TPTP Problem File: SLH0391^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Actuarial_Mathematics/0001_Interest/prob_00197_009886__12852678_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1386 ( 720 unt; 109 typ;   0 def)
%            Number of atoms       : 3064 (1848 equ;   0 cnn)
%            Maximal formula atoms :    7 (   2 avg)
%            Number of connectives : 10238 ( 339   ~;  79   |; 178   &;8705   @)
%                                         (   0 <=>; 937  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   13 (   5 avg)
%            Number of types       :   11 (  10 usr)
%            Number of type conns  :  234 ( 234   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  102 (  99 usr;  19 con; 0-3 aty)
%            Number of variables   : 2981 (  55   ^;2823   !; 103   ?;2981   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 15:12:02.373
%------------------------------------------------------------------------------
% Could-be-implicit typings (10)
thf(ty_n_t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    formal3361831859752904756s_real: $tType ).

thf(ty_n_t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    formal_Power_fps_nat: $tType ).

thf(ty_n_t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    formal_Power_fps_int: $tType ).

thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
    list_real: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (99)
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Formal__Power__Series_Ofps_Ofps__nth_001t__Int__Oint,type,
    formal3717847055265219294th_int: formal_Power_fps_int > nat > int ).

thf(sy_c_Formal__Power__Series_Ofps_Ofps__nth_001t__Nat__Onat,type,
    formal3720337525774269570th_nat: formal_Power_fps_nat > nat > nat ).

thf(sy_c_Formal__Power__Series_Ofps_Ofps__nth_001t__Real__Oreal,type,
    formal2580924720334399070h_real: formal3361831859752904756s_real > nat > real ).

thf(sy_c_Formal__Power__Series_Ofps__XDp_001t__Int__Oint,type,
    formal9195297484582036137Dp_int: int > formal_Power_fps_int > formal_Power_fps_int ).

thf(sy_c_Formal__Power__Series_Ofps__XDp_001t__Nat__Onat,type,
    formal9197787955091086413Dp_nat: nat > formal_Power_fps_nat > formal_Power_fps_nat ).

thf(sy_c_Formal__Power__Series_Ofps__XDp_001t__Real__Oreal,type,
    formal2839450981996073129p_real: real > formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__X_001t__Int__Oint,type,
    formal1741671657928595837_X_int: formal_Power_fps_int ).

thf(sy_c_Formal__Power__Series_Ofps__X_001t__Nat__Onat,type,
    formal1744162128437646113_X_nat: formal_Power_fps_nat ).

thf(sy_c_Formal__Power__Series_Ofps__X_001t__Real__Oreal,type,
    formal4708490801539276157X_real: formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__binomial_001t__Real__Oreal,type,
    formal5546599989445857540l_real: real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__cutoff_001t__Int__Oint,type,
    formal4815718713524518466ff_int: nat > formal_Power_fps_int > formal_Power_fps_int ).

thf(sy_c_Formal__Power__Series_Ofps__cutoff_001t__Nat__Onat,type,
    formal4818209184033568742ff_nat: nat > formal_Power_fps_nat > formal_Power_fps_nat ).

thf(sy_c_Formal__Power__Series_Ofps__cutoff_001t__Real__Oreal,type,
    formal1487479903726251970f_real: nat > formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__hypergeo_001t__Real__Oreal,type,
    formal6618874005373735610o_real: list_real > list_real > real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__ln_001t__Real__Oreal,type,
    formal8688746759596762231n_real: real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__radical_001t__Real__Oreal,type,
    formal8604817403481219167l_real: ( nat > real > real ) > nat > formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__tan_001t__Real__Oreal,type,
    formal3683295897622742886n_real: real > formal3361831859752904756s_real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    minus_6609417272980093837ps_int: formal_Power_fps_int > formal_Power_fps_int > formal_Power_fps_int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    minus_1563896255634514737ps_nat: formal_Power_fps_nat > formal_Power_fps_nat > formal_Power_fps_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    minus_6791916864952032525s_real: formal3361831859752904756s_real > formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    one_on8395608022581818233ps_int: formal_Power_fps_int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    one_on3350087005236239133ps_nat: formal_Power_fps_nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    one_on8598947968683843321s_real: formal3361831859752904756s_real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    plus_p1865620787042574909ps_int: formal_Power_fps_int > formal_Power_fps_int > formal_Power_fps_int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    plus_p6043471806551771617ps_nat: formal_Power_fps_nat > formal_Power_fps_nat > formal_Power_fps_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    plus_p6008488439947570109s_real: formal3361831859752904756s_real > formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Int__Oint_J,type,
    plus_plus_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Nat__Onat_J,type,
    plus_plus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Real__Oreal_J,type,
    plus_plus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    times_3091854549176928185ps_int: formal_Power_fps_int > formal_Power_fps_int > formal_Power_fps_int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    times_7269705568686124893ps_nat: formal_Power_fps_nat > formal_Power_fps_nat > formal_Power_fps_nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    times_7561426564079326009s_real: formal3361831859752904756s_real > formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Int__Oint_J,type,
    times_times_set_int: set_int > set_int > set_int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Nat__Onat_J,type,
    times_times_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Real__Oreal_J,type,
    times_times_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    zero_z4353722679246354365ps_int: formal_Power_fps_int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    zero_z8531573698755551073ps_nat: formal_Power_fps_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    zero_z7760665558314615101s_real: formal3361831859752904756s_real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_Interest_Od__nom,type,
    d_nom: real > nat > real ).

thf(sy_c_Interest_Oi__force,type,
    i_force: real > real ).

thf(sy_c_Interest_Oi__nom,type,
    i_nom: real > nat > real ).

thf(sy_c_Interest_Ointerest,type,
    interest: real > $o ).

thf(sy_c_Interest_Operp,type,
    perp: real > nat > real ).

thf(sy_c_Interest_Operp__due,type,
    perp_due: real > nat > real ).

thf(sy_c_Interest_Ov__pres,type,
    v_pres: real > real ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    semiri6570152736363784213ps_int: nat > formal_Power_fps_int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    semiri1524631719018205113ps_nat: nat > formal_Power_fps_nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    semiri2475410149736220053s_real: nat > formal3361831859752904756s_real ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_NthRoot_Oroot,type,
    root: nat > real > real ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Power_Opower__class_Opower_001t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    power_5614179737012125886ps_int: formal_Power_fps_int > nat > formal_Power_fps_int ).

thf(sy_c_Power_Opower__class_Opower_001t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    power_568658719666546786ps_nat: formal_Power_fps_nat > nat > formal_Power_fps_nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    power_1846127563762588094s_real: formal3361831859752904756s_real > nat > formal3361831859752904756s_real ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    divide1155267253282662278s_real: formal3361831859752904756s_real > formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Transcendental_Oarcosh_001t__Real__Oreal,type,
    arcosh_real: real > real ).

thf(sy_c_Transcendental_Oarsinh_001t__Real__Oreal,type,
    arsinh_real: real > real ).

thf(sy_c_Transcendental_Oartanh_001t__Real__Oreal,type,
    artanh_real: real > real ).

thf(sy_c_Transcendental_Oln__class_Oln_001t__Real__Oreal,type,
    ln_ln_real: real > real ).

thf(sy_c_Transcendental_Opowr_001t__Real__Oreal,type,
    powr_real: real > real > real ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_v_i,type,
    i: real ).

thf(sy_v_m,type,
    m: nat ).

% Relevant facts (1269)
thf(fact_0_interest__axioms,axiom,
    interest @ i ).

% interest_axioms
thf(fact_1_that,axiom,
    m != zero_zero_nat ).

% that
thf(fact_2_powr__one__eq__one,axiom,
    ! [A: real] :
      ( ( powr_real @ one_one_real @ A )
      = one_one_real ) ).

% powr_one_eq_one
thf(fact_3_real__divide__square__eq,axiom,
    ! [R: real,A: real] :
      ( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
      = ( divide_divide_real @ A @ R ) ) ).

% real_divide_square_eq
thf(fact_4_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
      = ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).

% of_nat_power
thf(fact_5_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
      = ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).

% of_nat_power
thf(fact_6_of__nat__power,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
      = ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).

% of_nat_power
thf(fact_7_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
        = ( semiri1316708129612266289at_nat @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_8_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
        = ( semiri5074537144036343181t_real @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_9_of__nat__eq__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
        = ( semiri1314217659103216013at_int @ X ) )
      = ( ( power_power_nat @ B @ W )
        = X ) ) ).

% of_nat_eq_of_nat_power_cancel_iff
thf(fact_10_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1316708129612266289at_nat @ X )
        = ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_11_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri5074537144036343181t_real @ X )
        = ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_12_of__nat__power__eq__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ( semiri1314217659103216013at_int @ X )
        = ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( X
        = ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_eq_of_nat_cancel_iff
thf(fact_13_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_add
thf(fact_14_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_add
thf(fact_15_of__nat__add,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_add
thf(fact_16_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_17_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_18_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_19_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_20_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_21_of__nat__1__eq__iff,axiom,
    ! [N: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( N = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_22_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri5074537144036343181t_real @ N )
        = one_one_real )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_23_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1314217659103216013at_int @ N )
        = one_one_int )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_24_of__nat__eq__1__iff,axiom,
    ! [N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N )
        = one_one_nat )
      = ( N = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_25_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_mult
thf(fact_26_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mult
thf(fact_27_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mult
thf(fact_28_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_real @ one_one_real @ N )
      = one_one_real ) ).

% power_one
thf(fact_29_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% power_one
thf(fact_30_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_int @ one_one_int @ N )
      = one_one_int ) ).

% power_one
thf(fact_31_div__by__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ one_one_real )
      = A ) ).

% div_by_1
thf(fact_32_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_33_div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% div_by_1
thf(fact_34_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_35_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_36_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_37_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_38_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_39_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_40_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_41_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_42_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_43_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_44_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_45_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_46_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_47_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_48_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_49_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_50_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_51_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_52_div__by__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_53_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_54_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_55_div__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% div_0
thf(fact_56_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_57_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_58_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_59_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_60_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_61_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_62_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_63_powr__eq__0__iff,axiom,
    ! [W: real,Z: real] :
      ( ( ( powr_real @ W @ Z )
        = zero_zero_real )
      = ( W = zero_zero_real ) ) ).

% powr_eq_0_iff
thf(fact_64_powr__0,axiom,
    ! [Z: real] :
      ( ( powr_real @ zero_zero_real @ Z )
      = zero_zero_real ) ).

% powr_0
thf(fact_65_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_66_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_67_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_68_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_69_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_70_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_71_mult__cancel__right2,axiom,
    ! [A: real,C: real] :
      ( ( ( times_times_real @ A @ C )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_right2
thf(fact_72_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_73_mult__cancel__right1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_right1
thf(fact_74_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_75_mult__cancel__left2,axiom,
    ! [C: real,A: real] :
      ( ( ( times_times_real @ C @ A )
        = C )
      = ( ( C = zero_zero_real )
        | ( A = one_one_real ) ) ) ).

% mult_cancel_left2
thf(fact_76_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_77_mult__cancel__left1,axiom,
    ! [C: real,B: real] :
      ( ( C
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( B = one_one_real ) ) ) ).

% mult_cancel_left1
thf(fact_78_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_79_sum__squares__eq__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_80_sum__squares__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_81_nonzero__mult__div__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_82_nonzero__mult__div__cancel__right,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_83_nonzero__mult__div__cancel__right,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_84_nonzero__mult__div__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_85_nonzero__mult__div__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_86_nonzero__mult__div__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_87_div__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% div_self
thf(fact_88_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_89_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_90_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_91_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_92_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_93_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_94_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_95_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_96_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_97_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_98_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_99_powr__zero__eq__one,axiom,
    ! [X: real] :
      ( ( ( X = zero_zero_real )
       => ( ( powr_real @ X @ zero_zero_real )
          = zero_zero_real ) )
      & ( ( X != zero_zero_real )
       => ( ( powr_real @ X @ zero_zero_real )
          = one_one_real ) ) ) ).

% powr_zero_eq_one
thf(fact_100_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_101_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_102_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_103_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_104_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_105_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_106_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_107_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_108_power__mult,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_109_power__mult,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_110_power__mult,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_111_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_112_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_113_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_114_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_115_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_116_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_117_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_118_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_119_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_120_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_121_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_122_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_123_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_124_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_125_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_126_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_127_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_128_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_129_power__not__zero,axiom,
    ! [A: real,N: nat] :
      ( ( A != zero_zero_real )
     => ( ( power_power_real @ A @ N )
       != zero_zero_real ) ) ).

% power_not_zero
thf(fact_130_power__not__zero,axiom,
    ! [A: nat,N: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_131_power__not__zero,axiom,
    ! [A: int,N: nat] :
      ( ( A != zero_zero_int )
     => ( ( power_power_int @ A @ N )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_132_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = zero_zero_real ) ) ) ).

% power_0_left
thf(fact_133_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_134_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_135_power__add,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( power_power_real @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).

% power_add
thf(fact_136_power__add,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% power_add
thf(fact_137_power__add,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% power_add
thf(fact_138_power__0,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% power_0
thf(fact_139_power__0,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_140_power__0,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_141_powr__powr__swap,axiom,
    ! [X: real,A: real,B: real] :
      ( ( powr_real @ ( powr_real @ X @ A ) @ B )
      = ( powr_real @ ( powr_real @ X @ B ) @ A ) ) ).

% powr_powr_swap
thf(fact_142_combine__common__factor,axiom,
    ! [A: real,E: real,B: real,C: real] :
      ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
      = ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_143_combine__common__factor,axiom,
    ! [A: nat,E: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_144_combine__common__factor,axiom,
    ! [A: int,E: int,B: int,C: int] :
      ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_145_distrib__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% distrib_right
thf(fact_146_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_147_distrib__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% distrib_right
thf(fact_148_distrib__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% distrib_left
thf(fact_149_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_150_distrib__left,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% distrib_left
thf(fact_151_comm__semiring__class_Odistrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_152_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_153_comm__semiring__class_Odistrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_154_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_155_ring__class_Oring__distribs_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% ring_class.ring_distribs(1)
thf(fact_156_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_157_ring__class_Oring__distribs_I2_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% ring_class.ring_distribs(2)
thf(fact_158_right__diff__distrib_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_159_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_160_right__diff__distrib_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_161_left__diff__distrib_H,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
      = ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_162_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_163_left__diff__distrib_H,axiom,
    ! [B: int,C: int,A: int] :
      ( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
      = ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_164_right__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_165_right__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_166_left__diff__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_167_left__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_168_power__commuting__commutes,axiom,
    ! [X: real,Y: real,N: nat] :
      ( ( ( times_times_real @ X @ Y )
        = ( times_times_real @ Y @ X ) )
     => ( ( times_times_real @ ( power_power_real @ X @ N ) @ Y )
        = ( times_times_real @ Y @ ( power_power_real @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_169_power__commuting__commutes,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = ( times_times_nat @ Y @ X ) )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y )
        = ( times_times_nat @ Y @ ( power_power_nat @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_170_power__commuting__commutes,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( ( times_times_int @ X @ Y )
        = ( times_times_int @ Y @ X ) )
     => ( ( times_times_int @ ( power_power_int @ X @ N ) @ Y )
        = ( times_times_int @ Y @ ( power_power_int @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_171_power__mult__distrib,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
      = ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_172_power__mult__distrib,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_173_power__mult__distrib,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_174_power__commutes,axiom,
    ! [A: real,N: nat] :
      ( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
      = ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).

% power_commutes
thf(fact_175_power__commutes,axiom,
    ! [A: nat,N: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_commutes
thf(fact_176_power__commutes,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_commutes
thf(fact_177_mult__of__nat__commute,axiom,
    ! [X: nat,Y: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y )
      = ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_178_mult__of__nat__commute,axiom,
    ! [X: nat,Y: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y )
      = ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_179_mult__of__nat__commute,axiom,
    ! [X: nat,Y: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y )
      = ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_180_power__divide,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
      = ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_divide
thf(fact_181_powr__powr,axiom,
    ! [X: real,A: real,B: real] :
      ( ( powr_real @ ( powr_real @ X @ A ) @ B )
      = ( powr_real @ X @ ( times_times_real @ A @ B ) ) ) ).

% powr_powr
thf(fact_182_square__diff__square__factored,axiom,
    ! [X: real,Y: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
      = ( times_times_real @ ( plus_plus_real @ X @ Y ) @ ( minus_minus_real @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_183_square__diff__square__factored,axiom,
    ! [X: int,Y: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
      = ( times_times_int @ ( plus_plus_int @ X @ Y ) @ ( minus_minus_int @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_184_eq__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_185_eq__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_186_eq__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ A @ E ) @ C )
        = ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_187_eq__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_188_left__right__inverse__power,axiom,
    ! [X: real,Y: real,N: nat] :
      ( ( ( times_times_real @ X @ Y )
        = one_one_real )
     => ( ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ N ) )
        = one_one_real ) ) ).

% left_right_inverse_power
thf(fact_189_left__right__inverse__power,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = one_one_nat )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) )
        = one_one_nat ) ) ).

% left_right_inverse_power
thf(fact_190_left__right__inverse__power,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( ( times_times_int @ X @ Y )
        = one_one_int )
     => ( ( times_times_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ N ) )
        = one_one_int ) ) ).

% left_right_inverse_power
thf(fact_191_power__one__over,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
      = ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% power_one_over
thf(fact_192_powr__add,axiom,
    ! [X: real,A: real,B: real] :
      ( ( powr_real @ X @ ( plus_plus_real @ A @ B ) )
      = ( times_times_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ).

% powr_add
thf(fact_193_powr__diff,axiom,
    ! [W: real,Z1: real,Z2: real] :
      ( ( powr_real @ W @ ( minus_minus_real @ Z1 @ Z2 ) )
      = ( divide_divide_real @ ( powr_real @ W @ Z1 ) @ ( powr_real @ W @ Z2 ) ) ) ).

% powr_diff
thf(fact_194_square__diff__one__factored,axiom,
    ! [X: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ X ) @ one_one_real )
      = ( times_times_real @ ( plus_plus_real @ X @ one_one_real ) @ ( minus_minus_real @ X @ one_one_real ) ) ) ).

% square_diff_one_factored
thf(fact_195_square__diff__one__factored,axiom,
    ! [X: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ one_one_int )
      = ( times_times_int @ ( plus_plus_int @ X @ one_one_int ) @ ( minus_minus_int @ X @ one_one_int ) ) ) ).

% square_diff_one_factored
thf(fact_196_div__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_197_div__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_198_div__mult__self3,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_199_div__mult__self3,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_200_div__mult__self2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_201_div__mult__self2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_202_div__mult__self1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_203_div__mult__self1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_204_nonzero__divide__mult__cancel__right,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_205_nonzero__divide__mult__cancel__left,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
        = ( divide_divide_real @ one_one_real @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_206_zero__eq__1__divide__iff,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( divide_divide_real @ one_one_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% zero_eq_1_divide_iff
thf(fact_207_one__divide__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( divide_divide_real @ one_one_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% one_divide_eq_0_iff
thf(fact_208_eq__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( one_one_real
        = ( divide_divide_real @ B @ A ) )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_209_divide__eq__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ( divide_divide_real @ B @ A )
        = one_one_real )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_210_divide__self__if,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = one_one_real ) ) ) ).

