TPTP Problem File: SLH0358^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Frequency_Moments/0080_Frequency_Moments_Preliminary_Results/prob_00488_017908__19802332_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1358 ( 872 unt; 93 typ; 0 def)
% Number of atoms : 3024 (1456 equ; 0 cnn)
% Maximal formula atoms : 12 ( 2 avg)
% Number of connectives : 9492 ( 232 ~; 90 |; 141 &;8149 @)
% ( 0 <=>; 880 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 5 avg)
% Number of types : 11 ( 10 usr)
% Number of type conns : 226 ( 226 >; 0 *; 0 +; 0 <<)
% Number of symbols : 84 ( 83 usr; 10 con; 0-2 aty)
% Number of variables : 2871 ( 99 ^;2731 !; 41 ?;2871 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 12:13:14.843
%------------------------------------------------------------------------------
% Could-be-implicit typings (10)
thf(ty_n_t__Set__Oset_It__Extended____Nat__Oenat_J,type,
set_Extended_enat: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
set_num: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Extended____Nat__Oenat,type,
extended_enat: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (83)
thf(sy_c_Extended__Nat_OeSuc,type,
extended_eSuc: extended_enat > extended_enat ).
thf(sy_c_Extended__Nat_Oenat,type,
extended_enat2: nat > extended_enat ).
thf(sy_c_Extended__Nat_Othe__enat,type,
extended_the_enat: extended_enat > nat ).
thf(sy_c_Frequency__Moments__Preliminary__Results_Oprime__above,type,
freque8783664969267990145_above: nat > nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
one_on7984719198319812577d_enat: extended_enat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
plus_p3482335003337316477d_enat: set_Extended_enat > set_Extended_enat > set_Extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Int__Oint_J,type,
plus_plus_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Nat__Onat_J,type,
plus_plus_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Num__Onum_J,type,
plus_plus_set_num: set_num > set_num > set_num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Real__Oreal_J,type,
plus_plus_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
times_2438108612031896577d_enat: set_Extended_enat > set_Extended_enat > set_Extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Int__Oint_J,type,
times_times_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Nat__Onat_J,type,
times_times_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Num__Onum_J,type,
times_times_set_num: set_num > set_num > set_num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Real__Oreal_J,type,
times_times_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
uminus5710092332889474511et_nat: set_nat > set_nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
zero_z5237406670263579293d_enat: extended_enat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
neg_numeral_dbl_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
neg_numeral_dbl_real: real > real ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onum_Osize__num,type,
size_num: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
numera1916890842035813515d_enat: num > extended_enat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Num_Opow,type,
pow: num > num > num ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
ord_le2529575680413868914d_enat: set_Extended_enat > set_Extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Num__Onum_J,type,
ord_less_set_num: set_num > set_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_set_real: set_real > set_real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
ord_less_eq_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
ord_le7203529160286727270d_enat: set_Extended_enat > set_Extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_eq_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Num__Onum_J,type,
ord_less_eq_set_num: set_num > set_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_eq_set_real: set_real > set_real > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nat__Oenat,type,
power_8040749407984259932d_enat: extended_enat > nat > extended_enat ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
collect_nat: ( nat > $o ) > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Extended____Nat__Oenat,type,
set_or5403411693681687835d_enat: extended_enat > extended_enat > set_Extended_enat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Int__Oint,type,
set_or1266510415728281911st_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Nat__Onat,type,
set_or1269000886237332187st_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Num__Onum,type,
set_or7049704709247886629st_num: num > num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OatLeastAtMost_001t__Real__Oreal,type,
set_or1222579329274155063t_real: real > real > set_real ).
thf(sy_c_member_001t__Extended____Nat__Oenat,type,
member_Extended_enat: extended_enat > set_Extended_enat > $o ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Num__Onum,type,
member_num: num > set_num > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v_n,type,
n: nat ).
% Relevant facts (1264)
thf(fact_0_prime__above__min,axiom,
! [N: nat] : ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( freque8783664969267990145_above @ N ) ) ).
% prime_above_min
thf(fact_1_prime__above__lower__bound,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ ( freque8783664969267990145_above @ N ) ) ).
% prime_above_lower_bound
thf(fact_2_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_3_distrib__left__numeral,axiom,
! [V: num,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ B @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ B ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_4_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_5_distrib__left__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_6_distrib__right__numeral,axiom,
! [A: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_7_distrib__right__numeral,axiom,
! [A: extended_enat,B: extended_enat,V: num] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( numera1916890842035813515d_enat @ V ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ V ) ) @ ( times_7803423173614009249d_enat @ B @ ( numera1916890842035813515d_enat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_8_distrib__right__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_9_distrib__right__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_10_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_11_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_12_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_13_mult__2,axiom,
! [Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2
thf(fact_14_mult__2,axiom,
! [Z: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ Z )
= ( plus_p3455044024723400733d_enat @ Z @ Z ) ) ).
% mult_2
thf(fact_15_mult__2,axiom,
! [Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2
thf(fact_16_mult__2,axiom,
! [Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2
thf(fact_17_mult__2__right,axiom,
! [Z: nat] :
( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_18_mult__2__right,axiom,
! [Z: extended_enat] :
( ( times_7803423173614009249d_enat @ Z @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) )
= ( plus_p3455044024723400733d_enat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_19_mult__2__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2_right
thf(fact_20_mult__2__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2_right
thf(fact_21_left__add__twice,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_22_left__add__twice,axiom,
! [A: extended_enat,B: extended_enat] :
( ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ A @ B ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_23_left__add__twice,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_24_left__add__twice,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_25_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_26_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_27_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_28_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_29_add__numeral__left,axiom,
! [V: num,W: num,Z: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_30_add__numeral__left,axiom,
! [V: num,W: num,Z: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_31_add__numeral__left,axiom,
! [V: num,W: num,Z: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_32_add__numeral__left,axiom,
! [V: num,W: num,Z: int] :
( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_33_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_34_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( numera1916890842035813515d_enat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_35_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_36_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_37_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_38_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
= ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_39_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_40_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_41_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_42_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numera1916890842035813515d_enat @ M )
= ( numera1916890842035813515d_enat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_43_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_44_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_45_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_46_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_47_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_48_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_49_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_50_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_51_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_52_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_53_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times_num @ one @ N )
= N ) ).
% semiring_norm(12)
thf(fact_54_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_55_num__double,axiom,
! [N: num] :
( ( times_times_num @ ( bit0 @ one ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_56_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_57_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_58_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_59_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ? [X: nat] :
( ( P @ X )
& ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ X ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_60_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_61_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_62_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_63_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_64_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_65_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N2: nat] :
? [K2: nat] :
( N2
= ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).
% nat_le_iff_add
thf(fact_66_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_67_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_68_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_69_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_70_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N3: nat] :
( L
= ( plus_plus_nat @ K @ N3 ) ) ) ).
% le_Suc_ex
thf(fact_71_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_72_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_73_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_74_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_75_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_76_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_77_mem__Collect__eq,axiom,
! [A: nat,P: nat > $o] :
( ( member_nat @ A @ ( collect_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_78_Collect__mem__eq,axiom,
! [A2: set_nat] :
( ( collect_nat
@ ^ [X2: nat] : ( member_nat @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_79_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_80_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_81_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_82_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_83_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_84_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_85_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_86_mult__numeral__1__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_87_mult__numeral__1__right,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_88_mult__numeral__1__right,axiom,
! [A: real] :
( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_89_mult__numeral__1__right,axiom,
! [A: int] :
( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_90_mult__numeral__1,axiom,
! [A: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_91_mult__numeral__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_92_mult__numeral__1,axiom,
! [A: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_93_mult__numeral__1,axiom,
! [A: int] :
( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_94_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_Bit0
thf(fact_95_numeral__Bit0,axiom,
! [N: num] :
( ( numera1916890842035813515d_enat @ ( bit0 @ N ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N ) @ ( numera1916890842035813515d_enat @ N ) ) ) ).
% numeral_Bit0
thf(fact_96_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_Bit0
thf(fact_97_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit0 @ N ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_Bit0
thf(fact_98_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_99_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_100_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_101_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_102_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_103_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_104_verit__eq__simplify_I8_J,axiom,
! [X22: num,Y22: num] :
( ( ( bit0 @ X22 )
= ( bit0 @ Y22 ) )
= ( X22 = Y22 ) ) ).
% verit_eq_simplify(8)
thf(fact_105_set__plus__intro,axiom,
! [A: nat,C2: set_nat,B: nat,D: set_nat] :
( ( member_nat @ A @ C2 )
=> ( ( member_nat @ B @ D )
=> ( member_nat @ ( plus_plus_nat @ A @ B ) @ ( plus_plus_set_nat @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_106_set__plus__intro,axiom,
! [A: num,C2: set_num,B: num,D: set_num] :
( ( member_num @ A @ C2 )
=> ( ( member_num @ B @ D )
=> ( member_num @ ( plus_plus_num @ A @ B ) @ ( plus_plus_set_num @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_107_set__plus__intro,axiom,
! [A: extended_enat,C2: set_Extended_enat,B: extended_enat,D: set_Extended_enat] :
( ( member_Extended_enat @ A @ C2 )
=> ( ( member_Extended_enat @ B @ D )
=> ( member_Extended_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( plus_p3482335003337316477d_enat @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_108_set__plus__intro,axiom,
! [A: real,C2: set_real,B: real,D: set_real] :
( ( member_real @ A @ C2 )
=> ( ( member_real @ B @ D )
=> ( member_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_set_real @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_109_set__plus__intro,axiom,
! [A: int,C2: set_int,B: int,D: set_int] :
( ( member_int @ A @ C2 )
=> ( ( member_int @ B @ D )
=> ( member_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_set_int @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_110_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_111_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_112_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_113_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_114_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_115_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_116_set__times__intro,axiom,
! [A: nat,C2: set_nat,B: nat,D: set_nat] :
( ( member_nat @ A @ C2 )
=> ( ( member_nat @ B @ D )
=> ( member_nat @ ( times_times_nat @ A @ B ) @ ( times_times_set_nat @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_117_set__times__intro,axiom,
! [A: num,C2: set_num,B: num,D: set_num] :
( ( member_num @ A @ C2 )
=> ( ( member_num @ B @ D )
=> ( member_num @ ( times_times_num @ A @ B ) @ ( times_times_set_num @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_118_set__times__intro,axiom,
! [A: extended_enat,C2: set_Extended_enat,B: extended_enat,D: set_Extended_enat] :
( ( member_Extended_enat @ A @ C2 )
=> ( ( member_Extended_enat @ B @ D )
=> ( member_Extended_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ ( times_2438108612031896577d_enat @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_119_set__times__intro,axiom,
! [A: real,C2: set_real,B: real,D: set_real] :
( ( member_real @ A @ C2 )
=> ( ( member_real @ B @ D )
=> ( member_real @ ( times_times_real @ A @ B ) @ ( times_times_set_real @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_120_set__times__intro,axiom,
! [A: int,C2: set_int,B: int,D: set_int] :
( ( member_int @ A @ C2 )
=> ( ( member_int @ B @ D )
=> ( member_int @ ( times_times_int @ A @ B ) @ ( times_times_set_int @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_121_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_122_dual__order_Orefl,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% dual_order.refl
thf(fact_123_dual__order_Orefl,axiom,
! [A: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ A ) ).
% dual_order.refl
thf(fact_124_dual__order_Orefl,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% dual_order.refl
thf(fact_125_dual__order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% dual_order.refl
thf(fact_126_order__refl,axiom,
! [X3: nat] : ( ord_less_eq_nat @ X3 @ X3 ) ).
% order_refl
thf(fact_127_order__refl,axiom,
! [X3: num] : ( ord_less_eq_num @ X3 @ X3 ) ).
% order_refl
thf(fact_128_order__refl,axiom,
! [X3: extended_enat] : ( ord_le2932123472753598470d_enat @ X3 @ X3 ) ).
% order_refl
thf(fact_129_order__refl,axiom,
! [X3: real] : ( ord_less_eq_real @ X3 @ X3 ) ).
% order_refl
thf(fact_130_order__refl,axiom,
! [X3: int] : ( ord_less_eq_int @ X3 @ X3 ) ).
% order_refl
thf(fact_131_verit__eq__simplify_I10_J,axiom,
! [X22: num] :
( one
!= ( bit0 @ X22 ) ) ).
% verit_eq_simplify(10)
thf(fact_132_crossproduct__noteq,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ( A != B )
& ( C != D2 ) )
= ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) )
!= ( plus_plus_nat @ ( times_times_nat @ A @ D2 ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_133_crossproduct__noteq,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ( A != B )
& ( C != D2 ) )
= ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) )
!= ( plus_plus_real @ ( times_times_real @ A @ D2 ) @ ( times_times_real @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_134_crossproduct__noteq,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ( A != B )
& ( C != D2 ) )
= ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) )
!= ( plus_plus_int @ ( times_times_int @ A @ D2 ) @ ( times_times_int @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_135_crossproduct__eq,axiom,
! [W: nat,Y3: nat,X3: nat,Z: nat] :
( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y3 ) @ ( times_times_nat @ X3 @ Z ) )
= ( plus_plus_nat @ ( times_times_nat @ W @ Z ) @ ( times_times_nat @ X3 @ Y3 ) ) )
= ( ( W = X3 )
| ( Y3 = Z ) ) ) ).
% crossproduct_eq
thf(fact_136_crossproduct__eq,axiom,
! [W: real,Y3: real,X3: real,Z: real] :
( ( ( plus_plus_real @ ( times_times_real @ W @ Y3 ) @ ( times_times_real @ X3 @ Z ) )
= ( plus_plus_real @ ( times_times_real @ W @ Z ) @ ( times_times_real @ X3 @ Y3 ) ) )
= ( ( W = X3 )
| ( Y3 = Z ) ) ) ).
% crossproduct_eq
thf(fact_137_crossproduct__eq,axiom,
! [W: int,Y3: int,X3: int,Z: int] :
( ( ( plus_plus_int @ ( times_times_int @ W @ Y3 ) @ ( times_times_int @ X3 @ Z ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z ) @ ( times_times_int @ X3 @ Y3 ) ) )
= ( ( W = X3 )
| ( Y3 = Z ) ) ) ).
% crossproduct_eq
thf(fact_138_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(71)
thf(fact_139_semiring__norm_I68_J,axiom,
! [N: num] : ( ord_less_eq_num @ one @ N ) ).
% semiring_norm(68)
thf(fact_140_semiring__norm_I69_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).
% semiring_norm(69)
thf(fact_141_le__num__One__iff,axiom,
! [X3: num] :
( ( ord_less_eq_num @ X3 @ one )
= ( X3 = one ) ) ).
