_392_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N: nat] :
( ( ( divide_divide_nat @ M @ N )
= zero_zero_nat )
= ( ( ord_less_nat @ M @ N )
| ( N = zero_zero_nat ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_393_less__mult__imp__div__less,axiom,
! [M: nat,I3: nat,N: nat] :
( ( ord_less_nat @ M @ ( times_times_nat @ I3 @ N ) )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I3 ) ) ).
% less_mult_imp_div_less
thf(fact_394_divide__eq__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( numeral_numeral_real @ W ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_395_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ( numeral_numeral_real @ W )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_396_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_mult_cancel
thf(fact_397_div__less__iff__less__mult,axiom,
! [Q2: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q2 )
=> ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q2 ) @ N )
= ( ord_less_nat @ M @ ( times_times_nat @ N @ Q2 ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_398_divide__less__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_399_less__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_400_half__gt__zero,axiom,
! [A2: real] :
( ( ord_less_real @ zero_zero_real @ A2 )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_401_half__gt__zero__iff,axiom,
! [A2: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A2 @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( ord_less_real @ zero_zero_real @ A2 ) ) ).
% half_gt_zero_iff
thf(fact_402_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: real,A2: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A2 @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_403_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: real,A2: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A2 @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_404_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: real,A2: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A2 @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_405_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: real,A2: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A2 @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_406_mult__divide__mult__cancel__left__if,axiom,
! [C: real,A2: real,B: real] :
( ( ( C = zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ C @ B ) )
= zero_zero_real ) )
& ( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A2 ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A2 @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_407_diff__gt__0__iff__gt,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A2 @ B ) )
= ( ord_less_int @ B @ A2 ) ) ).
% diff_gt_0_iff_gt
thf(fact_408_diff__gt__0__iff__gt,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A2 @ B ) )
= ( ord_less_real @ B @ A2 ) ) ).
% diff_gt_0_iff_gt
thf(fact_409_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_410_bit__eq__rec,axiom,
( ( ^ [Y2: nat,Z: nat] : ( Y2 = Z ) )
= ( ^ [A: nat,B2: nat] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) )
& ( ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ B2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_411_bit__eq__rec,axiom,
( ( ^ [Y2: int,Z: int] : ( Y2 = Z ) )
= ( ^ [A: int,B2: int] :
( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) )
& ( ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ B2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).
% bit_eq_rec
thf(fact_412_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_413_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A2: nat] :
( ( minus_minus_nat @ A2 @ A2 )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_414_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A2: int] :
( ( minus_minus_int @ A2 @ A2 )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_415_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A2: real] :
( ( minus_minus_real @ A2 @ A2 )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_416_diff__zero,axiom,
! [A2: nat] :
( ( minus_minus_nat @ A2 @ zero_zero_nat )
= A2 ) ).
% diff_zero
thf(fact_417_diff__zero,axiom,
! [A2: int] :
( ( minus_minus_int @ A2 @ zero_zero_int )
= A2 ) ).
% diff_zero
thf(fact_418_diff__zero,axiom,
! [A2: real] :
( ( minus_minus_real @ A2 @ zero_zero_real )
= A2 ) ).
% diff_zero
thf(fact_419_zero__diff,axiom,
! [A2: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A2 )
= zero_zero_nat ) ).
% zero_diff
thf(fact_420_diff__0__right,axiom,
! [A2: int] :
( ( minus_minus_int @ A2 @ zero_zero_int )
= A2 ) ).
% diff_0_right
thf(fact_421_diff__0__right,axiom,
! [A2: real] :
( ( minus_minus_real @ A2 @ zero_zero_real )
= A2 ) ).
% diff_0_right
thf(fact_422_diff__self,axiom,
! [A2: int] :
( ( minus_minus_int @ A2 @ A2 )
= zero_zero_int ) ).
% diff_self
thf(fact_423_diff__self,axiom,
! [A2: real] :
( ( minus_minus_real @ A2 @ A2 )
= zero_zero_real ) ).
% diff_self
thf(fact_424_division__ring__divide__zero,axiom,
! [A2: real] :
( ( divide_divide_real @ A2 @ zero_zero_real )
= zero_zero_real ) ).
% division_ring_divide_zero
thf(fact_425_bits__div__by__0,axiom,
! [A2: nat] :
( ( divide_divide_nat @ A2 @ zero_zero_nat )
= zero_zero_nat ) ).
% bits_div_by_0
thf(fact_426_bits__div__by__0,axiom,
! [A2: int] :
( ( divide_divide_int @ A2 @ zero_zero_int )
= zero_zero_int ) ).
% bits_div_by_0
thf(fact_427_bits__div__0,axiom,
! [A2: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A2 )
= zero_zero_nat ) ).
% bits_div_0
thf(fact_428_bits__div__0,axiom,
! [A2: int] :
( ( divide_divide_int @ zero_zero_int @ A2 )
= zero_zero_int ) ).
% bits_div_0
thf(fact_429_divide__cancel__right,axiom,
! [A2: real,C: real,B: real] :
( ( ( divide_divide_real @ A2 @ C )
= ( divide_divide_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A2 = B ) ) ) ).
% divide_cancel_right
thf(fact_430_divide__cancel__left,axiom,
! [C: real,A2: real,B: real] :
( ( ( divide_divide_real @ C @ A2 )
= ( divide_divide_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A2 = B ) ) ) ).
% divide_cancel_left
thf(fact_431_divide__eq__0__iff,axiom,
! [A2: real,B: real] :
( ( ( divide_divide_real @ A2 @ B )
= zero_zero_real )
= ( ( A2 = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_eq_0_iff
thf(fact_432_times__divide__eq__left,axiom,
! [B: real,C: real,A2: real] :
( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A2 )
= ( divide_divide_real @ ( times_times_real @ B @ A2 ) @ C ) ) ).
% times_divide_eq_left
thf(fact_433_divide__divide__eq__left,axiom,
! [A2: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A2 @ B ) @ C )
= ( divide_divide_real @ A2 @ ( times_times_real @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_434_divide__divide__eq__right,axiom,
! [A2: real,B: real,C: real] :
( ( divide_divide_real @ A2 @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A2 @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_435_times__divide__eq__right,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ A2 @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A2 @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_436_div__neg__pos__less0,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ A2 @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( divide_divide_int @ A2 @ B ) @ zero_zero_int ) ) ) ).
% div_neg_pos_less0
thf(fact_437_neg__imp__zdiv__neg__iff,axiom,
! [B: int,A2: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_int @ ( divide_divide_int @ A2 @ B ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A2 ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_438_pos__imp__zdiv__neg__iff,axiom,
! [B: int,A2: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( divide_divide_int @ A2 @ B ) @ zero_zero_int )
= ( ord_less_int @ A2 @ zero_zero_int ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_439_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_440_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_441_zero__reorient,axiom,
! [X: real] :
( ( zero_zero_real = X )
= ( X = zero_zero_real ) ) ).
% zero_reorient
thf(fact_442_linordered__field__no__lb,axiom,
! [X4: real] :
? [Y3: real] : ( ord_less_real @ Y3 @ X4 ) ).
% linordered_field_no_lb
thf(fact_443_linordered__field__no__ub,axiom,
! [X4: real] :
? [X_1: real] : ( ord_less_real @ X4 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_444_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A2: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A2 @ B ) @ C )
= ( times_times_nat @ A2 @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_445_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A2: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A2 @ B ) @ C )
= ( times_times_int @ A2 @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_446_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A2 @ B ) @ C )
= ( times_times_real @ A2 @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_447_mult_Oassoc,axiom,
! [A2: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A2 @ B ) @ C )
= ( times_times_nat @ A2 @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_448_mult_Oassoc,axiom,
! [A2: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A2 @ B ) @ C )
= ( times_times_int @ A2 @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_449_mult_Oassoc,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A2 @ B ) @ C )
= ( times_times_real @ A2 @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_450_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A: nat,B2: nat] : ( times_times_nat @ B2 @ A ) ) ) ).
% mult.commute
thf(fact_451_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A: int,B2: int] : ( times_times_int @ B2 @ A ) ) ) ).
% mult.commute
thf(fact_452_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A: real,B2: real] : ( times_times_real @ B2 @ A ) ) ) ).
% mult.commute
thf(fact_453_mult_Oleft__commute,axiom,
! [B: nat,A2: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A2 @ C ) )
= ( times_times_nat @ A2 @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_454_mult_Oleft__commute,axiom,
! [B: int,A2: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A2 @ C ) )
= ( times_times_int @ A2 @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_455_mult_Oleft__commute,axiom,
! [B: real,A2: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A2 @ C ) )
= ( times_times_real @ A2 @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_456_diff__eq__diff__eq,axiom,
! [A2: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A2 @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( A2 = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_457_diff__eq__diff__eq,axiom,
! [A2: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A2 @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( A2 = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_458_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A2: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A2 @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A2 @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_459_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A2: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A2 @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A2 @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_460_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A2: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A2 @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A2 @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_461_num_Osize_I4_J,axiom,
( ( size_size_num @ one )
= zero_zero_nat ) ).
% num.size(4)
thf(fact_462_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_463_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_464_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_465_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_466_eq__iff__diff__eq__0,axiom,
( ( ^ [Y2: int,Z: int] : ( Y2 = Z ) )
= ( ^ [A: int,B2: int] :
( ( minus_minus_int @ A @ B2 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_467_eq__iff__diff__eq__0,axiom,
( ( ^ [Y2: real,Z: real] : ( Y2 = Z ) )
= ( ^ [A: real,B2: real] :
( ( minus_minus_real @ A @ B2 )
= zero_zero_real ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_468_diff__strict__mono,axiom,
! [A2: int,B: int,D: int,C: int] :
( ( ord_less_int @ A2 @ B )
=> ( ( ord_less_int @ D @ C )
=> ( ord_less_int @ ( minus_minus_int @ A2 @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_469_diff__strict__mono,axiom,
! [A2: real,B: real,D: real,C: real] :
( ( ord_less_real @ A2 @ B )
=> ( ( ord_less_real @ D @ C )
=> ( ord_less_real @ ( minus_minus_real @ A2 @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_470_diff__eq__diff__less,axiom,
! [A2: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A2 @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_int @ A2 @ B )
= ( ord_less_int @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_471_diff__eq__diff__less,axiom,
! [A2: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A2 @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_real @ A2 @ B )
= ( ord_less_real @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_472_diff__strict__left__mono,axiom,
! [B: int,A2: int,C: int] :
( ( ord_less_int @ B @ A2 )
=> ( ord_less_int @ ( minus_minus_int @ C @ A2 ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_473_diff__strict__left__mono,axiom,
! [B: real,A2: real,C: real] :
( ( ord_less_real @ B @ A2 )
=> ( ord_less_real @ ( minus_minus_real @ C @ A2 ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_474_diff__strict__right__mono,axiom,
! [A2: int,B: int,C: int] :
( ( ord_less_int @ A2 @ B )
=> ( ord_less_int @ ( minus_minus_int @ A2 @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_475_diff__strict__right__mono,axiom,
! [A2: real,B: real,C: real] :
( ( ord_less_real @ A2 @ B )
=> ( ord_less_real @ ( minus_minus_real @ A2 @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_476_dvd__field__iff,axiom,
( dvd_dvd_real
= ( ^ [A: real,B2: real] :
( ( A = zero_zero_real )
=> ( B2 = zero_zero_real ) ) ) ) ).
% dvd_field_iff
thf(fact_477_times__divide__times__eq,axiom,
! [X: real,Y: real,Z2: real,W: real] :
( ( times_times_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z2 @ W ) )
= ( divide_divide_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y @ W ) ) ) ).
% times_divide_times_eq
thf(fact_478_divide__divide__times__eq,axiom,
! [X: real,Y: real,Z2: real,W: real] :
( ( divide_divide_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z2 @ W ) )
= ( divide_divide_real @ ( times_times_real @ X @ W ) @ ( times_times_real @ Y @ Z2 ) ) ) ).
% divide_divide_times_eq
thf(fact_479_divide__divide__eq__left_H,axiom,
! [A2: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A2 @ B ) @ C )
= ( divide_divide_real @ A2 @ ( times_times_real @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_480_diff__divide__distrib,axiom,
! [A2: real,B: real,C: real] :
( ( divide_divide_real @ ( minus_minus_real @ A2 @ B ) @ C )
= ( minus_minus_real @ ( divide_divide_real @ A2 @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% diff_divide_distrib
thf(fact_481_less__iff__diff__less__0,axiom,
( ord_less_int
= ( ^ [A: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A @ B2 ) @ zero_zero_int ) ) ) ).
% less_iff_diff_less_0
thf(fact_482_less__iff__diff__less__0,axiom,
( ord_less_real
= ( ^ [A: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A @ B2 ) @ zero_zero_real ) ) ) ).
% less_iff_diff_less_0
thf(fact_483_divide__strict__right__mono__neg,axiom,
! [B: real,A2: real,C: real] :
( ( ord_less_real @ B @ A2 )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ A2 @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_484_divide__strict__right__mono,axiom,
! [A2: real,B: real,C: real] :
( ( ord_less_real @ A2 @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( divide_divide_real @ A2 @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_485_zero__less__divide__iff,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A2 @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A2 )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A2 @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_divide_iff
thf(fact_486_divide__less__cancel,axiom,
! [A2: real,C: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A2 @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ A2 @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A2 ) )
& ( C != zero_zero_real ) ) ) ).
% divide_less_cancel
thf(fact_487_divide__less__0__iff,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A2 @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A2 )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A2 @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_488_divide__pos__pos,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_pos_pos
thf(fact_489_divide__pos__neg,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_pos_neg
thf(fact_490_divide__neg__pos,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_neg_pos
thf(fact_491_divide__neg__neg,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_neg_neg
thf(fact_492_frac__eq__eq,axiom,
! [Y: real,Z2: real,X: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z2 != zero_zero_real )
=> ( ( ( divide_divide_real @ X @ Y )
= ( divide_divide_real @ W @ Z2 ) )
= ( ( times_times_real @ X @ Z2 )
= ( times_times_real @ W @ Y ) ) ) ) ) ).
% frac_eq_eq
thf(fact_493_divide__eq__eq,axiom,
! [B: real,C: real,A2: real] :
( ( ( divide_divide_real @ B @ C )
= A2 )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ A2 @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A2 = zero_zero_real ) ) ) ) ).
% divide_eq_eq
thf(fact_494_eq__divide__eq,axiom,
! [A2: real,B: real,C: real] :
( ( A2
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A2 @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( A2 = zero_zero_real ) ) ) ) ).
% eq_divide_eq
thf(fact_495_divide__eq__imp,axiom,
! [C: real,B: real,A2: real] :
( ( C != zero_zero_real )
=> ( ( B
= ( times_times_real @ A2 @ C ) )
=> ( ( divide_divide_real @ B @ C )
= A2 ) ) ) ).
% divide_eq_imp
thf(fact_496_eq__divide__imp,axiom,
! [C: real,A2: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A2 @ C )
= B )
=> ( A2
= ( divide_divide_real @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_497_nonzero__divide__eq__eq,axiom,
! [C: real,B: real,A2: real] :
( ( C != zero_zero_real )
=> ( ( ( divide_divide_real @ B @ C )
= A2 )
= ( B
= ( times_times_real @ A2 @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_498_nonzero__eq__divide__eq,axiom,
! [C: real,A2: real,B: real] :
( ( C != zero_zero_real )
=> ( ( A2
= ( divide_divide_real @ B @ C ) )
= ( ( times_times_real @ A2 @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_499_divide__less__eq,axiom,
! [B: real,C: real,A2: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A2 )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ A2 @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A2 @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A2 ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_500_less__divide__eq,axiom,
! [A2: real,B: real,C: real] :
( ( ord_less_real @ A2 @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A2 @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ A2 @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A2 @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_501_neg__divide__less__eq,axiom,
! [C: real,B: real,A2: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A2 )
= ( ord_less_real @ ( times_times_real @ A2 @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_502_neg__less__divide__eq,axiom,
! [C: real,A2: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A2 @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ B @ ( times_times_real @ A2 @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_503_pos__divide__less__eq,axiom,
! [C: real,B: real,A2: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A2 )
= ( ord_less_real @ B @ ( times_times_real @ A2 @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_504_pos__less__divide__eq,axiom,
! [C: real,A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A2 @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ ( times_times_real @ A2 @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_505_mult__imp__div__pos__less,axiom,
! [Y: real,X: real,Z2: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X @ ( times_times_real @ Z2 @ Y ) )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ Z2 ) ) ) ).
