TPTP Problem File: SLH0373^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Number_Theoretic_Transform/0008_Butterfly/prob_00439_022314__14143068_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1358 ( 860 unt;  82 typ;   0 def)
%            Number of atoms       : 2644 (1792 equ;   0 cnn)
%            Maximal formula atoms :    8 (   2 avg)
%            Number of connectives : 10211 ( 332   ~;  71   |; 126   &;9071   @)
%                                         (   0 <=>; 611  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   4 avg)
%            Number of types       :    8 (   7 usr)
%            Number of type conns  :  170 ( 170   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   78 (  75 usr;  24 con; 0-5 aty)
%            Number of variables   : 2603 ( 112   ^;2464   !;  27   ?;2603   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-18 16:39:19.633
%------------------------------------------------------------------------------
% Could-be-implicit typings (7)
thf(ty_n_t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
    list_F4626807571770296779ring_a: $tType ).

thf(ty_n_t__Finite____Field__Omod____ring_Itf__a_J,type,
    finite_mod_ring_a: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (75)
thf(sy_c_Butterfly_Obutterfly_OFNTT_001tf__a,type,
    fNTT_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).

thf(sy_c_Butterfly_Obutterfly_ONTT__gen_001tf__a,type,
    nTT_gen_a: nat > finite_mod_ring_a > nat > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).

thf(sy_c_Butterfly_Obutterfly_Ontt__gen_001tf__a,type,
    ntt_gen_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > nat > nat > finite_mod_ring_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    minus_3609261664126569004ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
    minus_minus_int: int > int > int ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    one_on2109788427901206336ring_a: finite_mod_ring_a ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    plus_p6165643967897163644ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
    plus_plus_num: num > num > num ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    times_5121417576591743744ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    uminus3100561713750211260ring_a: finite_mod_ring_a > finite_mod_ring_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    zero_z7902377541816115708ring_a: finite_mod_ring_a ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    groups7393019125535064413ring_a: ( int > finite_mod_ring_a ) > set_int > finite_mod_ring_a ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    groups3558780024651037881ring_a: ( nat > finite_mod_ring_a ) > set_nat > finite_mod_ring_a ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Int__Oint,type,
    groups3539618377306564664at_int: ( nat > int ) > set_nat > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
    groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_If_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    if_Finite_mod_ring_a: $o > finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_List_Onth_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    nth_Fi694352073394265932ring_a: list_F4626807571770296779ring_a > nat > finite_mod_ring_a ).

thf(sy_c_NTT_Ontt_ONTT_001tf__a,type,
    nTT_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).

thf(sy_c_NTT_Ontt_Ontt_001tf__a,type,
    ntt_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > nat > finite_mod_ring_a ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
    size_s7115545719440041015ring_a: list_F4626807571770296779ring_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
    size_size_num: num > nat ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    numera7938180240421336042ring_a: num > finite_mod_ring_a ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
    numeral_numeral_int: num > int ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Power_Opower__class_Opower_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    power_6826135765519566523ring_a: finite_mod_ring_a > nat > finite_mod_ring_a ).

thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
    power_power_int: int > nat > int ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    divide972148758386938611ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Finite____Field__Omod____ring_Itf__a_J,type,
    dvd_dv7258769340395861407ring_a: finite_mod_ring_a > finite_mod_ring_a > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
    dvd_dvd_int: int > int > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Set_OCollect_001t__Int__Oint,type,
    collect_int: ( int > $o ) > set_int ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
    set_or4662586982721622107an_int: int > int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
    set_or4665077453230672383an_nat: nat > nat > set_nat ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_v_N,type,
    n: nat ).

thf(sy_v__092_060omega_062,type,
    omega: finite_mod_ring_a ).

thf(sy_v_fntt1____,type,
    fntt1: list_F4626807571770296779ring_a ).

thf(sy_v_fntt2____,type,
    fntt2: list_F4626807571770296779ring_a ).

thf(sy_v_i____,type,
    i: nat ).

thf(sy_v_k,type,
    k: nat ).

thf(sy_v_l1____,type,
    l1: nat ).

thf(sy_v_l2____,type,
    l2: nat ).

thf(sy_v_la____,type,
    la: nat ).

thf(sy_v_llen____,type,
    llen: nat ).

thf(sy_v_n,type,
    n2: nat ).

thf(sy_v_numbers1____,type,
    numbers1: list_F4626807571770296779ring_a ).

thf(sy_v_numbers2____,type,
    numbers2: list_F4626807571770296779ring_a ).

thf(sy_v_numbersa____,type,
    numbersa: list_F4626807571770296779ring_a ).

thf(sy_v_sum2____,type,
    sum2: list_F4626807571770296779ring_a ).

% Relevant facts (1268)
thf(fact_0_neg__cong,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( ( uminus3100561713750211260ring_a @ X )
        = ( uminus3100561713750211260ring_a @ Y ) )
     => ( X = Y ) ) ).

% neg_cong
thf(fact_1_exp__rule,axiom,
    ! [C: finite_mod_ring_a,D: finite_mod_ring_a,E: nat] :
      ( ( power_6826135765519566523ring_a @ ( times_5121417576591743744ring_a @ C @ D ) @ E )
      = ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ C @ E ) @ ( power_6826135765519566523ring_a @ D @ E ) ) ) ).

% exp_rule
thf(fact_2_sum__swap,axiom,
    ! [F: nat > nat > int,Y: nat,X: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [I: nat] : ( groups3539618377306564664at_int @ ( F @ I ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
      = ( groups3539618377306564664at_int
        @ ^ [J: nat] :
            ( groups3539618377306564664at_int
            @ ^ [I: nat] : ( F @ I @ J )
            @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) ) ) ).

% sum_swap
thf(fact_3_sum__swap,axiom,
    ! [F: nat > nat > finite_mod_ring_a,Y: nat,X: nat] :
      ( ( groups3558780024651037881ring_a
        @ ^ [I: nat] : ( groups3558780024651037881ring_a @ ( F @ I ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
      = ( groups3558780024651037881ring_a
        @ ^ [J: nat] :
            ( groups3558780024651037881ring_a
            @ ^ [I: nat] : ( F @ I @ J )
            @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) ) ) ).

% sum_swap
thf(fact_4_sum__swap,axiom,
    ! [F: nat > nat > nat,Y: nat,X: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [I: nat] : ( groups3542108847815614940at_nat @ ( F @ I ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
      = ( groups3542108847815614940at_nat
        @ ^ [J: nat] :
            ( groups3542108847815614940at_nat
            @ ^ [I: nat] : ( F @ I @ J )
            @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) ) ) ).

% sum_swap
thf(fact_5_sum__index__shift,axiom,
    ! [F: nat > int,C: nat,A: nat,B: nat] :
      ( ( groups3539618377306564664at_int
        @ ^ [L: nat] : ( F @ ( plus_plus_nat @ L @ C ) )
        @ ( set_or4665077453230672383an_nat @ A @ B ) )
      = ( groups3539618377306564664at_int @ F @ ( set_or4665077453230672383an_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ) ).

% sum_index_shift
thf(fact_6_sum__index__shift,axiom,
    ! [F: nat > finite_mod_ring_a,C: nat,A: nat,B: nat] :
      ( ( groups3558780024651037881ring_a
        @ ^ [L: nat] : ( F @ ( plus_plus_nat @ L @ C ) )
        @ ( set_or4665077453230672383an_nat @ A @ B ) )
      = ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ) ).

% sum_index_shift
thf(fact_7_sum__index__shift,axiom,
    ! [F: nat > nat,C: nat,A: nat,B: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [L: nat] : ( F @ ( plus_plus_nat @ L @ C ) )
        @ ( set_or4665077453230672383an_nat @ A @ B ) )
      = ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ) ).

% sum_index_shift
thf(fact_8_sum__in,axiom,
    ! [F: nat > finite_mod_ring_a,Y: finite_mod_ring_a,X: nat] :
      ( ( groups3558780024651037881ring_a
        @ ^ [I: nat] : ( times_5121417576591743744ring_a @ ( F @ I ) @ Y )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
      = ( times_5121417576591743744ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) @ Y ) ) ).

% sum_in
thf(fact_9_sum__neg__in,axiom,
    ! [F: int > finite_mod_ring_a,L2: int] :
      ( ( uminus3100561713750211260ring_a @ ( groups7393019125535064413ring_a @ F @ ( set_or4662586982721622107an_int @ zero_zero_int @ L2 ) ) )
      = ( groups7393019125535064413ring_a
        @ ^ [J: int] : ( uminus3100561713750211260ring_a @ ( F @ J ) )
        @ ( set_or4662586982721622107an_int @ zero_zero_int @ L2 ) ) ) ).

% sum_neg_in
thf(fact_10_sum__neg__in,axiom,
    ! [F: nat > finite_mod_ring_a,L2: nat] :
      ( ( uminus3100561713750211260ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ L2 ) ) )
      = ( groups3558780024651037881ring_a
        @ ^ [J: nat] : ( uminus3100561713750211260ring_a @ ( F @ J ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ L2 ) ) ) ).

% sum_neg_in
thf(fact_11_sum__splice,axiom,
    ! [F: nat > int,Nn: nat] :
      ( ( groups3539618377306564664at_int @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Nn ) ) )
      = ( plus_plus_int
        @ ( groups3539618377306564664at_int
          @ ^ [I: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) )
        @ ( groups3539618377306564664at_int
          @ ^ [I: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ one_one_nat ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) ) ) ) ).

% sum_splice
thf(fact_12_sum__splice,axiom,
    ! [F: nat > finite_mod_ring_a,Nn: nat] :
      ( ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Nn ) ) )
      = ( plus_p6165643967897163644ring_a
        @ ( groups3558780024651037881ring_a
          @ ^ [I: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) )
        @ ( groups3558780024651037881ring_a
          @ ^ [I: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ one_one_nat ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) ) ) ) ).

% sum_splice
thf(fact_13_sum__splice,axiom,
    ! [F: nat > nat,Nn: nat] :
      ( ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Nn ) ) )
      = ( plus_plus_nat
        @ ( groups3542108847815614940at_nat
          @ ^ [I: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) )
        @ ( groups3542108847815614940at_nat
          @ ^ [I: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ one_one_nat ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) ) ) ) ).

% sum_splice
thf(fact_14_sum__splice__other__way__round,axiom,
    ! [F: nat > int,I2: nat] :
      ( ( plus_plus_int
        @ ( groups3539618377306564664at_int
          @ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) )
        @ ( groups3539618377306564664at_int
          @ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) ) )
      = ( groups3539618377306564664at_int @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) ) ) ) ).

% sum_splice_other_way_round
thf(fact_15_sum__splice__other__way__round,axiom,
    ! [F: nat > finite_mod_ring_a,I2: nat] :
      ( ( plus_p6165643967897163644ring_a
        @ ( groups3558780024651037881ring_a
          @ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) )
        @ ( groups3558780024651037881ring_a
          @ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) ) )
      = ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) ) ) ) ).

% sum_splice_other_way_round
thf(fact_16_sum__splice__other__way__round,axiom,
    ! [F: nat > nat,I2: nat] :
      ( ( plus_plus_nat
        @ ( groups3542108847815614940at_nat
          @ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) )
        @ ( groups3542108847815614940at_nat
          @ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
          @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) ) )
      = ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) ) ) ) ).

% sum_splice_other_way_round
thf(fact_17__C003_C,axiom,
    ( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) )
    = ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ ( plus_plus_nat @ i @ ( divide_divide_nat @ llen @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).

% "003"
thf(fact_18__C010_C,axiom,
    ( ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) )
    = ( groups3558780024651037881ring_a
      @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) ) )
      @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) ) ) ).

% "010"
thf(fact_19_local_Ontt__def,axiom,
    ! [Numbers: list_F4626807571770296779ring_a,I2: nat] :
      ( ( ntt_a @ n2 @ omega @ Numbers @ I2 )
      = ( groups3558780024651037881ring_a
        @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ Numbers @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ I2 @ J ) ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n2 ) ) ) ).

% local.ntt_def
thf(fact_20_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_on2109788427901206336ring_a ) ).

% power_minus1_even
thf(fact_21_power__minus1__even,axiom,
    ! [N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = one_one_int ) ).

% power_minus1_even
thf(fact_22_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: finite_mod_ring_a,N: nat] :
      ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_6826135765519566523ring_a @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_23_Power_Oring__1__class_Opower__minus__even,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% Power.ring_1_class.power_minus_even
thf(fact_24_minus__1__div__2__eq,axiom,
    ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_2_eq
thf(fact_25_sum__power2__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_power2_eq_zero_iff
thf(fact_26_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
    = ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_27_add__neg__numeral__special_I9_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% add_neg_numeral_special(9)
thf(fact_28_bits__1__div__2,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% bits_1_div_2
thf(fact_29_bits__1__div__2,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% bits_1_div_2
thf(fact_30_one__div__two__eq__zero,axiom,
    ( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% one_div_two_eq_zero
thf(fact_31_one__div__two__eq__zero,axiom,
    ( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% one_div_two_eq_zero
thf(fact_32_add__self__div__2,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = M ) ).

% add_self_div_2
thf(fact_33_power2__minus,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_34_power2__minus,axiom,
    ! [A: int] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_minus
thf(fact_35_zero__eq__power2,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_z7902377541816115708ring_a )
      = ( A = zero_z7902377541816115708ring_a ) ) ).

% zero_eq_power2
thf(fact_36_zero__eq__power2,axiom,
    ! [A: nat] :
      ( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% zero_eq_power2
thf(fact_37_zero__eq__power2,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% zero_eq_power2
thf(fact_38_one__add__one,axiom,
    ( ( plus_p6165643967897163644ring_a @ one_on2109788427901206336ring_a @ one_on2109788427901206336ring_a )
    = ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_39_one__add__one,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_40_one__add__one,axiom,
    ( ( plus_plus_int @ one_one_int @ one_one_int )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% one_add_one
thf(fact_41_divide__eq__eq__numeral1_I2_J,axiom,
    ! [B: finite_mod_ring_a,W: num,A: finite_mod_ring_a] :
      ( ( ( divide972148758386938611ring_a @ B @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) )
        = A )
      = ( ( ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
           != zero_z7902377541816115708ring_a )
         => ( B
            = ( times_5121417576591743744ring_a @ A @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) ) ) )
        & ( ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
            = zero_z7902377541816115708ring_a )
         => ( A = zero_z7902377541816115708ring_a ) ) ) ) ).

% divide_eq_eq_numeral1(2)
thf(fact_42_omega__properties_I2_J,axiom,
    omega != one_on2109788427901206336ring_a ).

% omega_properties(2)
thf(fact_43_omega__properties_I1_J,axiom,
    ( ( power_6826135765519566523ring_a @ omega @ n2 )
    = one_on2109788427901206336ring_a ) ).

% omega_properties(1)
thf(fact_44_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_45_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_int @ M )
        = ( numeral_numeral_int @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_46_zdiv__numeral__Bit0,axiom,
    ! [V: num,W: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
      = ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).

% zdiv_numeral_Bit0
thf(fact_47_n__min1__2,axiom,
    ( ( n2
      = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
   => ( omega
      = ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ) ).

% n_min1_2
thf(fact_48_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ W ) @ Z ) )
      = ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_49_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_50_mult__numeral__left__semiring__numeral,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).

% mult_numeral_left_semiring_numeral
thf(fact_51_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ M ) @ ( numera7938180240421336042ring_a @ N ) )
      = ( numera7938180240421336042ring_a @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_52_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_53_numeral__times__numeral,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% numeral_times_numeral
thf(fact_54_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_55_bits__div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_56_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_57_bits__div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_58_add__numeral__left,axiom,
    ! [V: num,W: num,Z: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ V ) @ ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ W ) @ Z ) )
      = ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_59_add__numeral__left,axiom,
    ! [V: num,W: num,Z: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_60_add__numeral__left,axiom,
    ! [V: num,W: num,Z: int] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).

% add_numeral_left
thf(fact_61_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ M ) @ ( numera7938180240421336042ring_a @ N ) )
      = ( numera7938180240421336042ring_a @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_62_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_63_numeral__plus__numeral,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% numeral_plus_numeral
thf(fact_64_num__double,axiom,
    ! [N: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N )
      = ( bit0 @ N ) ) ).

% num_double
thf(fact_65_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_66_bits__div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% bits_div_by_1
thf(fact_67_power__one,axiom,
    ! [N: nat] :
      ( ( power_6826135765519566523ring_a @ one_on2109788427901206336ring_a @ N )
      = one_on2109788427901206336ring_a ) ).

% power_one
thf(fact_68_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ one_one_nat @ N )
      = one_one_nat ) ).

% power_one
thf(fact_69_power__one,axiom,
    ! [N: nat] :
      ( ( power_power_int @ one_one_int @ N )
      = one_one_int ) ).

% power_one
thf(fact_70_neg__numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( M = N ) ) ).

% neg_numeral_eq_iff
thf(fact_71_div__minus__minus,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( uminus3100561713750211260ring_a @ B ) )
      = ( divide972148758386938611ring_a @ A @ B ) ) ).

% div_minus_minus
thf(fact_72_div__minus__minus,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ A @ B ) ) ).

% div_minus_minus
thf(fact_73_power__mult__numeral,axiom,
    ! [A: finite_mod_ring_a,M: num,N: num] :
      ( ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_74_power__mult__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_75_power__mult__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).

% power_mult_numeral
thf(fact_76_power__one__right,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( power_6826135765519566523ring_a @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_77_power__one__right,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_78_power__one__right,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ one_one_nat )
      = A ) ).

% power_one_right
thf(fact_79_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_80_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X2: nat] : ( member_nat @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_81_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_82_omg__n__2__min1,axiom,
    ( ( power_6826135765519566523ring_a @ omega @ ( divide_divide_nat @ n2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
    = ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ).

% omg_n_2_min1
thf(fact_83_sum__squares__eq__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
        = zero_zero_int )
      = ( ( X = zero_zero_int )
        & ( Y = zero_zero_int ) ) ) ).

% sum_squares_eq_zero_iff
thf(fact_84_div__mult__mult1__if,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( C = zero_z7902377541816115708ring_a )
       => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
          = zero_z7902377541816115708ring_a ) )
      & ( ( C != zero_z7902377541816115708ring_a )
       => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
          = ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_85_div__mult__mult1__if,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( C = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = zero_zero_nat ) )
      & ( ( C != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_86_div__mult__mult1__if,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( C = zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = zero_zero_int ) )
      & ( ( C != zero_zero_int )
       => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
          = ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_87_div__mult__mult2,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ B @ C ) )
        = ( divide972148758386938611ring_a @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_88_div__mult__mult2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_89_div__mult__mult2,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_90_div__mult__mult1,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
        = ( divide972148758386938611ring_a @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_91_div__mult__mult1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_92_div__mult__mult1,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( divide_divide_int @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_93_distrib__right__numeral,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,V: num] :
      ( ( times_5121417576591743744ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ ( numera7938180240421336042ring_a @ V ) )
      = ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ ( numera7938180240421336042ring_a @ V ) ) @ ( times_5121417576591743744ring_a @ B @ ( numera7938180240421336042ring_a @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_94_distrib__right__numeral,axiom,
    ! [A: nat,B: nat,V: num] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_95_distrib__right__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% distrib_right_numeral
thf(fact_96_distrib__left__numeral,axiom,
    ! [V: num,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ ( plus_p6165643967897163644ring_a @ B @ C ) )
      = ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ B ) @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_97_distrib__left__numeral,axiom,
    ! [V: num,B: nat,C: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_98_distrib__left__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% distrib_left_numeral
thf(fact_99_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_nat
        = ( numeral_numeral_nat @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_100_one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( one_one_int
        = ( numeral_numeral_int @ N ) )
      = ( one = N ) ) ).

% one_eq_numeral_iff
thf(fact_101_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_nat @ N )
        = one_one_nat )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_102_numeral__eq__one__iff,axiom,
    ! [N: num] :
      ( ( ( numeral_numeral_int @ N )
        = one_one_int )
      = ( N = one ) ) ).

% numeral_eq_one_iff
thf(fact_103_mult__minus1__right,axiom,
    ! [Z: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ Z @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
      = ( uminus3100561713750211260ring_a @ Z ) ) ).

% mult_minus1_right
thf(fact_104_mult__minus1__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1_right
thf(fact_105_mult__minus1,axiom,
    ! [Z: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ Z )
      = ( uminus3100561713750211260ring_a @ Z ) ) ).

% mult_minus1
thf(fact_106_mult__minus1,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
      = ( uminus_uminus_int @ Z ) ) ).

% mult_minus1
thf(fact_107_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ M ) ) @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ N ) ) )
      = ( numera7938180240421336042ring_a @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_108_mult__neg__numeral__simps_I1_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).

% mult_neg_numeral_simps(1)
thf(fact_109_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ M ) ) @ ( numera7938180240421336042ring_a @ N ) )
      = ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_110_mult__neg__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(2)
thf(fact_111_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ M ) @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ N ) ) )
      = ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_112_mult__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).

% mult_neg_numeral_simps(3)
thf(fact_113_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ M ) ) @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ N ) ) )
      = ( uminus3100561713750211260ring_a @ ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ M ) @ ( numera7938180240421336042ring_a @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_114_add__neg__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).

% add_neg_numeral_simps(3)
thf(fact_115_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ ( numeral_numeral_nat @ K ) )
      = zero_z7902377541816115708ring_a ) ).

% power_zero_numeral
thf(fact_116_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
      = zero_zero_nat ) ).

% power_zero_numeral
thf(fact_117_power__zero__numeral,axiom,
    ! [K: num] :
      ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
      = zero_zero_int ) ).

% power_zero_numeral
thf(fact_118_div__minus1__right,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ A @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
      = ( uminus3100561713750211260ring_a @ A ) ) ).

