TPTP Problem File: SLH0374^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Number_Theoretic_Transform/0008_Butterfly/prob_01179_057869__14255406_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1376 ( 694 unt; 124 typ;   0 def)
%            Number of atoms       : 3113 (1529 equ;   0 cnn)
%            Maximal formula atoms :   17 (   2 avg)
%            Number of connectives : 9924 ( 384   ~;  58   |; 127   &;8319   @)
%                                         (   0 <=>;1036  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   29 (   5 avg)
%            Number of types       :   22 (  21 usr)
%            Number of type conns  :  254 ( 254   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  106 ( 103 usr;  23 con; 0-6 aty)
%            Number of variables   : 2859 (  53   ^;2753   !;  53   ?;2859   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-18 16:40:22.881
%------------------------------------------------------------------------------
% Could-be-implicit typings (21)
thf(ty_n_t__Product____Type__Oprod_I_062_It__Finite____Field__Omod____ring_Itf__a_J_M_062_It__Finite____Field__Omod____ring_Itf__a_J_M_Eo_J_J_Mt__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_J,type,
    produc2891675470218086340ring_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_Mt__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_J,type,
    produc1903848493353643239ring_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Finite____Field__Omod____ring_Itf__a_J_Mt__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_J,type,
    produc4606121326244435181ring_a: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    list_P1909269847677398966at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_Mt__Nat__Onat_J,type,
    produc5248102568796238538_a_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Finite____Field__Omod____ring_Itf__a_J_J_J,type,
    list_P4624318757991090938ring_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    produc7248412053542808358at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_I_Eo_Mt__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_J,type,
    produc5762148738920367578ring_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Finite____Field__Omod____ring_Itf__a_J_J,type,
    produc5330513443964352234ring_a: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_J,type,
    list_l2267190326604534609ring_a: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    list_P6011104703257516679at_nat: $tType ).

thf(ty_n_t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
    list_F4626807571770296779ring_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Int__Oint_Mt__Int__Oint_J,type,
    product_prod_int_int: $tType ).

thf(ty_n_t__Finite____Field__Omod____ring_Itf__a_J,type,
    finite_mod_ring_a: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (103)
thf(sy_c_Butterfly_Obutterfly_001tf__a,type,
    butterfly_a: nat > nat > nat > finite_mod_ring_a > finite_mod_ring_a > nat > $o ).

thf(sy_c_Butterfly_Obutterfly_OT_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Int__Oint,type,
    t_l_e_8854404788392743103_a_int: list_F4626807571770296779ring_a > int ).

thf(sy_c_Butterfly_Obutterfly_OT_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Nat__Onat,type,
    t_l_e_8856895258901793379_a_nat: list_F4626807571770296779ring_a > nat ).

thf(sy_c_Butterfly_Obutterfly_OT_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Real__Oreal,type,
    t_l_e_1375870279716017087a_real: list_F4626807571770296779ring_a > real ).

thf(sy_c_Butterfly_Obutterfly_OT_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Int__Oint,type,
    t_m_a_2857160622122682181_a_int: ( finite_mod_ring_a > finite_mod_ring_a > int ) > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > int ).

thf(sy_c_Butterfly_Obutterfly_OT_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Nat__Onat,type,
    t_m_a_2859651092631732457_a_nat: ( finite_mod_ring_a > finite_mod_ring_a > nat ) > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > nat ).

thf(sy_c_Butterfly_Obutterfly_OT_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Real__Oreal,type,
    t_m_a_7590279389192857413a_real: ( finite_mod_ring_a > finite_mod_ring_a > real ) > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > real ).

thf(sy_c_Butterfly_Obutterfly_OT_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Int__Oint,type,
    t_n_t_3816195432341909267_a_int: list_F4626807571770296779ring_a > nat > int ).

thf(sy_c_Butterfly_Obutterfly_OT_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Nat__Onat,type,
    t_n_t_3818685902850959543_a_nat: list_F4626807571770296779ring_a > nat > nat ).

thf(sy_c_Butterfly_Obutterfly_OT_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_001t__Finite____Field__Omod____ring_Itf__a_J_001t__Real__Oreal,type,
    t_n_t_1739731239953631251a_real: list_F4626807571770296779ring_a > nat > real ).

thf(sy_c_Butterfly_Obutterfly_OT_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h__rel_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    t_n_t_7363053879581081417ring_a: produc5248102568796238538_a_nat > produc5248102568796238538_a_nat > $o ).

thf(sy_c_Butterfly_Obutterfly_OT___092_060_094sub_062e_092_060_094sub_062o_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    t_e_o_7198240386746857008ring_a: $o > list_F4626807571770296779ring_a > nat ).

thf(sy_c_Butterfly_Obutterfly_Oevens__odds_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    evens_6356279921861204579ring_a: $o > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).

thf(sy_c_Butterfly_Obutterfly__axioms,type,
    butterfly_axioms: nat > nat > $o ).

thf(sy_c_Discrete_Olog,type,
    log: nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_List_Olist_OCons_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    cons_F8924456270334622075ring_a: finite_mod_ring_a > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
    cons_l4066219276239944833ring_a: list_F4626807571770296779ring_a > list_l2267190326604534609ring_a > list_l2267190326604534609ring_a ).

thf(sy_c_List_Olist_OCons_001t__Nat__Onat,type,
    cons_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Olist_OCons_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Finite____Field__Omod____ring_Itf__a_J_J,type,
    cons_P7934120695603328436ring_a: produc5330513443964352234ring_a > list_P4624318757991090938ring_a > list_P4624318757991090938ring_a ).

thf(sy_c_List_Olist_OCons_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    cons_P6512896166579812791at_nat: product_prod_nat_nat > list_P6011104703257516679at_nat > list_P6011104703257516679at_nat ).

thf(sy_c_List_Olist_OCons_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    cons_P4943146402254145264at_nat: produc7248412053542808358at_nat > list_P1909269847677398966at_nat > list_P1909269847677398966at_nat ).

thf(sy_c_List_Olist_ONil_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    nil_Fi5353433074977123787ring_a: list_F4626807571770296779ring_a ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
    nil_li2571238958069156049ring_a: list_l2267190326604534609ring_a ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_ONil_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Finite____Field__Omod____ring_Itf__a_J_J,type,
    nil_Pr2033367005900905828ring_a: list_P4624318757991090938ring_a ).

thf(sy_c_List_Olist_ONil_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    nil_Pr5478986624290739719at_nat: list_P6011104703257516679at_nat ).

thf(sy_c_List_Olist_ONil_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    nil_Pr5468900520374568608at_nat: list_P1909269847677398966at_nat ).

thf(sy_c_List_On__lists_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    n_list396537605831803347ring_a: nat > list_F4626807571770296779ring_a > list_l2267190326604534609ring_a ).

thf(sy_c_List_Osubseqs_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    subseq4767234092597361178ring_a: list_F4626807571770296779ring_a > list_l2267190326604534609ring_a ).

thf(sy_c_Missing__Polynomial_Oexpand__powers_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    missin34570425272376078ring_a: list_P4624318757991090938ring_a > list_F4626807571770296779ring_a ).

thf(sy_c_Missing__Polynomial_Oexpand__powers_001t__Nat__Onat,type,
    missin6482572040563731271rs_nat: list_P6011104703257516679at_nat > list_nat ).

thf(sy_c_Missing__Polynomial_Oexpand__powers_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    missin2748503833011120330at_nat: list_P1909269847677398966at_nat > list_P6011104703257516679at_nat ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
    size_s7115545719440041015ring_a: list_F4626807571770296779ring_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_J,type,
    size_s6733248078324860861ring_a: list_l2267190326604534609ring_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
    size_size_num: num > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
    size_size_char: char > nat ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
    neg_numeral_dbl_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
    neg_numeral_dbl_real: real > real ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onum_Osize__num,type,
    size_num: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
    numeral_numeral_real: num > real ).

thf(sy_c_Num_Opow,type,
    pow: num > num > num ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Parity_Ounique__euclidean__semiring__with__nat__division__class_Odivides__aux_001t__Int__Oint,type,
    unique5329631941980267465ux_int: product_prod_int_int > $o ).

thf(sy_c_Parity_Ounique__euclidean__semiring__with__nat__division__class_Odivides__aux_001t__Nat__Onat,type,
    unique5332122412489317741ux_nat: product_prod_nat_nat > $o ).

thf(sy_c_Parity_Ounique__euclidean__semiring__with__nat__division__class_Odivmod_001t__Int__Oint,type,
    unique5403075989570733136od_int: num > num > product_prod_int_int ).

thf(sy_c_Parity_Ounique__euclidean__semiring__with__nat__division__class_Odivmod_001t__Nat__Onat,type,
    unique5405566460079783412od_nat: num > num > product_prod_nat_nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Product__Type_OPair_001_062_It__Finite____Field__Omod____ring_Itf__a_J_M_062_It__Finite____Field__Omod____ring_Itf__a_J_M_Eo_J_J_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
    produc7708321557771586740ring_a: ( finite_mod_ring_a > finite_mod_ring_a > $o ) > list_F4626807571770296779ring_a > produc2891675470218086340ring_a ).

thf(sy_c_Product__Type_OPair_001_Eo_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
    produc4036626292162011466ring_a: $o > list_F4626807571770296779ring_a > produc5762148738920367578ring_a ).

thf(sy_c_Product__Type_OPair_001t__Finite____Field__Omod____ring_Itf__a_J_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
    produc5404638905795037661ring_a: finite_mod_ring_a > list_F4626807571770296779ring_a > produc4606121326244435181ring_a ).

thf(sy_c_Product__Type_OPair_001t__Int__Oint_001t__Int__Oint,type,
    product_Pair_int_int: int > int > product_prod_int_int ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
    produc242033333738657367ring_a: list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > produc1903848493353643239ring_a ).

thf(sy_c_Product__Type_OPair_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_001t__Nat__Onat,type,
    produc4363114488256272964_a_nat: list_F4626807571770296779ring_a > nat > produc5248102568796238538_a_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    produc8633925709569697436ring_a: nat > finite_mod_ring_a > produc5330513443964352234ring_a ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Nat__Onat,type,
    product_Pair_nat_nat: nat > nat > product_prod_nat_nat ).

thf(sy_c_Product__Type_OPair_001t__Nat__Onat_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    produc487386426758144856at_nat: nat > product_prod_nat_nat > produc7248412053542808358at_nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
    dvd_dvd_int: int > int > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Real__Oreal,type,
    dvd_dvd_real: real > real > $o ).

thf(sy_c_String_Ochar_Osize__char,type,
    size_char: char > nat ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J_Mt__Nat__Onat_J,type,
    accp_P5856548881842579713_a_nat: ( produc5248102568796238538_a_nat > produc5248102568796238538_a_nat > $o ) > produc5248102568796238538_a_nat > $o ).

thf(sy_v_T,type,
    t: list_F4626807571770296779ring_a > nat ).

thf(sy_v_k,type,
    k: nat ).

thf(sy_v_la____,type,
    la: nat ).

thf(sy_v_nn____,type,
    nn: nat ).

thf(sy_v_numbersa____,type,
    numbersa: list_F4626807571770296779ring_a ).

thf(sy_v_nums1____,type,
    nums1: list_F4626807571770296779ring_a ).

thf(sy_v_nums2____,type,
    nums2: list_F4626807571770296779ring_a ).

thf(sy_v_x____,type,
    x: finite_mod_ring_a ).

thf(sy_v_y____,type,
    y: finite_mod_ring_a ).

% Relevant facts (1248)
thf(fact_0_evens__odds_Osimps_I3_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( evens_6356279921861204579ring_a @ $false @ ( cons_F8924456270334622075ring_a @ X @ Xs ) )
      = ( evens_6356279921861204579ring_a @ $true @ Xs ) ) ).

% evens_odds.simps(3)
thf(fact_1_evens__odds_Osimps_I2_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( evens_6356279921861204579ring_a @ $true @ ( cons_F8924456270334622075ring_a @ X @ Xs ) )
      = ( cons_F8924456270334622075ring_a @ X @ ( evens_6356279921861204579ring_a @ $false @ Xs ) ) ) ).

% evens_odds.simps(2)
thf(fact_2__C3_Oprems_C,axiom,
    ( ( size_s7115545719440041015ring_a @ ( cons_F8924456270334622075ring_a @ x @ ( cons_F8924456270334622075ring_a @ y @ numbersa ) ) )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).

% "3.prems"
thf(fact_3_nums1__def,axiom,
    ( nums1
    = ( evens_6356279921861204579ring_a @ $true @ ( cons_F8924456270334622075ring_a @ x @ ( cons_F8924456270334622075ring_a @ y @ numbersa ) ) ) ) ).

% nums1_def
thf(fact_4_nums2__def,axiom,
    ( nums2
    = ( evens_6356279921861204579ring_a @ $false @ ( cons_F8924456270334622075ring_a @ x @ ( cons_F8924456270334622075ring_a @ y @ numbersa ) ) ) ) ).

% nums2_def
thf(fact_5_nn__def,axiom,
    ( nn
    = ( size_s7115545719440041015ring_a @ ( cons_F8924456270334622075ring_a @ x @ ( cons_F8924456270334622075ring_a @ y @ numbersa ) ) ) ) ).

% nn_def
thf(fact_6_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_nat @ N )
        = one_one_nat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_7_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_int @ N )
        = one_one_int )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_8_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_real @ N )
        = one_one_real )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_9_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_10_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_11_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_real
        = ( numeral_numeral_real @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_12_xyz,axiom,
    ! [Xs: list_F4626807571770296779ring_a,L: nat,X: finite_mod_ring_a] :
      ( ( ( suc @ ( suc @ ( size_s7115545719440041015ring_a @ Xs ) ) )
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ L ) )
     => ( ( size_s7115545719440041015ring_a @ ( cons_F8924456270334622075ring_a @ X @ ( evens_6356279921861204579ring_a @ $true @ Xs ) ) )
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ L @ one_one_nat ) ) ) ) ).

% xyz
thf(fact_13_zyx,axiom,
    ! [Xs: list_F4626807571770296779ring_a,L: nat,Y: finite_mod_ring_a] :
      ( ( ( suc @ ( suc @ ( size_s7115545719440041015ring_a @ Xs ) ) )
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ L ) )
     => ( ( size_s7115545719440041015ring_a @ ( cons_F8924456270334622075ring_a @ Y @ ( evens_6356279921861204579ring_a @ $false @ Xs ) ) )
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ L @ one_one_nat ) ) ) ) ).

% zyx
thf(fact_14_evens__odds__power__2,axiom,
    ! [Xs: list_F4626807571770296779ring_a,L: nat,B: $o] :
      ( ( ( suc @ ( suc @ ( size_s7115545719440041015ring_a @ Xs ) ) )
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ L ) )
     => ( ( suc @ ( size_s7115545719440041015ring_a @ ( evens_6356279921861204579ring_a @ B @ Xs ) ) )
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ L @ one_one_nat ) ) ) ) ).

% evens_odds_power_2
thf(fact_15_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_16_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_17_power__one__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_18_power2__commute,axiom,
    ! [X: real,Y: real] :
      ( ( power_power_real @ ( minus_minus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_real @ ( minus_minus_real @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_19_power2__commute,axiom,
    ! [X: int,Y: int] :
      ( ( power_power_int @ ( minus_minus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ ( minus_minus_int @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_20_one__power2,axiom,
    ( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_power2
thf(fact_21_one__power2,axiom,
    ( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_power2
thf(fact_22_one__power2,axiom,
    ( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_real ) ).

% one_power2
thf(fact_23_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% power_one
thf(fact_24_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_int @ one_one_int @ N )
      = one_one_int ) ).

% power_one
thf(fact_25_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_real @ one_one_real @ N )
      = one_one_real ) ).

% power_one
thf(fact_26_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_27_semiring__norm_I83_J,axiom,
    ! [N: num] :
      ( one
     != ( bit0 @ N ) ) ).

% semiring_norm(83)
thf(fact_28_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_29_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_30_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_real @ M )
        = ( numeral_numeral_real @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_31_semiring__norm_I87_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(87)
thf(fact_32_Suc__1,axiom,
    ( ( suc @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% Suc_1
thf(fact_33_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_34_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_35_numeral__One,axiom,
    ( ( numeral_numeral_real @ one )
    = one_one_real ) ).

% numeral_One
thf(fact_36_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_37_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_38_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_39_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_40_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_41_dbl__simps_I3_J,axiom,
    ( ( neg_numeral_dbl_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% dbl_simps(3)
thf(fact_42_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_43_length__Cons,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( size_s7115545719440041015ring_a @ ( cons_F8924456270334622075ring_a @ X @ Xs ) )
      = ( suc @ ( size_s7115545719440041015ring_a @ Xs ) ) ) ).

% length_Cons
thf(fact_44_length__Suc__conv,axiom,
    ! [Xs: list_F4626807571770296779ring_a,N: nat] :
      ( ( ( size_s7115545719440041015ring_a @ Xs )
        = ( suc @ N ) )
      = ( ? [Y2: finite_mod_ring_a,Ys: list_F4626807571770296779ring_a] :
            ( ( Xs
              = ( cons_F8924456270334622075ring_a @ Y2 @ Ys ) )
            & ( ( size_s7115545719440041015ring_a @ Ys )
              = N ) ) ) ) ).

% length_Suc_conv
thf(fact_45_Suc__length__conv,axiom,
    ! [N: nat,Xs: list_F4626807571770296779ring_a] :
      ( ( ( suc @ N )
        = ( size_s7115545719440041015ring_a @ Xs ) )
      = ( ? [Y2: finite_mod_ring_a,Ys: list_F4626807571770296779ring_a] :
            ( ( Xs
              = ( cons_F8924456270334622075ring_a @ Y2 @ Ys ) )
            & ( ( size_s7115545719440041015ring_a @ Ys )
              = N ) ) ) ) ).

% Suc_length_conv
thf(fact_46_butterfly__axioms__def,axiom,
    ( butterfly_axioms
    = ( ^ [N2: nat,N3: nat] :
          ( N2
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).

% butterfly_axioms_def
thf(fact_47_butterfly__axioms_Ointro,axiom,
    ! [N: nat,N4: nat] :
      ( ( N
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N4 ) )
     => ( butterfly_axioms @ N @ N4 ) ) ).

% butterfly_axioms.intro
thf(fact_48_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_nat @ ( numeral_numeral_nat @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_nat @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_49_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_int @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_50_power__numeral,axiom,
    ! [K: num,L: num] :
      ( ( power_power_real @ ( numeral_numeral_real @ K ) @ ( numeral_numeral_nat @ L ) )
      = ( numeral_numeral_real @ ( pow @ K @ L ) ) ) ).

% power_numeral
thf(fact_51_list_Oinject,axiom,
    ! [X21: finite_mod_ring_a,X22: list_F4626807571770296779ring_a,Y21: finite_mod_ring_a,Y22: list_F4626807571770296779ring_a] :
      ( ( ( cons_F8924456270334622075ring_a @ X21 @ X22 )
        = ( cons_F8924456270334622075ring_a @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_52_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_53_nat_Oinject,axiom,
    ! [X2: nat,Y23: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y23 ) )
      = ( X2 = Y23 ) ) ).

% nat.inject
thf(fact_54_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
      = ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_55_dbl__simps_I5_J,axiom,
    ! [K: num] :
      ( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
      = ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).