% le_num_One_iff
thf(fact_142_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_143_verit__comp__simplify1_I2_J,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_144_verit__comp__simplify1_I2_J,axiom,
! [A: extended_enat] : ( ord_le2932123472753598470d_enat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_145_verit__comp__simplify1_I2_J,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_146_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_147_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_148_nle__le,axiom,
! [A: num,B: num] :
( ( ~ ( ord_less_eq_num @ A @ B ) )
= ( ( ord_less_eq_num @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_149_nle__le,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ~ ( ord_le2932123472753598470d_enat @ A @ B ) )
= ( ( ord_le2932123472753598470d_enat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_150_nle__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_eq_real @ A @ B ) )
= ( ( ord_less_eq_real @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_151_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_152_le__cases3,axiom,
! [X3: nat,Y3: nat,Z: nat] :
( ( ( ord_less_eq_nat @ X3 @ Y3 )
=> ~ ( ord_less_eq_nat @ Y3 @ Z ) )
=> ( ( ( ord_less_eq_nat @ Y3 @ X3 )
=> ~ ( ord_less_eq_nat @ X3 @ Z ) )
=> ( ( ( ord_less_eq_nat @ X3 @ Z )
=> ~ ( ord_less_eq_nat @ Z @ Y3 ) )
=> ( ( ( ord_less_eq_nat @ Z @ Y3 )
=> ~ ( ord_less_eq_nat @ Y3 @ X3 ) )
=> ( ( ( ord_less_eq_nat @ Y3 @ Z )
=> ~ ( ord_less_eq_nat @ Z @ X3 ) )
=> ~ ( ( ord_less_eq_nat @ Z @ X3 )
=> ~ ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_153_le__cases3,axiom,
! [X3: num,Y3: num,Z: num] :
( ( ( ord_less_eq_num @ X3 @ Y3 )
=> ~ ( ord_less_eq_num @ Y3 @ Z ) )
=> ( ( ( ord_less_eq_num @ Y3 @ X3 )
=> ~ ( ord_less_eq_num @ X3 @ Z ) )
=> ( ( ( ord_less_eq_num @ X3 @ Z )
=> ~ ( ord_less_eq_num @ Z @ Y3 ) )
=> ( ( ( ord_less_eq_num @ Z @ Y3 )
=> ~ ( ord_less_eq_num @ Y3 @ X3 ) )
=> ( ( ( ord_less_eq_num @ Y3 @ Z )
=> ~ ( ord_less_eq_num @ Z @ X3 ) )
=> ~ ( ( ord_less_eq_num @ Z @ X3 )
=> ~ ( ord_less_eq_num @ X3 @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_154_le__cases3,axiom,
! [X3: extended_enat,Y3: extended_enat,Z: extended_enat] :
( ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
=> ~ ( ord_le2932123472753598470d_enat @ Y3 @ Z ) )
=> ( ( ( ord_le2932123472753598470d_enat @ Y3 @ X3 )
=> ~ ( ord_le2932123472753598470d_enat @ X3 @ Z ) )
=> ( ( ( ord_le2932123472753598470d_enat @ X3 @ Z )
=> ~ ( ord_le2932123472753598470d_enat @ Z @ Y3 ) )
=> ( ( ( ord_le2932123472753598470d_enat @ Z @ Y3 )
=> ~ ( ord_le2932123472753598470d_enat @ Y3 @ X3 ) )
=> ( ( ( ord_le2932123472753598470d_enat @ Y3 @ Z )
=> ~ ( ord_le2932123472753598470d_enat @ Z @ X3 ) )
=> ~ ( ( ord_le2932123472753598470d_enat @ Z @ X3 )
=> ~ ( ord_le2932123472753598470d_enat @ X3 @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_155_le__cases3,axiom,
! [X3: real,Y3: real,Z: real] :
( ( ( ord_less_eq_real @ X3 @ Y3 )
=> ~ ( ord_less_eq_real @ Y3 @ Z ) )
=> ( ( ( ord_less_eq_real @ Y3 @ X3 )
=> ~ ( ord_less_eq_real @ X3 @ Z ) )
=> ( ( ( ord_less_eq_real @ X3 @ Z )
=> ~ ( ord_less_eq_real @ Z @ Y3 ) )
=> ( ( ( ord_less_eq_real @ Z @ Y3 )
=> ~ ( ord_less_eq_real @ Y3 @ X3 ) )
=> ( ( ( ord_less_eq_real @ Y3 @ Z )
=> ~ ( ord_less_eq_real @ Z @ X3 ) )
=> ~ ( ( ord_less_eq_real @ Z @ X3 )
=> ~ ( ord_less_eq_real @ X3 @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_156_le__cases3,axiom,
! [X3: int,Y3: int,Z: int] :
( ( ( ord_less_eq_int @ X3 @ Y3 )
=> ~ ( ord_less_eq_int @ Y3 @ Z ) )
=> ( ( ( ord_less_eq_int @ Y3 @ X3 )
=> ~ ( ord_less_eq_int @ X3 @ Z ) )
=> ( ( ( ord_less_eq_int @ X3 @ Z )
=> ~ ( ord_less_eq_int @ Z @ Y3 ) )
=> ( ( ( ord_less_eq_int @ Z @ Y3 )
=> ~ ( ord_less_eq_int @ Y3 @ X3 ) )
=> ( ( ( ord_less_eq_int @ Y3 @ Z )
=> ~ ( ord_less_eq_int @ Z @ X3 ) )
=> ~ ( ( ord_less_eq_int @ Z @ X3 )
=> ~ ( ord_less_eq_int @ X3 @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_157_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
= ( ^ [X2: nat,Y5: nat] :
( ( ord_less_eq_nat @ X2 @ Y5 )
& ( ord_less_eq_nat @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_158_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: num,Z2: num] : ( Y4 = Z2 ) )
= ( ^ [X2: num,Y5: num] :
( ( ord_less_eq_num @ X2 @ Y5 )
& ( ord_less_eq_num @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_159_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: extended_enat,Z2: extended_enat] : ( Y4 = Z2 ) )
= ( ^ [X2: extended_enat,Y5: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X2 @ Y5 )
& ( ord_le2932123472753598470d_enat @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_160_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
= ( ^ [X2: real,Y5: real] :
( ( ord_less_eq_real @ X2 @ Y5 )
& ( ord_less_eq_real @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_161_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
= ( ^ [X2: int,Y5: int] :
( ( ord_less_eq_int @ X2 @ Y5 )
& ( ord_less_eq_int @ Y5 @ X2 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_162_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_163_ord__eq__le__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_164_ord__eq__le__trans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( A = B )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ord_le2932123472753598470d_enat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_165_ord__eq__le__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_166_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_167_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_168_ord__le__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_169_ord__le__eq__trans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( B = C )
=> ( ord_le2932123472753598470d_enat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_170_ord__le__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_171_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_172_order__antisym,axiom,
! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ( ord_less_eq_nat @ Y3 @ X3 )
=> ( X3 = Y3 ) ) ) ).
% order_antisym
thf(fact_173_order__antisym,axiom,
! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ( ord_less_eq_num @ Y3 @ X3 )
=> ( X3 = Y3 ) ) ) ).
% order_antisym
thf(fact_174_order__antisym,axiom,
! [X3: extended_enat,Y3: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
=> ( ( ord_le2932123472753598470d_enat @ Y3 @ X3 )
=> ( X3 = Y3 ) ) ) ).
% order_antisym
thf(fact_175_order__antisym,axiom,
! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ X3 )
=> ( X3 = Y3 ) ) ) ).
% order_antisym
thf(fact_176_order__antisym,axiom,
! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ X3 )
=> ( X3 = Y3 ) ) ) ).
% order_antisym
thf(fact_177_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_178_order_Otrans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% order.trans
thf(fact_179_order_Otrans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ord_le2932123472753598470d_enat @ A @ C ) ) ) ).
% order.trans
thf(fact_180_order_Otrans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% order.trans
thf(fact_181_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_182_order__trans,axiom,
! [X3: nat,Y3: nat,Z: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ( ord_less_eq_nat @ Y3 @ Z )
=> ( ord_less_eq_nat @ X3 @ Z ) ) ) ).
% order_trans
thf(fact_183_order__trans,axiom,
! [X3: num,Y3: num,Z: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
=> ( ( ord_less_eq_num @ Y3 @ Z )
=> ( ord_less_eq_num @ X3 @ Z ) ) ) ).
% order_trans
thf(fact_184_order__trans,axiom,
! [X3: extended_enat,Y3: extended_enat,Z: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
=> ( ( ord_le2932123472753598470d_enat @ Y3 @ Z )
=> ( ord_le2932123472753598470d_enat @ X3 @ Z ) ) ) ).
% order_trans
thf(fact_185_order__trans,axiom,
! [X3: real,Y3: real,Z: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ Z )
=> ( ord_less_eq_real @ X3 @ Z ) ) ) ).
% order_trans
thf(fact_186_order__trans,axiom,
! [X3: int,Y3: int,Z: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ Z )
=> ( ord_less_eq_int @ X3 @ Z ) ) ) ).
% order_trans
thf(fact_187_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A3: nat,B2: nat] :
( ( ord_less_eq_nat @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: nat,B2: nat] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_188_linorder__wlog,axiom,
! [P: num > num > $o,A: num,B: num] :
( ! [A3: num,B2: num] :
( ( ord_less_eq_num @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: num,B2: num] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_189_linorder__wlog,axiom,
! [P: extended_enat > extended_enat > $o,A: extended_enat,B: extended_enat] :
( ! [A3: extended_enat,B2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: extended_enat,B2: extended_enat] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_190_linorder__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A3: real,B2: real] :
( ( ord_less_eq_real @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: real,B2: real] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_191_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A3: int,B2: int] :
( ( ord_less_eq_int @ A3 @ B2 )
=> ( P @ A3 @ B2 ) )
=> ( ! [A3: int,B2: int] :
( ( P @ B2 @ A3 )
=> ( P @ A3 @ B2 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_192_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ B3 @ A4 )
& ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_193_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: num,Z2: num] : ( Y4 = Z2 ) )
= ( ^ [A4: num,B3: num] :
( ( ord_less_eq_num @ B3 @ A4 )
& ( ord_less_eq_num @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_194_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: extended_enat,Z2: extended_enat] : ( Y4 = Z2 ) )
= ( ^ [A4: extended_enat,B3: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B3 @ A4 )
& ( ord_le2932123472753598470d_enat @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_195_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
= ( ^ [A4: real,B3: real] :
( ( ord_less_eq_real @ B3 @ A4 )
& ( ord_less_eq_real @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_196_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
= ( ^ [A4: int,B3: int] :
( ( ord_less_eq_int @ B3 @ A4 )
& ( ord_less_eq_int @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_197_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_198_dual__order_Oantisym,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_199_dual__order_Oantisym,axiom,
! [B: extended_enat,A: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_200_dual__order_Oantisym,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_201_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_202_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_203_dual__order_Otrans,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ B )
=> ( ord_less_eq_num @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_204_dual__order_Otrans,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( ( ord_le2932123472753598470d_enat @ C @ B )
=> ( ord_le2932123472753598470d_enat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_205_dual__order_Otrans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_206_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_207_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_208_antisym,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_209_antisym,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_210_antisym,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_211_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_212_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ A4 @ B3 )
& ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_213_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: num,Z2: num] : ( Y4 = Z2 ) )
= ( ^ [A4: num,B3: num] :
( ( ord_less_eq_num @ A4 @ B3 )
& ( ord_less_eq_num @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_214_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: extended_enat,Z2: extended_enat] : ( Y4 = Z2 ) )
= ( ^ [A4: extended_enat,B3: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A4 @ B3 )
& ( ord_le2932123472753598470d_enat @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_215_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
= ( ^ [A4: real,B3: real] :
( ( ord_less_eq_real @ A4 @ B3 )
& ( ord_less_eq_real @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_216_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
= ( ^ [A4: int,B3: int] :
( ( ord_less_eq_int @ A4 @ B3 )
& ( ord_less_eq_int @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_217_order__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_218_order__subst1,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_219_order__subst1,axiom,
! [A: nat,F: extended_enat > nat,B: extended_enat,C: extended_enat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ! [X: extended_enat,Y: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_220_order__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_221_order__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_222_order__subst1,axiom,
! [A: num,F: nat > num,B: nat,C: nat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_223_order__subst1,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_224_order__subst1,axiom,
! [A: num,F: extended_enat > num,B: extended_enat,C: extended_enat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ! [X: extended_enat,Y: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_225_order__subst1,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_226_order__subst1,axiom,
! [A: num,F: int > num,B: int,C: int] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_227_order__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_228_order__subst2,axiom,
! [A: nat,B: nat,F: nat > num,C: num] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_229_order__subst2,axiom,
! [A: nat,B: nat,F: nat > extended_enat,C: extended_enat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_le2932123472753598470d_enat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_le2932123472753598470d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_230_order__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_231_order__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_232_order__subst2,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_233_order__subst2,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_234_order__subst2,axiom,
! [A: num,B: num,F: num > extended_enat,C: extended_enat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_le2932123472753598470d_enat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_le2932123472753598470d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_235_order__subst2,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_236_order__subst2,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_237_order__eq__refl,axiom,
! [X3: nat,Y3: nat] :
( ( X3 = Y3 )
=> ( ord_less_eq_nat @ X3 @ Y3 ) ) ).
% order_eq_refl
thf(fact_238_order__eq__refl,axiom,
! [X3: num,Y3: num] :
( ( X3 = Y3 )
=> ( ord_less_eq_num @ X3 @ Y3 ) ) ).
% order_eq_refl
thf(fact_239_order__eq__refl,axiom,
! [X3: extended_enat,Y3: extended_enat] :
( ( X3 = Y3 )
=> ( ord_le2932123472753598470d_enat @ X3 @ Y3 ) ) ).
% order_eq_refl
thf(fact_240_order__eq__refl,axiom,
! [X3: real,Y3: real] :
( ( X3 = Y3 )
=> ( ord_less_eq_real @ X3 @ Y3 ) ) ).
% order_eq_refl
thf(fact_241_order__eq__refl,axiom,
! [X3: int,Y3: int] :
( ( X3 = Y3 )
=> ( ord_less_eq_int @ X3 @ Y3 ) ) ).
% order_eq_refl
thf(fact_242_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_243_verit__la__disequality,axiom,
! [A: num,B: num] :
( ( A = B )
| ~ ( ord_less_eq_num @ A @ B )
| ~ ( ord_less_eq_num @ B @ A ) ) ).
% verit_la_disequality
thf(fact_244_verit__la__disequality,axiom,
! [A: extended_enat,B: extended_enat] :
( ( A = B )
| ~ ( ord_le2932123472753598470d_enat @ A @ B )
| ~ ( ord_le2932123472753598470d_enat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_245_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_246_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_247_linorder__linear,axiom,
! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
| ( ord_less_eq_nat @ Y3 @ X3 ) ) ).
% linorder_linear
thf(fact_248_linorder__linear,axiom,
! [X3: num,Y3: num] :
( ( ord_less_eq_num @ X3 @ Y3 )
| ( ord_less_eq_num @ Y3 @ X3 ) ) ).
% linorder_linear
thf(fact_249_linorder__linear,axiom,
! [X3: extended_enat,Y3: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
| ( ord_le2932123472753598470d_enat @ Y3 @ X3 ) ) ).
% linorder_linear
thf(fact_250_linorder__linear,axiom,
! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
| ( ord_less_eq_real @ Y3 @ X3 ) ) ).
% linorder_linear
thf(fact_251_linorder__linear,axiom,
! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
| ( ord_less_eq_int @ Y3 @ X3 ) ) ).
% linorder_linear
thf(fact_252_ord__eq__le__subst,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_253_ord__eq__le__subst,axiom,
! [A: num,F: nat > num,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_254_ord__eq__le__subst,axiom,
! [A: extended_enat,F: nat > extended_enat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_le2932123472753598470d_enat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_255_ord__eq__le__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_256_ord__eq__le__subst,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_257_ord__eq__le__subst,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_258_ord__eq__le__subst,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_259_ord__eq__le__subst,axiom,
! [A: extended_enat,F: num > extended_enat,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_le2932123472753598470d_enat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_le2932123472753598470d_enat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_260_ord__eq__le__subst,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_261_ord__eq__le__subst,axiom,
! [A: int,F: num > int,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_262_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_263_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > num,C: num] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_264_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > extended_enat,C: extended_enat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_le2932123472753598470d_enat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_le2932123472753598470d_enat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_265_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_266_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_267_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_268_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_num @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_269_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > extended_enat,C: extended_enat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_le2932123472753598470d_enat @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_le2932123472753598470d_enat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_270_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_271_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_int @ ( F @ X ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_272_linorder__le__cases,axiom,
! [X3: nat,Y3: nat] :
( ~ ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ X3 ) ) ).
% linorder_le_cases
thf(fact_273_linorder__le__cases,axiom,
! [X3: num,Y3: num] :
( ~ ( ord_less_eq_num @ X3 @ Y3 )
=> ( ord_less_eq_num @ Y3 @ X3 ) ) ).