% mult_imp_div_pos_less
thf(fact_506_mult__imp__less__div__pos,axiom,
! [Y: real,Z2: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ ( times_times_real @ Z2 @ Y ) @ X )
=> ( ord_less_real @ Z2 @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_507_divide__strict__left__mono,axiom,
! [B: real,A2: real,C: real] :
( ( ord_less_real @ B @ A2 )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A2 @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A2 ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_508_divide__strict__left__mono__neg,axiom,
! [A2: real,B: real,C: real] :
( ( ord_less_real @ A2 @ B )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A2 @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A2 ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_509_add__divide__eq__if__simps_I4_J,axiom,
! [Z2: real,A2: real,B: real] :
( ( ( Z2 = zero_zero_real )
=> ( ( minus_minus_real @ A2 @ ( divide_divide_real @ B @ Z2 ) )
= A2 ) )
& ( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ A2 @ ( divide_divide_real @ B @ Z2 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A2 @ Z2 ) @ B ) @ Z2 ) ) ) ) ).
% add_divide_eq_if_simps(4)
thf(fact_510_diff__frac__eq,axiom,
! [Y: real,Z2: real,X: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z2 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z2 ) ) ) ) ) ).
% diff_frac_eq
thf(fact_511_diff__divide__eq__iff,axiom,
! [Z2: real,X: real,Y: real] :
( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ X @ ( divide_divide_real @ Y @ Z2 ) )
= ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z2 ) @ Y ) @ Z2 ) ) ) ).
% diff_divide_eq_iff
thf(fact_512_divide__diff__eq__iff,axiom,
! [Z2: real,X: real,Y: real] :
( ( Z2 != zero_zero_real )
=> ( ( minus_minus_real @ ( divide_divide_real @ X @ Z2 ) @ Y )
= ( divide_divide_real @ ( minus_minus_real @ X @ ( times_times_real @ Y @ Z2 ) ) @ Z2 ) ) ) ).
% divide_diff_eq_iff
thf(fact_513_frac__less__eq,axiom,
! [Y: real,Z2: real,X: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z2 != zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z2 ) )
= ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z2 ) ) @ zero_zero_real ) ) ) ) ).
% frac_less_eq
thf(fact_514_mult__hom_Ohom__zero,axiom,
! [C: nat] :
( ( times_times_nat @ C @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_hom.hom_zero
thf(fact_515_mult__hom_Ohom__zero,axiom,
! [C: int] :
( ( times_times_int @ C @ zero_zero_int )
= zero_zero_int ) ).
% mult_hom.hom_zero
thf(fact_516_mult__hom_Ohom__zero,axiom,
! [C: real] :
( ( times_times_real @ C @ zero_zero_real )
= zero_zero_real ) ).
% mult_hom.hom_zero
thf(fact_517_FNTT__termination__aux,axiom,
! [P: nat > $o,L: nat] : ( ord_less_nat @ ( size_size_list_nat @ ( filter_nat @ P @ ( upt @ zero_zero_nat @ L ) ) ) @ ( suc @ L ) ) ).
% FNTT_termination_aux
thf(fact_518_unset__bit__0,axiom,
! [A2: nat] :
( ( bit_se4205575877204974255it_nat @ zero_zero_nat @ A2 )
= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_519_unset__bit__0,axiom,
! [A2: int] :
( ( bit_se4203085406695923979it_int @ zero_zero_nat @ A2 )
= ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% unset_bit_0
thf(fact_520_dvd__div__eq__2,axiom,
! [C: nat,A2: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ( dvd_dvd_nat @ A2 @ C )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( ( ( divide_divide_nat @ C @ A2 )
= ( divide_divide_nat @ C @ B ) )
=> ( A2 = B ) ) ) ) ) ).
% dvd_div_eq_2
thf(fact_521_nat_Oinject,axiom,
! [X22: nat,Y22: nat] :
( ( ( suc @ X22 )
= ( suc @ Y22 ) )
= ( X22 = Y22 ) ) ).
% nat.inject
thf(fact_522_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_523_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_524_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_525_lessI,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_526_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_527_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_528_unset__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se4203085406695923979it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% unset_bit_negative_int_iff
thf(fact_529_less__Suc0,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
= ( N = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_530_zero__less__Suc,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_531_one__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M @ N ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_532_mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_533_dvd__1__left,axiom,
! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).
% dvd_1_left
thf(fact_534_dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
= ( M
= ( suc @ zero_zero_nat ) ) ) ).
% dvd_1_iff_1
thf(fact_535_div__by__Suc__0,axiom,
! [M: nat] :
( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
= M ) ).
% div_by_Suc_0
thf(fact_536_Suc__pred,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% Suc_pred
thf(fact_537_even__Suc,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% even_Suc
thf(fact_538_even__Suc__Suc__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_Suc_Suc_iff
thf(fact_539_div2__Suc__Suc,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div2_Suc_Suc
thf(fact_540_Suc__0__div__numeral_I2_J,axiom,
! [N: num] :
( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) )
= zero_zero_nat ) ).
% Suc_0_div_numeral(2)
thf(fact_541_odd__Suc__div__two,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% odd_Suc_div_two
thf(fact_542_even__Suc__div__two,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_Suc_div_two
thf(fact_543_odd__Suc__minus__one,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% odd_Suc_minus_one
thf(fact_544_Suc__inject,axiom,
! [X: nat,Y: nat] :
( ( ( suc @ X )
= ( suc @ Y ) )
=> ( X = Y ) ) ).
% Suc_inject
thf(fact_545_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_546_nat_Odistinct_I1_J,axiom,
! [X22: nat] :
( zero_zero_nat
!= ( suc @ X22 ) ) ).
% nat.distinct(1)
thf(fact_547_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_548_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_549_nat_OdiscI,axiom,
! [Nat: nat,X22: nat] :
( ( Nat
= ( suc @ X22 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_550_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_551_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_552_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X5: nat] : ( P @ X5 @ zero_zero_nat )
=> ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
=> ( ! [X5: nat,Y3: nat] :
( ( P @ X5 @ Y3 )
=> ( P @ ( suc @ X5 ) @ ( suc @ Y3 ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_553_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_554_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_555_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_556_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_557_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% not0_implies_Suc
thf(fact_558_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_559_strict__inc__induct,axiom,
! [I3: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I3 @ J )
=> ( ! [I2: nat] :
( ( J
= ( suc @ I2 ) )
=> ( P @ I2 ) )
=> ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ J )
=> ( ( P @ ( suc @ I2 ) )
=> ( P @ I2 ) ) )
=> ( P @ I3 ) ) ) ) ).
% strict_inc_induct
thf(fact_560_less__Suc__induct,axiom,
! [I3: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I3 @ J )
=> ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
=> ( ! [I2: nat,J2: nat,K3: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ J2 @ K3 )
=> ( ( P @ I2 @ J2 )
=> ( ( P @ J2 @ K3 )
=> ( P @ I2 @ K3 ) ) ) ) )
=> ( P @ I3 @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_561_less__trans__Suc,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I3 ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_562_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_563_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_564_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N ) @ M )
= ( ? [M4: nat] :
( ( M
= ( suc @ M4 ) )
& ( ord_less_nat @ N @ M4 ) ) ) ) ).
% Suc_less_eq2
thf(fact_565_All__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I: nat] :
( ( ord_less_nat @ I @ ( suc @ N ) )
=> ( P @ I ) ) )
= ( ( P @ N )
& ! [I: nat] :
( ( ord_less_nat @ I @ N )
=> ( P @ I ) ) ) ) ).
% All_less_Suc
thf(fact_566_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_nat @ M @ N ) )
= ( ord_less_nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_567_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_568_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I: nat] :
( ( ord_less_nat @ I @ ( suc @ N ) )
& ( P @ I ) ) )
= ( ( P @ N )
| ? [I: nat] :
( ( ord_less_nat @ I @ N )
& ( P @ I ) ) ) ) ).
% Ex_less_Suc
thf(fact_569_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_570_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_571_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_572_Suc__lessE,axiom,
! [I3: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I3 ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_573_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_574_Nat_OlessE,axiom,
! [I3: nat,K: nat] :
( ( ord_less_nat @ I3 @ K )
=> ( ( K
!= ( suc @ I3 ) )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_575_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I3: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ ( minus_minus_nat @ K @ I3 ) ) ) ) ).
% zero_induct_lemma
thf(fact_576_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M )
= ( times_times_nat @ ( suc @ K ) @ N ) )
= ( M = N ) ) ).
% Suc_mult_cancel1
thf(fact_577_lift__Suc__mono__less__iff,axiom,
! [F: nat > nat,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_578_lift__Suc__mono__less__iff,axiom,
! [F: nat > num,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_579_lift__Suc__mono__less__iff,axiom,
! [F: nat > int,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_580_lift__Suc__mono__less__iff,axiom,
! [F: nat > real,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_581_lift__Suc__mono__less,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_582_lift__Suc__mono__less,axiom,
! [F: nat > num,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_num @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_583_lift__Suc__mono__less,axiom,
! [F: nat > int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_584_lift__Suc__mono__less,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_585_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I: nat] :
( ( ord_less_nat @ I @ ( suc @ N ) )
& ( P @ I ) ) )
= ( ( P @ zero_zero_nat )
| ? [I: nat] :
( ( ord_less_nat @ I @ N )
& ( P @ ( suc @ I ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_586_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( ? [M5: nat] :
( N
= ( suc @ M5 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_587_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I: nat] :
( ( ord_less_nat @ I @ ( suc @ N ) )
=> ( P @ I ) ) )
= ( ( P @ zero_zero_nat )
& ! [I: nat] :
( ( ord_less_nat @ I @ N )
=> ( P @ ( suc @ I ) ) ) ) ) ).
% All_less_Suc2
thf(fact_588_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% gr0_implies_Suc
thf(fact_589_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( M = zero_zero_nat )
| ? [J3: nat] :
( ( M
= ( suc @ J3 ) )
& ( ord_less_nat @ J3 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_590_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
= ( minus_minus_nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_591_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_592_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_mult_less_cancel1
thf(fact_593_map__Suc__upt,axiom,
! [M: nat,N: nat] :
( ( map_nat_nat @ suc @ ( upt @ M @ N ) )
= ( upt @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% map_Suc_upt
thf(fact_594_numeral__1__eq__Suc__0,axiom,
( ( numeral_numeral_nat @ one )
= ( suc @ zero_zero_nat ) ) ).
% numeral_1_eq_Suc_0
thf(fact_595_diff__Suc__less,axiom,
! [N: nat,I3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I3 ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_596_n__less__n__mult__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_597_n__less__m__mult__n,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).
% n_less_m_mult_n
thf(fact_598_one__less__mult,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).
% one_less_mult
thf(fact_599_numeral__2__eq__2,axiom,
( ( numeral_numeral_nat @ ( bit0 @ one ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% numeral_2_eq_2
thf(fact_600_Suc__double__not__eq__double,axiom,
! [M: nat,N: nat] :
( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% Suc_double_not_eq_double
thf(fact_601_double__not__eq__Suc__double,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% double_not_eq_Suc_double
thf(fact_602_div__if,axiom,
( divide_divide_nat
= ( ^ [M5: nat,N4: nat] :
( if_nat
@ ( ( ord_less_nat @ M5 @ N4 )
| ( N4 = zero_zero_nat ) )
@ zero_zero_nat
@ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M5 @ N4 ) @ N4 ) ) ) ) ) ).
% div_if
thf(fact_603_less__2__cases,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases
thf(fact_604_less__2__cases__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases_iff
thf(fact_605_map__decr__upt,axiom,
! [M: nat,N: nat] :
( ( map_nat_nat
@ ^ [N4: nat] : ( minus_minus_nat @ N4 @ ( suc @ zero_zero_nat ) )
@ ( upt @ ( suc @ M ) @ ( suc @ N ) ) )
= ( upt @ M @ N ) ) ).
% map_decr_upt
thf(fact_606_nat__bit__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_bit_induct
thf(fact_607_div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div_2_gt_zero
thf(fact_608_Suc__n__div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% Suc_n_div_2_gt_zero
thf(fact_609_dvd__div__eq__1,axiom,
! [C: nat,A2: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A2 )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( ( divide_divide_nat @ A2 @ C )
= ( divide_divide_nat @ B @ C ) )
=> ( A2 = B ) ) ) ) ).
% dvd_div_eq_1
thf(fact_610_even__unset__bit__iff,axiom,
! [M: nat,A2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( bit_se4205575877204974255it_nat @ M @ A2 ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_611_even__unset__bit__iff,axiom,
! [M: nat,A2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( bit_se4203085406695923979it_int @ M @ A2 ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
| ( M = zero_zero_nat ) ) ) ).
% even_unset_bit_iff
thf(fact_612_bezout1__nat,axiom,
! [A2: nat,B: nat] :
? [D2: nat,X5: nat,Y3: nat] :
( ( dvd_dvd_nat @ D2 @ A2 )
& ( dvd_dvd_nat @ D2 @ B )
& ( ( ( minus_minus_nat @ ( times_times_nat @ A2 @ X5 ) @ ( times_times_nat @ B @ Y3 ) )
= D2 )
| ( ( minus_minus_nat @ ( times_times_nat @ B @ X5 ) @ ( times_times_nat @ A2 @ Y3 ) )
= D2 ) ) ) ).
% bezout1_nat
thf(fact_613_dvd__pos__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ M @ N )
=> ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).
% dvd_pos_nat
thf(fact_614_log__twice,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ( log @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( suc @ ( log @ N ) ) ) ) ).
% log_twice
thf(fact_615_mult__less__iff1,axiom,
! [Z2: int,X: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_int @ ( times_times_int @ X @ Z2 ) @ ( times_times_int @ Y @ Z2 ) )
= ( ord_less_int @ X @ Y ) ) ) ).
% mult_less_iff1
thf(fact_616_mult__less__iff1,axiom,
! [Z2: real,X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y @ Z2 ) )
= ( ord_less_real @ X @ Y ) ) ) ).
% mult_less_iff1
thf(fact_617_p__lst3,axiom,
ord_less_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ p ).
% p_lst3
thf(fact_618_odd__two__times__div__two__nat,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( minus_minus_nat @ N @ one_one_nat ) ) ) ).
% odd_two_times_div_two_nat
thf(fact_619_mult_Oright__neutral,axiom,
! [A2: nat] :
( ( times_times_nat @ A2 @ one_one_nat )
= A2 ) ).
% mult.right_neutral
thf(fact_620_mult_Oright__neutral,axiom,
! [A2: int] :
( ( times_times_int @ A2 @ one_one_int )
= A2 ) ).
% mult.right_neutral
thf(fact_621_mult_Oright__neutral,axiom,
! [A2: real] :
( ( times_times_real @ A2 @ one_one_real )
= A2 ) ).
% mult.right_neutral
thf(fact_622_mult__1,axiom,
! [A2: nat] :
( ( times_times_nat @ one_one_nat @ A2 )
= A2 ) ).
% mult_1
thf(fact_623_mult__1,axiom,
! [A2: int] :
( ( times_times_int @ one_one_int @ A2 )
= A2 ) ).
% mult_1
thf(fact_624_mult__1,axiom,
! [A2: real] :
( ( times_times_real @ one_one_real @ A2 )
= A2 ) ).
% mult_1
thf(fact_625_bits__div__by__1,axiom,
! [A2: nat] :
( ( divide_divide_nat @ A2 @ one_one_nat )
= A2 ) ).
% bits_div_by_1
thf(fact_626_bits__div__by__1,axiom,
! [A2: int] :
( ( divide_divide_int @ A2 @ one_one_int )
= A2 ) ).
% bits_div_by_1
thf(fact_627_div__by__1,axiom,
! [A2: nat] :
( ( divide_divide_nat @ A2 @ one_one_nat )
= A2 ) ).
% div_by_1
thf(fact_628_div__by__1,axiom,
! [A2: int] :
( ( divide_divide_int @ A2 @ one_one_int )
= A2 ) ).
% div_by_1
thf(fact_629_div__by__1,axiom,
! [A2: real] :
( ( divide_divide_real @ A2 @ one_one_real )
= A2 ) ).
% div_by_1
thf(fact_630_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_631_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_632_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_633_log__zero,axiom,
( ( log @ zero_zero_nat )
= zero_zero_nat ) ).