% div_minus1_right
thf(fact_119_div__minus1__right,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
      = ( uminus_uminus_int @ A ) ) ).

% div_minus1_right
thf(fact_120_power__add__numeral2,axiom,
    ! [A: finite_mod_ring_a,M: num,N: num,B: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_121_power__add__numeral2,axiom,
    ! [A: nat,M: num,N: num,B: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_122_power__add__numeral2,axiom,
    ! [A: int,M: num,N: num,B: int] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
      = ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).

% power_add_numeral2
thf(fact_123_power__add__numeral,axiom,
    ! [A: finite_mod_ring_a,M: num,N: num] :
      ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_124_power__add__numeral,axiom,
    ! [A: nat,M: num,N: num] :
      ( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_125_power__add__numeral,axiom,
    ! [A: int,M: num,N: num] :
      ( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
      = ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).

% power_add_numeral
thf(fact_126_eq__divide__eq__numeral1_I1_J,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,W: num] :
      ( ( A
        = ( divide972148758386938611ring_a @ B @ ( numera7938180240421336042ring_a @ W ) ) )
      = ( ( ( ( numera7938180240421336042ring_a @ W )
           != zero_z7902377541816115708ring_a )
         => ( ( times_5121417576591743744ring_a @ A @ ( numera7938180240421336042ring_a @ W ) )
            = B ) )
        & ( ( ( numera7938180240421336042ring_a @ W )
            = zero_z7902377541816115708ring_a )
         => ( A = zero_z7902377541816115708ring_a ) ) ) ) ).

% eq_divide_eq_numeral1(1)
thf(fact_127_divide__eq__eq__numeral1_I1_J,axiom,
    ! [B: finite_mod_ring_a,W: num,A: finite_mod_ring_a] :
      ( ( ( divide972148758386938611ring_a @ B @ ( numera7938180240421336042ring_a @ W ) )
        = A )
      = ( ( ( ( numera7938180240421336042ring_a @ W )
           != zero_z7902377541816115708ring_a )
         => ( B
            = ( times_5121417576591743744ring_a @ A @ ( numera7938180240421336042ring_a @ W ) ) ) )
        & ( ( ( numera7938180240421336042ring_a @ W )
            = zero_z7902377541816115708ring_a )
         => ( A = zero_z7902377541816115708ring_a ) ) ) ) ).

% divide_eq_eq_numeral1(1)
thf(fact_128_div__mult__self4,axiom,
    ! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ B @ C ) @ A ) @ B )
        = ( plus_p6165643967897163644ring_a @ C @ ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_129_div__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_130_div__mult__self4,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_131_div__mult__self3,axiom,
    ! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ C @ B ) @ A ) @ B )
        = ( plus_p6165643967897163644ring_a @ C @ ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_132_div__mult__self3,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_133_div__mult__self3,axiom,
    ! [B: int,C: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_134_div__mult__self2,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ ( times_5121417576591743744ring_a @ B @ C ) ) @ B )
        = ( plus_p6165643967897163644ring_a @ C @ ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_135_div__mult__self2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_136_div__mult__self2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_137_div__mult__self1,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ ( times_5121417576591743744ring_a @ C @ B ) ) @ B )
        = ( plus_p6165643967897163644ring_a @ C @ ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_138_div__mult__self1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_139_div__mult__self1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
        = ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_140_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_p6165643967897163644ring_a @ one_on2109788427901206336ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
    = zero_z7902377541816115708ring_a ) ).

% add_neg_numeral_special(7)
thf(fact_141_add__neg__numeral__special_I7_J,axiom,
    ( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% add_neg_numeral_special(7)
thf(fact_142_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ one_on2109788427901206336ring_a )
    = zero_z7902377541816115708ring_a ) ).

% add_neg_numeral_special(8)
thf(fact_143_add__neg__numeral__special_I8_J,axiom,
    ( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = zero_zero_int ) ).

% add_neg_numeral_special(8)
thf(fact_144_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_p6165643967897163644ring_a @ one_on2109788427901206336ring_a @ ( numera7938180240421336042ring_a @ N ) )
      = ( numera7938180240421336042ring_a @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_145_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_146_one__plus__numeral,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% one_plus_numeral
thf(fact_147_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ N ) @ one_on2109788427901206336ring_a )
      = ( numera7938180240421336042ring_a @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_148_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_149_numeral__plus__one,axiom,
    ! [N: num] :
      ( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
      = ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).

% numeral_plus_one
thf(fact_150_numeral__eq__neg__one__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
        = ( uminus_uminus_int @ one_one_int ) )
      = ( N = one ) ) ).

% numeral_eq_neg_one_iff
thf(fact_151_neg__one__eq__numeral__iff,axiom,
    ! [N: num] :
      ( ( ( uminus_uminus_int @ one_one_int )
        = ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( N = one ) ) ).

% neg_one_eq_numeral_iff
thf(fact_152_left__minus__one__mult__self,axiom,
    ! [N: nat,A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_153_left__minus__one__mult__self,axiom,
    ! [N: nat,A: int] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
      = A ) ).

% left_minus_one_mult_self
thf(fact_154_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) )
      = one_on2109788427901206336ring_a ) ).

% minus_one_mult_self
thf(fact_155_minus__one__mult__self,axiom,
    ! [N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
      = one_one_int ) ).

% minus_one_mult_self
thf(fact_156_eq__divide__eq__numeral1_I2_J,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,W: num] :
      ( ( A
        = ( divide972148758386938611ring_a @ B @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) ) )
      = ( ( ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
           != zero_z7902377541816115708ring_a )
         => ( ( times_5121417576591743744ring_a @ A @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) )
            = B ) )
        & ( ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
            = zero_z7902377541816115708ring_a )
         => ( A = zero_z7902377541816115708ring_a ) ) ) ) ).

% eq_divide_eq_numeral1(2)
thf(fact_157_n__two__pot,axiom,
    ( n2
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ n ) ) ).

% n_two_pot
thf(fact_158_int__bit__induct,axiom,
    ! [P: int > $o,K: int] :
      ( ( P @ zero_zero_int )
     => ( ( P @ ( uminus_uminus_int @ one_one_int ) )
       => ( ! [K2: int] :
              ( ( P @ K2 )
             => ( ( K2 != zero_zero_int )
               => ( P @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
         => ( ! [K2: int] :
                ( ( P @ K2 )
               => ( ( K2
                   != ( uminus_uminus_int @ one_one_int ) )
                 => ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
           => ( P @ K ) ) ) ) ) ).

% int_bit_induct
thf(fact_159_minus__1__div__exp__eq__int,axiom,
    ! [N: nat] :
      ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( uminus_uminus_int @ one_one_int ) ) ).

% minus_1_div_exp_eq_int
thf(fact_160_add__One__commute,axiom,
    ! [N: num] :
      ( ( plus_plus_num @ one @ N )
      = ( plus_plus_num @ N @ one ) ) ).

% add_One_commute
thf(fact_161_div__mult2__numeral__eq,axiom,
    ! [A: nat,K: num,L2: num] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L2 ) )
      = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L2 ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_162_div__mult2__numeral__eq,axiom,
    ! [A: int,K: num,L2: num] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L2 ) )
      = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L2 ) ) ) ) ).

% div_mult2_numeral_eq
thf(fact_163_is__num__normalize_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_164_is__num__normalize_I1_J,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
      = ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).

% is_num_normalize(1)
thf(fact_165_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N ) ) ).

% zero_neq_numeral
thf(fact_166_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( numeral_numeral_int @ N ) ) ).

% zero_neq_numeral
thf(fact_167_power__not__zero,axiom,
    ! [A: finite_mod_ring_a,N: nat] :
      ( ( A != zero_z7902377541816115708ring_a )
     => ( ( power_6826135765519566523ring_a @ A @ N )
       != zero_z7902377541816115708ring_a ) ) ).

% power_not_zero
thf(fact_168_power__not__zero,axiom,
    ! [A: nat,N: nat] :
      ( ( A != zero_zero_nat )
     => ( ( power_power_nat @ A @ N )
       != zero_zero_nat ) ) ).

% power_not_zero
thf(fact_169_power__not__zero,axiom,
    ! [A: int,N: nat] :
      ( ( A != zero_zero_int )
     => ( ( power_power_int @ A @ N )
       != zero_zero_int ) ) ).

% power_not_zero
thf(fact_170_power__commuting__commutes,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a,N: nat] :
      ( ( ( times_5121417576591743744ring_a @ X @ Y )
        = ( times_5121417576591743744ring_a @ Y @ X ) )
     => ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ X @ N ) @ Y )
        = ( times_5121417576591743744ring_a @ Y @ ( power_6826135765519566523ring_a @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_171_power__commuting__commutes,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = ( times_times_nat @ Y @ X ) )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y )
        = ( times_times_nat @ Y @ ( power_power_nat @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_172_power__commuting__commutes,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( ( times_times_int @ X @ Y )
        = ( times_times_int @ Y @ X ) )
     => ( ( times_times_int @ ( power_power_int @ X @ N ) @ Y )
        = ( times_times_int @ Y @ ( power_power_int @ X @ N ) ) ) ) ).

% power_commuting_commutes
thf(fact_173_power__mult__distrib,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,N: nat] :
      ( ( power_6826135765519566523ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ N )
      = ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ ( power_6826135765519566523ring_a @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_174_power__mult__distrib,axiom,
    ! [A: nat,B: nat,N: nat] :
      ( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
      = ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_175_power__mult__distrib,axiom,
    ! [A: int,B: int,N: nat] :
      ( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
      = ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).

% power_mult_distrib
thf(fact_176_power__commutes,axiom,
    ! [A: finite_mod_ring_a,N: nat] :
      ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ A )
      = ( times_5121417576591743744ring_a @ A @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ).

% power_commutes
thf(fact_177_power__commutes,axiom,
    ! [A: nat,N: nat] :
      ( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
      = ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).

% power_commutes
thf(fact_178_power__commutes,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
      = ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).

% power_commutes
thf(fact_179_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_180_numeral__neq__neg__numeral,axiom,
    ! [M: num,N: num] :
      ( ( numeral_numeral_int @ M )
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_neq_neg_numeral
thf(fact_181_neg__numeral__neq__numeral,axiom,
    ! [M: num,N: num] :
      ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
     != ( numeral_numeral_int @ N ) ) ).

% neg_numeral_neq_numeral
thf(fact_182_is__num__normalize_I8_J,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( uminus3100561713750211260ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) )
      = ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ B ) @ ( uminus3100561713750211260ring_a @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_183_is__num__normalize_I8_J,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% is_num_normalize(8)
thf(fact_184_power__divide,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,N: nat] :
      ( ( power_6826135765519566523ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ N )
      = ( divide972148758386938611ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ ( power_6826135765519566523ring_a @ B @ N ) ) ) ).

% power_divide
thf(fact_185_div__minus__right,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ A @ ( uminus3100561713750211260ring_a @ B ) )
      = ( divide972148758386938611ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B ) ) ).

% div_minus_right
thf(fact_186_div__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( divide_divide_int @ A @ ( uminus_uminus_int @ B ) )
      = ( divide_divide_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% div_minus_right
thf(fact_187_power__mult,axiom,
    ! [A: finite_mod_ring_a,M: nat,N: nat] :
      ( ( power_6826135765519566523ring_a @ A @ ( times_times_nat @ M @ N ) )
      = ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_188_power__mult,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_189_power__mult,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).

% power_mult
thf(fact_190_div__mult2__eq,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q2 ) )
      = ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) ).

% div_mult2_eq
thf(fact_191_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_192_zero__neq__neg__numeral,axiom,
    ! [N: num] :
      ( zero_zero_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% zero_neq_neg_numeral
thf(fact_193_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_p6165643967897163644ring_a @ one_on2109788427901206336ring_a @ ( numera7938180240421336042ring_a @ X ) )
      = ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ X ) @ one_on2109788427901206336ring_a ) ) ).

% one_plus_numeral_commute
thf(fact_194_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).

% one_plus_numeral_commute
thf(fact_195_one__plus__numeral__commute,axiom,
    ! [X: num] :
      ( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).

% one_plus_numeral_commute
thf(fact_196_mult__numeral__1__right,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ A @ ( numera7938180240421336042ring_a @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_197_mult__numeral__1__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_198_mult__numeral__1__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
      = A ) ).

% mult_numeral_1_right
thf(fact_199_mult__numeral__1,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_200_mult__numeral__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_201_mult__numeral__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
      = A ) ).

% mult_numeral_1
thf(fact_202_numeral__One,axiom,
    ( ( numera7938180240421336042ring_a @ one )
    = one_on2109788427901206336ring_a ) ).

% numeral_One
thf(fact_203_numeral__One,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numeral_One
thf(fact_204_numeral__One,axiom,
    ( ( numeral_numeral_int @ one )
    = one_one_int ) ).

% numeral_One
thf(fact_205_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numera7938180240421336042ring_a @ ( bit0 @ N ) )
      = ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ N ) @ ( numera7938180240421336042ring_a @ N ) ) ) ).

% numeral_Bit0
thf(fact_206_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_Bit0
thf(fact_207_numeral__Bit0,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_Bit0
thf(fact_208_left__right__inverse__power,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a,N: nat] :
      ( ( ( times_5121417576591743744ring_a @ X @ Y )
        = one_on2109788427901206336ring_a )
     => ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ X @ N ) @ ( power_6826135765519566523ring_a @ Y @ N ) )
        = one_on2109788427901206336ring_a ) ) ).

% left_right_inverse_power
thf(fact_209_left__right__inverse__power,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( ( times_times_nat @ X @ Y )
        = one_one_nat )
     => ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) )
        = one_one_nat ) ) ).

% left_right_inverse_power
thf(fact_210_left__right__inverse__power,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( ( times_times_int @ X @ Y )
        = one_one_int )
     => ( ( times_times_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ N ) )
        = one_one_int ) ) ).

% left_right_inverse_power
thf(fact_211_one__neq__neg__numeral,axiom,
    ! [N: num] :
      ( one_one_int
     != ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% one_neq_neg_numeral
thf(fact_212_numeral__neq__neg__one,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ N )
     != ( uminus_uminus_int @ one_one_int ) ) ).

% numeral_neq_neg_one
thf(fact_213_power__0,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( power_6826135765519566523ring_a @ A @ zero_zero_nat )
      = one_on2109788427901206336ring_a ) ).

% power_0
thf(fact_214_power__0,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ zero_zero_nat )
      = one_one_nat ) ).

% power_0
thf(fact_215_power__0,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ zero_zero_nat )
      = one_one_int ) ).

% power_0
thf(fact_216_power__one__over,axiom,
    ! [A: finite_mod_ring_a,N: nat] :
      ( ( power_6826135765519566523ring_a @ ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ A ) @ N )
      = ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ).

% power_one_over
thf(fact_217_power__add,axiom,
    ! [A: finite_mod_ring_a,M: nat,N: nat] :
      ( ( power_6826135765519566523ring_a @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ M ) @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ).

% power_add
thf(fact_218_power__add,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).

% power_add
thf(fact_219_power__add,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
      = ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).

% power_add
thf(fact_220_numerals_I1_J,axiom,
    ( ( numeral_numeral_nat @ one )
    = one_one_nat ) ).

% numerals(1)
thf(fact_221_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numera7938180240421336042ring_a @ ( bit0 @ N ) )
      = ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ N ) @ ( numera7938180240421336042ring_a @ N ) ) ) ).

% numeral_code(2)
thf(fact_222_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_nat @ ( bit0 @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).

% numeral_code(2)
thf(fact_223_numeral__code_I2_J,axiom,
    ! [N: num] :
      ( ( numeral_numeral_int @ ( bit0 @ N ) )
      = ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).

% numeral_code(2)
thf(fact_224_eq__divide__eq__numeral_I1_J,axiom,
    ! [W: num,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( ( numera7938180240421336042ring_a @ W )
        = ( divide972148758386938611ring_a @ B @ C ) )
      = ( ( ( C != zero_z7902377541816115708ring_a )
         => ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ W ) @ C )
            = B ) )
        & ( ( C = zero_z7902377541816115708ring_a )
         => ( ( numera7938180240421336042ring_a @ W )
            = zero_z7902377541816115708ring_a ) ) ) ) ).

% eq_divide_eq_numeral(1)
thf(fact_225_divide__eq__eq__numeral_I1_J,axiom,
    ! [B: finite_mod_ring_a,C: finite_mod_ring_a,W: num] :
      ( ( ( divide972148758386938611ring_a @ B @ C )
        = ( numera7938180240421336042ring_a @ W ) )
      = ( ( ( C != zero_z7902377541816115708ring_a )
         => ( B
            = ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ W ) @ C ) ) )
        & ( ( C = zero_z7902377541816115708ring_a )
         => ( ( numera7938180240421336042ring_a @ W )
            = zero_z7902377541816115708ring_a ) ) ) ) ).

% divide_eq_eq_numeral(1)
thf(fact_226_div__add__self2,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ B )
        = ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ one_on2109788427901206336ring_a ) ) ) ).

% div_add_self2
thf(fact_227_div__add__self2,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_228_div__add__self2,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self2
thf(fact_229_div__add__self1,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ B @ A ) @ B )
        = ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ one_on2109788427901206336ring_a ) ) ) ).

% div_add_self1
thf(fact_230_div__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_231_div__add__self1,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
        = ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% div_add_self1
thf(fact_232_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ N )
          = one_on2109788427901206336ring_a ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ N )
          = zero_z7902377541816115708ring_a ) ) ) ).

% power_0_left
thf(fact_233_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = one_one_nat ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_nat @ zero_zero_nat @ N )
          = zero_zero_nat ) ) ) ).

% power_0_left
thf(fact_234_power__0__left,axiom,
    ! [N: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = one_one_int ) )
      & ( ( N != zero_zero_nat )
       => ( ( power_power_int @ zero_zero_int @ N )
          = zero_zero_int ) ) ) ).

% power_0_left
thf(fact_235_mult__1s__ring__1_I1_J,axiom,
    ! [B: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ one ) ) @ B )
      = ( uminus3100561713750211260ring_a @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_236_mult__1s__ring__1_I1_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(1)
thf(fact_237_mult__1s__ring__1_I2_J,axiom,
    ! [B: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ B @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ one ) ) )
      = ( uminus3100561713750211260ring_a @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_238_mult__1s__ring__1_I2_J,axiom,
    ! [B: int] :
      ( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
      = ( uminus_uminus_int @ B ) ) ).

% mult_1s_ring_1(2)
thf(fact_239_uminus__numeral__One,axiom,
    ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ one ) )
    = ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ).

% uminus_numeral_One
thf(fact_240_uminus__numeral__One,axiom,
    ( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% uminus_numeral_One
thf(fact_241_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( numeral_numeral_nat @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_242_numeral__Bit0__div__2,axiom,
    ! [N: num] :
      ( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( numeral_numeral_int @ N ) ) ).

% numeral_Bit0_div_2
thf(fact_243_power__minus,axiom,
    ! [A: finite_mod_ring_a,N: nat] :
      ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ N )
      = ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ).

% power_minus
thf(fact_244_power__minus,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
      = ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ A @ N ) ) ) ).

% power_minus
thf(fact_245_power__minus__Bit0,axiom,
    ! [X: finite_mod_ring_a,K: num] :
      ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_6826135765519566523ring_a @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_246_power__minus__Bit0,axiom,
    ! [X: int,K: num] :
      ( ( power_power_int @ ( uminus_uminus_int @ X ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
      = ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).

% power_minus_Bit0
thf(fact_247_power__numeral__even,axiom,
    ! [Z: finite_mod_ring_a,W: num] :
      ( ( power_6826135765519566523ring_a @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_6826135765519566523ring_a @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_248_power__numeral__even,axiom,
    ! [Z: nat,W: num] :
      ( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_nat @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_249_power__numeral__even,axiom,
    ! [Z: int,W: num] :
      ( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
      = ( times_times_int @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).

% power_numeral_even
thf(fact_250_eq__divide__eq__numeral_I2_J,axiom,
    ! [W: num,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
        = ( divide972148758386938611ring_a @ B @ C ) )
      = ( ( ( C != zero_z7902377541816115708ring_a )
         => ( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) @ C )
            = B ) )
        & ( ( C = zero_z7902377541816115708ring_a )
         => ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
            = zero_z7902377541816115708ring_a ) ) ) ) ).

% eq_divide_eq_numeral(2)
thf(fact_251_divide__eq__eq__numeral_I2_J,axiom,
    ! [B: finite_mod_ring_a,C: finite_mod_ring_a,W: num] :
      ( ( ( divide972148758386938611ring_a @ B @ C )
        = ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) )
      = ( ( ( C != zero_z7902377541816115708ring_a )
         => ( B
            = ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) @ C ) ) )
        & ( ( C = zero_z7902377541816115708ring_a )
         => ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
            = zero_z7902377541816115708ring_a ) ) ) ) ).

% divide_eq_eq_numeral(2)
thf(fact_252_left__add__twice,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ A @ B ) )
      = ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_253_left__add__twice,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_254_left__add__twice,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).

% left_add_twice
thf(fact_255_mult__2__right,axiom,
    ! [Z: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ Z @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) )
      = ( plus_p6165643967897163644ring_a @ Z @ Z ) ) ).

% mult_2_right
thf(fact_256_mult__2__right,axiom,
    ! [Z: nat] :
      ( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ Z @ Z ) ) ).

% mult_2_right
thf(fact_257_mult__2__right,axiom,
    ! [Z: int] :
      ( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ Z @ Z ) ) ).

% mult_2_right
thf(fact_258_mult__2,axiom,
    ! [Z: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) @ Z )
      = ( plus_p6165643967897163644ring_a @ Z @ Z ) ) ).