% linorder_le_cases
thf(fact_274_linorder__le__cases,axiom,
! [X3: extended_enat,Y3: extended_enat] :
( ~ ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
=> ( ord_le2932123472753598470d_enat @ Y3 @ X3 ) ) ).
% linorder_le_cases
thf(fact_275_linorder__le__cases,axiom,
! [X3: real,Y3: real] :
( ~ ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_real @ Y3 @ X3 ) ) ).
% linorder_le_cases
thf(fact_276_linorder__le__cases,axiom,
! [X3: int,Y3: int] :
( ~ ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_int @ Y3 @ X3 ) ) ).
% linorder_le_cases
thf(fact_277_order__antisym__conv,axiom,
! [Y3: nat,X3: nat] :
( ( ord_less_eq_nat @ Y3 @ X3 )
=> ( ( ord_less_eq_nat @ X3 @ Y3 )
= ( X3 = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_278_order__antisym__conv,axiom,
! [Y3: num,X3: num] :
( ( ord_less_eq_num @ Y3 @ X3 )
=> ( ( ord_less_eq_num @ X3 @ Y3 )
= ( X3 = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_279_order__antisym__conv,axiom,
! [Y3: extended_enat,X3: extended_enat] :
( ( ord_le2932123472753598470d_enat @ Y3 @ X3 )
=> ( ( ord_le2932123472753598470d_enat @ X3 @ Y3 )
= ( X3 = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_280_order__antisym__conv,axiom,
! [Y3: real,X3: real] :
( ( ord_less_eq_real @ Y3 @ X3 )
=> ( ( ord_less_eq_real @ X3 @ Y3 )
= ( X3 = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_281_order__antisym__conv,axiom,
! [Y3: int,X3: int] :
( ( ord_less_eq_int @ Y3 @ X3 )
=> ( ( ord_less_eq_int @ X3 @ Y3 )
= ( X3 = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_282_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_283_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ C )
= ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_284_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_285_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_286_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_287_mult_Oassoc,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ C )
= ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_288_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_289_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_290_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A4: nat,B3: nat] : ( times_times_nat @ B3 @ A4 ) ) ) ).
% mult.commute
thf(fact_291_mult_Ocommute,axiom,
( times_7803423173614009249d_enat
= ( ^ [A4: extended_enat,B3: extended_enat] : ( times_7803423173614009249d_enat @ B3 @ A4 ) ) ) ).
% mult.commute
thf(fact_292_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A4: real,B3: real] : ( times_times_real @ B3 @ A4 ) ) ) ).
% mult.commute
thf(fact_293_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A4: int,B3: int] : ( times_times_int @ B3 @ A4 ) ) ) ).
% mult.commute
thf(fact_294_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_295_mult_Oleft__commute,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ B @ ( times_7803423173614009249d_enat @ A @ C ) )
= ( times_7803423173614009249d_enat @ A @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_296_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_297_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_298_set__times__elim,axiom,
! [X3: nat,A2: set_nat,B4: set_nat] :
( ( member_nat @ X3 @ ( times_times_set_nat @ A2 @ B4 ) )
=> ~ ! [A3: nat,B2: nat] :
( ( X3
= ( times_times_nat @ A3 @ B2 ) )
=> ( ( member_nat @ A3 @ A2 )
=> ~ ( member_nat @ B2 @ B4 ) ) ) ) ).
% set_times_elim
thf(fact_299_set__times__elim,axiom,
! [X3: num,A2: set_num,B4: set_num] :
( ( member_num @ X3 @ ( times_times_set_num @ A2 @ B4 ) )
=> ~ ! [A3: num,B2: num] :
( ( X3
= ( times_times_num @ A3 @ B2 ) )
=> ( ( member_num @ A3 @ A2 )
=> ~ ( member_num @ B2 @ B4 ) ) ) ) ).
% set_times_elim
thf(fact_300_set__times__elim,axiom,
! [X3: extended_enat,A2: set_Extended_enat,B4: set_Extended_enat] :
( ( member_Extended_enat @ X3 @ ( times_2438108612031896577d_enat @ A2 @ B4 ) )
=> ~ ! [A3: extended_enat,B2: extended_enat] :
( ( X3
= ( times_7803423173614009249d_enat @ A3 @ B2 ) )
=> ( ( member_Extended_enat @ A3 @ A2 )
=> ~ ( member_Extended_enat @ B2 @ B4 ) ) ) ) ).
% set_times_elim
thf(fact_301_set__times__elim,axiom,
! [X3: real,A2: set_real,B4: set_real] :
( ( member_real @ X3 @ ( times_times_set_real @ A2 @ B4 ) )
=> ~ ! [A3: real,B2: real] :
( ( X3
= ( times_times_real @ A3 @ B2 ) )
=> ( ( member_real @ A3 @ A2 )
=> ~ ( member_real @ B2 @ B4 ) ) ) ) ).
% set_times_elim
thf(fact_302_set__times__elim,axiom,
! [X3: int,A2: set_int,B4: set_int] :
( ( member_int @ X3 @ ( times_times_set_int @ A2 @ B4 ) )
=> ~ ! [A3: int,B2: int] :
( ( X3
= ( times_times_int @ A3 @ B2 ) )
=> ( ( member_int @ A3 @ A2 )
=> ~ ( member_int @ B2 @ B4 ) ) ) ) ).
% set_times_elim
thf(fact_303_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_304_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_305_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_306_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_307_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_308_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_p3455044024723400733d_enat @ I @ K )
= ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_309_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_310_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_311_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_312_group__cancel_Oadd1,axiom,
! [A2: extended_enat,K: extended_enat,A: extended_enat,B: extended_enat] :
( ( A2
= ( plus_p3455044024723400733d_enat @ K @ A ) )
=> ( ( plus_p3455044024723400733d_enat @ A2 @ B )
= ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_313_group__cancel_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_314_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_315_group__cancel_Oadd2,axiom,
! [B4: nat,K: nat,B: nat,A: nat] :
( ( B4
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B4 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_316_group__cancel_Oadd2,axiom,
! [B4: extended_enat,K: extended_enat,B: extended_enat,A: extended_enat] :
( ( B4
= ( plus_p3455044024723400733d_enat @ K @ B ) )
=> ( ( plus_p3455044024723400733d_enat @ A @ B4 )
= ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_317_group__cancel_Oadd2,axiom,
! [B4: real,K: real,B: real,A: real] :
( ( B4
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B4 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_318_group__cancel_Oadd2,axiom,
! [B4: int,K: int,B: int,A: int] :
( ( B4
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B4 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_319_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_320_add_Oassoc,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% add.assoc
thf(fact_321_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_322_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_323_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_324_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_325_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_326_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_327_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A4: nat,B3: nat] : ( plus_plus_nat @ B3 @ A4 ) ) ) ).
% add.commute
thf(fact_328_add_Ocommute,axiom,
( plus_p3455044024723400733d_enat
= ( ^ [A4: extended_enat,B3: extended_enat] : ( plus_p3455044024723400733d_enat @ B3 @ A4 ) ) ) ).
% add.commute
thf(fact_329_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A4: real,B3: real] : ( plus_plus_real @ B3 @ A4 ) ) ) ).
% add.commute
thf(fact_330_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A4: int,B3: int] : ( plus_plus_int @ B3 @ A4 ) ) ) ).
% add.commute
thf(fact_331_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_332_add_Oleft__commute,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ B @ ( plus_p3455044024723400733d_enat @ A @ C ) )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_333_add_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_334_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_335_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_336_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_337_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_338_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_339_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_340_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_341_set__plus__elim,axiom,
! [X3: nat,A2: set_nat,B4: set_nat] :
( ( member_nat @ X3 @ ( plus_plus_set_nat @ A2 @ B4 ) )
=> ~ ! [A3: nat,B2: nat] :
( ( X3
= ( plus_plus_nat @ A3 @ B2 ) )
=> ( ( member_nat @ A3 @ A2 )
=> ~ ( member_nat @ B2 @ B4 ) ) ) ) ).
% set_plus_elim
thf(fact_342_set__plus__elim,axiom,
! [X3: num,A2: set_num,B4: set_num] :
( ( member_num @ X3 @ ( plus_plus_set_num @ A2 @ B4 ) )
=> ~ ! [A3: num,B2: num] :
( ( X3
= ( plus_plus_num @ A3 @ B2 ) )
=> ( ( member_num @ A3 @ A2 )
=> ~ ( member_num @ B2 @ B4 ) ) ) ) ).
% set_plus_elim
thf(fact_343_set__plus__elim,axiom,
! [X3: extended_enat,A2: set_Extended_enat,B4: set_Extended_enat] :
( ( member_Extended_enat @ X3 @ ( plus_p3482335003337316477d_enat @ A2 @ B4 ) )
=> ~ ! [A3: extended_enat,B2: extended_enat] :
( ( X3
= ( plus_p3455044024723400733d_enat @ A3 @ B2 ) )
=> ( ( member_Extended_enat @ A3 @ A2 )
=> ~ ( member_Extended_enat @ B2 @ B4 ) ) ) ) ).
% set_plus_elim
thf(fact_344_set__plus__elim,axiom,
! [X3: real,A2: set_real,B4: set_real] :
( ( member_real @ X3 @ ( plus_plus_set_real @ A2 @ B4 ) )
=> ~ ! [A3: real,B2: real] :
( ( X3
= ( plus_plus_real @ A3 @ B2 ) )
=> ( ( member_real @ A3 @ A2 )
=> ~ ( member_real @ B2 @ B4 ) ) ) ) ).
% set_plus_elim
thf(fact_345_set__plus__elim,axiom,
! [X3: int,A2: set_int,B4: set_int] :
( ( member_int @ X3 @ ( plus_plus_set_int @ A2 @ B4 ) )
=> ~ ! [A3: int,B2: int] :
( ( X3
= ( plus_plus_int @ A3 @ B2 ) )
=> ( ( member_int @ A3 @ A2 )
=> ~ ( member_int @ B2 @ B4 ) ) ) ) ).
% set_plus_elim
thf(fact_346_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_347_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
( ( ( ord_le2932123472753598470d_enat @ I @ J )
& ( K = L ) )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ I @ K ) @ ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_348_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_349_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_350_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_351_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
( ( ( I = J )
& ( ord_le2932123472753598470d_enat @ K @ L ) )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ I @ K ) @ ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_352_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_353_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_354_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_355_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
( ( ( ord_le2932123472753598470d_enat @ I @ J )
& ( ord_le2932123472753598470d_enat @ K @ L ) )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ I @ K ) @ ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_356_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_357_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_358_add__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_359_add__mono,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat,D2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ C @ D2 )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ C ) @ ( plus_p3455044024723400733d_enat @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_360_add__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_361_add__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_362_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_363_add__left__mono,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ C @ A ) @ ( plus_p3455044024723400733d_enat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_364_add__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_left_mono
thf(fact_365_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_366_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C3: nat] :
( B
!= ( plus_plus_nat @ A @ C3 ) ) ) ).
% less_eqE
thf(fact_367_less__eqE,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ~ ! [C3: extended_enat] :
( B
!= ( plus_p3455044024723400733d_enat @ A @ C3 ) ) ) ).
% less_eqE
thf(fact_368_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_369_add__right__mono,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ A @ C ) @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_370_add__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_right_mono
thf(fact_371_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_372_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B3: nat] :
? [C4: nat] :
( B3
= ( plus_plus_nat @ A4 @ C4 ) ) ) ) ).
% le_iff_add
thf(fact_373_le__iff__add,axiom,
( ord_le2932123472753598470d_enat
= ( ^ [A4: extended_enat,B3: extended_enat] :
? [C4: extended_enat] :
( B3
= ( plus_p3455044024723400733d_enat @ A4 @ C4 ) ) ) ) ).
% le_iff_add
thf(fact_374_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_375_add__le__imp__le__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_376_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_377_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_378_add__le__imp__le__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_379_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_380_enat__ord__number_I1_J,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(1)
thf(fact_381_ring__class_Oring__distribs_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_382_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_383_ring__class_Oring__distribs_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_384_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_385_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_386_comm__semiring__class_Odistrib,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ C ) @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_387_comm__semiring__class_Odistrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_388_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_389_distrib__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% distrib_left
thf(fact_390_distrib__left,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ ( times_7803423173614009249d_enat @ A @ C ) ) ) ).
% distrib_left
thf(fact_391_distrib__left,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% distrib_left
thf(fact_392_distrib__left,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% distrib_left
thf(fact_393_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_394_distrib__right,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ C ) @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% distrib_right
thf(fact_395_distrib__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_396_distrib__right,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_397_combine__common__factor,axiom,
! [A: nat,E: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_398_combine__common__factor,axiom,
! [A: extended_enat,E: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ E ) @ ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ B @ E ) @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_399_combine__common__factor,axiom,
! [A: real,E: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_400_combine__common__factor,axiom,
! [A: int,E: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_401_ex__sum__in__interval,axiom,
! [La: real,Ua: real,Lb: real,Ub: real,X3: real] :
( ( ord_less_eq_real @ La @ Ua )
=> ( ( ord_less_eq_real @ Lb @ Ub )
=> ( ( ord_less_eq_real @ ( plus_plus_real @ La @ Lb ) @ X3 )
=> ( ( ord_less_eq_real @ X3 @ ( plus_plus_real @ Ua @ Ub ) )
=> ? [Xa: real] :
( ( ord_less_eq_real @ La @ Xa )
& ( ord_less_eq_real @ Xa @ Ua )
& ? [Xb: real] :
( ( ord_less_eq_real @ Lb @ Xb )
& ( ord_less_eq_real @ Xb @ Ub )
& ( X3
= ( plus_plus_real @ Xa @ Xb ) ) ) ) ) ) ) ) ).
% ex_sum_in_interval
thf(fact_402_ex__sum__in__interval,axiom,
! [La: int,Ua: int,Lb: int,Ub: int,X3: int] :
( ( ord_less_eq_int @ La @ Ua )
=> ( ( ord_less_eq_int @ Lb @ Ub )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ La @ Lb ) @ X3 )
=> ( ( ord_less_eq_int @ X3 @ ( plus_plus_int @ Ua @ Ub ) )
=> ? [Xa: int] :
( ( ord_less_eq_int @ La @ Xa )
& ( ord_less_eq_int @ Xa @ Ua )
& ? [Xb: int] :
( ( ord_less_eq_int @ Lb @ Xb )
& ( ord_less_eq_int @ Xb @ Ub )
& ( X3
= ( plus_plus_int @ Xa @ Xb ) ) ) ) ) ) ) ) ).
% ex_sum_in_interval
thf(fact_403_prime__above__range,axiom,
! [N: nat] : ( member_nat @ ( freque8783664969267990145_above @ N ) @ ( set_or1269000886237332187st_nat @ N @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% prime_above_range
thf(fact_404_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_405_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_406_Icc__plus__Icc,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ( plus_plus_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D2 ) )
= ( set_or1222579329274155063t_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ) ).
% Icc_plus_Icc
thf(fact_407_Icc__plus__Icc,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ( plus_plus_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D2 ) )
= ( set_or1266510415728281911st_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ) ).
% Icc_plus_Icc
thf(fact_408_dbl__def,axiom,
( neg_numeral_dbl_real
= ( ^ [X2: real] : ( plus_plus_real @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_409_dbl__def,axiom,
( neg_numeral_dbl_int
= ( ^ [X2: int] : ( plus_plus_int @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_410_atLeastatMost__subset__iff,axiom,
! [A: num,B: num,C: num,D2: num] :
( ( ord_less_eq_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D2 ) )
= ( ~ ( ord_less_eq_num @ A @ B )
| ( ( ord_less_eq_num @ C @ A )
& ( ord_less_eq_num @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_411_atLeastatMost__subset__iff,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat,D2: extended_enat] :
( ( ord_le7203529160286727270d_enat @ ( set_or5403411693681687835d_enat @ A @ B ) @ ( set_or5403411693681687835d_enat @ C @ D2 ) )
= ( ~ ( ord_le2932123472753598470d_enat @ A @ B )
| ( ( ord_le2932123472753598470d_enat @ C @ A )
& ( ord_le2932123472753598470d_enat @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_412_atLeastatMost__subset__iff,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D2 ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( ( ord_less_eq_real @ C @ A )
& ( ord_less_eq_real @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_413_atLeastatMost__subset__iff,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D2 ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( ( ord_less_eq_int @ C @ A )
& ( ord_less_eq_int @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_414_atLeastatMost__subset__iff,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D2 ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( ( ord_less_eq_nat @ C @ A )
& ( ord_less_eq_nat @ B @ D2 ) ) ) ) ).