% dbl_simps(5)
thf(fact_56_pow_Osimps_I1_J,axiom,
    ! [X: num] :
      ( ( pow @ X @ one )
      = X ) ).

% pow.simps(1)
thf(fact_57_not__Cons__self2,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( cons_F8924456270334622075ring_a @ X @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_58_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_59_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_60_size__neq__size__imp__neq,axiom,
    ! [X: list_F4626807571770296779ring_a,Y: list_F4626807571770296779ring_a] :
      ( ( ( size_s7115545719440041015ring_a @ X )
       != ( size_s7115545719440041015ring_a @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_61_size__neq__size__imp__neq,axiom,
    ! [X: num,Y: num] :
      ( ( ( size_size_num @ X )
       != ( size_size_num @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_62_size__neq__size__imp__neq,axiom,
    ! [X: char,Y: char] :
      ( ( ( size_size_char @ X )
       != ( size_size_char @ Y ) )
     => ( X != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_63_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs2: list_F4626807571770296779ring_a] :
      ( ( size_s7115545719440041015ring_a @ Xs2 )
      = N ) ).

% Ex_list_of_length
thf(fact_64_neq__if__length__neq,axiom,
    ! [Xs: list_F4626807571770296779ring_a,Ys2: list_F4626807571770296779ring_a] :
      ( ( ( size_s7115545719440041015ring_a @ Xs )
       != ( size_s7115545719440041015ring_a @ Ys2 ) )
     => ( Xs != Ys2 ) ) ).

% neq_if_length_neq
thf(fact_65_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_66_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N5: nat] :
            ( ( P @ ( suc @ N5 ) )
           => ( P @ N5 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_67_verit__eq__simplify_I8_J,axiom,
    ! [X2: num,Y23: num] :
      ( ( ( bit0 @ X2 )
        = ( bit0 @ Y23 ) )
      = ( X2 = Y23 ) ) ).

% verit_eq_simplify(8)
thf(fact_68_length__subseqs,axiom,
    ! [Xs: list_F4626807571770296779ring_a] :
      ( ( size_s6733248078324860861ring_a @ ( subseq4767234092597361178ring_a @ Xs ) )
      = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( size_s7115545719440041015ring_a @ Xs ) ) ) ).

% length_subseqs
thf(fact_69_assms_I2_J,axiom,
    ! [L: nat,Numbers: list_F4626807571770296779ring_a] :
      ( ( L = zero_zero_nat )
     => ( ( ( size_s7115545719440041015ring_a @ Numbers )
          = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ L ) )
       => ( ( t @ Numbers )
          = one_one_nat ) ) ) ).

% assms(2)
thf(fact_70_evens__odds_Oelims,axiom,
    ! [X: $o,Xa: list_F4626807571770296779ring_a,Y: list_F4626807571770296779ring_a] :
      ( ( ( evens_6356279921861204579ring_a @ X @ Xa )
        = Y )
     => ( ( ( Xa = nil_Fi5353433074977123787ring_a )
         => ( Y != nil_Fi5353433074977123787ring_a ) )
       => ( ( X
           => ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( Xa
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ( Y
                 != ( cons_F8924456270334622075ring_a @ X3 @ ( evens_6356279921861204579ring_a @ $false @ Xs2 ) ) ) ) )
         => ~ ( ~ X
             => ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                  ( ( Xa
                    = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
                 => ( Y
                   != ( evens_6356279921861204579ring_a @ $true @ Xs2 ) ) ) ) ) ) ) ).

% evens_odds.elims
thf(fact_71_verit__eq__simplify_I10_J,axiom,
    ! [X2: num] :
      ( one
     != ( bit0 @ X2 ) ) ).

% verit_eq_simplify(10)
thf(fact_72_T_092_060_094sub_062F_092_060_094sub_062N_092_060_094sub_062T_092_060_094sub_062T_Ocases,axiom,
    ! [X: list_F4626807571770296779ring_a] :
      ( ( X != nil_Fi5353433074977123787ring_a )
     => ( ! [A2: finite_mod_ring_a] :
            ( X
           != ( cons_F8924456270334622075ring_a @ A2 @ nil_Fi5353433074977123787ring_a ) )
       => ~ ! [V: finite_mod_ring_a,Vb: finite_mod_ring_a,Vc: list_F4626807571770296779ring_a] :
              ( X
             != ( cons_F8924456270334622075ring_a @ V @ ( cons_F8924456270334622075ring_a @ Vb @ Vc ) ) ) ) ) ).

% T\<^sub>F\<^sub>N\<^sub>T\<^sub>T.cases
thf(fact_73_T_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_Ocases,axiom,
    ! [X: list_F4626807571770296779ring_a] :
      ( ( X != nil_Fi5353433074977123787ring_a )
     => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
            ( X
           != ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) ) ) ).

% T\<^sub>l\<^sub>e\<^sub>n\<^sub>g\<^sub>t\<^sub>h.cases
thf(fact_74_evens__odds_Osimps_I1_J,axiom,
    ! [Uu: $o] :
      ( ( evens_6356279921861204579ring_a @ Uu @ nil_Fi5353433074977123787ring_a )
      = nil_Fi5353433074977123787ring_a ) ).

% evens_odds.simps(1)
thf(fact_75_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_76_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_77_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_78_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_79_diff__zero,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_zero
thf(fact_80_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_81_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_82_diff__0__right,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ zero_zero_real )
      = A ) ).

% diff_0_right
thf(fact_83_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_84_diff__self,axiom,
    ! [A: real] :
      ( ( minus_minus_real @ A @ A )
      = zero_zero_real ) ).

% diff_self
thf(fact_85_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_86_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_87_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_88_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_int @ zero_zero_int )
    = zero_zero_int ) ).

% dbl_simps(2)
thf(fact_89_dbl__simps_I2_J,axiom,
    ( ( neg_numeral_dbl_real @ zero_zero_real )
    = zero_zero_real ) ).

% dbl_simps(2)
thf(fact_90_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_real @ one_one_real @ one_one_real )
    = zero_zero_real ) ).

% diff_numeral_special(9)
thf(fact_91_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_92_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
      = zero_zero_nat ) ).

% power_0_Suc
thf(fact_93_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
      = zero_zero_int ) ).

% power_0_Suc
thf(fact_94_power__0__Suc,axiom,
    ! [N: nat] :
      ( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
      = zero_zero_real ) ).

% power_0_Suc
thf(fact_95_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_nat ) ).

% power_zero_numeral
thf(fact_96_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
      = zero_zero_int ) ).

% power_zero_numeral
thf(fact_97_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
      = zero_zero_real ) ).

% power_zero_numeral
thf(fact_98_power__Suc0__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_99_power__Suc0__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_100_power__Suc0__right,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
      = A ) ).

% power_Suc0_right
thf(fact_101_length__0__conv,axiom,
    ! [Xs: list_F4626807571770296779ring_a] :
      ( ( ( size_s7115545719440041015ring_a @ Xs )
        = zero_zero_nat )
      = ( Xs = nil_Fi5353433074977123787ring_a ) ) ).

% length_0_conv
thf(fact_102_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_103_nat__power__eq__Suc__0__iff,axiom,
    ! [X: nat,M: nat] :
      ( ( ( power_power_nat @ X @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_104_zero__eq__power2,axiom,
    ! [A: nat] :
      ( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% zero_eq_power2
thf(fact_105_zero__eq__power2,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% zero_eq_power2
thf(fact_106_zero__eq__power2,axiom,
    ! [A: real] :
      ( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% zero_eq_power2
thf(fact_107_subseqs_Osimps_I1_J,axiom,
    ( ( subseq4767234092597361178ring_a @ nil_Fi5353433074977123787ring_a )
    = ( cons_l4066219276239944833ring_a @ nil_Fi5353433074977123787ring_a @ nil_li2571238958069156049ring_a ) ) ).

% subseqs.simps(1)
thf(fact_108_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_109_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_110_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_111_butterfly_OT_092_060_094sub_062F_092_060_094sub_062N_092_060_094sub_062T_092_060_094sub_062T_Ocases,axiom,
    ! [P2: nat,N: nat,K: nat,Omega: finite_mod_ring_a,Mu: finite_mod_ring_a,N4: nat,X: list_F4626807571770296779ring_a] :
      ( ( butterfly_a @ P2 @ N @ K @ Omega @ Mu @ N4 )
     => ( ( X != nil_Fi5353433074977123787ring_a )
       => ( ! [A2: finite_mod_ring_a] :
              ( X
             != ( cons_F8924456270334622075ring_a @ A2 @ nil_Fi5353433074977123787ring_a ) )
         => ~ ! [V: finite_mod_ring_a,Vb: finite_mod_ring_a,Vc: list_F4626807571770296779ring_a] :
                ( X
               != ( cons_F8924456270334622075ring_a @ V @ ( cons_F8924456270334622075ring_a @ Vb @ Vc ) ) ) ) ) ) ).

% butterfly.T\<^sub>F\<^sub>N\<^sub>T\<^sub>T.cases
thf(fact_112_transpose_Ocases,axiom,
    ! [X: list_l2267190326604534609ring_a] :
      ( ( X != nil_li2571238958069156049ring_a )
     => ( ! [Xss: list_l2267190326604534609ring_a] :
            ( X
           != ( cons_l4066219276239944833ring_a @ nil_Fi5353433074977123787ring_a @ Xss ) )
       => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a,Xss: list_l2267190326604534609ring_a] :
              ( X
             != ( cons_l4066219276239944833ring_a @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_113_list_Osize_I3_J,axiom,
    ( ( size_s7115545719440041015ring_a @ nil_Fi5353433074977123787ring_a )
    = zero_zero_nat ) ).

% list.size(3)
thf(fact_114_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: real,Z: real] : ( Y3 = Z ) )
    = ( ^ [A3: real,B2: real] :
          ( ( minus_minus_real @ A3 @ B2 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_115_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    = ( ^ [A3: int,B2: int] :
          ( ( minus_minus_int @ A3 @ B2 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_116_num_Osize_I4_J,axiom,
    ( ( size_size_num @ one )
    = zero_zero_nat ) ).

% num.size(4)
thf(fact_117_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_118_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_119_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = one_one_real ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_real @ zero_zero_real @ N )
          = zero_zero_real ) ) ) ).

% power_0_left
thf(fact_120_list__nonempty__induct,axiom,
    ! [Xs: list_F4626807571770296779ring_a,P: list_F4626807571770296779ring_a > $o] :
      ( ( Xs != nil_Fi5353433074977123787ring_a )
     => ( ! [X3: finite_mod_ring_a] : ( P @ ( cons_F8924456270334622075ring_a @ X3 @ nil_Fi5353433074977123787ring_a ) )
       => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
              ( ( Xs2 != nil_Fi5353433074977123787ring_a )
             => ( ( P @ Xs2 )
               => ( P @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_121_list__induct2_H,axiom,
    ! [P: list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > $o,Xs: list_F4626807571770296779ring_a,Ys2: list_F4626807571770296779ring_a] :
      ( ( P @ nil_Fi5353433074977123787ring_a @ nil_Fi5353433074977123787ring_a )
     => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] : ( P @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ nil_Fi5353433074977123787ring_a )
       => ( ! [Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] : ( P @ nil_Fi5353433074977123787ring_a @ ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) )
         => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a,Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] :
                ( ( P @ Xs2 @ Ys3 )
               => ( P @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) ) )
           => ( P @ Xs @ Ys2 ) ) ) ) ) ).

% list_induct2'
thf(fact_122_neq__Nil__conv,axiom,
    ! [Xs: list_F4626807571770296779ring_a] :
      ( ( Xs != nil_Fi5353433074977123787ring_a )
      = ( ? [Y2: finite_mod_ring_a,Ys: list_F4626807571770296779ring_a] :
            ( Xs
            = ( cons_F8924456270334622075ring_a @ Y2 @ Ys ) ) ) ) ).

% neq_Nil_conv
thf(fact_123_remdups__adj_Ocases,axiom,
    ! [X: list_F4626807571770296779ring_a] :
      ( ( X != nil_Fi5353433074977123787ring_a )
     => ( ! [X3: finite_mod_ring_a] :
            ( X
           != ( cons_F8924456270334622075ring_a @ X3 @ nil_Fi5353433074977123787ring_a ) )
       => ~ ! [X3: finite_mod_ring_a,Y4: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
              ( X
             != ( cons_F8924456270334622075ring_a @ X3 @ ( cons_F8924456270334622075ring_a @ Y4 @ Xs2 ) ) ) ) ) ).

% remdups_adj.cases
thf(fact_124_list_Oexhaust,axiom,
    ! [Y: list_F4626807571770296779ring_a] :
      ( ( Y != nil_Fi5353433074977123787ring_a )
     => ~ ! [X212: finite_mod_ring_a,X222: list_F4626807571770296779ring_a] :
            ( Y
           != ( cons_F8924456270334622075ring_a @ X212 @ X222 ) ) ) ).

% list.exhaust
thf(fact_125_list_OdiscI,axiom,
    ! [List: list_F4626807571770296779ring_a,X21: finite_mod_ring_a,X22: list_F4626807571770296779ring_a] :
      ( ( List
        = ( cons_F8924456270334622075ring_a @ X21 @ X22 ) )
     => ( List != nil_Fi5353433074977123787ring_a ) ) ).

% list.discI
thf(fact_126_list_Odistinct_I1_J,axiom,
    ! [X21: finite_mod_ring_a,X22: list_F4626807571770296779ring_a] :
      ( nil_Fi5353433074977123787ring_a
     != ( cons_F8924456270334622075ring_a @ X21 @ X22 ) ) ).

% list.distinct(1)
thf(fact_127_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N ) ) ).

% zero_neq_numeral
thf(fact_128_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( numeral_numeral_int @ N ) ) ).

% zero_neq_numeral
thf(fact_129_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_real
     != ( numeral_numeral_real @ N ) ) ).

% zero_neq_numeral
thf(fact_130_power__not__zero,axiom,
    ! [A: nat,N: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_131_power__not__zero,axiom,
    ! [A: int,N: nat] :
      ( ( A != zero_zero_int )
     => ( ( power_power_int @ A @ N )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_132_power__not__zero,axiom,
    ! [A: real,N: nat] :
      ( ( A != zero_zero_real )
     => ( ( power_power_real @ A @ N )
       != zero_zero_real ) ) ).

% power_not_zero
thf(fact_133_nat_Odistinct_I1_J,axiom,
    ! [X2: nat] :
      ( zero_zero_nat
     != ( suc @ X2 ) ) ).

% nat.distinct(1)
thf(fact_134_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_135_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_136_nat_OdiscI,axiom,
    ! [Nat: nat,X2: nat] :
      ( ( Nat
        = ( suc @ X2 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_137_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_138_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N5: nat] :
            ( ( P @ N5 )
           => ( P @ ( suc @ N5 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_139_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y4: nat] : ( P @ zero_zero_nat @ ( suc @ Y4 ) )
       => ( ! [X3: nat,Y4: nat] :
              ( ( P @ X3 @ Y4 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y4 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_140_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N5: nat] :
            ( ( P @ ( suc @ N5 ) )
           => ( P @ N5 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_141_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_142_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_143_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_144_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% not0_implies_Suc
thf(fact_145_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_146_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_147_list__induct4,axiom,
    ! [Xs: list_F4626807571770296779ring_a,Ys2: list_F4626807571770296779ring_a,Zs: list_F4626807571770296779ring_a,Ws: list_F4626807571770296779ring_a,P: list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > $o] :
      ( ( ( size_s7115545719440041015ring_a @ Xs )
        = ( size_s7115545719440041015ring_a @ Ys2 ) )
     => ( ( ( size_s7115545719440041015ring_a @ Ys2 )
          = ( size_s7115545719440041015ring_a @ Zs ) )
       => ( ( ( size_s7115545719440041015ring_a @ Zs )
            = ( size_s7115545719440041015ring_a @ Ws ) )
         => ( ( P @ nil_Fi5353433074977123787ring_a @ nil_Fi5353433074977123787ring_a @ nil_Fi5353433074977123787ring_a @ nil_Fi5353433074977123787ring_a )
           => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a,Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a,Z2: finite_mod_ring_a,Zs2: list_F4626807571770296779ring_a,W: finite_mod_ring_a,Ws2: list_F4626807571770296779ring_a] :
                  ( ( ( size_s7115545719440041015ring_a @ Xs2 )
                    = ( size_s7115545719440041015ring_a @ Ys3 ) )
                 => ( ( ( size_s7115545719440041015ring_a @ Ys3 )
                      = ( size_s7115545719440041015ring_a @ Zs2 ) )
                   => ( ( ( size_s7115545719440041015ring_a @ Zs2 )
                        = ( size_s7115545719440041015ring_a @ Ws2 ) )
                     => ( ( P @ Xs2 @ Ys3 @ Zs2 @ Ws2 )
                       => ( P @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) @ ( cons_F8924456270334622075ring_a @ Z2 @ Zs2 ) @ ( cons_F8924456270334622075ring_a @ W @ Ws2 ) ) ) ) ) )
             => ( P @ Xs @ Ys2 @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_148_list__induct3,axiom,
    ! [Xs: list_F4626807571770296779ring_a,Ys2: list_F4626807571770296779ring_a,Zs: list_F4626807571770296779ring_a,P: list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > $o] :
      ( ( ( size_s7115545719440041015ring_a @ Xs )
        = ( size_s7115545719440041015ring_a @ Ys2 ) )
     => ( ( ( size_s7115545719440041015ring_a @ Ys2 )
          = ( size_s7115545719440041015ring_a @ Zs ) )
       => ( ( P @ nil_Fi5353433074977123787ring_a @ nil_Fi5353433074977123787ring_a @ nil_Fi5353433074977123787ring_a )
         => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a,Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a,Z2: finite_mod_ring_a,Zs2: list_F4626807571770296779ring_a] :
                ( ( ( size_s7115545719440041015ring_a @ Xs2 )
                  = ( size_s7115545719440041015ring_a @ Ys3 ) )
               => ( ( ( size_s7115545719440041015ring_a @ Ys3 )
                    = ( size_s7115545719440041015ring_a @ Zs2 ) )
                 => ( ( P @ Xs2 @ Ys3 @ Zs2 )
                   => ( P @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) @ ( cons_F8924456270334622075ring_a @ Z2 @ Zs2 ) ) ) ) )
           => ( P @ Xs @ Ys2 @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_149_list__induct2,axiom,
    ! [Xs: list_F4626807571770296779ring_a,Ys2: list_F4626807571770296779ring_a,P: list_F4626807571770296779ring_a > list_F4626807571770296779ring_a > $o] :
      ( ( ( size_s7115545719440041015ring_a @ Xs )
        = ( size_s7115545719440041015ring_a @ Ys2 ) )
     => ( ( P @ nil_Fi5353433074977123787ring_a @ nil_Fi5353433074977123787ring_a )
       => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a,Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] :
              ( ( ( size_s7115545719440041015ring_a @ Xs2 )
                = ( size_s7115545719440041015ring_a @ Ys3 ) )
             => ( ( P @ Xs2 @ Ys3 )
               => ( P @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) ) ) )
         => ( P @ Xs @ Ys2 ) ) ) ) ).

% list_induct2
thf(fact_150_power__0,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_151_power__0,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_152_power__0,axiom,
    ! [A: real] :
      ( ( power_power_real @ A @ zero_zero_nat )
      = one_one_real ) ).