% log_zero
thf(fact_634_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_635_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_636_mult__cancel__left2,axiom,
! [C: int,A2: int] :
( ( ( times_times_int @ C @ A2 )
= C )
= ( ( C = zero_zero_int )
| ( A2 = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_637_mult__cancel__left2,axiom,
! [C: real,A2: real] :
( ( ( times_times_real @ C @ A2 )
= C )
= ( ( C = zero_zero_real )
| ( A2 = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_638_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_639_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_640_mult__cancel__right2,axiom,
! [A2: int,C: int] :
( ( ( times_times_int @ A2 @ C )
= C )
= ( ( C = zero_zero_int )
| ( A2 = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_641_mult__cancel__right2,axiom,
! [A2: real,C: real] :
( ( ( times_times_real @ A2 @ C )
= C )
= ( ( C = zero_zero_real )
| ( A2 = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_642_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_643_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_644_divide__eq__1__iff,axiom,
! [A2: real,B: real] :
( ( ( divide_divide_real @ A2 @ B )
= one_one_real )
= ( ( B != zero_zero_real )
& ( A2 = B ) ) ) ).
% divide_eq_1_iff
thf(fact_645_one__eq__divide__iff,axiom,
! [A2: real,B: real] :
( ( one_one_real
= ( divide_divide_real @ A2 @ B ) )
= ( ( B != zero_zero_real )
& ( A2 = B ) ) ) ).
% one_eq_divide_iff
thf(fact_646_divide__self,axiom,
! [A2: real] :
( ( A2 != zero_zero_real )
=> ( ( divide_divide_real @ A2 @ A2 )
= one_one_real ) ) ).
% divide_self
thf(fact_647_divide__self__if,axiom,
! [A2: real] :
( ( ( A2 = zero_zero_real )
=> ( ( divide_divide_real @ A2 @ A2 )
= zero_zero_real ) )
& ( ( A2 != zero_zero_real )
=> ( ( divide_divide_real @ A2 @ A2 )
= one_one_real ) ) ) ).
% divide_self_if
thf(fact_648_divide__eq__eq__1,axiom,
! [B: real,A2: real] :
( ( ( divide_divide_real @ B @ A2 )
= one_one_real )
= ( ( A2 != zero_zero_real )
& ( A2 = B ) ) ) ).
% divide_eq_eq_1
thf(fact_649_eq__divide__eq__1,axiom,
! [B: real,A2: real] :
( ( one_one_real
= ( divide_divide_real @ B @ A2 ) )
= ( ( A2 != zero_zero_real )
& ( A2 = B ) ) ) ).
% eq_divide_eq_1
thf(fact_650_one__divide__eq__0__iff,axiom,
! [A2: real] :
( ( ( divide_divide_real @ one_one_real @ A2 )
= zero_zero_real )
= ( A2 = zero_zero_real ) ) ).
% one_divide_eq_0_iff
thf(fact_651_zero__eq__1__divide__iff,axiom,
! [A2: real] :
( ( zero_zero_real
= ( divide_divide_real @ one_one_real @ A2 ) )
= ( A2 = zero_zero_real ) ) ).
% zero_eq_1_divide_iff
thf(fact_652_div__self,axiom,
! [A2: nat] :
( ( A2 != zero_zero_nat )
=> ( ( divide_divide_nat @ A2 @ A2 )
= one_one_nat ) ) ).
% div_self
thf(fact_653_div__self,axiom,
! [A2: int] :
( ( A2 != zero_zero_int )
=> ( ( divide_divide_int @ A2 @ A2 )
= one_one_int ) ) ).
% div_self
thf(fact_654_div__self,axiom,
! [A2: real] :
( ( A2 != zero_zero_real )
=> ( ( divide_divide_real @ A2 @ A2 )
= one_one_real ) ) ).
% div_self
thf(fact_655_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_656_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_int
= ( numeral_numeral_int @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_657_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_658_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_659_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_int @ N )
= one_one_int )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_660_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_661_algebraic__semidom__class_Ounit__prod,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ one_one_nat ) ) ) ).
% algebraic_semidom_class.unit_prod
thf(fact_662_algebraic__semidom__class_Ounit__prod,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ one_one_int ) ) ) ).
% algebraic_semidom_class.unit_prod
thf(fact_663_comm__monoid__mult__class_Ounit__prod,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ one_one_nat ) ) ) ).
% comm_monoid_mult_class.unit_prod
thf(fact_664_comm__monoid__mult__class_Ounit__prod,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ one_one_int ) ) ) ).
% comm_monoid_mult_class.unit_prod
thf(fact_665_comm__monoid__mult__class_Ounit__prod,axiom,
! [A2: real,B: real] :
( ( dvd_dvd_real @ A2 @ one_one_real )
=> ( ( dvd_dvd_real @ B @ one_one_real )
=> ( dvd_dvd_real @ ( times_times_real @ A2 @ B ) @ one_one_real ) ) ) ).
% comm_monoid_mult_class.unit_prod
thf(fact_666_comm__monoid__mult__class_Ois__unit__mult__iff,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A2 @ one_one_nat )
& ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).
% comm_monoid_mult_class.is_unit_mult_iff
thf(fact_667_comm__monoid__mult__class_Ois__unit__mult__iff,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ one_one_int )
= ( ( dvd_dvd_int @ A2 @ one_one_int )
& ( dvd_dvd_int @ B @ one_one_int ) ) ) ).
% comm_monoid_mult_class.is_unit_mult_iff
thf(fact_668_comm__monoid__mult__class_Ois__unit__mult__iff,axiom,
! [A2: real,B: real] :
( ( dvd_dvd_real @ ( times_times_real @ A2 @ B ) @ one_one_real )
= ( ( dvd_dvd_real @ A2 @ one_one_real )
& ( dvd_dvd_real @ B @ one_one_real ) ) ) ).
% comm_monoid_mult_class.is_unit_mult_iff
thf(fact_669_comm__semiring__1__class_Omult__unit__dvd__iff,axiom,
! [B: nat,A2: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ C )
= ( dvd_dvd_nat @ A2 @ C ) ) ) ).
% comm_semiring_1_class.mult_unit_dvd_iff
thf(fact_670_comm__semiring__1__class_Omult__unit__dvd__iff,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ C )
= ( dvd_dvd_int @ A2 @ C ) ) ) ).
% comm_semiring_1_class.mult_unit_dvd_iff
thf(fact_671_comm__semiring__1__class_Omult__unit__dvd__iff,axiom,
! [B: real,A2: real,C: real] :
( ( dvd_dvd_real @ B @ one_one_real )
=> ( ( dvd_dvd_real @ ( times_times_real @ A2 @ B ) @ C )
= ( dvd_dvd_real @ A2 @ C ) ) ) ).
% comm_semiring_1_class.mult_unit_dvd_iff
thf(fact_672_comm__semiring__1__class_Omult__unit__dvd__iff_H,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ C )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% comm_semiring_1_class.mult_unit_dvd_iff'
thf(fact_673_comm__semiring__1__class_Omult__unit__dvd__iff_H,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ C )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% comm_semiring_1_class.mult_unit_dvd_iff'
thf(fact_674_comm__semiring__1__class_Omult__unit__dvd__iff_H,axiom,
! [A2: real,B: real,C: real] :
( ( dvd_dvd_real @ A2 @ one_one_real )
=> ( ( dvd_dvd_real @ ( times_times_real @ A2 @ B ) @ C )
= ( dvd_dvd_real @ B @ C ) ) ) ).
% comm_semiring_1_class.mult_unit_dvd_iff'
thf(fact_675_unit__div,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ A2 @ B ) @ one_one_nat ) ) ) ).
% unit_div
thf(fact_676_unit__div,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ A2 @ B ) @ one_one_int ) ) ) ).
% unit_div
thf(fact_677_unit__div__1__unit,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A2 ) @ one_one_nat ) ) ).
% unit_div_1_unit
thf(fact_678_unit__div__1__unit,axiom,
! [A2: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A2 ) @ one_one_int ) ) ).
% unit_div_1_unit
thf(fact_679_unit__div__1__div__1,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A2 ) )
= A2 ) ) ).
% unit_div_1_div_1
thf(fact_680_unit__div__1__div__1,axiom,
! [A2: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A2 ) )
= A2 ) ) ).
% unit_div_1_div_1
thf(fact_681_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_682_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
= N ) ).
% diff_Suc_1
thf(fact_683_log__Suc__zero,axiom,
( ( log @ ( suc @ zero_zero_nat ) )
= zero_zero_nat ) ).
% log_Suc_zero
thf(fact_684_Discrete_Olog__one,axiom,
( ( log @ one_one_nat )
= zero_zero_nat ) ).
% Discrete.log_one
thf(fact_685_divide__less__0__1__iff,axiom,
! [A2: real] :
( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A2 ) @ zero_zero_real )
= ( ord_less_real @ A2 @ zero_zero_real ) ) ).
% divide_less_0_1_iff
thf(fact_686_divide__less__eq__1__neg,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ A2 @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A2 ) @ one_one_real )
= ( ord_less_real @ A2 @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_687_divide__less__eq__1__pos,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A2 )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A2 ) @ one_one_real )
= ( ord_less_real @ B @ A2 ) ) ) ).
% divide_less_eq_1_pos
thf(fact_688_less__divide__eq__1__neg,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ A2 @ zero_zero_real )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A2 ) )
= ( ord_less_real @ B @ A2 ) ) ) ).
% less_divide_eq_1_neg
thf(fact_689_less__divide__eq__1__pos,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A2 )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A2 ) )
= ( ord_less_real @ A2 @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_690_zero__less__divide__1__iff,axiom,
! [A2: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A2 ) )
= ( ord_less_real @ zero_zero_real @ A2 ) ) ).
% zero_less_divide_1_iff
thf(fact_691_nonzero__divide__mult__cancel__left,axiom,
! [A2: real,B: real] :
( ( A2 != zero_zero_real )
=> ( ( divide_divide_real @ A2 @ ( times_times_real @ A2 @ B ) )
= ( divide_divide_real @ one_one_real @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_692_nonzero__divide__mult__cancel__right,axiom,
! [B: real,A2: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ B @ ( times_times_real @ A2 @ B ) )
= ( divide_divide_real @ one_one_real @ A2 ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_693_unit__mult__div__div,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A2 ) )
= ( divide_divide_nat @ B @ A2 ) ) ) ).
% unit_mult_div_div
thf(fact_694_unit__mult__div__div,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A2 ) )
= ( divide_divide_int @ B @ A2 ) ) ) ).
% unit_mult_div_div
thf(fact_695_unit__div__mult__self,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ B @ A2 ) @ A2 )
= B ) ) ).
% unit_div_mult_self
thf(fact_696_unit__div__mult__self,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ B @ A2 ) @ A2 )
= B ) ) ).
% unit_div_mult_self
thf(fact_697_Suc__1,axiom,
( ( suc @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% Suc_1
thf(fact_698_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
= N ) ) ).
% Suc_diff_1
thf(fact_699_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_700_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_701_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_702_one__div__two__eq__zero,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% one_div_two_eq_zero
thf(fact_703_one__div__two__eq__zero,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% one_div_two_eq_zero
thf(fact_704_bits__1__div__2,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% bits_1_div_2
thf(fact_705_bits__1__div__2,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% bits_1_div_2
thf(fact_706_Suc__0__div__numeral_I1_J,axiom,
( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ one ) )
= one_one_nat ) ).
% Suc_0_div_numeral(1)
thf(fact_707_log__half,axiom,
! [N: nat] :
( ( log @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( minus_minus_nat @ ( log @ N ) @ one_one_nat ) ) ).
% log_half
thf(fact_708_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_709_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_710_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_711_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_712_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_713_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_714_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_715_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_716_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_717_comm__monoid__mult__class_Omult__1,axiom,
! [A2: nat] :
( ( times_times_nat @ one_one_nat @ A2 )
= A2 ) ).
% comm_monoid_mult_class.mult_1
thf(fact_718_comm__monoid__mult__class_Omult__1,axiom,
! [A2: int] :
( ( times_times_int @ one_one_int @ A2 )
= A2 ) ).
% comm_monoid_mult_class.mult_1
thf(fact_719_comm__monoid__mult__class_Omult__1,axiom,
! [A2: real] :
( ( times_times_real @ one_one_real @ A2 )
= A2 ) ).
% comm_monoid_mult_class.mult_1
thf(fact_720_mult_Ocomm__neutral,axiom,
! [A2: nat] :
( ( times_times_nat @ A2 @ one_one_nat )
= A2 ) ).
% mult.comm_neutral
thf(fact_721_mult_Ocomm__neutral,axiom,
! [A2: int] :
( ( times_times_int @ A2 @ one_one_int )
= A2 ) ).
% mult.comm_neutral
thf(fact_722_mult_Ocomm__neutral,axiom,
! [A2: real] :
( ( times_times_real @ A2 @ one_one_real )
= A2 ) ).
% mult.comm_neutral
thf(fact_723_dvd__unit__imp__unit,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ A2 @ one_one_nat ) ) ) ).
% dvd_unit_imp_unit
thf(fact_724_dvd__unit__imp__unit,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ B )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ A2 @ one_one_int ) ) ) ).
% dvd_unit_imp_unit
thf(fact_725_algebraic__semidom__class_Ounit__imp__dvd,axiom,
! [B: nat,A2: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( dvd_dvd_nat @ B @ A2 ) ) ).
% algebraic_semidom_class.unit_imp_dvd
thf(fact_726_algebraic__semidom__class_Ounit__imp__dvd,axiom,
! [B: int,A2: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ B @ A2 ) ) ).
% algebraic_semidom_class.unit_imp_dvd
thf(fact_727_one__dvd,axiom,
! [A2: nat] : ( dvd_dvd_nat @ one_one_nat @ A2 ) ).
% one_dvd
thf(fact_728_one__dvd,axiom,
! [A2: int] : ( dvd_dvd_int @ one_one_int @ A2 ) ).
% one_dvd
thf(fact_729_one__dvd,axiom,
! [A2: real] : ( dvd_dvd_real @ one_one_real @ A2 ) ).
% one_dvd
thf(fact_730_idom__class_Ounit__imp__dvd,axiom,
! [B: int,A2: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( dvd_dvd_int @ B @ A2 ) ) ).
% idom_class.unit_imp_dvd
thf(fact_731_idom__class_Ounit__imp__dvd,axiom,
! [B: real,A2: real] :
( ( dvd_dvd_real @ B @ one_one_real )
=> ( dvd_dvd_real @ B @ A2 ) ) ).
% idom_class.unit_imp_dvd
thf(fact_732_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_733_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_734_lambda__one,axiom,
( ( ^ [X2: nat] : X2 )
= ( times_times_nat @ one_one_nat ) ) ).
% lambda_one
thf(fact_735_lambda__one,axiom,
( ( ^ [X2: int] : X2 )
= ( times_times_int @ one_one_int ) ) ).
% lambda_one
thf(fact_736_lambda__one,axiom,
( ( ^ [X2: real] : X2 )
= ( times_times_real @ one_one_real ) ) ).
% lambda_one
thf(fact_737_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_738_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_739_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_740_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_741_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_742_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_743_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_744_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_745_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_746_less__1__mult,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ( ord_less_nat @ one_one_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_747_less__1__mult,axiom,
! [M: int,N: int] :
( ( ord_less_int @ one_one_int @ M )
=> ( ( ord_less_int @ one_one_int @ N )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_748_less__1__mult,axiom,
! [M: real,N: real] :
( ( ord_less_real @ one_one_real @ M )
=> ( ( ord_less_real @ one_one_real @ N )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_749_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).
% not_numeral_less_one
thf(fact_750_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).
% not_numeral_less_one
thf(fact_751_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).
% not_numeral_less_one
thf(fact_752_right__inverse__eq,axiom,
! [B: real,A2: real] :
( ( B != zero_zero_real )
=> ( ( ( divide_divide_real @ A2 @ B )
= one_one_real )
= ( A2 = B ) ) ) ).
% right_inverse_eq
thf(fact_753_not__is__unit__0,axiom,
~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).
% not_is_unit_0
thf(fact_754_not__is__unit__0,axiom,
~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).
% not_is_unit_0
thf(fact_755_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_756_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_757_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_758_algebraic__semidom__class_Ois__unit__mult__iff,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ one_one_nat )
= ( ( dvd_dvd_nat @ A2 @ one_one_nat )
& ( dvd_dvd_nat @ B @ one_one_nat ) ) ) ).
% algebraic_semidom_class.is_unit_mult_iff
thf(fact_759_algebraic__semidom__class_Ois__unit__mult__iff,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ one_one_int )
= ( ( dvd_dvd_int @ A2 @ one_one_int )
& ( dvd_dvd_int @ B @ one_one_int ) ) ) ).
