TPTP Problem File: SLH0347^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Median_Method/0000_Median/prob_00168_006023__14695452_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1375 ( 541 unt; 103 typ;   0 def)
%            Number of atoms       : 3795 (1170 equ;   0 cnn)
%            Maximal formula atoms :   26 (   2 avg)
%            Number of connectives : 10817 ( 403   ~; 116   |; 204   &;8347   @)
%                                         (   0 <=>;1747  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   25 (   6 avg)
%            Number of types       :   12 (  11 usr)
%            Number of type conns  :  409 ( 409   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   95 (  92 usr;  18 con; 0-4 aty)
%            Number of variables   : 3490 ( 171   ^;3173   !; 146   ?;3490   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 15:44:00.477
%------------------------------------------------------------------------------
% Could-be-implicit typings (11)
thf(ty_n_t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    formal3361831859752904756s_real: $tType ).

thf(ty_n_t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    formal_Power_fps_nat: $tType ).

thf(ty_n_t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    formal_Power_fps_int: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Set__Oset_Itf__b_J,type,
    set_b: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

thf(ty_n_tf__b,type,
    b: $tType ).

% Explicit typings (92)
thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    invers68952373231134600s_real: formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Fields_Oinverse__class_Oinverse_001t__Real__Oreal,type,
    inverse_inverse_real: real > real ).

thf(sy_c_Formal__Power__Series_Ofps_Ofps__nth_001t__Int__Oint,type,
    formal3717847055265219294th_int: formal_Power_fps_int > nat > int ).

thf(sy_c_Formal__Power__Series_Ofps_Ofps__nth_001t__Nat__Onat,type,
    formal3720337525774269570th_nat: formal_Power_fps_nat > nat > nat ).

thf(sy_c_Formal__Power__Series_Ofps_Ofps__nth_001t__Real__Oreal,type,
    formal2580924720334399070h_real: formal3361831859752904756s_real > nat > real ).

thf(sy_c_Formal__Power__Series_Ofps__XD_001t__Int__Oint,type,
    formal812433016830480481XD_int: formal_Power_fps_int > formal_Power_fps_int ).

thf(sy_c_Formal__Power__Series_Ofps__XD_001t__Nat__Onat,type,
    formal814923487339530757XD_nat: formal_Power_fps_nat > formal_Power_fps_nat ).

thf(sy_c_Formal__Power__Series_Ofps__XD_001t__Real__Oreal,type,
    formal4292469010823635553D_real: formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__XDp_001t__Int__Oint,type,
    formal9195297484582036137Dp_int: int > formal_Power_fps_int > formal_Power_fps_int ).

thf(sy_c_Formal__Power__Series_Ofps__XDp_001t__Nat__Onat,type,
    formal9197787955091086413Dp_nat: nat > formal_Power_fps_nat > formal_Power_fps_nat ).

thf(sy_c_Formal__Power__Series_Ofps__XDp_001t__Real__Oreal,type,
    formal2839450981996073129p_real: real > formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__cos_001t__Real__Oreal,type,
    formal461277676486907980s_real: real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__cutoff_001t__Int__Oint,type,
    formal4815718713524518466ff_int: nat > formal_Power_fps_int > formal_Power_fps_int ).

thf(sy_c_Formal__Power__Series_Ofps__cutoff_001t__Nat__Onat,type,
    formal4818209184033568742ff_nat: nat > formal_Power_fps_nat > formal_Power_fps_nat ).

thf(sy_c_Formal__Power__Series_Ofps__cutoff_001t__Real__Oreal,type,
    formal1487479903726251970f_real: nat > formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__integral_001t__Real__Oreal,type,
    formal8984515926053063617l_real: formal3361831859752904756s_real > real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__ln_001t__Real__Oreal,type,
    formal8688746759596762231n_real: real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Ofps__tan_001t__Real__Oreal,type,
    formal3683295897622742886n_real: real > formal3361831859752904756s_real ).

thf(sy_c_Formal__Power__Series_Oradical_001t__Real__Oreal,type,
    formal8005797870169972230l_real: ( nat > real > real ) > nat > formal3361831859752904756s_real > nat > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    one_on8598947968683843321s_real: formal3361831859752904756s_real ).

thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    times_3091854549176928185ps_int: formal_Power_fps_int > formal_Power_fps_int > formal_Power_fps_int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    times_7269705568686124893ps_nat: formal_Power_fps_nat > formal_Power_fps_nat > formal_Power_fps_nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    times_7561426564079326009s_real: formal3361831859752904756s_real > formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
    times_times_int: int > int > int ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    uminus8389970968385878141s_real: formal3361831859752904756s_real > formal3361831859752904756s_real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    zero_z4353722679246354365ps_int: formal_Power_fps_int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    zero_z8531573698755551073ps_nat: formal_Power_fps_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    zero_z7760665558314615101s_real: formal3361831859752904756s_real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Harmonic__Numbers_Oharm_001t__Real__Oreal,type,
    harmonic_harm_real: nat > real ).

thf(sy_c_If_001t__Int__Oint,type,
    if_int: $o > int > int > int ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_Median_Odown__ray_001t__Int__Oint,type,
    down_ray_int: set_int > $o ).

thf(sy_c_Median_Odown__ray_001t__Nat__Onat,type,
    down_ray_nat: set_nat > $o ).

thf(sy_c_Median_Odown__ray_001t__Real__Oreal,type,
    down_ray_real: set_real > $o ).

thf(sy_c_Median_Odown__ray_001tf__b,type,
    down_ray_b: set_b > $o ).

thf(sy_c_Median_Ointerval_001t__Int__Oint,type,
    interval_int: set_int > $o ).

thf(sy_c_Median_Ointerval_001t__Nat__Onat,type,
    interval_nat: set_nat > $o ).

thf(sy_c_Median_Ointerval_001t__Real__Oreal,type,
    interval_real: set_real > $o ).

thf(sy_c_Median_Ointerval_001tf__b,type,
    interval_b: set_b > $o ).

thf(sy_c_Median_Oup__ray_001t__Int__Oint,type,
    up_ray_int: set_int > $o ).

thf(sy_c_Median_Oup__ray_001t__Nat__Onat,type,
    up_ray_nat: set_nat > $o ).

thf(sy_c_Median_Oup__ray_001t__Real__Oreal,type,
    up_ray_real: set_real > $o ).

thf(sy_c_Median_Oup__ray_001tf__b,type,
    up_ray_b: set_b > $o ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Formal____Power____Series__Ofps_It__Int__Oint_J,type,
    semiri6570152736363784213ps_int: nat > formal_Power_fps_int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Formal____Power____Series__Ofps_It__Nat__Onat_J,type,
    semiri1524631719018205113ps_nat: nat > formal_Power_fps_nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Formal____Power____Series__Ofps_It__Real__Oreal_J,type,
    semiri2475410149736220053s_real: nat > formal3361831859752904756s_real ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001tf__b,type,
    ord_less_b: b > b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001tf__b,type,
    ord_less_eq_b: b > b > $o ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Int__Oint,type,
    order_Greatest_int: ( int > $o ) > int ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
    order_Greatest_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Real__Oreal,type,
    order_Greatest_real: ( real > $o ) > real ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001tf__b,type,
    order_Greatest_b: ( b > $o ) > b ).

thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
    power_power_nat: nat > nat > nat ).

thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
    power_power_real: real > nat > real ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_c_member_001tf__b,type,
    member_b: b > set_b > $o ).

thf(sy_v_g____,type,
    g: nat > nat > b ).

thf(sy_v_ia____,type,
    ia: nat ).

thf(sy_v_ib,type,
    ib: nat ).

thf(sy_v_ja____,type,
    ja: nat ).

thf(sy_v_jb,type,
    jb: nat ).

thf(sy_v_k____,type,
    k: nat ).

thf(sy_v_na____,type,
    na: nat ).