% divide_self_if
thf(fact_211_divide__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% divide_self
thf(fact_212_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_213_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_214_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_215_divide__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_eq_0_iff
thf(fact_216_divide__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( divide_divide_real @ C @ A )
        = ( divide_divide_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_217_divide__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_218_division__ring__divide__zero,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% division_ring_divide_zero
thf(fact_219_times__divide__eq__left,axiom,
    ! [B: real,C: real,A: real] :
      ( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_220_divide__divide__eq__left,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_221_divide__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_222_times__divide__eq__right,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_223_mult__divide__mult__cancel__left__if,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( C = zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = zero_zero_real ) )
      & ( ( C != zero_zero_real )
       => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
          = ( divide_divide_real @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_224_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_225_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_226_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_227_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
        = ( divide_divide_real @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_228_div__mult__mult1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_229_div__mult__mult1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_230_div__mult__mult2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_231_div__mult__mult2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_232_div__mult__mult1__if,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( C = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = zero_zero_nat ) )
      & ( ( C != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_233_div__mult__mult1__if,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( C = zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = zero_zero_int ) )
      & ( ( C != zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_234_divide__eq__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = one_one_real )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_235_one__eq__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( one_one_real
        = ( divide_divide_real @ A @ B ) )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_236_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_237_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_238_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_239_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_240_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_241_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_242_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_243_diff__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% diff_mult_distrib
thf(fact_244_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_245_div__mult2__eq,axiom,
    ! [M: nat,N: nat,Q: nat] :
      ( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q ) ) ).

% div_mult2_eq
thf(fact_246_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M2: nat,N2: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N2 @ ( times_times_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N2 ) ) ) ) ) ).

% mult_eq_if
thf(fact_247_power__eq__if,axiom,
    ( power_power_real
    = ( ^ [P: real,M2: nat] : ( if_real @ ( M2 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P @ ( power_power_real @ P @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_248_power__eq__if,axiom,
    ( power_power_nat
    = ( ^ [P: nat,M2: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P @ ( power_power_nat @ P @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_249_power__eq__if,axiom,
    ( power_power_int
    = ( ^ [P: int,M2: nat] : ( if_int @ ( M2 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P @ ( power_power_int @ P @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_250_times__divide__times__eq,axiom,
    ! [X: real,Y: real,Z: real,W: real] :
      ( ( times_times_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_251_divide__divide__times__eq,axiom,
    ! [X: real,Y: real,Z: real,W: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z @ W ) )
      = ( divide_divide_real @ ( times_times_real @ X @ W ) @ ( times_times_real @ Y @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_252_divide__divide__eq__left_H,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
      = ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_253_add__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_254_diff__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_255_frac__eq__eq,axiom,
    ! [Y: real,Z: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ( divide_divide_real @ X @ Y )
            = ( divide_divide_real @ W @ Z ) )
          = ( ( times_times_real @ X @ Z )
            = ( times_times_real @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_256_divide__eq__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ( divide_divide_real @ B @ C )
        = A )
      = ( ( ( C != zero_zero_real )
         => ( B
            = ( times_times_real @ A @ C ) ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% divide_eq_eq
thf(fact_257_eq__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A
        = ( divide_divide_real @ B @ C ) )
      = ( ( ( C != zero_zero_real )
         => ( ( times_times_real @ A @ C )
            = B ) )
        & ( ( C = zero_zero_real )
         => ( A = zero_zero_real ) ) ) ) ).

% eq_divide_eq
thf(fact_258_divide__eq__imp,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( B
          = ( times_times_real @ A @ C ) )
       => ( ( divide_divide_real @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_259_eq__divide__imp,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = B )
       => ( A
          = ( divide_divide_real @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_260_nonzero__divide__eq__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( C != zero_zero_real )
     => ( ( ( divide_divide_real @ B @ C )
          = A )
        = ( B
          = ( times_times_real @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_261_nonzero__eq__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( A
          = ( divide_divide_real @ B @ C ) )
        = ( ( times_times_real @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_262_right__inverse__eq,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( ( divide_divide_real @ A @ B )
          = one_one_real )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_263_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
          = ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_264_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_265_add__frac__eq,axiom,
    ! [Y: real,Z: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( plus_plus_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_266_add__frac__num,axiom,
    ! [Y: real,X: real,Z: real] :
      ( ( Y != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X @ Y ) @ Z )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_267_add__num__frac,axiom,
    ! [Y: real,Z: real,X: real] :
      ( ( Y != zero_zero_real )
     => ( ( plus_plus_real @ Z @ ( divide_divide_real @ X @ Y ) )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_268_add__divide__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ X @ ( divide_divide_real @ Y @ Z ) )
        = ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z ) @ Y ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_269_divide__add__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( plus_plus_real @ ( divide_divide_real @ X @ Z ) @ Y )
        = ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_270_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: real,A: real,B: real] :
      ( ( ( Z = zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ A @ ( divide_divide_real @ B @ Z ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_271_diff__frac__eq,axiom,
    ! [Y: real,Z: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( minus_minus_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_272_diff__divide__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ X @ ( divide_divide_real @ Y @ Z ) )
        = ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ Y ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_273_divide__diff__eq__iff,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( Z != zero_zero_real )
     => ( ( minus_minus_real @ ( divide_divide_real @ X @ Z ) @ Y )
        = ( divide_divide_real @ ( minus_minus_real @ X @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_274_div__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_275_div__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self1
thf(fact_276_div__add__self2,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_277_div__add__self2,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self2
thf(fact_278_divide__mult__cancel,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( times_times_real @ ( divide_divide_real @ A @ B ) @ B )
        = A ) ) ).

% divide_mult_cancel
thf(fact_279_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_280_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_281_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_282_arcosh__1,axiom,
    ( ( arcosh_real @ one_one_real )
    = zero_zero_real ) ).

% arcosh_1
thf(fact_283_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_284_bits__div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% bits_div_by_1
thf(fact_285_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_286_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_287_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_288_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_289_add__diff__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_290_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_291_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_292_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_293_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_294_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_295_add__diff__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_296_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_297_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_298_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_299_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_300_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_301_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_302_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_303_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_304_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_305_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_306_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_307_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_308_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_309_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_310_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_311_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_312_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_313_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_314_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_315_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_316_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_317_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_318_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_319_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_320_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_321_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_322_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_323_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_324_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_325_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_326_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_327_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_328_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_329_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_330_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_331_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_332_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_333_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_334_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_335_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_336_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_337_mult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% mult_1
thf(fact_338_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_339_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_340_mult_Oright__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.right_neutral
thf(fact_341_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_342_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_343_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_344_bits__div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_345_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_346_bits__div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_347_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_348_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_349_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_350_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_351_zdiv__int,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% zdiv_int
thf(fact_352_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_353_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_354_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_355_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_356_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_357_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_358_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A2: real,B2: real] : ( times_times_real @ B2 @ A2 ) ) ) ).

% mult.commute
thf(fact_359_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A2: nat,B2: nat] : ( times_times_nat @ B2 @ A2 ) ) ) ).

% mult.commute
thf(fact_360_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A2: int,B2: int] : ( times_times_int @ B2 @ A2 ) ) ) ).

% mult.commute
thf(fact_361_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_362_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_363_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_364_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_365_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_366_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_367_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_368_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_369_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_370_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_371_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_372_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_373_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_374_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_375_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_376_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_377_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_378_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_379_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A2: real,B2: real] : ( plus_plus_real @ B2 @ A2 ) ) ) ).

% add.commute
thf(fact_380_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A2: nat,B2: nat] : ( plus_plus_nat @ B2 @ A2 ) ) ) ).

% add.commute
thf(fact_381_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A2: int,B2: int] : ( plus_plus_int @ B2 @ A2 ) ) ) ).

% add.commute
thf(fact_382_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_383_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_384_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_385_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_386_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_387_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_388_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_389_group__cancel_Oadd2,axiom,
    ! [B3: real,K: real,B: real,A: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B3 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_390_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B: nat,A: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_391_group__cancel_Oadd2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B3 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_392_group__cancel_Oadd1,axiom,
    ! [A3: real,K: real,A: real,B: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A3 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_393_group__cancel_Oadd1,axiom,
    ! [A3: nat,K: nat,A: nat,B: nat] :
      ( ( A3
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A3 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_394_group__cancel_Oadd1,axiom,
    ! [A3: int,K: int,A: int,B: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A3 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_395_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_396_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_397_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_398_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_399_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_400_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_401_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_402_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_403_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_404_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_405_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_406_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_407_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_408_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_409_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_410_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_411_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_412_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_413_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_414_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_415_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_416_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y2: real,Z3: real] : ( Y2 = Z3 ) )
    = ( ^ [A2: real,B2: real] :
          ( ( minus_minus_real @ A2 @ B2 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_417_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y2: int,Z3: int] : ( Y2 = Z3 ) )
    = ( ^ [A2: int,B2: int] :
          ( ( minus_minus_int @ A2 @ B2 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_418_mult_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ one_one_real )
      = A ) ).

% mult.comm_neutral
thf(fact_419_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_420_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_421_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: real] :
      ( ( times_times_real @ one_one_real @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_422_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_423_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_424_diff__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_425_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_426_diff__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_427_add__implies__diff,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C @ B )
        = A )
     => ( C
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_428_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_429_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_430_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_431_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_432_diff__add__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_433_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_434_diff__diff__eq2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_435_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_436_add__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_437_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_438_eq__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_439_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_440_diff__eq__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C )
      = ( A
        = ( plus_plus_real @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_441_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_442_group__cancel_Osub1,axiom,
    ! [A3: real,K: real,A: real,B: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A3 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_443_group__cancel_Osub1,axiom,
    ! [A3: int,K: int,A: int,B: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A3 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_444_vector__space__over__itself_Oscale__one,axiom,
    ! [X: real] :
      ( ( times_times_real @ one_one_real @ X )
      = X ) ).

% vector_space_over_itself.scale_one
thf(fact_445_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_446_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_447_vector__space__over__itself_Oscale__cancel__right,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ( times_times_real @ A @ X )
        = ( times_times_real @ B @ X ) )
      = ( ( A = B )
        | ( X = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_cancel_right
thf(fact_448_vector__space__over__itself_Oscale__cancel__left,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ( times_times_real @ A @ X )
        = ( times_times_real @ A @ Y ) )
      = ( ( X = Y )
        | ( A = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_cancel_left
thf(fact_449_vector__space__over__itself_Oscale__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% vector_space_over_itself.scale_zero_right
thf(fact_450_vector__space__over__itself_Oscale__zero__left,axiom,
    ! [X: real] :
      ( ( times_times_real @ zero_zero_real @ X )
      = zero_zero_real ) ).

% vector_space_over_itself.scale_zero_left
thf(fact_451_vector__space__over__itself_Oscale__eq__0__iff,axiom,
    ! [A: real,X: real] :
      ( ( ( times_times_real @ A @ X )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( X = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_eq_0_iff
thf(fact_452_i__nom__def,axiom,
    ( i_nom
    = ( ^ [I2: real,M2: nat] : ( times_times_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( minus_minus_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ I2 ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) ) @ one_one_real ) ) ) ) ).

% i_nom_def
thf(fact_453_i__nom__1,axiom,
    ( ( i_nom @ i @ one_one_nat )
    = i ) ).

% i_nom_1
thf(fact_454_int__diff__cases,axiom,
    ! [Z: int] :
      ~ ! [M3: nat,N3: nat] :
          ( Z
         != ( minus_minus_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% int_diff_cases
thf(fact_455_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_456_vector__space__over__itself_Oscale__scale,axiom,
    ! [A: real,B: real,X: real] :
      ( ( times_times_real @ A @ ( times_times_real @ B @ X ) )
      = ( times_times_real @ ( times_times_real @ A @ B ) @ X ) ) ).

% vector_space_over_itself.scale_scale
thf(fact_457_vector__space__over__itself_Oscale__left__commute,axiom,
    ! [A: real,B: real,X: real] :
      ( ( times_times_real @ A @ ( times_times_real @ B @ X ) )
      = ( times_times_real @ B @ ( times_times_real @ A @ X ) ) ) ).

% vector_space_over_itself.scale_left_commute
thf(fact_458_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).

% zadd_int_left
thf(fact_459_interest_Oi__nom__1,axiom,
    ! [I: real] :
      ( ( interest @ I )
     => ( ( i_nom @ I @ one_one_nat )
        = I ) ) ).

% interest.i_nom_1
thf(fact_460_vector__space__over__itself_Oscale__left__imp__eq,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( A != zero_zero_real )
     => ( ( ( times_times_real @ A @ X )
          = ( times_times_real @ A @ Y ) )
       => ( X = Y ) ) ) ).

% vector_space_over_itself.scale_left_imp_eq
thf(fact_461_vector__space__over__itself_Oscale__right__imp__eq,axiom,
    ! [X: real,A: real,B: real] :
      ( ( X != zero_zero_real )
     => ( ( ( times_times_real @ A @ X )
          = ( times_times_real @ B @ X ) )
       => ( A = B ) ) ) ).

% vector_space_over_itself.scale_right_imp_eq
thf(fact_462_vector__space__over__itself_Oscale__left__distrib,axiom,
    ! [A: real,B: real,X: real] :
      ( ( times_times_real @ ( plus_plus_real @ A @ B ) @ X )
      = ( plus_plus_real @ ( times_times_real @ A @ X ) @ ( times_times_real @ B @ X ) ) ) ).

% vector_space_over_itself.scale_left_distrib
thf(fact_463_vector__space__over__itself_Oscale__right__distrib,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( times_times_real @ A @ ( plus_plus_real @ X @ Y ) )
      = ( plus_plus_real @ ( times_times_real @ A @ X ) @ ( times_times_real @ A @ Y ) ) ) ).

% vector_space_over_itself.scale_right_distrib
thf(fact_464_vector__space__over__itself_Oscale__left__diff__distrib,axiom,
    ! [A: real,B: real,X: real] :
      ( ( times_times_real @ ( minus_minus_real @ A @ B ) @ X )
      = ( minus_minus_real @ ( times_times_real @ A @ X ) @ ( times_times_real @ B @ X ) ) ) ).

% vector_space_over_itself.scale_left_diff_distrib
thf(fact_465_vector__space__over__itself_Oscale__right__diff__distrib,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( times_times_real @ A @ ( minus_minus_real @ X @ Y ) )
      = ( minus_minus_real @ ( times_times_real @ A @ X ) @ ( times_times_real @ A @ Y ) ) ) ).

% vector_space_over_itself.scale_right_diff_distrib
thf(fact_466_v__futr__m__pos,axiom,
    ! [M: nat] :
      ( ( M != zero_zero_nat )
     => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ i @ M ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ).

% v_futr_m_pos
thf(fact_467_perp__def,axiom,
    ( perp
    = ( ^ [I2: real,M2: nat] : ( divide_divide_real @ one_one_real @ ( i_nom @ I2 @ M2 ) ) ) ) ).

% perp_def
thf(fact_468_d__nom__def,axiom,
    ( d_nom
    = ( ^ [I2: real,M2: nat] : ( divide_divide_real @ ( i_nom @ I2 @ M2 ) @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I2 @ M2 ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ) ) ).

% d_nom_def
thf(fact_469_v__futr__pos,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ i ) ).

% v_futr_pos
thf(fact_470_artanh__0,axiom,
    ( ( artanh_real @ zero_zero_real )
    = zero_zero_real ) ).

% artanh_0
thf(fact_471_arsinh__0,axiom,
    ( ( arsinh_real @ zero_zero_real )
    = zero_zero_real ) ).

% arsinh_0
thf(fact_472_int__ops_I8_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A @ B ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(8)
thf(fact_473_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_474_add__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_475_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_476_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_477_add__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_478_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_479_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_480_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_481_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_482_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_483_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_484_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_485_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_486_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_487_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_488_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_489_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_490_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_491_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_492_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_493_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_494_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_495_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_496_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_497_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_498_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_499_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_500_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_501_power__strict__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_502_power__strict__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_503_power__strict__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_504_power__inject__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( power_power_real @ A @ M )
          = ( power_power_real @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_505_power__inject__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_506_power__inject__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ( power_power_int @ A @ M )
          = ( power_power_int @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_507_not__real__square__gt__zero,axiom,
    ! [X: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
      = ( X = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_508_powr__gt__zero,axiom,
    ! [X: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( powr_real @ X @ A ) )
      = ( X != zero_zero_real ) ) ).

% powr_gt_zero
thf(fact_509_powr__less__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel_iff
thf(fact_510_zero__less__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_511_less__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_512_less__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_513_divide__less__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_514_divide__less__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_515_divide__less__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% divide_less_0_1_iff
thf(fact_516_power__strict__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_517_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_518_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_519_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_520_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_521_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_522_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_523_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_524_of__nat__power__less__of__nat__cancel__iff,axiom,
    ! [X: nat,B: nat,W: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
      = ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).

% of_nat_power_less_of_nat_cancel_iff
thf(fact_525_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_526_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_527_of__nat__less__of__nat__power__cancel__iff,axiom,
    ! [B: nat,W: nat,X: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
      = ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).

% of_nat_less_of_nat_power_cancel_iff
thf(fact_528_powr__eq__one__iff__gen,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ( powr_real @ A @ X )
            = one_one_real )
          = ( X = zero_zero_real ) ) ) ) ).

% powr_eq_one_iff_gen
thf(fact_529_powr__eq__one__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( powr_real @ A @ X )
          = one_one_real )
        = ( X = zero_zero_real ) ) ) ).

% powr_eq_one_iff
thf(fact_530_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_531_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_532_of__nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% of_nat_zero_less_power_iff
thf(fact_533_int__distrib_I4_J,axiom,
    ! [W: int,Z1: int,Z2: int] :
      ( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z2 ) )
      = ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z2 ) ) ) ).

% int_distrib(4)
thf(fact_534_int__distrib_I3_J,axiom,
    ! [Z1: int,Z2: int,W: int] :
      ( ( times_times_int @ ( minus_minus_int @ Z1 @ Z2 ) @ W )
      = ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z2 @ W ) ) ) ).

% int_distrib(3)
thf(fact_535_minus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( minus_minus_int @ K @ zero_zero_int )
      = K ) ).

% minus_int_code(1)
thf(fact_536_int__distrib_I2_J,axiom,
    ! [W: int,Z1: int,Z2: int] :
      ( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z2 ) )
      = ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z2 ) ) ) ).

% int_distrib(2)
thf(fact_537_int__distrib_I1_J,axiom,
    ! [Z1: int,Z2: int,W: int] :
      ( ( times_times_int @ ( plus_plus_int @ Z1 @ Z2 ) @ W )
      = ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z2 @ W ) ) ) ).

% int_distrib(1)
thf(fact_538_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_539_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_540_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_541_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_542_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_543_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_544_odd__nonzero,axiom,
    ! [Z: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_545_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_546_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_547_linordered__field__no__ub,axiom,
    ! [X2: real] :
    ? [X_1: real] : ( ord_less_real @ X2 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_548_linordered__field__no__lb,axiom,
    ! [X2: real] :
    ? [Y3: real] : ( ord_less_real @ Y3 @ X2 ) ).