% mult_2
thf(fact_259_mult__2,axiom,
    ! [Z: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_nat @ Z @ Z ) ) ).

% mult_2
thf(fact_260_mult__2,axiom,
    ! [Z: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
      = ( plus_plus_int @ Z @ Z ) ) ).

% mult_2
thf(fact_261_zero__power2,axiom,
    ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_z7902377541816115708ring_a ) ).

% zero_power2
thf(fact_262_zero__power2,axiom,
    ( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_nat ) ).

% zero_power2
thf(fact_263_zero__power2,axiom,
    ( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = zero_zero_int ) ).

% zero_power2
thf(fact_264_power2__eq__square,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_5121417576591743744ring_a @ A @ A ) ) ).

% power2_eq_square
thf(fact_265_power2__eq__square,axiom,
    ! [A: nat] :
      ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_nat @ A @ A ) ) ).

% power2_eq_square
thf(fact_266_power2__eq__square,axiom,
    ! [A: int] :
      ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( times_times_int @ A @ A ) ) ).

% power2_eq_square
thf(fact_267_power4__eq__xxxx,axiom,
    ! [X: finite_mod_ring_a] :
      ( ( power_6826135765519566523ring_a @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_268_power4__eq__xxxx,axiom,
    ! [X: nat] :
      ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_269_power4__eq__xxxx,axiom,
    ! [X: int] :
      ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
      = ( times_times_int @ ( times_times_int @ ( times_times_int @ X @ X ) @ X ) @ X ) ) ).

% power4_eq_xxxx
thf(fact_270_one__power2,axiom,
    ( ( power_6826135765519566523ring_a @ one_on2109788427901206336ring_a @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_on2109788427901206336ring_a ) ).

% one_power2
thf(fact_271_one__power2,axiom,
    ( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_nat ) ).

% one_power2
thf(fact_272_one__power2,axiom,
    ( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
    = one_one_int ) ).

% one_power2
thf(fact_273_power2__eq__iff,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( ( power_6826135765519566523ring_a @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_6826135765519566523ring_a @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus3100561713750211260ring_a @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_274_power2__eq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( ( X = Y )
        | ( X
          = ( uminus_uminus_int @ Y ) ) ) ) ).

% power2_eq_iff
thf(fact_275_power__even__eq,axiom,
    ! [A: finite_mod_ring_a,N: nat] :
      ( ( power_6826135765519566523ring_a @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_276_power__even__eq,axiom,
    ! [A: nat,N: nat] :
      ( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_277_power__even__eq,axiom,
    ! [A: int,N: nat] :
      ( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power_even_eq
thf(fact_278_nat__1__add__1,axiom,
    ( ( plus_plus_nat @ one_one_nat @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% nat_1_add_1
thf(fact_279_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_right
thf(fact_280_exp__add__not__zero__imp__right,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_right
thf(fact_281_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
       != zero_zero_nat ) ) ).

% exp_add_not_zero_imp_left
thf(fact_282_exp__add__not__zero__imp__left,axiom,
    ! [M: nat,N: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
       != zero_zero_int ) ) ).

% exp_add_not_zero_imp_left
thf(fact_283_power2__eq__1__iff,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_on2109788427901206336ring_a )
      = ( ( A = one_on2109788427901206336ring_a )
        | ( A
          = ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ) ) ).

% power2_eq_1_iff
thf(fact_284_power2__eq__1__iff,axiom,
    ! [A: int] :
      ( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = one_one_int )
      = ( ( A = one_one_int )
        | ( A
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% power2_eq_1_iff
thf(fact_285_div__exp__eq,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_286_div__exp__eq,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
      = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% div_exp_eq
thf(fact_287_nat__induct2,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ( P @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( P @ N2 )
             => ( P @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct2
thf(fact_288_power2__sum,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( power_6826135765519566523ring_a @ ( plus_p6165643967897163644ring_a @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_p6165643967897163644ring_a @ ( plus_p6165643967897163644ring_a @ ( power_6826135765519566523ring_a @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_6826135765519566523ring_a @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_289_power2__sum,axiom,
    ! [X: nat,Y: nat] :
      ( ( power_power_nat @ ( plus_plus_nat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_290_power2__sum,axiom,
    ! [X: int,Y: int] :
      ( ( power_power_int @ ( plus_plus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).

% power2_sum
thf(fact_291_minus__power__mult__self,axiom,
    ! [A: finite_mod_ring_a,N: nat] :
      ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ N ) @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ N ) )
      = ( power_6826135765519566523ring_a @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_292_minus__power__mult__self,axiom,
    ! [A: int,N: nat] :
      ( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
      = ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% minus_power_mult_self
thf(fact_293_nonzero__divide__mult__cancel__right,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ B @ ( times_5121417576591743744ring_a @ A @ B ) )
        = ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ A ) ) ) ).

% nonzero_divide_mult_cancel_right
thf(fact_294_nonzero__divide__mult__cancel__left,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( A != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ A @ ( times_5121417576591743744ring_a @ A @ B ) )
        = ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ B ) ) ) ).

% nonzero_divide_mult_cancel_left
thf(fact_295_sum__even__odd__split,axiom,
    ! [A: nat,F: nat > finite_mod_ring_a] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( plus_p6165643967897163644ring_a
          @ ( groups3558780024651037881ring_a
            @ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
            @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( groups3558780024651037881ring_a
            @ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
            @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        = ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ A ) ) ) ) ).

% sum_even_odd_split
thf(fact_296_sum__even__odd__split,axiom,
    ! [A: nat,F: nat > nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_nat
          @ ( groups3542108847815614940at_nat
            @ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
            @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( groups3542108847815614940at_nat
            @ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
            @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        = ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ A ) ) ) ) ).

% sum_even_odd_split
thf(fact_297_sum__even__odd__split,axiom,
    ! [A: nat,F: nat > int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_int
          @ ( groups3539618377306564664at_int
            @ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
            @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
          @ ( groups3539618377306564664at_int
            @ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
            @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
        = ( groups3539618377306564664at_int @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ A ) ) ) ) ).

% sum_even_odd_split
thf(fact_298_n__min1__gr2,axiom,
    ( ( ord_less_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ n2 )
   => ( ( power_6826135765519566523ring_a @ omega @ ( divide_divide_nat @ n2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ) ).

% n_min1_gr2
thf(fact_299_divide__minus1,axiom,
    ! [X: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ X @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
      = ( uminus3100561713750211260ring_a @ X ) ) ).

% divide_minus1
thf(fact_300_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ V ) ) @ ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) @ Y ) )
      = ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_301_semiring__norm_I167_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(167)
thf(fact_302_semiring__norm_I169_J,axiom,
    ! [V: num,W: num,Y: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ V ) ) @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ W ) @ Y ) )
      = ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(169)
thf(fact_303_semiring__norm_I169_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(169)
thf(fact_304_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) @ Y ) )
      = ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_305_semiring__norm_I170_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).

% semiring_norm(170)
thf(fact_306_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ V ) ) @ ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) @ Y ) )
      = ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_307_semiring__norm_I171_J,axiom,
    ! [V: num,W: num,Y: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
      = ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y ) ) ).

% semiring_norm(171)
thf(fact_308_ab__left__minus,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ A )
      = zero_z7902377541816115708ring_a ) ).

% ab_left_minus
thf(fact_309_ab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_left_minus
thf(fact_310_add_Oright__inverse,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ A @ ( uminus3100561713750211260ring_a @ A ) )
      = zero_z7902377541816115708ring_a ) ).

% add.right_inverse
thf(fact_311_add_Oright__inverse,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
      = zero_zero_int ) ).

% add.right_inverse
thf(fact_312_sum__eq,axiom,
    ! [X: nat,F: nat > finite_mod_ring_a,G: nat > finite_mod_ring_a] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ X )
         => ( ( F @ I3 )
            = ( G @ I3 ) ) )
     => ( ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
        = ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) ) ) ).

% sum_eq
thf(fact_313_sum__eq,axiom,
    ! [X: nat,F: nat > nat,G: nat > nat] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ X )
         => ( ( F @ I3 )
            = ( G @ I3 ) ) )
     => ( ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
        = ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) ) ) ).

% sum_eq
thf(fact_314_sum__eq,axiom,
    ! [X: nat,F: nat > int,G: nat > int] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ X )
         => ( ( F @ I3 )
            = ( G @ I3 ) ) )
     => ( ( groups3539618377306564664at_int @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
        = ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) ) ) ).

% sum_eq
thf(fact_315_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_316_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_317_add__left__cancel,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ A @ B )
        = ( plus_p6165643967897163644ring_a @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_318_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_319_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_320_add__right__cancel,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ B @ A )
        = ( plus_p6165643967897163644ring_a @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_321_semiring__norm_I87_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(87)
thf(fact_322_add_Oinverse__inverse,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( uminus3100561713750211260ring_a @ ( uminus3100561713750211260ring_a @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_323_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_324_neg__equal__iff__equal,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( uminus3100561713750211260ring_a @ A )
        = ( uminus3100561713750211260ring_a @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_325_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_326_sum__split,axiom,
    ! [R1: nat,R2: nat,F: nat > finite_mod_ring_a] :
      ( ( ord_less_nat @ R1 @ R2 )
     => ( ( plus_p6165643967897163644ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ R1 ) ) @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ R1 @ R2 ) ) )
        = ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ R2 ) ) ) ) ).

% sum_split
thf(fact_327_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_328_add_Oright__neutral,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ A @ zero_z7902377541816115708ring_a )
      = A ) ).

% add.right_neutral
thf(fact_329_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_330_add_Oright__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.right_neutral
thf(fact_331_double__zero__sym,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( plus_plus_int @ A @ A ) )
      = ( A = zero_zero_int ) ) ).

% double_zero_sym
thf(fact_332_add__cancel__left__left,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ B @ A )
        = A )
      = ( B = zero_z7902377541816115708ring_a ) ) ).

% add_cancel_left_left
thf(fact_333_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_334_add__cancel__left__left,axiom,
    ! [B: int,A: int] :
      ( ( ( plus_plus_int @ B @ A )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_left
thf(fact_335_add__cancel__left__right,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ A @ B )
        = A )
      = ( B = zero_z7902377541816115708ring_a ) ) ).

% add_cancel_left_right
thf(fact_336_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_337_add__cancel__left__right,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = A )
      = ( B = zero_zero_int ) ) ).

% add_cancel_left_right
thf(fact_338_add__cancel__right__left,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( A
        = ( plus_p6165643967897163644ring_a @ B @ A ) )
      = ( B = zero_z7902377541816115708ring_a ) ) ).

% add_cancel_right_left
thf(fact_339_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_340_add__cancel__right__left,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ B @ A ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_left
thf(fact_341_add__cancel__right__right,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( A
        = ( plus_p6165643967897163644ring_a @ A @ B ) )
      = ( B = zero_z7902377541816115708ring_a ) ) ).

% add_cancel_right_right
thf(fact_342_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_343_add__cancel__right__right,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( plus_plus_int @ A @ B ) )
      = ( B = zero_zero_int ) ) ).

% add_cancel_right_right
thf(fact_344_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X @ Y )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_345_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y ) )
      = ( ( X = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_346_add__0,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ zero_z7902377541816115708ring_a @ A )
      = A ) ).

% add_0
thf(fact_347_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_348_add__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add_0
thf(fact_349_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_350_numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% numeral_less_iff
thf(fact_351_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_352_add__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_353_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_354_add__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_int @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_355_mult_Oright__neutral,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ A @ one_on2109788427901206336ring_a )
      = A ) ).

% mult.right_neutral
thf(fact_356_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_357_mult_Oright__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.right_neutral
thf(fact_358_mult__1,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ one_on2109788427901206336ring_a @ A )
      = A ) ).

% mult_1
thf(fact_359_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_360_mult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% mult_1
thf(fact_361_add_Oinverse__neutral,axiom,
    ( ( uminus3100561713750211260ring_a @ zero_z7902377541816115708ring_a )
    = zero_z7902377541816115708ring_a ) ).

% add.inverse_neutral
thf(fact_362_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_363_neg__0__equal__iff__equal,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( zero_z7902377541816115708ring_a
        = ( uminus3100561713750211260ring_a @ A ) )
      = ( zero_z7902377541816115708ring_a = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_364_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_365_neg__equal__0__iff__equal,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( ( uminus3100561713750211260ring_a @ A )
        = zero_z7902377541816115708ring_a )
      = ( A = zero_z7902377541816115708ring_a ) ) ).

% neg_equal_0_iff_equal
thf(fact_366_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_367_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_368_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_369_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_370_times__divide__eq__left,axiom,
    ! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( divide972148758386938611ring_a @ B @ C ) @ A )
      = ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ B @ A ) @ C ) ) ).

% times_divide_eq_left
thf(fact_371_divide__divide__eq__left,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ C )
      = ( divide972148758386938611ring_a @ A @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).

% divide_divide_eq_left
thf(fact_372_divide__divide__eq__right,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ A @ ( divide972148758386938611ring_a @ B @ C ) )
      = ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ B ) ) ).

% divide_divide_eq_right
thf(fact_373_times__divide__eq__right,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ A @ ( divide972148758386938611ring_a @ B @ C ) )
      = ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ C ) ) ).

% times_divide_eq_right
thf(fact_374_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_375_semiring__norm_I83_J,axiom,
    ! [N: num] :
      ( one
     != ( bit0 @ N ) ) ).

% semiring_norm(83)
thf(fact_376_add__minus__cancel,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_377_add__minus__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_378_minus__add__cancel,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( plus_p6165643967897163644ring_a @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_379_minus__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_380_minus__add__distrib,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( uminus3100561713750211260ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) )
      = ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( uminus3100561713750211260ring_a @ B ) ) ) ).

% minus_add_distrib
thf(fact_381_minus__add__distrib,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).

% minus_add_distrib
thf(fact_382_semiring__norm_I6_J,axiom,
    ! [M: num,N: num] :
      ( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).

% semiring_norm(6)
thf(fact_383_semiring__norm_I13_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).

% semiring_norm(13)
thf(fact_384_semiring__norm_I12_J,axiom,
    ! [N: num] :
      ( ( times_times_num @ one @ N )
      = N ) ).

% semiring_norm(12)
thf(fact_385_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_386_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_387_add__less__same__cancel1,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel1
thf(fact_388_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_389_add__less__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% add_less_same_cancel2
thf(fact_390_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_391_less__add__same__cancel1,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel1
thf(fact_392_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_393_less__add__same__cancel2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( ord_less_int @ zero_zero_int @ B ) ) ).

% less_add_same_cancel2
thf(fact_394_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_395_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_396_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_397_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_398_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_399_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_400_mult__divide__mult__cancel__left__if,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( C = zero_z7902377541816115708ring_a )
       => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
          = zero_z7902377541816115708ring_a ) )
      & ( ( C != zero_z7902377541816115708ring_a )
       => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
          = ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).

% mult_divide_mult_cancel_left_if
thf(fact_401_nonzero__mult__divide__mult__cancel__left,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
        = ( divide972148758386938611ring_a @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left
thf(fact_402_nonzero__mult__divide__mult__cancel__left2,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ B @ C ) )
        = ( divide972148758386938611ring_a @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_left2
thf(fact_403_nonzero__mult__divide__mult__cancel__right,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ B @ C ) )
        = ( divide972148758386938611ring_a @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right
thf(fact_404_nonzero__mult__divide__mult__cancel__right2,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ C @ B ) )
        = ( divide972148758386938611ring_a @ A @ B ) ) ) ).

% nonzero_mult_divide_mult_cancel_right2
thf(fact_405_divide__eq__1__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( divide972148758386938611ring_a @ A @ B )
        = one_on2109788427901206336ring_a )
      = ( ( B != zero_z7902377541816115708ring_a )
        & ( A = B ) ) ) ).

% divide_eq_1_iff
thf(fact_406_one__eq__divide__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( one_on2109788427901206336ring_a
        = ( divide972148758386938611ring_a @ A @ B ) )
      = ( ( B != zero_z7902377541816115708ring_a )
        & ( A = B ) ) ) ).

% one_eq_divide_iff
thf(fact_407_divide__self,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( A != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ A @ A )
        = one_on2109788427901206336ring_a ) ) ).

% divide_self
thf(fact_408_divide__self__if,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( ( A = zero_z7902377541816115708ring_a )
       => ( ( divide972148758386938611ring_a @ A @ A )
          = zero_z7902377541816115708ring_a ) )
      & ( ( A != zero_z7902377541816115708ring_a )
       => ( ( divide972148758386938611ring_a @ A @ A )
          = one_on2109788427901206336ring_a ) ) ) ).

% divide_self_if
thf(fact_409_power__inject__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ( power_power_nat @ A @ M )
          = ( power_power_nat @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_410_power__inject__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ( power_power_int @ A @ M )
          = ( power_power_int @ A @ N ) )
        = ( M = N ) ) ) ).

% power_inject_exp
thf(fact_411_neg__numeral__less__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( ord_less_num @ N @ M ) ) ).

% neg_numeral_less_iff
thf(fact_412_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_413_nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_414_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_415_nat__mult__dvd__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel_disj
thf(fact_416_semiring__norm_I2_J,axiom,
    ( ( plus_plus_num @ one @ one )
    = ( bit0 @ one ) ) ).

% semiring_norm(2)
thf(fact_417_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_418_one__less__numeral__iff,axiom,
    ! [N: num] :
      ( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
      = ( ord_less_num @ one @ N ) ) ).

% one_less_numeral_iff
thf(fact_419_power__strict__increasing__iff,axiom,
    ! [B: nat,X: nat,Y: nat] :
      ( ( ord_less_nat @ one_one_nat @ B )
     => ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_420_power__strict__increasing__iff,axiom,
    ! [B: int,X: nat,Y: nat] :
      ( ( ord_less_int @ one_one_int @ B )
     => ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
        = ( ord_less_nat @ X @ Y ) ) ) ).

% power_strict_increasing_iff
thf(fact_421_power__eq__0__iff,axiom,
    ! [A: finite_mod_ring_a,N: nat] :
      ( ( ( power_6826135765519566523ring_a @ A @ N )
        = zero_z7902377541816115708ring_a )
      = ( ( A = zero_z7902377541816115708ring_a )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_422_power__eq__0__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( ( power_power_nat @ A @ N )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_423_power__eq__0__iff,axiom,
    ! [A: int,N: nat] :
      ( ( ( power_power_int @ A @ N )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% power_eq_0_iff
thf(fact_424_div__mult__self__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_425_div__mult__self1__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_426_power__strict__decreasing__iff,axiom,
    ! [B: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ B )
     => ( ( ord_less_nat @ B @ one_one_nat )
       => ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_427_power__strict__decreasing__iff,axiom,
    ! [B: int,M: nat,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ B @ one_one_int )
       => ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
          = ( ord_less_nat @ N @ M ) ) ) ) ).

% power_strict_decreasing_iff
thf(fact_428_neg__numeral__less__neg__one__iff,axiom,
    ! [M: num] :
      ( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
      = ( M != one ) ) ).

% neg_numeral_less_neg_one_iff
thf(fact_429_even__mult__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_430_even__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        | ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_mult_iff
thf(fact_431_odd__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_432_odd__add,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
      = ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
       != ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).

% odd_add
thf(fact_433_even__add,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_434_even__add,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).

% even_add
thf(fact_435_zero__less__power2,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
      = ( A != zero_zero_int ) ) ).

% zero_less_power2
thf(fact_436_even__plus__one__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ one_one_nat ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_437_even__plus__one__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ one_one_int ) )
      = ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ) ).

% even_plus_one_iff
thf(fact_438_power__minus__odd,axiom,
    ! [N: nat,A: finite_mod_ring_a] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ N )
        = ( uminus3100561713750211260ring_a @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_439_power__minus__odd,axiom,
    ! [N: nat,A: int] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
        = ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ).

% power_minus_odd
thf(fact_440_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: finite_mod_ring_a] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ N )
        = ( power_6826135765519566523ring_a @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_441_Parity_Oring__1__class_Opower__minus__even,axiom,
    ! [N: nat,A: int] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
        = ( power_power_int @ A @ N ) ) ) ).

% Parity.ring_1_class.power_minus_even
thf(fact_442_even__succ__div__2,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_443_even__succ__div__2,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_2
thf(fact_444_odd__succ__div__two,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_nat ) ) ) ).

% odd_succ_div_two
thf(fact_445_odd__succ__div__two,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( plus_plus_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).

% odd_succ_div_two
thf(fact_446_even__succ__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_447_even__succ__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
        = ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ).

% even_succ_div_two
thf(fact_448_even__power,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( power_power_nat @ A @ N ) )
      = ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_449_even__power,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( power_power_int @ A @ N ) )
      = ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% even_power
thf(fact_450_power__less__zero__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ ( power_power_int @ A @ N ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq
thf(fact_451_power__less__zero__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) @ zero_zero_int )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
        & ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% power_less_zero_eq_numeral
thf(fact_452_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N )
        = ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ) ).

% neg_one_odd_power
thf(fact_453_neg__one__odd__power,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% neg_one_odd_power
thf(fact_454_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N )
        = one_on2109788427901206336ring_a ) ) ).

% neg_one_even_power
thf(fact_455_neg__one__even__power,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
        = one_one_int ) ) ).

% neg_one_even_power
thf(fact_456_odd__two__times__div__two__succ,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ one_one_nat )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_457_odd__two__times__div__two__succ,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) @ one_one_int )
        = A ) ) ).

% odd_two_times_div_two_succ
thf(fact_458_zero__less__power__eq__numeral,axiom,
    ! [A: int,W: num] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ W ) ) )
      = ( ( ( numeral_numeral_nat @ W )
          = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ W ) )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq_numeral
thf(fact_459_even__succ__div__exp,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ one_one_nat @ A ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_460_even__succ__div__exp,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ A ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
          = ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ) ).