% algebraic_semidom_class.is_unit_mult_iff
thf(fact_760_algebraic__semidom__class_Odvd__mult__unit__iff,axiom,
! [B: nat,A2: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A2 @ ( times_times_nat @ C @ B ) )
= ( dvd_dvd_nat @ A2 @ C ) ) ) ).
% algebraic_semidom_class.dvd_mult_unit_iff
thf(fact_761_algebraic__semidom__class_Odvd__mult__unit__iff,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A2 @ ( times_times_int @ C @ B ) )
= ( dvd_dvd_int @ A2 @ C ) ) ) ).
% algebraic_semidom_class.dvd_mult_unit_iff
thf(fact_762_algebraic__semidom__class_Omult__unit__dvd__iff,axiom,
! [B: nat,A2: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ C )
= ( dvd_dvd_nat @ A2 @ C ) ) ) ).
% algebraic_semidom_class.mult_unit_dvd_iff
thf(fact_763_algebraic__semidom__class_Omult__unit__dvd__iff,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ C )
= ( dvd_dvd_int @ A2 @ C ) ) ) ).
% algebraic_semidom_class.mult_unit_dvd_iff
thf(fact_764_algebraic__semidom__class_Odvd__mult__unit__iff_H,axiom,
! [B: nat,A2: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A2 @ ( times_times_nat @ B @ C ) )
= ( dvd_dvd_nat @ A2 @ C ) ) ) ).
% algebraic_semidom_class.dvd_mult_unit_iff'
thf(fact_765_algebraic__semidom__class_Odvd__mult__unit__iff_H,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A2 @ ( times_times_int @ B @ C ) )
= ( dvd_dvd_int @ A2 @ C ) ) ) ).
% algebraic_semidom_class.dvd_mult_unit_iff'
thf(fact_766_algebraic__semidom__class_Omult__unit__dvd__iff_H,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ A2 @ B ) @ C )
= ( dvd_dvd_nat @ B @ C ) ) ) ).
% algebraic_semidom_class.mult_unit_dvd_iff'
thf(fact_767_algebraic__semidom__class_Omult__unit__dvd__iff_H,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( dvd_dvd_int @ ( times_times_int @ A2 @ B ) @ C )
= ( dvd_dvd_int @ B @ C ) ) ) ).
% algebraic_semidom_class.mult_unit_dvd_iff'
thf(fact_768_algebraic__semidom__class_Ounit__mult__left__cancel,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( ( times_times_nat @ A2 @ B )
= ( times_times_nat @ A2 @ C ) )
= ( B = C ) ) ) ).
% algebraic_semidom_class.unit_mult_left_cancel
thf(fact_769_algebraic__semidom__class_Ounit__mult__left__cancel,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( ( times_times_int @ A2 @ B )
= ( times_times_int @ A2 @ C ) )
= ( B = C ) ) ) ).
% algebraic_semidom_class.unit_mult_left_cancel
thf(fact_770_algebraic__semidom__class_Ounit__mult__right__cancel,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( ( times_times_nat @ B @ A2 )
= ( times_times_nat @ C @ A2 ) )
= ( B = C ) ) ) ).
% algebraic_semidom_class.unit_mult_right_cancel
thf(fact_771_algebraic__semidom__class_Ounit__mult__right__cancel,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( ( times_times_int @ B @ A2 )
= ( times_times_int @ C @ A2 ) )
= ( B = C ) ) ) ).
% algebraic_semidom_class.unit_mult_right_cancel
thf(fact_772_idom__class_Odvd__mult__unit__iff,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A2 @ ( times_times_int @ C @ B ) )
= ( dvd_dvd_int @ A2 @ C ) ) ) ).
% idom_class.dvd_mult_unit_iff
thf(fact_773_idom__class_Odvd__mult__unit__iff,axiom,
! [B: real,A2: real,C: real] :
( ( dvd_dvd_real @ B @ one_one_real )
=> ( ( dvd_dvd_real @ A2 @ ( times_times_real @ C @ B ) )
= ( dvd_dvd_real @ A2 @ C ) ) ) ).
% idom_class.dvd_mult_unit_iff
thf(fact_774_idom__class_Odvd__mult__unit__iff_H,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A2 @ ( times_times_int @ B @ C ) )
= ( dvd_dvd_int @ A2 @ C ) ) ) ).
% idom_class.dvd_mult_unit_iff'
thf(fact_775_idom__class_Odvd__mult__unit__iff_H,axiom,
! [B: real,A2: real,C: real] :
( ( dvd_dvd_real @ B @ one_one_real )
=> ( ( dvd_dvd_real @ A2 @ ( times_times_real @ B @ C ) )
= ( dvd_dvd_real @ A2 @ C ) ) ) ).
% idom_class.dvd_mult_unit_iff'
thf(fact_776_idom__class_Ounit__mult__left__cancel,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( ( times_times_int @ A2 @ B )
= ( times_times_int @ A2 @ C ) )
= ( B = C ) ) ) ).
% idom_class.unit_mult_left_cancel
thf(fact_777_idom__class_Ounit__mult__left__cancel,axiom,
! [A2: real,B: real,C: real] :
( ( dvd_dvd_real @ A2 @ one_one_real )
=> ( ( ( times_times_real @ A2 @ B )
= ( times_times_real @ A2 @ C ) )
= ( B = C ) ) ) ).
% idom_class.unit_mult_left_cancel
thf(fact_778_idom__class_Ounit__mult__right__cancel,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( ( times_times_int @ B @ A2 )
= ( times_times_int @ C @ A2 ) )
= ( B = C ) ) ) ).
% idom_class.unit_mult_right_cancel
thf(fact_779_idom__class_Ounit__mult__right__cancel,axiom,
! [A2: real,B: real,C: real] :
( ( dvd_dvd_real @ A2 @ one_one_real )
=> ( ( ( times_times_real @ B @ A2 )
= ( times_times_real @ C @ A2 ) )
= ( B = C ) ) ) ).
% idom_class.unit_mult_right_cancel
thf(fact_780_unit__div__cancel,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ( ( ( divide_divide_nat @ B @ A2 )
= ( divide_divide_nat @ C @ A2 ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_781_unit__div__cancel,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ( ( ( divide_divide_int @ B @ A2 )
= ( divide_divide_int @ C @ A2 ) )
= ( B = C ) ) ) ).
% unit_div_cancel
thf(fact_782_div__unit__dvd__iff,axiom,
! [B: nat,A2: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ ( divide_divide_nat @ A2 @ B ) @ C )
= ( dvd_dvd_nat @ A2 @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_783_div__unit__dvd__iff,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ ( divide_divide_int @ A2 @ B ) @ C )
= ( dvd_dvd_int @ A2 @ C ) ) ) ).
% div_unit_dvd_iff
thf(fact_784_dvd__div__unit__iff,axiom,
! [B: nat,A2: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ A2 @ ( divide_divide_nat @ C @ B ) )
= ( dvd_dvd_nat @ A2 @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_785_dvd__div__unit__iff,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ A2 @ ( divide_divide_int @ C @ B ) )
= ( dvd_dvd_int @ A2 @ C ) ) ) ).
% dvd_div_unit_iff
thf(fact_786_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_787_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_788_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_789_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_790_divide__less__eq__1,axiom,
! [B: real,A2: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ A2 ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A2 )
& ( ord_less_real @ B @ A2 ) )
| ( ( ord_less_real @ A2 @ zero_zero_real )
& ( ord_less_real @ A2 @ B ) )
| ( A2 = zero_zero_real ) ) ) ).
% divide_less_eq_1
thf(fact_791_less__divide__eq__1,axiom,
! [B: real,A2: real] :
( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A2 ) )
= ( ( ( ord_less_real @ zero_zero_real @ A2 )
& ( ord_less_real @ A2 @ B ) )
| ( ( ord_less_real @ A2 @ zero_zero_real )
& ( ord_less_real @ B @ A2 ) ) ) ) ).
% less_divide_eq_1
thf(fact_792_unit__dvdE,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ~ ( ( A2 != zero_zero_nat )
=> ! [C3: nat] :
( B
!= ( times_times_nat @ A2 @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_793_unit__dvdE,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ~ ( ( A2 != zero_zero_int )
=> ! [C3: int] :
( B
!= ( times_times_int @ A2 @ C3 ) ) ) ) ).
% unit_dvdE
thf(fact_794_unit__div__eq__0__iff,axiom,
! [B: nat,A2: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A2 @ B )
= zero_zero_nat )
= ( A2 = zero_zero_nat ) ) ) ).
% unit_div_eq_0_iff
thf(fact_795_unit__div__eq__0__iff,axiom,
! [B: int,A2: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A2 @ B )
= zero_zero_int )
= ( A2 = zero_zero_int ) ) ) ).
% unit_div_eq_0_iff
thf(fact_796_unit__eq__div1,axiom,
! [B: nat,A2: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( ( divide_divide_nat @ A2 @ B )
= C )
= ( A2
= ( times_times_nat @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_797_unit__eq__div1,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( ( divide_divide_int @ A2 @ B )
= C )
= ( A2
= ( times_times_int @ C @ B ) ) ) ) ).
% unit_eq_div1
thf(fact_798_unit__eq__div2,axiom,
! [B: nat,A2: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( A2
= ( divide_divide_nat @ C @ B ) )
= ( ( times_times_nat @ A2 @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_799_unit__eq__div2,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( A2
= ( divide_divide_int @ C @ B ) )
= ( ( times_times_int @ A2 @ B )
= C ) ) ) ).
% unit_eq_div2
thf(fact_800_div__mult__unit2,axiom,
! [C: nat,B: nat,A2: nat] :
( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( dvd_dvd_nat @ B @ A2 )
=> ( ( divide_divide_nat @ A2 @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A2 @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_801_div__mult__unit2,axiom,
! [C: int,B: int,A2: int] :
( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( dvd_dvd_int @ B @ A2 )
=> ( ( divide_divide_int @ A2 @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A2 @ B ) @ C ) ) ) ) ).
% div_mult_unit2
thf(fact_802_unit__div__commute,axiom,
! [B: nat,A2: nat,C: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( times_times_nat @ ( divide_divide_nat @ A2 @ B ) @ C )
= ( divide_divide_nat @ ( times_times_nat @ A2 @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_803_unit__div__commute,axiom,
! [B: int,A2: int,C: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( times_times_int @ ( divide_divide_int @ A2 @ B ) @ C )
= ( divide_divide_int @ ( times_times_int @ A2 @ C ) @ B ) ) ) ).
% unit_div_commute
thf(fact_804_unit__div__mult__swap,axiom,
! [C: nat,A2: nat,B: nat] :
( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( times_times_nat @ A2 @ ( divide_divide_nat @ B @ C ) )
= ( divide_divide_nat @ ( times_times_nat @ A2 @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_805_unit__div__mult__swap,axiom,
! [C: int,A2: int,B: int] :
( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( times_times_int @ A2 @ ( divide_divide_int @ B @ C ) )
= ( divide_divide_int @ ( times_times_int @ A2 @ B ) @ C ) ) ) ).
% unit_div_mult_swap
thf(fact_806_is__unit__div__mult2__eq,axiom,
! [B: nat,C: nat,A2: nat] :
( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( dvd_dvd_nat @ C @ one_one_nat )
=> ( ( divide_divide_nat @ A2 @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ ( divide_divide_nat @ A2 @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_807_is__unit__div__mult2__eq,axiom,
! [B: int,C: int,A2: int] :
( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( dvd_dvd_int @ C @ one_one_int )
=> ( ( divide_divide_int @ A2 @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A2 @ B ) @ C ) ) ) ) ).
% is_unit_div_mult2_eq
thf(fact_808_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_809_div__less__dividend,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).
% div_less_dividend
thf(fact_810_div__eq__dividend__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ( divide_divide_nat @ M @ N )
= M )
= ( N = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_811_gcd__nat_Onot__eq__order__implies__strict,axiom,
! [A2: nat,B: nat] :
( ( A2 != B )
=> ( ( dvd_dvd_nat @ A2 @ B )
=> ( ( dvd_dvd_nat @ A2 @ B )
& ( A2 != B ) ) ) ) ).
% gcd_nat.not_eq_order_implies_strict
thf(fact_812_gcd__nat_Ostrict__implies__not__eq,axiom,
! [A2: nat,B: nat] :
( ( ( dvd_dvd_nat @ A2 @ B )
& ( A2 != B ) )
=> ( A2 != B ) ) ).
% gcd_nat.strict_implies_not_eq
thf(fact_813_gcd__nat_Ostrict__implies__order,axiom,
! [A2: nat,B: nat] :
( ( ( dvd_dvd_nat @ A2 @ B )
& ( A2 != B ) )
=> ( dvd_dvd_nat @ A2 @ B ) ) ).
% gcd_nat.strict_implies_order
thf(fact_814_gcd__nat_Ostrict__iff__order,axiom,
! [A2: nat,B: nat] :
( ( ( dvd_dvd_nat @ A2 @ B )
& ( A2 != B ) )
= ( ( dvd_dvd_nat @ A2 @ B )
& ( A2 != B ) ) ) ).
% gcd_nat.strict_iff_order
thf(fact_815_gcd__nat_Oorder__iff__strict,axiom,
( dvd_dvd_nat
= ( ^ [A: nat,B2: nat] :
( ( ( dvd_dvd_nat @ A @ B2 )
& ( A != B2 ) )
| ( A = B2 ) ) ) ) ).
% gcd_nat.order_iff_strict
thf(fact_816_gcd__nat_Ostrict__iff__not,axiom,
! [A2: nat,B: nat] :
( ( ( dvd_dvd_nat @ A2 @ B )
& ( A2 != B ) )
= ( ( dvd_dvd_nat @ A2 @ B )
& ~ ( dvd_dvd_nat @ B @ A2 ) ) ) ).
% gcd_nat.strict_iff_not
thf(fact_817_gcd__nat_Ostrict__trans2,axiom,
! [A2: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A2 @ B )
& ( A2 != B ) )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( ( dvd_dvd_nat @ A2 @ C )
& ( A2 != C ) ) ) ) ).
% gcd_nat.strict_trans2
thf(fact_818_gcd__nat_Ostrict__trans1,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A2 @ C )
& ( A2 != C ) ) ) ) ).
% gcd_nat.strict_trans1
thf(fact_819_gcd__nat_Ostrict__trans,axiom,
! [A2: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A2 @ B )
& ( A2 != B ) )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A2 @ C )
& ( A2 != C ) ) ) ) ).
% gcd_nat.strict_trans
thf(fact_820_gcd__nat_Oantisym,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( dvd_dvd_nat @ B @ A2 )
=> ( A2 = B ) ) ) ).
% gcd_nat.antisym
thf(fact_821_gcd__nat_Oirrefl,axiom,
! [A2: nat] :
~ ( ( dvd_dvd_nat @ A2 @ A2 )
& ( A2 != A2 ) ) ).
% gcd_nat.irrefl
thf(fact_822_gcd__nat_Oeq__iff,axiom,
( ( ^ [Y2: nat,Z: nat] : ( Y2 = Z ) )
= ( ^ [A: nat,B2: nat] :
( ( dvd_dvd_nat @ A @ B2 )
& ( dvd_dvd_nat @ B2 @ A ) ) ) ) ).
% gcd_nat.eq_iff
thf(fact_823_gcd__nat_Otrans,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A2 @ C ) ) ) ).
% gcd_nat.trans
thf(fact_824_gcd__nat_Orefl,axiom,
! [A2: nat] : ( dvd_dvd_nat @ A2 @ A2 ) ).
% gcd_nat.refl
thf(fact_825_gcd__nat_Oasym,axiom,
! [A2: nat,B: nat] :
( ( ( dvd_dvd_nat @ A2 @ B )
& ( A2 != B ) )
=> ~ ( ( dvd_dvd_nat @ B @ A2 )
& ( B != A2 ) ) ) ).
% gcd_nat.asym
thf(fact_826_is__unit__div__mult__cancel__right,axiom,
! [A2: nat,B: nat] :
( ( A2 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( divide_divide_nat @ A2 @ ( times_times_nat @ B @ A2 ) )
= ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_827_is__unit__div__mult__cancel__right,axiom,
! [A2: int,B: int] :
( ( A2 != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( divide_divide_int @ A2 @ ( times_times_int @ B @ A2 ) )
= ( divide_divide_int @ one_one_int @ B ) ) ) ) ).