% linordered_field_no_lb
thf(fact_549_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_550_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_551_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_552_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_553_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_554_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ one_one_real @ A )
       => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_555_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ one_one_nat @ A )
       => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_556_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ one_one_int @ A )
       => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_557_power__less__imp__less__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_558_power__less__imp__less__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_559_power__less__imp__less__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_560_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_561_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_562_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_563_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_564_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_565_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_566_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_567_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_568_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_569_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_570_add__less__imp__less__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_571_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_572_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_573_add__less__imp__less__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_574_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_575_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_576_add__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_577_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_578_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_579_add__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_580_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_581_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_582_add__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_583_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_584_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_585_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_586_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_587_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_588_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_589_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_590_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_591_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_592_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_593_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_594_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_595_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_596_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_597_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_598_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_599_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_600_diff__strict__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D @ C )
       => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_601_diff__strict__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_602_powr__less__cancel2,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ zero_zero_real @ Y )
         => ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ A ) )
           => ( ord_less_real @ X @ Y ) ) ) ) ) ).

% powr_less_cancel2
thf(fact_603_powr__non__neg,axiom,
    ! [A: real,X: real] :
      ~ ( ord_less_real @ ( powr_real @ A @ X ) @ zero_zero_real ) ).

% powr_non_neg
thf(fact_604_powr__less__mono2__neg,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( ord_less_real @ X @ Y )
         => ( ord_less_real @ ( powr_real @ Y @ A ) @ ( powr_real @ X @ A ) ) ) ) ) ).

% powr_less_mono2_neg
thf(fact_605_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( ord_less_real @ A @ one_one_real )
         => ( ord_less_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_606_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ A @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_607_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ( ord_less_int @ A @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_608_one__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_609_one__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_610_one__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_611_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_612_mult__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_613_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_614_not__square__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_615_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_616_mult__less__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ B @ zero_zero_int ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_617_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_618_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_619_mult__neg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_620_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_621_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_622_mult__pos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_623_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_624_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_625_mult__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_626_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_627_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_628_mult__pos__neg2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_629_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_630_zero__less__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ zero_zero_int @ B ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_631_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_632_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_633_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_634_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_635_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_636_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_637_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_638_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_639_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_640_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_641_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_642_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_643_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_644_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_645_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_646_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_647_mult__less__cancel__left__disj,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_648_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_649_mult__strict__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_650_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_651_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_652_mult__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_653_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_654_mult__less__cancel__right__disj,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_655_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_656_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_657_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_658_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_659_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_660_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_661_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_662_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_663_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_664_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_665_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_666_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_667_add__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_neg_neg
thf(fact_668_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_669_add__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_670_add__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_671_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_672_add__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_673_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C2 ) )
           => ( C2 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_674_pos__add__strict,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_675_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_676_pos__add__strict,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_677_add__less__zeroD,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
     => ( ( ord_less_real @ X @ zero_zero_real )
        | ( ord_less_real @ Y @ zero_zero_real ) ) ) ).

% add_less_zeroD
thf(fact_678_add__less__zeroD,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ ( plus_plus_int @ X @ Y ) @ zero_zero_int )
     => ( ( ord_less_int @ X @ zero_zero_int )
        | ( ord_less_int @ Y @ zero_zero_int ) ) ) ).

% add_less_zeroD
thf(fact_679_less__iff__diff__less__0,axiom,
    ( ord_less_real
    = ( ^ [A2: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).

% less_iff_diff_less_0
thf(fact_680_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A2: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_681_less__1__mult,axiom,
    ! [M: real,N: real] :
      ( ( ord_less_real @ one_one_real @ M )
     => ( ( ord_less_real @ one_one_real @ N )
       => ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_682_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_683_less__1__mult,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ one_one_int @ M )
     => ( ( ord_less_int @ one_one_int @ N )
       => ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_684_divide__neg__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_neg_neg
thf(fact_685_divide__neg__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_neg_pos
thf(fact_686_divide__pos__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_pos_neg
thf(fact_687_divide__pos__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_pos_pos
thf(fact_688_divide__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% divide_less_0_iff
thf(fact_689_divide__less__cancel,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) )
        & ( C != zero_zero_real ) ) ) ).

% divide_less_cancel
thf(fact_690_zero__less__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_divide_iff
thf(fact_691_divide__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_692_divide__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_693_add__mono1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).

% add_mono1
thf(fact_694_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_695_add__mono1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).

% add_mono1
thf(fact_696_less__add__one,axiom,
    ! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).

% less_add_one
thf(fact_697_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_698_less__add__one,axiom,
    ! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).

% less_add_one
thf(fact_699_zero__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_less_power
thf(fact_700_zero__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_701_zero__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_less_power
thf(fact_702_less__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_703_less__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_704_diff__less__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_705_diff__less__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_706_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: real,B: real] :
      ( ~ ( ord_less_real @ A @ B )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_707_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_708_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: int,B: int] :
      ( ~ ( ord_less_int @ A @ B )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_709_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_710_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_711_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_712_powr__less__cancel,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
     => ( ( ord_less_real @ one_one_real @ X )
       => ( ord_less_real @ A @ B ) ) ) ).

% powr_less_cancel
thf(fact_713_powr__less__mono,axiom,
    ! [A: real,B: real,X: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ one_one_real @ X )
       => ( ord_less_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) ) ) ) ).

% powr_less_mono
thf(fact_714_gr__one__powr,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ one_one_real @ ( powr_real @ X @ Y ) ) ) ) ).

% gr_one_powr
thf(fact_715_powr__inj,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( A != one_one_real )
       => ( ( ( powr_real @ A @ X )
            = ( powr_real @ A @ Y ) )
          = ( X = Y ) ) ) ) ).

% powr_inj
thf(fact_716_sum__squares__gt__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) )
      = ( ( X != zero_zero_real )
        | ( Y != zero_zero_real ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_717_sum__squares__gt__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) )
      = ( ( X != zero_zero_int )
        | ( Y != zero_zero_int ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_718_not__sum__squares__lt__zero,axiom,
    ! [X: real,Y: real] :
      ~ ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real ) ).

% not_sum_squares_lt_zero
thf(fact_719_not__sum__squares__lt__zero,axiom,
    ! [X: int,Y: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int ) ).

% not_sum_squares_lt_zero
thf(fact_720_zero__less__two,axiom,
    ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ one_one_real ) ).

% zero_less_two
thf(fact_721_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_722_zero__less__two,axiom,
    ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ one_one_int ) ).

% zero_less_two
thf(fact_723_divide__strict__left__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono_neg
thf(fact_724_divide__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).

% divide_strict_left_mono
thf(fact_725_mult__imp__less__div__pos,axiom,
    ! [Y: real,Z: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ ( times_times_real @ Z @ Y ) @ X )
       => ( ord_less_real @ Z @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% mult_imp_less_div_pos
thf(fact_726_mult__imp__div__pos__less,axiom,
    ! [Y: real,X: real,Z: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X @ ( times_times_real @ Z @ Y ) )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ Z ) ) ) ).

% mult_imp_div_pos_less
thf(fact_727_pos__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% pos_less_divide_eq
thf(fact_728_pos__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% pos_divide_less_eq
thf(fact_729_neg__less__divide__eq,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
        = ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).

% neg_less_divide_eq
thf(fact_730_neg__divide__less__eq,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
        = ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).

% neg_divide_less_eq
thf(fact_731_less__divide__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).

% less_divide_eq
thf(fact_732_divide__less__eq,axiom,
    ! [B: real,C: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
        & ( ~ ( ord_less_real @ zero_zero_real @ C )
         => ( ( ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
            & ( ~ ( ord_less_real @ C @ zero_zero_real )
             => ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).

% divide_less_eq
thf(fact_733_less__add__iff2,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_734_less__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_735_less__add__iff1,axiom,
    ! [A: real,E: real,C: real,B: real,D: real] :
      ( ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
      = ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_736_less__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_737_less__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% less_divide_eq_1
thf(fact_738_divide__less__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ A ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ A @ B ) )
        | ( A = zero_zero_real ) ) ) ).

% divide_less_eq_1
thf(fact_739_power__less__power__Suc,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_740_power__less__power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_741_power__less__power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_742_power__gt1__lemma,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_743_power__gt1__lemma,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_744_power__gt1__lemma,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_745_less__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).

% less_half_sum
thf(fact_746_gt__half__sum,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).

% gt_half_sum
thf(fact_747_powr__realpow,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( semiri5074537144036343181t_real @ N ) )
        = ( power_power_real @ X @ N ) ) ) ).

% powr_realpow
thf(fact_748_int__if,axiom,
    ! [P2: $o,A: nat,B: nat] :
      ( ( P2
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P2 @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P2
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P2 @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_749_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y2: nat,Z3: nat] : ( Y2 = Z3 ) )
    = ( ^ [A2: nat,B2: nat] :
          ( ( semiri1314217659103216013at_int @ A2 )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_750_interest__def,axiom,
    ( interest
    = ( ^ [I2: real] : ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ I2 ) ) ) ) ).

% interest_def
thf(fact_751_interest_Ov__futr__pos,axiom,
    ! [I: real] :
      ( ( interest @ I )
     => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ I ) ) ) ).

% interest.v_futr_pos
thf(fact_752_interest_Ointro,axiom,
    ! [I: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ I ) )
     => ( interest @ I ) ) ).

% interest.intro
thf(fact_753_frac__less__eq,axiom,
    ! [Y: real,Z: real,X: real,W: real] :
      ( ( Y != zero_zero_real )
     => ( ( Z != zero_zero_real )
       => ( ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z ) )
          = ( ord_less_real @ ( divide_divide_real @ ( minus_minus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) @ zero_zero_real ) ) ) ) ).

% frac_less_eq
thf(fact_754_power__Suc__less,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ A @ one_one_real )
       => ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_755_power__Suc__less,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_756_power__Suc__less,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_757_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_758_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_759_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_760_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_761_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_762_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_763_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_764_int__ops_I7_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(7)
thf(fact_765_interest_Ov__futr__m__pos,axiom,
    ! [I: real,M: nat] :
      ( ( interest @ I )
     => ( ( M != zero_zero_nat )
       => ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( i_nom @ I @ M ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ) ) ).

% interest.v_futr_m_pos
thf(fact_766_perp__due__def,axiom,
    ( perp_due
    = ( ^ [I2: real,M2: nat] : ( divide_divide_real @ one_one_real @ ( d_nom @ I2 @ M2 ) ) ) ) ).

% perp_due_def
thf(fact_767_square__bound__lemma,axiom,
    ! [X: real] : ( ord_less_real @ X @ ( times_times_real @ ( plus_plus_real @ one_one_real @ X ) @ ( plus_plus_real @ one_one_real @ X ) ) ) ).

% square_bound_lemma
thf(fact_768_reals__Archimedean3,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ! [Y4: real] :
        ? [N3: nat] : ( ord_less_real @ Y4 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).

% reals_Archimedean3
thf(fact_769_real__arch__pow__inv,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y )
     => ( ( ord_less_real @ X @ one_one_real )
       => ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X @ N3 ) @ Y ) ) ) ).

% real_arch_pow_inv
thf(fact_770_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_771_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ one_one_int @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_772_one__less__of__natD,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ one_one_nat @ N ) ) ).

% one_less_of_natD
thf(fact_773_ex__less__of__nat__mult,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N3: nat] : ( ord_less_real @ Y @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).

% ex_less_of_nat_mult
thf(fact_774_nat__mult__div__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( K = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = zero_zero_nat ) )
      & ( ( K != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = ( divide_divide_nat @ M @ N ) ) ) ) ).

% nat_mult_div_cancel_disj
thf(fact_775_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_776_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_777_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_778_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_779_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_780_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_781_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_782_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_783_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_784_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_785_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_786_nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_787_power__eq__0__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ( power_power_real @ A @ N )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_788_power__eq__0__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( ( power_power_nat @ A @ N )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_789_power__eq__0__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ( power_power_int @ A @ N )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_790_div__mult__self1__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_791_div__mult__self__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_792_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A2: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_793_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_794_zmult__zless__mono2,axiom,
    ! [I: int,J: int,K: int] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).

% zmult_zless_mono2
thf(fact_795_times__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( times_times_int @ K @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_796_times__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( times_times_int @ zero_zero_int @ L )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_797_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_798_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_799_infinite__descent,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P2 @ N3 )
         => ? [M4: nat] :
              ( ( ord_less_nat @ M4 @ N3 )
              & ~ ( P2 @ M4 ) ) )
     => ( P2 @ N ) ) ).

% infinite_descent
thf(fact_800_nat__less__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_nat @ M4 @ N3 )
             => ( P2 @ M4 ) )
         => ( P2 @ N3 ) )
     => ( P2 @ N ) ) ).

% nat_less_induct
thf(fact_801_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_802_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_803_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_804_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_805_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_806_zmult__zless__mono2__lemma,axiom,
    ! [I: int,J: int,K: nat] :
      ( ( ord_less_int @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_807_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( K
            = ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_808_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N3: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% pos_int_cases
thf(fact_809_infinite__descent0,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P2 @ N3 )
             => ? [M4: nat] :
                  ( ( ord_less_nat @ M4 @ N3 )
                  & ~ ( P2 @ M4 ) ) ) )
       => ( P2 @ N ) ) ) ).

% infinite_descent0
thf(fact_810_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_811_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_812_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_813_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_814_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_815_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_816_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_817_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_818_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_819_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_820_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_821_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_822_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_823_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_824_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_825_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_826_odd__less__0__iff,axiom,
    ! [Z: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
      = ( ord_less_int @ Z @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_827_zless__add1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ( ord_less_int @ W @ Z )
        | ( W = Z ) ) ) ).

% zless_add1_eq
thf(fact_828_int__gr__induct,axiom,
    ! [K: int,I: int,P2: int > $o] :
      ( ( ord_less_int @ K @ I )
     => ( ( P2 @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K @ I3 )
             => ( ( P2 @ I3 )
               => ( P2 @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P2 @ I ) ) ) ) ).

% int_gr_induct
thf(fact_829_int__less__induct,axiom,
    ! [I: int,K: int,P2: int > $o] :
      ( ( ord_less_int @ I @ K )
     => ( ( P2 @ ( minus_minus_int @ K @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ I3 @ K )
             => ( ( P2 @ I3 )
               => ( P2 @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
         => ( P2 @ I ) ) ) ) ).

% int_less_induct
thf(fact_830_div__neg__pos__less0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_neg_pos_less0
thf(fact_831_int__div__less__self,axiom,
    ! [X: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ one_one_int @ K )
       => ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).

% int_div_less_self
thf(fact_832_neg__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% neg_imp_zdiv_neg_iff
thf(fact_833_pos__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% pos_imp_zdiv_neg_iff
thf(fact_834_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_835_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_836_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I @ K2 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_837_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_838_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_839_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_840_nat__mult__div__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( divide_divide_nat @ M @ N ) ) ) ).

% nat_mult_div_cancel1
thf(fact_841_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_842_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_843_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_844_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_845_less__mult__imp__div__less,axiom,
    ! [M: nat,I: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).

% less_mult_imp_div_less
thf(fact_846_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_real @ zero_zero_real @ N )
        = zero_zero_real ) ) ).

% zero_power
thf(fact_847_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_nat @ zero_zero_nat @ N )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_848_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_int @ zero_zero_int @ N )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_849_nat__diff__split__asm,axiom,
    ! [P2: nat > $o,A: nat,B: nat] :
      ( ( P2 @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P2 @ zero_zero_nat ) )
            | ? [D2: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D2 ) )
                & ~ ( P2 @ D2 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_850_nat__diff__split,axiom,
    ! [P2: nat > $o,A: nat,B: nat] :
      ( ( P2 @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P2 @ zero_zero_nat ) )
        & ! [D2: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D2 ) )
           => ( P2 @ D2 ) ) ) ) ).

% nat_diff_split
thf(fact_851_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_852_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_853_div__less__iff__less__mult,axiom,
    ! [Q: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q )
     => ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q ) @ N )
        = ( ord_less_nat @ M @ ( times_times_nat @ N @ Q ) ) ) ) ).

% div_less_iff_less_mult
thf(fact_854_int__ops_I6_J,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = zero_zero_int ) )
      & ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
       => ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
          = ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% int_ops(6)
thf(fact_855_realpow__pos__nth__unique,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X3: real] :
            ( ( ord_less_real @ zero_zero_real @ X3 )
            & ( ( power_power_real @ X3 @ N )
              = A )
            & ! [Y4: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y4 )
                  & ( ( power_power_real @ Y4 @ N )
                    = A ) )
               => ( Y4 = X3 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_856_realpow__pos__nth,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R2: real] :
            ( ( ord_less_real @ zero_zero_real @ R2 )
            & ( ( power_power_real @ R2 @ N )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_857_dividend__less__times__div,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).

% dividend_less_times_div
thf(fact_858_dividend__less__div__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).

% dividend_less_div_times
thf(fact_859_split__div,axiom,
    ! [P2: nat > $o,M: nat,N: nat] :
      ( ( P2 @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P2 @ zero_zero_nat ) )
        & ( ( N != zero_zero_nat )
         => ! [I2: nat,J2: nat] :
              ( ( ( ord_less_nat @ J2 @ N )
                & ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I2 ) @ J2 ) ) )
             => ( P2 @ I2 ) ) ) ) ) ).

% split_div
thf(fact_860_power__minus__mult,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_real @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_861_power__minus__mult,axiom,
    ! [N: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_nat @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_862_power__minus__mult,axiom,
    ! [N: nat,A: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_int @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_863_field__lbound__gt__zero,axiom,
    ! [D1: real,D22: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D22 )
       => ? [E2: real] :
            ( ( ord_less_real @ zero_zero_real @ E2 )
            & ( ord_less_real @ E2 @ D1 )
            & ( ord_less_real @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_864_add__diff__add,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) )
      = ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D ) ) ) ).

% add_diff_add
thf(fact_865_add__diff__add,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) )
      = ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D ) ) ) ).

% add_diff_add
thf(fact_866_reals__Archimedean2,axiom,
    ! [X: real] :
    ? [N3: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ).

% reals_Archimedean2
thf(fact_867_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_868_left__add__mult__distrib,axiom,
    ! [I: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_869_mult__diff__mult,axiom,
    ! [X: real,Y: real,A: real,B: real] :
      ( ( minus_minus_real @ ( times_times_real @ X @ Y ) @ ( times_times_real @ A @ B ) )
      = ( plus_plus_real @ ( times_times_real @ X @ ( minus_minus_real @ Y @ B ) ) @ ( times_times_real @ ( minus_minus_real @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_870_mult__diff__mult,axiom,
    ! [X: int,Y: int,A: int,B: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ Y ) @ ( times_times_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ X @ ( minus_minus_int @ Y @ B ) ) @ ( times_times_int @ ( minus_minus_int @ X @ A ) @ B ) ) ) ).

% mult_diff_mult
thf(fact_871_real__arch__pow,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ? [N3: nat] : ( ord_less_real @ Y @ ( power_power_real @ X @ N3 ) ) ) ).

% real_arch_pow
thf(fact_872_reals__power__lt__ex,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ one_one_real @ Y )
       => ? [K2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ K2 )
            & ( ord_less_real @ ( power_power_real @ ( divide_divide_real @ one_one_real @ Y ) @ K2 ) @ X ) ) ) ) ).