% power_0
thf(fact_153_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_154_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_155_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_156_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_157_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_158_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_159_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_160_diff__eq__diff__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_161_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_162_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_163_zero__power2,axiom,
    ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% zero_power2
thf(fact_164_zero__power2,axiom,
    ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% zero_power2
thf(fact_165_zero__power2,axiom,
    ( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_real ) ).

% zero_power2
thf(fact_166_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_167_T_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_Osimps_I1_J,axiom,
    ( ( t_l_e_8856895258901793379_a_nat @ nil_Fi5353433074977123787ring_a )
    = one_one_nat ) ).

% T\<^sub>l\<^sub>e\<^sub>n\<^sub>g\<^sub>t\<^sub>h.simps(1)
thf(fact_168_T_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_Osimps_I1_J,axiom,
    ( ( t_l_e_1375870279716017087a_real @ nil_Fi5353433074977123787ring_a )
    = one_one_real ) ).

% T\<^sub>l\<^sub>e\<^sub>n\<^sub>g\<^sub>t\<^sub>h.simps(1)
thf(fact_169_T_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_Osimps_I1_J,axiom,
    ( ( t_l_e_8854404788392743103_a_int @ nil_Fi5353433074977123787ring_a )
    = one_one_int ) ).

% T\<^sub>l\<^sub>e\<^sub>n\<^sub>g\<^sub>t\<^sub>h.simps(1)
thf(fact_170_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Osimps_I2_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( t_n_t_3818685902850959543_a_nat @ ( cons_F8924456270334622075ring_a @ X @ Xs ) @ zero_zero_nat )
      = one_one_nat ) ).

% T\<^sub>n\<^sub>t\<^sub>h.simps(2)
thf(fact_171_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Osimps_I2_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( t_n_t_1739731239953631251a_real @ ( cons_F8924456270334622075ring_a @ X @ Xs ) @ zero_zero_nat )
      = one_one_real ) ).

% T\<^sub>n\<^sub>t\<^sub>h.simps(2)
thf(fact_172_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Osimps_I2_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( t_n_t_3816195432341909267_a_int @ ( cons_F8924456270334622075ring_a @ X @ Xs ) @ zero_zero_nat )
      = one_one_int ) ).

% T\<^sub>n\<^sub>t\<^sub>h.simps(2)
thf(fact_173_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Osimps_I1_J,axiom,
    ! [I: nat] :
      ( ( t_n_t_3818685902850959543_a_nat @ nil_Fi5353433074977123787ring_a @ I )
      = one_one_nat ) ).

% T\<^sub>n\<^sub>t\<^sub>h.simps(1)
thf(fact_174_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Osimps_I1_J,axiom,
    ! [I: nat] :
      ( ( t_n_t_1739731239953631251a_real @ nil_Fi5353433074977123787ring_a @ I )
      = one_one_real ) ).

% T\<^sub>n\<^sub>t\<^sub>h.simps(1)
thf(fact_175_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Osimps_I1_J,axiom,
    ! [I: nat] :
      ( ( t_n_t_3816195432341909267_a_int @ nil_Fi5353433074977123787ring_a @ I )
      = one_one_int ) ).

% T\<^sub>n\<^sub>t\<^sub>h.simps(1)
thf(fact_176_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_Osimps_I2_J,axiom,
    ! [T: finite_mod_ring_a > finite_mod_ring_a > nat,V2: finite_mod_ring_a,Va: list_F4626807571770296779ring_a] :
      ( ( t_m_a_2859651092631732457_a_nat @ T @ ( cons_F8924456270334622075ring_a @ V2 @ Va ) @ nil_Fi5353433074977123787ring_a )
      = one_one_nat ) ).

% T\<^sub>m\<^sub>a\<^sub>p\<^sub>2.simps(2)
thf(fact_177_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_Osimps_I2_J,axiom,
    ! [T: finite_mod_ring_a > finite_mod_ring_a > real,V2: finite_mod_ring_a,Va: list_F4626807571770296779ring_a] :
      ( ( t_m_a_7590279389192857413a_real @ T @ ( cons_F8924456270334622075ring_a @ V2 @ Va ) @ nil_Fi5353433074977123787ring_a )
      = one_one_real ) ).

% T\<^sub>m\<^sub>a\<^sub>p\<^sub>2.simps(2)
thf(fact_178_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_Osimps_I2_J,axiom,
    ! [T: finite_mod_ring_a > finite_mod_ring_a > int,V2: finite_mod_ring_a,Va: list_F4626807571770296779ring_a] :
      ( ( t_m_a_2857160622122682181_a_int @ T @ ( cons_F8924456270334622075ring_a @ V2 @ Va ) @ nil_Fi5353433074977123787ring_a )
      = one_one_int ) ).

% T\<^sub>m\<^sub>a\<^sub>p\<^sub>2.simps(2)
thf(fact_179_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_nat ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_180_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_int ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_181_T___092_060_094sub_062e_092_060_094sub_062o_Osimps_I1_J,axiom,
    ! [Uu: $o] :
      ( ( t_e_o_7198240386746857008ring_a @ Uu @ nil_Fi5353433074977123787ring_a )
      = one_one_nat ) ).

% T_\<^sub>e\<^sub>o.simps(1)
thf(fact_182_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Ocases,axiom,
    ! [X: produc5248102568796238538_a_nat] :
      ( ! [I2: nat] :
          ( X
         != ( produc4363114488256272964_a_nat @ nil_Fi5353433074977123787ring_a @ I2 ) )
     => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
            ( X
           != ( produc4363114488256272964_a_nat @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ zero_zero_nat ) )
       => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a,I2: nat] :
              ( X
             != ( produc4363114488256272964_a_nat @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( suc @ I2 ) ) ) ) ) ).

% T\<^sub>n\<^sub>t\<^sub>h.cases
thf(fact_183_size__char__eq__0,axiom,
    ( size_size_char
    = ( ^ [C2: char] : zero_zero_nat ) ) ).

% size_char_eq_0
thf(fact_184_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Oelims,axiom,
    ! [X: list_F4626807571770296779ring_a,Xa: nat,Y: nat] :
      ( ( ( t_n_t_3818685902850959543_a_nat @ X @ Xa )
        = Y )
     => ( ( ( X = nil_Fi5353433074977123787ring_a )
         => ( Y != one_one_nat ) )
       => ( ( ? [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( X
                = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
           => ( ( Xa = zero_zero_nat )
             => ( Y != one_one_nat ) ) )
         => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( X
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ! [I2: nat] :
                    ( ( Xa
                      = ( suc @ I2 ) )
                   => ( Y
                     != ( plus_plus_nat @ one_one_nat @ ( t_n_t_3818685902850959543_a_nat @ Xs2 @ I2 ) ) ) ) ) ) ) ) ).

% T\<^sub>n\<^sub>t\<^sub>h.elims
thf(fact_185_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Oelims,axiom,
    ! [X: list_F4626807571770296779ring_a,Xa: nat,Y: real] :
      ( ( ( t_n_t_1739731239953631251a_real @ X @ Xa )
        = Y )
     => ( ( ( X = nil_Fi5353433074977123787ring_a )
         => ( Y != one_one_real ) )
       => ( ( ? [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( X
                = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
           => ( ( Xa = zero_zero_nat )
             => ( Y != one_one_real ) ) )
         => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( X
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ! [I2: nat] :
                    ( ( Xa
                      = ( suc @ I2 ) )
                   => ( Y
                     != ( plus_plus_real @ one_one_real @ ( t_n_t_1739731239953631251a_real @ Xs2 @ I2 ) ) ) ) ) ) ) ) ).

% T\<^sub>n\<^sub>t\<^sub>h.elims
thf(fact_186_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Oelims,axiom,
    ! [X: list_F4626807571770296779ring_a,Xa: nat,Y: int] :
      ( ( ( t_n_t_3816195432341909267_a_int @ X @ Xa )
        = Y )
     => ( ( ( X = nil_Fi5353433074977123787ring_a )
         => ( Y != one_one_int ) )
       => ( ( ? [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( X
                = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
           => ( ( Xa = zero_zero_nat )
             => ( Y != one_one_int ) ) )
         => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( X
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ! [I2: nat] :
                    ( ( Xa
                      = ( suc @ I2 ) )
                   => ( Y
                     != ( plus_plus_int @ one_one_int @ ( t_n_t_3816195432341909267_a_int @ Xs2 @ I2 ) ) ) ) ) ) ) ) ).

% T\<^sub>n\<^sub>t\<^sub>h.elims
thf(fact_187_size_H__char__eq__0,axiom,
    ( size_char
    = ( ^ [C2: char] : zero_zero_nat ) ) ).

% size'_char_eq_0
thf(fact_188_n__lists__Nil,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( n_list396537605831803347ring_a @ N @ nil_Fi5353433074977123787ring_a )
          = ( cons_l4066219276239944833ring_a @ nil_Fi5353433074977123787ring_a @ nil_li2571238958069156049ring_a ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( n_list396537605831803347ring_a @ N @ nil_Fi5353433074977123787ring_a )
          = nil_li2571238958069156049ring_a ) ) ) ).

% n_lists_Nil
thf(fact_189_T___092_060_094sub_062e_092_060_094sub_062o_Oelims,axiom,
    ! [X: $o,Xa: list_F4626807571770296779ring_a,Y: nat] :
      ( ( ( t_e_o_7198240386746857008ring_a @ X @ Xa )
        = Y )
     => ( ( ( Xa = nil_Fi5353433074977123787ring_a )
         => ( Y != one_one_nat ) )
       => ( ( X
           => ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( Xa
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ( Y
                 != ( plus_plus_nat @ one_one_nat @ ( t_e_o_7198240386746857008ring_a @ $false @ Xs2 ) ) ) ) )
         => ~ ( ~ X
             => ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                  ( ( Xa
                    = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
                 => ( Y
                   != ( plus_plus_nat @ one_one_nat @ ( t_e_o_7198240386746857008ring_a @ $true @ Xs2 ) ) ) ) ) ) ) ) ).

% T_\<^sub>e\<^sub>o.elims
thf(fact_190_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Osimps_I3_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a,I: nat] :
      ( ( t_n_t_3818685902850959543_a_nat @ ( cons_F8924456270334622075ring_a @ X @ Xs ) @ ( suc @ I ) )
      = ( plus_plus_nat @ one_one_nat @ ( t_n_t_3818685902850959543_a_nat @ Xs @ I ) ) ) ).

% T\<^sub>n\<^sub>t\<^sub>h.simps(3)
thf(fact_191_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Osimps_I3_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a,I: nat] :
      ( ( t_n_t_1739731239953631251a_real @ ( cons_F8924456270334622075ring_a @ X @ Xs ) @ ( suc @ I ) )
      = ( plus_plus_real @ one_one_real @ ( t_n_t_1739731239953631251a_real @ Xs @ I ) ) ) ).

% T\<^sub>n\<^sub>t\<^sub>h.simps(3)
thf(fact_192_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Osimps_I3_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a,I: nat] :
      ( ( t_n_t_3816195432341909267_a_int @ ( cons_F8924456270334622075ring_a @ X @ Xs ) @ ( suc @ I ) )
      = ( plus_plus_int @ one_one_int @ ( t_n_t_3816195432341909267_a_int @ Xs @ I ) ) ) ).

% T\<^sub>n\<^sub>t\<^sub>h.simps(3)
thf(fact_193_T_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_Oelims,axiom,
    ! [X: list_F4626807571770296779ring_a,Y: nat] :
      ( ( ( t_l_e_8856895258901793379_a_nat @ X )
        = Y )
     => ( ( ( X = nil_Fi5353433074977123787ring_a )
         => ( Y != one_one_nat ) )
       => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
              ( ( X
                = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
             => ( Y
               != ( plus_plus_nat @ one_one_nat @ ( t_l_e_8856895258901793379_a_nat @ Xs2 ) ) ) ) ) ) ).

% T\<^sub>l\<^sub>e\<^sub>n\<^sub>g\<^sub>t\<^sub>h.elims
thf(fact_194_T_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_Oelims,axiom,
    ! [X: list_F4626807571770296779ring_a,Y: real] :
      ( ( ( t_l_e_1375870279716017087a_real @ X )
        = Y )
     => ( ( ( X = nil_Fi5353433074977123787ring_a )
         => ( Y != one_one_real ) )
       => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
              ( ( X
                = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
             => ( Y
               != ( plus_plus_real @ one_one_real @ ( t_l_e_1375870279716017087a_real @ Xs2 ) ) ) ) ) ) ).

% T\<^sub>l\<^sub>e\<^sub>n\<^sub>g\<^sub>t\<^sub>h.elims
thf(fact_195_T_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_Oelims,axiom,
    ! [X: list_F4626807571770296779ring_a,Y: int] :
      ( ( ( t_l_e_8854404788392743103_a_int @ X )
        = Y )
     => ( ( ( X = nil_Fi5353433074977123787ring_a )
         => ( Y != one_one_int ) )
       => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
              ( ( X
                = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
             => ( Y
               != ( plus_plus_int @ one_one_int @ ( t_l_e_8854404788392743103_a_int @ Xs2 ) ) ) ) ) ) ).

% T\<^sub>l\<^sub>e\<^sub>n\<^sub>g\<^sub>t\<^sub>h.elims
thf(fact_196_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_Oelims,axiom,
    ! [X: finite_mod_ring_a > finite_mod_ring_a > nat,Xa: list_F4626807571770296779ring_a,Xb: list_F4626807571770296779ring_a,Y: nat] :
      ( ( ( t_m_a_2859651092631732457_a_nat @ X @ Xa @ Xb )
        = Y )
     => ( ( ( Xa = nil_Fi5353433074977123787ring_a )
         => ( Y != one_one_nat ) )
       => ( ( ? [V: finite_mod_ring_a,Va2: list_F4626807571770296779ring_a] :
                ( Xa
                = ( cons_F8924456270334622075ring_a @ V @ Va2 ) )
           => ( ( Xb = nil_Fi5353433074977123787ring_a )
             => ( Y != one_one_nat ) ) )
         => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( Xa
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ! [Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] :
                    ( ( Xb
                      = ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) )
                   => ( Y
                     != ( plus_plus_nat @ ( plus_plus_nat @ ( X @ X3 @ Y4 ) @ one_one_nat ) @ ( t_m_a_2859651092631732457_a_nat @ X @ Xs2 @ Ys3 ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>a\<^sub>p\<^sub>2.elims
thf(fact_197_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_Oelims,axiom,
    ! [X: finite_mod_ring_a > finite_mod_ring_a > real,Xa: list_F4626807571770296779ring_a,Xb: list_F4626807571770296779ring_a,Y: real] :
      ( ( ( t_m_a_7590279389192857413a_real @ X @ Xa @ Xb )
        = Y )
     => ( ( ( Xa = nil_Fi5353433074977123787ring_a )
         => ( Y != one_one_real ) )
       => ( ( ? [V: finite_mod_ring_a,Va2: list_F4626807571770296779ring_a] :
                ( Xa
                = ( cons_F8924456270334622075ring_a @ V @ Va2 ) )
           => ( ( Xb = nil_Fi5353433074977123787ring_a )
             => ( Y != one_one_real ) ) )
         => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( Xa
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ! [Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] :
                    ( ( Xb
                      = ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) )
                   => ( Y
                     != ( plus_plus_real @ ( plus_plus_real @ ( X @ X3 @ Y4 ) @ one_one_real ) @ ( t_m_a_7590279389192857413a_real @ X @ Xs2 @ Ys3 ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>a\<^sub>p\<^sub>2.elims
thf(fact_198_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_Oelims,axiom,
    ! [X: finite_mod_ring_a > finite_mod_ring_a > int,Xa: list_F4626807571770296779ring_a,Xb: list_F4626807571770296779ring_a,Y: int] :
      ( ( ( t_m_a_2857160622122682181_a_int @ X @ Xa @ Xb )
        = Y )
     => ( ( ( Xa = nil_Fi5353433074977123787ring_a )
         => ( Y != one_one_int ) )
       => ( ( ? [V: finite_mod_ring_a,Va2: list_F4626807571770296779ring_a] :
                ( Xa
                = ( cons_F8924456270334622075ring_a @ V @ Va2 ) )
           => ( ( Xb = nil_Fi5353433074977123787ring_a )
             => ( Y != one_one_int ) ) )
         => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( Xa
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ! [Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] :
                    ( ( Xb
                      = ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) )
                   => ( Y
                     != ( plus_plus_int @ ( plus_plus_int @ ( X @ X3 @ Y4 ) @ one_one_int ) @ ( t_m_a_2857160622122682181_a_int @ X @ Xs2 @ Ys3 ) ) ) ) ) ) ) ) ).

% T\<^sub>m\<^sub>a\<^sub>p\<^sub>2.elims
thf(fact_199_add__cong,axiom,
    ! [A1: nat,A22: nat,A32: nat,A4: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ A1 @ A22 ) @ A32 ) @ A4 )
        = B )
     => ( ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ A1 @ A22 ) @ C ) @ A32 ) @ A4 )
        = ( plus_plus_nat @ C @ B ) ) ) ).

% add_cong
thf(fact_200_T__length__linear,axiom,
    ( t_l_e_8856895258901793379_a_nat
    = ( ^ [Xs3: list_F4626807571770296779ring_a] : ( plus_plus_nat @ ( size_s7115545719440041015ring_a @ Xs3 ) @ one_one_nat ) ) ) ).

% T_length_linear
thf(fact_201_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_Osimps_I3_J,axiom,
    ! [T: finite_mod_ring_a > finite_mod_ring_a > nat,X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a,Y: finite_mod_ring_a,Ys2: list_F4626807571770296779ring_a] :
      ( ( t_m_a_2859651092631732457_a_nat @ T @ ( cons_F8924456270334622075ring_a @ X @ Xs ) @ ( cons_F8924456270334622075ring_a @ Y @ Ys2 ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( T @ X @ Y ) @ one_one_nat ) @ ( t_m_a_2859651092631732457_a_nat @ T @ Xs @ Ys2 ) ) ) ).

% T\<^sub>m\<^sub>a\<^sub>p\<^sub>2.simps(3)
thf(fact_202_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_Osimps_I3_J,axiom,
    ! [T: finite_mod_ring_a > finite_mod_ring_a > real,X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a,Y: finite_mod_ring_a,Ys2: list_F4626807571770296779ring_a] :
      ( ( t_m_a_7590279389192857413a_real @ T @ ( cons_F8924456270334622075ring_a @ X @ Xs ) @ ( cons_F8924456270334622075ring_a @ Y @ Ys2 ) )
      = ( plus_plus_real @ ( plus_plus_real @ ( T @ X @ Y ) @ one_one_real ) @ ( t_m_a_7590279389192857413a_real @ T @ Xs @ Ys2 ) ) ) ).

% T\<^sub>m\<^sub>a\<^sub>p\<^sub>2.simps(3)
thf(fact_203_T_092_060_094sub_062m_092_060_094sub_062a_092_060_094sub_062p_092_060_094sub_0622_Osimps_I3_J,axiom,
    ! [T: finite_mod_ring_a > finite_mod_ring_a > int,X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a,Y: finite_mod_ring_a,Ys2: list_F4626807571770296779ring_a] :
      ( ( t_m_a_2857160622122682181_a_int @ T @ ( cons_F8924456270334622075ring_a @ X @ Xs ) @ ( cons_F8924456270334622075ring_a @ Y @ Ys2 ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( T @ X @ Y ) @ one_one_int ) @ ( t_m_a_2857160622122682181_a_int @ T @ Xs @ Ys2 ) ) ) ).