% even_succ_div_exp
thf(fact_461_that,axiom,
    ord_less_nat @ i @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ).

% that
thf(fact_462_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_463_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_464_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_465_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_466_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: nat,J2: nat,K: nat,L2: nat] :
      ( ( ( ord_less_nat @ I2 @ J2 )
        & ( ord_less_nat @ K @ L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_467_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I2: int,J2: int,K: int,L2: int] :
      ( ( ( ord_less_int @ I2 @ J2 )
        & ( ord_less_int @ K @ L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_468_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: nat,J2: nat,K: nat,L2: nat] :
      ( ( ( I2 = J2 )
        & ( ord_less_nat @ K @ L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_469_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I2: int,J2: int,K: int,L2: int] :
      ( ( ( I2 = J2 )
        & ( ord_less_int @ K @ L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_470_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: nat,J2: nat,K: nat,L2: nat] :
      ( ( ( ord_less_nat @ I2 @ J2 )
        & ( K = L2 ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_471_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I2: int,J2: int,K: int,L2: int] :
      ( ( ( ord_less_int @ I2 @ J2 )
        & ( K = L2 ) )
     => ( ord_less_int @ ( plus_plus_int @ I2 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_472_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_473_add__strict__mono,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D )
       => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_474_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_475_add__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_476_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_477_add__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_478_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_479_add__less__imp__less__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_480_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_481_add__less__imp__less__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
     => ( ord_less_int @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_482_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_483_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_484_nat__mult__dvd__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel1
thf(fact_485_power__less__imp__less__exp,axiom,
    ! [A: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_486_power__less__imp__less__exp,axiom,
    ! [A: int,M: nat,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% power_less_imp_less_exp
thf(fact_487_power__strict__increasing,axiom,
    ! [N: nat,N3: nat,A: nat] :
      ( ( ord_less_nat @ N @ N3 )
     => ( ( ord_less_nat @ one_one_nat @ A )
       => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N3 ) ) ) ) ).

% power_strict_increasing
thf(fact_488_power__strict__increasing,axiom,
    ! [N: nat,N3: nat,A: int] :
      ( ( ord_less_nat @ N @ N3 )
     => ( ( ord_less_int @ one_one_int @ A )
       => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N3 ) ) ) ) ).

% power_strict_increasing
thf(fact_489_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_490_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_491_dvd__power__same,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a,N: nat] :
      ( ( dvd_dv7258769340395861407ring_a @ X @ Y )
     => ( dvd_dv7258769340395861407ring_a @ ( power_6826135765519566523ring_a @ X @ N ) @ ( power_6826135765519566523ring_a @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_492_dvd__power__same,axiom,
    ! [X: nat,Y: nat,N: nat] :
      ( ( dvd_dvd_nat @ X @ Y )
     => ( dvd_dvd_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_493_dvd__power__same,axiom,
    ! [X: int,Y: int,N: nat] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( dvd_dvd_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ N ) ) ) ).

% dvd_power_same
thf(fact_494_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_495_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_496_nat__power__less__imp__less,axiom,
    ! [I2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I2 )
     => ( ( ord_less_nat @ ( power_power_nat @ I2 @ M ) @ ( power_power_nat @ I2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_497_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_498_add__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).

% add_neg_neg
thf(fact_499_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_500_add__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_501_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C2 ) )
           => ( C2 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_502_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_503_pos__add__strict,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_504_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_505_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_506_power__strict__decreasing,axiom,
    ! [N: nat,N3: nat,A: nat] :
      ( ( ord_less_nat @ N @ N3 )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ( ord_less_nat @ A @ one_one_nat )
         => ( ord_less_nat @ ( power_power_nat @ A @ N3 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_507_power__strict__decreasing,axiom,
    ! [N: nat,N3: nat,A: int] :
      ( ( ord_less_nat @ N @ N3 )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ( ord_less_int @ A @ one_one_int )
         => ( ord_less_int @ ( power_power_int @ A @ N3 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).

% power_strict_decreasing
thf(fact_508_dvd__power,axiom,
    ! [N: nat,X: finite_mod_ring_a] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_on2109788427901206336ring_a ) )
     => ( dvd_dv7258769340395861407ring_a @ X @ ( power_6826135765519566523ring_a @ X @ N ) ) ) ).

% dvd_power
thf(fact_509_dvd__power,axiom,
    ! [N: nat,X: nat] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_nat ) )
     => ( dvd_dvd_nat @ X @ ( power_power_nat @ X @ N ) ) ) ).

% dvd_power
thf(fact_510_dvd__power,axiom,
    ! [N: nat,X: int] :
      ( ( ( ord_less_nat @ zero_zero_nat @ N )
        | ( X = one_one_int ) )
     => ( dvd_dvd_int @ X @ ( power_power_int @ X @ N ) ) ) ).

% dvd_power
thf(fact_511_one__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_512_one__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).

% one_less_power
thf(fact_513_odd__pos,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% odd_pos
thf(fact_514_div__plus__div__distrib__dvd__left,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ C @ A )
     => ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
        = ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ C ) @ ( divide972148758386938611ring_a @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_515_div__plus__div__distrib__dvd__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_516_div__plus__div__distrib__dvd__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_left
thf(fact_517_div__plus__div__distrib__dvd__right,axiom,
    ! [C: finite_mod_ring_a,B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ C @ B )
     => ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
        = ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ C ) @ ( divide972148758386938611ring_a @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_518_div__plus__div__distrib__dvd__right,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( dvd_dvd_nat @ C @ B )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_519_div__plus__div__distrib__dvd__right,axiom,
    ! [C: int,B: int,A: int] :
      ( ( dvd_dvd_int @ C @ B )
     => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
        = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ).

% div_plus_div_distrib_dvd_right
thf(fact_520_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_521_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_522_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_less_numeral
thf(fact_523_zero__less__numeral,axiom,
    ! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).

% zero_less_numeral
thf(fact_524_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_less_zero
thf(fact_525_not__numeral__less__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).

% not_numeral_less_zero
thf(fact_526_div__power,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a,N: nat] :
      ( ( dvd_dv7258769340395861407ring_a @ B @ A )
     => ( ( power_6826135765519566523ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ N )
        = ( divide972148758386938611ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ ( power_6826135765519566523ring_a @ B @ N ) ) ) ) ).

% div_power
thf(fact_527_div__power,axiom,
    ! [B: nat,A: nat,N: nat] :
      ( ( dvd_dvd_nat @ B @ A )
     => ( ( power_power_nat @ ( divide_divide_nat @ A @ B ) @ N )
        = ( divide_divide_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).

% div_power
thf(fact_528_div__power,axiom,
    ! [B: int,A: int,N: nat] :
      ( ( dvd_dvd_int @ B @ A )
     => ( ( power_power_int @ ( divide_divide_int @ A @ B ) @ N )
        = ( divide_divide_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).

% div_power
thf(fact_529_zero__less__power,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).

% zero_less_power
thf(fact_530_zero__less__power,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).

% zero_less_power
thf(fact_531_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_532_not__numeral__less__one,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).

% not_numeral_less_one
thf(fact_533_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_534_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_535_neg__numeral__less__numeral,axiom,
    ! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).

% neg_numeral_less_numeral
thf(fact_536_not__numeral__less__neg__numeral,axiom,
    ! [M: num,N: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_numeral_less_neg_numeral
thf(fact_537_nat__mult__div__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( divide_divide_nat @ M @ N ) ) ) ).

% nat_mult_div_cancel1
thf(fact_538_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_539_less__mult__imp__div__less,axiom,
    ! [M: nat,I2: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I2 @ N ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I2 ) ) ).

% less_mult_imp_div_less
thf(fact_540_zero__less__power__eq,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) )
      = ( ( N = zero_zero_nat )
        | ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( A != zero_zero_int ) )
        | ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
          & ( ord_less_int @ zero_zero_int @ A ) ) ) ) ).

% zero_less_power_eq
thf(fact_541_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_542_even__numeral,axiom,
    ! [N: num] : ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_int @ ( bit0 @ N ) ) ) ).

% even_numeral
thf(fact_543_is__unit__power__iff,axiom,
    ! [A: finite_mod_ring_a,N: nat] :
      ( ( dvd_dv7258769340395861407ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ one_on2109788427901206336ring_a )
      = ( ( dvd_dv7258769340395861407ring_a @ A @ one_on2109788427901206336ring_a )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_544_is__unit__power__iff,axiom,
    ! [A: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ one_one_nat )
      = ( ( dvd_dvd_nat @ A @ one_one_nat )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_545_is__unit__power__iff,axiom,
    ! [A: int,N: nat] :
      ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ one_one_int )
      = ( ( dvd_dvd_int @ A @ one_one_int )
        | ( N = zero_zero_nat ) ) ) ).

% is_unit_power_iff
thf(fact_546_sum__squares__gt__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) )
      = ( ( X != zero_zero_int )
        | ( Y != zero_zero_int ) ) ) ).

% sum_squares_gt_zero_iff
thf(fact_547_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_548_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_549_neg__numeral__less__zero,axiom,
    ! [N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) @ zero_zero_int ) ).

% neg_numeral_less_zero
thf(fact_550_not__zero__less__neg__numeral,axiom,
    ! [N: num] :
      ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).

% not_zero_less_neg_numeral
thf(fact_551_power__gt1__lemma,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_552_power__gt1__lemma,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_gt1_lemma
thf(fact_553_power__less__power__Suc,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_554_power__less__power__Suc,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ one_one_int @ A )
     => ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).

% power_less_power_Suc
thf(fact_555_neg__numeral__less__one,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).

% neg_numeral_less_one
thf(fact_556_neg__one__less__numeral,axiom,
    ! [M: num] : ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).

% neg_one_less_numeral
thf(fact_557_not__numeral__less__neg__one,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).

% not_numeral_less_neg_one
thf(fact_558_not__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_one_less_neg_numeral
thf(fact_559_not__neg__one__less__neg__numeral,axiom,
    ! [M: num] :
      ~ ( ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).

% not_neg_one_less_neg_numeral
thf(fact_560_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ N )
        = zero_z7902377541816115708ring_a ) ) ).

% zero_power
thf(fact_561_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_nat @ zero_zero_nat @ N )
        = zero_zero_nat ) ) ).

% zero_power
thf(fact_562_zero__power,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( power_power_int @ zero_zero_int @ N )
        = zero_zero_int ) ) ).

% zero_power
thf(fact_563_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_564_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_565_less__exp,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% less_exp
thf(fact_566_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ C )
      = ( times_5121417576591743744ring_a @ A @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_567_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_568_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_569_mult_Oassoc,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ C )
      = ( times_5121417576591743744ring_a @ A @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).

% mult.assoc
thf(fact_570_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_571_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_572_mult_Ocommute,axiom,
    ( times_5121417576591743744ring_a
    = ( ^ [A3: finite_mod_ring_a,B2: finite_mod_ring_a] : ( times_5121417576591743744ring_a @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_573_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_574_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_575_mult_Oleft__commute,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ B @ ( times_5121417576591743744ring_a @ A @ C ) )
      = ( times_5121417576591743744ring_a @ A @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_576_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_577_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_578_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_579_one__reorient,axiom,
    ! [X: finite_mod_ring_a] :
      ( ( one_on2109788427901206336ring_a = X )
      = ( X = one_on2109788427901206336ring_a ) ) ).

% one_reorient
thf(fact_580_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_581_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_582_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_583_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
      = ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_584_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: nat,J2: nat,K: nat,L2: nat] :
      ( ( ( I2 = J2 )
        & ( K = L2 ) )
     => ( ( plus_plus_nat @ I2 @ K )
        = ( plus_plus_nat @ J2 @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_585_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I2: int,J2: int,K: int,L2: int] :
      ( ( ( I2 = J2 )
        & ( K = L2 ) )
     => ( ( plus_plus_int @ I2 @ K )
        = ( plus_plus_int @ J2 @ L2 ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_586_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_587_group__cancel_Oadd1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( plus_plus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_588_group__cancel_Oadd1,axiom,
    ! [A2: finite_mod_ring_a,K: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( A2
        = ( plus_p6165643967897163644ring_a @ K @ A ) )
     => ( ( plus_p6165643967897163644ring_a @ A2 @ B )
        = ( plus_p6165643967897163644ring_a @ K @ ( plus_p6165643967897163644ring_a @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_589_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B: nat,A: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_590_group__cancel_Oadd2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( plus_plus_int @ A @ B3 )
        = ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_591_group__cancel_Oadd2,axiom,
    ! [B3: finite_mod_ring_a,K: finite_mod_ring_a,B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B3
        = ( plus_p6165643967897163644ring_a @ K @ B ) )
     => ( ( plus_p6165643967897163644ring_a @ A @ B3 )
        = ( plus_p6165643967897163644ring_a @ K @ ( plus_p6165643967897163644ring_a @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_592_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_593_add_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.assoc
thf(fact_594_add_Oassoc,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
      = ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).

% add.assoc
thf(fact_595_add_Oleft__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_596_add_Oleft__cancel,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ A @ B )
        = ( plus_p6165643967897163644ring_a @ A @ C ) )
      = ( B = C ) ) ).

% add.left_cancel
thf(fact_597_add_Oright__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_598_add_Oright__cancel,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ B @ A )
        = ( plus_p6165643967897163644ring_a @ C @ A ) )
      = ( B = C ) ) ).

% add.right_cancel
thf(fact_599_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_600_add_Ocommute,axiom,
    ( plus_plus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_601_add_Ocommute,axiom,
    ( plus_p6165643967897163644ring_a
    = ( ^ [A3: finite_mod_ring_a,B2: finite_mod_ring_a] : ( plus_p6165643967897163644ring_a @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_602_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_603_add_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
      = ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% add.left_commute
thf(fact_604_add_Oleft__commute,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ B @ ( plus_p6165643967897163644ring_a @ A @ C ) )
      = ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).

% add.left_commute
thf(fact_605_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_606_add__left__imp__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_607_add__left__imp__eq,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ A @ B )
        = ( plus_p6165643967897163644ring_a @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_608_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_609_add__right__imp__eq,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_610_add__right__imp__eq,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ B @ A )
        = ( plus_p6165643967897163644ring_a @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_611_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_612_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_613_div__less__iff__less__mult,axiom,
    ! [Q2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q2 ) @ N )
        = ( ord_less_nat @ M @ ( times_times_nat @ N @ Q2 ) ) ) ) ).

% div_less_iff_less_mult
thf(fact_614_equation__minus__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( A
        = ( uminus3100561713750211260ring_a @ B ) )
      = ( B
        = ( uminus3100561713750211260ring_a @ A ) ) ) ).

% equation_minus_iff
thf(fact_615_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_616_minus__equation__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( uminus3100561713750211260ring_a @ A )
        = B )
      = ( ( uminus3100561713750211260ring_a @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_617_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_618_even__zero,axiom,
    dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ zero_zero_nat ).

% even_zero
thf(fact_619_even__zero,axiom,
    dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ zero_zero_int ).

% even_zero
thf(fact_620_evenE,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: nat] :
            ( A
           != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B4 ) ) ) ).

% evenE
thf(fact_621_evenE,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: int] :
            ( A
           != ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B4 ) ) ) ).

% evenE
thf(fact_622_odd__one,axiom,
    ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ one_one_nat ) ).

% odd_one
thf(fact_623_odd__one,axiom,
    ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ one_one_int ) ).

% odd_one
thf(fact_624_odd__even__add,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_625_odd__even__add,axiom,
    ! [A: int,B: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B )
       => ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ) ).

% odd_even_add
thf(fact_626_bit__eq__rec,axiom,
    ( ( ^ [Y2: nat,Z2: nat] : ( Y2 = Z2 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A3 )
            = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide_divide_nat @ A3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
            = ( divide_divide_nat @ B2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_627_bit__eq__rec,axiom,
    ( ( ^ [Y2: int,Z2: int] : ( Y2 = Z2 ) )
    = ( ^ [A3: int,B2: int] :
          ( ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A3 )
            = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B2 ) )
          & ( ( divide_divide_int @ A3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
            = ( divide_divide_int @ B2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) ) ).

% bit_eq_rec
thf(fact_628_even__minus,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( uminus_uminus_int @ A ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) ) ).

% even_minus
thf(fact_629_power__Suc__less,axiom,
    ! [A: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ A @ one_one_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_630_power__Suc__less,axiom,
    ! [A: int,N: nat] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ A @ one_one_int )
       => ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).

% power_Suc_less
thf(fact_631_split__div,axiom,
    ! [P: nat > $o,M: nat,N: nat] :
      ( ( P @ ( divide_divide_nat @ M @ N ) )
      = ( ( ( N = zero_zero_nat )
         => ( P @ zero_zero_nat ) )
        & ( ( N != zero_zero_nat )
         => ! [I: nat,J: nat] :
              ( ( ( ord_less_nat @ J @ N )
                & ( M
                  = ( plus_plus_nat @ ( times_times_nat @ N @ I ) @ J ) ) )
             => ( P @ I ) ) ) ) ) ).

% split_div
thf(fact_632_dividend__less__div__times,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).

% dividend_less_div_times
thf(fact_633_dividend__less__times__div,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).

% dividend_less_times_div
thf(fact_634_even__two__times__div__two,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_635_even__two__times__div__two,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( divide_divide_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
        = A ) ) ).

% even_two_times_div_two
thf(fact_636_power2__less__0,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).

% power2_less_0
thf(fact_637_uminus__power__if,axiom,
    ! [N: nat,A: finite_mod_ring_a] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ N )
          = ( power_6826135765519566523ring_a @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ N )
          = ( uminus3100561713750211260ring_a @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_638_uminus__power__if,axiom,
    ! [N: nat,A: int] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
          = ( power_power_int @ A @ N ) ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
          = ( uminus_uminus_int @ ( power_power_int @ A @ N ) ) ) ) ) ).

% uminus_power_if
thf(fact_639_oddE,axiom,
    ! [A: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: nat] :
            ( A
           != ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B4 ) @ one_one_nat ) ) ) ).

% oddE
thf(fact_640_oddE,axiom,
    ! [A: int] :
      ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
     => ~ ! [B4: int] :
            ( A
           != ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B4 ) @ one_one_int ) ) ) ).

% oddE
thf(fact_641_not__sum__power2__lt__zero,axiom,
    ! [X: int,Y: int] :
      ~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).

% not_sum_power2_lt_zero
thf(fact_642_sum__power2__gt__zero__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
      = ( ( X != zero_zero_int )
        | ( Y != zero_zero_int ) ) ) ).

% sum_power2_gt_zero_iff
thf(fact_643_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N )
          = one_on2109788427901206336ring_a ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N )
          = ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ) ) ).

% minus_one_power_iff
thf(fact_644_minus__one__power__iff,axiom,
    ! [N: nat] :
      ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = one_one_int ) )
      & ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       => ( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% minus_one_power_iff
thf(fact_645_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ zero_z7902377541816115708ring_a @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_646_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_647_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_648_add_Ocomm__neutral,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ A @ zero_z7902377541816115708ring_a )
      = A ) ).

% add.comm_neutral
thf(fact_649_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_650_add_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ A @ zero_zero_int )
      = A ) ).

% add.comm_neutral
thf(fact_651_add_Ogroup__left__neutral,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ zero_z7902377541816115708ring_a @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_652_add_Ogroup__left__neutral,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ zero_zero_int @ A )
      = A ) ).

% add.group_left_neutral
thf(fact_653_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ one_on2109788427901206336ring_a @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_654_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_655_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: int] :
      ( ( times_times_int @ one_one_int @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_656_mult_Ocomm__neutral,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ A @ one_on2109788427901206336ring_a )
      = A ) ).

% mult.comm_neutral
thf(fact_657_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_658_mult_Ocomm__neutral,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ one_one_int )
      = A ) ).

% mult.comm_neutral
thf(fact_659_times__divide__times__eq,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a,Z: finite_mod_ring_a,W: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( divide972148758386938611ring_a @ X @ Y ) @ ( divide972148758386938611ring_a @ Z @ W ) )
      = ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ X @ Z ) @ ( times_5121417576591743744ring_a @ Y @ W ) ) ) ).

% times_divide_times_eq
thf(fact_660_divide__divide__times__eq,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a,Z: finite_mod_ring_a,W: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ ( divide972148758386938611ring_a @ X @ Y ) @ ( divide972148758386938611ring_a @ Z @ W ) )
      = ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ X @ W ) @ ( times_5121417576591743744ring_a @ Y @ Z ) ) ) ).

% divide_divide_times_eq
thf(fact_661_divide__divide__eq__left_H,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ C )
      = ( divide972148758386938611ring_a @ A @ ( times_5121417576591743744ring_a @ C @ B ) ) ) ).

% divide_divide_eq_left'
thf(fact_662_add__divide__distrib,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
      = ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ C ) @ ( divide972148758386938611ring_a @ B @ C ) ) ) ).

% add_divide_distrib
thf(fact_663_group__cancel_Oneg1,axiom,
    ! [A2: finite_mod_ring_a,K: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( A2
        = ( plus_p6165643967897163644ring_a @ K @ A ) )
     => ( ( uminus3100561713750211260ring_a @ A2 )
        = ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ K ) @ ( uminus3100561713750211260ring_a @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_664_group__cancel_Oneg1,axiom,
    ! [A2: int,K: int,A: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( uminus_uminus_int @ A2 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).

% group_cancel.neg1
thf(fact_665_add_Oinverse__distrib__swap,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( uminus3100561713750211260ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) )
      = ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ B ) @ ( uminus3100561713750211260ring_a @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_666_add_Oinverse__distrib__swap,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
      = ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% add.inverse_distrib_swap
thf(fact_667_minus__divide__right,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ A @ B ) )
      = ( divide972148758386938611ring_a @ A @ ( uminus3100561713750211260ring_a @ B ) ) ) ).