% reals_power_lt_ex
thf(fact_873_minusinfinity,axiom,
    ! [D: int,P1: int > $o,P2: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int,K2: int] :
            ( ( P1 @ X3 )
            = ( P1 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D ) ) ) )
       => ( ? [Z4: int] :
            ! [X3: int] :
              ( ( ord_less_int @ X3 @ Z4 )
             => ( ( P2 @ X3 )
                = ( P1 @ X3 ) ) )
         => ( ? [X_12: int] : ( P1 @ X_12 )
           => ? [X_1: int] : ( P2 @ X_1 ) ) ) ) ) ).

% minusinfinity
thf(fact_874_plusinfinity,axiom,
    ! [D: int,P3: int > $o,P2: int > $o] :
      ( ( ord_less_int @ zero_zero_int @ D )
     => ( ! [X3: int,K2: int] :
            ( ( P3 @ X3 )
            = ( P3 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D ) ) ) )
       => ( ? [Z4: int] :
            ! [X3: int] :
              ( ( ord_less_int @ Z4 @ X3 )
             => ( ( P2 @ X3 )
                = ( P3 @ X3 ) ) )
         => ( ? [X_12: int] : ( P3 @ X_12 )
           => ? [X_1: int] : ( P2 @ X_1 ) ) ) ) ) ).

% plusinfinity
thf(fact_875_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_876_unique__euclidean__semiring__with__nat__class_Oof__nat__div,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( divide_divide_nat @ M @ N ) )
      = ( divide_divide_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% unique_euclidean_semiring_with_nat_class.of_nat_div
thf(fact_877_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z5 )
     => ~ ( ord_less_real @ T @ X2 ) ) ).

% minf(7)
thf(fact_878_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z5 )
     => ~ ( ord_less_nat @ T @ X2 ) ) ).

% minf(7)
thf(fact_879_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z5 )
     => ~ ( ord_less_int @ T @ X2 ) ) ).

% minf(7)
thf(fact_880_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z5 )
     => ( ord_less_real @ X2 @ T ) ) ).

% minf(5)
thf(fact_881_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z5 )
     => ( ord_less_nat @ X2 @ T ) ) ).

% minf(5)
thf(fact_882_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z5 )
     => ( ord_less_int @ X2 @ T ) ) ).

% minf(5)
thf(fact_883_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z5 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_884_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z5 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_885_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z5 )
     => ( X2 != T ) ) ).

% minf(4)
thf(fact_886_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X2: real] :
      ( ( ord_less_real @ X2 @ Z5 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_887_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ Z5 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_888_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X2: int] :
      ( ( ord_less_int @ X2 @ Z5 )
     => ( X2 != T ) ) ).

% minf(3)
thf(fact_889_minf_I2_J,axiom,
    ! [P2: real > $o,P3: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ X3 @ Z4 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z4 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: real] :
          ! [X2: real] :
            ( ( ord_less_real @ X2 @ Z5 )
           => ( ( ( P2 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_890_minf_I2_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z4 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z4 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z5 )
           => ( ( ( P2 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_891_minf_I2_J,axiom,
    ! [P2: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z4 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z4 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z5 )
           => ( ( ( P2 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(2)
thf(fact_892_minf_I1_J,axiom,
    ! [P2: real > $o,P3: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ X3 @ Z4 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z4 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: real] :
          ! [X2: real] :
            ( ( ord_less_real @ X2 @ Z5 )
           => ( ( ( P2 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_893_minf_I1_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z4 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z4 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ X2 @ Z5 )
           => ( ( ( P2 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_894_minf_I1_J,axiom,
    ! [P2: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z4 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z4 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: int] :
          ! [X2: int] :
            ( ( ord_less_int @ X2 @ Z5 )
           => ( ( ( P2 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% minf(1)
thf(fact_895_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z5 @ X2 )
     => ( ord_less_real @ T @ X2 ) ) ).

% pinf(7)
thf(fact_896_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z5 @ X2 )
     => ( ord_less_nat @ T @ X2 ) ) ).

% pinf(7)
thf(fact_897_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z5 @ X2 )
     => ( ord_less_int @ T @ X2 ) ) ).

% pinf(7)
thf(fact_898_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z5 @ X2 )
     => ~ ( ord_less_real @ X2 @ T ) ) ).

% pinf(5)
thf(fact_899_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z5 @ X2 )
     => ~ ( ord_less_nat @ X2 @ T ) ) ).

% pinf(5)
thf(fact_900_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z5 @ X2 )
     => ~ ( ord_less_int @ X2 @ T ) ) ).

% pinf(5)
thf(fact_901_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z5 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_902_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z5 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_903_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z5 @ X2 )
     => ( X2 != T ) ) ).

% pinf(4)
thf(fact_904_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z5: real] :
    ! [X2: real] :
      ( ( ord_less_real @ Z5 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_905_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z5: nat] :
    ! [X2: nat] :
      ( ( ord_less_nat @ Z5 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_906_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z5: int] :
    ! [X2: int] :
      ( ( ord_less_int @ Z5 @ X2 )
     => ( X2 != T ) ) ).

% pinf(3)
thf(fact_907_pinf_I2_J,axiom,
    ! [P2: real > $o,P3: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ Z4 @ X3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z4 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: real] :
          ! [X2: real] :
            ( ( ord_less_real @ Z5 @ X2 )
           => ( ( ( P2 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_908_pinf_I2_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z4 @ X3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z4 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z5 @ X2 )
           => ( ( ( P2 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_909_pinf_I2_J,axiom,
    ! [P2: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z4 @ X3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z4 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z5 @ X2 )
           => ( ( ( P2 @ X2 )
                | ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                | ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_910_pinf_I1_J,axiom,
    ! [P2: real > $o,P3: real > $o,Q2: real > $o,Q3: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ Z4 @ X3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z4 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: real] :
          ! [X2: real] :
            ( ( ord_less_real @ Z5 @ X2 )
           => ( ( ( P2 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_911_pinf_I1_J,axiom,
    ! [P2: nat > $o,P3: nat > $o,Q2: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z4 @ X3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z4 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: nat] :
          ! [X2: nat] :
            ( ( ord_less_nat @ Z5 @ X2 )
           => ( ( ( P2 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_912_pinf_I1_J,axiom,
    ! [P2: int > $o,P3: int > $o,Q2: int > $o,Q3: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z4 @ X3 )
         => ( ( P2 @ X3 )
            = ( P3 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z4 @ X3 )
           => ( ( Q2 @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z5: int] :
          ! [X2: int] :
            ( ( ord_less_int @ Z5 @ X2 )
           => ( ( ( P2 @ X2 )
                & ( Q2 @ X2 ) )
              = ( ( P3 @ X2 )
                & ( Q3 @ X2 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_913_mult__delta__right,axiom,
    ! [B: $o,X: real,Y: real] :
      ( ( B
       => ( ( times_times_real @ X @ ( if_real @ B @ Y @ zero_zero_real ) )
          = ( times_times_real @ X @ Y ) ) )
      & ( ~ B
       => ( ( times_times_real @ X @ ( if_real @ B @ Y @ zero_zero_real ) )
          = zero_zero_real ) ) ) ).

% mult_delta_right
thf(fact_914_mult__delta__right,axiom,
    ! [B: $o,X: nat,Y: nat] :
      ( ( B
       => ( ( times_times_nat @ X @ ( if_nat @ B @ Y @ zero_zero_nat ) )
          = ( times_times_nat @ X @ Y ) ) )
      & ( ~ B
       => ( ( times_times_nat @ X @ ( if_nat @ B @ Y @ zero_zero_nat ) )
          = zero_zero_nat ) ) ) ).

% mult_delta_right
thf(fact_915_mult__delta__right,axiom,
    ! [B: $o,X: int,Y: int] :
      ( ( B
       => ( ( times_times_int @ X @ ( if_int @ B @ Y @ zero_zero_int ) )
          = ( times_times_int @ X @ Y ) ) )
      & ( ~ B
       => ( ( times_times_int @ X @ ( if_int @ B @ Y @ zero_zero_int ) )
          = zero_zero_int ) ) ) ).

% mult_delta_right
thf(fact_916_mult__delta__left,axiom,
    ! [B: $o,X: real,Y: real] :
      ( ( B
       => ( ( times_times_real @ ( if_real @ B @ X @ zero_zero_real ) @ Y )
          = ( times_times_real @ X @ Y ) ) )
      & ( ~ B
       => ( ( times_times_real @ ( if_real @ B @ X @ zero_zero_real ) @ Y )
          = zero_zero_real ) ) ) ).

% mult_delta_left
thf(fact_917_mult__delta__left,axiom,
    ! [B: $o,X: nat,Y: nat] :
      ( ( B
       => ( ( times_times_nat @ ( if_nat @ B @ X @ zero_zero_nat ) @ Y )
          = ( times_times_nat @ X @ Y ) ) )
      & ( ~ B
       => ( ( times_times_nat @ ( if_nat @ B @ X @ zero_zero_nat ) @ Y )
          = zero_zero_nat ) ) ) ).

% mult_delta_left
thf(fact_918_mult__delta__left,axiom,
    ! [B: $o,X: int,Y: int] :
      ( ( B
       => ( ( times_times_int @ ( if_int @ B @ X @ zero_zero_int ) @ Y )
          = ( times_times_int @ X @ Y ) ) )
      & ( ~ B
       => ( ( times_times_int @ ( if_int @ B @ X @ zero_zero_int ) @ Y )
          = zero_zero_int ) ) ) ).

% mult_delta_left
thf(fact_919_inf__period_I1_J,axiom,
    ! [P2: real > $o,D3: real,Q2: real > $o] :
      ( ! [X3: real,K2: real] :
          ( ( P2 @ X3 )
          = ( P2 @ ( minus_minus_real @ X3 @ ( times_times_real @ K2 @ D3 ) ) ) )
     => ( ! [X3: real,K2: real] :
            ( ( Q2 @ X3 )
            = ( Q2 @ ( minus_minus_real @ X3 @ ( times_times_real @ K2 @ D3 ) ) ) )
       => ! [X2: real,K3: real] :
            ( ( ( P2 @ X2 )
              & ( Q2 @ X2 ) )
            = ( ( P2 @ ( minus_minus_real @ X2 @ ( times_times_real @ K3 @ D3 ) ) )
              & ( Q2 @ ( minus_minus_real @ X2 @ ( times_times_real @ K3 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_920_inf__period_I1_J,axiom,
    ! [P2: int > $o,D3: int,Q2: int > $o] :
      ( ! [X3: int,K2: int] :
          ( ( P2 @ X3 )
          = ( P2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D3 ) ) ) )
     => ( ! [X3: int,K2: int] :
            ( ( Q2 @ X3 )
            = ( Q2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D3 ) ) ) )
       => ! [X2: int,K3: int] :
            ( ( ( P2 @ X2 )
              & ( Q2 @ X2 ) )
            = ( ( P2 @ ( minus_minus_int @ X2 @ ( times_times_int @ K3 @ D3 ) ) )
              & ( Q2 @ ( minus_minus_int @ X2 @ ( times_times_int @ K3 @ D3 ) ) ) ) ) ) ) ).

% inf_period(1)
thf(fact_921_inf__period_I2_J,axiom,
    ! [P2: real > $o,D3: real,Q2: real > $o] :
      ( ! [X3: real,K2: real] :
          ( ( P2 @ X3 )
          = ( P2 @ ( minus_minus_real @ X3 @ ( times_times_real @ K2 @ D3 ) ) ) )
     => ( ! [X3: real,K2: real] :
            ( ( Q2 @ X3 )
            = ( Q2 @ ( minus_minus_real @ X3 @ ( times_times_real @ K2 @ D3 ) ) ) )
       => ! [X2: real,K3: real] :
            ( ( ( P2 @ X2 )
              | ( Q2 @ X2 ) )
            = ( ( P2 @ ( minus_minus_real @ X2 @ ( times_times_real @ K3 @ D3 ) ) )
              | ( Q2 @ ( minus_minus_real @ X2 @ ( times_times_real @ K3 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_922_inf__period_I2_J,axiom,
    ! [P2: int > $o,D3: int,Q2: int > $o] :
      ( ! [X3: int,K2: int] :
          ( ( P2 @ X3 )
          = ( P2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D3 ) ) ) )
     => ( ! [X3: int,K2: int] :
            ( ( Q2 @ X3 )
            = ( Q2 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D3 ) ) ) )
       => ! [X2: int,K3: int] :
            ( ( ( P2 @ X2 )
              | ( Q2 @ X2 ) )
            = ( ( P2 @ ( minus_minus_int @ X2 @ ( times_times_int @ K3 @ D3 ) ) )
              | ( Q2 @ ( minus_minus_int @ X2 @ ( times_times_int @ K3 @ D3 ) ) ) ) ) ) ) ).

% inf_period(2)
thf(fact_923_div__mult2__eq_H,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ A @ ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) )
      = ( divide_divide_int @ ( divide_divide_int @ A @ ( semiri1314217659103216013at_int @ M ) ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% div_mult2_eq'
thf(fact_924_div__mult2__eq_H,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ A @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ A @ ( semiri1316708129612266289at_nat @ M ) ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% div_mult2_eq'
thf(fact_925_add__scale__eq__noteq,axiom,
    ! [R: real,A: real,B: real,C: real,D: real] :
      ( ( R != zero_zero_real )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_real @ A @ ( times_times_real @ R @ C ) )
         != ( plus_plus_real @ B @ ( times_times_real @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_926_add__scale__eq__noteq,axiom,
    ! [R: nat,A: nat,B: nat,C: nat,D: nat] :
      ( ( R != zero_zero_nat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_nat @ A @ ( times_times_nat @ R @ C ) )
         != ( plus_plus_nat @ B @ ( times_times_nat @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_927_add__scale__eq__noteq,axiom,
    ! [R: int,A: int,B: int,C: int,D: int] :
      ( ( R != zero_zero_int )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_int @ A @ ( times_times_int @ R @ C ) )
         != ( plus_plus_int @ B @ ( times_times_int @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_928_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_929_add__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( B
        = ( plus_plus_real @ B @ A ) )
      = ( A = zero_zero_real ) ) ).

% add_0_iff
thf(fact_930_add__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( B
        = ( plus_plus_int @ B @ A ) )
      = ( A = zero_zero_int ) ) ).

% add_0_iff
thf(fact_931_crossproduct__eq,axiom,
    ! [W: real,Y: real,X: real,Z: real] :
      ( ( ( plus_plus_real @ ( times_times_real @ W @ Y ) @ ( times_times_real @ X @ Z ) )
        = ( plus_plus_real @ ( times_times_real @ W @ Z ) @ ( times_times_real @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_932_crossproduct__eq,axiom,
    ! [W: nat,Y: nat,X: nat,Z: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y ) @ ( times_times_nat @ X @ Z ) )
        = ( plus_plus_nat @ ( times_times_nat @ W @ Z ) @ ( times_times_nat @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_933_crossproduct__eq,axiom,
    ! [W: int,Y: int,X: int,Z: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ W @ Y ) @ ( times_times_int @ X @ Z ) )
        = ( plus_plus_int @ ( times_times_int @ W @ Z ) @ ( times_times_int @ X @ Y ) ) )
      = ( ( W = X )
        | ( Y = Z ) ) ) ).

% crossproduct_eq
thf(fact_934_crossproduct__noteq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) )
       != ( plus_plus_real @ ( times_times_real @ A @ D ) @ ( times_times_real @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_935_crossproduct__noteq,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
       != ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_936_crossproduct__noteq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) )
       != ( plus_plus_int @ ( times_times_int @ A @ D ) @ ( times_times_int @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_937_mult__if__delta,axiom,
    ! [P2: $o,Q: real] :
      ( ( P2
       => ( ( times_times_real @ ( if_real @ P2 @ one_one_real @ zero_zero_real ) @ Q )
          = Q ) )
      & ( ~ P2
       => ( ( times_times_real @ ( if_real @ P2 @ one_one_real @ zero_zero_real ) @ Q )
          = zero_zero_real ) ) ) ).

% mult_if_delta
thf(fact_938_mult__if__delta,axiom,
    ! [P2: $o,Q: nat] :
      ( ( P2
       => ( ( times_times_nat @ ( if_nat @ P2 @ one_one_nat @ zero_zero_nat ) @ Q )
          = Q ) )
      & ( ~ P2
       => ( ( times_times_nat @ ( if_nat @ P2 @ one_one_nat @ zero_zero_nat ) @ Q )
          = zero_zero_nat ) ) ) ).

% mult_if_delta
thf(fact_939_mult__if__delta,axiom,
    ! [P2: $o,Q: int] :
      ( ( P2
       => ( ( times_times_int @ ( if_int @ P2 @ one_one_int @ zero_zero_int ) @ Q )
          = Q ) )
      & ( ~ P2
       => ( ( times_times_int @ ( if_int @ P2 @ one_one_int @ zero_zero_int ) @ Q )
          = zero_zero_int ) ) ) ).

% mult_if_delta
thf(fact_940_mult__less__iff1,axiom,
    ! [Z: real,X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ Z )
     => ( ( ord_less_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y @ Z ) )
        = ( ord_less_real @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_941_mult__less__iff1,axiom,
    ! [Z: int,X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ Z )
     => ( ( ord_less_int @ ( times_times_int @ X @ Z ) @ ( times_times_int @ Y @ Z ) )
        = ( ord_less_int @ X @ Y ) ) ) ).

% mult_less_iff1
thf(fact_942_set__plus__intro,axiom,
    ! [A: real,C3: set_real,B: real,D3: set_real] :
      ( ( member_real @ A @ C3 )
     => ( ( member_real @ B @ D3 )
       => ( member_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_set_real @ C3 @ D3 ) ) ) ) ).

% set_plus_intro
thf(fact_943_set__plus__intro,axiom,
    ! [A: nat,C3: set_nat,B: nat,D3: set_nat] :
      ( ( member_nat @ A @ C3 )
     => ( ( member_nat @ B @ D3 )
       => ( member_nat @ ( plus_plus_nat @ A @ B ) @ ( plus_plus_set_nat @ C3 @ D3 ) ) ) ) ).

% set_plus_intro
thf(fact_944_set__plus__intro,axiom,
    ! [A: int,C3: set_int,B: int,D3: set_int] :
      ( ( member_int @ A @ C3 )
     => ( ( member_int @ B @ D3 )
       => ( member_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_set_int @ C3 @ D3 ) ) ) ) ).

% set_plus_intro
thf(fact_945_set__times__intro,axiom,
    ! [A: real,C3: set_real,B: real,D3: set_real] :
      ( ( member_real @ A @ C3 )
     => ( ( member_real @ B @ D3 )
       => ( member_real @ ( times_times_real @ A @ B ) @ ( times_times_set_real @ C3 @ D3 ) ) ) ) ).

% set_times_intro
thf(fact_946_set__times__intro,axiom,
    ! [A: nat,C3: set_nat,B: nat,D3: set_nat] :
      ( ( member_nat @ A @ C3 )
     => ( ( member_nat @ B @ D3 )
       => ( member_nat @ ( times_times_nat @ A @ B ) @ ( times_times_set_nat @ C3 @ D3 ) ) ) ) ).

% set_times_intro
thf(fact_947_set__times__intro,axiom,
    ! [A: int,C3: set_int,B: int,D3: set_int] :
      ( ( member_int @ A @ C3 )
     => ( ( member_int @ B @ D3 )
       => ( member_int @ ( times_times_int @ A @ B ) @ ( times_times_set_int @ C3 @ D3 ) ) ) ) ).