% T\<^sub>m\<^sub>a\<^sub>p\<^sub>2.simps(3)
thf(fact_204_T_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_Osimps_I2_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( t_l_e_8856895258901793379_a_nat @ ( cons_F8924456270334622075ring_a @ X @ Xs ) )
      = ( plus_plus_nat @ one_one_nat @ ( t_l_e_8856895258901793379_a_nat @ Xs ) ) ) ).

% T\<^sub>l\<^sub>e\<^sub>n\<^sub>g\<^sub>t\<^sub>h.simps(2)
thf(fact_205_T_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_Osimps_I2_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( t_l_e_1375870279716017087a_real @ ( cons_F8924456270334622075ring_a @ X @ Xs ) )
      = ( plus_plus_real @ one_one_real @ ( t_l_e_1375870279716017087a_real @ Xs ) ) ) ).

% T\<^sub>l\<^sub>e\<^sub>n\<^sub>g\<^sub>t\<^sub>h.simps(2)
thf(fact_206_T_092_060_094sub_062l_092_060_094sub_062e_092_060_094sub_062n_092_060_094sub_062g_092_060_094sub_062t_092_060_094sub_062h_Osimps_I2_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( t_l_e_8854404788392743103_a_int @ ( cons_F8924456270334622075ring_a @ X @ Xs ) )
      = ( plus_plus_int @ one_one_int @ ( t_l_e_8854404788392743103_a_int @ Xs ) ) ) ).

% T\<^sub>l\<^sub>e\<^sub>n\<^sub>g\<^sub>t\<^sub>h.simps(2)
thf(fact_207_T___092_060_094sub_062e_092_060_094sub_062o_Osimps_I2_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( t_e_o_7198240386746857008ring_a @ $true @ ( cons_F8924456270334622075ring_a @ X @ Xs ) )
      = ( plus_plus_nat @ one_one_nat @ ( t_e_o_7198240386746857008ring_a @ $false @ Xs ) ) ) ).

% T_\<^sub>e\<^sub>o.simps(2)
thf(fact_208_T___092_060_094sub_062e_092_060_094sub_062o_Osimps_I3_J,axiom,
    ! [X: finite_mod_ring_a,Xs: list_F4626807571770296779ring_a] :
      ( ( t_e_o_7198240386746857008ring_a @ $false @ ( cons_F8924456270334622075ring_a @ X @ Xs ) )
      = ( plus_plus_nat @ one_one_nat @ ( t_e_o_7198240386746857008ring_a @ $true @ Xs ) ) ) ).

% T_\<^sub>e\<^sub>o.simps(3)
thf(fact_209_T__eo__linear,axiom,
    ( t_e_o_7198240386746857008ring_a
    = ( ^ [B2: $o,Xs3: list_F4626807571770296779ring_a] : ( plus_plus_nat @ ( size_s7115545719440041015ring_a @ Xs3 ) @ one_one_nat ) ) ) ).

% T_eo_linear
thf(fact_210_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_211_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_212_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_213_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_214_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_215_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_216_semiring__norm_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(6)
thf(fact_217_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_218_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_219_add_Oright__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.right_neutral
thf(fact_220_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_221_double__zero__sym,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( plus_plus_real @ A @ A ) )
      = ( A = zero_zero_real ) ) ).

% double_zero_sym
thf(fact_222_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_223_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_224_add__cancel__left__left,axiom,
    ! [B: real,A: real] :
      ( ( ( plus_plus_real @ B @ A )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_left
thf(fact_225_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_226_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_227_add__cancel__left__right,axiom,
    ! [A: real,B: real] :
      ( ( ( plus_plus_real @ A @ B )
        = A )
      = ( B = zero_zero_real ) ) ).

% add_cancel_left_right
thf(fact_228_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_229_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_230_add__cancel__right__left,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ B @ A ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_left
thf(fact_231_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_232_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_233_add__cancel__right__right,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( plus_plus_real @ A @ B ) )
      = ( B = zero_zero_real ) ) ).

% add_cancel_right_right
thf(fact_234_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_235_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_236_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_237_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_238_add__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add_0
thf(fact_239_add__numeral__left,axiom,
    ! [V2: num,W2: num,Z3: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V2 ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W2 ) @ Z3 ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V2 @ W2 ) ) @ Z3 ) ) ).

% add_numeral_left
thf(fact_240_add__numeral__left,axiom,
    ! [V2: num,W2: num,Z3: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V2 ) @ ( plus_plus_int @ ( numeral_numeral_int @ W2 ) @ Z3 ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V2 @ W2 ) ) @ Z3 ) ) ).

% add_numeral_left
thf(fact_241_add__numeral__left,axiom,
    ! [V2: num,W2: num,Z3: real] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ V2 ) @ ( plus_plus_real @ ( numeral_numeral_real @ W2 ) @ Z3 ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V2 @ W2 ) ) @ Z3 ) ) ).

% add_numeral_left
thf(fact_242_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_243_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_244_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_245_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_246_add__diff__cancel__right_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_247_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_248_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_249_add__diff__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_250_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_251_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_252_add__diff__cancel__left_H,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_253_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_254_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_255_add__diff__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( minus_minus_real @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_256_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_257_diff__add__cancel,axiom,
    ! [A: real,B: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_258_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_259_add__diff__cancel,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_260_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_261_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_262_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_263_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_264_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_265_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_266_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_267_Suc__numeral,axiom,
    ! [N: num] :
      ( ( suc @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% Suc_numeral
thf(fact_268_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_269_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_270_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_271_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_272_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_273_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_274_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_275_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_276_one__add__one,axiom,
    ( ( plus_plus_real @ one_one_real @ one_one_real )
    = ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_277_add__2__eq__Suc_H,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc'
thf(fact_278_add__2__eq__Suc,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc
thf(fact_279_sum__power2__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_280_sum__power2__eq__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_281_is__num__normalize_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_282_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_283_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_284_add__right__imp__eq,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_285_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_286_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_287_add__left__imp__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_288_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_289_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_290_add_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.left_commute
thf(fact_291_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_292_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_293_add_Ocommute,axiom,
    ( plus_plus_real
    = ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_294_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_295_add_Oright__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_296_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_297_add_Oleft__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_298_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_299_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_300_add_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% add.assoc
thf(fact_301_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_302_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B: nat,A: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_303_group__cancel_Oadd2,axiom,
    ! [B3: real,K: real,B: real,A: real] :
      ( ( B3
        = ( plus_plus_real @ K @ B ) )
     => ( ( plus_plus_real @ A @ B3 )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_304_group__cancel_Oadd2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B3 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_305_group__cancel_Oadd1,axiom,
    ! [A5: nat,K: nat,A: nat,B: nat] :
      ( ( A5
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A5 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_306_group__cancel_Oadd1,axiom,
    ! [A5: real,K: real,A: real,B: real] :
      ( ( A5
        = ( plus_plus_real @ K @ A ) )
     => ( ( plus_plus_real @ A5 @ B )
        = ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_307_group__cancel_Oadd1,axiom,
    ! [A5: int,K: int,A: int,B: int] :
      ( ( A5
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A5 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_308_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_309_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_real @ I @ K )
        = ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_310_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_int @ I @ K )
        = ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_311_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_312_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_313_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_314_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_315_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_316_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_317_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_318_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_319_add_Ocomm__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% add.comm_neutral
thf(fact_320_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_321_add_Ogroup__left__neutral,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ zero_zero_real @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_322_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_323_verit__sum__simplify,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% verit_sum_simplify
thf(fact_324_verit__sum__simplify,axiom,
    ! [A: real] :
      ( ( plus_plus_real @ A @ zero_zero_real )
      = A ) ).

% verit_sum_simplify
thf(fact_325_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_326_diff__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_327_diff__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_328_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_329_add__implies__diff,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ( plus_plus_real @ C @ B )
        = A )
     => ( C
        = ( minus_minus_real @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_330_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_331_diff__add__eq__diff__diff__swap,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
      = ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_332_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_333_diff__add__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_334_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_335_diff__diff__eq2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_336_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_337_add__diff__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
      = ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_338_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_339_eq__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( A
        = ( minus_minus_real @ C @ B ) )
      = ( ( plus_plus_real @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_340_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_341_diff__eq__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( minus_minus_real @ A @ B )
        = C )
      = ( A
        = ( plus_plus_real @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_342_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_343_group__cancel_Osub1,axiom,
    ! [A5: real,K: real,A: real,B: real] :
      ( ( A5
        = ( plus_plus_real @ K @ A ) )
     => ( ( minus_minus_real @ A5 @ B )
        = ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_344_group__cancel_Osub1,axiom,
    ! [A5: int,K: int,A: int,B: int] :
      ( ( A5
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A5 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_345_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_346_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_347_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_348_nat__arith_Osuc1,axiom,
    ! [A5: nat,K: nat,A: nat] :
      ( ( A5
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A5 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_349_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_350_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_351_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_352_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_353_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_354_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_355_Suc__nat__number__of__add,axiom,
    ! [V2: num,N: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V2 ) @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V2 @ one ) ) @ N ) ) ).

% Suc_nat_number_of_add
thf(fact_356_dbl__def,axiom,
    ( neg_numeral_dbl_real
    = ( ^ [X4: real] : ( plus_plus_real @ X4 @ X4 ) ) ) ).

% dbl_def
thf(fact_357_dbl__def,axiom,
    ( neg_numeral_dbl_int
    = ( ^ [X4: int] : ( plus_plus_int @ X4 @ X4 ) ) ) ).

% dbl_def
thf(fact_358_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_359_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_360_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).

% one_plus_numeral_commute
thf(fact_361_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_Bit0
thf(fact_362_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_Bit0
thf(fact_363_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_real @ ( bit0 @ N ) )
      = ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).

% numeral_Bit0
thf(fact_364_shuffles_Ocases,axiom,
    ! [X: produc1903848493353643239ring_a] :
      ( ! [Ys3: list_F4626807571770296779ring_a] :
          ( X
         != ( produc242033333738657367ring_a @ nil_Fi5353433074977123787ring_a @ Ys3 ) )
     => ( ! [Xs2: list_F4626807571770296779ring_a] :
            ( X
           != ( produc242033333738657367ring_a @ Xs2 @ nil_Fi5353433074977123787ring_a ) )
       => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a,Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] :
              ( X
             != ( produc242033333738657367ring_a @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) ) ) ) ) ).

% shuffles.cases
thf(fact_365_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_366_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_367_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_368_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N2: nat] : ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_369_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_370_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_371_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_372_list_Osize_I4_J,axiom,
    ! [X21: finite_mod_ring_a,X22: list_F4626807571770296779ring_a] :
      ( ( size_s7115545719440041015ring_a @ ( cons_F8924456270334622075ring_a @ X21 @ X22 ) )
      = ( plus_plus_nat @ ( size_s7115545719440041015ring_a @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% list.size(4)
thf(fact_373_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M3: nat,N2: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ N2 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N2 ) ) ) ) ) ).

% add_eq_if
thf(fact_374_num_Osize_I5_J,axiom,
    ! [X2: num] :
      ( ( size_size_num @ ( bit0 @ X2 ) )
      = ( plus_plus_nat @ ( size_size_num @ X2 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(5)
thf(fact_375_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_right
thf(fact_376_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_right
thf(fact_377_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_left
thf(fact_378_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_left
thf(fact_379_n__lists_Osimps_I1_J,axiom,
    ! [Xs: list_F4626807571770296779ring_a] :
      ( ( n_list396537605831803347ring_a @ zero_zero_nat @ Xs )
      = ( cons_l4066219276239944833ring_a @ nil_Fi5353433074977123787ring_a @ nil_li2571238958069156049ring_a ) ) ).

% n_lists.simps(1)
thf(fact_380_nat__induct2,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ( P @ one_one_nat )
       => ( ! [N5: nat] :
              ( ( P @ N5 )
             => ( P @ ( plus_plus_nat @ N5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct2
thf(fact_381_evens__odds__length,axiom,
    ! [Xs: list_F4626807571770296779ring_a] :
      ( ( ( size_s7115545719440041015ring_a @ ( evens_6356279921861204579ring_a @ $true @ Xs ) )
        = ( divide_divide_nat @ ( plus_plus_nat @ ( size_s7115545719440041015ring_a @ Xs ) @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      & ( ( size_s7115545719440041015ring_a @ ( evens_6356279921861204579ring_a @ $false @ Xs ) )
        = ( divide_divide_nat @ ( size_s7115545719440041015ring_a @ Xs ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% evens_odds_length
thf(fact_382_length__n__lists,axiom,
    ! [N: nat,Xs: list_F4626807571770296779ring_a] :
      ( ( size_s6733248078324860861ring_a @ ( n_list396537605831803347ring_a @ N @ Xs ) )
      = ( power_power_nat @ ( size_s7115545719440041015ring_a @ Xs ) @ N ) ) ).

% length_n_lists
thf(fact_383_double__eq__0__iff,axiom,
    ! [A: int] :
      ( ( ( plus_plus_int @ A @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_384_double__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( plus_plus_real @ A @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_385_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_386_bits__div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_387_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_388_bits__div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_389_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_390_bits__div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% bits_div_by_1
thf(fact_391_Suc__0__div__numeral_I2_J,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) )
      = zero_zero_nat ) ).

% Suc_0_div_numeral(2)
thf(fact_392_one__div__two__eq__zero,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% one_div_two_eq_zero
thf(fact_393_one__div__two__eq__zero,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% one_div_two_eq_zero
thf(fact_394_bits__1__div__2,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% bits_1_div_2
thf(fact_395_bits__1__div__2,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% bits_1_div_2
thf(fact_396_Suc__0__div__numeral_I1_J,axiom,
    ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ one ) )
    = one_one_nat ) ).

% Suc_0_div_numeral(1)
thf(fact_397_power__divide,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
      = ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).

% power_divide
thf(fact_398_pderiv__coeffs__code_Ocases,axiom,
    ! [X: produc4606121326244435181ring_a] :
      ( ! [F: finite_mod_ring_a,X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
          ( X
         != ( produc5404638905795037661ring_a @ F @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) ) )
     => ~ ! [F: finite_mod_ring_a] :
            ( X
           != ( produc5404638905795037661ring_a @ F @ nil_Fi5353433074977123787ring_a ) ) ) ).

% pderiv_coeffs_code.cases
thf(fact_399_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_400_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_401_divide__numeral__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
      = A ) ).

% divide_numeral_1
thf(fact_402_power__one__over,axiom,
    ! [A: real,N: nat] :
      ( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
      = ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% power_one_over
thf(fact_403_div__exp__eq,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_404_div__exp__eq,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_405_fib_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ( ( X
         != ( suc @ zero_zero_nat ) )
       => ~ ! [N5: nat] :
              ( X
             != ( suc @ ( suc @ N5 ) ) ) ) ) ).

% fib.cases
thf(fact_406_plus__coeffs_Ocases,axiom,
    ! [X: produc1903848493353643239ring_a] :
      ( ! [Xs2: list_F4626807571770296779ring_a] :
          ( X
         != ( produc242033333738657367ring_a @ Xs2 @ nil_Fi5353433074977123787ring_a ) )
     => ( ! [V: finite_mod_ring_a,Va2: list_F4626807571770296779ring_a] :
            ( X
           != ( produc242033333738657367ring_a @ nil_Fi5353433074977123787ring_a @ ( cons_F8924456270334622075ring_a @ V @ Va2 ) ) )
       => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a,Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] :
              ( X
             != ( produc242033333738657367ring_a @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) ) ) ) ) ).

% plus_coeffs.cases
thf(fact_407_minus__poly__rev__list_Ocases,axiom,
    ! [X: produc1903848493353643239ring_a] :
      ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a,Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] :
          ( X
         != ( produc242033333738657367ring_a @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) ) )
     => ( ! [Xs2: list_F4626807571770296779ring_a] :
            ( X
           != ( produc242033333738657367ring_a @ Xs2 @ nil_Fi5353433074977123787ring_a ) )
       => ~ ! [Y4: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] :
              ( X
             != ( produc242033333738657367ring_a @ nil_Fi5353433074977123787ring_a @ ( cons_F8924456270334622075ring_a @ Y4 @ Ys3 ) ) ) ) ) ).

% minus_poly_rev_list.cases
thf(fact_408_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_409_div2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div2_Suc_Suc
thf(fact_410_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_411_divide__eq__1__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = one_one_real )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_412_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_413_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_414_div__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% div_self
thf(fact_415_one__eq__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( one_one_real
        = ( divide_divide_real @ A @ B ) )
      = ( ( B != zero_zero_real )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_416_evens__odds_Ocases,axiom,
    ! [X: produc5762148738920367578ring_a] :
      ( ! [Uu2: $o] :
          ( X
         != ( produc4036626292162011466ring_a @ Uu2 @ nil_Fi5353433074977123787ring_a ) )
     => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
            ( X
           != ( produc4036626292162011466ring_a @ $true @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) ) )
       => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
              ( X
             != ( produc4036626292162011466ring_a @ $false @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) ) ) ) ) ).

% evens_odds.cases
thf(fact_417_T___092_060_094sub_062e_092_060_094sub_062o_Ocases,axiom,
    ! [X: produc5762148738920367578ring_a] :
      ( ! [Uu2: $o] :
          ( X
         != ( produc4036626292162011466ring_a @ Uu2 @ nil_Fi5353433074977123787ring_a ) )
     => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
            ( X
           != ( produc4036626292162011466ring_a @ $true @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) ) )
       => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
              ( X
             != ( produc4036626292162011466ring_a @ $false @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) ) ) ) ) ).

% T_\<^sub>e\<^sub>o.cases
thf(fact_418_zdiv__numeral__Bit0,axiom,
    ! [V2: num,W2: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V2 ) ) @ ( numeral_numeral_int @ ( bit0 @ W2 ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V2 ) @ ( numeral_numeral_int @ W2 ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_419_division__ring__divide__zero,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% division_ring_divide_zero
thf(fact_420_divide__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( divide_divide_real @ A @ C )
        = ( divide_divide_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_right
thf(fact_421_divide__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( divide_divide_real @ C @ A )
        = ( divide_divide_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% divide_cancel_left
thf(fact_422_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_423_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_424_div__by__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_425_divide__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( divide_divide_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divide_eq_0_iff
thf(fact_426_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_427_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_428_div__0,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% div_0
thf(fact_429_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_430_div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% div_by_1
thf(fact_431_div__by__1,axiom,
    ! [A: real] :
      ( ( divide_divide_real @ A @ one_one_real )
      = A ) ).

% div_by_1
thf(fact_432_zero__eq__1__divide__iff,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( divide_divide_real @ one_one_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% zero_eq_1_divide_iff
thf(fact_433_one__divide__eq__0__iff,axiom,
    ! [A: real] :
      ( ( ( divide_divide_real @ one_one_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% one_divide_eq_0_iff
thf(fact_434_eq__divide__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( one_one_real
        = ( divide_divide_real @ B @ A ) )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% eq_divide_eq_1
thf(fact_435_divide__eq__eq__1,axiom,
    ! [B: real,A: real] :
      ( ( ( divide_divide_real @ B @ A )
        = one_one_real )
      = ( ( A != zero_zero_real )
        & ( A = B ) ) ) ).