% atLeastatMost_subset_iff
thf(fact_415_atLeastAtMost__iff,axiom,
! [I: num,L: num,U: num] :
( ( member_num @ I @ ( set_or7049704709247886629st_num @ L @ U ) )
= ( ( ord_less_eq_num @ L @ I )
& ( ord_less_eq_num @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_416_atLeastAtMost__iff,axiom,
! [I: extended_enat,L: extended_enat,U: extended_enat] :
( ( member_Extended_enat @ I @ ( set_or5403411693681687835d_enat @ L @ U ) )
= ( ( ord_le2932123472753598470d_enat @ L @ I )
& ( ord_le2932123472753598470d_enat @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_417_atLeastAtMost__iff,axiom,
! [I: real,L: real,U: real] :
( ( member_real @ I @ ( set_or1222579329274155063t_real @ L @ U ) )
= ( ( ord_less_eq_real @ L @ I )
& ( ord_less_eq_real @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_418_atLeastAtMost__iff,axiom,
! [I: int,L: int,U: int] :
( ( member_int @ I @ ( set_or1266510415728281911st_int @ L @ U ) )
= ( ( ord_less_eq_int @ L @ I )
& ( ord_less_eq_int @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_419_atLeastAtMost__iff,axiom,
! [I: nat,L: nat,U: nat] :
( ( member_nat @ I @ ( set_or1269000886237332187st_nat @ L @ U ) )
= ( ( ord_less_eq_nat @ L @ I )
& ( ord_less_eq_nat @ I @ U ) ) ) ).
% atLeastAtMost_iff
thf(fact_420_Icc__eq__Icc,axiom,
! [L: num,H: num,L2: num,H2: num] :
( ( ( set_or7049704709247886629st_num @ L @ H )
= ( set_or7049704709247886629st_num @ L2 @ H2 ) )
= ( ( ( L = L2 )
& ( H = H2 ) )
| ( ~ ( ord_less_eq_num @ L @ H )
& ~ ( ord_less_eq_num @ L2 @ H2 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_421_Icc__eq__Icc,axiom,
! [L: extended_enat,H: extended_enat,L2: extended_enat,H2: extended_enat] :
( ( ( set_or5403411693681687835d_enat @ L @ H )
= ( set_or5403411693681687835d_enat @ L2 @ H2 ) )
= ( ( ( L = L2 )
& ( H = H2 ) )
| ( ~ ( ord_le2932123472753598470d_enat @ L @ H )
& ~ ( ord_le2932123472753598470d_enat @ L2 @ H2 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_422_Icc__eq__Icc,axiom,
! [L: real,H: real,L2: real,H2: real] :
( ( ( set_or1222579329274155063t_real @ L @ H )
= ( set_or1222579329274155063t_real @ L2 @ H2 ) )
= ( ( ( L = L2 )
& ( H = H2 ) )
| ( ~ ( ord_less_eq_real @ L @ H )
& ~ ( ord_less_eq_real @ L2 @ H2 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_423_Icc__eq__Icc,axiom,
! [L: int,H: int,L2: int,H2: int] :
( ( ( set_or1266510415728281911st_int @ L @ H )
= ( set_or1266510415728281911st_int @ L2 @ H2 ) )
= ( ( ( L = L2 )
& ( H = H2 ) )
| ( ~ ( ord_less_eq_int @ L @ H )
& ~ ( ord_less_eq_int @ L2 @ H2 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_424_Icc__eq__Icc,axiom,
! [L: nat,H: nat,L2: nat,H2: nat] :
( ( ( set_or1269000886237332187st_nat @ L @ H )
= ( set_or1269000886237332187st_nat @ L2 @ H2 ) )
= ( ( ( L = L2 )
& ( H = H2 ) )
| ( ~ ( ord_less_eq_nat @ L @ H )
& ~ ( ord_less_eq_nat @ L2 @ H2 ) ) ) ) ).
% Icc_eq_Icc
thf(fact_425_subsetI,axiom,
! [A2: set_nat,B4: set_nat] :
( ! [X: nat] :
( ( member_nat @ X @ A2 )
=> ( member_nat @ X @ B4 ) )
=> ( ord_less_eq_set_nat @ A2 @ B4 ) ) ).
% subsetI
thf(fact_426_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_427_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_428_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_429_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_430_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_431_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_432_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_433_one__plus__numeral,axiom,
! [N: num] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_434_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_435_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_436_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_437_numeral__plus__one,axiom,
! [N: num] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_438_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_439_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_440_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_441_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_442_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_443_mult_Oright__neutral,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ one_on7984719198319812577d_enat )
= A ) ).
% mult.right_neutral
thf(fact_444_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_445_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_446_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_447_mult__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ one_on7984719198319812577d_enat @ A )
= A ) ).
% mult_1
thf(fact_448_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_449_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_450_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_451_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numera1916890842035813515d_enat @ N )
= one_on7984719198319812577d_enat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_452_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_453_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_int @ N )
= one_one_int )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_454_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_455_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_on7984719198319812577d_enat
= ( numera1916890842035813515d_enat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_456_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_457_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_int
= ( numeral_numeral_int @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_458_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_459_one__add__one,axiom,
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_460_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_461_one__add__one,axiom,
( ( plus_plus_int @ one_one_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_462_one__reorient,axiom,
! [X3: nat] :
( ( one_one_nat = X3 )
= ( X3 = one_one_nat ) ) ).
% one_reorient
thf(fact_463_one__reorient,axiom,
! [X3: extended_enat] :
( ( one_on7984719198319812577d_enat = X3 )
= ( X3 = one_on7984719198319812577d_enat ) ) ).
% one_reorient
thf(fact_464_one__reorient,axiom,
! [X3: real] :
( ( one_one_real = X3 )
= ( X3 = one_one_real ) ) ).
% one_reorient
thf(fact_465_one__reorient,axiom,
! [X3: int] :
( ( one_one_int = X3 )
= ( X3 = one_one_int ) ) ).
% one_reorient
thf(fact_466_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_467_le__numeral__extra_I4_J,axiom,
ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat ).
% le_numeral_extra(4)
thf(fact_468_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_469_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_470_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_471_comm__monoid__mult__class_Omult__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ one_on7984719198319812577d_enat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_472_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_473_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_474_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_475_mult_Ocomm__neutral,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ one_on7984719198319812577d_enat )
= A ) ).
% mult.comm_neutral
thf(fact_476_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_477_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_478_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_479_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_480_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).
% one_le_numeral
thf(fact_481_one__le__numeral,axiom,
! [N: num] : ( ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) ) ).
% one_le_numeral
thf(fact_482_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).
% one_le_numeral
thf(fact_483_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).
% one_le_numeral
thf(fact_484_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X3 ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X3 ) @ one_one_nat ) ) ).
% one_plus_numeral_commute
thf(fact_485_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X3 ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ X3 ) @ one_on7984719198319812577d_enat ) ) ).
% one_plus_numeral_commute
thf(fact_486_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X3 ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X3 ) @ one_one_real ) ) ).
% one_plus_numeral_commute
thf(fact_487_one__plus__numeral__commute,axiom,
! [X3: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X3 ) )
= ( plus_plus_int @ ( numeral_numeral_int @ X3 ) @ one_one_int ) ) ).
% one_plus_numeral_commute
thf(fact_488_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_489_numeral__One,axiom,
( ( numera1916890842035813515d_enat @ one )
= one_on7984719198319812577d_enat ) ).
% numeral_One
thf(fact_490_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_491_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_492_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_493_in__mono,axiom,
! [A2: set_nat,B4: set_nat,X3: nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( member_nat @ X3 @ A2 )
=> ( member_nat @ X3 @ B4 ) ) ) ).
% in_mono
thf(fact_494_subsetD,axiom,
! [A2: set_nat,B4: set_nat,C: nat] :
( ( ord_less_eq_set_nat @ A2 @ B4 )
=> ( ( member_nat @ C @ A2 )
=> ( member_nat @ C @ B4 ) ) ) ).
% subsetD
thf(fact_495_subset__eq,axiom,
( ord_less_eq_set_nat
= ( ^ [A5: set_nat,B5: set_nat] :
! [X2: nat] :
( ( member_nat @ X2 @ A5 )
=> ( member_nat @ X2 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_496_subset__iff,axiom,
( ord_less_eq_set_nat
= ( ^ [A5: set_nat,B5: set_nat] :
! [T: nat] :
( ( member_nat @ T @ A5 )
=> ( member_nat @ T @ B5 ) ) ) ) ).
% subset_iff
thf(fact_497_bounded__Max__nat,axiom,
! [P: nat > $o,X3: nat,M3: nat] :
( ( P @ X3 )
=> ( ! [X: nat] :
( ( P @ X )
=> ( ord_less_eq_nat @ X @ M3 ) )
=> ~ ! [M4: nat] :
( ( P @ M4 )
=> ~ ! [X4: nat] :
( ( P @ X4 )
=> ( ord_less_eq_nat @ X4 @ M4 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_498_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_499_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_500_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_501_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_502_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_503_eSuc__numeral,axiom,
! [K: num] :
( ( extended_eSuc @ ( numera1916890842035813515d_enat @ K ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ K @ one ) ) ) ).
% eSuc_numeral
thf(fact_504_add__2__eq__Suc,axiom,
! [N: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc
thf(fact_505_add__2__eq__Suc_H,axiom,
! [N: nat] :
( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc'
thf(fact_506_sum__squares__bound,axiom,
! [X3: real,Y3: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_squares_bound
thf(fact_507_numeral__le__enat__iff,axiom,
! [M: num,N: nat] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( extended_enat2 @ N ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).
% numeral_le_enat_iff
thf(fact_508_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_509_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_510_Suc__nat__number__of__add,axiom,
! [V: num,N: nat] :
( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).
% Suc_nat_number_of_add
thf(fact_511_neg__equal__iff__equal,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_512_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_513_add_Oinverse__inverse,axiom,
! [A: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_514_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_515_verit__minus__simplify_I4_J,axiom,
! [B: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_516_verit__minus__simplify_I4_J,axiom,
! [B: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_517_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_518_nat_Oinject,axiom,
! [X22: nat,Y22: nat] :
( ( ( suc @ X22 )
= ( suc @ Y22 ) )
= ( X22 = Y22 ) ) ).
% nat.inject
thf(fact_519_enat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( extended_enat2 @ Nat )
= ( extended_enat2 @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% enat.inject
thf(fact_520_eSuc__inject,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( extended_eSuc @ M )
= ( extended_eSuc @ N ) )
= ( M = N ) ) ).
% eSuc_inject
thf(fact_521_neg__le__iff__le,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_522_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_523_mult__minus__right,axiom,
! [A: real,B: real] :
( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_524_mult__minus__right,axiom,
! [A: int,B: int] :
( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_525_minus__mult__minus,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( times_times_real @ A @ B ) ) ).
% minus_mult_minus
thf(fact_526_minus__mult__minus,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( times_times_int @ A @ B ) ) ).
% minus_mult_minus
thf(fact_527_mult__minus__left,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_528_mult__minus__left,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_529_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_530_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_531_minus__add__distrib,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).
% minus_add_distrib
thf(fact_532_minus__add__distrib,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).
% minus_add_distrib
thf(fact_533_minus__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_534_minus__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_535_add__minus__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_536_add__minus__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_537_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_538_add__Suc__right,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ M @ ( suc @ N ) )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc_right
thf(fact_539_plus__enat__simps_I1_J,axiom,
! [M: nat,N: nat] :
( ( plus_p3455044024723400733d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
= ( extended_enat2 @ ( plus_plus_nat @ M @ N ) ) ) ).
% plus_enat_simps(1)
thf(fact_540_times__enat__simps_I1_J,axiom,
! [M: nat,N: nat] :
( ( times_7803423173614009249d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
= ( extended_enat2 @ ( times_times_nat @ M @ N ) ) ) ).
% times_enat_simps(1)
thf(fact_541_eSuc__ile__mono,axiom,
! [N: extended_enat,M: extended_enat] :
( ( ord_le2932123472753598470d_enat @ ( extended_eSuc @ N ) @ ( extended_eSuc @ M ) )
= ( ord_le2932123472753598470d_enat @ N @ M ) ) ).
% eSuc_ile_mono
thf(fact_542_mult__minus1__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1_right
thf(fact_543_mult__minus1__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1_right
thf(fact_544_mult__minus1,axiom,
! [Z: real] :
( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1
thf(fact_545_mult__minus1,axiom,
! [Z: int] :
( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1
thf(fact_546_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_547_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_548_mult__Suc__right,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ M @ ( suc @ N ) )
= ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc_right
thf(fact_549_enat__ord__simps_I1_J,axiom,
! [M: nat,N: nat] :
( ( ord_le2932123472753598470d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% enat_ord_simps(1)
thf(fact_550_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_551_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_552_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ one_one_real ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_553_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ one_one_int ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_554_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_555_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_556_semiring__norm_I167_J,axiom,
! [V: num,W: num,Y3: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y3 ) )
= ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(167)
thf(fact_557_semiring__norm_I167_J,axiom,
! [V: num,W: num,Y3: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y3 ) )
= ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(167)
thf(fact_558_Suc__numeral,axiom,
! [N: num] :
( ( suc @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% Suc_numeral
thf(fact_559_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_560_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_561_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_562_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_563_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_564_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_565_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y3: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y3 ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(169)
thf(fact_566_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y3: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y3 ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(169)
thf(fact_567_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y3: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y3 ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(170)
thf(fact_568_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y3: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y3 ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y3 ) ) ).
% semiring_norm(170)
thf(fact_569_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y3: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y3 ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).
% semiring_norm(171)
thf(fact_570_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y3: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y3 ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y3 ) ) ).
% semiring_norm(171)
thf(fact_571_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_572_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_573_Suc__1,axiom,
( ( suc @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% Suc_1
thf(fact_574_plus__1__eSuc_I2_J,axiom,
! [Q: extended_enat] :
( ( plus_p3455044024723400733d_enat @ Q @ one_on7984719198319812577d_enat )
= ( extended_eSuc @ Q ) ) ).
% plus_1_eSuc(2)
thf(fact_575_plus__1__eSuc_I1_J,axiom,
! [Q: extended_enat] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ Q )
= ( extended_eSuc @ Q ) ) ).
% plus_1_eSuc(1)
thf(fact_576_eSuc__plus__1,axiom,
( extended_eSuc
= ( ^ [N2: extended_enat] : ( plus_p3455044024723400733d_enat @ N2 @ one_on7984719198319812577d_enat ) ) ) ).
% eSuc_plus_1
thf(fact_577_enat__1__iff_I2_J,axiom,
! [X3: nat] :
( ( one_on7984719198319812577d_enat
= ( extended_enat2 @ X3 ) )
= ( X3 = one_one_nat ) ) ).
% enat_1_iff(2)
thf(fact_578_enat__1__iff_I1_J,axiom,
! [X3: nat] :
( ( ( extended_enat2 @ X3 )
= one_on7984719198319812577d_enat )
= ( X3 = one_one_nat ) ) ).
% enat_1_iff(1)
thf(fact_579_one__enat__def,axiom,
( one_on7984719198319812577d_enat
= ( extended_enat2 @ one_one_nat ) ) ).