% set_times_intro
thf(fact_948_set__times__elim,axiom,
    ! [X: real,A3: set_real,B3: set_real] :
      ( ( member_real @ X @ ( times_times_set_real @ A3 @ B3 ) )
     => ~ ! [A4: real,B4: real] :
            ( ( X
              = ( times_times_real @ A4 @ B4 ) )
           => ( ( member_real @ A4 @ A3 )
             => ~ ( member_real @ B4 @ B3 ) ) ) ) ).

% set_times_elim
thf(fact_949_set__times__elim,axiom,
    ! [X: nat,A3: set_nat,B3: set_nat] :
      ( ( member_nat @ X @ ( times_times_set_nat @ A3 @ B3 ) )
     => ~ ! [A4: nat,B4: nat] :
            ( ( X
              = ( times_times_nat @ A4 @ B4 ) )
           => ( ( member_nat @ A4 @ A3 )
             => ~ ( member_nat @ B4 @ B3 ) ) ) ) ).

% set_times_elim
thf(fact_950_set__times__elim,axiom,
    ! [X: int,A3: set_int,B3: set_int] :
      ( ( member_int @ X @ ( times_times_set_int @ A3 @ B3 ) )
     => ~ ! [A4: int,B4: int] :
            ( ( X
              = ( times_times_int @ A4 @ B4 ) )
           => ( ( member_int @ A4 @ A3 )
             => ~ ( member_int @ B4 @ B3 ) ) ) ) ).

% set_times_elim
thf(fact_951_set__plus__elim,axiom,
    ! [X: real,A3: set_real,B3: set_real] :
      ( ( member_real @ X @ ( plus_plus_set_real @ A3 @ B3 ) )
     => ~ ! [A4: real,B4: real] :
            ( ( X
              = ( plus_plus_real @ A4 @ B4 ) )
           => ( ( member_real @ A4 @ A3 )
             => ~ ( member_real @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_952_set__plus__elim,axiom,
    ! [X: nat,A3: set_nat,B3: set_nat] :
      ( ( member_nat @ X @ ( plus_plus_set_nat @ A3 @ B3 ) )
     => ~ ! [A4: nat,B4: nat] :
            ( ( X
              = ( plus_plus_nat @ A4 @ B4 ) )
           => ( ( member_nat @ A4 @ A3 )
             => ~ ( member_nat @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_953_set__plus__elim,axiom,
    ! [X: int,A3: set_int,B3: set_int] :
      ( ( member_int @ X @ ( plus_plus_set_int @ A3 @ B3 ) )
     => ~ ! [A4: int,B4: int] :
            ( ( X
              = ( plus_plus_int @ A4 @ B4 ) )
           => ( ( member_int @ A4 @ A3 )
             => ~ ( member_int @ B4 @ B3 ) ) ) ) ).

% set_plus_elim
thf(fact_954_root__powr__inverse,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( root @ N @ X )
          = ( powr_real @ X @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ) ).

% root_powr_inverse
thf(fact_955_eq__diff__eq_H,axiom,
    ! [X: real,Y: real,Z: real] :
      ( ( X
        = ( minus_minus_real @ Y @ Z ) )
      = ( Y
        = ( plus_plus_real @ X @ Z ) ) ) ).

% eq_diff_eq'
thf(fact_956_v__pres__def,axiom,
    ( v_pres
    = ( ^ [I2: real] : ( divide_divide_real @ one_one_real @ ( plus_plus_real @ one_one_real @ I2 ) ) ) ) ).

% v_pres_def
thf(fact_957_Euclid__induct,axiom,
    ! [P2: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( P2 @ A4 @ B4 )
          = ( P2 @ B4 @ A4 ) )
     => ( ! [A4: nat] : ( P2 @ A4 @ zero_zero_nat )
       => ( ! [A4: nat,B4: nat] :
              ( ( P2 @ A4 @ B4 )
             => ( P2 @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
         => ( P2 @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_958_real__root__zero,axiom,
    ! [N: nat] :
      ( ( root @ N @ zero_zero_real )
      = zero_zero_real ) ).

% real_root_zero
thf(fact_959_root__0,axiom,
    ! [X: real] :
      ( ( root @ zero_zero_nat @ X )
      = zero_zero_real ) ).

% root_0
thf(fact_960_real__root__eq__iff,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X )
          = ( root @ N @ Y ) )
        = ( X = Y ) ) ) ).

% real_root_eq_iff
thf(fact_961_real__root__eq__0__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X )
          = zero_zero_real )
        = ( X = zero_zero_real ) ) ) ).

% real_root_eq_0_iff
thf(fact_962_real__root__less__iff,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X ) @ ( root @ N @ Y ) )
        = ( ord_less_real @ X @ Y ) ) ) ).

% real_root_less_iff
thf(fact_963_real__root__eq__1__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ( root @ N @ X )
          = one_one_real )
        = ( X = one_one_real ) ) ) ).

% real_root_eq_1_iff
thf(fact_964_real__root__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ one_one_real )
        = one_one_real ) ) ).

% real_root_one
thf(fact_965_real__root__lt__0__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ zero_zero_real ) ) ) ).

% real_root_lt_0_iff
thf(fact_966_real__root__gt__0__iff,axiom,
    ! [N: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ ( root @ N @ Y ) )
        = ( ord_less_real @ zero_zero_real @ Y ) ) ) ).

% real_root_gt_0_iff
thf(fact_967_real__root__gt__1__iff,axiom,
    ! [N: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ one_one_real @ ( root @ N @ Y ) )
        = ( ord_less_real @ one_one_real @ Y ) ) ) ).

% real_root_gt_1_iff
thf(fact_968_real__root__lt__1__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ ( root @ N @ X ) @ one_one_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% real_root_lt_1_iff
thf(fact_969_real__root__commute,axiom,
    ! [M: nat,N: nat,X: real] :
      ( ( root @ M @ ( root @ N @ X ) )
      = ( root @ N @ ( root @ M @ X ) ) ) ).

% real_root_commute
thf(fact_970_real__root__mult__exp,axiom,
    ! [M: nat,N: nat,X: real] :
      ( ( root @ ( times_times_nat @ M @ N ) @ X )
      = ( root @ M @ ( root @ N @ X ) ) ) ).

% real_root_mult_exp
thf(fact_971_real__root__divide,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( root @ N @ ( divide_divide_real @ X @ Y ) )
      = ( divide_divide_real @ ( root @ N @ X ) @ ( root @ N @ Y ) ) ) ).

% real_root_divide
thf(fact_972_real__root__mult,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( root @ N @ ( times_times_real @ X @ Y ) )
      = ( times_times_real @ ( root @ N @ X ) @ ( root @ N @ Y ) ) ) ).

% real_root_mult
thf(fact_973_real__root__less__mono,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ X @ Y )
       => ( ord_less_real @ ( root @ N @ X ) @ ( root @ N @ Y ) ) ) ) ).

% real_root_less_mono
thf(fact_974_real__root__power,axiom,
    ! [N: nat,X: real,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( root @ N @ ( power_power_real @ X @ K ) )
        = ( power_power_real @ ( root @ N @ X ) @ K ) ) ) ).

% real_root_power
thf(fact_975_real__root__gt__zero,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ zero_zero_real @ ( root @ N @ X ) ) ) ) ).

% real_root_gt_zero
thf(fact_976_real__root__strict__decreasing,axiom,
    ! [N: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ( ord_less_real @ one_one_real @ X )
         => ( ord_less_real @ ( root @ N4 @ X ) @ ( root @ N @ X ) ) ) ) ) ).

% real_root_strict_decreasing
thf(fact_977_real__root__strict__increasing,axiom,
    ! [N: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ N @ N4 )
       => ( ( ord_less_real @ zero_zero_real @ X )
         => ( ( ord_less_real @ X @ one_one_real )
           => ( ord_less_real @ ( root @ N @ X ) @ ( root @ N4 @ X ) ) ) ) ) ) ).

% real_root_strict_increasing
thf(fact_978_real__root__pow__pos,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( root @ N @ X ) @ N )
          = X ) ) ) ).

% real_root_pow_pos
thf(fact_979_fps__power__first__eq_H,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( ( formal2580924720334399070h_real @ A @ one_one_nat )
        = one_one_real )
     => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ N ) @ one_one_nat )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( formal2580924720334399070h_real @ A @ zero_zero_nat ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fps_power_first_eq'
thf(fact_980_fps__power__first__eq_H,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( ( formal3717847055265219294th_int @ A @ one_one_nat )
        = one_one_int )
     => ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ N ) @ one_one_nat )
        = ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( power_power_int @ ( formal3717847055265219294th_int @ A @ zero_zero_nat ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fps_power_first_eq'
thf(fact_981_fps__power__first__eq_H,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( ( formal3720337525774269570th_nat @ A @ one_one_nat )
        = one_one_nat )
     => ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ N ) @ one_one_nat )
        = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( power_power_nat @ ( formal3720337525774269570th_nat @ A @ zero_zero_nat ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fps_power_first_eq'
thf(fact_982_ln__root,axiom,
    ! [N: nat,B: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ln_ln_real @ ( root @ N @ B ) )
          = ( divide_divide_real @ ( ln_ln_real @ B ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ).

% ln_root
thf(fact_983_fps__zero__nth,axiom,
    ! [N: nat] :
      ( ( formal3720337525774269570th_nat @ zero_z8531573698755551073ps_nat @ N )
      = zero_zero_nat ) ).

% fps_zero_nth
thf(fact_984_fps__zero__nth,axiom,
    ! [N: nat] :
      ( ( formal2580924720334399070h_real @ zero_z7760665558314615101s_real @ N )
      = zero_zero_real ) ).

% fps_zero_nth
thf(fact_985_fps__zero__nth,axiom,
    ! [N: nat] :
      ( ( formal3717847055265219294th_int @ zero_z4353722679246354365ps_int @ N )
      = zero_zero_int ) ).

% fps_zero_nth
thf(fact_986_fps__add__nth,axiom,
    ! [F: formal3361831859752904756s_real,G: formal3361831859752904756s_real,N: nat] :
      ( ( formal2580924720334399070h_real @ ( plus_p6008488439947570109s_real @ F @ G ) @ N )
      = ( plus_plus_real @ ( formal2580924720334399070h_real @ F @ N ) @ ( formal2580924720334399070h_real @ G @ N ) ) ) ).

% fps_add_nth
thf(fact_987_fps__add__nth,axiom,
    ! [F: formal_Power_fps_nat,G: formal_Power_fps_nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( plus_p6043471806551771617ps_nat @ F @ G ) @ N )
      = ( plus_plus_nat @ ( formal3720337525774269570th_nat @ F @ N ) @ ( formal3720337525774269570th_nat @ G @ N ) ) ) ).

% fps_add_nth
thf(fact_988_fps__add__nth,axiom,
    ! [F: formal_Power_fps_int,G: formal_Power_fps_int,N: nat] :
      ( ( formal3717847055265219294th_int @ ( plus_p1865620787042574909ps_int @ F @ G ) @ N )
      = ( plus_plus_int @ ( formal3717847055265219294th_int @ F @ N ) @ ( formal3717847055265219294th_int @ G @ N ) ) ) ).

% fps_add_nth
thf(fact_989_fps__sub__nth,axiom,
    ! [F: formal3361831859752904756s_real,G: formal3361831859752904756s_real,N: nat] :
      ( ( formal2580924720334399070h_real @ ( minus_6791916864952032525s_real @ F @ G ) @ N )
      = ( minus_minus_real @ ( formal2580924720334399070h_real @ F @ N ) @ ( formal2580924720334399070h_real @ G @ N ) ) ) ).

% fps_sub_nth
thf(fact_990_fps__sub__nth,axiom,
    ! [F: formal_Power_fps_nat,G: formal_Power_fps_nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( minus_1563896255634514737ps_nat @ F @ G ) @ N )
      = ( minus_minus_nat @ ( formal3720337525774269570th_nat @ F @ N ) @ ( formal3720337525774269570th_nat @ G @ N ) ) ) ).

% fps_sub_nth
thf(fact_991_fps__sub__nth,axiom,
    ! [F: formal_Power_fps_int,G: formal_Power_fps_int,N: nat] :
      ( ( formal3717847055265219294th_int @ ( minus_6609417272980093837ps_int @ F @ G ) @ N )
      = ( minus_minus_int @ ( formal3717847055265219294th_int @ F @ N ) @ ( formal3717847055265219294th_int @ G @ N ) ) ) ).

% fps_sub_nth
thf(fact_992_ln__one,axiom,
    ( ( ln_ln_real @ one_one_real )
    = zero_zero_real ) ).

% ln_one
thf(fact_993_fps__mult__nth__0,axiom,
    ! [F: formal3361831859752904756s_real,G: formal3361831859752904756s_real] :
      ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ F @ G ) @ zero_zero_nat )
      = ( times_times_real @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) @ ( formal2580924720334399070h_real @ G @ zero_zero_nat ) ) ) ).

% fps_mult_nth_0
thf(fact_994_fps__mult__nth__0,axiom,
    ! [F: formal_Power_fps_nat,G: formal_Power_fps_nat] :
      ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ F @ G ) @ zero_zero_nat )
      = ( times_times_nat @ ( formal3720337525774269570th_nat @ F @ zero_zero_nat ) @ ( formal3720337525774269570th_nat @ G @ zero_zero_nat ) ) ) ).

% fps_mult_nth_0
thf(fact_995_fps__mult__nth__0,axiom,
    ! [F: formal_Power_fps_int,G: formal_Power_fps_int] :
      ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ F @ G ) @ zero_zero_nat )
      = ( times_times_int @ ( formal3717847055265219294th_int @ F @ zero_zero_nat ) @ ( formal3717847055265219294th_int @ G @ zero_zero_nat ) ) ) ).

% fps_mult_nth_0
thf(fact_996_fps__mult__of__nat__nth_I1_J,axiom,
    ! [K: nat,F: formal3361831859752904756s_real,N: nat] :
      ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ ( semiri2475410149736220053s_real @ K ) @ F ) @ N )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( formal2580924720334399070h_real @ F @ N ) ) ) ).

% fps_mult_of_nat_nth(1)
thf(fact_997_fps__mult__of__nat__nth_I1_J,axiom,
    ! [K: nat,F: formal_Power_fps_int,N: nat] :
      ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ ( semiri6570152736363784213ps_int @ K ) @ F ) @ N )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ ( formal3717847055265219294th_int @ F @ N ) ) ) ).

% fps_mult_of_nat_nth(1)
thf(fact_998_fps__mult__of__nat__nth_I1_J,axiom,
    ! [K: nat,F: formal_Power_fps_nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ ( semiri1524631719018205113ps_nat @ K ) @ F ) @ N )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ K ) @ ( formal3720337525774269570th_nat @ F @ N ) ) ) ).

% fps_mult_of_nat_nth(1)
thf(fact_999_fps__mult__of__nat__nth_I2_J,axiom,
    ! [F: formal3361831859752904756s_real,K: nat,N: nat] :
      ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ F @ ( semiri2475410149736220053s_real @ K ) ) @ N )
      = ( times_times_real @ ( formal2580924720334399070h_real @ F @ N ) @ ( semiri5074537144036343181t_real @ K ) ) ) ).

% fps_mult_of_nat_nth(2)
thf(fact_1000_fps__mult__of__nat__nth_I2_J,axiom,
    ! [F: formal_Power_fps_int,K: nat,N: nat] :
      ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ F @ ( semiri6570152736363784213ps_int @ K ) ) @ N )
      = ( times_times_int @ ( formal3717847055265219294th_int @ F @ N ) @ ( semiri1314217659103216013at_int @ K ) ) ) ).

% fps_mult_of_nat_nth(2)
thf(fact_1001_fps__mult__of__nat__nth_I2_J,axiom,
    ! [F: formal_Power_fps_nat,K: nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ F @ ( semiri1524631719018205113ps_nat @ K ) ) @ N )
      = ( times_times_nat @ ( formal3720337525774269570th_nat @ F @ N ) @ ( semiri1316708129612266289at_nat @ K ) ) ) ).

% fps_mult_of_nat_nth(2)
thf(fact_1002_ln__inj__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ( ln_ln_real @ X )
            = ( ln_ln_real @ Y ) )
          = ( X = Y ) ) ) ) ).

% ln_inj_iff
thf(fact_1003_ln__less__cancel__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_real @ X @ Y ) ) ) ) ).

% ln_less_cancel_iff
thf(fact_1004_fps__one__nth,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ one_on3350087005236239133ps_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ one_on3350087005236239133ps_nat @ N )
          = zero_zero_nat ) ) ) ).

% fps_one_nth
thf(fact_1005_fps__one__nth,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ one_on8598947968683843321s_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ one_on8598947968683843321s_real @ N )
          = zero_zero_real ) ) ) ).

% fps_one_nth
thf(fact_1006_fps__one__nth,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ one_on8395608022581818233ps_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ one_on8395608022581818233ps_int @ N )
          = zero_zero_int ) ) ) ).

% fps_one_nth
thf(fact_1007_fps__divide__nth__0,axiom,
    ! [G: formal3361831859752904756s_real,F: formal3361831859752904756s_real] :
      ( ( ( formal2580924720334399070h_real @ G @ zero_zero_nat )
       != zero_zero_real )
     => ( ( formal2580924720334399070h_real @ ( divide1155267253282662278s_real @ F @ G ) @ zero_zero_nat )
        = ( divide_divide_real @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) @ ( formal2580924720334399070h_real @ G @ zero_zero_nat ) ) ) ) ).

% fps_divide_nth_0
thf(fact_1008_fps__nth__of__nat,axiom,
    ! [N: nat,C: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( semiri2475410149736220053s_real @ C ) @ N )
          = ( semiri5074537144036343181t_real @ C ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( semiri2475410149736220053s_real @ C ) @ N )
          = zero_zero_real ) ) ) ).

% fps_nth_of_nat
thf(fact_1009_fps__nth__of__nat,axiom,
    ! [N: nat,C: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( semiri6570152736363784213ps_int @ C ) @ N )
          = ( semiri1314217659103216013at_int @ C ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( semiri6570152736363784213ps_int @ C ) @ N )
          = zero_zero_int ) ) ) ).

% fps_nth_of_nat
thf(fact_1010_fps__nth__of__nat,axiom,
    ! [N: nat,C: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( semiri1524631719018205113ps_nat @ C ) @ N )
          = ( semiri1316708129612266289at_nat @ C ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( semiri1524631719018205113ps_nat @ C ) @ N )
          = zero_zero_nat ) ) ) ).

% fps_nth_of_nat
thf(fact_1011_ln__eq__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = zero_zero_real )
        = ( X = one_one_real ) ) ) ).

% ln_eq_zero_iff
thf(fact_1012_ln__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_iff
thf(fact_1013_ln__less__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_real @ X @ one_one_real ) ) ) ).

% ln_less_zero_iff
thf(fact_1014_startsby__zero__power__iff,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ N ) @ zero_zero_nat )
        = zero_zero_nat )
      = ( ( N != zero_zero_nat )
        & ( ( formal3720337525774269570th_nat @ A @ zero_zero_nat )
          = zero_zero_nat ) ) ) ).

% startsby_zero_power_iff
thf(fact_1015_startsby__zero__power__iff,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ N ) @ zero_zero_nat )
        = zero_zero_real )
      = ( ( N != zero_zero_nat )
        & ( ( formal2580924720334399070h_real @ A @ zero_zero_nat )
          = zero_zero_real ) ) ) ).