% minus_divide_right
thf(fact_668_minus__divide__divide,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( uminus3100561713750211260ring_a @ B ) )
      = ( divide972148758386938611ring_a @ A @ B ) ) ).

% minus_divide_divide
thf(fact_669_minus__divide__left,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ A @ B ) )
      = ( divide972148758386938611ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B ) ) ).

% minus_divide_left
thf(fact_670_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_671_left__add__mult__distrib,axiom,
    ! [I2: nat,U: nat,J2: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I2 @ J2 ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_672_frac__eq__eq,axiom,
    ! [Y: finite_mod_ring_a,Z: finite_mod_ring_a,X: finite_mod_ring_a,W: finite_mod_ring_a] :
      ( ( Y != zero_z7902377541816115708ring_a )
     => ( ( Z != zero_z7902377541816115708ring_a )
       => ( ( ( divide972148758386938611ring_a @ X @ Y )
            = ( divide972148758386938611ring_a @ W @ Z ) )
          = ( ( times_5121417576591743744ring_a @ X @ Z )
            = ( times_5121417576591743744ring_a @ W @ Y ) ) ) ) ) ).

% frac_eq_eq
thf(fact_673_divide__eq__eq,axiom,
    ! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( ( divide972148758386938611ring_a @ B @ C )
        = A )
      = ( ( ( C != zero_z7902377541816115708ring_a )
         => ( B
            = ( times_5121417576591743744ring_a @ A @ C ) ) )
        & ( ( C = zero_z7902377541816115708ring_a )
         => ( A = zero_z7902377541816115708ring_a ) ) ) ) ).

% divide_eq_eq
thf(fact_674_eq__divide__eq,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( A
        = ( divide972148758386938611ring_a @ B @ C ) )
      = ( ( ( C != zero_z7902377541816115708ring_a )
         => ( ( times_5121417576591743744ring_a @ A @ C )
            = B ) )
        & ( ( C = zero_z7902377541816115708ring_a )
         => ( A = zero_z7902377541816115708ring_a ) ) ) ) ).

% eq_divide_eq
thf(fact_675_divide__eq__imp,axiom,
    ! [C: finite_mod_ring_a,B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( B
          = ( times_5121417576591743744ring_a @ A @ C ) )
       => ( ( divide972148758386938611ring_a @ B @ C )
          = A ) ) ) ).

% divide_eq_imp
thf(fact_676_eq__divide__imp,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( ( times_5121417576591743744ring_a @ A @ C )
          = B )
       => ( A
          = ( divide972148758386938611ring_a @ B @ C ) ) ) ) ).

% eq_divide_imp
thf(fact_677_nonzero__divide__eq__eq,axiom,
    ! [C: finite_mod_ring_a,B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( ( divide972148758386938611ring_a @ B @ C )
          = A )
        = ( B
          = ( times_5121417576591743744ring_a @ A @ C ) ) ) ) ).

% nonzero_divide_eq_eq
thf(fact_678_nonzero__eq__divide__eq,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( A
          = ( divide972148758386938611ring_a @ B @ C ) )
        = ( ( times_5121417576591743744ring_a @ A @ C )
          = B ) ) ) ).

% nonzero_eq_divide_eq
thf(fact_679_right__inverse__eq,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( ( divide972148758386938611ring_a @ A @ B )
          = one_on2109788427901206336ring_a )
        = ( A = B ) ) ) ).

% right_inverse_eq
thf(fact_680_add__eq__0__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ A @ B )
        = zero_z7902377541816115708ring_a )
      = ( B
        = ( uminus3100561713750211260ring_a @ A ) ) ) ).

% add_eq_0_iff
thf(fact_681_add__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% add_eq_0_iff
thf(fact_682_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ A )
      = zero_z7902377541816115708ring_a ) ).

% ab_group_add_class.ab_left_minus
thf(fact_683_ab__group__add__class_Oab__left__minus,axiom,
    ! [A: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
      = zero_zero_int ) ).

% ab_group_add_class.ab_left_minus
thf(fact_684_add_Oinverse__unique,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ A @ B )
        = zero_z7902377541816115708ring_a )
     => ( ( uminus3100561713750211260ring_a @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_685_add_Oinverse__unique,axiom,
    ! [A: int,B: int] :
      ( ( ( plus_plus_int @ A @ B )
        = zero_zero_int )
     => ( ( uminus_uminus_int @ A )
        = B ) ) ).

% add.inverse_unique
thf(fact_686_eq__neg__iff__add__eq__0,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( A
        = ( uminus3100561713750211260ring_a @ B ) )
      = ( ( plus_p6165643967897163644ring_a @ A @ B )
        = zero_z7902377541816115708ring_a ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_687_eq__neg__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% eq_neg_iff_add_eq_0
thf(fact_688_neg__eq__iff__add__eq__0,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( uminus3100561713750211260ring_a @ A )
        = B )
      = ( ( plus_p6165643967897163644ring_a @ A @ B )
        = zero_z7902377541816115708ring_a ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_689_neg__eq__iff__add__eq__0,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( plus_plus_int @ A @ B )
        = zero_zero_int ) ) ).

% neg_eq_iff_add_eq_0
thf(fact_690_numeral__times__minus__swap,axiom,
    ! [W: num,X: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ W ) @ ( uminus3100561713750211260ring_a @ X ) )
      = ( times_5121417576591743744ring_a @ X @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_691_numeral__times__minus__swap,axiom,
    ! [W: num,X: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X ) )
      = ( times_times_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).

% numeral_times_minus_swap
thf(fact_692_nonzero__minus__divide__right,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ A @ B ) )
        = ( divide972148758386938611ring_a @ A @ ( uminus3100561713750211260ring_a @ B ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_693_nonzero__minus__divide__divide,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( uminus3100561713750211260ring_a @ B ) )
        = ( divide972148758386938611ring_a @ A @ B ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_694_nat__mult__div__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( K = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = zero_zero_nat ) )
      & ( ( K != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
          = ( divide_divide_nat @ M @ N ) ) ) ) ).

% nat_mult_div_cancel_disj
thf(fact_695_add__divide__eq__if__simps_I2_J,axiom,
    ! [Z: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( Z = zero_z7902377541816115708ring_a )
       => ( ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ Z ) @ B )
          = B ) )
      & ( ( Z != zero_z7902377541816115708ring_a )
       => ( ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ Z ) @ B )
          = ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ ( times_5121417576591743744ring_a @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(2)
thf(fact_696_add__divide__eq__if__simps_I1_J,axiom,
    ! [Z: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( Z = zero_z7902377541816115708ring_a )
       => ( ( plus_p6165643967897163644ring_a @ A @ ( divide972148758386938611ring_a @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_z7902377541816115708ring_a )
       => ( ( plus_p6165643967897163644ring_a @ A @ ( divide972148758386938611ring_a @ B @ Z ) )
          = ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(1)
thf(fact_697_add__frac__eq,axiom,
    ! [Y: finite_mod_ring_a,Z: finite_mod_ring_a,X: finite_mod_ring_a,W: finite_mod_ring_a] :
      ( ( Y != zero_z7902377541816115708ring_a )
     => ( ( Z != zero_z7902377541816115708ring_a )
       => ( ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ X @ Y ) @ ( divide972148758386938611ring_a @ W @ Z ) )
          = ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ X @ Z ) @ ( times_5121417576591743744ring_a @ W @ Y ) ) @ ( times_5121417576591743744ring_a @ Y @ Z ) ) ) ) ) ).

% add_frac_eq
thf(fact_698_add__frac__num,axiom,
    ! [Y: finite_mod_ring_a,X: finite_mod_ring_a,Z: finite_mod_ring_a] :
      ( ( Y != zero_z7902377541816115708ring_a )
     => ( ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ X @ Y ) @ Z )
        = ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ X @ ( times_5121417576591743744ring_a @ Z @ Y ) ) @ Y ) ) ) ).

% add_frac_num
thf(fact_699_add__num__frac,axiom,
    ! [Y: finite_mod_ring_a,Z: finite_mod_ring_a,X: finite_mod_ring_a] :
      ( ( Y != zero_z7902377541816115708ring_a )
     => ( ( plus_p6165643967897163644ring_a @ Z @ ( divide972148758386938611ring_a @ X @ Y ) )
        = ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ X @ ( times_5121417576591743744ring_a @ Z @ Y ) ) @ Y ) ) ) ).

% add_num_frac
thf(fact_700_add__divide__eq__iff,axiom,
    ! [Z: finite_mod_ring_a,X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( Z != zero_z7902377541816115708ring_a )
     => ( ( plus_p6165643967897163644ring_a @ X @ ( divide972148758386938611ring_a @ Y @ Z ) )
        = ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ X @ Z ) @ Y ) @ Z ) ) ) ).

% add_divide_eq_iff
thf(fact_701_divide__add__eq__iff,axiom,
    ! [Z: finite_mod_ring_a,X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( Z != zero_z7902377541816115708ring_a )
     => ( ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ X @ Z ) @ Y )
        = ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ X @ ( times_5121417576591743744ring_a @ Y @ Z ) ) @ Z ) ) ) ).

% divide_add_eq_iff
thf(fact_702_eq__minus__divide__eq,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( A
        = ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ B @ C ) ) )
      = ( ( ( C != zero_z7902377541816115708ring_a )
         => ( ( times_5121417576591743744ring_a @ A @ C )
            = ( uminus3100561713750211260ring_a @ B ) ) )
        & ( ( C = zero_z7902377541816115708ring_a )
         => ( A = zero_z7902377541816115708ring_a ) ) ) ) ).

% eq_minus_divide_eq
thf(fact_703_minus__divide__eq__eq,axiom,
    ! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ B @ C ) )
        = A )
      = ( ( ( C != zero_z7902377541816115708ring_a )
         => ( ( uminus3100561713750211260ring_a @ B )
            = ( times_5121417576591743744ring_a @ A @ C ) ) )
        & ( ( C = zero_z7902377541816115708ring_a )
         => ( A = zero_z7902377541816115708ring_a ) ) ) ) ).

% minus_divide_eq_eq
thf(fact_704_nonzero__neg__divide__eq__eq,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ A @ B ) )
          = C )
        = ( ( uminus3100561713750211260ring_a @ A )
          = ( times_5121417576591743744ring_a @ C @ B ) ) ) ) ).

% nonzero_neg_divide_eq_eq
thf(fact_705_nonzero__neg__divide__eq__eq2,axiom,
    ! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( C
          = ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ A @ B ) ) )
        = ( ( times_5121417576591743744ring_a @ C @ B )
          = ( uminus3100561713750211260ring_a @ A ) ) ) ) ).

% nonzero_neg_divide_eq_eq2
thf(fact_706_divide__eq__minus__1__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( divide972148758386938611ring_a @ A @ B )
        = ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
      = ( ( B != zero_z7902377541816115708ring_a )
        & ( A
          = ( uminus3100561713750211260ring_a @ B ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_707_add__divide__eq__if__simps_I3_J,axiom,
    ! [Z: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( Z = zero_z7902377541816115708ring_a )
       => ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ A @ Z ) ) @ B )
          = B ) )
      & ( ( Z != zero_z7902377541816115708ring_a )
       => ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ A @ Z ) ) @ B )
          = ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( times_5121417576591743744ring_a @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(3)
thf(fact_708_minus__divide__add__eq__iff,axiom,
    ! [Z: finite_mod_ring_a,X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( Z != zero_z7902377541816115708ring_a )
     => ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ X @ Z ) ) @ Y )
        = ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ X ) @ ( times_5121417576591743744ring_a @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_add_eq_iff
thf(fact_709_k__bound,axiom,
    ord_less_nat @ zero_zero_nat @ k ).

% k_bound
thf(fact_710_pow__divides__pow__iff,axiom,
    ! [N: nat,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dv7258769340395861407ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ ( power_6826135765519566523ring_a @ B @ N ) )
        = ( dvd_dv7258769340395861407ring_a @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_711_pow__divides__pow__iff,axiom,
    ! [N: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
        = ( dvd_dvd_nat @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_712_pow__divides__pow__iff,axiom,
    ! [N: nat,A: int,B: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
        = ( dvd_dvd_int @ A @ B ) ) ) ).

% pow_divides_pow_iff
thf(fact_713_unit__mult__div__div,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ one_on2109788427901206336ring_a )
     => ( ( times_5121417576591743744ring_a @ B @ ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ A ) )
        = ( divide972148758386938611ring_a @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_714_unit__mult__div__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ B @ ( divide_divide_nat @ one_one_nat @ A ) )
        = ( divide_divide_nat @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_715_unit__mult__div__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ B @ ( divide_divide_int @ one_one_int @ A ) )
        = ( divide_divide_int @ B @ A ) ) ) ).

% unit_mult_div_div
thf(fact_716_unit__div__mult__self,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ one_on2109788427901206336ring_a )
     => ( ( times_5121417576591743744ring_a @ ( divide972148758386938611ring_a @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_717_unit__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_718_unit__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% unit_div_mult_self
thf(fact_719_div__exp__sub,axiom,
    ! [L2: nat] :
      ( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ L2 ) @ n2 )
     => ( ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ L2 ) )
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ n @ L2 ) ) ) ) ).

% div_exp_sub
thf(fact_720_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_721_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_722_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_723_mult__cancel__right,axiom,
    ! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( times_5121417576591743744ring_a @ A @ C )
        = ( times_5121417576591743744ring_a @ B @ C ) )
      = ( ( C = zero_z7902377541816115708ring_a )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_724_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_725_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_726_mult__cancel__left,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( times_5121417576591743744ring_a @ C @ A )
        = ( times_5121417576591743744ring_a @ C @ B ) )
      = ( ( C = zero_z7902377541816115708ring_a )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_727_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_728_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_729_mult__eq__0__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( times_5121417576591743744ring_a @ A @ B )
        = zero_z7902377541816115708ring_a )
      = ( ( A = zero_z7902377541816115708ring_a )
        | ( B = zero_z7902377541816115708ring_a ) ) ) ).

% mult_eq_0_iff
thf(fact_730_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_731_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_732_mult__zero__right,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ A @ zero_z7902377541816115708ring_a )
      = zero_z7902377541816115708ring_a ) ).

% mult_zero_right
thf(fact_733_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_734_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_735_mult__zero__left,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ zero_z7902377541816115708ring_a @ A )
      = zero_z7902377541816115708ring_a ) ).

% mult_zero_left
thf(fact_736_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_737_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_738_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_739_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ A @ A )
      = zero_z7902377541816115708ring_a ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_740_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_741_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_742_diff__zero,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ A @ zero_z7902377541816115708ring_a )
      = A ) ).

% diff_zero
thf(fact_743_diff__zero,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_zero
thf(fact_744_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_745_diff__0__right,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ A @ zero_z7902377541816115708ring_a )
      = A ) ).

% diff_0_right
thf(fact_746_diff__0__right,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ zero_zero_int )
      = A ) ).

% diff_0_right
thf(fact_747_diff__self,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ A @ A )
      = zero_z7902377541816115708ring_a ) ).

% diff_self
thf(fact_748_diff__self,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ A @ A )
      = zero_zero_int ) ).

% diff_self
thf(fact_749_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_750_div__by__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_751_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_752_div__0,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% div_0
thf(fact_753_dvd__0__left__iff,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% dvd_0_left_iff
thf(fact_754_dvd__0__left__iff,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ zero_zero_int @ A )
      = ( A = zero_zero_int ) ) ).

% dvd_0_left_iff
thf(fact_755_dvd__0__right,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% dvd_0_right
thf(fact_756_dvd__0__right,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ zero_zero_int ) ).

% dvd_0_right
thf(fact_757_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_758_add__diff__cancel__right_H,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_759_add__diff__cancel__right_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_760_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_761_add__diff__cancel__right,axiom,
    ! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ C ) @ ( plus_p6165643967897163644ring_a @ B @ C ) )
      = ( minus_3609261664126569004ring_a @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_762_add__diff__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_763_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_764_add__diff__cancel__left_H,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_765_add__diff__cancel__left_H,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_766_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_767_add__diff__cancel__left,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ C @ A ) @ ( plus_p6165643967897163644ring_a @ C @ B ) )
      = ( minus_3609261664126569004ring_a @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_768_add__diff__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( minus_minus_int @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_769_diff__add__cancel,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_770_diff__add__cancel,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
      = A ) ).

% diff_add_cancel
thf(fact_771_add__diff__cancel,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_772_add__diff__cancel,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel
thf(fact_773_mult__minus__right,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ A @ ( uminus3100561713750211260ring_a @ B ) )
      = ( uminus3100561713750211260ring_a @ ( times_5121417576591743744ring_a @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_774_mult__minus__right,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_right
thf(fact_775_minus__mult__minus,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( uminus3100561713750211260ring_a @ B ) )
      = ( times_5121417576591743744ring_a @ A @ B ) ) ).

% minus_mult_minus
thf(fact_776_minus__mult__minus,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
      = ( times_times_int @ A @ B ) ) ).

% minus_mult_minus
thf(fact_777_mult__minus__left,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B )
      = ( uminus3100561713750211260ring_a @ ( times_5121417576591743744ring_a @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_778_mult__minus__left,axiom,
    ! [A: int,B: int] :
      ( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
      = ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).

% mult_minus_left
thf(fact_779_div__by__1,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ A @ one_on2109788427901206336ring_a )
      = A ) ).

% div_by_1
thf(fact_780_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_781_div__by__1,axiom,
    ! [A: int] :
      ( ( divide_divide_int @ A @ one_one_int )
      = A ) ).

% div_by_1
thf(fact_782_dvd__add__triv__right__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_783_dvd__add__triv__right__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ A ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_784_dvd__add__triv__right__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ A ) )
      = ( dvd_dv7258769340395861407ring_a @ A @ B ) ) ).

% dvd_add_triv_right_iff
thf(fact_785_dvd__add__triv__left__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_786_dvd__add__triv__left__iff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ A @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_787_dvd__add__triv__left__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ ( plus_p6165643967897163644ring_a @ A @ B ) )
      = ( dvd_dv7258769340395861407ring_a @ A @ B ) ) ).

% dvd_add_triv_left_iff
thf(fact_788_minus__diff__eq,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( uminus3100561713750211260ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) )
      = ( minus_3609261664126569004ring_a @ B @ A ) ) ).

% minus_diff_eq
thf(fact_789_minus__diff__eq,axiom,
    ! [A: int,B: int] :
      ( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
      = ( minus_minus_int @ B @ A ) ) ).

% minus_diff_eq
thf(fact_790_div__dvd__div,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ A @ C )
       => ( ( dvd_dvd_nat @ ( divide_divide_nat @ B @ A ) @ ( divide_divide_nat @ C @ A ) )
          = ( dvd_dvd_nat @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_791_div__dvd__div,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ A @ C )
       => ( ( dvd_dvd_int @ ( divide_divide_int @ B @ A ) @ ( divide_divide_int @ C @ A ) )
          = ( dvd_dvd_int @ B @ C ) ) ) ) ).

% div_dvd_div
thf(fact_792_minus__dvd__iff,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ ( uminus3100561713750211260ring_a @ X ) @ Y )
      = ( dvd_dv7258769340395861407ring_a @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_793_minus__dvd__iff,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ ( uminus_uminus_int @ X ) @ Y )
      = ( dvd_dvd_int @ X @ Y ) ) ).

% minus_dvd_iff
thf(fact_794_dvd__minus__iff,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ X @ ( uminus3100561713750211260ring_a @ Y ) )
      = ( dvd_dv7258769340395861407ring_a @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_795_dvd__minus__iff,axiom,
    ! [X: int,Y: int] :
      ( ( dvd_dvd_int @ X @ ( uminus_uminus_int @ Y ) )
      = ( dvd_dvd_int @ X @ Y ) ) ).

% dvd_minus_iff
thf(fact_796_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_797_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_798_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_799_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_800_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_801_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_802_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_803_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_804_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_805_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_806_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_807_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_808_diff__diff__left,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J2 ) @ K )
      = ( minus_minus_nat @ I2 @ ( plus_plus_nat @ J2 @ K ) ) ) ).

% diff_diff_left
thf(fact_809_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_810_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_811_nat__dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ one_one_nat )
      = ( M = one_one_nat ) ) ).

% nat_dvd_1_iff_1
thf(fact_812_semiring__norm_I78_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_num @ M @ N ) ) ).

% semiring_norm(78)
thf(fact_813_semiring__norm_I75_J,axiom,
    ! [M: num] :
      ~ ( ord_less_num @ M @ one ) ).

% semiring_norm(75)
thf(fact_814_mult__cancel__right2,axiom,
    ! [A: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( ( times_5121417576591743744ring_a @ A @ C )
        = C )
      = ( ( C = zero_z7902377541816115708ring_a )
        | ( A = one_on2109788427901206336ring_a ) ) ) ).

% mult_cancel_right2
thf(fact_815_mult__cancel__right2,axiom,
    ! [A: int,C: int] :
      ( ( ( times_times_int @ A @ C )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_right2
thf(fact_816_mult__cancel__right1,axiom,
    ! [C: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C
        = ( times_5121417576591743744ring_a @ B @ C ) )
      = ( ( C = zero_z7902377541816115708ring_a )
        | ( B = one_on2109788427901206336ring_a ) ) ) ).

% mult_cancel_right1
thf(fact_817_mult__cancel__right1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_right1
thf(fact_818_mult__cancel__left2,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( ( times_5121417576591743744ring_a @ C @ A )
        = C )
      = ( ( C = zero_z7902377541816115708ring_a )
        | ( A = one_on2109788427901206336ring_a ) ) ) ).