% one_enat_def
thf(fact_580_minus__equation__iff,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( uminus_uminus_real @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_581_minus__equation__iff,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( uminus_uminus_int @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_582_equation__minus__iff,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% equation_minus_iff
thf(fact_583_equation__minus__iff,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% equation_minus_iff
thf(fact_584_verit__negate__coefficient_I3_J,axiom,
! [A: real,B: real] :
( ( A = B )
=> ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_585_verit__negate__coefficient_I3_J,axiom,
! [A: int,B: int] :
( ( A = B )
=> ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_586_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_587_Suc__inject,axiom,
! [X3: nat,Y3: nat] :
( ( ( suc @ X3 )
= ( suc @ Y3 ) )
=> ( X3 = Y3 ) ) ).
% Suc_inject
thf(fact_588_enat__eSuc__iff,axiom,
! [Y3: nat,X3: extended_enat] :
( ( ( extended_enat2 @ Y3 )
= ( extended_eSuc @ X3 ) )
= ( ? [N2: nat] :
( ( Y3
= ( suc @ N2 ) )
& ( ( extended_enat2 @ N2 )
= X3 ) ) ) ) ).
% enat_eSuc_iff
thf(fact_589_eSuc__enat__iff,axiom,
! [X3: extended_enat,Y3: nat] :
( ( ( extended_eSuc @ X3 )
= ( extended_enat2 @ Y3 ) )
= ( ? [N2: nat] :
( ( Y3
= ( suc @ N2 ) )
& ( X3
= ( extended_enat2 @ N2 ) ) ) ) ) ).
% eSuc_enat_iff
thf(fact_590_eSuc__enat,axiom,
! [N: nat] :
( ( extended_eSuc @ ( extended_enat2 @ N ) )
= ( extended_enat2 @ ( suc @ N ) ) ) ).
% eSuc_enat
thf(fact_591_mult__eSuc__right,axiom,
! [M: extended_enat,N: extended_enat] :
( ( times_7803423173614009249d_enat @ M @ ( extended_eSuc @ N ) )
= ( plus_p3455044024723400733d_enat @ M @ ( times_7803423173614009249d_enat @ M @ N ) ) ) ).
% mult_eSuc_right
thf(fact_592_iadd__Suc__right,axiom,
! [M: extended_enat,N: extended_enat] :
( ( plus_p3455044024723400733d_enat @ M @ ( extended_eSuc @ N ) )
= ( extended_eSuc @ ( plus_p3455044024723400733d_enat @ M @ N ) ) ) ).
% iadd_Suc_right
thf(fact_593_mult__eSuc,axiom,
! [M: extended_enat,N: extended_enat] :
( ( times_7803423173614009249d_enat @ ( extended_eSuc @ M ) @ N )
= ( plus_p3455044024723400733d_enat @ N @ ( times_7803423173614009249d_enat @ M @ N ) ) ) ).
% mult_eSuc
thf(fact_594_iadd__Suc,axiom,
! [M: extended_enat,N: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( extended_eSuc @ M ) @ N )
= ( extended_eSuc @ ( plus_p3455044024723400733d_enat @ M @ N ) ) ) ).
% iadd_Suc
thf(fact_595_le__imp__neg__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% le_imp_neg_le
thf(fact_596_le__imp__neg__le,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% le_imp_neg_le
thf(fact_597_minus__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_598_minus__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_599_le__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% le_minus_iff
thf(fact_600_le__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% le_minus_iff
thf(fact_601_one__neq__neg__one,axiom,
( one_one_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% one_neq_neg_one
thf(fact_602_one__neq__neg__one,axiom,
( one_one_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% one_neq_neg_one
thf(fact_603_minus__mult__commute,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_mult_commute
thf(fact_604_minus__mult__commute,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).
% minus_mult_commute
thf(fact_605_square__eq__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ A )
= ( times_times_real @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% square_eq_iff
thf(fact_606_square__eq__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ A )
= ( times_times_int @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ).
% square_eq_iff
thf(fact_607_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_real @ M )
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_608_numeral__neq__neg__numeral,axiom,
! [M: num,N: num] :
( ( numeral_numeral_int @ M )
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_neq_neg_numeral
thf(fact_609_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
!= ( numeral_numeral_real @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_610_neg__numeral__neq__numeral,axiom,
! [M: num,N: num] :
( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
!= ( numeral_numeral_int @ N ) ) ).
% neg_numeral_neq_numeral
thf(fact_611_is__num__normalize_I8_J,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_612_is__num__normalize_I8_J,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_613_add_Oinverse__distrib__swap,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_614_add_Oinverse__distrib__swap,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_615_group__cancel_Oneg1,axiom,
! [A2: real,K: real,A: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( uminus_uminus_real @ A2 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_616_group__cancel_Oneg1,axiom,
! [A2: int,K: int,A: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( uminus_uminus_int @ A2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_617_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ! [X: nat] : ( R @ X @ X )
=> ( ! [X: nat,Y: nat,Z3: nat] :
( ( R @ X @ Y )
=> ( ( R @ Y @ Z3 )
=> ( R @ X @ Z3 ) ) )
=> ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
=> ( R @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_618_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( P @ M )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ M @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_619_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M5: nat] :
( ( ord_less_eq_nat @ ( suc @ M5 ) @ N3 )
=> ( P @ M5 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_620_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_621_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_622_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_623_Suc__le__D,axiom,
! [N: nat,M6: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
=> ? [M4: nat] :
( M6
= ( suc @ M4 ) ) ) ).
% Suc_le_D
thf(fact_624_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_625_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_626_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_leD
thf(fact_627_add__Suc__shift,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).
% add_Suc_shift
thf(fact_628_add__Suc,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc
thf(fact_629_nat__arith_Osuc1,axiom,
! [A2: nat,K: nat,A: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A2 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_630_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_631_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_632_Suc__eq__plus1,axiom,
( suc
= ( ^ [N2: nat] : ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_633_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M )
= ( times_times_nat @ ( suc @ K ) @ N ) )
= ( M = N ) ) ).
% Suc_mult_cancel1
thf(fact_634_enat__ile,axiom,
! [N: extended_enat,M: nat] :
( ( ord_le2932123472753598470d_enat @ N @ ( extended_enat2 @ M ) )
=> ? [K3: nat] :
( N
= ( extended_enat2 @ K3 ) ) ) ).
% enat_ile
thf(fact_635_ile__eSuc,axiom,
! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ N @ ( extended_eSuc @ N ) ) ).
% ile_eSuc
thf(fact_636_le__minus__one__simps_I2_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% le_minus_one_simps(2)
thf(fact_637_le__minus__one__simps_I2_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% le_minus_one_simps(2)
thf(fact_638_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(4)
thf(fact_639_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(4)
thf(fact_640_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_641_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_642_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_643_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_644_four__x__squared,axiom,
! [X3: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% four_x_squared
thf(fact_645_L2__set__mult__ineq__lemma,axiom,
! [A: real,C: real,B: real,D2: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D2 ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% L2_set_mult_ineq_lemma
thf(fact_646_square__eq__1__iff,axiom,
! [X3: real] :
( ( ( times_times_real @ X3 @ X3 )
= one_one_real )
= ( ( X3 = one_one_real )
| ( X3
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% square_eq_1_iff
thf(fact_647_square__eq__1__iff,axiom,
! [X3: int] :
( ( ( times_times_int @ X3 @ X3 )
= one_one_int )
= ( ( X3 = one_one_int )
| ( X3
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% square_eq_1_iff
thf(fact_648_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_real
!= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_649_one__neq__neg__numeral,axiom,
! [N: num] :
( one_one_int
!= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% one_neq_neg_numeral
thf(fact_650_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_real @ N )
!= ( uminus_uminus_real @ one_one_real ) ) ).
% numeral_neq_neg_one
thf(fact_651_numeral__neq__neg__one,axiom,
! [N: num] :
( ( numeral_numeral_int @ N )
!= ( uminus_uminus_int @ one_one_int ) ) ).
% numeral_neq_neg_one
thf(fact_652_numeral__times__minus__swap,axiom,
! [W: num,X3: real] :
( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X3 ) )
= ( times_times_real @ X3 @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_653_numeral__times__minus__swap,axiom,
! [W: num,X3: int] :
( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X3 ) )
= ( times_times_int @ X3 @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_654_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_655_lift__Suc__antimono__le,axiom,
! [F: nat > num,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_num @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_656_lift__Suc__antimono__le,axiom,
! [F: nat > extended_enat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_le2932123472753598470d_enat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_le2932123472753598470d_enat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_657_lift__Suc__antimono__le,axiom,
! [F: nat > real,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_real @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_658_lift__Suc__antimono__le,axiom,
! [F: nat > int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_int @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_659_lift__Suc__mono__le,axiom,
! [F: nat > nat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_660_lift__Suc__mono__le,axiom,
! [F: nat > num,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_num @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_661_lift__Suc__mono__le,axiom,
! [F: nat > extended_enat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_le2932123472753598470d_enat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_le2932123472753598470d_enat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_662_lift__Suc__mono__le,axiom,
! [F: nat > real,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_real @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_663_lift__Suc__mono__le,axiom,
! [F: nat > int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_int @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_664_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_mult_le_cancel1
thf(fact_665_mult__Suc,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc
thf(fact_666_numeral__eq__enat,axiom,
( numera1916890842035813515d_enat
= ( ^ [K2: num] : ( extended_enat2 @ ( numeral_numeral_nat @ K2 ) ) ) ) ).
% numeral_eq_enat
thf(fact_667_iadd__le__enat__iff,axiom,
! [X3: extended_enat,Y3: extended_enat,N: nat] :
( ( ord_le2932123472753598470d_enat @ ( plus_p3455044024723400733d_enat @ X3 @ Y3 ) @ ( extended_enat2 @ N ) )
= ( ? [Y6: nat,X5: nat] :
( ( X3
= ( extended_enat2 @ X5 ) )
& ( Y3
= ( extended_enat2 @ Y6 ) )
& ( ord_less_eq_nat @ ( plus_plus_nat @ X5 @ Y6 ) @ N ) ) ) ) ).
% iadd_le_enat_iff
thf(fact_668_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_669_not__one__le__neg__numeral,axiom,
! [M: num] :
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) ).
% not_one_le_neg_numeral
thf(fact_670_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% not_numeral_le_neg_one
thf(fact_671_not__numeral__le__neg__one,axiom,
! [M: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% not_numeral_le_neg_one
thf(fact_672_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) ) ).
% neg_numeral_le_neg_one
thf(fact_673_neg__numeral__le__neg__one,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) ) ).
% neg_numeral_le_neg_one
thf(fact_674_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( numeral_numeral_real @ M ) ) ).
% neg_one_le_numeral
thf(fact_675_neg__one__le__numeral,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ M ) ) ).
% neg_one_le_numeral
thf(fact_676_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ one_one_real ) ).
% neg_numeral_le_one
thf(fact_677_neg__numeral__le__one,axiom,
! [M: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ one_one_int ) ).
% neg_numeral_le_one
thf(fact_678_uminus__numeral__One,axiom,
( ( uminus_uminus_real @ ( numeral_numeral_real @ one ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% uminus_numeral_One
thf(fact_679_uminus__numeral__One,axiom,
( ( uminus_uminus_int @ ( numeral_numeral_int @ one ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% uminus_numeral_One
thf(fact_680_mult__1s__ring__1_I1_J,axiom,
! [B: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) @ B )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_681_mult__1s__ring__1_I1_J,axiom,
! [B: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) @ B )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(1)
thf(fact_682_mult__1s__ring__1_I2_J,axiom,
! [B: real] :
( ( times_times_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ one ) ) )
= ( uminus_uminus_real @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_683_mult__1s__ring__1_I2_J,axiom,
! [B: int] :
( ( times_times_int @ B @ ( uminus_uminus_int @ ( numeral_numeral_int @ one ) ) )
= ( uminus_uminus_int @ B ) ) ).
% mult_1s_ring_1(2)
thf(fact_684_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_real ) ).
% power_minus1_even
thf(fact_685_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_int ) ).
% power_minus1_even
thf(fact_686_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_687_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: int,N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_688_power2__minus,axiom,
! [A: real] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_689_power2__minus,axiom,
! [A: int] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_690_power__add__numeral2,axiom,
! [A: nat,M: num,N: num,B: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_691_power__add__numeral2,axiom,
! [A: extended_enat,M: num,N: num,B: extended_enat] :
( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_692_power__add__numeral2,axiom,
! [A: real,M: num,N: num,B: real] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_693_power__add__numeral2,axiom,
! [A: int,M: num,N: num,B: int] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_694_power__add__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_695_power__add__numeral,axiom,
! [A: extended_enat,M: num,N: num] :
( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_696_power__add__numeral,axiom,
! [A: real,M: num,N: num] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_697_power__add__numeral,axiom,
! [A: int,M: num,N: num] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_698_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
= one_one_real ) ).
% minus_one_mult_self
thf(fact_699_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
= one_one_int ) ).
% minus_one_mult_self
thf(fact_700_left__minus__one__mult__self,axiom,
! [N: nat,A: real] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_701_left__minus__one__mult__self,axiom,
! [N: nat,A: int] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_702_power__mult__numeral,axiom,
! [A: real,M: num,N: num] :
( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_703_power__mult__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_704_power__mult__numeral,axiom,
! [A: int,M: num,N: num] :
( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_705_Compl__iff,axiom,
! [C: nat,A2: set_nat] :
( ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) )
= ( ~ ( member_nat @ C @ A2 ) ) ) ).
% Compl_iff
thf(fact_706_ComplI,axiom,
! [C: nat,A2: set_nat] :
( ~ ( member_nat @ C @ A2 )
=> ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) ) ) ).
% ComplI
thf(fact_707_power__one,axiom,
! [N: nat] :
( ( power_8040749407984259932d_enat @ one_on7984719198319812577d_enat @ N )
= one_on7984719198319812577d_enat ) ).
% power_one
thf(fact_708_power__one,axiom,
! [N: nat] :
( ( power_power_real @ one_one_real @ N )
= one_one_real ) ).
% power_one
thf(fact_709_power__one,axiom,
! [N: nat] :
( ( power_power_nat @ one_one_nat @ N )
= one_one_nat ) ).
% power_one
thf(fact_710_power__one,axiom,
! [N: nat] :
( ( power_power_int @ one_one_int @ N )
= one_one_int ) ).
% power_one
thf(fact_711_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_712_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_713_power__one__right,axiom,
! [A: int] :
( ( power_power_int @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_714_ComplD,axiom,
! [C: nat,A2: set_nat] :
( ( member_nat @ C @ ( uminus5710092332889474511et_nat @ A2 ) )
=> ~ ( member_nat @ C @ A2 ) ) ).
% ComplD
thf(fact_715_power__commuting__commutes,axiom,
! [X3: nat,Y3: nat,N: nat] :
( ( ( times_times_nat @ X3 @ Y3 )
= ( times_times_nat @ Y3 @ X3 ) )
=> ( ( times_times_nat @ ( power_power_nat @ X3 @ N ) @ Y3 )
= ( times_times_nat @ Y3 @ ( power_power_nat @ X3 @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_716_power__commuting__commutes,axiom,
! [X3: extended_enat,Y3: extended_enat,N: nat] :
( ( ( times_7803423173614009249d_enat @ X3 @ Y3 )
= ( times_7803423173614009249d_enat @ Y3 @ X3 ) )
=> ( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ X3 @ N ) @ Y3 )
= ( times_7803423173614009249d_enat @ Y3 @ ( power_8040749407984259932d_enat @ X3 @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_717_power__commuting__commutes,axiom,
! [X3: real,Y3: real,N: nat] :
( ( ( times_times_real @ X3 @ Y3 )
= ( times_times_real @ Y3 @ X3 ) )
=> ( ( times_times_real @ ( power_power_real @ X3 @ N ) @ Y3 )
= ( times_times_real @ Y3 @ ( power_power_real @ X3 @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_718_power__commuting__commutes,axiom,
! [X3: int,Y3: int,N: nat] :
( ( ( times_times_int @ X3 @ Y3 )
= ( times_times_int @ Y3 @ X3 ) )
=> ( ( times_times_int @ ( power_power_int @ X3 @ N ) @ Y3 )
= ( times_times_int @ Y3 @ ( power_power_int @ X3 @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_719_power__mult__distrib,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_720_power__mult__distrib,axiom,
! [A: extended_enat,B: extended_enat,N: nat] :
( ( power_8040749407984259932d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ N )
= ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ N ) @ ( power_8040749407984259932d_enat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_721_power__mult__distrib,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
= ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_722_power__mult__distrib,axiom,
! [A: int,B: int,N: nat] :
( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
= ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_723_power__commutes,axiom,
! [A: nat,N: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_commutes
thf(fact_724_power__commutes,axiom,
! [A: extended_enat,N: nat] :
( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ N ) @ A )
= ( times_7803423173614009249d_enat @ A @ ( power_8040749407984259932d_enat @ A @ N ) ) ) ).