% startsby_zero_power_iff
thf(fact_1016_startsby__zero__power__iff,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ N ) @ zero_zero_nat )
        = zero_zero_int )
      = ( ( N != zero_zero_nat )
        & ( ( formal3717847055265219294th_int @ A @ zero_zero_nat )
          = zero_zero_int ) ) ) ).

% startsby_zero_power_iff
thf(fact_1017_fps__nonzeroI,axiom,
    ! [F: formal_Power_fps_nat,N: nat] :
      ( ( ( formal3720337525774269570th_nat @ F @ N )
       != zero_zero_nat )
     => ( F != zero_z8531573698755551073ps_nat ) ) ).

% fps_nonzeroI
thf(fact_1018_fps__nonzeroI,axiom,
    ! [F: formal3361831859752904756s_real,N: nat] :
      ( ( ( formal2580924720334399070h_real @ F @ N )
       != zero_zero_real )
     => ( F != zero_z7760665558314615101s_real ) ) ).

% fps_nonzeroI
thf(fact_1019_fps__nonzeroI,axiom,
    ! [F: formal_Power_fps_int,N: nat] :
      ( ( ( formal3717847055265219294th_int @ F @ N )
       != zero_zero_int )
     => ( F != zero_z4353722679246354365ps_int ) ) ).

% fps_nonzeroI
thf(fact_1020_fps__nonzero__nth,axiom,
    ! [F: formal_Power_fps_nat] :
      ( ( F != zero_z8531573698755551073ps_nat )
      = ( ? [N2: nat] :
            ( ( formal3720337525774269570th_nat @ F @ N2 )
           != zero_zero_nat ) ) ) ).

% fps_nonzero_nth
thf(fact_1021_fps__nonzero__nth,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( F != zero_z7760665558314615101s_real )
      = ( ? [N2: nat] :
            ( ( formal2580924720334399070h_real @ F @ N2 )
           != zero_zero_real ) ) ) ).

% fps_nonzero_nth
thf(fact_1022_fps__nonzero__nth,axiom,
    ! [F: formal_Power_fps_int] :
      ( ( F != zero_z4353722679246354365ps_int )
      = ( ? [N2: nat] :
            ( ( formal3717847055265219294th_int @ F @ N2 )
           != zero_zero_int ) ) ) ).

% fps_nonzero_nth
thf(fact_1023_ln__less__self,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ord_less_real @ ( ln_ln_real @ X ) @ X ) ) ).

% ln_less_self
thf(fact_1024_fps__unit__dvd__left,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ( formal2580924720334399070h_real @ F @ zero_zero_nat )
       != zero_zero_real )
     => ? [G2: formal3361831859752904756s_real] :
          ( one_on8598947968683843321s_real
          = ( times_7561426564079326009s_real @ F @ G2 ) ) ) ).

% fps_unit_dvd_left
thf(fact_1025_fps__unit__dvd__right,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ( formal2580924720334399070h_real @ F @ zero_zero_nat )
       != zero_zero_real )
     => ? [G2: formal3361831859752904756s_real] :
          ( one_on8598947968683843321s_real
          = ( times_7561426564079326009s_real @ G2 @ F ) ) ) ).

% fps_unit_dvd_right
thf(fact_1026_startsby__nonzero__power,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( ( formal3720337525774269570th_nat @ A @ zero_zero_nat )
       != zero_zero_nat )
     => ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ N ) @ zero_zero_nat )
       != zero_zero_nat ) ) ).

% startsby_nonzero_power
thf(fact_1027_startsby__nonzero__power,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( ( formal2580924720334399070h_real @ A @ zero_zero_nat )
       != zero_zero_real )
     => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ N ) @ zero_zero_nat )
       != zero_zero_real ) ) ).

% startsby_nonzero_power
thf(fact_1028_startsby__nonzero__power,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( ( formal3717847055265219294th_int @ A @ zero_zero_nat )
       != zero_zero_int )
     => ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ N ) @ zero_zero_nat )
       != zero_zero_int ) ) ).

% startsby_nonzero_power
thf(fact_1029_fps__nonzero__nth__minimal,axiom,
    ! [F: formal_Power_fps_nat] :
      ( ( F != zero_z8531573698755551073ps_nat )
      = ( ? [N2: nat] :
            ( ( ( formal3720337525774269570th_nat @ F @ N2 )
             != zero_zero_nat )
            & ! [M2: nat] :
                ( ( ord_less_nat @ M2 @ N2 )
               => ( ( formal3720337525774269570th_nat @ F @ M2 )
                  = zero_zero_nat ) ) ) ) ) ).

% fps_nonzero_nth_minimal
thf(fact_1030_fps__nonzero__nth__minimal,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( F != zero_z7760665558314615101s_real )
      = ( ? [N2: nat] :
            ( ( ( formal2580924720334399070h_real @ F @ N2 )
             != zero_zero_real )
            & ! [M2: nat] :
                ( ( ord_less_nat @ M2 @ N2 )
               => ( ( formal2580924720334399070h_real @ F @ M2 )
                  = zero_zero_real ) ) ) ) ) ).

% fps_nonzero_nth_minimal
thf(fact_1031_fps__nonzero__nth__minimal,axiom,
    ! [F: formal_Power_fps_int] :
      ( ( F != zero_z4353722679246354365ps_int )
      = ( ? [N2: nat] :
            ( ( ( formal3717847055265219294th_int @ F @ N2 )
             != zero_zero_int )
            & ! [M2: nat] :
                ( ( ord_less_nat @ M2 @ N2 )
               => ( ( formal3717847055265219294th_int @ F @ M2 )
                  = zero_zero_int ) ) ) ) ) ).

% fps_nonzero_nth_minimal
thf(fact_1032_fps__power__zeroth__eq__one,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( ( formal2580924720334399070h_real @ A @ zero_zero_nat )
        = one_one_real )
     => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ N ) @ zero_zero_nat )
        = one_one_real ) ) ).

% fps_power_zeroth_eq_one
thf(fact_1033_fps__power__zeroth__eq__one,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( ( formal3720337525774269570th_nat @ A @ zero_zero_nat )
        = one_one_nat )
     => ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ N ) @ zero_zero_nat )
        = one_one_nat ) ) ).

% fps_power_zeroth_eq_one
thf(fact_1034_fps__power__zeroth__eq__one,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( ( formal3717847055265219294th_int @ A @ zero_zero_nat )
        = one_one_int )
     => ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ N ) @ zero_zero_nat )
        = one_one_int ) ) ).

% fps_power_zeroth_eq_one
thf(fact_1035_startsby__power,axiom,
    ! [A: formal3361831859752904756s_real,V: real,N: nat] :
      ( ( ( formal2580924720334399070h_real @ A @ zero_zero_nat )
        = V )
     => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ N ) @ zero_zero_nat )
        = ( power_power_real @ V @ N ) ) ) ).

% startsby_power
thf(fact_1036_startsby__power,axiom,
    ! [A: formal_Power_fps_nat,V: nat,N: nat] :
      ( ( ( formal3720337525774269570th_nat @ A @ zero_zero_nat )
        = V )
     => ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ N ) @ zero_zero_nat )
        = ( power_power_nat @ V @ N ) ) ) ).

% startsby_power
thf(fact_1037_startsby__power,axiom,
    ! [A: formal_Power_fps_int,V: int,N: nat] :
      ( ( ( formal3717847055265219294th_int @ A @ zero_zero_nat )
        = V )
     => ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ N ) @ zero_zero_nat )
        = ( power_power_int @ V @ N ) ) ) ).

% startsby_power
thf(fact_1038_fps__power__zeroth,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ N ) @ zero_zero_nat )
      = ( power_power_real @ ( formal2580924720334399070h_real @ A @ zero_zero_nat ) @ N ) ) ).

% fps_power_zeroth
thf(fact_1039_fps__power__zeroth,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ N ) @ zero_zero_nat )
      = ( power_power_nat @ ( formal3720337525774269570th_nat @ A @ zero_zero_nat ) @ N ) ) ).

% fps_power_zeroth
thf(fact_1040_fps__power__zeroth,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ N ) @ zero_zero_nat )
      = ( power_power_int @ ( formal3717847055265219294th_int @ A @ zero_zero_nat ) @ N ) ) ).

% fps_power_zeroth
thf(fact_1041_ln__gt__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) ) ) ).

% ln_gt_zero
thf(fact_1042_ln__less__zero,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ one_one_real )
       => ( ord_less_real @ ( ln_ln_real @ X ) @ zero_zero_real ) ) ) ).

% ln_less_zero
thf(fact_1043_ln__gt__zero__imp__gt__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ ( ln_ln_real @ X ) )
     => ( ( ord_less_real @ zero_zero_real @ X )
       => ( ord_less_real @ one_one_real @ X ) ) ) ).

% ln_gt_zero_imp_gt_one
thf(fact_1044_ln__powr,axiom,
    ! [X: real,Y: real] :
      ( ( X != zero_zero_real )
     => ( ( ln_ln_real @ ( powr_real @ X @ Y ) )
        = ( times_times_real @ Y @ ( ln_ln_real @ X ) ) ) ) ).

% ln_powr
thf(fact_1045_fps__is__right__unit__iff__zeroth__is__right__unit,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ? [G3: formal3361831859752904756s_real] :
            ( one_on8598947968683843321s_real
            = ( times_7561426564079326009s_real @ G3 @ F ) ) )
      = ( ? [K4: real] :
            ( one_one_real
            = ( times_times_real @ K4 @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) ) ) ) ) ).

% fps_is_right_unit_iff_zeroth_is_right_unit
thf(fact_1046_fps__is__right__unit__iff__zeroth__is__right__unit,axiom,
    ! [F: formal_Power_fps_int] :
      ( ( ? [G3: formal_Power_fps_int] :
            ( one_on8395608022581818233ps_int
            = ( times_3091854549176928185ps_int @ G3 @ F ) ) )
      = ( ? [K4: int] :
            ( one_one_int
            = ( times_times_int @ K4 @ ( formal3717847055265219294th_int @ F @ zero_zero_nat ) ) ) ) ) ).

% fps_is_right_unit_iff_zeroth_is_right_unit
thf(fact_1047_fps__is__left__unit__iff__zeroth__is__left__unit,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ? [G3: formal3361831859752904756s_real] :
            ( one_on8598947968683843321s_real
            = ( times_7561426564079326009s_real @ F @ G3 ) ) )
      = ( ? [K4: real] :
            ( one_one_real
            = ( times_times_real @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) @ K4 ) ) ) ) ).

% fps_is_left_unit_iff_zeroth_is_left_unit
thf(fact_1048_fps__is__left__unit__iff__zeroth__is__left__unit,axiom,
    ! [F: formal_Power_fps_int] :
      ( ( ? [G3: formal_Power_fps_int] :
            ( one_on8395608022581818233ps_int
            = ( times_3091854549176928185ps_int @ F @ G3 ) ) )
      = ( ? [K4: int] :
            ( one_one_int
            = ( times_times_int @ ( formal3717847055265219294th_int @ F @ zero_zero_nat ) @ K4 ) ) ) ) ).

% fps_is_left_unit_iff_zeroth_is_left_unit
thf(fact_1049_fps__power__eqD,axiom,
    ! [F: formal3361831859752904756s_real,M: nat,G: formal3361831859752904756s_real] :
      ( ( ( power_1846127563762588094s_real @ F @ M )
        = ( power_1846127563762588094s_real @ G @ M ) )
     => ( ( ( formal2580924720334399070h_real @ F @ zero_zero_nat )
          = ( formal2580924720334399070h_real @ G @ zero_zero_nat ) )
       => ( ( ( formal2580924720334399070h_real @ F @ zero_zero_nat )
           != zero_zero_real )
         => ( ( ord_less_nat @ zero_zero_nat @ M )
           => ( F = G ) ) ) ) ) ).

% fps_power_eqD
thf(fact_1050_fps__power__eqD,axiom,
    ! [F: formal_Power_fps_int,M: nat,G: formal_Power_fps_int] :
      ( ( ( power_5614179737012125886ps_int @ F @ M )
        = ( power_5614179737012125886ps_int @ G @ M ) )
     => ( ( ( formal3717847055265219294th_int @ F @ zero_zero_nat )
          = ( formal3717847055265219294th_int @ G @ zero_zero_nat ) )
       => ( ( ( formal3717847055265219294th_int @ F @ zero_zero_nat )
           != zero_zero_int )
         => ( ( ord_less_nat @ zero_zero_nat @ M )
           => ( F = G ) ) ) ) ) ).

% fps_power_eqD
thf(fact_1051_startsby__zero__power,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( ( formal3720337525774269570th_nat @ A @ zero_zero_nat )
        = zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ N ) @ zero_zero_nat )
          = zero_zero_nat ) ) ) ).

% startsby_zero_power
thf(fact_1052_startsby__zero__power,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( ( formal2580924720334399070h_real @ A @ zero_zero_nat )
        = zero_zero_real )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ N ) @ zero_zero_nat )
          = zero_zero_real ) ) ) ).

% startsby_zero_power
thf(fact_1053_startsby__zero__power,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( ( formal3717847055265219294th_int @ A @ zero_zero_nat )
        = zero_zero_int )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ N ) @ zero_zero_nat )
          = zero_zero_int ) ) ) ).

% startsby_zero_power
thf(fact_1054_startsby__zero__power__prefix,axiom,
    ! [A: formal_Power_fps_nat,K: nat] :
      ( ( ( formal3720337525774269570th_nat @ A @ zero_zero_nat )
        = zero_zero_nat )
     => ! [N5: nat] :
          ( ( ord_less_nat @ N5 @ K )
         => ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ K ) @ N5 )
            = zero_zero_nat ) ) ) ).

% startsby_zero_power_prefix
thf(fact_1055_startsby__zero__power__prefix,axiom,
    ! [A: formal3361831859752904756s_real,K: nat] :
      ( ( ( formal2580924720334399070h_real @ A @ zero_zero_nat )
        = zero_zero_real )
     => ! [N5: nat] :
          ( ( ord_less_nat @ N5 @ K )
         => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ K ) @ N5 )
            = zero_zero_real ) ) ) ).

% startsby_zero_power_prefix
thf(fact_1056_startsby__zero__power__prefix,axiom,
    ! [A: formal_Power_fps_int,K: nat] :
      ( ( ( formal3717847055265219294th_int @ A @ zero_zero_nat )
        = zero_zero_int )
     => ! [N5: nat] :
          ( ( ord_less_nat @ N5 @ K )
         => ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ K ) @ N5 )
            = zero_zero_int ) ) ) ).

% startsby_zero_power_prefix
thf(fact_1057_ln__eq__minus__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ( ln_ln_real @ X )
          = ( minus_minus_real @ X @ one_one_real ) )
       => ( X = one_one_real ) ) ) ).

% ln_eq_minus_one
thf(fact_1058_ln__mult,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ln_ln_real @ ( times_times_real @ X @ Y ) )
          = ( plus_plus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) ) ) ) ).

% ln_mult
thf(fact_1059_ln__div,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ln_ln_real @ ( divide_divide_real @ X @ Y ) )
          = ( minus_minus_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) ) ) ) ) ).

% ln_div
thf(fact_1060_fps__mult__nth__1,axiom,
    ! [F: formal3361831859752904756s_real,G: formal3361831859752904756s_real] :
      ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ F @ G ) @ one_one_nat )
      = ( plus_plus_real @ ( times_times_real @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) @ ( formal2580924720334399070h_real @ G @ one_one_nat ) ) @ ( times_times_real @ ( formal2580924720334399070h_real @ F @ one_one_nat ) @ ( formal2580924720334399070h_real @ G @ zero_zero_nat ) ) ) ) ).

% fps_mult_nth_1
thf(fact_1061_fps__mult__nth__1,axiom,
    ! [F: formal_Power_fps_nat,G: formal_Power_fps_nat] :
      ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ F @ G ) @ one_one_nat )
      = ( plus_plus_nat @ ( times_times_nat @ ( formal3720337525774269570th_nat @ F @ zero_zero_nat ) @ ( formal3720337525774269570th_nat @ G @ one_one_nat ) ) @ ( times_times_nat @ ( formal3720337525774269570th_nat @ F @ one_one_nat ) @ ( formal3720337525774269570th_nat @ G @ zero_zero_nat ) ) ) ) ).

% fps_mult_nth_1
thf(fact_1062_fps__mult__nth__1,axiom,
    ! [F: formal_Power_fps_int,G: formal_Power_fps_int] :
      ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ F @ G ) @ one_one_nat )
      = ( plus_plus_int @ ( times_times_int @ ( formal3717847055265219294th_int @ F @ zero_zero_nat ) @ ( formal3717847055265219294th_int @ G @ one_one_nat ) ) @ ( times_times_int @ ( formal3717847055265219294th_int @ F @ one_one_nat ) @ ( formal3717847055265219294th_int @ G @ zero_zero_nat ) ) ) ) ).

% fps_mult_nth_1
thf(fact_1063_startsby__zero__power__nth__same,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( ( formal2580924720334399070h_real @ A @ zero_zero_nat )
        = zero_zero_real )
     => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ N ) @ N )
        = ( power_power_real @ ( formal2580924720334399070h_real @ A @ one_one_nat ) @ N ) ) ) ).

% startsby_zero_power_nth_same
thf(fact_1064_startsby__zero__power__nth__same,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( ( formal3720337525774269570th_nat @ A @ zero_zero_nat )
        = zero_zero_nat )
     => ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ N ) @ N )
        = ( power_power_nat @ ( formal3720337525774269570th_nat @ A @ one_one_nat ) @ N ) ) ) ).

% startsby_zero_power_nth_same
thf(fact_1065_startsby__zero__power__nth__same,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( ( formal3717847055265219294th_int @ A @ zero_zero_nat )
        = zero_zero_int )
     => ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ N ) @ N )
        = ( power_power_int @ ( formal3717847055265219294th_int @ A @ one_one_nat ) @ N ) ) ) ).

% startsby_zero_power_nth_same
thf(fact_1066_ln__realpow,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ln_ln_real @ ( power_power_real @ X @ N ) )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( ln_ln_real @ X ) ) ) ) ).

% ln_realpow
thf(fact_1067_fps__power__first__eq,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( ( formal2580924720334399070h_real @ A @ zero_zero_nat )
        = one_one_real )
     => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ N ) @ one_one_nat )
        = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( formal2580924720334399070h_real @ A @ one_one_nat ) ) ) ) ).

% fps_power_first_eq
thf(fact_1068_fps__power__first__eq,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( ( formal3717847055265219294th_int @ A @ zero_zero_nat )
        = one_one_int )
     => ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ N ) @ one_one_nat )
        = ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( formal3717847055265219294th_int @ A @ one_one_nat ) ) ) ) ).

% fps_power_first_eq
thf(fact_1069_fps__power__first__eq,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( ( formal3720337525774269570th_nat @ A @ zero_zero_nat )
        = one_one_nat )
     => ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ N ) @ one_one_nat )
        = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( formal3720337525774269570th_nat @ A @ one_one_nat ) ) ) ) ).

% fps_power_first_eq
thf(fact_1070_fps__power__first,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ A @ N ) @ one_one_nat )
      = ( times_times_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( power_power_real @ ( formal2580924720334399070h_real @ A @ zero_zero_nat ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) @ ( formal2580924720334399070h_real @ A @ one_one_nat ) ) ) ).