% is_unit_div_mult_cancel_right
thf(fact_828_is__unit__div__mult__cancel__left,axiom,
! [A2: nat,B: nat] :
( ( A2 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B @ one_one_nat )
=> ( ( divide_divide_nat @ A2 @ ( times_times_nat @ A2 @ B ) )
= ( divide_divide_nat @ one_one_nat @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_829_is__unit__div__mult__cancel__left,axiom,
! [A2: int,B: int] :
( ( A2 != zero_zero_int )
=> ( ( dvd_dvd_int @ B @ one_one_int )
=> ( ( divide_divide_int @ A2 @ ( times_times_int @ A2 @ B ) )
= ( divide_divide_int @ one_one_int @ B ) ) ) ) ).
% is_unit_div_mult_cancel_left
thf(fact_830_is__unitE,axiom,
! [A2: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ one_one_nat )
=> ~ ( ( A2 != zero_zero_nat )
=> ! [B3: nat] :
( ( B3 != zero_zero_nat )
=> ( ( dvd_dvd_nat @ B3 @ one_one_nat )
=> ( ( ( divide_divide_nat @ one_one_nat @ A2 )
= B3 )
=> ( ( ( divide_divide_nat @ one_one_nat @ B3 )
= A2 )
=> ( ( ( times_times_nat @ A2 @ B3 )
= one_one_nat )
=> ( ( divide_divide_nat @ C @ A2 )
!= ( times_times_nat @ C @ B3 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_831_is__unitE,axiom,
! [A2: int,C: int] :
( ( dvd_dvd_int @ A2 @ one_one_int )
=> ~ ( ( A2 != zero_zero_int )
=> ! [B3: int] :
( ( B3 != zero_zero_int )
=> ( ( dvd_dvd_int @ B3 @ one_one_int )
=> ( ( ( divide_divide_int @ one_one_int @ A2 )
= B3 )
=> ( ( ( divide_divide_int @ one_one_int @ B3 )
= A2 )
=> ( ( ( times_times_int @ A2 @ B3 )
= one_one_int )
=> ( ( divide_divide_int @ C @ A2 )
!= ( times_times_int @ C @ B3 ) ) ) ) ) ) ) ) ) ).
% is_unitE
thf(fact_832_odd__one,axiom,
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).
% odd_one
thf(fact_833_odd__one,axiom,
~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).
% odd_one
thf(fact_834_Suc__pred_H,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( N
= ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_835_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_836_dvd__mult__cancel2,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel2
thf(fact_837_dvd__mult__cancel1,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel1
thf(fact_838_division__decomp,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ ( times_times_nat @ B @ C ) )
=> ? [B4: nat,C4: nat] :
( ( A2
= ( times_times_nat @ B4 @ C4 ) )
& ( dvd_dvd_nat @ B4 @ B )
& ( dvd_dvd_nat @ C4 @ C ) ) ) ).
% division_decomp
thf(fact_839_division__decomp,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ ( times_times_int @ B @ C ) )
=> ? [B4: int,C4: int] :
( ( A2
= ( times_times_int @ B4 @ C4 ) )
& ( dvd_dvd_int @ B4 @ B )
& ( dvd_dvd_int @ C4 @ C ) ) ) ).
% division_decomp
thf(fact_840_dvd__productE,axiom,
! [P2: nat,A2: nat,B: nat] :
( ( dvd_dvd_nat @ P2 @ ( times_times_nat @ A2 @ B ) )
=> ~ ! [X5: nat,Y3: nat] :
( ( P2
= ( times_times_nat @ X5 @ Y3 ) )
=> ( ( dvd_dvd_nat @ X5 @ A2 )
=> ~ ( dvd_dvd_nat @ Y3 @ B ) ) ) ) ).
% dvd_productE
thf(fact_841_dvd__productE,axiom,
! [P2: int,A2: int,B: int] :
( ( dvd_dvd_int @ P2 @ ( times_times_int @ A2 @ B ) )
=> ~ ! [X5: int,Y3: int] :
( ( P2
= ( times_times_int @ X5 @ Y3 ) )
=> ( ( dvd_dvd_int @ X5 @ A2 )
=> ~ ( dvd_dvd_int @ Y3 @ B ) ) ) ) ).
% dvd_productE
thf(fact_842_gcd__nat_Oextremum__uniqueI,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
=> ( A2 = zero_zero_nat ) ) ).
% gcd_nat.extremum_uniqueI
thf(fact_843_gcd__nat_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2 != zero_zero_nat )
= ( ( dvd_dvd_nat @ A2 @ zero_zero_nat )
& ( A2 != zero_zero_nat ) ) ) ).
% gcd_nat.not_eq_extremum
thf(fact_844_gcd__nat_Oextremum__unique,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
= ( A2 = zero_zero_nat ) ) ).
% gcd_nat.extremum_unique
thf(fact_845_gcd__nat_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ( dvd_dvd_nat @ zero_zero_nat @ A2 )
& ( zero_zero_nat != A2 ) ) ).
% gcd_nat.extremum_strict
thf(fact_846_gcd__nat_Oextremum,axiom,
! [A2: nat] : ( dvd_dvd_nat @ A2 @ zero_zero_nat ) ).
% gcd_nat.extremum
thf(fact_847_Discrete_Olog_Osimps,axiom,
( log
= ( ^ [N4: nat] : ( if_nat @ ( ord_less_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_nat @ ( suc @ ( log @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% Discrete.log.simps
thf(fact_848_Discrete_Olog_Oelims,axiom,
! [X: nat,Y: nat] :
( ( ( log @ X )
= Y )
=> ( ( ( ord_less_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( Y = zero_zero_nat ) )
& ( ~ ( ord_less_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( Y
= ( suc @ ( log @ ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% Discrete.log.elims
thf(fact_849_filter__odd__nth,axiom,
! [J: nat,L: nat,X: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ L )
=> ( ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X )
= L )
=> ( ( nth_nat
@ ( filter_nat
@ ^ [A: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
@ ( upt @ zero_zero_nat @ L ) )
@ J )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) ) ) ).
% filter_odd_nth
thf(fact_850_filter__odd__map,axiom,
! [X: nat] :
( ( filter_nat
@ ^ [A: nat] :
~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
@ ( upt @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) ) )
= ( map_nat_nat
@ ^ [Y4: nat] : ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y4 ) @ one_one_nat )
@ ( upt @ zero_zero_nat @ X ) ) ) ).
% filter_odd_map
thf(fact_851_add__left__cancel,axiom,
! [A2: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ A2 @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_852_add__left__cancel,axiom,
! [A2: int,B: int,C: int] :
( ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ A2 @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_853_add__left__cancel,axiom,
! [A2: real,B: real,C: real] :
( ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ A2 @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_854_add__right__cancel,axiom,
! [B: nat,A2: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A2 )
= ( plus_plus_nat @ C @ A2 ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_855_add__right__cancel,axiom,
! [B: int,A2: int,C: int] :
( ( ( plus_plus_int @ B @ A2 )
= ( plus_plus_int @ C @ A2 ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_856_add__right__cancel,axiom,
! [B: real,A2: real,C: real] :
( ( ( plus_plus_real @ B @ A2 )
= ( plus_plus_real @ C @ A2 ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_857_add_Oright__neutral,axiom,
! [A2: nat] :
( ( plus_plus_nat @ A2 @ zero_zero_nat )
= A2 ) ).
% add.right_neutral
thf(fact_858_add_Oright__neutral,axiom,
! [A2: int] :
( ( plus_plus_int @ A2 @ zero_zero_int )
= A2 ) ).
% add.right_neutral
thf(fact_859_add_Oright__neutral,axiom,
! [A2: real] :
( ( plus_plus_real @ A2 @ zero_zero_real )
= A2 ) ).
% add.right_neutral
thf(fact_860_double__zero__sym,axiom,
! [A2: int] :
( ( zero_zero_int
= ( plus_plus_int @ A2 @ A2 ) )
= ( A2 = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_861_double__zero__sym,axiom,
! [A2: real] :
( ( zero_zero_real
= ( plus_plus_real @ A2 @ A2 ) )
= ( A2 = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_862_add__cancel__left__left,axiom,
! [B: nat,A2: nat] :
( ( ( plus_plus_nat @ B @ A2 )
= A2 )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_863_add__cancel__left__left,axiom,
! [B: int,A2: int] :
( ( ( plus_plus_int @ B @ A2 )
= A2 )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_864_add__cancel__left__left,axiom,
! [B: real,A2: real] :
( ( ( plus_plus_real @ B @ A2 )
= A2 )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_865_add__cancel__left__right,axiom,
! [A2: nat,B: nat] :
( ( ( plus_plus_nat @ A2 @ B )
= A2 )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_866_add__cancel__left__right,axiom,
! [A2: int,B: int] :
( ( ( plus_plus_int @ A2 @ B )
= A2 )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_867_add__cancel__left__right,axiom,
! [A2: real,B: real] :
( ( ( plus_plus_real @ A2 @ B )
= A2 )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_868_add__cancel__right__left,axiom,
! [A2: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ B @ A2 ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_869_add__cancel__right__left,axiom,
! [A2: int,B: int] :
( ( A2
= ( plus_plus_int @ B @ A2 ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_870_add__cancel__right__left,axiom,
! [A2: real,B: real] :
( ( A2
= ( plus_plus_real @ B @ A2 ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_871_add__cancel__right__right,axiom,
! [A2: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ A2 @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_872_add__cancel__right__right,axiom,
! [A2: int,B: int] :
( ( A2
= ( plus_plus_int @ A2 @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_873_add__cancel__right__right,axiom,
! [A2: real,B: real] :
( ( A2
= ( plus_plus_real @ A2 @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_874_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_875_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y ) )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_876_add__0,axiom,
! [A2: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A2 )
= A2 ) ).
% add_0
thf(fact_877_add__0,axiom,
! [A2: int] :
( ( plus_plus_int @ zero_zero_int @ A2 )
= A2 ) ).
% add_0
thf(fact_878_add__0,axiom,
! [A2: real] :
( ( plus_plus_real @ zero_zero_real @ A2 )
= A2 ) ).
% add_0
thf(fact_879_add__less__cancel__right,axiom,
! [A2: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A2 @ B ) ) ).
% add_less_cancel_right
thf(fact_880_add__less__cancel__right,axiom,
! [A2: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A2 @ B ) ) ).
% add_less_cancel_right
thf(fact_881_add__less__cancel__right,axiom,
! [A2: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A2 @ B ) ) ).
% add_less_cancel_right
thf(fact_882_add__less__cancel__left,axiom,
! [C: nat,A2: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A2 @ B ) ) ).
% add_less_cancel_left
thf(fact_883_add__less__cancel__left,axiom,
! [C: int,A2: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A2 @ B ) ) ).
% add_less_cancel_left
thf(fact_884_add__less__cancel__left,axiom,
! [C: real,A2: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A2 @ B ) ) ).
% add_less_cancel_left
thf(fact_885_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_886_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_887_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_888_add__numeral__left,axiom,
! [V: num,W: num,Z2: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z2 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z2 ) ) ).
% add_numeral_left
thf(fact_889_add__numeral__left,axiom,
! [V: num,W: num,Z2: int] :
( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z2 ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z2 ) ) ).
% add_numeral_left
thf(fact_890_add__numeral__left,axiom,
! [V: num,W: num,Z2: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z2 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z2 ) ) ).
% add_numeral_left
thf(fact_891_add__diff__cancel__right_H,axiom,
! [A2: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A2 @ B ) @ B )
= A2 ) ).
% add_diff_cancel_right'
thf(fact_892_add__diff__cancel__right_H,axiom,
! [A2: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A2 @ B ) @ B )
= A2 ) ).
% add_diff_cancel_right'
thf(fact_893_add__diff__cancel__right_H,axiom,
! [A2: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A2 @ B ) @ B )
= A2 ) ).
% add_diff_cancel_right'
thf(fact_894_add__diff__cancel__right,axiom,
! [A2: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A2 @ B ) ) ).
% add_diff_cancel_right
thf(fact_895_add__diff__cancel__right,axiom,
! [A2: int,C: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ A2 @ B ) ) ).
% add_diff_cancel_right
thf(fact_896_add__diff__cancel__right,axiom,
! [A2: real,C: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ A2 @ B ) ) ).
% add_diff_cancel_right
thf(fact_897_add__diff__cancel__left_H,axiom,
! [A2: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A2 @ B ) @ A2 )
= B ) ).
% add_diff_cancel_left'
thf(fact_898_add__diff__cancel__left_H,axiom,
! [A2: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A2 @ B ) @ A2 )
= B ) ).
% add_diff_cancel_left'
thf(fact_899_add__diff__cancel__left_H,axiom,
! [A2: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A2 @ B ) @ A2 )
= B ) ).
% add_diff_cancel_left'
thf(fact_900_add__diff__cancel__left,axiom,
! [C: nat,A2: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A2 @ B ) ) ).
% add_diff_cancel_left
thf(fact_901_add__diff__cancel__left,axiom,
! [C: int,A2: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B ) )
= ( minus_minus_int @ A2 @ B ) ) ).
% add_diff_cancel_left
thf(fact_902_add__diff__cancel__left,axiom,
! [C: real,A2: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B ) )
= ( minus_minus_real @ A2 @ B ) ) ).
% add_diff_cancel_left
thf(fact_903_diff__add__cancel,axiom,
! [A2: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A2 @ B ) @ B )
= A2 ) ).
% diff_add_cancel
thf(fact_904_diff__add__cancel,axiom,
! [A2: real,B: real] :
( ( plus_plus_real @ ( minus_minus_real @ A2 @ B ) @ B )
= A2 ) ).
% diff_add_cancel
thf(fact_905_add__diff__cancel,axiom,
! [A2: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A2 @ B ) @ B )
= A2 ) ).
% add_diff_cancel
thf(fact_906_add__diff__cancel,axiom,
! [A2: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A2 @ B ) @ B )
= A2 ) ).
% add_diff_cancel
thf(fact_907_dvd__add__triv__left__iff,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ A2 @ B ) )
= ( dvd_dvd_nat @ A2 @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_908_dvd__add__triv__left__iff,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ ( plus_plus_int @ A2 @ B ) )
= ( dvd_dvd_int @ A2 @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_909_dvd__add__triv__left__iff,axiom,
! [A2: real,B: real] :
( ( dvd_dvd_real @ A2 @ ( plus_plus_real @ A2 @ B ) )
= ( dvd_dvd_real @ A2 @ B ) ) ).
% dvd_add_triv_left_iff
thf(fact_910_dvd__add__triv__right__iff,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B @ A2 ) )
= ( dvd_dvd_nat @ A2 @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_911_dvd__add__triv__right__iff,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ A2 @ ( plus_plus_int @ B @ A2 ) )
= ( dvd_dvd_int @ A2 @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_912_dvd__add__triv__right__iff,axiom,
! [A2: real,B: real] :
( ( dvd_dvd_real @ A2 @ ( plus_plus_real @ B @ A2 ) )
= ( dvd_dvd_real @ A2 @ B ) ) ).