% power_commutes
thf(fact_725_power__commutes,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_commutes
thf(fact_726_power__commutes,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_commutes
thf(fact_727_power__mult,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_728_power__mult,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_729_power__mult,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_730_one__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).
% one_le_power
thf(fact_731_one__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% one_le_power
thf(fact_732_one__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).
% one_le_power
thf(fact_733_left__right__inverse__power,axiom,
! [X3: nat,Y3: nat,N: nat] :
( ( ( times_times_nat @ X3 @ Y3 )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X3 @ N ) @ ( power_power_nat @ Y3 @ N ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_734_left__right__inverse__power,axiom,
! [X3: extended_enat,Y3: extended_enat,N: nat] :
( ( ( times_7803423173614009249d_enat @ X3 @ Y3 )
= one_on7984719198319812577d_enat )
=> ( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ X3 @ N ) @ ( power_8040749407984259932d_enat @ Y3 @ N ) )
= one_on7984719198319812577d_enat ) ) ).
% left_right_inverse_power
thf(fact_735_left__right__inverse__power,axiom,
! [X3: real,Y3: real,N: nat] :
( ( ( times_times_real @ X3 @ Y3 )
= one_one_real )
=> ( ( times_times_real @ ( power_power_real @ X3 @ N ) @ ( power_power_real @ Y3 @ N ) )
= one_one_real ) ) ).
% left_right_inverse_power
thf(fact_736_left__right__inverse__power,axiom,
! [X3: int,Y3: int,N: nat] :
( ( ( times_times_int @ X3 @ Y3 )
= one_one_int )
=> ( ( times_times_int @ ( power_power_int @ X3 @ N ) @ ( power_power_int @ Y3 @ N ) )
= one_one_int ) ) ).
% left_right_inverse_power
thf(fact_737_power__Suc2,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_738_power__Suc2,axiom,
! [A: extended_enat,N: nat] :
( ( power_8040749407984259932d_enat @ A @ ( suc @ N ) )
= ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_739_power__Suc2,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_740_power__Suc2,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_741_power__Suc,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_Suc
thf(fact_742_power__Suc,axiom,
! [A: extended_enat,N: nat] :
( ( power_8040749407984259932d_enat @ A @ ( suc @ N ) )
= ( times_7803423173614009249d_enat @ A @ ( power_8040749407984259932d_enat @ A @ N ) ) ) ).
% power_Suc
thf(fact_743_power__Suc,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_Suc
thf(fact_744_power__Suc,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_Suc
thf(fact_745_power__add,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).
% power_add
thf(fact_746_power__add,axiom,
! [A: extended_enat,M: nat,N: nat] :
( ( power_8040749407984259932d_enat @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ M ) @ ( power_8040749407984259932d_enat @ A @ N ) ) ) ).
% power_add
thf(fact_747_power__add,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).
% power_add
thf(fact_748_power__add,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).
% power_add
thf(fact_749_power__minus,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ A @ N ) ) ) ).
% power_minus
thf(fact_750_power__minus,axiom,
! [A: int,N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ A @ N ) ) ) ).
% power_minus
thf(fact_751_power__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_752_power__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_753_power__increasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_eq_nat @ N @ N5 )
=> ( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_increasing
thf(fact_754_power__minus__Bit0,axiom,
! [X3: real,K: num] :
( ( power_power_real @ ( uminus_uminus_real @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_755_power__minus__Bit0,axiom,
! [X3: int,K: num] :
( ( power_power_int @ ( uminus_uminus_int @ X3 ) @ ( numeral_numeral_nat @ ( bit0 @ K ) ) )
= ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ K ) ) ) ) ).
% power_minus_Bit0
thf(fact_756_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).
% self_le_ge2_pow
thf(fact_757_power2__nat__le__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_eq_le
thf(fact_758_power2__nat__le__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_imp_le
thf(fact_759_one__power2,axiom,
( ( power_8040749407984259932d_enat @ one_on7984719198319812577d_enat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_on7984719198319812577d_enat ) ).
% one_power2
thf(fact_760_one__power2,axiom,
( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real ) ).
% one_power2
thf(fact_761_one__power2,axiom,
( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_power2
thf(fact_762_one__power2,axiom,
( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_power2
thf(fact_763_power4__eq__xxxx,axiom,
! [X3: nat] :
( ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X3 @ X3 ) @ X3 ) @ X3 ) ) ).
% power4_eq_xxxx
thf(fact_764_power4__eq__xxxx,axiom,
! [X3: extended_enat] :
( ( power_8040749407984259932d_enat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ X3 @ X3 ) @ X3 ) @ X3 ) ) ).
% power4_eq_xxxx
thf(fact_765_power4__eq__xxxx,axiom,
! [X3: real] :
( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_real @ ( times_times_real @ ( times_times_real @ X3 @ X3 ) @ X3 ) @ X3 ) ) ).
% power4_eq_xxxx
thf(fact_766_power4__eq__xxxx,axiom,
! [X3: int] :
( ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_int @ ( times_times_int @ ( times_times_int @ X3 @ X3 ) @ X3 ) @ X3 ) ) ).
% power4_eq_xxxx
thf(fact_767_power2__eq__square,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_nat @ A @ A ) ) ).
% power2_eq_square
thf(fact_768_power2__eq__square,axiom,
! [A: extended_enat] :
( ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_7803423173614009249d_enat @ A @ A ) ) ).
% power2_eq_square
thf(fact_769_power2__eq__square,axiom,
! [A: real] :
( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ A @ A ) ) ).
% power2_eq_square
thf(fact_770_power2__eq__square,axiom,
! [A: int] :
( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_int @ A @ A ) ) ).
% power2_eq_square
thf(fact_771_power2__eq__iff,axiom,
! [X3: real,Y3: real] :
( ( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X3 = Y3 )
| ( X3
= ( uminus_uminus_real @ Y3 ) ) ) ) ).
% power2_eq_iff
thf(fact_772_power2__eq__iff,axiom,
! [X3: int,Y3: int] :
( ( ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( X3 = Y3 )
| ( X3
= ( uminus_uminus_int @ Y3 ) ) ) ) ).
% power2_eq_iff
thf(fact_773_power__even__eq,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_774_power__even__eq,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_775_power__even__eq,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_776_power2__eq__1__iff,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real )
= ( ( A = one_one_real )
| ( A
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% power2_eq_1_iff
thf(fact_777_power2__eq__1__iff,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int )
= ( ( A = one_one_int )
| ( A
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% power2_eq_1_iff
thf(fact_778_square__le__1,axiom,
! [X3: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X3 )
=> ( ( ord_less_eq_real @ X3 @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_real ) ) ) ).
% square_le_1
thf(fact_779_square__le__1,axiom,
! [X3: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ X3 )
=> ( ( ord_less_eq_int @ X3 @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ one_one_int ) ) ) ).
% square_le_1
thf(fact_780_power2__sum,axiom,
! [X3: nat,Y3: nat] :
( ( power_power_nat @ ( plus_plus_nat @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).
% power2_sum
thf(fact_781_power2__sum,axiom,
! [X3: extended_enat,Y3: extended_enat] :
( ( power_8040749407984259932d_enat @ ( plus_p3455044024723400733d_enat @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ ( power_8040749407984259932d_enat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8040749407984259932d_enat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).
% power2_sum
thf(fact_782_power2__sum,axiom,
! [X3: real,Y3: real] :
( ( power_power_real @ ( plus_plus_real @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).
% power2_sum
thf(fact_783_power2__sum,axiom,
! [X3: int,Y3: int] :
( ( power_power_int @ ( plus_plus_int @ X3 @ Y3 ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X3 ) @ Y3 ) ) ) ).
% power2_sum
thf(fact_784_minus__power__mult__self,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ A ) @ N ) )
= ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_785_minus__power__mult__self,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ A ) @ N ) )
= ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% minus_power_mult_self
thf(fact_786_power__odd__eq,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_787_power__odd__eq,axiom,
! [A: extended_enat,N: nat] :
( ( power_8040749407984259932d_enat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_7803423173614009249d_enat @ A @ ( power_8040749407984259932d_enat @ ( power_8040749407984259932d_enat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_788_power__odd__eq,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_789_power__odd__eq,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_790_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_real @ one_one_real ) ) ).
% power_minus1_odd
thf(fact_791_power__minus1__odd,axiom,
! [N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% power_minus1_odd
thf(fact_792_suc__n__le__2__pow__n,axiom,
! [N: nat] : ( ord_less_eq_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% suc_n_le_2_pow_n
thf(fact_793_two__realpow__ge__one,axiom,
! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).
% two_realpow_ge_one
thf(fact_794_realpow__square__minus__le,axiom,
! [U: real,X3: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% realpow_square_minus_le
thf(fact_795_Suc__double__not__eq__double,axiom,
! [M: nat,N: nat] :
( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% Suc_double_not_eq_double
thf(fact_796_double__not__eq__Suc__double,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% double_not_eq_Suc_double
thf(fact_797_real__minus__mult__self__le,axiom,
! [U: real,X3: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X3 @ X3 ) ) ).
% real_minus_mult_self_le
thf(fact_798_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_nat @ ( numeral_numeral_nat @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numeral_numeral_nat @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_799_power__numeral,axiom,
! [K: num,L: num] :
( ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numera1916890842035813515d_enat @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_800_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_real @ ( numeral_numeral_real @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numeral_numeral_real @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_801_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numeral_numeral_int @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_802_the__enat_Osimps,axiom,
! [N: nat] :
( ( extended_the_enat @ ( extended_enat2 @ N ) )
= N ) ).
% the_enat.simps
thf(fact_803_odd__0__le__power__imp__0__le,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_804_odd__0__le__power__imp__0__le,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_805_ex__power__ivl2,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N3 ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl2
thf(fact_806_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_807_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_808_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_809_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_810_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_811_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_812_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_813_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_814_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_815_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_816_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_817_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_818_le__zero__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% le_zero_eq
thf(fact_819_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_820_not__gr__zero,axiom,
! [N: extended_enat] :
( ( ~ ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% not_gr_zero
thf(fact_821_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_822_mult__zero__left,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ zero_z5237406670263579293d_enat @ A )
= zero_z5237406670263579293d_enat ) ).
% mult_zero_left
thf(fact_823_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_824_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_825_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_826_mult__zero__right,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ zero_z5237406670263579293d_enat )
= zero_z5237406670263579293d_enat ) ).
% mult_zero_right
thf(fact_827_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_828_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_829_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_830_mult__eq__0__iff,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ( times_7803423173614009249d_enat @ A @ B )
= zero_z5237406670263579293d_enat )
= ( ( A = zero_z5237406670263579293d_enat )
| ( B = zero_z5237406670263579293d_enat ) ) ) ).
% mult_eq_0_iff
thf(fact_831_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_832_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_833_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_834_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_835_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_836_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_837_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_838_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_839_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_840_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_841_add_Oright__neutral,axiom,
! [A: extended_enat] :
( ( plus_p3455044024723400733d_enat @ A @ zero_z5237406670263579293d_enat )
= A ) ).
% add.right_neutral
thf(fact_842_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_843_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_844_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_845_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_846_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_847_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_848_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_849_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_850_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_851_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_852_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_853_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_854_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_855_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_856_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_857_add__eq__0__iff__both__eq__0,axiom,
! [X3: nat,Y3: nat] :
( ( ( plus_plus_nat @ X3 @ Y3 )
= zero_zero_nat )
= ( ( X3 = zero_zero_nat )
& ( Y3 = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_858_add__eq__0__iff__both__eq__0,axiom,
! [X3: extended_enat,Y3: extended_enat] :
( ( ( plus_p3455044024723400733d_enat @ X3 @ Y3 )
= zero_z5237406670263579293d_enat )
= ( ( X3 = zero_z5237406670263579293d_enat )
& ( Y3 = zero_z5237406670263579293d_enat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_859_zero__eq__add__iff__both__eq__0,axiom,
! [X3: nat,Y3: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X3 @ Y3 ) )
= ( ( X3 = zero_zero_nat )
& ( Y3 = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_860_zero__eq__add__iff__both__eq__0,axiom,
! [X3: extended_enat,Y3: extended_enat] :
( ( zero_z5237406670263579293d_enat
= ( plus_p3455044024723400733d_enat @ X3 @ Y3 ) )
= ( ( X3 = zero_z5237406670263579293d_enat )
& ( Y3 = zero_z5237406670263579293d_enat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_861_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_862_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_863_add__0,axiom,
! [A: extended_enat] :
( ( plus_p3455044024723400733d_enat @ zero_z5237406670263579293d_enat @ A )
= A ) ).
% add_0
thf(fact_864_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_865_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_866_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_867_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_868_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_869_add_Oinverse__neutral,axiom,
( ( uminus_uminus_real @ zero_zero_real )
= zero_zero_real ) ).
% add.inverse_neutral
thf(fact_870_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_871_neg__0__equal__iff__equal,axiom,
! [A: real] :
( ( zero_zero_real
= ( uminus_uminus_real @ A ) )
= ( zero_zero_real = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_872_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_873_neg__equal__0__iff__equal,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% neg_equal_0_iff_equal
thf(fact_874_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_875_equal__neg__zero,axiom,
! [A: real] :
( ( A
= ( uminus_uminus_real @ A ) )
= ( A = zero_zero_real ) ) ).
% equal_neg_zero
thf(fact_876_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_877_neg__equal__zero,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= A )
= ( A = zero_zero_real ) ) ).
% neg_equal_zero
thf(fact_878_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_879_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_880_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_881_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_882_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_883_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_884_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_885_neg__less__iff__less,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_886_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_887_power__Suc0__right,axiom,
! [A: real] :
( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_888_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_889_power__Suc0__right,axiom,
! [A: int] :
( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_890_zero__less__Suc,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_891_less__Suc0,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
= ( N = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_892_lessI,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_893_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_894_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_895_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_896_mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_897_one__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M @ N ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_898_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_899_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_900_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_901_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_902_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_903_nat__power__eq__Suc__0__iff,axiom,
! [X3: nat,M: nat] :
( ( ( power_power_nat @ X3 @ M )
= ( suc @ zero_zero_nat ) )
= ( ( M = zero_zero_nat )
| ( X3
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_904_power__Suc__0,axiom,
! [N: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_905_nat__zero__less__power__iff,axiom,
! [X3: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X3 @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X3 )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_906_real__add__minus__iff,axiom,
! [X3: real,A: real] :
( ( ( plus_plus_real @ X3 @ ( uminus_uminus_real @ A ) )
= zero_zero_real )
= ( X3 = A ) ) ).
% real_add_minus_iff
thf(fact_907_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_real @ zero_zero_real )
= zero_zero_real ) ).
% dbl_simps(2)
thf(fact_908_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_int @ zero_zero_int )
= zero_zero_int ) ).