% fps_power_first
thf(fact_1071_fps__power__first,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ A @ N ) @ one_one_nat )
      = ( times_times_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( power_power_int @ ( formal3717847055265219294th_int @ A @ zero_zero_nat ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) @ ( formal3717847055265219294th_int @ A @ one_one_nat ) ) ) ).

% fps_power_first
thf(fact_1072_fps__power__first,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ A @ N ) @ one_one_nat )
      = ( times_times_nat @ ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( power_power_nat @ ( formal3720337525774269570th_nat @ A @ zero_zero_nat ) @ ( minus_minus_nat @ N @ one_one_nat ) ) ) @ ( formal3720337525774269570th_nat @ A @ one_one_nat ) ) ) ).

% fps_power_first
thf(fact_1073_i__force__def,axiom,
    ( i_force
    = ( ^ [I2: real] : ( ln_ln_real @ ( plus_plus_real @ one_one_real @ I2 ) ) ) ) ).

% i_force_def
thf(fact_1074_fps__XDp__nth,axiom,
    ! [C: real,A: formal3361831859752904756s_real,N: nat] :
      ( ( formal2580924720334399070h_real @ ( formal2839450981996073129p_real @ C @ A ) @ N )
      = ( times_times_real @ ( plus_plus_real @ C @ ( semiri5074537144036343181t_real @ N ) ) @ ( formal2580924720334399070h_real @ A @ N ) ) ) ).

% fps_XDp_nth
thf(fact_1075_fps__XDp__nth,axiom,
    ! [C: int,A: formal_Power_fps_int,N: nat] :
      ( ( formal3717847055265219294th_int @ ( formal9195297484582036137Dp_int @ C @ A ) @ N )
      = ( times_times_int @ ( plus_plus_int @ C @ ( semiri1314217659103216013at_int @ N ) ) @ ( formal3717847055265219294th_int @ A @ N ) ) ) ).

% fps_XDp_nth
thf(fact_1076_fps__XDp__nth,axiom,
    ! [C: nat,A: formal_Power_fps_nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( formal9197787955091086413Dp_nat @ C @ A ) @ N )
      = ( times_times_nat @ ( plus_plus_nat @ C @ ( semiri1316708129612266289at_nat @ N ) ) @ ( formal3720337525774269570th_nat @ A @ N ) ) ) ).

% fps_XDp_nth
thf(fact_1077_fps__radical__power__nth,axiom,
    ! [R: nat > real > real,K: nat,A: formal3361831859752904756s_real] :
      ( ( ( power_power_real @ ( R @ K @ ( formal2580924720334399070h_real @ A @ zero_zero_nat ) ) @ K )
        = ( formal2580924720334399070h_real @ A @ zero_zero_nat ) )
     => ( ( ( K = zero_zero_nat )
         => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ ( formal8604817403481219167l_real @ R @ K @ A ) @ K ) @ zero_zero_nat )
            = one_one_real ) )
        & ( ( K != zero_zero_nat )
         => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ ( formal8604817403481219167l_real @ R @ K @ A ) @ K ) @ zero_zero_nat )
            = ( formal2580924720334399070h_real @ A @ zero_zero_nat ) ) ) ) ) ).

% fps_radical_power_nth
thf(fact_1078_fps__radical__nth__0,axiom,
    ! [N: nat,R: nat > real > real,A: formal3361831859752904756s_real] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( formal8604817403481219167l_real @ R @ N @ A ) @ zero_zero_nat )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( formal8604817403481219167l_real @ R @ N @ A ) @ zero_zero_nat )
          = ( R @ N @ ( formal2580924720334399070h_real @ A @ zero_zero_nat ) ) ) ) ) ).

% fps_radical_nth_0
thf(fact_1079_radical__mult__distrib,axiom,
    ! [K: nat,R: nat > real > real,A: formal3361831859752904756s_real,B: formal3361831859752904756s_real] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( power_power_real @ ( R @ K @ ( formal2580924720334399070h_real @ A @ zero_zero_nat ) ) @ K )
          = ( formal2580924720334399070h_real @ A @ zero_zero_nat ) )
       => ( ( ( power_power_real @ ( R @ K @ ( formal2580924720334399070h_real @ B @ zero_zero_nat ) ) @ K )
            = ( formal2580924720334399070h_real @ B @ zero_zero_nat ) )
         => ( ( ( formal2580924720334399070h_real @ A @ zero_zero_nat )
             != zero_zero_real )
           => ( ( ( formal2580924720334399070h_real @ B @ zero_zero_nat )
               != zero_zero_real )
             => ( ( ( R @ K @ ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ A @ B ) @ zero_zero_nat ) )
                  = ( times_times_real @ ( R @ K @ ( formal2580924720334399070h_real @ A @ zero_zero_nat ) ) @ ( R @ K @ ( formal2580924720334399070h_real @ B @ zero_zero_nat ) ) ) )
                = ( ( formal8604817403481219167l_real @ R @ K @ ( times_7561426564079326009s_real @ A @ B ) )
                  = ( times_7561426564079326009s_real @ ( formal8604817403481219167l_real @ R @ K @ A ) @ ( formal8604817403481219167l_real @ R @ K @ B ) ) ) ) ) ) ) ) ) ).

% radical_mult_distrib
thf(fact_1080_radical__divide,axiom,
    ! [K: nat,R: nat > real > real,A: formal3361831859752904756s_real,B: formal3361831859752904756s_real] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( power_power_real @ ( R @ K @ ( formal2580924720334399070h_real @ A @ zero_zero_nat ) ) @ K )
          = ( formal2580924720334399070h_real @ A @ zero_zero_nat ) )
       => ( ( ( power_power_real @ ( R @ K @ ( formal2580924720334399070h_real @ B @ zero_zero_nat ) ) @ K )
            = ( formal2580924720334399070h_real @ B @ zero_zero_nat ) )
         => ( ( ( formal2580924720334399070h_real @ A @ zero_zero_nat )
             != zero_zero_real )
           => ( ( ( formal2580924720334399070h_real @ B @ zero_zero_nat )
               != zero_zero_real )
             => ( ( ( R @ K @ ( divide_divide_real @ ( formal2580924720334399070h_real @ A @ zero_zero_nat ) @ ( formal2580924720334399070h_real @ B @ zero_zero_nat ) ) )
                  = ( divide_divide_real @ ( R @ K @ ( formal2580924720334399070h_real @ A @ zero_zero_nat ) ) @ ( R @ K @ ( formal2580924720334399070h_real @ B @ zero_zero_nat ) ) ) )
                = ( ( formal8604817403481219167l_real @ R @ K @ ( divide1155267253282662278s_real @ A @ B ) )
                  = ( divide1155267253282662278s_real @ ( formal8604817403481219167l_real @ R @ K @ A ) @ ( formal8604817403481219167l_real @ R @ K @ B ) ) ) ) ) ) ) ) ) ).

% radical_divide
thf(fact_1081_fps__tan__0,axiom,
    ( ( formal3683295897622742886n_real @ zero_zero_real )
    = zero_z7760665558314615101s_real ) ).

% fps_tan_0
thf(fact_1082_fps__mult__right__fps__X__plus__1__nth,axiom,
    ! [N: nat,A: formal3361831859752904756s_real] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ A @ ( plus_p6008488439947570109s_real @ one_on8598947968683843321s_real @ formal4708490801539276157X_real ) ) @ N )
          = ( formal2580924720334399070h_real @ A @ N ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ A @ ( plus_p6008488439947570109s_real @ one_on8598947968683843321s_real @ formal4708490801539276157X_real ) ) @ N )
          = ( plus_plus_real @ ( formal2580924720334399070h_real @ A @ N ) @ ( formal2580924720334399070h_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ) ).

% fps_mult_right_fps_X_plus_1_nth
thf(fact_1083_fps__mult__right__fps__X__plus__1__nth,axiom,
    ! [N: nat,A: formal_Power_fps_nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ A @ ( plus_p6043471806551771617ps_nat @ one_on3350087005236239133ps_nat @ formal1744162128437646113_X_nat ) ) @ N )
          = ( formal3720337525774269570th_nat @ A @ N ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ A @ ( plus_p6043471806551771617ps_nat @ one_on3350087005236239133ps_nat @ formal1744162128437646113_X_nat ) ) @ N )
          = ( plus_plus_nat @ ( formal3720337525774269570th_nat @ A @ N ) @ ( formal3720337525774269570th_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ) ).

% fps_mult_right_fps_X_plus_1_nth
thf(fact_1084_fps__mult__right__fps__X__plus__1__nth,axiom,
    ! [N: nat,A: formal_Power_fps_int] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ A @ ( plus_p1865620787042574909ps_int @ one_on8395608022581818233ps_int @ formal1741671657928595837_X_int ) ) @ N )
          = ( formal3717847055265219294th_int @ A @ N ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ A @ ( plus_p1865620787042574909ps_int @ one_on8395608022581818233ps_int @ formal1741671657928595837_X_int ) ) @ N )
          = ( plus_plus_int @ ( formal3717847055265219294th_int @ A @ N ) @ ( formal3717847055265219294th_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ) ).

% fps_mult_right_fps_X_plus_1_nth
thf(fact_1085_fps__mult__fps__X__plus__1__nth,axiom,
    ! [N: nat,A: formal3361831859752904756s_real] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ ( plus_p6008488439947570109s_real @ one_on8598947968683843321s_real @ formal4708490801539276157X_real ) @ A ) @ N )
          = ( formal2580924720334399070h_real @ A @ N ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ ( plus_p6008488439947570109s_real @ one_on8598947968683843321s_real @ formal4708490801539276157X_real ) @ A ) @ N )
          = ( plus_plus_real @ ( formal2580924720334399070h_real @ A @ N ) @ ( formal2580924720334399070h_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ) ).

% fps_mult_fps_X_plus_1_nth
thf(fact_1086_fps__mult__fps__X__plus__1__nth,axiom,
    ! [N: nat,A: formal_Power_fps_nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ ( plus_p6043471806551771617ps_nat @ one_on3350087005236239133ps_nat @ formal1744162128437646113_X_nat ) @ A ) @ N )
          = ( formal3720337525774269570th_nat @ A @ N ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ ( plus_p6043471806551771617ps_nat @ one_on3350087005236239133ps_nat @ formal1744162128437646113_X_nat ) @ A ) @ N )
          = ( plus_plus_nat @ ( formal3720337525774269570th_nat @ A @ N ) @ ( formal3720337525774269570th_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ) ).

% fps_mult_fps_X_plus_1_nth
thf(fact_1087_fps__mult__fps__X__plus__1__nth,axiom,
    ! [N: nat,A: formal_Power_fps_int] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ ( plus_p1865620787042574909ps_int @ one_on8395608022581818233ps_int @ formal1741671657928595837_X_int ) @ A ) @ N )
          = ( formal3717847055265219294th_int @ A @ N ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ ( plus_p1865620787042574909ps_int @ one_on8395608022581818233ps_int @ formal1741671657928595837_X_int ) @ A ) @ N )
          = ( plus_plus_int @ ( formal3717847055265219294th_int @ A @ N ) @ ( formal3717847055265219294th_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ) ).

% fps_mult_fps_X_plus_1_nth
thf(fact_1088_fps__X__nth,axiom,
    ! [N: nat] :
      ( ( ( N = one_one_nat )
       => ( ( formal3720337525774269570th_nat @ formal1744162128437646113_X_nat @ N )
          = one_one_nat ) )
      & ( ( N != one_one_nat )
       => ( ( formal3720337525774269570th_nat @ formal1744162128437646113_X_nat @ N )
          = zero_zero_nat ) ) ) ).

% fps_X_nth
thf(fact_1089_fps__X__nth,axiom,
    ! [N: nat] :
      ( ( ( N = one_one_nat )
       => ( ( formal2580924720334399070h_real @ formal4708490801539276157X_real @ N )
          = one_one_real ) )
      & ( ( N != one_one_nat )
       => ( ( formal2580924720334399070h_real @ formal4708490801539276157X_real @ N )
          = zero_zero_real ) ) ) ).

% fps_X_nth
thf(fact_1090_fps__X__nth,axiom,
    ! [N: nat] :
      ( ( ( N = one_one_nat )
       => ( ( formal3717847055265219294th_int @ formal1741671657928595837_X_int @ N )
          = one_one_int ) )
      & ( ( N != one_one_nat )
       => ( ( formal3717847055265219294th_int @ formal1741671657928595837_X_int @ N )
          = zero_zero_int ) ) ) ).

% fps_X_nth
thf(fact_1091_fps__X__power__nth,axiom,
    ! [N: nat,K: nat] :
      ( ( ( N = K )
       => ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ formal1744162128437646113_X_nat @ K ) @ N )
          = one_one_nat ) )
      & ( ( N != K )
       => ( ( formal3720337525774269570th_nat @ ( power_568658719666546786ps_nat @ formal1744162128437646113_X_nat @ K ) @ N )
          = zero_zero_nat ) ) ) ).

% fps_X_power_nth
thf(fact_1092_fps__X__power__nth,axiom,
    ! [N: nat,K: nat] :
      ( ( ( N = K )
       => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ formal4708490801539276157X_real @ K ) @ N )
          = one_one_real ) )
      & ( ( N != K )
       => ( ( formal2580924720334399070h_real @ ( power_1846127563762588094s_real @ formal4708490801539276157X_real @ K ) @ N )
          = zero_zero_real ) ) ) ).

% fps_X_power_nth
thf(fact_1093_fps__X__power__nth,axiom,
    ! [N: nat,K: nat] :
      ( ( ( N = K )
       => ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ formal1741671657928595837_X_int @ K ) @ N )
          = one_one_int ) )
      & ( ( N != K )
       => ( ( formal3717847055265219294th_int @ ( power_5614179737012125886ps_int @ formal1741671657928595837_X_int @ K ) @ N )
          = zero_zero_int ) ) ) ).

% fps_X_power_nth
thf(fact_1094_fps__X__mult__nth,axiom,
    ! [N: nat,F: formal_Power_fps_nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ formal1744162128437646113_X_nat @ F ) @ N )
          = zero_zero_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ formal1744162128437646113_X_nat @ F ) @ N )
          = ( formal3720337525774269570th_nat @ F @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fps_X_mult_nth
thf(fact_1095_fps__X__mult__nth,axiom,
    ! [N: nat,F: formal3361831859752904756s_real] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ formal4708490801539276157X_real @ F ) @ N )
          = zero_zero_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ formal4708490801539276157X_real @ F ) @ N )
          = ( formal2580924720334399070h_real @ F @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fps_X_mult_nth
thf(fact_1096_fps__X__mult__nth,axiom,
    ! [N: nat,F: formal_Power_fps_int] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ formal1741671657928595837_X_int @ F ) @ N )
          = zero_zero_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ formal1741671657928595837_X_int @ F ) @ N )
          = ( formal3717847055265219294th_int @ F @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fps_X_mult_nth
thf(fact_1097_fps__X__mult__right__nth,axiom,
    ! [N: nat,A: formal_Power_fps_nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ A @ formal1744162128437646113_X_nat ) @ N )
          = zero_zero_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ A @ formal1744162128437646113_X_nat ) @ N )
          = ( formal3720337525774269570th_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fps_X_mult_right_nth
thf(fact_1098_fps__X__mult__right__nth,axiom,
    ! [N: nat,A: formal3361831859752904756s_real] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ A @ formal4708490801539276157X_real ) @ N )
          = zero_zero_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ A @ formal4708490801539276157X_real ) @ N )
          = ( formal2580924720334399070h_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fps_X_mult_right_nth
thf(fact_1099_fps__X__mult__right__nth,axiom,
    ! [N: nat,A: formal_Power_fps_int] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ A @ formal1741671657928595837_X_int ) @ N )
          = zero_zero_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ A @ formal1741671657928595837_X_int ) @ N )
          = ( formal3717847055265219294th_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ) ).

% fps_X_mult_right_nth
thf(fact_1100_fps__X__power__mult__nth,axiom,
    ! [N: nat,K: nat,F: formal_Power_fps_nat] :
      ( ( ( ord_less_nat @ N @ K )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ ( power_568658719666546786ps_nat @ formal1744162128437646113_X_nat @ K ) @ F ) @ N )
          = zero_zero_nat ) )
      & ( ~ ( ord_less_nat @ N @ K )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ ( power_568658719666546786ps_nat @ formal1744162128437646113_X_nat @ K ) @ F ) @ N )
          = ( formal3720337525774269570th_nat @ F @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).

% fps_X_power_mult_nth
thf(fact_1101_fps__X__power__mult__nth,axiom,
    ! [N: nat,K: nat,F: formal3361831859752904756s_real] :
      ( ( ( ord_less_nat @ N @ K )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ ( power_1846127563762588094s_real @ formal4708490801539276157X_real @ K ) @ F ) @ N )
          = zero_zero_real ) )
      & ( ~ ( ord_less_nat @ N @ K )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ ( power_1846127563762588094s_real @ formal4708490801539276157X_real @ K ) @ F ) @ N )
          = ( formal2580924720334399070h_real @ F @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).

% fps_X_power_mult_nth
thf(fact_1102_fps__X__power__mult__nth,axiom,
    ! [N: nat,K: nat,F: formal_Power_fps_int] :
      ( ( ( ord_less_nat @ N @ K )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ ( power_5614179737012125886ps_int @ formal1741671657928595837_X_int @ K ) @ F ) @ N )
          = zero_zero_int ) )
      & ( ~ ( ord_less_nat @ N @ K )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ ( power_5614179737012125886ps_int @ formal1741671657928595837_X_int @ K ) @ F ) @ N )
          = ( formal3717847055265219294th_int @ F @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).

% fps_X_power_mult_nth
thf(fact_1103_fps__X__power__mult__right__nth,axiom,
    ! [N: nat,K: nat,F: formal_Power_fps_nat] :
      ( ( ( ord_less_nat @ N @ K )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ F @ ( power_568658719666546786ps_nat @ formal1744162128437646113_X_nat @ K ) ) @ N )
          = zero_zero_nat ) )
      & ( ~ ( ord_less_nat @ N @ K )
       => ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ F @ ( power_568658719666546786ps_nat @ formal1744162128437646113_X_nat @ K ) ) @ N )
          = ( formal3720337525774269570th_nat @ F @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).

% fps_X_power_mult_right_nth
thf(fact_1104_fps__X__power__mult__right__nth,axiom,
    ! [N: nat,K: nat,F: formal3361831859752904756s_real] :
      ( ( ( ord_less_nat @ N @ K )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ F @ ( power_1846127563762588094s_real @ formal4708490801539276157X_real @ K ) ) @ N )
          = zero_zero_real ) )
      & ( ~ ( ord_less_nat @ N @ K )
       => ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ F @ ( power_1846127563762588094s_real @ formal4708490801539276157X_real @ K ) ) @ N )
          = ( formal2580924720334399070h_real @ F @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).

% fps_X_power_mult_right_nth
thf(fact_1105_fps__X__power__mult__right__nth,axiom,
    ! [N: nat,K: nat,F: formal_Power_fps_int] :
      ( ( ( ord_less_nat @ N @ K )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ F @ ( power_5614179737012125886ps_int @ formal1741671657928595837_X_int @ K ) ) @ N )
          = zero_zero_int ) )
      & ( ~ ( ord_less_nat @ N @ K )
       => ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ F @ ( power_5614179737012125886ps_int @ formal1741671657928595837_X_int @ K ) ) @ N )
          = ( formal3717847055265219294th_int @ F @ ( minus_minus_nat @ N @ K ) ) ) ) ) ).