% dvd_add_triv_right_iff
thf(fact_913_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_914_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_915_add__Suc__right,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ M @ ( suc @ N ) )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc_right
thf(fact_916_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_917_diff__diff__left,axiom,
! [I3: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J ) @ K )
= ( minus_minus_nat @ I3 @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_918_add__less__same__cancel1,axiom,
! [B: nat,A2: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A2 ) @ B )
= ( ord_less_nat @ A2 @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_919_add__less__same__cancel1,axiom,
! [B: int,A2: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A2 ) @ B )
= ( ord_less_int @ A2 @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_920_add__less__same__cancel1,axiom,
! [B: real,A2: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A2 ) @ B )
= ( ord_less_real @ A2 @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_921_add__less__same__cancel2,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A2 @ B ) @ B )
= ( ord_less_nat @ A2 @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_922_add__less__same__cancel2,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A2 @ B ) @ B )
= ( ord_less_int @ A2 @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_923_add__less__same__cancel2,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A2 @ B ) @ B )
= ( ord_less_real @ A2 @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_924_less__add__same__cancel1,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ A2 @ ( plus_plus_nat @ A2 @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_925_less__add__same__cancel1,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ A2 @ ( plus_plus_int @ A2 @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_926_less__add__same__cancel1,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ A2 @ ( plus_plus_real @ A2 @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_927_less__add__same__cancel2,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ A2 @ ( plus_plus_nat @ B @ A2 ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_928_less__add__same__cancel2,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ A2 @ ( plus_plus_int @ B @ A2 ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_929_less__add__same__cancel2,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ A2 @ ( plus_plus_real @ B @ A2 ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_930_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A2: int] :
( ( ord_less_int @ ( plus_plus_int @ A2 @ A2 ) @ zero_zero_int )
= ( ord_less_int @ A2 @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_931_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A2: real] :
( ( ord_less_real @ ( plus_plus_real @ A2 @ A2 ) @ zero_zero_real )
= ( ord_less_real @ A2 @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_932_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A2: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ A2 ) )
= ( ord_less_int @ zero_zero_int @ A2 ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_933_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A2: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A2 @ A2 ) )
= ( ord_less_real @ zero_zero_real @ A2 ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_934_diff__add__zero,axiom,
! [A2: nat,B: nat] :
( ( minus_minus_nat @ A2 @ ( plus_plus_nat @ A2 @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_935_distrib__right__numeral,axiom,
! [A2: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A2 @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A2 @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_936_distrib__right__numeral,axiom,
! [A2: int,B: int,V: num] :
( ( times_times_int @ ( plus_plus_int @ A2 @ B ) @ ( numeral_numeral_int @ V ) )
= ( plus_plus_int @ ( times_times_int @ A2 @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_937_distrib__right__numeral,axiom,
! [A2: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A2 @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A2 @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_938_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_939_distrib__left__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_940_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_941_dvd__add__times__triv__right__iff,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A2 ) ) )
= ( dvd_dvd_nat @ A2 @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_942_dvd__add__times__triv__right__iff,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ ( plus_plus_int @ B @ ( times_times_int @ C @ A2 ) ) )
= ( dvd_dvd_int @ A2 @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_943_dvd__add__times__triv__right__iff,axiom,
! [A2: real,B: real,C: real] :
( ( dvd_dvd_real @ A2 @ ( plus_plus_real @ B @ ( times_times_real @ C @ A2 ) ) )
= ( dvd_dvd_real @ A2 @ B ) ) ).
% dvd_add_times_triv_right_iff
thf(fact_944_dvd__add__times__triv__left__iff,axiom,
! [A2: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ ( times_times_nat @ C @ A2 ) @ B ) )
= ( dvd_dvd_nat @ A2 @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_945_dvd__add__times__triv__left__iff,axiom,
! [A2: int,C: int,B: int] :
( ( dvd_dvd_int @ A2 @ ( plus_plus_int @ ( times_times_int @ C @ A2 ) @ B ) )
= ( dvd_dvd_int @ A2 @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_946_dvd__add__times__triv__left__iff,axiom,
! [A2: real,C: real,B: real] :
( ( dvd_dvd_real @ A2 @ ( plus_plus_real @ ( times_times_real @ C @ A2 ) @ B ) )
= ( dvd_dvd_real @ A2 @ B ) ) ).
% dvd_add_times_triv_left_iff
thf(fact_947_div__add,axiom,
! [C: nat,A2: nat,B: nat] :
( ( dvd_dvd_nat @ C @ A2 )
=> ( ( dvd_dvd_nat @ C @ B )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
= ( plus_plus_nat @ ( divide_divide_nat @ A2 @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_948_div__add,axiom,
! [C: int,A2: int,B: int] :
( ( dvd_dvd_int @ C @ A2 )
=> ( ( dvd_dvd_int @ C @ B )
=> ( ( divide_divide_int @ ( plus_plus_int @ A2 @ B ) @ C )
= ( plus_plus_int @ ( divide_divide_int @ A2 @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).
% div_add
thf(fact_949_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_950_mult__Suc__right,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ M @ ( suc @ N ) )
= ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc_right
thf(fact_951_div__mult__self4,axiom,
! [B: nat,C: nat,A2: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A2 ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A2 @ B ) ) ) ) ).
% div_mult_self4
thf(fact_952_div__mult__self4,axiom,
! [B: int,C: int,A2: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A2 ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A2 @ B ) ) ) ) ).
% div_mult_self4
thf(fact_953_div__mult__self3,axiom,
! [B: nat,C: nat,A2: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A2 ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A2 @ B ) ) ) ) ).
% div_mult_self3
thf(fact_954_div__mult__self3,axiom,
! [B: int,C: int,A2: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A2 ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A2 @ B ) ) ) ) ).
% div_mult_self3
thf(fact_955_div__mult__self2,axiom,
! [B: nat,A2: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ ( times_times_nat @ B @ C ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A2 @ B ) ) ) ) ).
% div_mult_self2
thf(fact_956_div__mult__self2,axiom,
! [B: int,A2: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A2 @ ( times_times_int @ B @ C ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A2 @ B ) ) ) ) ).
% div_mult_self2
thf(fact_957_div__mult__self1,axiom,
! [B: nat,A2: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ ( times_times_nat @ C @ B ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A2 @ B ) ) ) ) ).
% div_mult_self1
thf(fact_958_div__mult__self1,axiom,
! [B: int,A2: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A2 @ ( times_times_int @ C @ B ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A2 @ B ) ) ) ) ).
% div_mult_self1
thf(fact_959_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_960_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_961_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_962_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_963_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_964_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_965_nth__upt,axiom,
! [I3: nat,K: nat,J: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ J )
=> ( ( nth_nat @ ( upt @ I3 @ J ) @ K )
= ( plus_plus_nat @ I3 @ K ) ) ) ).
% nth_upt
thf(fact_966_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_967_one__add__one,axiom,
( ( plus_plus_int @ one_one_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_968_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_969_odd__add,axiom,
! [A2: nat,B: nat] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A2 @ B ) ) )
= ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 ) )
!= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_970_odd__add,axiom,
! [A2: int,B: int] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A2 @ B ) ) )
= ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 ) )
!= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_971_even__add,axiom,
! [A2: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A2 @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_972_even__add,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A2 @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_973_add__2__eq__Suc,axiom,
! [N: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc
thf(fact_974_add__2__eq__Suc_H,axiom,
! [N: nat] :
( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc'
thf(fact_975_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= M ) ).
% add_self_div_2
thf(fact_976_even__plus__one__iff,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A2 @ one_one_nat ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 ) ) ) ).
% even_plus_one_iff
thf(fact_977_even__plus__one__iff,axiom,
! [A2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A2 @ one_one_int ) )
= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 ) ) ) ).
% even_plus_one_iff
thf(fact_978_even__diff,axiom,
! [A2: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A2 @ B ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A2 @ B ) ) ) ).
% even_diff
thf(fact_979_odd__succ__div__two,axiom,
! [A2: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).
% odd_succ_div_two
thf(fact_980_odd__succ__div__two,axiom,
! [A2: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
=> ( ( divide_divide_int @ ( plus_plus_int @ A2 @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).
% odd_succ_div_two
thf(fact_981_even__succ__div__two,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A2 @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_982_even__succ__div__two,axiom,
! [A2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
=> ( ( divide_divide_int @ ( plus_plus_int @ A2 @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_two
thf(fact_983_even__succ__div__2,axiom,
! [A2: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A2 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_984_even__succ__div__2,axiom,
! [A2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A2 ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).
% even_succ_div_2
thf(fact_985_even__diff__nat,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% even_diff_nat
thf(fact_986_odd__two__times__div__two__succ,axiom,
! [A2: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A2 )
=> ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
= A2 ) ) ).
% odd_two_times_div_two_succ
thf(fact_987_odd__two__times__div__two__succ,axiom,
! [A2: int] :
( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A2 )
=> ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
= A2 ) ) ).
% odd_two_times_div_two_succ
thf(fact_988_Euclid__induct,axiom,
! [P: nat > nat > $o,A2: nat,B: nat] :
( ! [A3: nat,B3: nat] :
( ( P @ A3 @ B3 )
= ( P @ B3 @ A3 ) )
=> ( ! [A3: nat] : ( P @ A3 @ zero_zero_nat )
=> ( ! [A3: nat,B3: nat] :
( ( P @ A3 @ B3 )
=> ( P @ A3 @ ( plus_plus_nat @ A3 @ B3 ) ) )
=> ( P @ A2 @ B ) ) ) ) ).
% Euclid_induct
thf(fact_989_comm__monoid__add__class_Oadd__0,axiom,
! [A2: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A2 )
= A2 ) ).
% comm_monoid_add_class.add_0
thf(fact_990_comm__monoid__add__class_Oadd__0,axiom,
! [A2: int] :
( ( plus_plus_int @ zero_zero_int @ A2 )
= A2 ) ).
% comm_monoid_add_class.add_0
thf(fact_991_comm__monoid__add__class_Oadd__0,axiom,
! [A2: real] :
( ( plus_plus_real @ zero_zero_real @ A2 )
= A2 ) ).
% comm_monoid_add_class.add_0
thf(fact_992_add_Ocomm__neutral,axiom,
! [A2: nat] :
( ( plus_plus_nat @ A2 @ zero_zero_nat )
= A2 ) ).
% add.comm_neutral
thf(fact_993_add_Ocomm__neutral,axiom,
! [A2: int] :
( ( plus_plus_int @ A2 @ zero_zero_int )
= A2 ) ).
% add.comm_neutral
thf(fact_994_add_Ocomm__neutral,axiom,
! [A2: real] :
( ( plus_plus_real @ A2 @ zero_zero_real )
= A2 ) ).
% add.comm_neutral
thf(fact_995_add_Ogroup__left__neutral,axiom,
! [A2: int] :
( ( plus_plus_int @ zero_zero_int @ A2 )
= A2 ) ).
% add.group_left_neutral
thf(fact_996_add_Ogroup__left__neutral,axiom,
! [A2: real] :
( ( plus_plus_real @ zero_zero_real @ A2 )
= A2 ) ).
% add.group_left_neutral
thf(fact_997_add__less__imp__less__right,axiom,
! [A2: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_nat @ A2 @ B ) ) ).
% add_less_imp_less_right
thf(fact_998_add__less__imp__less__right,axiom,
! [A2: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_int @ A2 @ B ) ) ).
% add_less_imp_less_right
thf(fact_999_add__less__imp__less__right,axiom,
! [A2: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_real @ A2 @ B ) ) ).
% add_less_imp_less_right
thf(fact_1000_add__less__imp__less__left,axiom,
! [C: nat,A2: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_nat @ A2 @ B ) ) ).
% add_less_imp_less_left
thf(fact_1001_add__less__imp__less__left,axiom,
! [C: int,A2: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_int @ A2 @ B ) ) ).
% add_less_imp_less_left
thf(fact_1002_add__less__imp__less__left,axiom,
! [C: real,A2: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_real @ A2 @ B ) ) ).
% add_less_imp_less_left
thf(fact_1003_add__strict__right__mono,axiom,
! [A2: nat,B: nat,C: nat] :
( ( ord_less_nat @ A2 @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_1004_add__strict__right__mono,axiom,
! [A2: int,B: int,C: int] :
( ( ord_less_int @ A2 @ B )
=> ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_1005_add__strict__right__mono,axiom,
! [A2: real,B: real,C: real] :
( ( ord_less_real @ A2 @ B )
=> ( ord_less_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_1006_add__strict__left__mono,axiom,
! [A2: nat,B: nat,C: nat] :
( ( ord_less_nat @ A2 @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_1007_add__strict__left__mono,axiom,
! [A2: int,B: int,C: int] :
( ( ord_less_int @ A2 @ B )
=> ( ord_less_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_1008_add__strict__left__mono,axiom,
! [A2: real,B: real,C: real] :
( ( ord_less_real @ A2 @ B )
=> ( ord_less_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_1009_add__strict__mono,axiom,
! [A2: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A2 @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_1010_add__strict__mono,axiom,
! [A2: int,B: int,C: int,D: int] :
( ( ord_less_int @ A2 @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_1011_add__strict__mono,axiom,
! [A2: real,B: real,C: real,D: real] :
( ( ord_less_real @ A2 @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_1012_add__mono__thms__linordered__field_I1_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I3 @ J )
& ( K = L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_1013_add__mono__thms__linordered__field_I1_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I3 @ J )
& ( K = L ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_1014_add__mono__thms__linordered__field_I1_J,axiom,
! [I3: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I3 @ J )
& ( K = L ) )
=> ( ord_less_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_1015_add__mono__thms__linordered__field_I2_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( I3 = J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_1016_add__mono__thms__linordered__field_I2_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( I3 = J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_1017_add__mono__thms__linordered__field_I2_J,axiom,
! [I3: real,J: real,K: real,L: real] :
( ( ( I3 = J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_1018_add__mono__thms__linordered__field_I5_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I3 @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_1019_add__mono__thms__linordered__field_I5_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I3 @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_1020_add__mono__thms__linordered__field_I5_J,axiom,
! [I3: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I3 @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_1021_ring__class_Oring__distribs_I2_J,axiom,
! [A2: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A2 @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_1022_ring__class_Oring__distribs_I2_J,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A2 @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_1023_ring__class_Oring__distribs_I1_J,axiom,
! [A2: int,B: int,C: int] :
( ( times_times_int @ A2 @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A2 @ B ) @ ( times_times_int @ A2 @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_1024_ring__class_Oring__distribs_I1_J,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ A2 @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A2 @ B ) @ ( times_times_real @ A2 @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_1025_comm__semiring__class_Odistrib,axiom,
! [A2: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_1026_comm__semiring__class_Odistrib,axiom,
! [A2: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A2 @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_1027_comm__semiring__class_Odistrib,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A2 @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_1028_distrib__left,axiom,
! [A2: nat,B: nat,C: nat] :
( ( times_times_nat @ A2 @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A2 @ B ) @ ( times_times_nat @ A2 @ C ) ) ) ).
% distrib_left
thf(fact_1029_distrib__left,axiom,
! [A2: int,B: int,C: int] :
( ( times_times_int @ A2 @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A2 @ B ) @ ( times_times_int @ A2 @ C ) ) ) ).
% distrib_left
thf(fact_1030_distrib__left,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ A2 @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A2 @ B ) @ ( times_times_real @ A2 @ C ) ) ) ).
% distrib_left
thf(fact_1031_distrib__right,axiom,
! [A2: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A2 @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_1032_distrib__right,axiom,
! [A2: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A2 @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A2 @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_1033_distrib__right,axiom,
! [A2: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A2 @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A2 @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_1034_combine__common__factor,axiom,
! [A2: nat,E: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A2 @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A2 @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_1035_combine__common__factor,axiom,
! [A2: int,E: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A2 @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A2 @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_1036_combine__common__factor,axiom,
! [A2: real,E: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A2 @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A2 @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_1037_mult__hom_Ohom__add,axiom,
! [C: nat,X: nat,Y: nat] :
( ( times_times_nat @ C @ ( plus_plus_nat @ X @ Y ) )
= ( plus_plus_nat @ ( times_times_nat @ C @ X ) @ ( times_times_nat @ C @ Y ) ) ) ).
% mult_hom.hom_add
thf(fact_1038_mult__hom_Ohom__add,axiom,
! [C: int,X: int,Y: int] :
( ( times_times_int @ C @ ( plus_plus_int @ X @ Y ) )
= ( plus_plus_int @ ( times_times_int @ C @ X ) @ ( times_times_int @ C @ Y ) ) ) ).
% mult_hom.hom_add
thf(fact_1039_mult__hom_Ohom__add,axiom,
! [C: real,X: real,Y: real] :
( ( times_times_real @ C @ ( plus_plus_real @ X @ Y ) )
= ( plus_plus_real @ ( times_times_real @ C @ X ) @ ( times_times_real @ C @ Y ) ) ) ).
% mult_hom.hom_add
thf(fact_1040_diff__diff__eq,axiom,
! [A2: nat,B: nat,C: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A2 @ B ) @ C )
= ( minus_minus_nat @ A2 @ ( plus_plus_nat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_1041_diff__diff__eq,axiom,
! [A2: int,B: int,C: int] :
( ( minus_minus_int @ ( minus_minus_int @ A2 @ B ) @ C )
= ( minus_minus_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_1042_diff__diff__eq,axiom,
! [A2: real,B: real,C: real] :
( ( minus_minus_real @ ( minus_minus_real @ A2 @ B ) @ C )
= ( minus_minus_real @ A2 @ ( plus_plus_real @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_1043_add__implies__diff,axiom,
! [C: nat,B: nat,A2: nat] :
( ( ( plus_plus_nat @ C @ B )
= A2 )
=> ( C
= ( minus_minus_nat @ A2 @ B ) ) ) ).
% add_implies_diff
thf(fact_1044_add__implies__diff,axiom,
! [C: int,B: int,A2: int] :
( ( ( plus_plus_int @ C @ B )
= A2 )
=> ( C
= ( minus_minus_int @ A2 @ B ) ) ) ).