% mult_cancel_left2
thf(fact_819_mult__cancel__left2,axiom,
    ! [C: int,A: int] :
      ( ( ( times_times_int @ C @ A )
        = C )
      = ( ( C = zero_zero_int )
        | ( A = one_one_int ) ) ) ).

% mult_cancel_left2
thf(fact_820_mult__cancel__left1,axiom,
    ! [C: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C
        = ( times_5121417576591743744ring_a @ C @ B ) )
      = ( ( C = zero_z7902377541816115708ring_a )
        | ( B = one_on2109788427901206336ring_a ) ) ) ).

% mult_cancel_left1
thf(fact_821_mult__cancel__left1,axiom,
    ! [C: int,B: int] :
      ( ( C
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( B = one_one_int ) ) ) ).

% mult_cancel_left1
thf(fact_822_diff__gt__0__iff__gt,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
      = ( ord_less_int @ B @ A ) ) ).

% diff_gt_0_iff_gt
thf(fact_823_diff__numeral__special_I9_J,axiom,
    ( ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ one_on2109788427901206336ring_a )
    = zero_z7902377541816115708ring_a ) ).

% diff_numeral_special(9)
thf(fact_824_diff__numeral__special_I9_J,axiom,
    ( ( minus_minus_int @ one_one_int @ one_one_int )
    = zero_zero_int ) ).

% diff_numeral_special(9)
thf(fact_825_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_826_nonzero__mult__div__cancel__right,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_827_nonzero__mult__div__cancel__right,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_828_nonzero__mult__div__cancel__right,axiom,
    ! [B: int,A: int] :
      ( ( B != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_829_nonzero__mult__div__cancel__left,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( A != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_830_nonzero__mult__div__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_831_nonzero__mult__div__cancel__left,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ ( times_times_int @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_832_div__self,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( A != zero_z7902377541816115708ring_a )
     => ( ( divide972148758386938611ring_a @ A @ A )
        = one_on2109788427901206336ring_a ) ) ).

% div_self
thf(fact_833_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_834_div__self,axiom,
    ! [A: int] :
      ( ( A != zero_zero_int )
     => ( ( divide_divide_int @ A @ A )
        = one_one_int ) ) ).

% div_self
thf(fact_835_algebraic__semidom__class_Odvd__times__right__cancel__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( A != zero_z7902377541816115708ring_a )
     => ( ( dvd_dv7258769340395861407ring_a @ ( times_5121417576591743744ring_a @ B @ A ) @ ( times_5121417576591743744ring_a @ C @ A ) )
        = ( dvd_dv7258769340395861407ring_a @ B @ C ) ) ) ).

% algebraic_semidom_class.dvd_times_right_cancel_iff
thf(fact_836_algebraic__semidom__class_Odvd__times__right__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% algebraic_semidom_class.dvd_times_right_cancel_iff
thf(fact_837_algebraic__semidom__class_Odvd__times__right__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% algebraic_semidom_class.dvd_times_right_cancel_iff
thf(fact_838_algebraic__semidom__class_Odvd__times__left__cancel__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( A != zero_z7902377541816115708ring_a )
     => ( ( dvd_dv7258769340395861407ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ ( times_5121417576591743744ring_a @ A @ C ) )
        = ( dvd_dv7258769340395861407ring_a @ B @ C ) ) ) ).

% algebraic_semidom_class.dvd_times_left_cancel_iff
thf(fact_839_algebraic__semidom__class_Odvd__times__left__cancel__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A != zero_zero_nat )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) )
        = ( dvd_dvd_nat @ B @ C ) ) ) ).

% algebraic_semidom_class.dvd_times_left_cancel_iff
thf(fact_840_algebraic__semidom__class_Odvd__times__left__cancel__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A != zero_zero_int )
     => ( ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) )
        = ( dvd_dvd_int @ B @ C ) ) ) ).

% algebraic_semidom_class.dvd_times_left_cancel_iff
thf(fact_841_dvd__mult__cancel__right,axiom,
    ! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ B @ C ) )
      = ( ( C = zero_z7902377541816115708ring_a )
        | ( dvd_dv7258769340395861407ring_a @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_842_dvd__mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_right
thf(fact_843_dvd__mult__cancel__left,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
      = ( ( C = zero_z7902377541816115708ring_a )
        | ( dvd_dv7258769340395861407ring_a @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_844_dvd__mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( dvd_dvd_int @ A @ B ) ) ) ).

% dvd_mult_cancel_left
thf(fact_845_right__diff__distrib__numeral,axiom,
    ! [V: num,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ ( minus_3609261664126569004ring_a @ B @ C ) )
      = ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ B ) @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_846_right__diff__distrib__numeral,axiom,
    ! [V: num,B: int,C: int] :
      ( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).

% right_diff_distrib_numeral
thf(fact_847_left__diff__distrib__numeral,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,V: num] :
      ( ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ ( numera7938180240421336042ring_a @ V ) )
      = ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ A @ ( numera7938180240421336042ring_a @ V ) ) @ ( times_5121417576591743744ring_a @ B @ ( numera7938180240421336042ring_a @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_848_left__diff__distrib__numeral,axiom,
    ! [A: int,B: int,V: num] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
      = ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).

% left_diff_distrib_numeral
thf(fact_849_diff__0,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ zero_z7902377541816115708ring_a @ A )
      = ( uminus3100561713750211260ring_a @ A ) ) ).

% diff_0
thf(fact_850_diff__0,axiom,
    ! [A: int] :
      ( ( minus_minus_int @ zero_zero_int @ A )
      = ( uminus_uminus_int @ A ) ) ).

% diff_0
thf(fact_851_algebraic__semidom__class_Ounit__prod,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ one_on2109788427901206336ring_a )
     => ( ( dvd_dv7258769340395861407ring_a @ B @ one_on2109788427901206336ring_a )
       => ( dvd_dv7258769340395861407ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ one_on2109788427901206336ring_a ) ) ) ).

% algebraic_semidom_class.unit_prod
thf(fact_852_algebraic__semidom__class_Ounit__prod,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ).

% algebraic_semidom_class.unit_prod
thf(fact_853_algebraic__semidom__class_Ounit__prod,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ).

% algebraic_semidom_class.unit_prod
thf(fact_854_dvd__add__times__triv__right__iff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ ( times_5121417576591743744ring_a @ C @ A ) ) )
      = ( dvd_dv7258769340395861407ring_a @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_855_dvd__add__times__triv__right__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ B @ ( times_times_nat @ C @ A ) ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_856_dvd__add__times__triv__right__iff,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ B @ ( times_times_int @ C @ A ) ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_right_iff
thf(fact_857_dvd__add__times__triv__left__iff,axiom,
    ! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ B ) )
      = ( dvd_dv7258769340395861407ring_a @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_858_dvd__add__times__triv__left__iff,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ ( plus_plus_nat @ ( times_times_nat @ C @ A ) @ B ) )
      = ( dvd_dvd_nat @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_859_dvd__add__times__triv__left__iff,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( plus_plus_int @ ( times_times_int @ C @ A ) @ B ) )
      = ( dvd_dvd_int @ A @ B ) ) ).

% dvd_add_times_triv_left_iff
thf(fact_860_uminus__add__conv__diff,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B )
      = ( minus_3609261664126569004ring_a @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_861_uminus__add__conv__diff,axiom,
    ! [A: int,B: int] :
      ( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
      = ( minus_minus_int @ B @ A ) ) ).

% uminus_add_conv_diff
thf(fact_862_diff__minus__eq__add,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ A @ ( uminus3100561713750211260ring_a @ B ) )
      = ( plus_p6165643967897163644ring_a @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_863_diff__minus__eq__add,axiom,
    ! [A: int,B: int] :
      ( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
      = ( plus_plus_int @ A @ B ) ) ).

% diff_minus_eq_add
thf(fact_864_dvd__mult__div__cancel,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ B )
     => ( ( times_5121417576591743744ring_a @ A @ ( divide972148758386938611ring_a @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_865_dvd__mult__div__cancel,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ A @ ( divide_divide_nat @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_866_dvd__mult__div__cancel,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ A @ ( divide_divide_int @ B @ A ) )
        = B ) ) ).

% dvd_mult_div_cancel
thf(fact_867_dvd__div__mult__self,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ B )
     => ( ( times_5121417576591743744ring_a @ ( divide972148758386938611ring_a @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_868_dvd__div__mult__self,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( times_times_nat @ ( divide_divide_nat @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_869_dvd__div__mult__self,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( times_times_int @ ( divide_divide_int @ B @ A ) @ A )
        = B ) ) ).

% dvd_div_mult_self
thf(fact_870_unit__div__1__div__1,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ one_on2109788427901206336ring_a )
     => ( ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_871_unit__div__1__div__1,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( divide_divide_nat @ one_one_nat @ ( divide_divide_nat @ one_one_nat @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_872_unit__div__1__div__1,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( divide_divide_int @ one_one_int @ ( divide_divide_int @ one_one_int @ A ) )
        = A ) ) ).

% unit_div_1_div_1
thf(fact_873_unit__div__1__unit,axiom,
    ! [A: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ one_on2109788427901206336ring_a )
     => ( dvd_dv7258769340395861407ring_a @ ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ A ) @ one_on2109788427901206336ring_a ) ) ).

% unit_div_1_unit
thf(fact_874_unit__div__1__unit,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( dvd_dvd_nat @ ( divide_divide_nat @ one_one_nat @ A ) @ one_one_nat ) ) ).

% unit_div_1_unit
thf(fact_875_unit__div__1__unit,axiom,
    ! [A: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( dvd_dvd_int @ ( divide_divide_int @ one_one_int @ A ) @ one_one_int ) ) ).

% unit_div_1_unit
thf(fact_876_unit__div,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ one_on2109788427901206336ring_a )
     => ( ( dvd_dv7258769340395861407ring_a @ B @ one_on2109788427901206336ring_a )
       => ( dvd_dv7258769340395861407ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ one_on2109788427901206336ring_a ) ) ) ).

% unit_div
thf(fact_877_unit__div,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ one_one_nat )
     => ( ( dvd_dvd_nat @ B @ one_one_nat )
       => ( dvd_dvd_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% unit_div
thf(fact_878_unit__div,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ A @ one_one_int )
     => ( ( dvd_dvd_int @ B @ one_one_int )
       => ( dvd_dvd_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).

% unit_div
thf(fact_879_div__add,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ C @ A )
     => ( ( dvd_dv7258769340395861407ring_a @ C @ B )
       => ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
          = ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ C ) @ ( divide972148758386938611ring_a @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_880_div__add,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( dvd_dvd_nat @ C @ A )
     => ( ( dvd_dvd_nat @ C @ B )
       => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_881_div__add,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ C )
          = ( plus_plus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_add
thf(fact_882_div__diff,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ C @ A )
     => ( ( dvd_dv7258769340395861407ring_a @ C @ B )
       => ( ( divide972148758386938611ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ C )
          = ( minus_3609261664126569004ring_a @ ( divide972148758386938611ring_a @ A @ C ) @ ( divide972148758386938611ring_a @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_883_div__diff,axiom,
    ! [C: int,A: int,B: int] :
      ( ( dvd_dvd_int @ C @ A )
     => ( ( dvd_dvd_int @ C @ B )
       => ( ( divide_divide_int @ ( minus_minus_int @ A @ B ) @ C )
          = ( minus_minus_int @ ( divide_divide_int @ A @ C ) @ ( divide_divide_int @ B @ C ) ) ) ) ) ).

% div_diff
thf(fact_884_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_885_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_886_semiring__norm_I76_J,axiom,
    ! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).

% semiring_norm(76)
thf(fact_887_diff__numeral__special_I12_J,axiom,
    ( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
    = zero_z7902377541816115708ring_a ) ).

% diff_numeral_special(12)
thf(fact_888_diff__numeral__special_I12_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
    = zero_zero_int ) ).

% diff_numeral_special(12)
thf(fact_889_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_3609261664126569004ring_a @ ( numera7938180240421336042ring_a @ M ) @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ N ) ) )
      = ( numera7938180240421336042ring_a @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_890_diff__numeral__simps_I2_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).

% diff_numeral_simps(2)
thf(fact_891_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ M ) ) @ ( numera7938180240421336042ring_a @ N ) )
      = ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_892_diff__numeral__simps_I3_J,axiom,
    ! [M: num,N: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ) ).

% diff_numeral_simps(3)
thf(fact_893_half__negative__int__iff,axiom,
    ! [K: int] :
      ( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
      = ( ord_less_int @ K @ zero_zero_int ) ) ).

% half_negative_int_iff
thf(fact_894_diff__numeral__special_I10_J,axiom,
    ( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ one_on2109788427901206336ring_a )
    = ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_895_diff__numeral__special_I10_J,axiom,
    ( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
    = ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).

% diff_numeral_special(10)
thf(fact_896_diff__numeral__special_I11_J,axiom,
    ( ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
    = ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_897_diff__numeral__special_I11_J,axiom,
    ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).

% diff_numeral_special(11)
thf(fact_898_even__diff,axiom,
    ! [A: int,B: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ A @ B ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) ) ).

% even_diff
thf(fact_899_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ N ) ) )
      = ( numera7938180240421336042ring_a @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_900_diff__numeral__special_I3_J,axiom,
    ! [N: num] :
      ( ( minus_minus_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
      = ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).

% diff_numeral_special(3)
thf(fact_901_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ M ) ) @ one_on2109788427901206336ring_a )
      = ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_902_diff__numeral__special_I4_J,axiom,
    ! [M: num] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int )
      = ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ one ) ) ) ) ).

% diff_numeral_special(4)
thf(fact_903_even__diff__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).

% even_diff_nat
thf(fact_904_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ one_one_nat ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_905_semiring__parity__class_Oeven__mask__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ one_one_int ) )
      = ( N = zero_zero_nat ) ) ).

% semiring_parity_class.even_mask_iff
thf(fact_906_odd__two__times__div__two__nat,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
        = ( minus_minus_nat @ N @ one_one_nat ) ) ) ).

% odd_two_times_div_two_nat
thf(fact_907_less__imp__diff__less,axiom,
    ! [J2: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J2 @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J2 @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_908_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L2: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L2 )
       => ( ord_less_nat @ ( minus_minus_nat @ L2 @ N ) @ ( minus_minus_nat @ L2 @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_909_dvd__diff__nat,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% dvd_diff_nat
thf(fact_910_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_911_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( minus_3609261664126569004ring_a @ A @ C ) @ B )
      = ( minus_3609261664126569004ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_912_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
      = ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_913_diff__eq__diff__eq,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a,D: finite_mod_ring_a] :
      ( ( ( minus_3609261664126569004ring_a @ A @ B )
        = ( minus_3609261664126569004ring_a @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_914_diff__eq__diff__eq,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( A = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_915_dvd__diff,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a,Z: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ X @ Y )
     => ( ( dvd_dv7258769340395861407ring_a @ X @ Z )
       => ( dvd_dv7258769340395861407ring_a @ X @ ( minus_3609261664126569004ring_a @ Y @ Z ) ) ) ) ).

% dvd_diff
thf(fact_916_dvd__diff,axiom,
    ! [X: int,Y: int,Z: int] :
      ( ( dvd_dvd_int @ X @ Y )
     => ( ( dvd_dvd_int @ X @ Z )
       => ( dvd_dvd_int @ X @ ( minus_minus_int @ Y @ Z ) ) ) ) ).

% dvd_diff
thf(fact_917_left__diff__distrib,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ C )
      = ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_918_left__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% left_diff_distrib
thf(fact_919_right__diff__distrib,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ A @ ( minus_3609261664126569004ring_a @ B @ C ) )
      = ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ ( times_5121417576591743744ring_a @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_920_right__diff__distrib,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib
thf(fact_921_left__diff__distrib_H,axiom,
    ! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ B @ C ) @ A )
      = ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ B @ A ) @ ( times_5121417576591743744ring_a @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_922_left__diff__distrib_H,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
      = ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_923_left__diff__distrib_H,axiom,
    ! [B: int,C: int,A: int] :
      ( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
      = ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).

% left_diff_distrib'
thf(fact_924_right__diff__distrib_H,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( times_5121417576591743744ring_a @ A @ ( minus_3609261664126569004ring_a @ B @ C ) )
      = ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ ( times_5121417576591743744ring_a @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_925_right__diff__distrib_H,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
      = ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_926_right__diff__distrib_H,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).

% right_diff_distrib'
thf(fact_927_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_928_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_929_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_930_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_931_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_932_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_933_diff__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% diff_mult_distrib
thf(fact_934_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_935_diff__commute,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J2 ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I2 @ K ) @ J2 ) ) ).

% diff_commute
thf(fact_936_strict__subset__divisors__dvd,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_set_nat
        @ ( collect_nat
          @ ^ [C3: nat] : ( dvd_dvd_nat @ C3 @ A ) )
        @ ( collect_nat
          @ ^ [C3: nat] : ( dvd_dvd_nat @ C3 @ B ) ) )
      = ( ( dvd_dvd_nat @ A @ B )
        & ~ ( dvd_dvd_nat @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_937_strict__subset__divisors__dvd,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_set_int
        @ ( collect_int
          @ ^ [C3: int] : ( dvd_dvd_int @ C3 @ A ) )
        @ ( collect_int
          @ ^ [C3: int] : ( dvd_dvd_int @ C3 @ B ) ) )
      = ( ( dvd_dvd_int @ A @ B )
        & ~ ( dvd_dvd_int @ B @ A ) ) ) ).

% strict_subset_divisors_dvd
thf(fact_938_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y2: finite_mod_ring_a,Z2: finite_mod_ring_a] : ( Y2 = Z2 ) )
    = ( ^ [A3: finite_mod_ring_a,B2: finite_mod_ring_a] :
          ( ( minus_3609261664126569004ring_a @ A3 @ B2 )
          = zero_z7902377541816115708ring_a ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_939_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y2: int,Z2: int] : ( Y2 = Z2 ) )
    = ( ^ [A3: int,B2: int] :
          ( ( minus_minus_int @ A3 @ B2 )
          = zero_zero_int ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_940_diff__strict__mono,axiom,
    ! [A: int,B: int,D: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ D @ C )
       => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).

% diff_strict_mono
thf(fact_941_diff__eq__diff__less,axiom,
    ! [A: int,B: int,C: int,D: int] :
      ( ( ( minus_minus_int @ A @ B )
        = ( minus_minus_int @ C @ D ) )
     => ( ( ord_less_int @ A @ B )
        = ( ord_less_int @ C @ D ) ) ) ).

% diff_eq_diff_less
thf(fact_942_diff__strict__left__mono,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).

% diff_strict_left_mono
thf(fact_943_diff__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).

% diff_strict_right_mono
thf(fact_944_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_945_diff__diff__eq,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ C )
      = ( minus_3609261664126569004ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_946_diff__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_947_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_948_add__implies__diff,axiom,
    ! [C: finite_mod_ring_a,B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ C @ B )
        = A )
     => ( C
        = ( minus_3609261664126569004ring_a @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_949_add__implies__diff,axiom,
    ! [C: int,B: int,A: int] :
      ( ( ( plus_plus_int @ C @ B )
        = A )
     => ( C
        = ( minus_minus_int @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_950_diff__add__eq__diff__diff__swap,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) )
      = ( minus_3609261664126569004ring_a @ ( minus_3609261664126569004ring_a @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_951_diff__add__eq__diff__diff__swap,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
      = ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).

% diff_add_eq_diff_diff_swap
thf(fact_952_diff__add__eq,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ C )
      = ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_953_diff__add__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_add_eq
thf(fact_954_diff__diff__eq2,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ A @ ( minus_3609261664126569004ring_a @ B @ C ) )
      = ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_955_diff__diff__eq2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).

% diff_diff_eq2
thf(fact_956_add__diff__eq,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ A @ ( minus_3609261664126569004ring_a @ B @ C ) )
      = ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_957_add__diff__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
      = ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% add_diff_eq
thf(fact_958_eq__diff__eq,axiom,
    ! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( A
        = ( minus_3609261664126569004ring_a @ C @ B ) )
      = ( ( plus_p6165643967897163644ring_a @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_959_eq__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( A
        = ( minus_minus_int @ C @ B ) )
      = ( ( plus_plus_int @ A @ B )
        = C ) ) ).

% eq_diff_eq
thf(fact_960_diff__eq__eq,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( ( minus_3609261664126569004ring_a @ A @ B )
        = C )
      = ( A
        = ( plus_p6165643967897163644ring_a @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_961_diff__eq__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( minus_minus_int @ A @ B )
        = C )
      = ( A
        = ( plus_plus_int @ C @ B ) ) ) ).

% diff_eq_eq
thf(fact_962_group__cancel_Osub1,axiom,
    ! [A2: finite_mod_ring_a,K: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( A2
        = ( plus_p6165643967897163644ring_a @ K @ A ) )
     => ( ( minus_3609261664126569004ring_a @ A2 @ B )
        = ( plus_p6165643967897163644ring_a @ K @ ( minus_3609261664126569004ring_a @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_963_group__cancel_Osub1,axiom,
    ! [A2: int,K: int,A: int,B: int] :
      ( ( A2
        = ( plus_plus_int @ K @ A ) )
     => ( ( minus_minus_int @ A2 @ B )
        = ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub1
thf(fact_964_diff__divide__distrib,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( divide972148758386938611ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ C )
      = ( minus_3609261664126569004ring_a @ ( divide972148758386938611ring_a @ A @ C ) @ ( divide972148758386938611ring_a @ B @ C ) ) ) ).

% diff_divide_distrib
thf(fact_965_minus__diff__commute,axiom,
    ! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ B ) @ A )
      = ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_966_minus__diff__commute,axiom,
    ! [B: int,A: int] :
      ( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
      = ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).