% Relevant facts (1262)
thf(fact_0_Suc_Oprems_I2_J,axiom,
    ord_less_nat @ ia @ ja ).

% Suc.prems(2)
thf(fact_1_a,axiom,
    ( ! [I: nat,J: nat] :
        ( ( ord_less_nat @ J @ na )
       => ( ( ord_less_nat @ I @ J )
         => ( ord_less_eq_b @ ( g @ k @ I ) @ ( g @ k @ J ) ) ) )
    & ! [L: nat] :
        ( ( ord_less_nat @ L @ k )
       => ( ord_less_eq_b @ ( g @ k @ L ) @ ( g @ k @ na ) ) ) ) ).

% a
thf(fact_2_Suc_Oprems_I1_J,axiom,
    ord_less_nat @ ja @ ( suc @ na ) ).

% Suc.prems(1)
thf(fact_3_k__def,axiom,
    k = na ).

% k_def
thf(fact_4_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_5_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_6_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_7_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N2 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_8_lift__Suc__mono__less,axiom,
    ! [F: nat > real,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N2 )
       => ( ord_less_real @ ( F @ N ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_9_lift__Suc__mono__less,axiom,
    ! [F: nat > int,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N2 )
       => ( ord_less_int @ ( F @ N ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_10_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_11_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > real,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_12_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > int,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_13_nat_Oinject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% nat.inject
thf(fact_14_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_15_order__refl,axiom,
    ! [X: b] : ( ord_less_eq_b @ X @ X ) ).

% order_refl
thf(fact_16_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_17_order__refl,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ X ) ).

% order_refl
thf(fact_18_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_19_dual__order_Orefl,axiom,
    ! [A: b] : ( ord_less_eq_b @ A @ A ) ).

% dual_order.refl
thf(fact_20_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_21_dual__order_Orefl,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% dual_order.refl
thf(fact_22_dual__order_Orefl,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% dual_order.refl
thf(fact_23_Nat_OlessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ K )
     => ( ( K
         != ( suc @ I2 ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_24_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_25_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_26_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R @ X3 @ X3 )
       => ( ! [X3: nat,Y: nat,Z: nat] :
              ( ( R @ X3 @ Y )
             => ( ( R @ Y @ Z )
               => ( R @ X3 @ Z ) ) )
         => ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
           => ( R @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_27_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_28_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_29_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_30_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_31_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_32_Suc__le__D,axiom,
    ! [N: nat,M3: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M3 )
     => ? [M4: nat] :
          ( M3
          = ( suc @ M4 ) ) ) ).

% Suc_le_D
thf(fact_33_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_34_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_35_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_36_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I2: nat,J3: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I2 @ J3 )
       => ( ord_less_eq_nat @ ( F @ I2 ) @ ( F @ J3 ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_37_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_38_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_39_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N4: nat] :
          ( ( ord_less_nat @ M5 @ N4 )
          | ( M5 = N4 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_40_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_41_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M5 @ N4 )
          & ( M5 != N4 ) ) ) ) ).

% nat_less_le
thf(fact_42_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_43_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_44_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_45_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_46_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_47_inc__induct,axiom,
    ! [I2: nat,J3: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( P @ J3 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I2 @ N3 )
             => ( ( ord_less_nat @ N3 @ J3 )
               => ( ( P @ ( suc @ N3 ) )
                 => ( P @ N3 ) ) ) )
         => ( P @ I2 ) ) ) ) ).

% inc_induct
thf(fact_48_dec__induct,axiom,
    ! [I2: nat,J3: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( P @ I2 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I2 @ N3 )
             => ( ( ord_less_nat @ N3 @ J3 )
               => ( ( P @ N3 )
                 => ( P @ ( suc @ N3 ) ) ) ) )
         => ( P @ J3 ) ) ) ) ).

% dec_induct
thf(fact_49_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_50_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_51_order__antisym__conv,axiom,
    ! [Y3: b,X: b] :
      ( ( ord_less_eq_b @ Y3 @ X )
     => ( ( ord_less_eq_b @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_52_order__antisym__conv,axiom,
    ! [Y3: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y3 @ X )
     => ( ( ord_less_eq_nat @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_53_order__antisym__conv,axiom,
    ! [Y3: real,X: real] :
      ( ( ord_less_eq_real @ Y3 @ X )
     => ( ( ord_less_eq_real @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_54_order__antisym__conv,axiom,
    ! [Y3: int,X: int] :
      ( ( ord_less_eq_int @ Y3 @ X )
     => ( ( ord_less_eq_int @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_55_linorder__le__cases,axiom,
    ! [X: b,Y3: b] :
      ( ~ ( ord_less_eq_b @ X @ Y3 )
     => ( ord_less_eq_b @ Y3 @ X ) ) ).

% linorder_le_cases
thf(fact_56_linorder__le__cases,axiom,
    ! [X: nat,Y3: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y3 )
     => ( ord_less_eq_nat @ Y3 @ X ) ) ).

% linorder_le_cases
thf(fact_57_linorder__le__cases,axiom,
    ! [X: real,Y3: real] :
      ( ~ ( ord_less_eq_real @ X @ Y3 )
     => ( ord_less_eq_real @ Y3 @ X ) ) ).

% linorder_le_cases
thf(fact_58_linorder__le__cases,axiom,
    ! [X: int,Y3: int] :
      ( ~ ( ord_less_eq_int @ X @ Y3 )
     => ( ord_less_eq_int @ Y3 @ X ) ) ).