% add_implies_diff
thf(fact_1045_add__implies__diff,axiom,
! [C: real,B: real,A2: real] :
( ( ( plus_plus_real @ C @ B )
= A2 )
=> ( C
= ( minus_minus_real @ A2 @ B ) ) ) ).
% add_implies_diff
thf(fact_1046_diff__add__eq__diff__diff__swap,axiom,
! [A2: int,B: int,C: int] :
( ( minus_minus_int @ A2 @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ ( minus_minus_int @ A2 @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_1047_diff__add__eq__diff__diff__swap,axiom,
! [A2: real,B: real,C: real] :
( ( minus_minus_real @ A2 @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ ( minus_minus_real @ A2 @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_1048_diff__add__eq,axiom,
! [A2: int,B: int,C: int] :
( ( plus_plus_int @ ( minus_minus_int @ A2 @ B ) @ C )
= ( minus_minus_int @ ( plus_plus_int @ A2 @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_1049_diff__add__eq,axiom,
! [A2: real,B: real,C: real] :
( ( plus_plus_real @ ( minus_minus_real @ A2 @ B ) @ C )
= ( minus_minus_real @ ( plus_plus_real @ A2 @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_1050_diff__diff__eq2,axiom,
! [A2: int,B: int,C: int] :
( ( minus_minus_int @ A2 @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A2 @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_1051_diff__diff__eq2,axiom,
! [A2: real,B: real,C: real] :
( ( minus_minus_real @ A2 @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A2 @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_1052_add__diff__eq,axiom,
! [A2: int,B: int,C: int] :
( ( plus_plus_int @ A2 @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A2 @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_1053_add__diff__eq,axiom,
! [A2: real,B: real,C: real] :
( ( plus_plus_real @ A2 @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A2 @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_1054_eq__diff__eq,axiom,
! [A2: int,C: int,B: int] :
( ( A2
= ( minus_minus_int @ C @ B ) )
= ( ( plus_plus_int @ A2 @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_1055_eq__diff__eq,axiom,
! [A2: real,C: real,B: real] :
( ( A2
= ( minus_minus_real @ C @ B ) )
= ( ( plus_plus_real @ A2 @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_1056_diff__eq__eq,axiom,
! [A2: int,B: int,C: int] :
( ( ( minus_minus_int @ A2 @ B )
= C )
= ( A2
= ( plus_plus_int @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_1057_diff__eq__eq,axiom,
! [A2: real,B: real,C: real] :
( ( ( minus_minus_real @ A2 @ B )
= C )
= ( A2
= ( plus_plus_real @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_1058_group__cancel_Osub1,axiom,
! [A4: int,K: int,A2: int,B: int] :
( ( A4
= ( plus_plus_int @ K @ A2 ) )
=> ( ( minus_minus_int @ A4 @ B )
= ( plus_plus_int @ K @ ( minus_minus_int @ A2 @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_1059_group__cancel_Osub1,axiom,
! [A4: real,K: real,A2: real,B: real] :
( ( A4
= ( plus_plus_real @ K @ A2 ) )
=> ( ( minus_minus_real @ A4 @ B )
= ( plus_plus_real @ K @ ( minus_minus_real @ A2 @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_1060_add__divide__distrib,axiom,
! [A2: real,B: real,C: real] :
( ( divide_divide_real @ ( plus_plus_real @ A2 @ B ) @ C )
= ( plus_plus_real @ ( divide_divide_real @ A2 @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_1061_dvd__add__right__iff,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B @ C ) )
= ( dvd_dvd_nat @ A2 @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_1062_dvd__add__right__iff,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ B )
=> ( ( dvd_dvd_int @ A2 @ ( plus_plus_int @ B @ C ) )
= ( dvd_dvd_int @ A2 @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_1063_dvd__add__right__iff,axiom,
! [A2: real,B: real,C: real] :
( ( dvd_dvd_real @ A2 @ B )
=> ( ( dvd_dvd_real @ A2 @ ( plus_plus_real @ B @ C ) )
= ( dvd_dvd_real @ A2 @ C ) ) ) ).
% dvd_add_right_iff
thf(fact_1064_dvd__add__left__iff,axiom,
! [A2: nat,C: nat,B: nat] :
( ( dvd_dvd_nat @ A2 @ C )
=> ( ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B @ C ) )
= ( dvd_dvd_nat @ A2 @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_1065_dvd__add__left__iff,axiom,
! [A2: int,C: int,B: int] :
( ( dvd_dvd_int @ A2 @ C )
=> ( ( dvd_dvd_int @ A2 @ ( plus_plus_int @ B @ C ) )
= ( dvd_dvd_int @ A2 @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_1066_dvd__add__left__iff,axiom,
! [A2: real,C: real,B: real] :
( ( dvd_dvd_real @ A2 @ C )
=> ( ( dvd_dvd_real @ A2 @ ( plus_plus_real @ B @ C ) )
= ( dvd_dvd_real @ A2 @ B ) ) ) ).
% dvd_add_left_iff
thf(fact_1067_dvd__add,axiom,
! [A2: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A2 @ B )
=> ( ( dvd_dvd_nat @ A2 @ C )
=> ( dvd_dvd_nat @ A2 @ ( plus_plus_nat @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_1068_dvd__add,axiom,
! [A2: int,B: int,C: int] :
( ( dvd_dvd_int @ A2 @ B )
=> ( ( dvd_dvd_int @ A2 @ C )
=> ( dvd_dvd_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_1069_dvd__add,axiom,
! [A2: real,B: real,C: real] :
( ( dvd_dvd_real @ A2 @ B )
=> ( ( dvd_dvd_real @ A2 @ C )
=> ( dvd_dvd_real @ A2 @ ( plus_plus_real @ B @ C ) ) ) ) ).
% dvd_add
thf(fact_1070_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1071_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_1072_add__Suc__shift,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).
% add_Suc_shift
thf(fact_1073_add__Suc,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc
thf(fact_1074_nat__arith_Osuc1,axiom,
! [A4: nat,K: nat,A2: nat] :
( ( A4
= ( plus_plus_nat @ K @ A2 ) )
=> ( ( suc @ A4 )
= ( plus_plus_nat @ K @ ( suc @ A2 ) ) ) ) ).
% nat_arith.suc1
thf(fact_1075_add__lessD1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I3 @ J ) @ K )
=> ( ord_less_nat @ I3 @ K ) ) ).
% add_lessD1
thf(fact_1076_add__less__mono,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1077_not__add__less1,axiom,
! [I3: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I3 @ J ) @ I3 ) ).
% not_add_less1
thf(fact_1078_not__add__less2,axiom,
! [J: nat,I3: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I3 ) @ I3 ) ).
% not_add_less2
thf(fact_1079_add__less__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1080_trans__less__add1,axiom,
! [I3: nat,J: nat,M: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ord_less_nat @ I3 @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_1081_trans__less__add2,axiom,
! [I3: nat,J: nat,M: nat] :
( ( ord_less_nat @ I3 @ J )
=> ( ord_less_nat @ I3 @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_1082_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_1083_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A2: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
= ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_1084_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A2: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A2 @ B ) @ C )
= ( plus_plus_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_1085_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A2: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A2 @ B ) @ C )
= ( plus_plus_real @ A2 @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_1086_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ( I3 = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I3 @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_1087_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I3: int,J: int,K: int,L: int] :
( ( ( I3 = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I3 @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_1088_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I3: real,J: real,K: real,L: real] :
( ( ( I3 = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I3 @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_1089_group__cancel_Oadd1,axiom,
! [A4: nat,K: nat,A2: nat,B: nat] :
( ( A4
= ( plus_plus_nat @ K @ A2 ) )
=> ( ( plus_plus_nat @ A4 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A2 @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_1090_group__cancel_Oadd1,axiom,
! [A4: int,K: int,A2: int,B: int] :
( ( A4
= ( plus_plus_int @ K @ A2 ) )
=> ( ( plus_plus_int @ A4 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A2 @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_1091_group__cancel_Oadd1,axiom,
! [A4: real,K: real,A2: real,B: real] :
( ( A4
= ( plus_plus_real @ K @ A2 ) )
=> ( ( plus_plus_real @ A4 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A2 @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_1092_group__cancel_Oadd2,axiom,
! [B5: nat,K: nat,B: nat,A2: nat] :
( ( B5
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A2 @ B5 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A2 @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_1093_group__cancel_Oadd2,axiom,
! [B5: int,K: int,B: int,A2: int] :
( ( B5
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A2 @ B5 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A2 @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_1094_group__cancel_Oadd2,axiom,
! [B5: real,K: real,B: real,A2: real] :
( ( B5
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A2 @ B5 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A2 @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_1095_add_Oassoc,axiom,
! [A2: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A2 @ B ) @ C )
= ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_1096_add_Oassoc,axiom,
! [A2: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A2 @ B ) @ C )
= ( plus_plus_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_1097_add_Oassoc,axiom,
! [A2: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A2 @ B ) @ C )
= ( plus_plus_real @ A2 @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_1098_add_Oleft__cancel,axiom,
! [A2: int,B: int,C: int] :
( ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ A2 @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_1099_add_Oleft__cancel,axiom,
! [A2: real,B: real,C: real] :
( ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ A2 @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_1100_add_Oright__cancel,axiom,
! [B: int,A2: int,C: int] :
( ( ( plus_plus_int @ B @ A2 )
= ( plus_plus_int @ C @ A2 ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_1101_add_Oright__cancel,axiom,
! [B: real,A2: real,C: real] :
( ( ( plus_plus_real @ B @ A2 )
= ( plus_plus_real @ C @ A2 ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_1102_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A: nat,B2: nat] : ( plus_plus_nat @ B2 @ A ) ) ) ).
% add.commute
thf(fact_1103_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A: int,B2: int] : ( plus_plus_int @ B2 @ A ) ) ) ).
% add.commute
thf(fact_1104_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A: real,B2: real] : ( plus_plus_real @ B2 @ A ) ) ) ).
% add.commute
thf(fact_1105_add_Oleft__commute,axiom,
! [B: nat,A2: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A2 @ C ) )
= ( plus_plus_nat @ A2 @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_1106_add_Oleft__commute,axiom,
! [B: int,A2: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A2 @ C ) )
= ( plus_plus_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_1107_add_Oleft__commute,axiom,
! [B: real,A2: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A2 @ C ) )
= ( plus_plus_real @ A2 @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_1108_add__left__imp__eq,axiom,
! [A2: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ A2 @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_1109_add__left__imp__eq,axiom,
! [A2: int,B: int,C: int] :
( ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ A2 @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_1110_add__left__imp__eq,axiom,
! [A2: real,B: real,C: real] :
( ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ A2 @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_1111_add__right__imp__eq,axiom,
! [B: nat,A2: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A2 )
= ( plus_plus_nat @ C @ A2 ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_1112_add__right__imp__eq,axiom,
! [B: int,A2: int,C: int] :
( ( ( plus_plus_int @ B @ A2 )
= ( plus_plus_int @ C @ A2 ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_1113_add__right__imp__eq,axiom,
! [B: real,A2: real,C: real] :
( ( ( plus_plus_real @ B @ A2 )
= ( plus_plus_real @ C @ A2 ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_1114_is__num__normalize_I1_J,axiom,
! [A2: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A2 @ B ) @ C )
= ( plus_plus_int @ A2 @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_1115_is__num__normalize_I1_J,axiom,
! [A2: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A2 @ B ) @ C )
= ( plus_plus_real @ A2 @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_1116_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_1117_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
thf(fact_1118_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_cancel2
thf(fact_1119_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% Nat.diff_cancel
thf(fact_1120_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_1121_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_1122_left__add__mult__distrib,axiom,
! [I3: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I3 @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_1123_add__less__zeroD,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ ( plus_plus_int @ X @ Y ) @ zero_zero_int )
=> ( ( ord_less_int @ X @ zero_zero_int )
| ( ord_less_int @ Y @ zero_zero_int ) ) ) ).
% add_less_zeroD
thf(fact_1124_add__less__zeroD,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
=> ( ( ord_less_real @ X @ zero_zero_real )
| ( ord_less_real @ Y @ zero_zero_real ) ) ) ).
% add_less_zeroD
thf(fact_1125_add__neg__neg,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ A2 @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A2 @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_neg
thf(fact_1126_add__neg__neg,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ A2 @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A2 @ B ) @ zero_zero_int ) ) ) ).
% add_neg_neg
thf(fact_1127_add__neg__neg,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ A2 @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A2 @ B ) @ zero_zero_real ) ) ) ).
% add_neg_neg
thf(fact_1128_add__pos__pos,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B ) ) ) ) ).
% add_pos_pos
thf(fact_1129_add__pos__pos,axiom,
! [A2: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A2 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A2 @ B ) ) ) ) ).
% add_pos_pos
thf(fact_1130_add__pos__pos,axiom,
! [A2: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A2 )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A2 @ B ) ) ) ) ).
% add_pos_pos
thf(fact_1131_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A2: nat,B: nat] :
( ( ord_less_nat @ A2 @ B )
=> ~ ! [C3: nat] :
( ( B
= ( plus_plus_nat @ A2 @ C3 ) )
=> ( C3 = zero_zero_nat ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_1132_pos__add__strict,axiom,
! [A2: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).
% pos_add_strict
thf(fact_1133_pos__add__strict,axiom,
! [A2: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A2 )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A2 @ C ) ) ) ) ).
% pos_add_strict
thf(fact_1134_pos__add__strict,axiom,
! [A2: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A2 )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A2 @ C ) ) ) ) ).
% pos_add_strict
thf(fact_1135_mult__hom_Ohom__add__eq__zero,axiom,
! [X: nat,Y: nat,C: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
=> ( ( plus_plus_nat @ ( times_times_nat @ C @ X ) @ ( times_times_nat @ C @ Y ) )
= zero_zero_nat ) ) ).
% mult_hom.hom_add_eq_zero
thf(fact_1136_mult__hom_Ohom__add__eq__zero,axiom,
! [X: int,Y: int,C: int] :
( ( ( plus_plus_int @ X @ Y )
= zero_zero_int )
=> ( ( plus_plus_int @ ( times_times_int @ C @ X ) @ ( times_times_int @ C @ Y ) )
= zero_zero_int ) ) ).
% mult_hom.hom_add_eq_zero
thf(fact_1137_mult__hom_Ohom__add__eq__zero,axiom,
! [X: real,Y: real,C: real] :
( ( ( plus_plus_real @ X @ Y )
= zero_zero_real )
=> ( ( plus_plus_real @ ( times_times_real @ C @ X ) @ ( times_times_real @ C @ Y ) )
= zero_zero_real ) ) ).
% mult_hom.hom_add_eq_zero
thf(fact_1138_add__is__1,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_1139_one__is__add,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M @ N ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_1140_less__imp__add__positive,axiom,
! [I3: nat,J: nat] :
( ( ord_less_nat @ I3 @ J )
=> ? [K3: nat] :
( ( ord_less_nat @ zero_zero_nat @ K3 )
& ( ( plus_plus_nat @ I3 @ K3 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1141_less__natE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ~ ! [Q3: nat] :
( N
!= ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).
% less_natE
thf(fact_1142_less__add__Suc1,axiom,
! [I3: nat,M: nat] : ( ord_less_nat @ I3 @ ( suc @ ( plus_plus_nat @ I3 @ M ) ) ) ).
% less_add_Suc1
thf(fact_1143_less__add__Suc2,axiom,
! [I3: nat,M: nat] : ( ord_less_nat @ I3 @ ( suc @ ( plus_plus_nat @ M @ I3 ) ) ) ).
% less_add_Suc2
thf(fact_1144_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M5: nat,N4: nat] :
? [K2: nat] :
( N4
= ( suc @ ( plus_plus_nat @ M5 @ K2 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_1145_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ? [K3: nat] :
( N
= ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_1146_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_1147_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_1148_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_1149_Suc__eq__plus1,axiom,
( suc
= ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_1150_mult__Suc,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc
thf(fact_1151_less__diff__conv,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_nat @ I3 @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_1152_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_1153_bezout__lemma__nat,axiom,
! [D: nat,A2: nat,B: nat,X: nat,Y: nat] :
( ( dvd_dvd_nat @ D @ A2 )
=> ( ( dvd_dvd_nat @ D @ B )
=> ( ( ( ( times_times_nat @ A2 @ X )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ D ) )
| ( ( times_times_nat @ B @ X )
= ( plus_plus_nat @ ( times_times_nat @ A2 @ Y ) @ D ) ) )
=> ? [X5: nat,Y3: nat] :
( ( dvd_dvd_nat @ D @ A2 )
& ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A2 @ B ) )
& ( ( ( times_times_nat @ A2 @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A2 @ B ) @ Y3 ) @ D ) )
| ( ( times_times_nat @ ( plus_plus_nat @ A2 @ B ) @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ A2 @ Y3 ) @ D ) ) ) ) ) ) ) ).