% divide_eq_eq_1
thf(fact_436_divide__self__if,axiom,
    ! [A: real] :
      ( ( ( A = zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = zero_zero_real ) )
      & ( ( A != zero_zero_real )
       => ( ( divide_divide_real @ A @ A )
          = one_one_real ) ) ) ).

% divide_self_if
thf(fact_437_divide__self,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( divide_divide_real @ A @ A )
        = one_one_real ) ) ).

% divide_self
thf(fact_438_successively_Ocases,axiom,
    ! [X: produc2891675470218086340ring_a] :
      ( ! [P3: finite_mod_ring_a > finite_mod_ring_a > $o] :
          ( X
         != ( produc7708321557771586740ring_a @ P3 @ nil_Fi5353433074977123787ring_a ) )
     => ( ! [P3: finite_mod_ring_a > finite_mod_ring_a > $o,X3: finite_mod_ring_a] :
            ( X
           != ( produc7708321557771586740ring_a @ P3 @ ( cons_F8924456270334622075ring_a @ X3 @ nil_Fi5353433074977123787ring_a ) ) )
       => ~ ! [P3: finite_mod_ring_a > finite_mod_ring_a > $o,X3: finite_mod_ring_a,Y4: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
              ( X
             != ( produc7708321557771586740ring_a @ P3 @ ( cons_F8924456270334622075ring_a @ X3 @ ( cons_F8924456270334622075ring_a @ Y4 @ Xs2 ) ) ) ) ) ) ).

% successively.cases
thf(fact_439_sorted__wrt_Ocases,axiom,
    ! [X: produc2891675470218086340ring_a] :
      ( ! [P3: finite_mod_ring_a > finite_mod_ring_a > $o] :
          ( X
         != ( produc7708321557771586740ring_a @ P3 @ nil_Fi5353433074977123787ring_a ) )
     => ~ ! [P3: finite_mod_ring_a > finite_mod_ring_a > $o,X3: finite_mod_ring_a,Ys3: list_F4626807571770296779ring_a] :
            ( X
           != ( produc7708321557771586740ring_a @ P3 @ ( cons_F8924456270334622075ring_a @ X3 @ Ys3 ) ) ) ) ).

% sorted_wrt.cases
thf(fact_440_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_441_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_442_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_443_add__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
      = ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_444_diff__divide__distrib,axiom,
    ! [A: real,B: real,C: real] :
      ( ( divide_divide_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( minus_minus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_445_right__inverse__eq,axiom,
    ! [B: real,A: real] :
      ( ( B != zero_zero_real )
     => ( ( ( divide_divide_real @ A @ B )
          = one_one_real )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_446_div__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_447_div__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self1
thf(fact_448_div__add__self2,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_449_div__add__self2,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self2
thf(fact_450_real__average__minus__first,axiom,
    ! [A: real,B: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_first
thf(fact_451_real__average__minus__second,axiom,
    ! [B: real,A: real] :
      ( ( minus_minus_real @ ( divide_divide_real @ ( plus_plus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ A )
      = ( divide_divide_real @ ( minus_minus_real @ B @ A ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).

% real_average_minus_second
thf(fact_452_field__sum__of__halves,axiom,
    ! [X: real] :
      ( ( plus_plus_real @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) @ ( divide_divide_real @ X @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
      = X ) ).

% field_sum_of_halves
thf(fact_453_divides__aux__eq,axiom,
    ! [Q: nat,R: nat] :
      ( ( unique5332122412489317741ux_nat @ ( product_Pair_nat_nat @ Q @ R ) )
      = ( R = zero_zero_nat ) ) ).

% divides_aux_eq
thf(fact_454_divides__aux__eq,axiom,
    ! [Q: int,R: int] :
      ( ( unique5329631941980267465ux_int @ ( product_Pair_int_int @ Q @ R ) )
      = ( R = zero_zero_int ) ) ).

% divides_aux_eq
thf(fact_455_old_Oprod_Oinject,axiom,
    ! [A: nat,B: product_prod_nat_nat,A6: nat,B4: product_prod_nat_nat] :
      ( ( ( produc487386426758144856at_nat @ A @ B )
        = ( produc487386426758144856at_nat @ A6 @ B4 ) )
      = ( ( A = A6 )
        & ( B = B4 ) ) ) ).

% old.prod.inject
thf(fact_456_old_Oprod_Oinject,axiom,
    ! [A: nat,B: nat,A6: nat,B4: nat] :
      ( ( ( product_Pair_nat_nat @ A @ B )
        = ( product_Pair_nat_nat @ A6 @ B4 ) )
      = ( ( A = A6 )
        & ( B = B4 ) ) ) ).

% old.prod.inject
thf(fact_457_prod_Oinject,axiom,
    ! [X1: nat,X2: product_prod_nat_nat,Y1: nat,Y23: product_prod_nat_nat] :
      ( ( ( produc487386426758144856at_nat @ X1 @ X2 )
        = ( produc487386426758144856at_nat @ Y1 @ Y23 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y23 ) ) ) ).

% prod.inject
thf(fact_458_prod_Oinject,axiom,
    ! [X1: nat,X2: nat,Y1: nat,Y23: nat] :
      ( ( ( product_Pair_nat_nat @ X1 @ X2 )
        = ( product_Pair_nat_nat @ Y1 @ Y23 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y23 ) ) ) ).

% prod.inject
thf(fact_459_gen__fib_Ocases,axiom,
    ! [X: produc7248412053542808358at_nat] :
      ( ! [A2: nat,B5: nat] :
          ( X
         != ( produc487386426758144856at_nat @ A2 @ ( product_Pair_nat_nat @ B5 @ zero_zero_nat ) ) )
     => ( ! [A2: nat,B5: nat] :
            ( X
           != ( produc487386426758144856at_nat @ A2 @ ( product_Pair_nat_nat @ B5 @ ( suc @ zero_zero_nat ) ) ) )
       => ~ ! [A2: nat,B5: nat,N5: nat] :
              ( X
             != ( produc487386426758144856at_nat @ A2 @ ( product_Pair_nat_nat @ B5 @ ( suc @ ( suc @ N5 ) ) ) ) ) ) ) ).

% gen_fib.cases
thf(fact_460_Pair__inject,axiom,
    ! [A: nat,B: product_prod_nat_nat,A6: nat,B4: product_prod_nat_nat] :
      ( ( ( produc487386426758144856at_nat @ A @ B )
        = ( produc487386426758144856at_nat @ A6 @ B4 ) )
     => ~ ( ( A = A6 )
         => ( B != B4 ) ) ) ).

% Pair_inject
thf(fact_461_Pair__inject,axiom,
    ! [A: nat,B: nat,A6: nat,B4: nat] :
      ( ( ( product_Pair_nat_nat @ A @ B )
        = ( product_Pair_nat_nat @ A6 @ B4 ) )
     => ~ ( ( A = A6 )
         => ( B != B4 ) ) ) ).

% Pair_inject
thf(fact_462_prod__cases,axiom,
    ! [P: produc7248412053542808358at_nat > $o,P2: produc7248412053542808358at_nat] :
      ( ! [A2: nat,B5: product_prod_nat_nat] : ( P @ ( produc487386426758144856at_nat @ A2 @ B5 ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_463_prod__cases,axiom,
    ! [P: product_prod_nat_nat > $o,P2: product_prod_nat_nat] :
      ( ! [A2: nat,B5: nat] : ( P @ ( product_Pair_nat_nat @ A2 @ B5 ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_464_surj__pair,axiom,
    ! [P2: produc7248412053542808358at_nat] :
    ? [X3: nat,Y4: product_prod_nat_nat] :
      ( P2
      = ( produc487386426758144856at_nat @ X3 @ Y4 ) ) ).

% surj_pair
thf(fact_465_surj__pair,axiom,
    ! [P2: product_prod_nat_nat] :
    ? [X3: nat,Y4: nat] :
      ( P2
      = ( product_Pair_nat_nat @ X3 @ Y4 ) ) ).

% surj_pair
thf(fact_466_gcd_Ocases,axiom,
    ! [X: product_prod_nat_nat] :
      ~ ! [A2: nat,B5: nat] :
          ( X
         != ( product_Pair_nat_nat @ A2 @ B5 ) ) ).

% gcd.cases
thf(fact_467_old_Oprod_Oexhaust,axiom,
    ! [Y: produc7248412053542808358at_nat] :
      ~ ! [A2: nat,B5: product_prod_nat_nat] :
          ( Y
         != ( produc487386426758144856at_nat @ A2 @ B5 ) ) ).

% old.prod.exhaust
thf(fact_468_old_Oprod_Oexhaust,axiom,
    ! [Y: product_prod_nat_nat] :
      ~ ! [A2: nat,B5: nat] :
          ( Y
         != ( product_Pair_nat_nat @ A2 @ B5 ) ) ).

% old.prod.exhaust
thf(fact_469_add__diff__add,axiom,
    ! [A: real,C: real,B: real,D: real] :
      ( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) )
      = ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ ( minus_minus_real @ C @ D ) ) ) ).

% add_diff_add
thf(fact_470_add__diff__add,axiom,
    ! [A: int,C: int,B: int,D: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) )
      = ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ ( minus_minus_int @ C @ D ) ) ) ).

% add_diff_add
thf(fact_471_prod__induct3,axiom,
    ! [P: produc7248412053542808358at_nat > $o,X: produc7248412053542808358at_nat] :
      ( ! [A2: nat,B5: nat,C3: nat] : ( P @ ( produc487386426758144856at_nat @ A2 @ ( product_Pair_nat_nat @ B5 @ C3 ) ) )
     => ( P @ X ) ) ).

% prod_induct3
thf(fact_472_prod__cases3,axiom,
    ! [Y: produc7248412053542808358at_nat] :
      ~ ! [A2: nat,B5: nat,C3: nat] :
          ( Y
         != ( produc487386426758144856at_nat @ A2 @ ( product_Pair_nat_nat @ B5 @ C3 ) ) ) ).

% prod_cases3
thf(fact_473_subset__eq__mset__impl_Ocases,axiom,
    ! [X: produc1903848493353643239ring_a] :
      ( ! [Ys3: list_F4626807571770296779ring_a] :
          ( X
         != ( produc242033333738657367ring_a @ nil_Fi5353433074977123787ring_a @ Ys3 ) )
     => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a,Ys3: list_F4626807571770296779ring_a] :
            ( X
           != ( produc242033333738657367ring_a @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ Ys3 ) ) ) ).

% subset_eq_mset_impl.cases
thf(fact_474_num_Osize__gen_I2_J,axiom,
    ! [X2: num] :
      ( ( size_num @ ( bit0 @ X2 ) )
      = ( plus_plus_nat @ ( size_num @ X2 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size_gen(2)
thf(fact_475_T__nth__linear,axiom,
    ! [Xs: list_F4626807571770296779ring_a,I: nat] : ( ord_less_eq_nat @ ( t_n_t_3818685902850959543_a_nat @ Xs @ I ) @ ( plus_plus_nat @ ( size_s7115545719440041015ring_a @ Xs ) @ one_one_nat ) ) ).

% T_nth_linear
thf(fact_476_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Opelims,axiom,
    ! [X: list_F4626807571770296779ring_a,Xa: nat,Y: nat] :
      ( ( ( t_n_t_3818685902850959543_a_nat @ X @ Xa )
        = Y )
     => ( ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ X @ Xa ) )
       => ( ( ( X = nil_Fi5353433074977123787ring_a )
           => ( ( Y = one_one_nat )
             => ~ ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ nil_Fi5353433074977123787ring_a @ Xa ) ) ) )
         => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( X
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ( ( Xa = zero_zero_nat )
                 => ( ( Y = one_one_nat )
                   => ~ ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ zero_zero_nat ) ) ) ) )
           => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                  ( ( X
                    = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
                 => ! [I2: nat] :
                      ( ( Xa
                        = ( suc @ I2 ) )
                     => ( ( Y
                          = ( plus_plus_nat @ one_one_nat @ ( t_n_t_3818685902850959543_a_nat @ Xs2 @ I2 ) ) )
                       => ~ ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( suc @ I2 ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>n\<^sub>t\<^sub>h.pelims
thf(fact_477_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Opelims,axiom,
    ! [X: list_F4626807571770296779ring_a,Xa: nat,Y: real] :
      ( ( ( t_n_t_1739731239953631251a_real @ X @ Xa )
        = Y )
     => ( ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ X @ Xa ) )
       => ( ( ( X = nil_Fi5353433074977123787ring_a )
           => ( ( Y = one_one_real )
             => ~ ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ nil_Fi5353433074977123787ring_a @ Xa ) ) ) )
         => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( X
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ( ( Xa = zero_zero_nat )
                 => ( ( Y = one_one_real )
                   => ~ ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ zero_zero_nat ) ) ) ) )
           => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                  ( ( X
                    = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
                 => ! [I2: nat] :
                      ( ( Xa
                        = ( suc @ I2 ) )
                     => ( ( Y
                          = ( plus_plus_real @ one_one_real @ ( t_n_t_1739731239953631251a_real @ Xs2 @ I2 ) ) )
                       => ~ ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( suc @ I2 ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>n\<^sub>t\<^sub>h.pelims
thf(fact_478_T_092_060_094sub_062n_092_060_094sub_062t_092_060_094sub_062h_Opelims,axiom,
    ! [X: list_F4626807571770296779ring_a,Xa: nat,Y: int] :
      ( ( ( t_n_t_3816195432341909267_a_int @ X @ Xa )
        = Y )
     => ( ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ X @ Xa ) )
       => ( ( ( X = nil_Fi5353433074977123787ring_a )
           => ( ( Y = one_one_int )
             => ~ ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ nil_Fi5353433074977123787ring_a @ Xa ) ) ) )
         => ( ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                ( ( X
                  = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
               => ( ( Xa = zero_zero_nat )
                 => ( ( Y = one_one_int )
                   => ~ ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ zero_zero_nat ) ) ) ) )
           => ~ ! [X3: finite_mod_ring_a,Xs2: list_F4626807571770296779ring_a] :
                  ( ( X
                    = ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) )
                 => ! [I2: nat] :
                      ( ( Xa
                        = ( suc @ I2 ) )
                     => ( ( Y
                          = ( plus_plus_int @ one_one_int @ ( t_n_t_3816195432341909267_a_int @ Xs2 @ I2 ) ) )
                       => ~ ( accp_P5856548881842579713_a_nat @ t_n_t_7363053879581081417ring_a @ ( produc4363114488256272964_a_nat @ ( cons_F8924456270334622075ring_a @ X3 @ Xs2 ) @ ( suc @ I2 ) ) ) ) ) ) ) ) ) ) ).

% T\<^sub>n\<^sub>t\<^sub>h.pelims
thf(fact_479_local_Oadd__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% local.add_mono
thf(fact_480_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_481_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_482_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_483_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_484_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_485_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_486_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_487_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_488_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_489_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_490_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_491_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_492_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_493_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_494_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_495_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_496_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_497_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_498_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_499_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_500_le__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel2
thf(fact_501_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_502_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_503_le__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_eq_int @ zero_zero_int @ B ) ) ).

% le_add_same_cancel1
thf(fact_504_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_505_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_506_add__le__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel2
thf(fact_507_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_508_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_509_add__le__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% add_le_same_cancel1
thf(fact_510_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_511_diff__ge__0__iff__ge,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_eq_int @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_512_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_513_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_514_le__add__diff__inverse,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_515_le__add__diff__inverse,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_516_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_517_le__add__diff__inverse2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_518_le__add__diff__inverse2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_519_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_520_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_521_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_522_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_523_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_524_divide__le__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% divide_le_0_1_iff
thf(fact_525_zero__le__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_divide_1_iff
thf(fact_526_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_527_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_528_numeral__le__one__iff,axiom,
    ! [N: num] :
      ( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
      = ( ord_less_eq_num @ N @ one ) ) ).

% numeral_le_one_iff
thf(fact_529_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_530_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_531_power2__eq__iff__nonneg,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_532_power2__eq__iff__nonneg,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_533_power2__eq__iff__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
          = ( X = Y ) ) ) ) ).

% power2_eq_iff_nonneg
thf(fact_534_power2__less__eq__zero__iff,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% power2_less_eq_zero_iff
thf(fact_535_power2__less__eq__zero__iff,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% power2_less_eq_zero_iff
thf(fact_536_lift__Suc__mono__le,axiom,
    ! [F2: nat > nat,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_eq_nat @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_eq_nat @ N @ N6 )
       => ( ord_less_eq_nat @ ( F2 @ N ) @ ( F2 @ N6 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_537_lift__Suc__mono__le,axiom,
    ! [F2: nat > num,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_eq_num @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_eq_nat @ N @ N6 )
       => ( ord_less_eq_num @ ( F2 @ N ) @ ( F2 @ N6 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_538_lift__Suc__mono__le,axiom,
    ! [F2: nat > int,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_eq_int @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_eq_nat @ N @ N6 )
       => ( ord_less_eq_int @ ( F2 @ N ) @ ( F2 @ N6 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_539_lift__Suc__mono__le,axiom,
    ! [F2: nat > real,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_eq_real @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_eq_nat @ N @ N6 )
       => ( ord_less_eq_real @ ( F2 @ N ) @ ( F2 @ N6 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_540_lift__Suc__antimono__le,axiom,
    ! [F2: nat > nat,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_eq_nat @ ( F2 @ ( suc @ N5 ) ) @ ( F2 @ N5 ) )
     => ( ( ord_less_eq_nat @ N @ N6 )
       => ( ord_less_eq_nat @ ( F2 @ N6 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_541_lift__Suc__antimono__le,axiom,
    ! [F2: nat > num,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_eq_num @ ( F2 @ ( suc @ N5 ) ) @ ( F2 @ N5 ) )
     => ( ( ord_less_eq_nat @ N @ N6 )
       => ( ord_less_eq_num @ ( F2 @ N6 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_542_lift__Suc__antimono__le,axiom,
    ! [F2: nat > int,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_eq_int @ ( F2 @ ( suc @ N5 ) ) @ ( F2 @ N5 ) )
     => ( ( ord_less_eq_nat @ N @ N6 )
       => ( ord_less_eq_int @ ( F2 @ N6 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_543_lift__Suc__antimono__le,axiom,
    ! [F2: nat > real,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_eq_real @ ( F2 @ ( suc @ N5 ) ) @ ( F2 @ N5 ) )
     => ( ( ord_less_eq_nat @ N @ N6 )
       => ( ord_less_eq_real @ ( F2 @ N6 ) @ ( F2 @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_544_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_545_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_546_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_547_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_548_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_549_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_550_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_551_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_552_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_553_verit__la__disequality,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
      | ~ ( ord_less_eq_real @ A @ B )
      | ~ ( ord_less_eq_real @ B @ A ) ) ).

% verit_la_disequality
thf(fact_554_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_555_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_556_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_557_verit__comp__simplify1_I2_J,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_558_power__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_nat @ one_one_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_559_power__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_int @ one_one_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_560_power__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_real @ one_one_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_increasing
thf(fact_561_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_562_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_563_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_564_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_565_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_566_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_567_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_568_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_569_add__le__imp__le__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_570_add__le__imp__le__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_571_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_572_add__le__imp__le__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_eq_int @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_573_add__le__imp__le__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_574_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
        ? [C2: nat] :
          ( B2
          = ( plus_plus_nat @ A3 @ C2 ) ) ) ) ).