% linorder_le_cases
thf(fact_59_ord__le__eq__subst,axiom,
    ! [A: b,B: b,F: b > b,C: b] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_60_ord__le__eq__subst,axiom,
    ! [A: b,B: b,F: b > nat,C: nat] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_61_ord__le__eq__subst,axiom,
    ! [A: b,B: b,F: b > real,C: real] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_62_ord__le__eq__subst,axiom,
    ! [A: b,B: b,F: b > int,C: int] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_63_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > b,C: b] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_64_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_65_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_66_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_67_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > b,C: b] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_68_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_69_mem__Collect__eq,axiom,
    ! [A: real,P: real > $o] :
      ( ( member_real @ A @ ( collect_real @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_70_Collect__mem__eq,axiom,
    ! [A2: set_real] :
      ( ( collect_real
        @ ^ [X4: real] : ( member_real @ X4 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_71_ord__eq__le__subst,axiom,
    ! [A: b,F: b > b,B: b,C: b] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_72_ord__eq__le__subst,axiom,
    ! [A: nat,F: b > nat,B: b,C: b] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_73_ord__eq__le__subst,axiom,
    ! [A: real,F: b > real,B: b,C: b] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_74_ord__eq__le__subst,axiom,
    ! [A: int,F: b > int,B: b,C: b] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_75_ord__eq__le__subst,axiom,
    ! [A: b,F: nat > b,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_76_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_77_ord__eq__le__subst,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_78_ord__eq__le__subst,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_79_ord__eq__le__subst,axiom,
    ! [A: b,F: real > b,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_80_ord__eq__le__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_81_linorder__linear,axiom,
    ! [X: b,Y3: b] :
      ( ( ord_less_eq_b @ X @ Y3 )
      | ( ord_less_eq_b @ Y3 @ X ) ) ).

% linorder_linear
thf(fact_82_linorder__linear,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X @ Y3 )
      | ( ord_less_eq_nat @ Y3 @ X ) ) ).

% linorder_linear
thf(fact_83_linorder__linear,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_eq_real @ X @ Y3 )
      | ( ord_less_eq_real @ Y3 @ X ) ) ).

% linorder_linear
thf(fact_84_linorder__linear,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_eq_int @ X @ Y3 )
      | ( ord_less_eq_int @ Y3 @ X ) ) ).

% linorder_linear
thf(fact_85_order__eq__refl,axiom,
    ! [X: b,Y3: b] :
      ( ( X = Y3 )
     => ( ord_less_eq_b @ X @ Y3 ) ) ).

% order_eq_refl
thf(fact_86_order__eq__refl,axiom,
    ! [X: nat,Y3: nat] :
      ( ( X = Y3 )
     => ( ord_less_eq_nat @ X @ Y3 ) ) ).

% order_eq_refl
thf(fact_87_order__eq__refl,axiom,
    ! [X: real,Y3: real] :
      ( ( X = Y3 )
     => ( ord_less_eq_real @ X @ Y3 ) ) ).

% order_eq_refl
thf(fact_88_order__eq__refl,axiom,
    ! [X: int,Y3: int] :
      ( ( X = Y3 )
     => ( ord_less_eq_int @ X @ Y3 ) ) ).

% order_eq_refl
thf(fact_89_order__subst2,axiom,
    ! [A: b,B: b,F: b > b,C: b] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_eq_b @ ( F @ B ) @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_90_order__subst2,axiom,
    ! [A: b,B: b,F: b > nat,C: nat] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_91_order__subst2,axiom,
    ! [A: b,B: b,F: b > real,C: real] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_92_order__subst2,axiom,
    ! [A: b,B: b,F: b > int,C: int] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_93_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > b,C: b] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_b @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_94_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_95_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_96_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_97_order__subst2,axiom,
    ! [A: real,B: real,F: real > b,C: b] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_b @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_98_order__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_99_order__subst1,axiom,
    ! [A: b,F: b > b,B: b,C: b] :
      ( ( ord_less_eq_b @ A @ ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_100_order__subst1,axiom,
    ! [A: b,F: nat > b,B: nat,C: nat] :
      ( ( ord_less_eq_b @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_101_order__subst1,axiom,
    ! [A: b,F: real > b,B: real,C: real] :
      ( ( ord_less_eq_b @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_102_order__subst1,axiom,
    ! [A: b,F: int > b,B: int,C: int] :
      ( ( ord_less_eq_b @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_eq_int @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_b @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_103_order__subst1,axiom,
    ! [A: nat,F: b > nat,B: b,C: b] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_104_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_105_order__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_106_order__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_eq_int @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_107_order__subst1,axiom,
    ! [A: real,F: b > real,B: b,C: b] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_108_order__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_109_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: b,Z2: b] : ( Y4 = Z2 ) )
    = ( ^ [A3: b,B2: b] :
          ( ( ord_less_eq_b @ A3 @ B2 )
          & ( ord_less_eq_b @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_110_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_111_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_eq_real @ A3 @ B2 )
          & ( ord_less_eq_real @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_112_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
          & ( ord_less_eq_int @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_113_antisym,axiom,
    ! [A: b,B: b] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_eq_b @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_114_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_115_antisym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_116_antisym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_117_dual__order_Otrans,axiom,
    ! [B: b,A: b,C: b] :
      ( ( ord_less_eq_b @ B @ A )
     => ( ( ord_less_eq_b @ C @ B )
       => ( ord_less_eq_b @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_118_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_119_dual__order_Otrans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_120_dual__order_Otrans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_eq_int @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_121_dual__order_Oantisym,axiom,
    ! [B: b,A: b] :
      ( ( ord_less_eq_b @ B @ A )
     => ( ( ord_less_eq_b @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_122_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_123_dual__order_Oantisym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_124_dual__order_Oantisym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_125_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: b,Z2: b] : ( Y4 = Z2 ) )
    = ( ^ [A3: b,B2: b] :
          ( ( ord_less_eq_b @ B2 @ A3 )
          & ( ord_less_eq_b @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_126_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_127_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_eq_real @ B2 @ A3 )
          & ( ord_less_eq_real @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_128_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ B2 @ A3 )
          & ( ord_less_eq_int @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_129_linorder__wlog,axiom,
    ! [P: b > b > $o,A: b,B: b] :
      ( ! [A4: b,B3: b] :
          ( ( ord_less_eq_b @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: b,B3: b] :
            ( ( P @ B3 @ A4 )
           => ( P @ A4 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_130_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: nat,B3: nat] :
            ( ( P @ B3 @ A4 )
           => ( P @ A4 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_131_linorder__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A4: real,B3: real] :
          ( ( ord_less_eq_real @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: real,B3: real] :
            ( ( P @ B3 @ A4 )
           => ( P @ A4 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_132_linorder__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: int,B3: int] :
            ( ( P @ B3 @ A4 )
           => ( P @ A4 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_133_order__trans,axiom,
    ! [X: b,Y3: b,Z3: b] :
      ( ( ord_less_eq_b @ X @ Y3 )
     => ( ( ord_less_eq_b @ Y3 @ Z3 )
       => ( ord_less_eq_b @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_134_order__trans,axiom,
    ! [X: nat,Y3: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X @ Y3 )
     => ( ( ord_less_eq_nat @ Y3 @ Z3 )
       => ( ord_less_eq_nat @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_135_order__trans,axiom,
    ! [X: real,Y3: real,Z3: real] :
      ( ( ord_less_eq_real @ X @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ Z3 )
       => ( ord_less_eq_real @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_136_order__trans,axiom,
    ! [X: int,Y3: int,Z3: int] :
      ( ( ord_less_eq_int @ X @ Y3 )
     => ( ( ord_less_eq_int @ Y3 @ Z3 )
       => ( ord_less_eq_int @ X @ Z3 ) ) ) ).