% fps_X_power_mult_right_nth
thf(fact_1106_fps__hypergeo__0,axiom,
    ! [As: list_real,Bs: list_real,C: real] :
      ( ( formal2580924720334399070h_real @ ( formal6618874005373735610o_real @ As @ Bs @ C ) @ zero_zero_nat )
      = one_one_real ) ).

% fps_hypergeo_0
thf(fact_1107_fps__ln__0,axiom,
    ! [C: real] :
      ( ( formal2580924720334399070h_real @ ( formal8688746759596762231n_real @ C ) @ zero_zero_nat )
      = zero_zero_real ) ).

% fps_ln_0
thf(fact_1108_fps__ln__nth,axiom,
    ! [N: nat,C: real] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( formal8688746759596762231n_real @ C ) @ N )
          = zero_zero_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( formal8688746759596762231n_real @ C ) @ N )
          = ( times_times_real @ ( divide_divide_real @ one_one_real @ C ) @ ( divide_divide_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ) ) ).

% fps_ln_nth
thf(fact_1109_fps__binomial__of__nat,axiom,
    ! [N: nat] :
      ( ( formal5546599989445857540l_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( power_1846127563762588094s_real @ ( plus_p6008488439947570109s_real @ one_on8598947968683843321s_real @ formal4708490801539276157X_real ) @ N ) ) ).

% fps_binomial_of_nat
thf(fact_1110_fps__cutoff__nth,axiom,
    ! [I: nat,N: nat,F: formal_Power_fps_nat] :
      ( ( ( ord_less_nat @ I @ N )
       => ( ( formal3720337525774269570th_nat @ ( formal4818209184033568742ff_nat @ N @ F ) @ I )
          = ( formal3720337525774269570th_nat @ F @ I ) ) )
      & ( ~ ( ord_less_nat @ I @ N )
       => ( ( formal3720337525774269570th_nat @ ( formal4818209184033568742ff_nat @ N @ F ) @ I )
          = zero_zero_nat ) ) ) ).

% fps_cutoff_nth
thf(fact_1111_fps__cutoff__nth,axiom,
    ! [I: nat,N: nat,F: formal3361831859752904756s_real] :
      ( ( ( ord_less_nat @ I @ N )
       => ( ( formal2580924720334399070h_real @ ( formal1487479903726251970f_real @ N @ F ) @ I )
          = ( formal2580924720334399070h_real @ F @ I ) ) )
      & ( ~ ( ord_less_nat @ I @ N )
       => ( ( formal2580924720334399070h_real @ ( formal1487479903726251970f_real @ N @ F ) @ I )
          = zero_zero_real ) ) ) ).

% fps_cutoff_nth
thf(fact_1112_fps__cutoff__nth,axiom,
    ! [I: nat,N: nat,F: formal_Power_fps_int] :
      ( ( ( ord_less_nat @ I @ N )
       => ( ( formal3717847055265219294th_int @ ( formal4815718713524518466ff_int @ N @ F ) @ I )
          = ( formal3717847055265219294th_int @ F @ I ) ) )
      & ( ~ ( ord_less_nat @ I @ N )
       => ( ( formal3717847055265219294th_int @ ( formal4815718713524518466ff_int @ N @ F ) @ I )
          = zero_zero_int ) ) ) ).

% fps_cutoff_nth
thf(fact_1113_neg__equal__iff__equal,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_1114_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_1115_add_Oinverse__inverse,axiom,
    ! [A: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_1116_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_1117_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_1118_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_1119_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_1120_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_1121_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_1122_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_1123_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_1124_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_1125_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_1126_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_1127_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_1128_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_1129_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_1130_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_1131_vector__space__over__itself_Oscale__minus__right,axiom,
    ! [A: real,X: real] :
      ( ( times_times_real @ A @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( times_times_real @ A @ X ) ) ) ).

% vector_space_over_itself.scale_minus_right
thf(fact_1132_vector__space__over__itself_Oscale__minus__left,axiom,
    ! [A: real,X: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ X )
      = ( uminus_uminus_real @ ( times_times_real @ A @ X ) ) ) ).

% vector_space_over_itself.scale_minus_left
thf(fact_1133_mult__minus__left,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_1134_mult__minus__left,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_1135_minus__mult__minus,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( times_times_real @ A @ B ) ) ).

% minus_mult_minus
thf(fact_1136_minus__mult__minus,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( times_times_int @ A @ B ) ) ).

% minus_mult_minus
thf(fact_1137_mult__minus__right,axiom,
    ! [A: real,B: real] :
      ( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_1138_mult__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_1139_add__minus__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_1140_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_1141_minus__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_1142_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_1143_minus__add__distrib,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).

% minus_add_distrib
thf(fact_1144_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_1145_minus__diff__eq,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
      = ( minus_minus_real @ B @ A ) ) ).

% minus_diff_eq
thf(fact_1146_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_1147_div__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ A @ B ) ) ).

% div_minus_minus
thf(fact_1148_real__add__minus__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X = A ) ) ).

% real_add_minus_iff
thf(fact_1149_negative__eq__positive,axiom,
    ! [N: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_1150_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_1151_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_1152_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_1153_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_1154_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_1155_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_1156_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_1157_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_1158_add_Oright__inverse,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
      = zero_zero_real ) ).

% add.right_inverse
thf(fact_1159_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_1160_ab__left__minus,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
      = zero_zero_real ) ).

% ab_left_minus
thf(fact_1161_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_1162_verit__minus__simplify_I3_J,axiom,
    ! [B: real] :
      ( ( minus_minus_real @ zero_zero_real @ B )
      = ( uminus_uminus_real @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_1163_verit__minus__simplify_I3_J,axiom,
    ! [B: int] :
      ( ( minus_minus_int @ zero_zero_int @ B )
      = ( uminus_uminus_int @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_1164_diff__0,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ zero_zero_real @ A )
      = ( uminus_uminus_real @ A ) ) ).

% diff_0
thf(fact_1165_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_1166_mult__minus1__right,axiom,
    ! [Z: real] :
      ( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1_right
thf(fact_1167_mult__minus1__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1_right
thf(fact_1168_mult__minus1,axiom,
    ! [Z: real] :
      ( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
      = ( uminus_uminus_real @ Z ) ) ).

% mult_minus1
thf(fact_1169_mult__minus1,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1
thf(fact_1170_uminus__add__conv__diff,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
      = ( minus_minus_real @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_1171_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_1172_diff__minus__eq__add,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
      = ( plus_plus_real @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_1173_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_1174_div__minus1__right,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ A ) ) ).

% div_minus1_right
thf(fact_1175_divide__minus1,axiom,
    ! [X: real] :
      ( ( divide_divide_real @ X @ ( uminus_uminus_real @ one_one_real ) )
      = ( uminus_uminus_real @ X ) ) ).

% divide_minus1
thf(fact_1176_fps__binomial__0,axiom,
    ( ( formal5546599989445857540l_real @ zero_zero_real )
    = one_on8598947968683843321s_real ) ).

% fps_binomial_0
thf(fact_1177_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% add_neg_numeral_special(7)
thf(fact_1178_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_1179_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
    = zero_zero_real ) ).

% add_neg_numeral_special(8)
thf(fact_1180_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_1181_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
    = zero_zero_real ) ).

% diff_numeral_special(12)
thf(fact_1182_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_1183_left__minus__one__mult__self,axiom,
    ! [N: nat,A: real] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_1184_left__minus__one__mult__self,axiom,
    ! [N: nat,A: int] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_1185_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
      = one_one_real ) ).

% minus_one_mult_self
thf(fact_1186_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
      = one_one_int ) ).

% minus_one_mult_self
thf(fact_1187_minus__diff__minus,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_1188_minus__diff__minus,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) ) ) ).

% minus_diff_minus
thf(fact_1189_is__num__normalize_I8_J,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_1190_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_1191_group__cancel_Oneg1,axiom,
    ! [A3: real,K: real,A: real] :
      ( ( A3
        = ( plus_plus_real @ K @ A ) )
     => ( ( uminus_uminus_real @ A3 )
        = ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_1192_group__cancel_Oneg1,axiom,
    ! [A3: int,K: int,A: int] :
      ( ( A3
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A3 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_1193_add_Oinverse__distrib__swap,axiom,
    ! [A: real,B: real] :
      ( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
      = ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_1194_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_1195_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_1196_int__cases2,axiom,
    ! [Z: int] :
      ( ! [N3: nat] :
          ( Z
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( Z
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% int_cases2
thf(fact_1197_uminus__int__code_I1_J,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% uminus_int_code(1)
thf(fact_1198_real__root__minus,axiom,
    ! [N: nat,X: real] :
      ( ( root @ N @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( root @ N @ X ) ) ) ).

% real_root_minus
thf(fact_1199_minus__real__def,axiom,
    ( minus_minus_real
    = ( ^ [X4: real,Y5: real] : ( plus_plus_real @ X4 @ ( uminus_uminus_real @ Y5 ) ) ) ) ).

% minus_real_def
thf(fact_1200_not__int__zless__negative,axiom,
    ! [N: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_1201_zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
      = ( ( ( M = one_one_int )
          & ( N = one_one_int ) )
        | ( ( M
            = ( uminus_uminus_int @ one_one_int ) )
          & ( N
            = ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).

% zmult_eq_1_iff
thf(fact_1202_pos__zmult__eq__1__iff__lemma,axiom,
    ! [M: int,N: int] :
      ( ( ( times_times_int @ M @ N )
        = one_one_int )
     => ( ( M = one_one_int )
        | ( M
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff_lemma
thf(fact_1203_minus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( minus_minus_int @ zero_zero_int @ L )
      = ( uminus_uminus_int @ L ) ) ).

% minus_int_code(2)
thf(fact_1204_real__0__less__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_less_add_iff
thf(fact_1205_real__add__less__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_1206_int__cases4,axiom,
    ! [M: int] :
      ( ! [N3: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% int_cases4
thf(fact_1207_divide__powr__uminus,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ A @ ( powr_real @ B @ C ) )
      = ( times_times_real @ A @ ( powr_real @ B @ ( uminus_uminus_real @ C ) ) ) ) ).

% divide_powr_uminus
thf(fact_1208_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N3: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) )
       => ~ ! [N3: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ) ).

% int_cases3
thf(fact_1209_div__eq__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% div_eq_minus1
thf(fact_1210_Preliminaries_Oinverse__powr,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( powr_real @ ( divide_divide_real @ one_one_real @ A ) @ B )
        = ( powr_real @ A @ ( uminus_uminus_real @ B ) ) ) ) ).

% Preliminaries.inverse_powr
thf(fact_1211_powr__neg__one,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ ( uminus_uminus_real @ one_one_real ) )
        = ( divide_divide_real @ one_one_real @ X ) ) ) ).

% powr_neg_one
thf(fact_1212_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% neg_int_cases
thf(fact_1213_arsinh__minus__real,axiom,
    ! [X: real] :
      ( ( arsinh_real @ ( uminus_uminus_real @ X ) )
      = ( uminus_uminus_real @ ( arsinh_real @ X ) ) ) ).

% arsinh_minus_real
thf(fact_1214_divide__real__def,axiom,
    ( divide_divide_real
    = ( ^ [X4: real,Y5: real] : ( times_times_real @ X4 @ ( inverse_inverse_real @ Y5 ) ) ) ) ).

% divide_real_def
thf(fact_1215_real__root__inverse,axiom,
    ! [N: nat,X: real] :
      ( ( root @ N @ ( inverse_inverse_real @ X ) )
      = ( inverse_inverse_real @ ( root @ N @ X ) ) ) ).

% real_root_inverse
thf(fact_1216_forall__pos__mono,axiom,
    ! [P2: real > $o,E: real] :
      ( ! [D4: real,E2: real] :
          ( ( ord_less_real @ D4 @ E2 )
         => ( ( P2 @ D4 )
           => ( P2 @ E2 ) ) )
     => ( ! [N3: nat] :
            ( ( N3 != zero_zero_nat )
           => ( P2 @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P2 @ E ) ) ) ) ).

% forall_pos_mono
thf(fact_1217_real__arch__inverse,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
      = ( ? [N2: nat] :
            ( ( N2 != zero_zero_nat )
            & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) )
            & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N2 ) ) @ E ) ) ) ) ).

% real_arch_inverse
thf(fact_1218_ln__inverse,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ln_ln_real @ ( inverse_inverse_real @ X ) )
        = ( uminus_uminus_real @ ( ln_ln_real @ X ) ) ) ) ).

% ln_inverse
thf(fact_1219_real__arch__invD,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ? [N3: nat] :
          ( ( N3 != zero_zero_nat )
          & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) )
          & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) @ E ) ) ) ).

% real_arch_invD
thf(fact_1220_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_1221_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_1222_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_1223_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_1224_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1225_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_1226_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1227_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1228_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1229_powr__nonneg__iff,axiom,
    ! [A: real,X: real] :
      ( ( ord_less_eq_real @ ( powr_real @ A @ X ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% powr_nonneg_iff
thf(fact_1230_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_1231_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_1232_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_1233_ln__le__cancel__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ ( ln_ln_real @ Y ) )
          = ( ord_less_eq_real @ X @ Y ) ) ) ) ).

% ln_le_cancel_iff
thf(fact_1234_powr__one__gt__zero__iff,axiom,
    ! [X: real] :
      ( ( ( powr_real @ X @ one_one_real )
        = X )
      = ( ord_less_eq_real @ zero_zero_real @ X ) ) ).

% powr_one_gt_zero_iff
thf(fact_1235_powr__one,axiom,
    ! [X: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( powr_real @ X @ one_one_real )
        = X ) ) ).

% powr_one
thf(fact_1236_powr__le__cancel__iff,axiom,
    ! [X: real,A: real,B: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ( ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ X @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% powr_le_cancel_iff
thf(fact_1237_real__root__le__iff,axiom,
    ! [N: nat,X: real,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N @ Y ) )
        = ( ord_less_eq_real @ X @ Y ) ) ) ).

% real_root_le_iff
thf(fact_1238_zle__add1__eq__le,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
      = ( ord_less_eq_int @ W @ Z ) ) ).

% zle_add1_eq_le
thf(fact_1239_div__pos__pos__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ( ( ord_less_int @ K @ L )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_1240_div__neg__neg__trivial,axiom,
    ! [K: int,L: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ( ( ord_less_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_1241_zle__diff1__eq,axiom,
    ! [W: int,Z: int] :
      ( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z @ one_one_int ) )
      = ( ord_less_int @ W @ Z ) ) ).

% zle_diff1_eq
thf(fact_1242_ln__le__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ ( ln_ln_real @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% ln_le_zero_iff
thf(fact_1243_ln__ge__zero__iff,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( ln_ln_real @ X ) )
        = ( ord_less_eq_real @ one_one_real @ X ) ) ) ).

% ln_ge_zero_iff
thf(fact_1244_real__root__ge__0__iff,axiom,
    ! [N: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N @ Y ) )
        = ( ord_less_eq_real @ zero_zero_real @ Y ) ) ) ).

% real_root_ge_0_iff
thf(fact_1245_real__root__le__0__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X ) @ zero_zero_real )
        = ( ord_less_eq_real @ X @ zero_zero_real ) ) ) ).

% real_root_le_0_iff
thf(fact_1246_real__root__le__1__iff,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ ( root @ N @ X ) @ one_one_real )
        = ( ord_less_eq_real @ X @ one_one_real ) ) ) ).

% real_root_le_1_iff
thf(fact_1247_real__root__ge__1__iff,axiom,
    ! [N: nat,Y: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ one_one_real @ ( root @ N @ Y ) )
        = ( ord_less_eq_real @ one_one_real @ Y ) ) ) ).

% real_root_ge_1_iff
thf(fact_1248_real__root__pow__pos2,axiom,
    ! [N: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( power_power_real @ ( root @ N @ X ) @ N )
          = X ) ) ) ).

% real_root_pow_pos2
thf(fact_1249_Transcendental_Oinverse__powr,axiom,
    ! [Y: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( powr_real @ ( inverse_inverse_real @ Y ) @ A )
        = ( inverse_inverse_real @ ( powr_real @ Y @ A ) ) ) ) ).

% Transcendental.inverse_powr
thf(fact_1250_real__root__increasing,axiom,
    ! [N: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ( ord_less_eq_real @ zero_zero_real @ X )
         => ( ( ord_less_eq_real @ X @ one_one_real )
           => ( ord_less_eq_real @ ( root @ N @ X ) @ ( root @ N4 @ X ) ) ) ) ) ) ).

% real_root_increasing
thf(fact_1251_real__eq__0__iff__le__ge__0,axiom,
    ! [X: real] :
      ( ( X = zero_zero_real )
      = ( ( ord_less_eq_real @ zero_zero_real @ X )
        & ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ X ) ) ) ) ).

% real_eq_0_iff_le_ge_0
thf(fact_1252_real__minus__mult__self__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X @ X ) ) ).

% real_minus_mult_self_le
thf(fact_1253_real__root__decreasing,axiom,
    ! [N: nat,N4: nat,X: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ N4 )
       => ( ( ord_less_eq_real @ one_one_real @ X )
         => ( ord_less_eq_real @ ( root @ N4 @ X ) @ ( root @ N @ X ) ) ) ) ) ).

% real_root_decreasing
thf(fact_1254_ex__least__nat__le,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ N )
     => ( ~ ( P2 @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K2 )
               => ~ ( P2 @ I4 ) )
            & ( P2 @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1255_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M3: nat,N3: nat] :
          ( ( ord_less_nat @ M3 @ N3 )
         => ( ord_less_nat @ ( F @ M3 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1256_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1257_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1258_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1259_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1260_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1261_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1262_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_1263_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N3: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_1264_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N3: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% nonneg_int_cases
thf(fact_1265_int__ge__induct,axiom,
    ! [K: int,I: int,P2: int > $o] :
      ( ( ord_less_eq_int @ K @ I )
     => ( ( P2 @ K )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K @ I3 )
             => ( ( P2 @ I3 )
               => ( P2 @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P2 @ I ) ) ) ) ).

% int_ge_induct
thf(fact_1266_powr__ge__pzero,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( powr_real @ X @ Y ) ) ).

% powr_ge_pzero
thf(fact_1267_powr__mono2,axiom,
    ! [A: real,X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ X @ Y )
         => ( ord_less_eq_real @ ( powr_real @ X @ A ) @ ( powr_real @ Y @ A ) ) ) ) ) ).

% powr_mono2
thf(fact_1268_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W2: int,Z6: int] :
        ? [N2: nat] :
          ( Z6
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).

% zle_iff_zadd

% Helper facts (7)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P2: $o] :
      ( ( P2 = $true )
      | ( P2 = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( power_power_real @ ( plus_plus_real @ one_one_real @ ( divide_divide_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ m ) @ ( minus_minus_real @ ( powr_real @ ( plus_plus_real @ one_one_real @ i ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ m ) ) ) @ one_one_real ) ) @ ( semiri5074537144036343181t_real @ m ) ) ) @ m )
    = ( plus_plus_real @ one_one_real @ i ) ) ).

%------------------------------------------------------------------------------