% le_iff_add
thf(fact_575_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_576_add__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_right_mono
thf(fact_577_add__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_right_mono
thf(fact_578_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_579_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_580_add__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_left_mono
thf(fact_581_add__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_left_mono
thf(fact_582_ordered__ab__semigroup__add__class_Oadd__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% ordered_ab_semigroup_add_class.add_mono
thf(fact_583_ordered__ab__semigroup__add__class_Oadd__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% ordered_ab_semigroup_add_class.add_mono
thf(fact_584_ordered__ab__semigroup__add__class_Oadd__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% ordered_ab_semigroup_add_class.add_mono
thf(fact_585_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_586_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_587_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_588_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_589_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_eq_int @ K @ L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_590_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_591_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_592_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_eq_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_593_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_594_diff__eq__diff__less__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_eq_int @ A @ B )
        = ( ord_less_eq_int @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_595_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_596_diff__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_597_diff__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_598_diff__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_599_diff__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_600_diff__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ D @ C )
       => ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_601_diff__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_602_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_603_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_604_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_605_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_606_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_607_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_608_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_609_Suc__le__D,axiom,
    ! [N: nat,M4: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M4 )
     => ? [M2: nat] :
          ( M4
          = ( suc @ M2 ) ) ) ).

% Suc_le_D
thf(fact_610_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_611_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_612_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_613_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N5: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M5 ) @ N5 )
             => ( P @ M5 ) )
         => ( P @ N5 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_614_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N5: nat] :
              ( ( ord_less_eq_nat @ M @ N5 )
             => ( ( P @ N5 )
               => ( P @ ( suc @ N5 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_615_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R2 @ X3 @ X3 )
       => ( ! [X3: nat,Y4: nat,Z2: nat] :
              ( ( R2 @ X3 @ Y4 )
             => ( ( R2 @ Y4 @ Z2 )
               => ( R2 @ X3 @ Z2 ) ) )
         => ( ! [N5: nat] : ( R2 @ N5 @ ( suc @ N5 ) )
           => ( R2 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_616_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N2: nat] :
        ? [K2: nat] :
          ( N2
          = ( plus_plus_nat @ M3 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_617_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_618_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_619_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_620_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_621_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N5: nat] :
          ( L
          = ( plus_plus_nat @ K @ N5 ) ) ) ).

% le_Suc_ex
thf(fact_622_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_623_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_624_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_625_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_626_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_627_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_628_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_629_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_630_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_631_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_632_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_633_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_634_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ A @ one_one_nat )
         => ( ord_less_eq_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_635_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ A @ one_one_int )
         => ( ord_less_eq_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_636_power__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_eq_nat @ N @ N4 )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ A @ one_one_real )
         => ( ord_less_eq_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_decreasing
thf(fact_637_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_638_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_639_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_640_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_641_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_642_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_643_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_644_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_645_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_646_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_le_numeral
thf(fact_647_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_le_numeral
thf(fact_648_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).

% zero_le_numeral
thf(fact_649_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_le_zero
thf(fact_650_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_le_zero
thf(fact_651_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).

% not_numeral_le_zero
thf(fact_652_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_653_add__decreasing,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_654_add__decreasing,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_655_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_656_add__increasing,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_657_add__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_658_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_659_add__decreasing2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_660_add__decreasing2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_661_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_662_add__increasing2,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ B @ A )
       => ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_663_add__increasing2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_664_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_665_add__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_666_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_667_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_668_add__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_nonpos_nonpos
thf(fact_669_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_670_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_671_add__nonneg__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_672_add__nonneg__eq__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ X @ Y )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_673_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_674_add__nonpos__eq__0__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ zero_zero_int )
     => ( ( ord_less_eq_int @ Y @ zero_zero_int )
       => ( ( ( plus_plus_int @ X @ Y )
            = zero_zero_int )
          = ( ( X = zero_zero_int )
            & ( Y = zero_zero_int ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_675_add__nonpos__eq__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ( plus_plus_real @ X @ Y )
            = zero_zero_real )
          = ( ( X = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_676_le__iff__diff__le__0,axiom,
    ( ord_less_eq_int
    = ( ^ [A3: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).

% le_iff_diff_le_0
thf(fact_677_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B2: real] : ( ord_less_eq_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_678_divide__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% divide_le_0_iff
thf(fact_679_divide__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).

% divide_right_mono
thf(fact_680_zero__le__divide__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_divide_iff
thf(fact_681_divide__nonneg__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_682_divide__nonneg__nonpos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonneg_nonpos
thf(fact_683_divide__nonpos__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonpos_nonneg
thf(fact_684_divide__nonpos__nonpos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_685_divide__right__mono__neg,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_686_power__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% power_mono
thf(fact_687_power__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono
thf(fact_688_power__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono
thf(fact_689_zero__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_le_power
thf(fact_690_zero__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_power
thf(fact_691_zero__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_power
thf(fact_692_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).

% one_le_numeral
thf(fact_693_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).

% one_le_numeral
thf(fact_694_one__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).

% one_le_numeral
thf(fact_695_add__le__imp__le__diff,axiom,
    ! [I: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_696_add__le__imp__le__diff,axiom,
    ! [I: int,K: int,N: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
     => ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_697_add__le__imp__le__diff,axiom,
    ! [I: real,K: real,N: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
     => ( ord_less_eq_real @ I @ ( minus_minus_real @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_698_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_699_add__le__add__imp__diff__le,axiom,
    ! [I: int,K: int,N: int,J: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
     => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
       => ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
         => ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
           => ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_700_add__le__add__imp__diff__le,axiom,
    ! [I: real,K: real,N: real,J: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
     => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
       => ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
         => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
           => ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_701_diff__le__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_702_diff__le__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_703_le__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_704_le__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_705_ordered__cancel__comm__monoid__diff__class_Odiff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add
thf(fact_706_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_707_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_708_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_709_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_710_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_711_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_712_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_713_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_714_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_715_one__le__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).

% one_le_power
thf(fact_716_one__le__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ one_one_int @ A )
     => ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).

% one_le_power
thf(fact_717_one__le__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ A )
     => ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).

% one_le_power
thf(fact_718_impossible__Cons,axiom,
    ! [Xs: list_F4626807571770296779ring_a,Ys2: list_F4626807571770296779ring_a,X: finite_mod_ring_a] :
      ( ( ord_less_eq_nat @ ( size_s7115545719440041015ring_a @ Xs ) @ ( size_s7115545719440041015ring_a @ Ys2 ) )
     => ( Xs
       != ( cons_F8924456270334622075ring_a @ X @ Ys2 ) ) ) ).

% impossible_Cons
thf(fact_719_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_720_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_721_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_722_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_723_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_724_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_725_Suc__div__le__mono,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).

% Suc_div_le_mono
thf(fact_726_power__le__one,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).

% power_le_one
thf(fact_727_power__le__one,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).

% power_le_one
thf(fact_728_power__le__one,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).

% power_le_one
thf(fact_729_power__inject__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ( power_power_nat @ A @ ( suc @ N ) )
        = ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_730_power__inject__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ( power_power_int @ A @ ( suc @ N ) )
        = ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_731_power__inject__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ( power_power_real @ A @ ( suc @ N ) )
        = ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( A = B ) ) ) ) ).

% power_inject_base
thf(fact_732_power__le__imp__le__base,axiom,
    ! [A: nat,N: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_733_power__le__imp__le__base,axiom,
    ! [A: int,N: nat,B: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_734_power__le__imp__le__base,axiom,
    ! [A: real,N: nat,B: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% power_le_imp_le_base
thf(fact_735_Suc__le__length__iff,axiom,
    ! [N: nat,Xs: list_F4626807571770296779ring_a] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( size_s7115545719440041015ring_a @ Xs ) )
      = ( ? [X4: finite_mod_ring_a,Ys: list_F4626807571770296779ring_a] :
            ( ( Xs
              = ( cons_F8924456270334622075ring_a @ X4 @ Ys ) )
            & ( ord_less_eq_nat @ N @ ( size_s7115545719440041015ring_a @ Ys ) ) ) ) ) ).

% Suc_le_length_iff
thf(fact_736_nat__one__le__power,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).

% nat_one_le_power
thf(fact_737_power__Suc__le__self,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ A @ one_one_nat )
       => ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_738_power__Suc__le__self,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ A @ one_one_int )
       => ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_739_power__Suc__le__self,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ A @ one_one_real )
       => ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).

% power_Suc_le_self
thf(fact_740_power__diff,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_741_power__diff,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_742_power__diff,axiom,
    ! [A: real,N: nat,M: nat] :
      ( ( A != zero_zero_real )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( power_power_real @ A @ ( minus_minus_nat @ M @ N ) )
          = ( divide_divide_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_diff
thf(fact_743_power2__nat__le__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_imp_le
thf(fact_744_power2__nat__le__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% power2_nat_le_eq_le
thf(fact_745_self__le__ge2__pow,axiom,
    ! [K: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).

% self_le_ge2_pow
thf(fact_746_power2__le__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_747_power2__le__imp__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ Y )
       => ( ord_less_eq_int @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_748_power2__le__imp__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ X @ Y ) ) ) ).

% power2_le_imp_le
thf(fact_749_power2__eq__imp__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ X )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_750_power2__eq__imp__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ X )
       => ( ( ord_less_eq_int @ zero_zero_int @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_751_power2__eq__imp__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ X )
       => ( ( ord_less_eq_real @ zero_zero_real @ Y )
         => ( X = Y ) ) ) ) ).

% power2_eq_imp_eq
thf(fact_752_zero__le__power2,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_753_zero__le__power2,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% zero_le_power2
thf(fact_754_num_Osize__gen_I1_J,axiom,
    ( ( size_num @ one )
    = zero_zero_nat ) ).

% num.size_gen(1)
thf(fact_755_power__diff__power__eq,axiom,
    ! [A: nat,N: nat,M: nat] :
      ( ( A != zero_zero_nat )
     => ( ( ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
            = ( power_power_nat @ A @ ( minus_minus_nat @ M @ N ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
            = ( divide_divide_nat @ one_one_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_756_power__diff__power__eq,axiom,
    ! [A: int,N: nat,M: nat] :
      ( ( A != zero_zero_int )
     => ( ( ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
            = ( power_power_int @ A @ ( minus_minus_nat @ M @ N ) ) ) )
        & ( ~ ( ord_less_eq_nat @ N @ M )
         => ( ( divide_divide_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
            = ( divide_divide_int @ one_one_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ M ) ) ) ) ) ) ) ).

% power_diff_power_eq
thf(fact_757_diff__le__diff__pow,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ ( minus_minus_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) ) ) ) ).

% diff_le_diff_pow
thf(fact_758_sum__power2__le__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_759_sum__power2__le__zero__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
      = ( ( X = zero_zero_real )
        & ( Y = zero_zero_real ) ) ) ).

% sum_power2_le_zero_iff
thf(fact_760_sum__power2__ge__zero,axiom,
    ! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_761_sum__power2__ge__zero,axiom,
    ! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% sum_power2_ge_zero
thf(fact_762_expand__powers_Ocases,axiom,
    ! [X: list_P1909269847677398966at_nat] :
      ( ( X != nil_Pr5468900520374568608at_nat )
     => ( ! [N5: nat,A2: product_prod_nat_nat,Ps: list_P1909269847677398966at_nat] :
            ( X
           != ( cons_P4943146402254145264at_nat @ ( produc487386426758144856at_nat @ ( suc @ N5 ) @ A2 ) @ Ps ) )
       => ~ ! [A2: product_prod_nat_nat,Ps: list_P1909269847677398966at_nat] :
              ( X
             != ( cons_P4943146402254145264at_nat @ ( produc487386426758144856at_nat @ zero_zero_nat @ A2 ) @ Ps ) ) ) ) ).

% expand_powers.cases
thf(fact_763_expand__powers_Ocases,axiom,
    ! [X: list_P6011104703257516679at_nat] :
      ( ( X != nil_Pr5478986624290739719at_nat )
     => ( ! [N5: nat,A2: nat,Ps: list_P6011104703257516679at_nat] :
            ( X
           != ( cons_P6512896166579812791at_nat @ ( product_Pair_nat_nat @ ( suc @ N5 ) @ A2 ) @ Ps ) )
       => ~ ! [A2: nat,Ps: list_P6011104703257516679at_nat] :
              ( X
             != ( cons_P6512896166579812791at_nat @ ( product_Pair_nat_nat @ zero_zero_nat @ A2 ) @ Ps ) ) ) ) ).

% expand_powers.cases
thf(fact_764_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          = zero_zero_nat )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_765_even__mask__div__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
          = zero_zero_int )
        | ( ord_less_eq_nat @ M @ N ) ) ) ).

% even_mask_div_iff
thf(fact_766_divmod__algorithm__code_I2_J,axiom,
    ! [N: num] :
      ( ( unique5405566460079783412od_nat @ one @ ( bit0 @ N ) )
      = ( product_Pair_nat_nat @ zero_zero_nat @ ( numeral_numeral_nat @ one ) ) ) ).

% divmod_algorithm_code(2)
thf(fact_767_divmod__algorithm__code_I2_J,axiom,
    ! [N: num] :
      ( ( unique5403075989570733136od_int @ one @ ( bit0 @ N ) )
      = ( product_Pair_int_int @ zero_zero_int @ ( numeral_numeral_int @ one ) ) ) ).

% divmod_algorithm_code(2)
thf(fact_768_nat__dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ one_one_nat )
      = ( M = one_one_nat ) ) ).

% nat_dvd_1_iff_1
thf(fact_769_dvd__0__right,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% dvd_0_right
thf(fact_770_dvd__0__right,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).

% dvd_0_right
thf(fact_771_dvd__0__right,axiom,
    ! [A: real] : ( dvd_dvd_real @ A @ zero_zero_real ) ).

% dvd_0_right
thf(fact_772_dvd__0__left__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% dvd_0_left_iff
thf(fact_773_dvd__0__left__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
      = ( A = zero_zero_int ) ) ).

% dvd_0_left_iff
thf(fact_774_dvd__0__left__iff,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
      = ( A = zero_zero_real ) ) ).

% dvd_0_left_iff
thf(fact_775_dvd__add__triv__right__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_776_dvd__add__triv__right__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_777_dvd__add__triv__right__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_778_dvd__add__triv__left__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_779_dvd__add__triv__left__iff,axiom,
    ! [A: real,B: real] :
      ( ( dvd_dvd_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( dvd_dvd_real @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_780_dvd__add__triv__left__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_781_dvd__1__left,axiom,
    ! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).

% dvd_1_left
thf(fact_782_dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( M
        = ( suc @ zero_zero_nat ) ) ) ).

% dvd_1_iff_1
thf(fact_783_semiring__norm_I71_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(71)
thf(fact_784_semiring__norm_I68_J,axiom,
    ! [N: num] : ( ord_less_eq_num @ one @ N ) ).

% semiring_norm(68)
thf(fact_785_unit__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_div
thf(fact_786_unit__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_div
thf(fact_787_unit__div__1__unit,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).

% unit_div_1_unit
thf(fact_788_unit__div__1__unit,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).

% unit_div_1_unit
thf(fact_789_unit__div__1__div__1,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_790_unit__div__1__div__1,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_791_div__add,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_792_div__add,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_793_div__diff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_794_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_795_even__Suc,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% even_Suc
thf(fact_796_even__Suc__Suc__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_Suc_Suc_iff
thf(fact_797_half__nonnegative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
      = ( ord_less_eq_int @ zero_zero_int @ K ) ) ).

% half_nonnegative_int_iff
thf(fact_798_odd__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_799_odd__add,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_800_even__add,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_801_even__add,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_802_odd__Suc__div__two,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% odd_Suc_div_two
thf(fact_803_even__Suc__div__two,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_Suc_div_two
thf(fact_804_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( unique5332122412489317741ux_nat @ ( unique5405566460079783412od_nat @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_805_dvd__numeral__simp,axiom,
    ! [M: num,N: num] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( unique5329631941980267465ux_int @ ( unique5403075989570733136od_int @ N @ M ) ) ) ).

% dvd_numeral_simp
thf(fact_806_divmod__algorithm__code_I1_J,axiom,
    ! [M: num] :
      ( ( unique5405566460079783412od_nat @ M @ one )
      = ( product_Pair_nat_nat @ ( numeral_numeral_nat @ M ) @ zero_zero_nat ) ) ).

% divmod_algorithm_code(1)
thf(fact_807_divmod__algorithm__code_I1_J,axiom,
    ! [M: num] :
      ( ( unique5403075989570733136od_int @ M @ one )
      = ( product_Pair_int_int @ ( numeral_numeral_int @ M ) @ zero_zero_int ) ) ).

% divmod_algorithm_code(1)
thf(fact_808_zero__le__power__eq__numeral,axiom,
    ! [A: int,W2: num] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W2 ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_809_zero__le__power__eq__numeral,axiom,
    ! [A: real,W2: num] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W2 ) ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq_numeral
thf(fact_810_even__plus__one__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_811_even__plus__one__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_812_even__diff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).

% even_diff
thf(fact_813_odd__Suc__minus__one,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% odd_Suc_minus_one
thf(fact_814_odd__succ__div__two,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).

% odd_succ_div_two
thf(fact_815_odd__succ__div__two,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% odd_succ_div_two
thf(fact_816_even__succ__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_817_even__succ__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_818_even__succ__div__2,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_819_even__succ__div__2,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_820_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_821_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_822_dvd__0__left,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% dvd_0_left
thf(fact_823_dvd__0__left,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
     => ( A = zero_zero_int ) ) ).

% dvd_0_left
thf(fact_824_dvd__0__left,axiom,
    ! [A: real] :
      ( ( dvd_dvd_real @ zero_zero_real @ A )
     => ( A = zero_zero_real ) ) ).

% dvd_0_left
thf(fact_825_dvd__field__iff,axiom,
    ( dvd_dvd_real
    = ( ^ [A3: real,B2: real] :
          ( ( A3 = zero_zero_real )
         => ( B2 = zero_zero_real ) ) ) ) ).

% dvd_field_iff
thf(fact_826_one__dvd,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ one_one_nat @ A ) ).

% one_dvd
thf(fact_827_one__dvd,axiom,
    ! [A: real] : ( dvd_dvd_real @ one_one_real @ A ) ).

% one_dvd
thf(fact_828_one__dvd,axiom,
    ! [A: int] : ( dvd_dvd_int @ one_one_int @ A ) ).

% one_dvd
thf(fact_829_algebraic__semidom__class_Ounit__imp__dvd,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( dvd_dvd_nat @ B @ A ) ) ).

% algebraic_semidom_class.unit_imp_dvd
thf(fact_830_algebraic__semidom__class_Ounit__imp__dvd,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( dvd_dvd_int @ B @ A ) ) ).

% algebraic_semidom_class.unit_imp_dvd
thf(fact_831_dvd__unit__imp__unit,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ A @ one_one_nat ) ) ) ).

% dvd_unit_imp_unit
thf(fact_832_dvd__unit__imp__unit,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ A @ one_one_int ) ) ) ).

% dvd_unit_imp_unit
thf(fact_833_dvd__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_834_dvd__add,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ C )
       => ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_835_dvd__add,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) ) ) ) ).