% order_trans
thf(fact_137_order_Otrans,axiom,
    ! [A: b,B: b,C: b] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ord_less_eq_b @ A @ C ) ) ) ).

% order.trans
thf(fact_138_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_139_order_Otrans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% order.trans
thf(fact_140_order_Otrans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% order.trans
thf(fact_141_order__antisym,axiom,
    ! [X: b,Y3: b] :
      ( ( ord_less_eq_b @ X @ Y3 )
     => ( ( ord_less_eq_b @ Y3 @ X )
       => ( X = Y3 ) ) ) ).

% order_antisym
thf(fact_142_order__antisym,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X @ Y3 )
     => ( ( ord_less_eq_nat @ Y3 @ X )
       => ( X = Y3 ) ) ) ).

% order_antisym
thf(fact_143_order__antisym,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_eq_real @ X @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ X )
       => ( X = Y3 ) ) ) ).

% order_antisym
thf(fact_144_order__antisym,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_eq_int @ X @ Y3 )
     => ( ( ord_less_eq_int @ Y3 @ X )
       => ( X = Y3 ) ) ) ).

% order_antisym
thf(fact_145_ord__le__eq__trans,axiom,
    ! [A: b,B: b,C: b] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_b @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_146_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_147_ord__le__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_148_ord__le__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_149_ord__eq__le__trans,axiom,
    ! [A: b,B: b,C: b] :
      ( ( A = B )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ord_less_eq_b @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_150_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_151_ord__eq__le__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_152_ord__eq__le__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_eq_int @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_153_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: b,Z2: b] : ( Y4 = Z2 ) )
    = ( ^ [X4: b,Y5: b] :
          ( ( ord_less_eq_b @ X4 @ Y5 )
          & ( ord_less_eq_b @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_154_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y5 )
          & ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_155_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
    = ( ^ [X4: real,Y5: real] :
          ( ( ord_less_eq_real @ X4 @ Y5 )
          & ( ord_less_eq_real @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_156_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
    = ( ^ [X4: int,Y5: int] :
          ( ( ord_less_eq_int @ X4 @ Y5 )
          & ( ord_less_eq_int @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_157_le__cases3,axiom,
    ! [X: b,Y3: b,Z3: b] :
      ( ( ( ord_less_eq_b @ X @ Y3 )
       => ~ ( ord_less_eq_b @ Y3 @ Z3 ) )
     => ( ( ( ord_less_eq_b @ Y3 @ X )
         => ~ ( ord_less_eq_b @ X @ Z3 ) )
       => ( ( ( ord_less_eq_b @ X @ Z3 )
           => ~ ( ord_less_eq_b @ Z3 @ Y3 ) )
         => ( ( ( ord_less_eq_b @ Z3 @ Y3 )
             => ~ ( ord_less_eq_b @ Y3 @ X ) )
           => ( ( ( ord_less_eq_b @ Y3 @ Z3 )
               => ~ ( ord_less_eq_b @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_b @ Z3 @ X )
                 => ~ ( ord_less_eq_b @ X @ Y3 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_158_le__cases3,axiom,
    ! [X: nat,Y3: nat,Z3: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y3 )
       => ~ ( ord_less_eq_nat @ Y3 @ Z3 ) )
     => ( ( ( ord_less_eq_nat @ Y3 @ X )
         => ~ ( ord_less_eq_nat @ X @ Z3 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z3 )
           => ~ ( ord_less_eq_nat @ Z3 @ Y3 ) )
         => ( ( ( ord_less_eq_nat @ Z3 @ Y3 )
             => ~ ( ord_less_eq_nat @ Y3 @ X ) )
           => ( ( ( ord_less_eq_nat @ Y3 @ Z3 )
               => ~ ( ord_less_eq_nat @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z3 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y3 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_159_le__cases3,axiom,
    ! [X: real,Y3: real,Z3: real] :
      ( ( ( ord_less_eq_real @ X @ Y3 )
       => ~ ( ord_less_eq_real @ Y3 @ Z3 ) )
     => ( ( ( ord_less_eq_real @ Y3 @ X )
         => ~ ( ord_less_eq_real @ X @ Z3 ) )
       => ( ( ( ord_less_eq_real @ X @ Z3 )
           => ~ ( ord_less_eq_real @ Z3 @ Y3 ) )
         => ( ( ( ord_less_eq_real @ Z3 @ Y3 )
             => ~ ( ord_less_eq_real @ Y3 @ X ) )
           => ( ( ( ord_less_eq_real @ Y3 @ Z3 )
               => ~ ( ord_less_eq_real @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_real @ Z3 @ X )
                 => ~ ( ord_less_eq_real @ X @ Y3 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_160_le__cases3,axiom,
    ! [X: int,Y3: int,Z3: int] :
      ( ( ( ord_less_eq_int @ X @ Y3 )
       => ~ ( ord_less_eq_int @ Y3 @ Z3 ) )
     => ( ( ( ord_less_eq_int @ Y3 @ X )
         => ~ ( ord_less_eq_int @ X @ Z3 ) )
       => ( ( ( ord_less_eq_int @ X @ Z3 )
           => ~ ( ord_less_eq_int @ Z3 @ Y3 ) )
         => ( ( ( ord_less_eq_int @ Z3 @ Y3 )
             => ~ ( ord_less_eq_int @ Y3 @ X ) )
           => ( ( ( ord_less_eq_int @ Y3 @ Z3 )
               => ~ ( ord_less_eq_int @ Z3 @ X ) )
             => ~ ( ( ord_less_eq_int @ Z3 @ X )
                 => ~ ( ord_less_eq_int @ X @ Y3 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_161_nle__le,axiom,
    ! [A: b,B: b] :
      ( ( ~ ( ord_less_eq_b @ A @ B ) )
      = ( ( ord_less_eq_b @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_162_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_163_nle__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_eq_real @ A @ B ) )
      = ( ( ord_less_eq_real @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_164_nle__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_eq_int @ A @ B ) )
      = ( ( ord_less_eq_int @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_165_order__less__imp__not__less,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_nat @ X @ Y3 )
     => ~ ( ord_less_nat @ Y3 @ X ) ) ).

% order_less_imp_not_less
thf(fact_166_order__less__imp__not__less,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ~ ( ord_less_real @ Y3 @ X ) ) ).

% order_less_imp_not_less
thf(fact_167_order__less__imp__not__less,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_int @ X @ Y3 )
     => ~ ( ord_less_int @ Y3 @ X ) ) ).

% order_less_imp_not_less
thf(fact_168_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_nat @ X @ Y3 )
     => ( Y3 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_169_order__less__imp__not__eq2,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ( Y3 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_170_order__less__imp__not__eq2,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_int @ X @ Y3 )
     => ( Y3 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_171_order__less__imp__not__eq,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_nat @ X @ Y3 )
     => ( X != Y3 ) ) ).