% dbl_simps(2)
thf(fact_909_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_910_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_911_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_912_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_913_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_914_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_915_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_916_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_917_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_918_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_919_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_920_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_921_linordered__ab__group__add__class_Odouble__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% linordered_ab_group_add_class.double_add_le_zero_iff_single_add_le_zero
thf(fact_922_linordered__ab__group__add__class_Odouble__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% linordered_ab_group_add_class.double_add_le_zero_iff_single_add_le_zero
thf(fact_923_linordered__ab__group__add__class_Ozero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% linordered_ab_group_add_class.zero_le_double_add_iff_zero_le_single_add
thf(fact_924_linordered__ab__group__add__class_Ozero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% linordered_ab_group_add_class.zero_le_double_add_iff_zero_le_single_add
thf(fact_925_neg__0__le__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% neg_0_le_iff_le
thf(fact_926_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_927_neg__le__0__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_le_0_iff_le
thf(fact_928_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_929_less__eq__neg__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% less_eq_neg_nonpos
thf(fact_930_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_931_neg__less__eq__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_932_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_933_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_934_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_935_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_936_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_937_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_938_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_939_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_940_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_941_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_942_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_943_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_944_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_945_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_946_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_947_linordered__ab__group__add__class_Ozero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% linordered_ab_group_add_class.zero_less_double_add_iff_zero_less_single_add
thf(fact_948_linordered__ab__group__add__class_Ozero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% linordered_ab_group_add_class.zero_less_double_add_iff_zero_less_single_add
thf(fact_949_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_950_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_951_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_952_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_953_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_954_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_955_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_956_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_957_sum__squares__eq__zero__iff,axiom,
! [X3: real,Y3: real] :
( ( ( plus_plus_real @ ( times_times_real @ X3 @ X3 ) @ ( times_times_real @ Y3 @ Y3 ) )
= zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y3 = zero_zero_real ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_958_sum__squares__eq__zero__iff,axiom,
! [X3: int,Y3: int] :
( ( ( plus_plus_int @ ( times_times_int @ X3 @ X3 ) @ ( times_times_int @ Y3 @ Y3 ) )
= zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y3 = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_959_neg__less__0__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_0_iff_less
thf(fact_960_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_961_neg__0__less__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% neg_0_less_iff_less
thf(fact_962_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_963_neg__less__pos,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_pos
thf(fact_964_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_965_less__neg__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% less_neg_neg
thf(fact_966_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_967_ab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_left_minus
thf(fact_968_ab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_left_minus
thf(fact_969_add_Oright__inverse,axiom,
! [A: real] :
( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
= zero_zero_real ) ).
% add.right_inverse
thf(fact_970_add_Oright__inverse,axiom,
! [A: int] :
( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
= zero_zero_int ) ).
% add.right_inverse
thf(fact_971_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_972_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_973_power__inject__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M )
= ( power_power_nat @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_974_power__inject__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M )
= ( power_power_real @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_975_power__inject__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M )
= ( power_power_int @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_976_power__0__Suc,axiom,
! [N: nat] :
( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ ( suc @ N ) )
= zero_z5237406670263579293d_enat ) ).
% power_0_Suc
thf(fact_977_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
= zero_zero_real ) ).
% power_0_Suc
thf(fact_978_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_979_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
= zero_zero_int ) ).
% power_0_Suc
thf(fact_980_power__zero__numeral,axiom,
! [K: num] :
( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ ( numeral_numeral_nat @ K ) )
= zero_z5237406670263579293d_enat ) ).
% power_zero_numeral
thf(fact_981_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
= zero_zero_real ) ).
% power_zero_numeral
thf(fact_982_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
= zero_zero_nat ) ).
% power_zero_numeral
thf(fact_983_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
= zero_zero_int ) ).
% power_zero_numeral
thf(fact_984_power__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( power_power_real @ A @ N )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_985_power__eq__0__iff,axiom,
! [A: nat,N: nat] :
( ( ( power_power_nat @ A @ N )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_986_power__eq__0__iff,axiom,
! [A: int,N: nat] :
( ( ( power_power_int @ A @ N )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_987_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_988_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_989_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_990_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% add_neg_numeral_special(7)
thf(fact_991_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% add_neg_numeral_special(7)
thf(fact_992_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= zero_zero_real ) ).
% add_neg_numeral_special(8)
thf(fact_993_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= zero_zero_int ) ).
% add_neg_numeral_special(8)
thf(fact_994_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_995_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_996_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_997_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_998_power__mono__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_999_power__mono__iff,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_1000_power__mono__iff,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_1001_power__strict__increasing__iff,axiom,
! [B: nat,X3: nat,Y3: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X3 ) @ ( power_power_nat @ B @ Y3 ) )
= ( ord_less_nat @ X3 @ Y3 ) ) ) ).
% power_strict_increasing_iff
thf(fact_1002_power__strict__increasing__iff,axiom,
! [B: real,X3: nat,Y3: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ ( power_power_real @ B @ X3 ) @ ( power_power_real @ B @ Y3 ) )
= ( ord_less_nat @ X3 @ Y3 ) ) ) ).
% power_strict_increasing_iff
thf(fact_1003_power__strict__increasing__iff,axiom,
! [B: int,X3: nat,Y3: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X3 ) @ ( power_power_int @ B @ Y3 ) )
= ( ord_less_nat @ X3 @ Y3 ) ) ) ).
% power_strict_increasing_iff
thf(fact_1004_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_1005_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_1006_power__strict__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_1007_power__strict__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_1008_power__strict__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_1009_power__increasing__iff,axiom,
! [B: nat,X3: nat,Y3: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X3 ) @ ( power_power_nat @ B @ Y3 ) )
= ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ).
% power_increasing_iff
thf(fact_1010_power__increasing__iff,axiom,
! [B: real,X3: nat,Y3: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X3 ) @ ( power_power_real @ B @ Y3 ) )
= ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ).
% power_increasing_iff
thf(fact_1011_power__increasing__iff,axiom,
! [B: int,X3: nat,Y3: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X3 ) @ ( power_power_int @ B @ Y3 ) )
= ( ord_less_eq_nat @ X3 @ Y3 ) ) ) ).
% power_increasing_iff
thf(fact_1012_zero__eq__power2,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% zero_eq_power2
thf(fact_1013_zero__eq__power2,axiom,
! [A: nat] :
( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% zero_eq_power2
thf(fact_1014_zero__eq__power2,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% zero_eq_power2
thf(fact_1015_power__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_1016_power__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_1017_power__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_1018_power2__less__eq__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% power2_less_eq_zero_iff
thf(fact_1019_power2__less__eq__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% power2_less_eq_zero_iff
thf(fact_1020_power2__eq__iff__nonneg,axiom,
! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X3 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y3 )
=> ( ( ( power_power_nat @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X3 = Y3 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1021_power2__eq__iff__nonneg,axiom,
! [X3: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ X3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y3 )
=> ( ( ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X3 = Y3 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1022_power2__eq__iff__nonneg,axiom,
! [X3: int,Y3: int] :
( ( ord_less_eq_int @ zero_zero_int @ X3 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y3 )
=> ( ( ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X3 = Y3 ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_1023_zero__less__power2,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_real ) ) ).
% zero_less_power2
thf(fact_1024_zero__less__power2,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_int ) ) ).
% zero_less_power2
thf(fact_1025_sum__power2__eq__zero__iff,axiom,
! [X3: real,Y3: real] :
( ( ( plus_plus_real @ ( power_power_real @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_real )
= ( ( X3 = zero_zero_real )
& ( Y3 = zero_zero_real ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1026_sum__power2__eq__zero__iff,axiom,
! [X3: int,Y3: int] :
( ( ( plus_plus_int @ ( power_power_int @ X3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_int )
= ( ( X3 = zero_zero_int )
& ( Y3 = zero_zero_int ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_1027_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_1028_zero__less__one,axiom,
ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat ).
% zero_less_one
thf(fact_1029_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_1030_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_1031_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_1032_not__one__less__zero,axiom,
~ ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat ) ).
% not_one_less_zero
thf(fact_1033_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_1034_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_1035_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_1036_less__numeral__extra_I1_J,axiom,
ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat ).
% less_numeral_extra(1)
thf(fact_1037_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_1038_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_1039_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N5 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_1040_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ N5 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_1041_power__strict__decreasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ N5 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_1042_one__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_1043_one__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_1044_one__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_1045_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ N )
= zero_z5237406670263579293d_enat ) ) ).
% zero_power
thf(fact_1046_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ).
% zero_power
thf(fact_1047_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_1048_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ).
% zero_power
thf(fact_1049_zero__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_1050_zero__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_less_power
thf(fact_1051_zero__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_less_power
thf(fact_1052_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_1053_power__strict__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_1054_power__strict__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_1055_power__strict__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_1056_power__eq__iff__eq__base,axiom,
! [N: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1057_power__eq__iff__eq__base,axiom,
! [N: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1058_power__eq__iff__eq__base,axiom,
! [N: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1059_power__eq__imp__eq__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1060_power__eq__imp__eq__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1061_power__eq__imp__eq__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1062_power__less__imp__less__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_1063_power__less__imp__less__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_1064_power__less__imp__less__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_1065_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: nat] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_1066_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: real] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_1067_power__strict__increasing,axiom,
! [N: nat,N5: nat,A: int] :
( ( ord_less_nat @ N @ N5 )
=> ( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N5 ) ) ) ) ).
% power_strict_increasing
thf(fact_1068_atLeastatMost__psubset__iff,axiom,
! [A: num,B: num,C: num,D2: num] :
( ( ord_less_set_num @ ( set_or7049704709247886629st_num @ A @ B ) @ ( set_or7049704709247886629st_num @ C @ D2 ) )
= ( ( ~ ( ord_less_eq_num @ A @ B )
| ( ( ord_less_eq_num @ C @ A )
& ( ord_less_eq_num @ B @ D2 )
& ( ( ord_less_num @ C @ A )
| ( ord_less_num @ B @ D2 ) ) ) )
& ( ord_less_eq_num @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_1069_atLeastatMost__psubset__iff,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat,D2: extended_enat] :
( ( ord_le2529575680413868914d_enat @ ( set_or5403411693681687835d_enat @ A @ B ) @ ( set_or5403411693681687835d_enat @ C @ D2 ) )
= ( ( ~ ( ord_le2932123472753598470d_enat @ A @ B )
| ( ( ord_le2932123472753598470d_enat @ C @ A )
& ( ord_le2932123472753598470d_enat @ B @ D2 )
& ( ( ord_le72135733267957522d_enat @ C @ A )
| ( ord_le72135733267957522d_enat @ B @ D2 ) ) ) )
& ( ord_le2932123472753598470d_enat @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_1070_atLeastatMost__psubset__iff,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_set_real @ ( set_or1222579329274155063t_real @ A @ B ) @ ( set_or1222579329274155063t_real @ C @ D2 ) )
= ( ( ~ ( ord_less_eq_real @ A @ B )
| ( ( ord_less_eq_real @ C @ A )
& ( ord_less_eq_real @ B @ D2 )
& ( ( ord_less_real @ C @ A )
| ( ord_less_real @ B @ D2 ) ) ) )
& ( ord_less_eq_real @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_1071_atLeastatMost__psubset__iff,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_set_int @ ( set_or1266510415728281911st_int @ A @ B ) @ ( set_or1266510415728281911st_int @ C @ D2 ) )
= ( ( ~ ( ord_less_eq_int @ A @ B )
| ( ( ord_less_eq_int @ C @ A )
& ( ord_less_eq_int @ B @ D2 )
& ( ( ord_less_int @ C @ A )
| ( ord_less_int @ B @ D2 ) ) ) )
& ( ord_less_eq_int @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_1072_atLeastatMost__psubset__iff,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_set_nat @ ( set_or1269000886237332187st_nat @ A @ B ) @ ( set_or1269000886237332187st_nat @ C @ D2 ) )
= ( ( ~ ( ord_less_eq_nat @ A @ B )
| ( ( ord_less_eq_nat @ C @ A )
& ( ord_less_eq_nat @ B @ D2 )
& ( ( ord_less_nat @ C @ A )
| ( ord_less_nat @ B @ D2 ) ) ) )
& ( ord_less_eq_nat @ C @ D2 ) ) ) ).
% atLeastatMost_psubset_iff
thf(fact_1073_mult__less__le__imp__less,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_1074_mult__less__le__imp__less,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_1075_mult__less__le__imp__less,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_1076_mult__le__less__imp__less,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D2 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_1077_mult__le__less__imp__less,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_1078_mult__le__less__imp__less,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D2 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_1079_mult__right__le__imp__le,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_1080_mult__right__le__imp__le,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_1081_mult__right__le__imp__le,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_1082_mult__left__le__imp__le,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_1083_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_nat @ K3 @ N )
& ! [I2: nat] :
( ( ord_less_eq_nat @ I2 @ K3 )
=> ~ ( P @ I2 ) )
& ( P @ ( suc @ K3 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_1084_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_1085_one__less__mult,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).
% one_less_mult
thf(fact_1086_n__less__m__mult__n,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).
% n_less_m_mult_n
thf(fact_1087_n__less__n__mult__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_1088_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( M = zero_zero_nat )
| ? [J2: nat] :
( ( M
= ( suc @ J2 ) )
& ( ord_less_nat @ J2 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_1089_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [M4: nat] :
( N
= ( suc @ M4 ) ) ) ).
% gr0_implies_Suc
thf(fact_1090_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
=> ( P @ I3 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( P @ ( suc @ I3 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_1091_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( ? [M2: nat] :
( N
= ( suc @ M2 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_1092_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
& ( P @ I3 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I3: nat] :
( ( ord_less_nat @ I3 @ N )
& ( P @ ( suc @ I3 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_1093_zero__enat__def,axiom,
( zero_z5237406670263579293d_enat
= ( extended_enat2 @ zero_zero_nat ) ) ).
% zero_enat_def
thf(fact_1094_enat__0__iff_I1_J,axiom,
! [X3: nat] :
( ( ( extended_enat2 @ X3 )
= zero_z5237406670263579293d_enat )
= ( X3 = zero_zero_nat ) ) ).
% enat_0_iff(1)
thf(fact_1095_enat__0__iff_I2_J,axiom,
! [X3: nat] :
( ( zero_z5237406670263579293d_enat
= ( extended_enat2 @ X3 ) )
= ( X3 = zero_zero_nat ) ) ).
% enat_0_iff(2)
thf(fact_1096_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_1097_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_1098_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_1099_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_1100_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_1101_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_1102_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_1103_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_1104_less__not__refl3,axiom,
! [S: nat,T2: nat] :
( ( ord_less_nat @ S @ T2 )
=> ( S != T2 ) ) ).
% less_not_refl3
thf(fact_1105_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_1106_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_1107_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M5: nat] :
( ( ord_less_nat @ M5 @ N3 )
=> ( P @ M5 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_1108_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ~ ( P @ N3 )
=> ? [M5: nat] :
( ( ord_less_nat @ M5 @ N3 )
& ~ ( P @ M5 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_1109_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ~ ( P @ N3 )
=> ? [M5: nat] :
( ( ord_less_nat @ M5 @ N3 )
& ~ ( P @ M5 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_1110_linorder__neqE__nat,axiom,
! [X3: nat,Y3: nat] :
( ( X3 != Y3 )
=> ( ~ ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ Y3 @ X3 ) ) ) ).
% linorder_neqE_nat
thf(fact_1111_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_1112_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_1113_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_1114_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_1115_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K3: nat] :
( ( ord_less_nat @ zero_zero_nat @ K3 )
& ( ( plus_plus_nat @ I @ K3 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1116_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ K3 )
=> ~ ( P @ I2 ) )
& ( P @ K3 ) ) ) ) ).
% ex_least_nat_le
thf(fact_1117_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_1118_power__gt__expt,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).
% power_gt_expt
thf(fact_1119_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J3: nat] :
( ( ord_less_nat @ I @ J3 )
=> ( K
!= ( suc @ J3 ) ) ) ) ) ).