% dvd_add
thf(fact_836_dvd__add__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ C )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_837_dvd__add__left__iff,axiom,
    ! [A: real,C: real,B: real] :
      ( ( dvd_dvd_real @ A @ C )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_838_dvd__add__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ C )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_add_left_iff
thf(fact_839_dvd__add__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ C ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_840_dvd__add__right__iff,axiom,
    ! [A: real,B: real,C: real] :
      ( ( dvd_dvd_real @ A @ B )
     => ( ( dvd_dvd_real @ A @ ( plus_plus_real @ B @ C ) )
        = ( dvd_dvd_real @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_841_dvd__add__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ C ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_add_right_iff
thf(fact_842_dvd__diff,axiom,
    ! [X: real,Y: real,Z3: real] :
      ( ( dvd_dvd_real @ X @ Y )
     => ( ( dvd_dvd_real @ X @ Z3 )
       => ( dvd_dvd_real @ X @ ( minus_minus_real @ Y @ Z3 ) ) ) ) ).

% dvd_diff
thf(fact_843_dvd__diff,axiom,
    ! [X: int,Y: int,Z3: int] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( dvd_dvd_int @ X @ Z3 )
       => ( dvd_dvd_int @ X @ ( minus_minus_int @ Y @ Z3 ) ) ) ) ).

% dvd_diff
thf(fact_844_dvd__diff__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_845_dvd__power__same,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_846_dvd__power__same,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_847_dvd__power__same,axiom,
    ! [X: real,Y: real,N: nat] :
      ( ( dvd_dvd_real @ X @ Y )
     => ( dvd_dvd_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_848_le__num__One__iff,axiom,
    ! [X: num] :
      ( ( ord_less_eq_num @ X @ one )
      = ( X = one ) ) ).

% le_num_One_iff
thf(fact_849_dvd__diff__nat,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% dvd_diff_nat
thf(fact_850_not__is__unit__0,axiom,
    ~ ( dvd_dvd_nat @ zero_zero_nat @ one_one_nat ) ).

% not_is_unit_0
thf(fact_851_not__is__unit__0,axiom,
    ~ ( dvd_dvd_int @ zero_zero_int @ one_one_int ) ).

% not_is_unit_0
thf(fact_852_dvd__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_853_dvd__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_854_dvd__div__eq__0__iff,axiom,
    ! [B: real,A: real] :
      ( ( dvd_dvd_real @ B @ A )
     => ( ( ( divide_divide_real @ A @ B )
          = zero_zero_real )
        = ( A = zero_zero_real ) ) ) ).

% dvd_div_eq_0_iff
thf(fact_855_unit__div__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( ( divide_divide_nat @ B @ A )
          = ( divide_divide_nat @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_856_unit__div__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( ( divide_divide_int @ B @ A )
          = ( divide_divide_int @ C @ A ) )
        = ( B = C ) ) ) ).

% unit_div_cancel
thf(fact_857_div__unit__dvd__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ C )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_858_div__unit__dvd__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ C )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% div_unit_dvd_iff
thf(fact_859_dvd__div__unit__iff,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( dvd_dvd_nat @ A @ ( divide_divide_nat @ C @ B ) )
        = ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_860_dvd__div__unit__iff,axiom,
    ! [B: int,A: int,C: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( dvd_dvd_int @ A @ ( divide_divide_int @ C @ B ) )
        = ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_div_unit_iff
thf(fact_861_div__plus__div__distrib__dvd__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_862_div__plus__div__distrib__dvd__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_863_div__plus__div__distrib__dvd__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_864_div__plus__div__distrib__dvd__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_865_div__power,axiom,
    ! [B: nat,A: nat,N: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N )
        = ( divide_divide_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% div_power
thf(fact_866_div__power,axiom,
    ! [B: int,A: int,N: nat] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N )
        = ( divide_divide_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% div_power
thf(fact_867_dvd__power__le,axiom,
    ! [X: nat,Y: nat,N: nat,M: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_868_dvd__power__le,axiom,
    ! [X: int,Y: int,N: nat,M: nat] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_869_dvd__power__le,axiom,
    ! [X: real,Y: real,N: nat,M: nat] :
      ( ( dvd_dvd_real @ X @ Y )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( dvd_dvd_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ M ) ) ) ) ).

% dvd_power_le
thf(fact_870_power__le__dvd,axiom,
    ! [A: nat,N: nat,B: nat,M: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_871_power__le__dvd,axiom,
    ! [A: int,N: nat,B: int,M: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_872_power__le__dvd,axiom,
    ! [A: real,N: nat,B: real,M: nat] :
      ( ( dvd_dvd_real @ ( power_power_real @ A @ N ) @ B )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ B ) ) ) ).

% power_le_dvd
thf(fact_873_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_874_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: int] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_875_le__imp__power__dvd,axiom,
    ! [M: nat,N: nat,A: real] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( dvd_dvd_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).

% le_imp_power_dvd
thf(fact_876_dvd__diffD,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K @ M ) ) ) ) ).

% dvd_diffD
thf(fact_877_dvd__diffD1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K @ M )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K @ N ) ) ) ) ).

% dvd_diffD1
thf(fact_878_less__eq__dvd__minus,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( dvd_dvd_nat @ M @ N )
        = ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% less_eq_dvd_minus
thf(fact_879_unit__div__eq__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( dvd_dvd_nat @ B @ one_one_nat )
     => ( ( ( divide_divide_nat @ A @ B )
          = zero_zero_nat )
        = ( A = zero_zero_nat ) ) ) ).

% unit_div_eq_0_iff
thf(fact_880_unit__div__eq__0__iff,axiom,
    ! [B: int,A: int] :
      ( ( dvd_dvd_int @ B @ one_one_int )
     => ( ( ( divide_divide_int @ A @ B )
          = zero_zero_int )
        = ( A = zero_zero_int ) ) ) ).

% unit_div_eq_0_iff
thf(fact_881_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_882_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_883_is__unit__power__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_884_is__unit__power__iff,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_885_even__diff__iff,axiom,
    ! [K: int,L: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L ) ) ) ).

% even_diff_iff
thf(fact_886_not__exp__less__eq__0__int,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).

% not_exp_less_eq_0_int
thf(fact_887_two__realpow__ge__one,axiom,
    ! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).

% two_realpow_ge_one
thf(fact_888_even__zero,axiom,
    dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).

% even_zero
thf(fact_889_even__zero,axiom,
    dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).

% even_zero
thf(fact_890_odd__one,axiom,
    ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).

% odd_one
thf(fact_891_odd__one,axiom,
    ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).

% odd_one
thf(fact_892_odd__even__add,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_893_odd__even__add,axiom,
    ! [A: int,B: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_894_bit__eq__rec,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 )
            = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( divide_divide_nat @ B2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_895_bit__eq__rec,axiom,
    ( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    = ( ^ [A3: int,B2: int] :
          ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 )
            = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = ( divide_divide_int @ B2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_896_dvd__power__iff,axiom,
    ! [X: nat,M: nat,N: nat] :
      ( ( X != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ X @ M ) @ ( power_power_nat @ X @ N ) )
        = ( ( dvd_dvd_nat @ X @ one_one_nat )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_897_dvd__power__iff,axiom,
    ! [X: int,M: nat,N: nat] :
      ( ( X != zero_zero_int )
     => ( ( dvd_dvd_int @ ( power_power_int @ X @ M ) @ ( power_power_int @ X @ N ) )
        = ( ( dvd_dvd_int @ X @ one_one_int )
          | ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% dvd_power_iff
thf(fact_898_power__mono__odd,axiom,
    ! [N: nat,A: int,B: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_899_power__mono__odd,axiom,
    ! [N: nat,A: real,B: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).

% power_mono_odd
thf(fact_900_dvd__power__iff__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% dvd_power_iff_le
thf(fact_901_zero__le__power__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_902_zero__le__power__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ).

% zero_le_power_eq
thf(fact_903_zero__le__odd__power,axiom,
    ! [N: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
        = ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).

% zero_le_odd_power
thf(fact_904_zero__le__odd__power,axiom,
    ! [N: nat,A: real] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) )
        = ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ).

% zero_le_odd_power
thf(fact_905_zero__le__even__power,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_906_zero__le__even__power,axiom,
    ! [N: nat,A: real] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).

% zero_le_even_power
thf(fact_907_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_908_even__mask__div__iff_H,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% even_mask_div_iff'
thf(fact_909_efficient__funpow_Ocases,axiom,
    ! [X: produc7248412053542808358at_nat] :
      ( ! [Y4: nat,X3: nat] :
          ( X
         != ( produc487386426758144856at_nat @ Y4 @ ( product_Pair_nat_nat @ X3 @ zero_zero_nat ) ) )
     => ( ! [Y4: nat,X3: nat] :
            ( X
           != ( produc487386426758144856at_nat @ Y4 @ ( product_Pair_nat_nat @ X3 @ ( suc @ zero_zero_nat ) ) ) )
       => ( ! [N5: nat] :
              ( ( N5 != zero_zero_nat )
             => ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N5 )
               => ! [Y4: nat,X3: nat] :
                    ( X
                   != ( produc487386426758144856at_nat @ Y4 @ ( product_Pair_nat_nat @ X3 @ N5 ) ) ) ) )
         => ~ ! [N5: nat] :
                ( ( N5 != one_one_nat )
               => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N5 )
                 => ! [Y4: nat,X3: nat] :
                      ( X
                     != ( produc487386426758144856at_nat @ Y4 @ ( product_Pair_nat_nat @ X3 @ N5 ) ) ) ) ) ) ) ) ).

% efficient_funpow.cases
thf(fact_910_expand__powers_Oelims,axiom,
    ! [X: list_P4624318757991090938ring_a,Y: list_F4626807571770296779ring_a] :
      ( ( ( missin34570425272376078ring_a @ X )
        = Y )
     => ( ( ( X = nil_Pr2033367005900905828ring_a )
         => ( Y != nil_Fi5353433074977123787ring_a ) )
       => ( ! [N5: nat,A2: finite_mod_ring_a,Ps: list_P4624318757991090938ring_a] :
              ( ( X
                = ( cons_P7934120695603328436ring_a @ ( produc8633925709569697436ring_a @ ( suc @ N5 ) @ A2 ) @ Ps ) )
             => ( Y
               != ( cons_F8924456270334622075ring_a @ A2 @ ( missin34570425272376078ring_a @ ( cons_P7934120695603328436ring_a @ ( produc8633925709569697436ring_a @ N5 @ A2 ) @ Ps ) ) ) ) )
         => ~ ! [A2: finite_mod_ring_a,Ps: list_P4624318757991090938ring_a] :
                ( ( X
                  = ( cons_P7934120695603328436ring_a @ ( produc8633925709569697436ring_a @ zero_zero_nat @ A2 ) @ Ps ) )
               => ( Y
                 != ( missin34570425272376078ring_a @ Ps ) ) ) ) ) ) ).

% expand_powers.elims
thf(fact_911_expand__powers_Oelims,axiom,
    ! [X: list_P1909269847677398966at_nat,Y: list_P6011104703257516679at_nat] :
      ( ( ( missin2748503833011120330at_nat @ X )
        = Y )
     => ( ( ( X = nil_Pr5468900520374568608at_nat )
         => ( Y != nil_Pr5478986624290739719at_nat ) )
       => ( ! [N5: nat,A2: product_prod_nat_nat,Ps: list_P1909269847677398966at_nat] :
              ( ( X
                = ( cons_P4943146402254145264at_nat @ ( produc487386426758144856at_nat @ ( suc @ N5 ) @ A2 ) @ Ps ) )
             => ( Y
               != ( cons_P6512896166579812791at_nat @ A2 @ ( missin2748503833011120330at_nat @ ( cons_P4943146402254145264at_nat @ ( produc487386426758144856at_nat @ N5 @ A2 ) @ Ps ) ) ) ) )
         => ~ ! [A2: product_prod_nat_nat,Ps: list_P1909269847677398966at_nat] :
                ( ( X
                  = ( cons_P4943146402254145264at_nat @ ( produc487386426758144856at_nat @ zero_zero_nat @ A2 ) @ Ps ) )
               => ( Y
                 != ( missin2748503833011120330at_nat @ Ps ) ) ) ) ) ) ).

% expand_powers.elims
thf(fact_912_expand__powers_Oelims,axiom,
    ! [X: list_P6011104703257516679at_nat,Y: list_nat] :
      ( ( ( missin6482572040563731271rs_nat @ X )
        = Y )
     => ( ( ( X = nil_Pr5478986624290739719at_nat )
         => ( Y != nil_nat ) )
       => ( ! [N5: nat,A2: nat,Ps: list_P6011104703257516679at_nat] :
              ( ( X
                = ( cons_P6512896166579812791at_nat @ ( product_Pair_nat_nat @ ( suc @ N5 ) @ A2 ) @ Ps ) )
             => ( Y
               != ( cons_nat @ A2 @ ( missin6482572040563731271rs_nat @ ( cons_P6512896166579812791at_nat @ ( product_Pair_nat_nat @ N5 @ A2 ) @ Ps ) ) ) ) )
         => ~ ! [A2: nat,Ps: list_P6011104703257516679at_nat] :
                ( ( X
                  = ( cons_P6512896166579812791at_nat @ ( product_Pair_nat_nat @ zero_zero_nat @ A2 ) @ Ps ) )
               => ( Y
                 != ( missin6482572040563731271rs_nat @ Ps ) ) ) ) ) ) ).

% expand_powers.elims
thf(fact_913_even__succ__div__exp,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_914_even__succ__div__exp,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_915_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_916_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_917_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_918_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_919_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_920_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_921_add__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_922_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_923_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_924_add__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_real @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_925_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_926_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_927_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_928_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_929_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_930_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_931_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_932_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_933_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_934_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_935_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_936_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_937_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_938_less__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel2
thf(fact_939_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_940_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_941_less__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_real @ zero_zero_real @ B ) ) ).

% less_add_same_cancel1
thf(fact_942_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_943_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_944_add__less__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel2
thf(fact_945_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_946_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_947_add__less__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% add_less_same_cancel1
thf(fact_948_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_949_diff__gt__0__iff__gt,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_real @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_950_power__inject__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_951_power__inject__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ( power_power_int @ A @ M )
          = ( power_power_int @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_952_power__inject__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ( power_power_real @ A @ M )
          = ( power_power_real @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_953_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_954_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_955_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_956_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_957_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_958_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_959_nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_960_divide__less__0__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% divide_less_0_1_iff
thf(fact_961_divide__less__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ A @ B ) ) ) ).

% divide_less_eq_1_neg
thf(fact_962_divide__less__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_real @ B @ A ) ) ) ).

% divide_less_eq_1_pos
thf(fact_963_less__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% less_divide_eq_1_neg
thf(fact_964_less__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% less_divide_eq_1_pos
thf(fact_965_zero__less__divide__1__iff,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% zero_less_divide_1_iff
thf(fact_966_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_967_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_968_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_969_power__strict__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_970_power__strict__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_971_power__strict__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_972_power__eq__0__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( ( power_power_nat @ A @ N )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_973_power__eq__0__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ( power_power_int @ A @ N )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_974_power__eq__0__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ( power_power_real @ A @ N )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_975_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_976_length__greater__0__conv,axiom,
    ! [Xs: list_F4626807571770296779ring_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_s7115545719440041015ring_a @ Xs ) )
      = ( Xs != nil_Fi5353433074977123787ring_a ) ) ).

% length_greater_0_conv
thf(fact_977_le__divide__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% le_divide_eq_1_pos
thf(fact_978_le__divide__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% le_divide_eq_1_neg
thf(fact_979_divide__le__eq__1__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% divide_le_eq_1_pos
thf(fact_980_divide__le__eq__1__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% divide_le_eq_1_neg
thf(fact_981_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_982_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_983_power__strict__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_984_power__mono__iff,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_985_power__mono__iff,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
            = ( ord_less_eq_int @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_986_power__mono__iff,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
            = ( ord_less_eq_real @ A @ B ) ) ) ) ) ).

% power_mono_iff
thf(fact_987_power__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_988_power__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_989_power__increasing__iff,axiom,
    ! [B: real,X: nat,Y: nat] :
      ( ( ord_less_real @ one_one_real @ B )
     => ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
        = ( ord_less_eq_nat @ X @ Y ) ) ) ).

% power_increasing_iff
thf(fact_990_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_991_power__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_992_power__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_993_power__decreasing__iff,axiom,
    ! [B: real,M: nat,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ B )
     => ( ( ord_less_real @ B @ one_one_real )
       => ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
          = ( ord_less_eq_nat @ N @ M ) ) ) ) ).

% power_decreasing_iff
thf(fact_994_zero__less__power2,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_power2
thf(fact_995_zero__less__power2,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_real ) ) ).

% zero_less_power2
thf(fact_996_even__power,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_997_even__power,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_998_power__less__zero__eq__numeral,axiom,
    ! [A: int,W2: num] :
      ( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W2 ) ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_999_power__less__zero__eq__numeral,axiom,
    ! [A: real,W2: num] :
      ( ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W2 ) ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_1000_power__less__zero__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq
thf(fact_1001_power__less__zero__eq,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ ( power_power_real @ A @ N ) @ zero_zero_real )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% power_less_zero_eq
thf(fact_1002_even__diff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% even_diff_nat
thf(fact_1003_zero__less__power__eq__numeral,axiom,
    ! [A: int,W2: num] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W2 ) ) )
      = ( ( ( numeral_numeral_nat @ W2 )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_1004_zero__less__power__eq__numeral,axiom,
    ! [A: real,W2: num] :
      ( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W2 ) ) )
      = ( ( ( numeral_numeral_nat @ W2 )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
          & ( A != zero_zero_real ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
          & ( ord_less_real @ zero_zero_real @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_1005_power__le__zero__eq__numeral,axiom,
    ! [A: int,W2: num] :
      ( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W2 ) ) @ zero_zero_int )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W2 ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
            & ( ord_less_eq_int @ A @ zero_zero_int ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
            & ( A = zero_zero_int ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_1006_power__le__zero__eq__numeral,axiom,
    ! [A: real,W2: num] :
      ( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ W2 ) ) @ zero_zero_real )
      = ( ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ W2 ) )
        & ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
            & ( ord_less_eq_real @ A @ zero_zero_real ) )
          | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W2 ) )
            & ( A = zero_zero_real ) ) ) ) ) ).

% power_le_zero_eq_numeral
thf(fact_1007_int__induct,axiom,
    ! [P: int > $o,K: int,I: int] :
      ( ( P @ K )
     => ( ! [I2: int] :
            ( ( ord_less_eq_int @ K @ I2 )
           => ( ( P @ I2 )
             => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ I2 @ K )
             => ( ( P @ I2 )
               => ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_induct
thf(fact_1008_int__ge__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K @ I )
     => ( ( P @ K )
       => ( ! [I2: int] :
              ( ( ord_less_eq_int @ K @ I2 )
             => ( ( P @ I2 )
               => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_1009_verit__la__generic,axiom,
    ! [A: int,X: int] :
      ( ( ord_less_eq_int @ A @ X )
      | ( A = X )
      | ( ord_less_eq_int @ X @ A ) ) ).