% order_less_imp_not_eq
thf(fact_172_order__less__imp__not__eq,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ( X != Y3 ) ) ).

% order_less_imp_not_eq
thf(fact_173_order__less__imp__not__eq,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_int @ X @ Y3 )
     => ( X != Y3 ) ) ).

% order_less_imp_not_eq
thf(fact_174_linorder__less__linear,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_nat @ X @ Y3 )
      | ( X = Y3 )
      | ( ord_less_nat @ Y3 @ X ) ) ).

% linorder_less_linear
thf(fact_175_linorder__less__linear,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ X @ Y3 )
      | ( X = Y3 )
      | ( ord_less_real @ Y3 @ X ) ) ).

% linorder_less_linear
thf(fact_176_linorder__less__linear,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_int @ X @ Y3 )
      | ( X = Y3 )
      | ( ord_less_int @ Y3 @ X ) ) ).

% linorder_less_linear
thf(fact_177_order__less__imp__triv,axiom,
    ! [X: nat,Y3: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y3 )
     => ( ( ord_less_nat @ Y3 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_178_order__less__imp__triv,axiom,
    ! [X: real,Y3: real,P: $o] :
      ( ( ord_less_real @ X @ Y3 )
     => ( ( ord_less_real @ Y3 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_179_order__less__imp__triv,axiom,
    ! [X: int,Y3: int,P: $o] :
      ( ( ord_less_int @ X @ Y3 )
     => ( ( ord_less_int @ Y3 @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_180_order__less__not__sym,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_nat @ X @ Y3 )
     => ~ ( ord_less_nat @ Y3 @ X ) ) ).

% order_less_not_sym
thf(fact_181_order__less__not__sym,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ~ ( ord_less_real @ Y3 @ X ) ) ).

% order_less_not_sym
thf(fact_182_order__less__not__sym,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_int @ X @ Y3 )
     => ~ ( ord_less_int @ Y3 @ X ) ) ).

% order_less_not_sym
thf(fact_183_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_184_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_185_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_186_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_187_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_188_order__less__subst2,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_189_order__less__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_190_order__less__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_191_order__less__subst2,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_192_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_193_order__less__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_194_order__less__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_195_order__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_196_order__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_197_order__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_198_order__less__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_199_order__less__subst1,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_200_order__less__subst1,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_201_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_202_order__less__irrefl,axiom,
    ! [X: real] :
      ~ ( ord_less_real @ X @ X ) ).

% order_less_irrefl
thf(fact_203_order__less__irrefl,axiom,
    ! [X: int] :
      ~ ( ord_less_int @ X @ X ) ).

% order_less_irrefl
thf(fact_204_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_205_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_206_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_207_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_208_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_209_ord__less__eq__subst,axiom,
    ! [A: real,B: real,F: real > int,C: int] :
      ( ( ord_less_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_210_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_211_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_212_ord__less__eq__subst,axiom,
    ! [A: int,B: int,F: int > int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_213_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_214_ord__eq__less__subst,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_215_ord__eq__less__subst,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_216_ord__eq__less__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_217_ord__eq__less__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_218_ord__eq__less__subst,axiom,
    ! [A: int,F: real > int,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_219_ord__eq__less__subst,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_220_ord__eq__less__subst,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_221_ord__eq__less__subst,axiom,
    ! [A: int,F: int > int,B: int,C: int] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_222_order__less__trans,axiom,
    ! [X: nat,Y3: nat,Z3: nat] :
      ( ( ord_less_nat @ X @ Y3 )
     => ( ( ord_less_nat @ Y3 @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_223_order__less__trans,axiom,
    ! [X: real,Y3: real,Z3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ( ( ord_less_real @ Y3 @ Z3 )
       => ( ord_less_real @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_224_order__less__trans,axiom,
    ! [X: int,Y3: int,Z3: int] :
      ( ( ord_less_int @ X @ Y3 )
     => ( ( ord_less_int @ Y3 @ Z3 )
       => ( ord_less_int @ X @ Z3 ) ) ) ).

% order_less_trans
thf(fact_225_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_226_order__less__asym_H,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order_less_asym'
thf(fact_227_order__less__asym_H,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order_less_asym'
thf(fact_228_linorder__neq__iff,axiom,
    ! [X: nat,Y3: nat] :
      ( ( X != Y3 )
      = ( ( ord_less_nat @ X @ Y3 )
        | ( ord_less_nat @ Y3 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_229_linorder__neq__iff,axiom,
    ! [X: real,Y3: real] :
      ( ( X != Y3 )
      = ( ( ord_less_real @ X @ Y3 )
        | ( ord_less_real @ Y3 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_230_linorder__neq__iff,axiom,
    ! [X: int,Y3: int] :
      ( ( X != Y3 )
      = ( ( ord_less_int @ X @ Y3 )
        | ( ord_less_int @ Y3 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_231_order__less__asym,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_nat @ X @ Y3 )
     => ~ ( ord_less_nat @ Y3 @ X ) ) ).

% order_less_asym
thf(fact_232_order__less__asym,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ~ ( ord_less_real @ Y3 @ X ) ) ).

% order_less_asym
thf(fact_233_order__less__asym,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_int @ X @ Y3 )
     => ~ ( ord_less_int @ Y3 @ X ) ) ).

% order_less_asym
thf(fact_234_linorder__neqE,axiom,
    ! [X: nat,Y3: nat] :
      ( ( X != Y3 )
     => ( ~ ( ord_less_nat @ X @ Y3 )
       => ( ord_less_nat @ Y3 @ X ) ) ) ).

% linorder_neqE
thf(fact_235_linorder__neqE,axiom,
    ! [X: real,Y3: real] :
      ( ( X != Y3 )
     => ( ~ ( ord_less_real @ X @ Y3 )
       => ( ord_less_real @ Y3 @ X ) ) ) ).

% linorder_neqE
thf(fact_236_linorder__neqE,axiom,
    ! [X: int,Y3: int] :
      ( ( X != Y3 )
     => ( ~ ( ord_less_int @ X @ Y3 )
       => ( ord_less_int @ Y3 @ X ) ) ) ).