% minus_diff_commute
thf(fact_967_dvd__diff__commute,axiom,
    ! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( dvd_dv7258769340395861407ring_a @ A @ ( minus_3609261664126569004ring_a @ C @ B ) )
      = ( dvd_dv7258769340395861407ring_a @ A @ ( minus_3609261664126569004ring_a @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_968_dvd__diff__commute,axiom,
    ! [A: int,C: int,B: int] :
      ( ( dvd_dvd_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( dvd_dvd_int @ A @ ( minus_minus_int @ B @ C ) ) ) ).

% dvd_diff_commute
thf(fact_969_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_970_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: int,B: int] :
      ( ~ ( ord_less_int @ A @ B )
     => ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_971_square__diff__square__factored,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ X @ X ) @ ( times_5121417576591743744ring_a @ Y @ Y ) )
      = ( times_5121417576591743744ring_a @ ( plus_p6165643967897163644ring_a @ X @ Y ) @ ( minus_3609261664126569004ring_a @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_972_square__diff__square__factored,axiom,
    ! [X: int,Y: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
      = ( times_times_int @ ( plus_plus_int @ X @ Y ) @ ( minus_minus_int @ X @ Y ) ) ) ).

% square_diff_square_factored
thf(fact_973_eq__add__iff2,axiom,
    ! [A: finite_mod_ring_a,E: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a,D: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ E ) @ C )
        = ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ B @ E ) @ D ) )
      = ( C
        = ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_974_eq__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( C
        = ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% eq_add_iff2
thf(fact_975_eq__add__iff1,axiom,
    ! [A: finite_mod_ring_a,E: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a,D: finite_mod_ring_a] :
      ( ( ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ E ) @ C )
        = ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ B @ E ) @ D ) )
      = ( ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_976_eq__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
        = ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C )
        = D ) ) ).

% eq_add_iff1
thf(fact_977_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_978_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_979_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_980_less__diff__conv,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ ( minus_minus_nat @ J2 @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ J2 ) ) ).

% less_diff_conv
thf(fact_981_dvd__minus__self,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
      = ( ( ord_less_nat @ N @ M )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_minus_self
thf(fact_982_bezout1__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D2: nat,X3: nat,Y3: nat] :
      ( ( dvd_dvd_nat @ D2 @ A )
      & ( dvd_dvd_nat @ D2 @ B )
      & ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X3 ) @ ( times_times_nat @ B @ Y3 ) )
          = D2 )
        | ( ( minus_minus_nat @ ( times_times_nat @ B @ X3 ) @ ( times_times_nat @ A @ Y3 ) )
          = D2 ) ) ) ).

% bezout1_nat
thf(fact_983_less__add__iff2,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).

% less_add_iff2
thf(fact_984_less__add__iff1,axiom,
    ! [A: int,E: int,C: int,B: int,D: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
      = ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).

% less_add_iff1
thf(fact_985_square__diff__one__factored,axiom,
    ! [X: finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ X @ X ) @ one_on2109788427901206336ring_a )
      = ( times_5121417576591743744ring_a @ ( plus_p6165643967897163644ring_a @ X @ one_on2109788427901206336ring_a ) @ ( minus_3609261664126569004ring_a @ X @ one_on2109788427901206336ring_a ) ) ) ).

% square_diff_one_factored
thf(fact_986_square__diff__one__factored,axiom,
    ! [X: int] :
      ( ( minus_minus_int @ ( times_times_int @ X @ X ) @ one_one_int )
      = ( times_times_int @ ( plus_plus_int @ X @ one_one_int ) @ ( minus_minus_int @ X @ one_one_int ) ) ) ).

% square_diff_one_factored
thf(fact_987_less__iff__diff__less__0,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).

% less_iff_diff_less_0
thf(fact_988_less__diff__eq,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ A @ ( minus_minus_int @ C @ B ) )
      = ( ord_less_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).

% less_diff_eq
thf(fact_989_diff__less__eq,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ ( minus_minus_int @ A @ B ) @ C )
      = ( ord_less_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).

% diff_less_eq
thf(fact_990_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_3609261664126569004ring_a
    = ( ^ [A3: finite_mod_ring_a,B2: finite_mod_ring_a] : ( plus_p6165643967897163644ring_a @ A3 @ ( uminus3100561713750211260ring_a @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_991_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).

% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_992_diff__conv__add__uminus,axiom,
    ( minus_3609261664126569004ring_a
    = ( ^ [A3: finite_mod_ring_a,B2: finite_mod_ring_a] : ( plus_p6165643967897163644ring_a @ A3 @ ( uminus3100561713750211260ring_a @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_993_diff__conv__add__uminus,axiom,
    ( minus_minus_int
    = ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).

% diff_conv_add_uminus
thf(fact_994_group__cancel_Osub2,axiom,
    ! [B3: finite_mod_ring_a,K: finite_mod_ring_a,B: finite_mod_ring_a,A: finite_mod_ring_a] :
      ( ( B3
        = ( plus_p6165643967897163644ring_a @ K @ B ) )
     => ( ( minus_3609261664126569004ring_a @ A @ B3 )
        = ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ K ) @ ( minus_3609261664126569004ring_a @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_995_group__cancel_Osub2,axiom,
    ! [B3: int,K: int,B: int,A: int] :
      ( ( B3
        = ( plus_plus_int @ K @ B ) )
     => ( ( minus_minus_int @ A @ B3 )
        = ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).

% group_cancel.sub2
thf(fact_996_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D3: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D3 ) )
                & ~ ( P @ D3 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_997_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D3: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D3 ) )
           => ( P @ D3 ) ) ) ) ).

% nat_diff_split
thf(fact_998_pos__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ A @ zero_zero_int ) ) ) ).

% pos_imp_zdiv_neg_iff
thf(fact_999_neg__imp__zdiv__neg__iff,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ zero_zero_int )
     => ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
        = ( ord_less_int @ zero_zero_int @ A ) ) ) ).

% neg_imp_zdiv_neg_iff
thf(fact_1000_div__neg__pos__less0,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).

% div_neg_pos_less0
thf(fact_1001_mult__eq__if,axiom,
    ( times_times_nat
    = ( ^ [M2: nat,N4: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N4 @ ( times_times_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N4 ) ) ) ) ) ).

% mult_eq_if
thf(fact_1002_divide__diff__eq__iff,axiom,
    ! [Z: finite_mod_ring_a,X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( Z != zero_z7902377541816115708ring_a )
     => ( ( minus_3609261664126569004ring_a @ ( divide972148758386938611ring_a @ X @ Z ) @ Y )
        = ( divide972148758386938611ring_a @ ( minus_3609261664126569004ring_a @ X @ ( times_5121417576591743744ring_a @ Y @ Z ) ) @ Z ) ) ) ).

% divide_diff_eq_iff
thf(fact_1003_diff__divide__eq__iff,axiom,
    ! [Z: finite_mod_ring_a,X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( Z != zero_z7902377541816115708ring_a )
     => ( ( minus_3609261664126569004ring_a @ X @ ( divide972148758386938611ring_a @ Y @ Z ) )
        = ( divide972148758386938611ring_a @ ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ X @ Z ) @ Y ) @ Z ) ) ) ).

% diff_divide_eq_iff
thf(fact_1004_diff__frac__eq,axiom,
    ! [Y: finite_mod_ring_a,Z: finite_mod_ring_a,X: finite_mod_ring_a,W: finite_mod_ring_a] :
      ( ( Y != zero_z7902377541816115708ring_a )
     => ( ( Z != zero_z7902377541816115708ring_a )
       => ( ( minus_3609261664126569004ring_a @ ( divide972148758386938611ring_a @ X @ Y ) @ ( divide972148758386938611ring_a @ W @ Z ) )
          = ( divide972148758386938611ring_a @ ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ X @ Z ) @ ( times_5121417576591743744ring_a @ W @ Y ) ) @ ( times_5121417576591743744ring_a @ Y @ Z ) ) ) ) ) ).

% diff_frac_eq
thf(fact_1005_add__divide__eq__if__simps_I4_J,axiom,
    ! [Z: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( Z = zero_z7902377541816115708ring_a )
       => ( ( minus_3609261664126569004ring_a @ A @ ( divide972148758386938611ring_a @ B @ Z ) )
          = A ) )
      & ( ( Z != zero_z7902377541816115708ring_a )
       => ( ( minus_3609261664126569004ring_a @ A @ ( divide972148758386938611ring_a @ B @ Z ) )
          = ( divide972148758386938611ring_a @ ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ A @ Z ) @ B ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(4)
thf(fact_1006_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_1007_dvd__refl,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).

% dvd_refl
thf(fact_1008_dvd__refl,axiom,
    ! [A: int] : ( dvd_dvd_int @ A @ A ) ).

% dvd_refl
thf(fact_1009_dvd__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( dvd_dvd_nat @ A @ C ) ) ) ).

% dvd_trans
thf(fact_1010_dvd__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( dvd_dvd_int @ A @ B )
     => ( ( dvd_dvd_int @ B @ C )
       => ( dvd_dvd_int @ A @ C ) ) ) ).

% dvd_trans
thf(fact_1011_int__div__less__self,axiom,
    ! [X: int,K: int] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ one_one_int @ K )
       => ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).

% int_div_less_self
thf(fact_1012_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_1013_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_1014_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_1015_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_1016_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_1017_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N2 )
             => ( P @ M3 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_1018_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( P @ N2 )
         => ? [M3: nat] :
              ( ( ord_less_nat @ M3 @ N2 )
              & ~ ( P @ M3 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_1019_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_1020_gcd__nat_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ~ ( ( dvd_dvd_nat @ B @ A )
          & ( B != A ) ) ) ).

% gcd_nat.asym
thf(fact_1021_gcd__nat_Orefl,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).

% gcd_nat.refl
thf(fact_1022_gcd__nat_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( dvd_dvd_nat @ A @ C ) ) ) ).

% gcd_nat.trans
thf(fact_1023_gcd__nat_Oeq__iff,axiom,
    ( ( ^ [Y2: nat,Z2: nat] : ( Y2 = Z2 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( dvd_dvd_nat @ A3 @ B2 )
          & ( dvd_dvd_nat @ B2 @ A3 ) ) ) ) ).

% gcd_nat.eq_iff
thf(fact_1024_gcd__nat_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ( dvd_dvd_nat @ A @ A )
        & ( A != A ) ) ).

% gcd_nat.irrefl
thf(fact_1025_gcd__nat_Oantisym,axiom,
    ! [A: nat,B: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( dvd_dvd_nat @ B @ A )
       => ( A = B ) ) ) ).

% gcd_nat.antisym
thf(fact_1026_gcd__nat_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ( ( ( dvd_dvd_nat @ B @ C )
          & ( B != C ) )
       => ( ( dvd_dvd_nat @ A @ C )
          & ( A != C ) ) ) ) ).

% gcd_nat.strict_trans
thf(fact_1027_gcd__nat_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( dvd_dvd_nat @ A @ B )
     => ( ( ( dvd_dvd_nat @ B @ C )
          & ( B != C ) )
       => ( ( dvd_dvd_nat @ A @ C )
          & ( A != C ) ) ) ) ).

% gcd_nat.strict_trans1
thf(fact_1028_gcd__nat_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ( ( dvd_dvd_nat @ B @ C )
       => ( ( dvd_dvd_nat @ A @ C )
          & ( A != C ) ) ) ) ).

% gcd_nat.strict_trans2
thf(fact_1029_gcd__nat_Ostrict__iff__not,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
      = ( ( dvd_dvd_nat @ A @ B )
        & ~ ( dvd_dvd_nat @ B @ A ) ) ) ).

% gcd_nat.strict_iff_not
thf(fact_1030_gcd__nat_Oorder__iff__strict,axiom,
    ( dvd_dvd_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ( dvd_dvd_nat @ A3 @ B2 )
            & ( A3 != B2 ) )
          | ( A3 = B2 ) ) ) ) ).

% gcd_nat.order_iff_strict
thf(fact_1031_gcd__nat_Ostrict__iff__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
      = ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) ) ) ).

% gcd_nat.strict_iff_order
thf(fact_1032_gcd__nat_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ( dvd_dvd_nat @ A @ B ) ) ).

% gcd_nat.strict_implies_order
thf(fact_1033_gcd__nat_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ( dvd_dvd_nat @ A @ B )
        & ( A != B ) )
     => ( A != B ) ) ).

% gcd_nat.strict_implies_not_eq
thf(fact_1034_gcd__nat_Onot__eq__order__implies__strict,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( dvd_dvd_nat @ A @ B )
       => ( ( dvd_dvd_nat @ A @ B )
          & ( A != B ) ) ) ) ).

% gcd_nat.not_eq_order_implies_strict
thf(fact_1035_dvd__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ N )
     => ( ( dvd_dvd_nat @ N @ M )
       => ( M = N ) ) ) ).

% dvd_antisym
thf(fact_1036_minus__divide__diff__eq__iff,axiom,
    ! [Z: finite_mod_ring_a,X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( Z != zero_z7902377541816115708ring_a )
     => ( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ X @ Z ) ) @ Y )
        = ( divide972148758386938611ring_a @ ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ X ) @ ( times_5121417576591743744ring_a @ Y @ Z ) ) @ Z ) ) ) ).

% minus_divide_diff_eq_iff
thf(fact_1037_add__divide__eq__if__simps_I5_J,axiom,
    ! [Z: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( Z = zero_z7902377541816115708ring_a )
       => ( ( minus_3609261664126569004ring_a @ ( divide972148758386938611ring_a @ A @ Z ) @ B )
          = ( uminus3100561713750211260ring_a @ B ) ) )
      & ( ( Z != zero_z7902377541816115708ring_a )
       => ( ( minus_3609261664126569004ring_a @ ( divide972148758386938611ring_a @ A @ Z ) @ B )
          = ( divide972148758386938611ring_a @ ( minus_3609261664126569004ring_a @ A @ ( times_5121417576591743744ring_a @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(5)
thf(fact_1038_add__divide__eq__if__simps_I6_J,axiom,
    ! [Z: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( Z = zero_z7902377541816115708ring_a )
       => ( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ A @ Z ) ) @ B )
          = ( uminus3100561713750211260ring_a @ B ) ) )
      & ( ( Z != zero_z7902377541816115708ring_a )
       => ( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ ( divide972148758386938611ring_a @ A @ Z ) ) @ B )
          = ( divide972148758386938611ring_a @ ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( times_5121417576591743744ring_a @ B @ Z ) ) @ Z ) ) ) ) ).

% add_divide_eq_if_simps(6)
thf(fact_1039_power2__commute,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( power_6826135765519566523ring_a @ ( minus_3609261664126569004ring_a @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_6826135765519566523ring_a @ ( minus_3609261664126569004ring_a @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_1040_power2__commute,axiom,
    ! [X: int,Y: int] :
      ( ( power_power_int @ ( minus_minus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( power_power_int @ ( minus_minus_int @ Y @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% power2_commute
thf(fact_1041_div__eq__minus1,axiom,
    ! [B: int] :
      ( ( ord_less_int @ zero_zero_int @ B )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% div_eq_minus1
thf(fact_1042_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
       != zero_zero_nat )
     => ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_nat ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_1043_exp__not__zero__imp__exp__diff__not__zero,axiom,
    ! [N: nat,M: nat] :
      ( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
       != zero_zero_int )
     => ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_nat @ N @ M ) )
       != zero_zero_int ) ) ).

% exp_not_zero_imp_exp_diff_not_zero
thf(fact_1044_power__eq__if,axiom,
    ( power_6826135765519566523ring_a
    = ( ^ [P2: finite_mod_ring_a,M2: nat] : ( if_Finite_mod_ring_a @ ( M2 = zero_zero_nat ) @ one_on2109788427901206336ring_a @ ( times_5121417576591743744ring_a @ P2 @ ( power_6826135765519566523ring_a @ P2 @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_1045_power__eq__if,axiom,
    ( power_power_nat
    = ( ^ [P2: nat,M2: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P2 @ ( power_power_nat @ P2 @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_1046_power__eq__if,axiom,
    ( power_power_int
    = ( ^ [P2: int,M2: nat] : ( if_int @ ( M2 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P2 @ ( power_power_int @ P2 @ ( minus_minus_nat @ M2 @ one_one_nat ) ) ) ) ) ) ).

% power_eq_if
thf(fact_1047_power__minus__mult,axiom,
    ! [N: nat,A: finite_mod_ring_a] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_6826135765519566523ring_a @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_1048_power__minus__mult,axiom,
    ! [N: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_nat @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_1049_power__minus__mult,axiom,
    ! [N: nat,A: int] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
        = ( power_power_int @ A @ N ) ) ) ).

% power_minus_mult
thf(fact_1050_mult__right__cancel,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( ( times_5121417576591743744ring_a @ A @ C )
          = ( times_5121417576591743744ring_a @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_1051_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_1052_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_1053_mult__left__cancel,axiom,
    ! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( C != zero_z7902377541816115708ring_a )
     => ( ( ( times_5121417576591743744ring_a @ C @ A )
          = ( times_5121417576591743744ring_a @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_1054_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_1055_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_1056_no__zero__divisors,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( A != zero_z7902377541816115708ring_a )
     => ( ( B != zero_z7902377541816115708ring_a )
       => ( ( times_5121417576591743744ring_a @ A @ B )
         != zero_z7902377541816115708ring_a ) ) ) ).

% no_zero_divisors
thf(fact_1057_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_1058_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_1059_divisors__zero,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( times_5121417576591743744ring_a @ A @ B )
        = zero_z7902377541816115708ring_a )
     => ( ( A = zero_z7902377541816115708ring_a )
        | ( B = zero_z7902377541816115708ring_a ) ) ) ).

% divisors_zero
thf(fact_1060_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_1061_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_1062_mult__not__zero,axiom,
    ! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
      ( ( ( times_5121417576591743744ring_a @ A @ B )
       != zero_z7902377541816115708ring_a )
     => ( ( A != zero_z7902377541816115708ring_a )
        & ( B != zero_z7902377541816115708ring_a ) ) ) ).

% mult_not_zero
thf(fact_1063_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_1064_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_1065_zero__neq__one,axiom,
    zero_z7902377541816115708ring_a != one_on2109788427901206336ring_a ).

% zero_neq_one
thf(fact_1066_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_1067_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_1068_combine__common__factor,axiom,
    ! [A: finite_mod_ring_a,E: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
      ( ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ E ) @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ B @ E ) @ C ) )
      = ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1069_combine__common__factor,axiom,
    ! [A: nat,E: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1070_combine__common__factor,axiom,
    ! [A: int,E: int,B: int,C: int] :
      ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
      = ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1071_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_1072_distrib__right,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
      = ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).

% distrib_right
thf(fact_1073_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ~ ( P @ N2 )
             => ? [M3: nat] :
                  ( ( ord_less_nat @ M3 @ N2 )
                  & ~ ( P @ M3 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_1074_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_1075_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_1076_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_1077_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_1078_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_1079_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_1080_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1081_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( P @ A4 @ B4 )
          = ( P @ B4 @ A4 ) )
     => ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
       => ( ! [A4: nat,B4: nat] :
              ( ( P @ A4 @ B4 )
             => ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_1082_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_1083_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_1084_less__add__eq__less,axiom,
    ! [K: nat,L2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L2 )
     => ( ( ( plus_plus_nat @ M @ L2 )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_1085_trans__less__add2,axiom,
    ! [I2: nat,J2: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ M @ J2 ) ) ) ).

% trans_less_add2
thf(fact_1086_trans__less__add1,axiom,
    ! [I2: nat,J2: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ J2 @ M ) ) ) ).

% trans_less_add1
thf(fact_1087_add__less__mono1,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ K ) ) ) ).

% add_less_mono1
thf(fact_1088_not__add__less2,axiom,
    ! [J2: nat,I2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J2 @ I2 ) @ I2 ) ).

% not_add_less2
thf(fact_1089_not__add__less1,axiom,
    ! [I2: nat,J2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I2 @ J2 ) @ I2 ) ).

% not_add_less1
thf(fact_1090_add__less__mono,axiom,
    ! [I2: nat,J2: nat,K: nat,L2: nat] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ( ord_less_nat @ K @ L2 )
       => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ) ).

% add_less_mono
thf(fact_1091_add__lessD1,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I2 @ J2 ) @ K )
     => ( ord_less_nat @ I2 @ K ) ) ).

% add_lessD1
thf(fact_1092_gcd__nat_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% gcd_nat.extremum_uniqueI
thf(fact_1093_gcd__nat_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ( dvd_dvd_nat @ A @ zero_zero_nat )
        & ( A != zero_zero_nat ) ) ) ).

% gcd_nat.not_eq_extremum
thf(fact_1094_gcd__nat_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% gcd_nat.extremum_unique
thf(fact_1095_gcd__nat_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
        & ( zero_zero_nat != A ) ) ).

% gcd_nat.extremum_strict
thf(fact_1096_gcd__nat_Oextremum,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% gcd_nat.extremum
thf(fact_1097_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_1098_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_1099_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_1100_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_1101_less__imp__add__positive,axiom,
    ! [I2: nat,J2: nat] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I2 @ K2 )
            = J2 ) ) ) ).

% less_imp_add_positive
thf(fact_1102_mult__less__mono2,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J2 ) ) ) ) ).

% mult_less_mono2
thf(fact_1103_mult__less__mono1,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J2 @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_1104_nat__dvd__not__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_nat @ M @ N )
       => ~ ( dvd_dvd_nat @ N @ M ) ) ) ).

% nat_dvd_not_less
thf(fact_1105_dvd__pos__nat,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( dvd_dvd_nat @ M @ N )
       => ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).