% verit_la_generic
thf(fact_1010_verit__comp__simplify1_I3_J,axiom,
    ! [B4: nat,A6: nat] :
      ( ( ~ ( ord_less_eq_nat @ B4 @ A6 ) )
      = ( ord_less_nat @ A6 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_1011_verit__comp__simplify1_I3_J,axiom,
    ! [B4: num,A6: num] :
      ( ( ~ ( ord_less_eq_num @ B4 @ A6 ) )
      = ( ord_less_num @ A6 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_1012_verit__comp__simplify1_I3_J,axiom,
    ! [B4: int,A6: int] :
      ( ( ~ ( ord_less_eq_int @ B4 @ A6 ) )
      = ( ord_less_int @ A6 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_1013_verit__comp__simplify1_I3_J,axiom,
    ! [B4: real,A6: real] :
      ( ( ~ ( ord_less_eq_real @ B4 @ A6 ) )
      = ( ord_less_real @ A6 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_1014_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_1015_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_1016_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_1017_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_1018_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_1019_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_1020_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_1021_field__lbound__gt__zero,axiom,
    ! [D1: real,D2: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ? [E: real] :
            ( ( ord_less_real @ zero_zero_real @ E )
            & ( ord_less_real @ E @ D1 )
            & ( ord_less_real @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_1022_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_1023_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_1024_add__less__imp__less__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_1025_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_1026_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_1027_add__less__imp__less__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_real @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_1028_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_1029_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_1030_add__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_1031_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_1032_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_1033_add__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_1034_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_1035_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_1036_add__strict__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_1037_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_1038_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( K = L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_1039_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_1040_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_1041_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( I = J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_1042_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_1043_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_1044_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: int,J: int,K: int,L: int] :
      ( ( ( ord_less_int @ I @ J )
        & ( ord_less_int @ K @ L ) )
     => ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_1045_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_1046_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_1047_diff__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_1048_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_1049_diff__strict__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_1050_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_1051_diff__eq__diff__less,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_real @ A @ B )
        = ( ord_less_real @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_1052_diff__strict__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_1053_diff__strict__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ D @ C )
       => ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_1054_dvd__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ N )
     => ( ( dvd_dvd_nat @ N @ M )
       => ( M = N ) ) ) ).

% dvd_antisym
thf(fact_1055_nat__dvd__not__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% nat_dvd_not_less
thf(fact_1056_plus__int__code_I2_J,axiom,
    ! [L: int] :
      ( ( plus_plus_int @ zero_zero_int @ L )
      = L ) ).

% plus_int_code(2)
thf(fact_1057_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_1058_odd__nonzero,axiom,
    ! [Z3: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z3 ) @ Z3 )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_1059_dvd__minus__self,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
      = ( ( ord_less_nat @ N @ M )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_minus_self
thf(fact_1060_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_1061_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_1062_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_1063_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_1064_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_1065_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_1066_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N5: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N5 )
           => ( ~ ( P @ N5 )
             => ? [M5: nat] :
                  ( ( ord_less_nat @ M5 @ N5 )
                  & ~ ( P @ M5 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_1067_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_1068_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] :
            ( ( J
              = ( suc @ I2 ) )
           => ( P @ I2 ) )
       => ( ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ J )
             => ( ( P @ ( suc @ I2 ) )
               => ( P @ I2 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_1069_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
       => ( ! [I2: nat,J2: nat,K3: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( ( ord_less_nat @ J2 @ K3 )
               => ( ( P @ I2 @ J2 )
                 => ( ( P @ J2 @ K3 )
                   => ( P @ I2 @ K3 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_1070_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_1071_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_1072_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_1073_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M6: nat] :
            ( ( M
              = ( suc @ M6 ) )
            & ( ord_less_nat @ N @ M6 ) ) ) ) ).

% Suc_less_eq2
thf(fact_1074_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
           => ( P @ I3 ) ) )
      = ( ( P @ N )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
           => ( P @ I3 ) ) ) ) ).

% All_less_Suc
thf(fact_1075_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_1076_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_1077_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
            & ( P @ I3 ) ) )
      = ( ( P @ N )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
            & ( P @ I3 ) ) ) ) ).

% Ex_less_Suc
thf(fact_1078_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_1079_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_1080_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_1081_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_1082_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_1083_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_1084_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M3 @ N2 )
          & ( M3 != N2 ) ) ) ) ).

% nat_less_le
thf(fact_1085_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_1086_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M3: nat,N2: nat] :
          ( ( ord_less_nat @ M3 @ N2 )
          | ( M3 = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_1087_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_1088_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_1089_less__mono__imp__le__mono,axiom,
    ! [F2: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F2 @ I2 ) @ ( F2 @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F2 @ I ) @ ( F2 @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_1090_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_1091_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_1092_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_1093_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_1094_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_1095_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_1096_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_1097_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_1098_length__induct,axiom,
    ! [P: list_F4626807571770296779ring_a > $o,Xs: list_F4626807571770296779ring_a] :
      ( ! [Xs2: list_F4626807571770296779ring_a] :
          ( ! [Ys4: list_F4626807571770296779ring_a] :
              ( ( ord_less_nat @ ( size_s7115545719440041015ring_a @ Ys4 ) @ ( size_s7115545719440041015ring_a @ Xs2 ) )
             => ( P @ Ys4 ) )
         => ( P @ Xs2 ) )
     => ( P @ Xs ) ) ).

% length_induct
thf(fact_1099_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_1100_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_1101_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ A @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_1102_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ( ord_less_int @ A @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_1103_power__strict__decreasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ( ord_less_real @ A @ one_one_real )
         => ( ord_less_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_1104_one__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_1105_one__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_1106_one__less__power,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_1107_lift__Suc__mono__less,axiom,
    ! [F2: nat > nat,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_nat @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_nat @ N @ N6 )
       => ( ord_less_nat @ ( F2 @ N ) @ ( F2 @ N6 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1108_lift__Suc__mono__less,axiom,
    ! [F2: nat > num,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_num @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_nat @ N @ N6 )
       => ( ord_less_num @ ( F2 @ N ) @ ( F2 @ N6 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1109_lift__Suc__mono__less,axiom,
    ! [F2: nat > int,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_int @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_nat @ N @ N6 )
       => ( ord_less_int @ ( F2 @ N ) @ ( F2 @ N6 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1110_lift__Suc__mono__less,axiom,
    ! [F2: nat > real,N: nat,N6: nat] :
      ( ! [N5: nat] : ( ord_less_real @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_nat @ N @ N6 )
       => ( ord_less_real @ ( F2 @ N ) @ ( F2 @ N6 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1111_lift__Suc__mono__less__iff,axiom,
    ! [F2: nat > nat,N: nat,M: nat] :
      ( ! [N5: nat] : ( ord_less_nat @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_nat @ ( F2 @ N ) @ ( F2 @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1112_lift__Suc__mono__less__iff,axiom,
    ! [F2: nat > num,N: nat,M: nat] :
      ( ! [N5: nat] : ( ord_less_num @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_num @ ( F2 @ N ) @ ( F2 @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1113_lift__Suc__mono__less__iff,axiom,
    ! [F2: nat > int,N: nat,M: nat] :
      ( ! [N5: nat] : ( ord_less_int @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_int @ ( F2 @ N ) @ ( F2 @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1114_lift__Suc__mono__less__iff,axiom,
    ! [F2: nat > real,N: nat,M: nat] :
      ( ! [N5: nat] : ( ord_less_real @ ( F2 @ N5 ) @ ( F2 @ ( suc @ N5 ) ) )
     => ( ( ord_less_real @ ( F2 @ N ) @ ( F2 @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1115_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_1116_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N5: nat] :
          ( ~ ( P @ N5 )
         => ? [M5: nat] :
              ( ( ord_less_nat @ M5 @ N5 )
              & ~ ( P @ M5 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_1117_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N5: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_nat @ M5 @ N5 )
             => ( P @ M5 ) )
         => ( P @ N5 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_1118_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_1119_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_1120_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_1121_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_1122_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_1123_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_1124_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_1125_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_1126_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_1127_power__less__imp__less__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_1128_power__less__imp__less__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_1129_power__less__imp__less__exp,axiom,
    ! [A: real,M: nat,N: nat] :
      ( ( ord_less_real @ one_one_real @ A )
     => ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_1130_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: nat] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_nat @ one_one_nat @ A )
       => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1131_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: int] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_int @ one_one_int @ A )
       => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1132_power__strict__increasing,axiom,
    ! [N: nat,N4: nat,A: real] :
      ( ( ord_less_nat @ N @ N4 )
     => ( ( ord_less_real @ one_one_real @ A )
       => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).

% power_strict_increasing
thf(fact_1133_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_1134_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_1135_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_1136_power__strict__mono,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1137_power__strict__mono,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1138_power__strict__mono,axiom,
    ! [A: real,B: real,N: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ A )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
         => ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).

% power_strict_mono
thf(fact_1139_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_1140_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_1141_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_1142_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_1143_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% gr0_implies_Suc
thf(fact_1144_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
           => ( P @ I3 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
           => ( P @ ( suc @ I3 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_1145_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M3: nat] :
            ( N
            = ( suc @ M3 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_1146_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
            & ( P @ I3 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
            & ( P @ ( suc @ I3 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_1147_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K3 )
               => ~ ( P @ I4 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1148_dvd__imp__le,axiom,
    ! [K: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat @ K @ N ) ) ) ).

% dvd_imp_le
thf(fact_1149_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I @ K3 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_1150_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_1151_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_1152_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N5: nat] :
              ( ( ord_less_eq_nat @ I @ N5 )
             => ( ( ord_less_nat @ N5 @ J )
               => ( ( P @ N5 )
                 => ( P @ ( suc @ N5 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_1153_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N5: nat] :
              ( ( ord_less_eq_nat @ I @ N5 )
             => ( ( ord_less_nat @ N5 @ J )
               => ( ( P @ ( suc @ N5 ) )
                 => ( P @ N5 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_1154_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_1155_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_1156_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_1157_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N2: nat] : ( ord_less_eq_nat @ ( suc @ N2 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1158_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_1159_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_1160_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q2: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q2 ) ) ) ) ).

% less_natE
thf(fact_1161_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_1162_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_1163_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M3: nat,N2: nat] :
        ? [K2: nat] :
          ( N2
          = ( suc @ ( plus_plus_nat @ M3 @ K2 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1164_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K3: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1165_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_1166_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_1167_mono__nat__linear__lb,axiom,
    ! [F2: nat > nat,M: nat,K: nat] :
      ( ! [M2: nat,N5: nat] :
          ( ( ord_less_nat @ M2 @ N5 )
         => ( ord_less_nat @ ( F2 @ M2 ) @ ( F2 @ N5 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F2 @ M ) @ K ) @ ( F2 @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1168_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1169_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1170_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_1171_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_1172_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_1173_nat__power__less__imp__less,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_1174_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ! [I4: nat] :
                ( ( ord_less_eq_nat @ I4 @ K3 )
               => ~ ( P @ I4 ) )
            & ( P @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1175_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N5: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N5 )
             => ( ( P @ N5 )
               => ( P @ ( suc @ N5 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1176_diff__Suc__less,axiom,
    ! [N: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_1177_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D3: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D3 ) )
           => ( P @ D3 ) ) ) ) ).

% nat_diff_split
thf(fact_1178_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D3: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D3 ) )
                & ~ ( P @ D3 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_1179_power__gt__expt,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).

% power_gt_expt
thf(fact_1180_div__le__mono2,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).

% div_le_mono2
thf(fact_1181_div__greater__zero__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ N @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% div_greater_zero_iff
thf(fact_1182_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1183_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_1184_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_1185_power__dvd__imp__le,axiom,
    ! [I: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
     => ( ( ord_less_nat @ one_one_nat @ I )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% power_dvd_imp_le
thf(fact_1186_odd__pos,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% odd_pos
thf(fact_1187_less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% less_exp
thf(fact_1188_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_1189_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_1190_div__if,axiom,
    ( divide_divide_nat
    = ( ^ [M3: nat,N2: nat] :
          ( if_nat
          @ ( ( ord_less_nat @ M3 @ N2 )
            | ( N2 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M3 @ N2 ) @ N2 ) ) ) ) ) ).

% div_if
thf(fact_1191_less__2__cases__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases_iff
thf(fact_1192_less__2__cases,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
     => ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases
thf(fact_1193_le__div__geq,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( ( divide_divide_nat @ M @ N )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ) ) ).

% le_div_geq
thf(fact_1194_Suc__n__div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Suc_n_div_2_gt_zero
thf(fact_1195_div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div_2_gt_zero
thf(fact_1196_ex__power__ivl2,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
       => ? [N5: nat] :
            ( ( ord_less_nat @ ( power_power_nat @ B @ N5 ) @ K )
            & ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N5 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl2
thf(fact_1197_ex__power__ivl1,axiom,
    ! [B: nat,K: nat] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
     => ( ( ord_less_eq_nat @ one_one_nat @ K )
       => ? [N5: nat] :
            ( ( ord_less_eq_nat @ ( power_power_nat @ B @ N5 ) @ K )
            & ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N5 @ one_one_nat ) ) ) ) ) ) ).

% ex_power_ivl1
thf(fact_1198_k__bound,axiom,
    ord_less_nat @ zero_zero_nat @ k ).

% k_bound
thf(fact_1199_log__induct,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N5: nat] :
              ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N5 )
             => ( ( P @ ( divide_divide_nat @ N5 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
               => ( P @ N5 ) ) )
         => ( P @ N ) ) ) ) ).

% log_induct
thf(fact_1200_semiring__norm_I78_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(78)
thf(fact_1201_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_1202_zle__add1__eq__le,axiom,
    ! [W2: int,Z3: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z3 @ one_one_int ) )
      = ( ord_less_eq_int @ W2 @ Z3 ) ) ).

% zle_add1_eq_le
thf(fact_1203_semiring__norm_I76_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).

% semiring_norm(76)
thf(fact_1204_half__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_1205_zless__add1__eq,axiom,
    ! [W2: int,Z3: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z3 @ one_one_int ) )
      = ( ( ord_less_int @ W2 @ Z3 )
        | ( W2 = Z3 ) ) ) ).

% zless_add1_eq
thf(fact_1206_int__gr__induct,axiom,
    ! [K: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K @ I )
     => ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
       => ( ! [I2: int] :
              ( ( ord_less_int @ K @ I2 )
             => ( ( P @ I2 )
               => ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_1207_odd__less__0__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z3 ) @ Z3 ) @ zero_zero_int )
      = ( ord_less_int @ Z3 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_1208_zless__imp__add1__zle,axiom,
    ! [W2: int,Z3: int] :
      ( ( ord_less_int @ W2 @ Z3 )
     => ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z3 ) ) ).

% zless_imp_add1_zle
thf(fact_1209_add1__zle__eq,axiom,
    ! [W2: int,Z3: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z3 )
      = ( ord_less_int @ W2 @ Z3 ) ) ).

% add1_zle_eq
thf(fact_1210_le__imp__0__less,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z3 ) ) ) ).

% le_imp_0_less
thf(fact_1211_div__pos__geq,axiom,
    ! [L: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ L )
     => ( ( ord_less_eq_int @ L @ K )
       => ( ( divide_divide_int @ K @ L )
          = ( plus_plus_int @ ( divide_divide_int @ ( minus_minus_int @ K @ L ) @ L ) @ one_one_int ) ) ) ) ).

% div_pos_geq
thf(fact_1212_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A2: nat,B5: nat] :
          ( ( P @ A2 @ B5 )
          = ( P @ B5 @ A2 ) )
     => ( ! [A2: nat] : ( P @ A2 @ zero_zero_nat )
       => ( ! [A2: nat,B5: nat] :
              ( ( P @ A2 @ B5 )
             => ( P @ A2 @ ( plus_plus_nat @ A2 @ B5 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_1213_gcd__nat_Oextremum,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% gcd_nat.extremum
thf(fact_1214_gcd__nat_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
        & ( zero_zero_nat != A ) ) ).

% gcd_nat.extremum_strict
thf(fact_1215_gcd__nat_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% gcd_nat.extremum_unique
thf(fact_1216_gcd__nat_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ( dvd_dvd_nat @ A @ zero_zero_nat )
        & ( A != zero_zero_nat ) ) ) ).

% gcd_nat.not_eq_extremum
thf(fact_1217_gcd__nat_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% gcd_nat.extremum_uniqueI
thf(fact_1218_int__power__div__base,axiom,
    ! [M: nat,K: int] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
          = ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).

% int_power_div_base
thf(fact_1219_dvd__pos__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ M @ N )
       => ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).

% dvd_pos_nat
thf(fact_1220_two__powr__div,axiom,
    ! [J: nat,I: nat] :
      ( ( ord_less_nat @ J @ I )
     => ( ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ I @ J ) ) ) ) ).

% two_powr_div
thf(fact_1221_pos2,axiom,
    ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).

% pos2
thf(fact_1222_realpow__pos__nth2,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ? [R3: real] :
          ( ( ord_less_real @ zero_zero_real @ R3 )
          & ( ( power_power_real @ R3 @ ( suc @ N ) )
            = A ) ) ) ).

% realpow_pos_nth2
thf(fact_1223_realpow__pos__nth,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ( ( power_power_real @ R3 @ N )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_1224_realpow__pos__nth__unique,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X3: real] :
            ( ( ord_less_real @ zero_zero_real @ X3 )
            & ( ( power_power_real @ X3 @ N )
              = A )
            & ! [Y5: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y5 )
                  & ( ( power_power_real @ Y5 @ N )
                    = A ) )
               => ( Y5 = X3 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_1225_dvd__div__ge__1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ one_one_nat @ A )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( ord_less_eq_nat @ one_one_nat @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% dvd_div_ge_1
thf(fact_1226_dvd__div__eq__2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ C )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( ( dvd_dvd_nat @ B @ C )
         => ( ( ( divide_divide_nat @ C @ A )
              = ( divide_divide_nat @ C @ B ) )
           => ( A = B ) ) ) ) ) ).

% dvd_div_eq_2
thf(fact_1227_dvd__nat__bounds,axiom,
    ! [P2: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ P2 )
     => ( ( dvd_dvd_nat @ N @ P2 )
       => ( ( ord_less_nat @ zero_zero_nat @ N )
          & ( ord_less_eq_nat @ N @ P2 ) ) ) ) ).

% dvd_nat_bounds
thf(fact_1228_divides__rexp,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( dvd_dvd_nat @ X @ ( power_power_nat @ Y @ ( suc @ N ) ) ) ) ).

% divides_rexp
thf(fact_1229_log__half,axiom,
    ! [N: nat] :
      ( ( log @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( minus_minus_nat @ ( log @ N ) @ one_one_nat ) ) ).

% log_half
thf(fact_1230_semiring__norm_I13_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).

% semiring_norm(13)
thf(fact_1231_semiring__norm_I12_J,axiom,
    ! [N: num] :
      ( ( times_times_num @ one @ N )
      = N ) ).

% semiring_norm(12)
thf(fact_1232_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_1233_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1234_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1235_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1236_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1237_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_1238_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1239_num__double,axiom,
    ! [N: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N )
      = ( bit0 @ N ) ) ).

% num_double
thf(fact_1240_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_1241_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_1242_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_1243_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_1244_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_1245_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_1246_nat__mult__dvd__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel_disj
thf(fact_1247_log__zero,axiom,
    ( ( log @ zero_zero_nat )
    = zero_zero_nat ) ).

% log_zero

% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( size_s7115545719440041015ring_a @ ( evens_6356279921861204579ring_a @ $true @ ( cons_F8924456270334622075ring_a @ x @ ( cons_F8924456270334622075ring_a @ y @ numbersa ) ) ) )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ la @ one_one_nat ) ) ) ).

%------------------------------------------------------------------------------