% linorder_neqE
thf(fact_237_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_238_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_239_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_240_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_241_order_Ostrict__implies__not__eq,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_242_order_Ostrict__implies__not__eq,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_243_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_244_dual__order_Ostrict__trans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_245_dual__order_Ostrict__trans,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_246_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y3 ) )
      = ( ( ord_less_nat @ Y3 @ X )
        | ( X = Y3 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_247_not__less__iff__gr__or__eq,axiom,
    ! [X: real,Y3: real] :
      ( ( ~ ( ord_less_real @ X @ Y3 ) )
      = ( ( ord_less_real @ Y3 @ X )
        | ( X = Y3 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_248_not__less__iff__gr__or__eq,axiom,
    ! [X: int,Y3: int] :
      ( ( ~ ( ord_less_int @ X @ Y3 ) )
      = ( ( ord_less_int @ Y3 @ X )
        | ( X = Y3 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_249_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_250_order_Ostrict__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_251_order_Ostrict__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_252_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B3: nat] :
          ( ( ord_less_nat @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: nat] : ( P @ A4 @ A4 )
       => ( ! [A4: nat,B3: nat] :
              ( ( P @ B3 @ A4 )
             => ( P @ A4 @ B3 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_253_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A: real,B: real] :
      ( ! [A4: real,B3: real] :
          ( ( ord_less_real @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: real] : ( P @ A4 @ A4 )
       => ( ! [A4: real,B3: real] :
              ( ( P @ B3 @ A4 )
             => ( P @ A4 @ B3 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_254_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A: int,B: int] :
      ( ! [A4: int,B3: int] :
          ( ( ord_less_int @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: int] : ( P @ A4 @ A4 )
       => ( ! [A4: int,B3: int] :
              ( ( P @ B3 @ A4 )
             => ( P @ A4 @ B3 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_255_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X5: nat] : ( P2 @ X5 ) )
    = ( ^ [P3: nat > $o] :
        ? [N4: nat] :
          ( ( P3 @ N4 )
          & ! [M5: nat] :
              ( ( ord_less_nat @ M5 @ N4 )
             => ~ ( P3 @ M5 ) ) ) ) ) ).

% exists_least_iff
thf(fact_256_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_257_dual__order_Oirrefl,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% dual_order.irrefl
thf(fact_258_dual__order_Oirrefl,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% dual_order.irrefl
thf(fact_259_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_260_dual__order_Oasym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ~ ( ord_less_real @ A @ B ) ) ).

% dual_order.asym
thf(fact_261_dual__order_Oasym,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ~ ( ord_less_int @ A @ B ) ) ).

% dual_order.asym
thf(fact_262_linorder__cases,axiom,
    ! [X: nat,Y3: nat] :
      ( ~ ( ord_less_nat @ X @ Y3 )
     => ( ( X != Y3 )
       => ( ord_less_nat @ Y3 @ X ) ) ) ).

% linorder_cases
thf(fact_263_linorder__cases,axiom,
    ! [X: real,Y3: real] :
      ( ~ ( ord_less_real @ X @ Y3 )
     => ( ( X != Y3 )
       => ( ord_less_real @ Y3 @ X ) ) ) ).

% linorder_cases
thf(fact_264_linorder__cases,axiom,
    ! [X: int,Y3: int] :
      ( ~ ( ord_less_int @ X @ Y3 )
     => ( ( X != Y3 )
       => ( ord_less_int @ Y3 @ X ) ) ) ).

% linorder_cases
thf(fact_265_antisym__conv3,axiom,
    ! [Y3: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y3 @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y3 ) )
        = ( X = Y3 ) ) ) ).

% antisym_conv3
thf(fact_266_antisym__conv3,axiom,
    ! [Y3: real,X: real] :
      ( ~ ( ord_less_real @ Y3 @ X )
     => ( ( ~ ( ord_less_real @ X @ Y3 ) )
        = ( X = Y3 ) ) ) ).

% antisym_conv3
thf(fact_267_antisym__conv3,axiom,
    ! [Y3: int,X: int] :
      ( ~ ( ord_less_int @ Y3 @ X )
     => ( ( ~ ( ord_less_int @ X @ Y3 ) )
        = ( X = Y3 ) ) ) ).

% antisym_conv3
thf(fact_268_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X3: nat] :
          ( ! [Y6: nat] :
              ( ( ord_less_nat @ Y6 @ X3 )
             => ( P @ Y6 ) )
         => ( P @ X3 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_269_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_270_ord__less__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_271_ord__less__eq__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( B = C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_272_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_273_ord__eq__less__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_274_ord__eq__less__trans,axiom,
    ! [A: int,B: int,C: int] :
      ( ( A = B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_275_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_276_order_Oasym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ~ ( ord_less_real @ B @ A ) ) ).

% order.asym
thf(fact_277_order_Oasym,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ~ ( ord_less_int @ B @ A ) ) ).

% order.asym
thf(fact_278_less__imp__neq,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_nat @ X @ Y3 )
     => ( X != Y3 ) ) ).

% less_imp_neq
thf(fact_279_less__imp__neq,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ( X != Y3 ) ) ).

% less_imp_neq
thf(fact_280_less__imp__neq,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_int @ X @ Y3 )
     => ( X != Y3 ) ) ).

% less_imp_neq
thf(fact_281_dense,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ? [Z: real] :
          ( ( ord_less_real @ X @ Z )
          & ( ord_less_real @ Z @ Y3 ) ) ) ).

% dense
thf(fact_282_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_283_gt__ex,axiom,
    ! [X: real] :
    ? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).

% gt_ex
thf(fact_284_gt__ex,axiom,
    ! [X: int] :
    ? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).

% gt_ex
thf(fact_285_lt__ex,axiom,
    ! [X: real] :
    ? [Y: real] : ( ord_less_real @ Y @ X ) ).

% lt_ex
thf(fact_286_lt__ex,axiom,
    ! [X: int] :
    ? [Y: int] : ( ord_less_int @ Y @ X ) ).

% lt_ex
thf(fact_287_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_288_Suc__inject,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y3 ) )
     => ( X = Y3 ) ) ).

% Suc_inject
thf(fact_289_linorder__neqE__nat,axiom,
    ! [X: nat,Y3: nat] :
      ( ( X != Y3 )
     => ( ~ ( ord_less_nat @ X @ Y3 )
       => ( ord_less_nat @ Y3 @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_290_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
              & ~ ( P @ M2 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_291_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_292_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_293_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_294_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_295_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_296_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_297_order__le__imp__less__or__eq,axiom,
    ! [X: b,Y3: b] :
      ( ( ord_less_eq_b @ X @ Y3 )
     => ( ( ord_less_b @ X @ Y3 )
        | ( X = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_298_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X @ Y3 )
     => ( ( ord_less_nat @ X @ Y3 )
        | ( X = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_299_order__le__imp__less__or__eq,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_eq_real @ X @ Y3 )
     => ( ( ord_less_real @ X @ Y3 )
        | ( X = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_300_order__le__imp__less__or__eq,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_eq_int @ X @ Y3 )
     => ( ( ord_less_int @ X @ Y3 )
        | ( X = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_301_linorder__le__less__linear,axiom,
    ! [X: b,Y3: b] :
      ( ( ord_less_eq_b @ X @ Y3 )
      | ( ord_less_b @ Y3 @ X ) ) ).

% linorder_le_less_linear
thf(fact_302_linorder__le__less__linear,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X @ Y3 )
      | ( ord_less_nat @ Y3 @ X ) ) ).

% linorder_le_less_linear
thf(fact_303_linorder__le__less__linear,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_eq_real @ X @ Y3 )
      | ( ord_less_real @ Y3 @ X ) ) ).