% dvd_pos_nat
thf(fact_1106_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_1107_bezout__lemma__nat,axiom,
    ! [D: nat,A: nat,B: nat,X: nat,Y: nat] :
      ( ( dvd_dvd_nat @ D @ A )
     => ( ( dvd_dvd_nat @ D @ B )
       => ( ( ( ( times_times_nat @ A @ X )
              = ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ D ) )
            | ( ( times_times_nat @ B @ X )
              = ( plus_plus_nat @ ( times_times_nat @ A @ Y ) @ D ) ) )
         => ? [X3: nat,Y3: nat] :
              ( ( dvd_dvd_nat @ D @ A )
              & ( dvd_dvd_nat @ D @ ( plus_plus_nat @ A @ B ) )
              & ( ( ( times_times_nat @ A @ X3 )
                  = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y3 ) @ D ) )
                | ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X3 )
                  = ( plus_plus_nat @ ( times_times_nat @ A @ Y3 ) @ D ) ) ) ) ) ) ) ).

% bezout_lemma_nat
thf(fact_1108_bezout__add__nat,axiom,
    ! [A: nat,B: nat] :
    ? [D2: nat,X3: nat,Y3: nat] :
      ( ( dvd_dvd_nat @ D2 @ A )
      & ( dvd_dvd_nat @ D2 @ B )
      & ( ( ( times_times_nat @ A @ X3 )
          = ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D2 ) )
        | ( ( times_times_nat @ B @ X3 )
          = ( plus_plus_nat @ ( times_times_nat @ A @ Y3 ) @ D2 ) ) ) ) ).

% bezout_add_nat
thf(fact_1109_dvd__mult__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( dvd_dvd_nat @ M @ N ) ) ) ).

% dvd_mult_cancel
thf(fact_1110_bezout__add__strong__nat,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ? [D2: nat,X3: nat,Y3: nat] :
          ( ( dvd_dvd_nat @ D2 @ A )
          & ( dvd_dvd_nat @ D2 @ B )
          & ( ( times_times_nat @ A @ X3 )
            = ( plus_plus_nat @ ( times_times_nat @ B @ Y3 ) @ D2 ) ) ) ) ).

% bezout_add_strong_nat
thf(fact_1111_dvd__mult__cancel2,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel2
thf(fact_1112_dvd__mult__cancel1,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
        = ( N = one_one_nat ) ) ) ).

% dvd_mult_cancel1
thf(fact_1113_calculation,axiom,
    ( ( groups3558780024651037881ring_a
      @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) ) )
      @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l1 ) )
    = ( groups3558780024651037881ring_a
      @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ i ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) ) )
      @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l1 ) ) ) ).

% calculation
thf(fact_1114__C009_C,axiom,
    ( ( groups3558780024651037881ring_a
      @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers2 @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( plus_plus_nat @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) @ i ) @ J ) @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) ) )
      @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) )
    = ( groups3558780024651037881ring_a
      @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) ) )
      @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) ) ) ).

% "009"
thf(fact_1115__C008_C,axiom,
    ( ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) )
    = ( groups3558780024651037881ring_a
      @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers2 @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( plus_plus_nat @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) @ i ) @ J ) @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) ) )
      @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) ) ) ).

% "008"
thf(fact_1116_Sum__Ico__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( groups3542108847815614940at_nat
        @ ^ [X2: nat] : X2
        @ ( set_or4665077453230672383an_nat @ M @ N ) )
      = ( divide_divide_nat @ ( minus_minus_nat @ ( times_times_nat @ N @ ( minus_minus_nat @ N @ one_one_nat ) ) @ ( times_times_nat @ M @ ( minus_minus_nat @ M @ one_one_nat ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).

% Sum_Ico_nat
thf(fact_1117_sum__diff__in,axiom,
    ! [F: nat > finite_mod_ring_a,X: nat,G: nat > finite_mod_ring_a] :
      ( ( minus_3609261664126569004ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) @ ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) )
      = ( groups3558780024651037881ring_a
        @ ^ [I: nat] : ( minus_3609261664126569004ring_a @ ( F @ I ) @ ( G @ I ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) ) ).

% sum_diff_in
thf(fact_1118_geo__sum,axiom,
    ! [X: finite_mod_ring_a,R: nat] :
      ( ( X != one_on2109788427901206336ring_a )
     => ( ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ X ) @ ( groups3558780024651037881ring_a @ ( power_6826135765519566523ring_a @ X ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ R ) ) )
        = ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ ( power_6826135765519566523ring_a @ X @ R ) ) ) ) ).

% geo_sum
thf(fact_1119_numbers2__fntt,axiom,
    ( fntt2
    = ( nTT_gen_a @ n2 @ omega @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ numbers2 ) ) ).

% numbers2_fntt
thf(fact_1120_even__diff__iff,axiom,
    ! [K: int,L2: int] :
      ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L2 ) )
      = ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).

% even_diff_iff
thf(fact_1121_sum__power2,axiom,
    ! [K: nat] :
      ( ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) )
      = ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K ) @ one_one_nat ) ) ).

% sum_power2
thf(fact_1122_fntt2__by__index,axiom,
    ! [I2: nat] :
      ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) )
     => ( ( nth_Fi694352073394265932ring_a @ fntt2 @ I2 )
        = ( ntt_gen_a @ n2 @ omega @ numbers2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ I2 ) ) ) ).

% fntt2_by_index
thf(fact_1123__C006_C,axiom,
    ( ( groups3558780024651037881ring_a
      @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers1 @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) @ i ) @ J ) ) )
      @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l1 ) )
    = ( groups3558780024651037881ring_a
      @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) ) )
      @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l1 ) ) ) ).

% "006"
thf(fact_1124__C005_C,axiom,
    ( ( nth_Fi694352073394265932ring_a @ fntt1 @ i )
    = ( groups3558780024651037881ring_a
      @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers1 @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) @ i ) @ J ) ) )
      @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l1 ) ) ) ).

% "005"
thf(fact_1125_fntt1__by__index,axiom,
    ! [I2: nat] :
      ( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) )
     => ( ( nth_Fi694352073394265932ring_a @ fntt1 @ I2 )
        = ( ntt_gen_a @ n2 @ omega @ numbers1 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ I2 ) ) ) ).

% fntt1_by_index
thf(fact_1126_numbers1__fntt,axiom,
    ( fntt1
    = ( nTT_gen_a @ n2 @ omega @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ numbers1 ) ) ).

% numbers1_fntt
thf(fact_1127__C004_C,axiom,
    ( ( nth_Fi694352073394265932ring_a @ sum2 @ i )
    = ( minus_3609261664126569004ring_a @ ( nth_Fi694352073394265932ring_a @ fntt1 @ i ) @ ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) ) ) ) ).

% "004"
thf(fact_1128_fntt1__def,axiom,
    ( fntt1
    = ( fNTT_a @ n2 @ omega @ numbers1 ) ) ).

% fntt1_def
thf(fact_1129_fntt2__def,axiom,
    ( fntt2
    = ( fNTT_a @ n2 @ omega @ numbers2 ) ) ).

% fntt2_def
thf(fact_1130_ntt__gen__def,axiom,
    ! [Numbers: list_F4626807571770296779ring_a,Degr: nat,I2: nat] :
      ( ( ntt_gen_a @ n2 @ omega @ Numbers @ Degr @ I2 )
      = ( groups3558780024651037881ring_a
        @ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ Numbers @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ Degr ) @ I2 ) @ J ) ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( size_s7115545719440041015ring_a @ Numbers ) ) ) ) ).

% ntt_gen_def
thf(fact_1131_llen__def,axiom,
    ( llen
    = ( size_s7115545719440041015ring_a @ numbersa ) ) ).

% llen_def
thf(fact_1132_l1__def,axiom,
    ( l1
    = ( size_s7115545719440041015ring_a @ numbers1 ) ) ).

% l1_def
thf(fact_1133_l2__def,axiom,
    ( l2
    = ( size_s7115545719440041015ring_a @ numbers2 ) ) ).

% l2_def
thf(fact_1134_fntt2__length,axiom,
    ( ( size_s7115545719440041015ring_a @ fntt2 )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).

% fntt2_length
thf(fact_1135_fntt1__length,axiom,
    ( ( size_s7115545719440041015ring_a @ fntt1 )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).

% fntt1_length
thf(fact_1136_numbers2__even,axiom,
    ( ( size_s7115545719440041015ring_a @ numbers2 )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).

% numbers2_even
thf(fact_1137_numbers1__even,axiom,
    ( ( size_s7115545719440041015ring_a @ numbers1 )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).

% numbers1_even
thf(fact_1138__C01_C,axiom,
    ( ( size_s7115545719440041015ring_a @ sum2 )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).

% "01"
thf(fact_1139_Suc_Oprems_I1_J,axiom,
    ( ( size_s7115545719440041015ring_a @ numbersa )
    = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ la ) ) ) ).

% Suc.prems(1)
thf(fact_1140_NTT__gen__NTT__full__length,axiom,
    ! [Numbers: list_F4626807571770296779ring_a] :
      ( ( ( size_s7115545719440041015ring_a @ Numbers )
        = n2 )
     => ( ( nTT_gen_a @ n2 @ omega @ n2 @ Numbers )
        = ( nTT_a @ n2 @ omega @ Numbers ) ) ) ).

% NTT_gen_NTT_full_length
thf(fact_1141_length__NTT,axiom,
    ! [Numbers: list_F4626807571770296779ring_a] :
      ( ( ( size_s7115545719440041015ring_a @ Numbers )
        = n2 )
     => ( ( size_s7115545719440041015ring_a @ ( nTT_a @ n2 @ omega @ Numbers ) )
        = n2 ) ) ).

% length_NTT
thf(fact_1142_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_1143_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_1144_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_1145_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_1146_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_1147_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_1148_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_1149_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_1150_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_1151_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_1152_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_1153_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_1154_dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( M
        = ( suc @ zero_zero_nat ) ) ) ).

% dvd_1_iff_1
thf(fact_1155_dvd__1__left,axiom,
    ! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).

% dvd_1_left
thf(fact_1156_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_1157_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_1158_nat__power__eq__Suc__0__iff,axiom,
    ! [X: nat,M: nat] :
      ( ( ( power_power_nat @ X @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_1159_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_1160_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_1161_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_1162_Suc__numeral,axiom,
    ! [N: num] :
      ( ( suc @ ( numeral_numeral_nat @ N ) )
      = ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).

% Suc_numeral
thf(fact_1163_add__2__eq__Suc_H,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc'
thf(fact_1164_add__2__eq__Suc,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
      = ( suc @ ( suc @ N ) ) ) ).

% add_2_eq_Suc
thf(fact_1165_Suc__1,axiom,
    ( ( suc @ one_one_nat )
    = ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

% Suc_1
thf(fact_1166_even__Suc__Suc__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_Suc_Suc_iff
thf(fact_1167_even__Suc,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% even_Suc
thf(fact_1168_div2__Suc__Suc,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div2_Suc_Suc
thf(fact_1169_Suc__0__div__numeral_I2_J,axiom,
    ! [N: num] :
      ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) )
      = zero_zero_nat ) ).

% Suc_0_div_numeral(2)
thf(fact_1170_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_1171_Suc__0__div__numeral_I1_J,axiom,
    ( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ one ) )
    = one_one_nat ) ).

% Suc_0_div_numeral(1)
thf(fact_1172_even__Suc__div__two,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% even_Suc_div_two
thf(fact_1173_odd__Suc__div__two,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        = ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).

% odd_Suc_div_two
thf(fact_1174_odd__Suc__minus__one,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% odd_Suc_minus_one
thf(fact_1175_Suc_Oprems_I2_J,axiom,
    ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ la ) ) @ n2 ).

% Suc.prems(2)
thf(fact_1176_num_Osize_I5_J,axiom,
    ! [X22: num] :
      ( ( size_size_num @ ( bit0 @ X22 ) )
      = ( plus_plus_nat @ ( size_size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).

% num.size(5)
thf(fact_1177_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_1178_strict__inc__induct,axiom,
    ! [I2: nat,J2: nat,P: nat > $o] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ! [I3: nat] :
            ( ( J2
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I2 ) ) ) ) ).

% strict_inc_induct
thf(fact_1179_less__Suc__induct,axiom,
    ! [I2: nat,J2: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J3: nat,K2: nat] :
              ( ( ord_less_nat @ I3 @ J3 )
             => ( ( ord_less_nat @ J3 @ K2 )
               => ( ( P @ I3 @ J3 )
                 => ( ( P @ J3 @ K2 )
                   => ( P @ I3 @ K2 ) ) ) ) )
         => ( P @ I2 @ J2 ) ) ) ) ).

% less_Suc_induct
thf(fact_1180_less__trans__Suc,axiom,
    ! [I2: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J2 )
     => ( ( ord_less_nat @ J2 @ K )
       => ( ord_less_nat @ ( suc @ I2 ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_1181_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_1182_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_1183_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M4: nat] :
            ( ( M
              = ( suc @ M4 ) )
            & ( ord_less_nat @ N @ M4 ) ) ) ) ).

% Suc_less_eq2
thf(fact_1184_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
           => ( P @ I ) ) )
      = ( ( P @ N )
        & ! [I: nat] :
            ( ( ord_less_nat @ I @ N )
           => ( P @ I ) ) ) ) ).

% All_less_Suc
thf(fact_1185_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_1186_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_1187_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
            & ( P @ I ) ) )
      = ( ( P @ N )
        | ? [I: nat] :
            ( ( ord_less_nat @ I @ N )
            & ( P @ I ) ) ) ) ).

% Ex_less_Suc
thf(fact_1188_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_1189_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_1190_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_1191_Suc__lessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I2 ) @ K )
     => ~ ! [J3: nat] :
            ( ( ord_less_nat @ I2 @ J3 )
           => ( K
             != ( suc @ J3 ) ) ) ) ).

% Suc_lessE
thf(fact_1192_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_1193_Nat_OlessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ K )
     => ( ( K
         != ( suc @ I2 ) )
       => ~ ! [J3: nat] :
              ( ( ord_less_nat @ I2 @ J3 )
             => ( K
               != ( suc @ J3 ) ) ) ) ) ).

% Nat.lessE
thf(fact_1194_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
            & ( P @ I ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I: nat] :
            ( ( ord_less_nat @ I @ N )
            & ( P @ ( suc @ I ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_1195_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M2: nat] :
            ( N
            = ( suc @ M2 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_1196_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I: nat] :
            ( ( ord_less_nat @ I @ ( suc @ N ) )
           => ( P @ I ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I: nat] :
            ( ( ord_less_nat @ I @ N )
           => ( P @ ( suc @ I ) ) ) ) ) ).

% All_less_Suc2
thf(fact_1197_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M5: nat] :
          ( N
          = ( suc @ M5 ) ) ) ).

% gr0_implies_Suc
thf(fact_1198_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J: nat] :
            ( ( M
              = ( suc @ J ) )
            & ( ord_less_nat @ J @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_1199_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1200_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1201_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1202_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q3: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).

% less_natE
thf(fact_1203_less__add__Suc1,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ I2 @ M ) ) ) ).

% less_add_Suc1
thf(fact_1204_less__add__Suc2,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ M @ I2 ) ) ) ).

% less_add_Suc2
thf(fact_1205_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( suc @ ( plus_plus_nat @ M2 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1206_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K2: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1207_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_1208_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1209_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1210_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1211_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_1212_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_1213_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_1214_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_1215_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_1216_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_1217_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_1218_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M5: nat] :
          ( N
          = ( suc @ M5 ) ) ) ).

% not0_implies_Suc
thf(fact_1219_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_1220_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_1221_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_1222_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_1223_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X3: nat,Y3: nat] :
              ( ( P @ X3 @ Y3 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_1224_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( P @ ( suc @ N2 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_1225_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_1226_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_1227_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_1228_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_1229_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_1230_diff__Suc__eq__diff__pred,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ M @ ( suc @ N ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1231_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_1232_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_1233_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I2: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ ( minus_minus_nat @ K @ I2 ) ) ) ) ).

% zero_induct_lemma
thf(fact_1234_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_1235_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N2: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1236_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_1237_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_1238_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_1239_diff__Suc__less,axiom,
    ! [N: nat,I2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I2 ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_1240_power__gt__expt,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).

% power_gt_expt
thf(fact_1241_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_1242_double__not__eq__Suc__double,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
     != ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% double_not_eq_Suc_double
thf(fact_1243_Suc__double__not__eq__double,axiom,
    ! [M: nat,N: nat] :
      ( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
     != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_double_not_eq_double
thf(fact_1244_num_Osize_I4_J,axiom,
    ( ( size_size_num @ one )
    = zero_zero_nat ) ).

% num.size(4)
thf(fact_1245_Suc__diff__eq__diff__pred,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_1246_Suc__pred_H,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( N
        = ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_1247_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M2: nat,N4: nat] : ( if_nat @ ( M2 = zero_zero_nat ) @ N4 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N4 ) ) ) ) ) ).

% add_eq_if
thf(fact_1248_div__if,axiom,
    ( divide_divide_nat
    = ( ^ [M2: nat,N4: nat] :
          ( if_nat
          @ ( ( ord_less_nat @ M2 @ N4 )
            | ( N4 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M2 @ N4 ) @ N4 ) ) ) ) ) ).

% div_if
thf(fact_1249_Suc__nat__number__of__add,axiom,
    ! [V: num,N: nat] :
      ( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
      = ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).

% Suc_nat_number_of_add
thf(fact_1250_less__2__cases__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases_iff
thf(fact_1251_less__2__cases,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
     => ( ( N = zero_zero_nat )
        | ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% less_2_cases
thf(fact_1252_nat__bit__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( ( ord_less_nat @ zero_zero_nat @ N2 )
             => ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
       => ( ! [N2: nat] :
              ( ( P @ N2 )
             => ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_bit_induct
thf(fact_1253_Suc__n__div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% Suc_n_div_2_gt_zero
thf(fact_1254_div__2__gt__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).

% div_2_gt_zero
thf(fact_1255_int__power__div__base,axiom,
    ! [M: nat,K: int] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ( divide_divide_int @ ( power_power_int @ K @ M ) @ K )
          = ( power_power_int @ K @ ( minus_minus_nat @ M @ ( suc @ zero_zero_nat ) ) ) ) ) ) ).

% int_power_div_base
thf(fact_1256_mask__eq__sum__exp__nat,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( suc @ zero_zero_nat ) )
      = ( groups3542108847815614940at_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
        @ ( collect_nat
          @ ^ [Q4: nat] : ( ord_less_nat @ Q4 @ N ) ) ) ) ).

% mask_eq_sum_exp_nat
thf(fact_1257_Suc_OIH,axiom,
    ! [Numbers: list_F4626807571770296779ring_a] :
      ( ( ( size_s7115545719440041015ring_a @ Numbers )
        = ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) )
     => ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ n2 )
       => ( ( fNTT_a @ n2 @ omega @ Numbers )
          = ( nTT_gen_a @ n2 @ omega @ ( size_s7115545719440041015ring_a @ Numbers ) @ Numbers ) ) ) ) ).

% Suc.IH
thf(fact_1258_omega__div__exp__min1,axiom,
    ! [L2: nat] :
      ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ L2 ) ) @ n2 )
     => ( ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ omega @ ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ L2 ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ L2 ) )
        = ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ) ).

% omega_div_exp_min1
thf(fact_1259_n__lst2,axiom,
    ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ n2 ).

% n_lst2
thf(fact_1260_omega__exists,axiom,
    ? [Omega: finite_mod_ring_a] :
      ( ( ( power_6826135765519566523ring_a @ Omega @ n2 )
        = one_on2109788427901206336ring_a )
      & ( Omega != one_on2109788427901206336ring_a )
      & ! [M3: nat] :
          ( ( ( ( power_6826135765519566523ring_a @ Omega @ M3 )
              = one_on2109788427901206336ring_a )
            & ( M3 != zero_zero_nat ) )
         => ( ord_less_eq_nat @ n2 @ M3 ) ) ) ).

% omega_exists
thf(fact_1261_omega__properties__ex,axiom,
    ~ ! [Omega: finite_mod_ring_a] :
        ( ( ( power_6826135765519566523ring_a @ Omega @ n2 )
          = one_on2109788427901206336ring_a )
       => ( ( Omega != one_on2109788427901206336ring_a )
         => ~ ! [M3: nat] :
                ( ( ( ( power_6826135765519566523ring_a @ Omega @ M3 )
                    = one_on2109788427901206336ring_a )
                  & ( M3 != zero_zero_nat ) )
               => ( ord_less_eq_nat @ n2 @ M3 ) ) ) ) ).

% omega_properties_ex
thf(fact_1262_omega__properties_I3_J,axiom,
    ! [M3: nat] :
      ( ( ( ( power_6826135765519566523ring_a @ omega @ M3 )
          = one_on2109788427901206336ring_a )
        & ( M3 != zero_zero_nat ) )
     => ( ord_less_eq_nat @ n2 @ M3 ) ) ).

% omega_properties(3)
thf(fact_1263_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_1264_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_1265_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_1266_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_1267_diff__diff__cancel,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I2 ) )
        = I2 ) ) ).

% diff_diff_cancel

% Helper facts (7)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y: int] :
      ( ( if_int @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Finite____Field__Omod____ring_Itf__a_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Finite____Field__Omod____ring_Itf__a_J_T,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( if_Finite_mod_ring_a @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Finite____Field__Omod____ring_Itf__a_J_T,axiom,
    ! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
      ( ( if_Finite_mod_ring_a @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( uminus3100561713750211260ring_a @ ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) ) )
    = ( uminus3100561713750211260ring_a
      @ ( groups3558780024651037881ring_a
        @ ^ [J: nat] : ( uminus3100561713750211260ring_a @ ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) ) ) )
        @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) ) ) ) ).

%------------------------------------------------------------------------------