% Nat.lessE
thf(fact_1120_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_1121_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I ) @ K )
=> ~ ! [J3: nat] :
( ( ord_less_nat @ I @ J3 )
=> ( K
!= ( suc @ J3 ) ) ) ) ).
% Suc_lessE
thf(fact_1122_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_1123_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_1124_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_1125_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
& ( P @ I3 ) ) )
= ( ( P @ N )
| ? [I3: nat] :
( ( ord_less_nat @ I3 @ N )
& ( P @ I3 ) ) ) ) ).
% Ex_less_Suc
thf(fact_1126_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_1127_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_nat @ M @ N ) )
= ( ord_less_nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_1128_All__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ ( suc @ N ) )
=> ( P @ I3 ) ) )
= ( ( P @ N )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( P @ I3 ) ) ) ) ).
% All_less_Suc
thf(fact_1129_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N ) @ M )
= ( ? [M7: nat] :
( ( M
= ( suc @ M7 ) )
& ( ord_less_nat @ N @ M7 ) ) ) ) ).
% Suc_less_eq2
thf(fact_1130_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_1131_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_1132_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_1133_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I4: nat] : ( P @ I4 @ ( suc @ I4 ) )
=> ( ! [I4: nat,J3: nat,K3: nat] :
( ( ord_less_nat @ I4 @ J3 )
=> ( ( ord_less_nat @ J3 @ K3 )
=> ( ( P @ I4 @ J3 )
=> ( ( P @ J3 @ K3 )
=> ( P @ I4 @ K3 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_1134_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I4: nat] :
( ( J
= ( suc @ I4 ) )
=> ( P @ I4 ) )
=> ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ J )
=> ( ( P @ ( suc @ I4 ) )
=> ( P @ I4 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_1135_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_1136_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
& ( M2 != N2 ) ) ) ) ).
% nat_less_le
thf(fact_1137_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_1138_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
| ( M2 = N2 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_1139_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_1140_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_1141_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I4: nat,J3: nat] :
( ( ord_less_nat @ I4 @ J3 )
=> ( ord_less_nat @ ( F @ I4 ) @ ( F @ J3 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_1142_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_1143_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1144_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_1145_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_1146_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1147_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_1148_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_1149_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_1150_nat_Odistinct_I1_J,axiom,
! [X22: nat] :
( zero_zero_nat
!= ( suc @ X22 ) ) ).
% nat.distinct(1)
thf(fact_1151_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_1152_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_1153_nat_OdiscI,axiom,
! [Nat: nat,X22: nat] :
( ( Nat
= ( suc @ X22 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_1154_old_Onat_Oexhaust,axiom,
! [Y3: nat] :
( ( Y3 != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y3
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_1155_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_1156_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X: nat] : ( P @ X @ zero_zero_nat )
=> ( ! [Y: nat] : ( P @ zero_zero_nat @ ( suc @ Y ) )
=> ( ! [X: nat,Y: nat] :
( ( P @ X @ Y )
=> ( P @ ( suc @ X ) @ ( suc @ Y ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_1157_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_1158_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_1159_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_1160_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_1161_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ? [M4: nat] :
( N
= ( suc @ M4 ) ) ) ).
% not0_implies_Suc
thf(fact_1162_encode__unary__nat_Ocases,axiom,
! [X3: nat] :
( ! [L3: nat] :
( X3
!= ( suc @ L3 ) )
=> ( X3 = zero_zero_nat ) ) ).
% encode_unary_nat.cases
thf(fact_1163_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_1164_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_1165_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_1166_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_1167_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_1168_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1169_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_1170_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_1171_zero__ne__eSuc,axiom,
! [N: extended_enat] :
( zero_z5237406670263579293d_enat
!= ( extended_eSuc @ N ) ) ).
% zero_ne_eSuc
thf(fact_1172_i0__lb,axiom,
! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).
% i0_lb
thf(fact_1173_ile0__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% ile0_eq
thf(fact_1174_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_1175_iadd__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( plus_p3455044024723400733d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
& ( N = zero_z5237406670263579293d_enat ) ) ) ).
% iadd_is_0
thf(fact_1176_imult__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( times_7803423173614009249d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
| ( N = zero_z5237406670263579293d_enat ) ) ) ).
% imult_is_0
thf(fact_1177_zero__one__enat__neq_I1_J,axiom,
zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).
% zero_one_enat_neq(1)
thf(fact_1178_less__2__cases,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases
thf(fact_1179_less__2__cases__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases_iff
thf(fact_1180_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_1181_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_1182_dec__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ I )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ I @ N3 )
=> ( ( ord_less_nat @ N3 @ J )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_1183_inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ J )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ I @ N3 )
=> ( ( ord_less_nat @ N3 @ J )
=> ( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) ) ) )
=> ( P @ I ) ) ) ) ).
% inc_induct
thf(fact_1184_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_1185_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_1186_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_1187_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N2: nat] : ( ord_less_eq_nat @ ( suc @ N2 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_1188_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_1189_less__natE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ~ ! [Q2: nat] :
( N
!= ( suc @ ( plus_plus_nat @ M @ Q2 ) ) ) ) ).
% less_natE
thf(fact_1190_less__add__Suc1,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).
% less_add_Suc1
thf(fact_1191_less__add__Suc2,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).
% less_add_Suc2
thf(fact_1192_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M2: nat,N2: nat] :
? [K2: nat] :
( N2
= ( suc @ ( plus_plus_nat @ M2 @ K2 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_1193_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ? [K3: nat] :
( N
= ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_1194_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_mult_less_cancel1
thf(fact_1195_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M4: nat,N3: nat] :
( ( ord_less_nat @ M4 @ N3 )
=> ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1196_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_1197_add__is__1,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_1198_one__is__add,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M @ N ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_1199_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_1200_pow_Osimps_I1_J,axiom,
! [X3: num] :
( ( pow @ X3 @ one )
= X3 ) ).
% pow.simps(1)
thf(fact_1201_not__eSuc__ilei0,axiom,
! [N: extended_enat] :
~ ( ord_le2932123472753598470d_enat @ ( extended_eSuc @ N ) @ zero_z5237406670263579293d_enat ) ).
% not_eSuc_ilei0
thf(fact_1202_one__eSuc,axiom,
( one_on7984719198319812577d_enat
= ( extended_eSuc @ zero_z5237406670263579293d_enat ) ) ).
% one_eSuc
thf(fact_1203_numeral__1__eq__Suc__0,axiom,
( ( numeral_numeral_nat @ one )
= ( suc @ zero_zero_nat ) ) ).
% numeral_1_eq_Suc_0
thf(fact_1204_nat__one__le__power,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).
% nat_one_le_power
thf(fact_1205_real__add__le__0__iff,axiom,
! [X3: real,Y3: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ X3 @ Y3 ) @ zero_zero_real )
= ( ord_less_eq_real @ Y3 @ ( uminus_uminus_real @ X3 ) ) ) ).
% real_add_le_0_iff
thf(fact_1206_real__0__le__add__iff,axiom,
! [X3: real,Y3: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X3 @ Y3 ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ X3 ) @ Y3 ) ) ).
% real_0_le_add_iff
thf(fact_1207_less__exp,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% less_exp
thf(fact_1208_numeral__2__eq__2,axiom,
( ( numeral_numeral_nat @ ( bit0 @ one ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% numeral_2_eq_2
thf(fact_1209_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_1210_ex__power__ivl1,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ one_one_nat @ K )
=> ? [N3: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N3 ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl1
thf(fact_1211_i0__less,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
= ( N != zero_z5237406670263579293d_enat ) ) ).
% i0_less
thf(fact_1212_eSuc__mono,axiom,
! [N: extended_enat,M: extended_enat] :
( ( ord_le72135733267957522d_enat @ ( extended_eSuc @ N ) @ ( extended_eSuc @ M ) )
= ( ord_le72135733267957522d_enat @ N @ M ) ) ).
% eSuc_mono
thf(fact_1213_not__real__square__gt__zero,axiom,
! [X3: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X3 @ X3 ) ) )
= ( X3 = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_1214_enat__ord__simps_I2_J,axiom,
! [M: nat,N: nat] :
( ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ ( extended_enat2 @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% enat_ord_simps(2)
thf(fact_1215_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_1216_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_1217_iless__eSuc0,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ N @ ( extended_eSuc @ zero_z5237406670263579293d_enat ) )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% iless_eSuc0
thf(fact_1218_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_1219_enat__ord__number_I2_J,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(2)
thf(fact_1220_iless__Suc__eq,axiom,
! [M: nat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ ( extended_eSuc @ N ) )
= ( ord_le2932123472753598470d_enat @ ( extended_enat2 @ M ) @ N ) ) ).
% iless_Suc_eq
thf(fact_1221_numeral__less__enat__iff,axiom,
! [M: num,N: nat] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( extended_enat2 @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ N ) ) ).
% numeral_less_enat_iff
thf(fact_1222_not__iless0,axiom,
! [N: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).
% not_iless0
thf(fact_1223_enat__iless,axiom,
! [N: extended_enat,M: nat] :
( ( ord_le72135733267957522d_enat @ N @ ( extended_enat2 @ M ) )
=> ? [K3: nat] :
( N
= ( extended_enat2 @ K3 ) ) ) ).
% enat_iless
thf(fact_1224_i0__iless__eSuc,axiom,
! [N: extended_enat] : ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( extended_eSuc @ N ) ) ).
% i0_iless_eSuc
thf(fact_1225_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
= ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
& ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).
% enat_0_less_mult_iff
thf(fact_1226_realpow__pos__nth2,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ ( suc @ N ) )
= A ) ) ) ).
% realpow_pos_nth2
thf(fact_1227_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
& ( ( power_power_real @ X @ N )
= A )
& ! [Y2: real] :
( ( ( ord_less_real @ zero_zero_real @ Y2 )
& ( ( power_power_real @ Y2 @ N )
= A ) )
=> ( Y2 = X ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1228_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_1229_real__arch__pow,axiom,
! [X3: real,Y3: real] :
( ( ord_less_real @ one_one_real @ X3 )
=> ? [N3: nat] : ( ord_less_real @ Y3 @ ( power_power_real @ X3 @ N3 ) ) ) ).
% real_arch_pow
thf(fact_1230_real__arch__pow__inv,axiom,
! [Y3: real,X3: real] :
( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_real @ X3 @ one_one_real )
=> ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X3 @ N3 ) @ Y3 ) ) ) ).
% real_arch_pow_inv
thf(fact_1231_less__enatE,axiom,
! [N: extended_enat,M: nat] :
( ( ord_le72135733267957522d_enat @ N @ ( extended_enat2 @ M ) )
=> ~ ! [K3: nat] :
( ( N
= ( extended_enat2 @ K3 ) )
=> ~ ( ord_less_nat @ K3 @ M ) ) ) ).
% less_enatE
thf(fact_1232_real__0__less__add__iff,axiom,
! [X3: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X3 @ Y3 ) )
= ( ord_less_real @ ( uminus_uminus_real @ X3 ) @ Y3 ) ) ).
% real_0_less_add_iff
thf(fact_1233_real__add__less__0__iff,axiom,
! [X3: real,Y3: real] :
( ( ord_less_real @ ( plus_plus_real @ X3 @ Y3 ) @ zero_zero_real )
= ( ord_less_real @ Y3 @ ( uminus_uminus_real @ X3 ) ) ) ).
% real_add_less_0_iff
thf(fact_1234_ileI1,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ M @ N )
=> ( ord_le2932123472753598470d_enat @ ( extended_eSuc @ M ) @ N ) ) ).
% ileI1
thf(fact_1235_Suc__ile__eq,axiom,
! [M: nat,N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ ( extended_enat2 @ ( suc @ M ) ) @ N )
= ( ord_le72135733267957522d_enat @ ( extended_enat2 @ M ) @ N ) ) ).
% Suc_ile_eq
thf(fact_1236_nat__bit__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_bit_induct
thf(fact_1237_enat__less__induct,axiom,
! [P: extended_enat > $o,N: extended_enat] :
( ! [N3: extended_enat] :
( ! [M5: extended_enat] :
( ( ord_le72135733267957522d_enat @ M5 @ N3 )
=> ( P @ M5 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% enat_less_induct
thf(fact_1238_int__bit__induct,axiom,
! [P: int > $o,K: int] :
( ( P @ zero_zero_int )
=> ( ( P @ ( uminus_uminus_int @ one_one_int ) )
=> ( ! [K3: int] :
( ( P @ K3 )
=> ( ( K3 != zero_zero_int )
=> ( P @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
=> ( ! [K3: int] :
( ( P @ K3 )
=> ( ( K3
!= ( uminus_uminus_int @ one_one_int ) )
=> ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K3 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
=> ( P @ K ) ) ) ) ) ).
% int_bit_induct
thf(fact_1239_not__exp__less__eq__0__int,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).
% not_exp_less_eq_0_int
thf(fact_1240_zle__add1__eq__le,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% zle_add1_eq_le
thf(fact_1241_add1__zle__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
= ( ord_less_int @ W @ Z ) ) ).
% add1_zle_eq
thf(fact_1242_le__imp__0__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).
% le_imp_0_less
thf(fact_1243_zless__imp__add1__zle,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ Z )
=> ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).
% zless_imp_add1_zle
thf(fact_1244_int__one__le__iff__zero__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ one_one_int @ Z )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% int_one_le_iff_zero_less
thf(fact_1245_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1246_odd__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1247_zless__add1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ( ord_less_int @ W @ Z )
| ( W = Z ) ) ) ).
% zless_add1_eq
thf(fact_1248_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I4: int] :
( ( ord_less_int @ K @ I4 )
=> ( ( P @ I4 )
=> ( P @ ( plus_plus_int @ I4 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_1249_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
=> ( ( M = one_one_int )
| ( M
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_1250_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( ( M = one_one_int )
& ( N = one_one_int ) )
| ( ( M
= ( uminus_uminus_int @ one_one_int ) )
& ( N
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_1251_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I4: int] :
( ( ord_less_eq_int @ K @ I4 )
=> ( ( P @ I4 )
=> ( P @ ( plus_plus_int @ I4 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_1252_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_1253_odd__nonzero,axiom,
! [Z: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_1254_all__nat__less,axiom,
! [N: nat,P: nat > $o] :
( ( ! [M2: nat] :
( ( ord_less_eq_nat @ M2 @ N )
=> ( P @ M2 ) ) )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
=> ( P @ X2 ) ) ) ) ).
% all_nat_less
thf(fact_1255_ex__nat__less,axiom,
! [N: nat,P: nat > $o] :
( ( ? [M2: nat] :
( ( ord_less_eq_nat @ M2 @ N )
& ( P @ M2 ) ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ ( set_or1269000886237332187st_nat @ zero_zero_nat @ N ) )
& ( P @ X2 ) ) ) ) ).
% ex_nat_less
thf(fact_1256_fib_Ocases,axiom,
! [X3: nat] :
( ( X3 != zero_zero_nat )
=> ( ( X3
!= ( suc @ zero_zero_nat ) )
=> ~ ! [N3: nat] :
( X3
!= ( suc @ ( suc @ N3 ) ) ) ) ) ).
% fib.cases
thf(fact_1257_num_Osize__gen_I2_J,axiom,
! [X22: num] :
( ( size_num @ ( bit0 @ X22 ) )
= ( plus_plus_nat @ ( size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size_gen(2)
thf(fact_1258_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_1259_dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
= ( M
= ( suc @ zero_zero_nat ) ) ) ).
% dvd_1_iff_1
thf(fact_1260_dvd__1__left,axiom,
! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).
% dvd_1_left
thf(fact_1261_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_1262_even__Suc,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% even_Suc
thf(fact_1263_even__Suc__Suc__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_Suc_Suc_iff
% Conjectures (1)
thf(conj_0,conjecture,
ord_less_eq_nat @ ( freque8783664969267990145_above @ n ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ n ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
%------------------------------------------------------------------------------