% linorder_le_less_linear
thf(fact_304_linorder__le__less__linear,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_eq_int @ X @ Y3 )
      | ( ord_less_int @ Y3 @ X ) ) ).

% linorder_le_less_linear
thf(fact_305_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > b,C: b] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_b @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_306_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > b,C: b] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_b @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_307_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > b,C: b] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_b @ ( F @ B ) @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_308_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_309_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_310_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_311_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_312_order__less__le__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_313_order__less__le__subst2,axiom,
    ! [A: int,B: int,F: int > real,C: real] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_314_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_int @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_315_order__less__le__subst1,axiom,
    ! [A: b,F: b > b,B: b,C: b] :
      ( ( ord_less_b @ A @ ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_316_order__less__le__subst1,axiom,
    ! [A: nat,F: b > nat,B: b,C: b] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_317_order__less__le__subst1,axiom,
    ! [A: real,F: b > real,B: b,C: b] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_318_order__less__le__subst1,axiom,
    ! [A: int,F: b > int,B: b,C: b] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_319_order__less__le__subst1,axiom,
    ! [A: b,F: nat > b,B: nat,C: nat] :
      ( ( ord_less_b @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_320_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_321_order__less__le__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_322_order__less__le__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_int @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_323_order__less__le__subst1,axiom,
    ! [A: b,F: real > b,B: real,C: real] :
      ( ( ord_less_b @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_324_order__less__le__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_325_order__le__less__subst2,axiom,
    ! [A: b,B: b,F: b > b,C: b] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_b @ ( F @ B ) @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_326_order__le__less__subst2,axiom,
    ! [A: b,B: b,F: b > nat,C: nat] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_327_order__le__less__subst2,axiom,
    ! [A: b,B: b,F: b > real,C: real] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_328_order__le__less__subst2,axiom,
    ! [A: b,B: b,F: b > int,C: int] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: b,Y: b] :
              ( ( ord_less_eq_b @ X3 @ Y )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_329_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > b,C: b] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_b @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_330_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_331_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_332_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_int @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_333_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > b,C: b] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_b @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_334_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_eq_real @ X3 @ Y )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_335_order__le__less__subst1,axiom,
    ! [A: b,F: nat > b,B: nat,C: nat] :
      ( ( ord_less_eq_b @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_336_order__le__less__subst1,axiom,
    ! [A: b,F: real > b,B: real,C: real] :
      ( ( ord_less_eq_b @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_337_order__le__less__subst1,axiom,
    ! [A: b,F: int > b,B: int,C: int] :
      ( ( ord_less_eq_b @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_b @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_b @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_338_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_339_order__le__less__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_340_order__le__less__subst1,axiom,
    ! [A: nat,F: int > nat,B: int,C: int] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_341_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_342_order__le__less__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_real @ B @ C )
       => ( ! [X3: real,Y: real] :
              ( ( ord_less_real @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_343_order__le__less__subst1,axiom,
    ! [A: real,F: int > real,B: int,C: int] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_int @ B @ C )
       => ( ! [X3: int,Y: int] :
              ( ( ord_less_int @ X3 @ Y )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_344_order__le__less__subst1,axiom,
    ! [A: int,F: nat > int,B: nat,C: nat] :
      ( ( ord_less_eq_int @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y: nat] :
              ( ( ord_less_nat @ X3 @ Y )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
         => ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_345_order__less__le__trans,axiom,
    ! [X: b,Y3: b,Z3: b] :
      ( ( ord_less_b @ X @ Y3 )
     => ( ( ord_less_eq_b @ Y3 @ Z3 )
       => ( ord_less_b @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_346_order__less__le__trans,axiom,
    ! [X: nat,Y3: nat,Z3: nat] :
      ( ( ord_less_nat @ X @ Y3 )
     => ( ( ord_less_eq_nat @ Y3 @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_347_order__less__le__trans,axiom,
    ! [X: real,Y3: real,Z3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ( ( ord_less_eq_real @ Y3 @ Z3 )
       => ( ord_less_real @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_348_order__less__le__trans,axiom,
    ! [X: int,Y3: int,Z3: int] :
      ( ( ord_less_int @ X @ Y3 )
     => ( ( ord_less_eq_int @ Y3 @ Z3 )
       => ( ord_less_int @ X @ Z3 ) ) ) ).

% order_less_le_trans
thf(fact_349_order__le__less__trans,axiom,
    ! [X: b,Y3: b,Z3: b] :
      ( ( ord_less_eq_b @ X @ Y3 )
     => ( ( ord_less_b @ Y3 @ Z3 )
       => ( ord_less_b @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_350_order__le__less__trans,axiom,
    ! [X: nat,Y3: nat,Z3: nat] :
      ( ( ord_less_eq_nat @ X @ Y3 )
     => ( ( ord_less_nat @ Y3 @ Z3 )
       => ( ord_less_nat @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_351_order__le__less__trans,axiom,
    ! [X: real,Y3: real,Z3: real] :
      ( ( ord_less_eq_real @ X @ Y3 )
     => ( ( ord_less_real @ Y3 @ Z3 )
       => ( ord_less_real @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_352_order__le__less__trans,axiom,
    ! [X: int,Y3: int,Z3: int] :
      ( ( ord_less_eq_int @ X @ Y3 )
     => ( ( ord_less_int @ Y3 @ Z3 )
       => ( ord_less_int @ X @ Z3 ) ) ) ).

% order_le_less_trans
thf(fact_353_order__neq__le__trans,axiom,
    ! [A: b,B: b] :
      ( ( A != B )
     => ( ( ord_less_eq_b @ A @ B )
       => ( ord_less_b @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_354_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_355_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_356_order__neq__le__trans,axiom,
    ! [A: int,B: int] :
      ( ( A != B )
     => ( ( ord_less_eq_int @ A @ B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_357_order__le__neq__trans,axiom,
    ! [A: b,B: b] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( A != B )
       => ( ord_less_b @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_358_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_359_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_360_order__le__neq__trans,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( A != B )
       => ( ord_less_int @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_361_order__less__imp__le,axiom,
    ! [X: b,Y3: b] :
      ( ( ord_less_b @ X @ Y3 )
     => ( ord_less_eq_b @ X @ Y3 ) ) ).

% order_less_imp_le
thf(fact_362_order__less__imp__le,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_nat @ X @ Y3 )
     => ( ord_less_eq_nat @ X @ Y3 ) ) ).

% order_less_imp_le
thf(fact_363_order__less__imp__le,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ( ord_less_eq_real @ X @ Y3 ) ) ).

% order_less_imp_le
thf(fact_364_order__less__imp__le,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_int @ X @ Y3 )
     => ( ord_less_eq_int @ X @ Y3 ) ) ).

% order_less_imp_le
thf(fact_365_linorder__not__less,axiom,
    ! [X: b,Y3: b] :
      ( ( ~ ( ord_less_b @ X @ Y3 ) )
      = ( ord_less_eq_b @ Y3 @ X ) ) ).