% bezout_lemma_nat
thf(fact_1154_bezout__add__nat,axiom,
! [A2: nat,B: nat] :
? [D2: nat,X5: nat,Y3: nat] :
( ( dvd_dvd_nat @ D2 @ A2 )
& ( dvd_dvd_nat @ D2 @ B )
& ( ( ( times_times_nat @ A2 @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D2 ) )
| ( ( times_times_nat @ B @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ A2 @ Y3 ) @ D2 ) ) ) ) ).
% bezout_add_nat
thf(fact_1155_nat__diff__split__asm,axiom,
! [P: nat > $o,A2: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A2 @ B ) )
= ( ~ ( ( ( ord_less_nat @ A2 @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D3: nat] :
( ( A2
= ( plus_plus_nat @ B @ D3 ) )
& ~ ( P @ D3 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_1156_nat__diff__split,axiom,
! [P: nat > $o,A2: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A2 @ B ) )
= ( ( ( ord_less_nat @ A2 @ B )
=> ( P @ zero_zero_nat ) )
& ! [D3: nat] :
( ( A2
= ( plus_plus_nat @ B @ D3 ) )
=> ( P @ D3 ) ) ) ) ).
% nat_diff_split
thf(fact_1157_bezout__add__strong__nat,axiom,
! [A2: nat,B: nat] :
( ( A2 != zero_zero_nat )
=> ? [D2: nat,X5: nat,Y3: nat] :
( ( dvd_dvd_nat @ D2 @ A2 )
& ( dvd_dvd_nat @ D2 @ B )
& ( ( times_times_nat @ A2 @ X5 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D2 ) ) ) ) ).
% bezout_add_strong_nat
thf(fact_1158_int__div__less__self,axiom,
! [X: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).
% int_div_less_self
thf(fact_1159_map__add__upt,axiom,
! [N: nat,M: nat] :
( ( map_nat_nat
@ ^ [I: nat] : ( plus_plus_nat @ I @ N )
@ ( upt @ zero_zero_nat @ M ) )
= ( upt @ N @ ( plus_plus_nat @ M @ N ) ) ) ).
% map_add_upt
thf(fact_1160_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_1161_add__eq__if,axiom,
( plus_plus_nat
= ( ^ [M5: nat,N4: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ N4 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M5 @ one_one_nat ) @ N4 ) ) ) ) ) ).
% add_eq_if
thf(fact_1162_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M5: nat,N4: nat] : ( if_nat @ ( M5 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N4 @ ( times_times_nat @ ( minus_minus_nat @ M5 @ one_one_nat ) @ N4 ) ) ) ) ) ).
% mult_eq_if
thf(fact_1163_dividend__less__times__div,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_1164_dividend__less__div__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).
% dividend_less_div_times
thf(fact_1165_split__div,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_nat ) )
& ( ( N != zero_zero_nat )
=> ! [I: nat,J3: nat] :
( ( ( ord_less_nat @ J3 @ N )
& ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I ) @ J3 ) ) )
=> ( P @ I ) ) ) ) ) ).
% split_div
thf(fact_1166_num_Osize_I5_J,axiom,
! [X22: num] :
( ( size_size_num @ ( bit0 @ X22 ) )
= ( plus_plus_nat @ ( size_size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size(5)
thf(fact_1167_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_1168_set__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se7879613467334960850it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% set_bit_negative_int_iff
thf(fact_1169_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_1170_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_1171_Suc__numeral,axiom,
! [N: num] :
( ( suc @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% Suc_numeral
thf(fact_1172_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_1173_even__diff__iff,axiom,
! [K: int,L: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).
% even_diff_iff
thf(fact_1174_Suc__nat__number__of__add,axiom,
! [V: num,N: nat] :
( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).
% Suc_nat_number_of_add
thf(fact_1175_real__average__minus__second,axiom,
! [B: real,A2: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A2 )
= ( divide_divide_real @ ( minus_minus_real @ B @ A2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_second
thf(fact_1176_real__average__minus__first,axiom,
! [A2: real,B: real] :
( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A2 @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A2 )
= ( divide_divide_real @ ( minus_minus_real @ B @ A2 ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% real_average_minus_first
thf(fact_1177_odd__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1178_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_1179_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_1180_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_1181_zmult__zless__mono2,axiom,
! [I3: int,J: int,K: int] :
( ( ord_less_int @ I3 @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I3 ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_1182_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_1183_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_1184_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_1185_zdvd__mult__cancel,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) )
=> ( ( K != zero_zero_int )
=> ( dvd_dvd_int @ M @ N ) ) ) ).
% zdvd_mult_cancel
thf(fact_1186_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1187_odd__nonzero,axiom,
! [Z2: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_1188_int__less__induct,axiom,
! [I3: int,K: int,P: int > $o] :
( ( ord_less_int @ I3 @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_less_induct
thf(fact_1189_zless__add1__eq,axiom,
! [W: int,Z2: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ( ord_less_int @ W @ Z2 )
| ( W = Z2 ) ) ) ).
% zless_add1_eq
thf(fact_1190_int__gr__induct,axiom,
! [K: int,I3: int,P: int > $o] :
( ( ord_less_int @ K @ I3 )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_gr_induct
thf(fact_1191_zdvd__not__zless,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_int @ M @ N )
=> ~ ( dvd_dvd_int @ N @ M ) ) ) ).
% zdvd_not_zless
thf(fact_1192_zdvd__mono,axiom,
! [K: int,M: int,T: int] :
( ( K != zero_zero_int )
=> ( ( dvd_dvd_int @ M @ T )
= ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ T ) ) ) ) ).
% zdvd_mono
thf(fact_1193_minusinfinity,axiom,
! [D: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X5: int,K3: int] :
( ( P1 @ X5 )
= ( P1 @ ( minus_minus_int @ X5 @ ( times_times_int @ K3 @ D ) ) ) )
=> ( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ X5 @ Z3 )
=> ( ( P @ X5 )
= ( P1 @ X5 ) ) )
=> ( ? [X_12: int] : ( P1 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% minusinfinity
thf(fact_1194_plusinfinity,axiom,
! [D: int,P3: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X5: int,K3: int] :
( ( P3 @ X5 )
= ( P3 @ ( minus_minus_int @ X5 @ ( times_times_int @ K3 @ D ) ) ) )
=> ( ? [Z3: int] :
! [X5: int] :
( ( ord_less_int @ Z3 @ X5 )
=> ( ( P @ X5 )
= ( P3 @ X5 ) ) )
=> ( ? [X_12: int] : ( P3 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% plusinfinity
thf(fact_1195_power__Suc__0,axiom,
! [N: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_1196_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M: nat] :
( ( ( power_power_nat @ X @ M )
= ( suc @ zero_zero_nat ) )
= ( ( M = zero_zero_nat )
| ( X
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_1197_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_1198_log__exp,axiom,
! [N: nat] :
( ( log @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= N ) ).
% log_exp
thf(fact_1199_Suc_Oprems_I1_J,axiom,
( ( size_s7115545719440041015ring_a @ numbersa )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ la ) ) ) ).
% Suc.prems(1)
thf(fact_1200_nat__power__less__imp__less,axiom,
! [I3: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I3 )
=> ( ( ord_less_nat @ ( power_power_nat @ I3 @ M ) @ ( power_power_nat @ I3 @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_1201_realpow__pos__nth,axiom,
! [N: nat,A2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A2 )
=> ? [R: real] :
( ( ord_less_real @ zero_zero_real @ R )
& ( ( power_power_real @ R @ N )
= A2 ) ) ) ) ).
% realpow_pos_nth
thf(fact_1202_realpow__pos__nth__unique,axiom,
! [N: nat,A2: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A2 )
=> ? [X5: real] :
( ( ord_less_real @ zero_zero_real @ X5 )
& ( ( power_power_real @ X5 @ N )
= A2 )
& ! [Y5: real] :
( ( ( ord_less_real @ zero_zero_real @ Y5 )
& ( ( power_power_real @ Y5 @ N )
= A2 ) )
=> ( Y5 = X5 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1203_realpow__pos__nth2,axiom,
! [A2: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A2 )
=> ? [R: real] :
( ( ord_less_real @ zero_zero_real @ R )
& ( ( power_power_real @ R @ ( suc @ N ) )
= A2 ) ) ) ).
% realpow_pos_nth2
thf(fact_1204_power__gt__expt,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).
% power_gt_expt
thf(fact_1205_less__exp,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% less_exp
thf(fact_1206_four__x__squared,axiom,
! [X: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% four_x_squared
thf(fact_1207_log__exp2__gt,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( log @ N ) ) ) ) ).
% log_exp2_gt
thf(fact_1208_int__power__div__base,axiom,
! [M: nat,K: int] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
= ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).
% int_power_div_base
thf(fact_1209_two__powrs__div,axiom,
! [J: nat,I3: nat] :
( ( ord_less_nat @ J @ I3 )
=> ( ( times_times_nat @ ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ J ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) ) ) ).
% two_powrs_div
thf(fact_1210_two__powr__div,axiom,
! [J: nat,I3: nat] :
( ( ord_less_nat @ J @ I3 )
=> ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I3 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ I3 @ J ) ) ) ) ).
% two_powr_div
thf(fact_1211_numbers1__even,axiom,
( ( size_s7115545719440041015ring_a @ numbers1 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).
% numbers1_even
thf(fact_1212_numbers2__even,axiom,
( ( size_s7115545719440041015ring_a @ numbers2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).
% numbers2_even
thf(fact_1213_that,axiom,
ord_less_nat @ i @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ).
% that
thf(fact_1214_real__arch__pow__inv,axiom,
! [Y: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X @ one_one_real )
=> ? [N2: nat] : ( ord_less_real @ ( power_power_real @ X @ N2 ) @ Y ) ) ) ).
% real_arch_pow_inv
thf(fact_1215_real__arch__pow,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ one_one_real @ X )
=> ? [N2: nat] : ( ord_less_real @ Y @ ( power_power_real @ X @ N2 ) ) ) ).
% real_arch_pow
thf(fact_1216__C01_C,axiom,
( ( size_s7115545719440041015ring_a @ sum2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).
% "01"
thf(fact_1217_fntt1__length,axiom,
( ( size_s7115545719440041015ring_a @ fntt1 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).
% fntt1_length
thf(fact_1218_fntt2__length,axiom,
( ( size_s7115545719440041015ring_a @ fntt2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).
% fntt2_length
thf(fact_1219_divides__rexp,axiom,
! [X: nat,Y: nat,N: nat] :
( ( dvd_dvd_nat @ X @ Y )
=> ( dvd_dvd_nat @ X @ ( power_power_nat @ Y @ ( suc @ N ) ) ) ) ).
% divides_rexp
thf(fact_1220_nat__exists__least__iff,axiom,
( ( ^ [P4: nat > $o] :
? [X6: nat] : ( P4 @ X6 ) )
= ( ^ [P5: nat > $o] :
? [N4: nat] :
( ( P5 @ N4 )
& ! [M5: nat] :
( ( ord_less_nat @ M5 @ N4 )
=> ~ ( P5 @ M5 ) ) ) ) ) ).
% nat_exists_least_iff
thf(fact_1221_fib_Ocases,axiom,
! [X: nat] :
( ( X != zero_zero_nat )
=> ( ( X
!= ( suc @ zero_zero_nat ) )
=> ~ ! [N2: nat] :
( X
!= ( suc @ ( suc @ N2 ) ) ) ) ) ).
% fib.cases
thf(fact_1222_fib__rec,axiom,
( fib
= ( ^ [N4: nat] : ( if_nat @ ( N4 = zero_zero_nat ) @ zero_zero_nat @ ( if_nat @ ( N4 = one_one_nat ) @ one_one_nat @ ( if_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) @ ( times_times_nat @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( fib @ ( minus_minus_nat @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) @ ( fib @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( fib @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( plus_plus_nat @ ( power_power_nat @ ( fib @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ ( fib @ ( suc @ ( divide_divide_nat @ N4 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ) ).
% fib_rec
thf(fact_1223_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_1224_bot__nat__0_Oextremum,axiom,
! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).
% bot_nat_0.extremum
thf(fact_1225_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_1226_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_1227_diff__diff__cancel,axiom,
! [I3: nat,N: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I3 ) )
= I3 ) ) ).
% diff_diff_cancel
thf(fact_1228_fib__1,axiom,
( ( fib @ one_one_nat )
= one_one_nat ) ).
% fib_1
thf(fact_1229_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_1230_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_1231_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I3 @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I3 @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_1232_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I3 )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I3 ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1233_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I3 @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I3 @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1234_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_1235_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_1236_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_1237_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I3 )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I3 ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_1238_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I3 @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I3 @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_1239_fib__2,axiom,
( ( fib @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% fib_2
thf(fact_1240_fib__add,axiom,
! [N: nat,K: nat] :
( ( fib @ ( suc @ ( plus_plus_nat @ N @ K ) ) )
= ( plus_plus_nat @ ( times_times_nat @ ( fib @ ( suc @ K ) ) @ ( fib @ ( suc @ N ) ) ) @ ( times_times_nat @ ( fib @ K ) @ ( fib @ N ) ) ) ) ).
% fib_add
thf(fact_1241_fib__neq__0__nat,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( fib @ N ) ) ) ).
% fib_neq_0_nat
thf(fact_1242_Fib_Ofib0,axiom,
( ( fib @ zero_zero_nat )
= zero_zero_nat ) ).
% Fib.fib0
thf(fact_1243_fib__Suc__mono,axiom,
! [M: nat] : ( ord_less_eq_nat @ ( fib @ M ) @ ( fib @ ( suc @ M ) ) ) ).
% fib_Suc_mono
thf(fact_1244_Fib_Ofib2,axiom,
! [N: nat] :
( ( fib @ ( suc @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( fib @ ( suc @ N ) ) @ ( fib @ N ) ) ) ).
% Fib.fib2
thf(fact_1245_Fib_Ofib1,axiom,
( ( fib @ ( suc @ zero_zero_nat ) )
= one_one_nat ) ).
% Fib.fib1
thf(fact_1246_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_1247_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_1248_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_1249_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_1250_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_1251_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N2: nat] :
( L
= ( plus_plus_nat @ K @ N2 ) ) ) ).
% le_Suc_ex
thf(fact_1252_add__le__mono,axiom,
! [I3: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_1253_add__le__mono1,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_1254_trans__le__add1,axiom,
! [I3: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ I3 @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_1255_trans__le__add2,axiom,
! [I3: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ord_less_eq_nat @ I3 @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_1256_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M5: nat,N4: nat] :
? [K2: nat] :
( N4
= ( plus_plus_nat @ M5 @ K2 ) ) ) ) ).
% nat_le_iff_add
thf(fact_1257_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_1258_le__diff__conv,axiom,
! [J: nat,K: nat,I3: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I3 )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I3 @ K ) ) ) ).
% le_diff_conv
thf(fact_1259_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I3 @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_1260_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I3 @ J ) @ K )
= ( plus_plus_nat @ I3 @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_1261_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I3 ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I3 ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_1262_Nat_Ole__imp__diff__is__add,axiom,
! [I3: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J )
=> ( ( ( minus_minus_nat @ J @ I3 )
= K )
= ( J
= ( plus_plus_nat @ K @ I3 ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_1263_Suc__div__le__mono,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).
% Suc_div_le_mono
thf(fact_1264_less__eq__dvd__minus,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( dvd_dvd_nat @ M @ N )
= ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% less_eq_dvd_minus
thf(fact_1265_dvd__diffD1,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
=> ( ( dvd_dvd_nat @ K @ M )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ K @ N ) ) ) ) ).
% dvd_diffD1
thf(fact_1266_dvd__diffD,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ K @ M ) ) ) ) ).
% dvd_diffD
% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( nth_Fi694352073394265932ring_a @ ( map_na1928064127006292399ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa ) @ ( filter_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( upt @ zero_zero_nat @ ( size_s7115545719440041015ring_a @ numbersa ) ) ) ) @ j )
= ( nth_Fi694352073394265932ring_a @ numbersa @ ( nth_nat @ ( filter_nat @ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( upt @ zero_zero_nat @ ( size_s7115545719440041015ring_a @ numbersa ) ) ) @ j ) ) ) ).
%------------------------------------------------------------------------------