% linorder_not_less
thf(fact_366_linorder__not__less,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y3 ) )
      = ( ord_less_eq_nat @ Y3 @ X ) ) ).

% linorder_not_less
thf(fact_367_linorder__not__less,axiom,
    ! [X: real,Y3: real] :
      ( ( ~ ( ord_less_real @ X @ Y3 ) )
      = ( ord_less_eq_real @ Y3 @ X ) ) ).

% linorder_not_less
thf(fact_368_linorder__not__less,axiom,
    ! [X: int,Y3: int] :
      ( ( ~ ( ord_less_int @ X @ Y3 ) )
      = ( ord_less_eq_int @ Y3 @ X ) ) ).

% linorder_not_less
thf(fact_369_linorder__not__le,axiom,
    ! [X: b,Y3: b] :
      ( ( ~ ( ord_less_eq_b @ X @ Y3 ) )
      = ( ord_less_b @ Y3 @ X ) ) ).

% linorder_not_le
thf(fact_370_linorder__not__le,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y3 ) )
      = ( ord_less_nat @ Y3 @ X ) ) ).

% linorder_not_le
thf(fact_371_linorder__not__le,axiom,
    ! [X: real,Y3: real] :
      ( ( ~ ( ord_less_eq_real @ X @ Y3 ) )
      = ( ord_less_real @ Y3 @ X ) ) ).

% linorder_not_le
thf(fact_372_linorder__not__le,axiom,
    ! [X: int,Y3: int] :
      ( ( ~ ( ord_less_eq_int @ X @ Y3 ) )
      = ( ord_less_int @ Y3 @ X ) ) ).

% linorder_not_le
thf(fact_373_order__less__le,axiom,
    ( ord_less_b
    = ( ^ [X4: b,Y5: b] :
          ( ( ord_less_eq_b @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_374_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_375_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X4: real,Y5: real] :
          ( ( ord_less_eq_real @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_376_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Y5: int] :
          ( ( ord_less_eq_int @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_377_order__le__less,axiom,
    ( ord_less_eq_b
    = ( ^ [X4: b,Y5: b] :
          ( ( ord_less_b @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_378_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_nat @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_379_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X4: real,Y5: real] :
          ( ( ord_less_real @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_380_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X4: int,Y5: int] :
          ( ( ord_less_int @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_381_dual__order_Ostrict__implies__order,axiom,
    ! [B: b,A: b] :
      ( ( ord_less_b @ B @ A )
     => ( ord_less_eq_b @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_382_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_383_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_384_dual__order_Ostrict__implies__order,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ B @ A )
     => ( ord_less_eq_int @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_385_order_Ostrict__implies__order,axiom,
    ! [A: b,B: b] :
      ( ( ord_less_b @ A @ B )
     => ( ord_less_eq_b @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_386_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_387_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_388_order_Ostrict__implies__order,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_eq_int @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_389_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_b
    = ( ^ [B2: b,A3: b] :
          ( ( ord_less_eq_b @ B2 @ A3 )
          & ~ ( ord_less_eq_b @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_390_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_391_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A3: real] :
          ( ( ord_less_eq_real @ B2 @ A3 )
          & ~ ( ord_less_eq_real @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_392_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B2: int,A3: int] :
          ( ( ord_less_eq_int @ B2 @ A3 )
          & ~ ( ord_less_eq_int @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_393_dual__order_Ostrict__trans2,axiom,
    ! [B: b,A: b,C: b] :
      ( ( ord_less_b @ B @ A )
     => ( ( ord_less_eq_b @ C @ B )
       => ( ord_less_b @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_394_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_395_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_396_dual__order_Ostrict__trans2,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_397_dual__order_Ostrict__trans1,axiom,
    ! [B: b,A: b,C: b] :
      ( ( ord_less_eq_b @ B @ A )
     => ( ( ord_less_b @ C @ B )
       => ( ord_less_b @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_398_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_399_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_400_dual__order_Ostrict__trans1,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_int @ C @ B )
       => ( ord_less_int @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_401_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_b
    = ( ^ [B2: b,A3: b] :
          ( ( ord_less_eq_b @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_402_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_403_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B2: real,A3: real] :
          ( ( ord_less_eq_real @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_404_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B2: int,A3: int] :
          ( ( ord_less_eq_int @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_405_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_b
    = ( ^ [B2: b,A3: b] :
          ( ( ord_less_b @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_406_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_nat @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_407_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B2: real,A3: real] :
          ( ( ord_less_real @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_408_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B2: int,A3: int] :
          ( ( ord_less_int @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_409_dense__le__bounded,axiom,
    ! [X: real,Y3: real,Z3: real] :
      ( ( ord_less_real @ X @ Y3 )
     => ( ! [W: real] :
            ( ( ord_less_real @ X @ W )
           => ( ( ord_less_real @ W @ Y3 )
             => ( ord_less_eq_real @ W @ Z3 ) ) )
       => ( ord_less_eq_real @ Y3 @ Z3 ) ) ) ).

% dense_le_bounded
thf(fact_410_dense__ge__bounded,axiom,
    ! [Z3: real,X: real,Y3: real] :
      ( ( ord_less_real @ Z3 @ X )
     => ( ! [W: real] :
            ( ( ord_less_real @ Z3 @ W )
           => ( ( ord_less_real @ W @ X )
             => ( ord_less_eq_real @ Y3 @ W ) ) )
       => ( ord_less_eq_real @ Y3 @ Z3 ) ) ) ).

% dense_ge_bounded
thf(fact_411_order_Ostrict__iff__not,axiom,
    ( ord_less_b
    = ( ^ [A3: b,B2: b] :
          ( ( ord_less_eq_b @ A3 @ B2 )
          & ~ ( ord_less_eq_b @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_412_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ~ ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_413_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_eq_real @ A3 @ B2 )
          & ~ ( ord_less_eq_real @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_414_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
          & ~ ( ord_less_eq_int @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_415_order_Ostrict__trans2,axiom,
    ! [A: b,B: b,C: b] :
      ( ( ord_less_b @ A @ B )
     => ( ( ord_less_eq_b @ B @ C )
       => ( ord_less_b @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_416_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_417_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_418_order_Ostrict__trans2,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_419_order_Ostrict__trans1,axiom,
    ! [A: b,B: b,C: b] :
      ( ( ord_less_eq_b @ A @ B )
     => ( ( ord_less_b @ B @ C )
       => ( ord_less_b @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_420_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_421_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_422_order_Ostrict__trans1,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ B @ C )
       => ( ord_less_int @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_423_order_Ostrict__iff__order,axiom,
    ( ord_less_b
    = ( ^ [A3: b,B2: b] :
          ( ( ord_less_eq_b @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_424_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_425_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_eq_real @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_426_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_eq_int @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_427_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_b
    = ( ^ [A3: b,B2: b] :
          ( ( ord_less_b @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_428_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_nat @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_429_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B2: real] :
          ( ( ord_less_real @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_430_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A3: int,B2: int] :
          ( ( ord_less_int @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_431_not__le__imp__less,axiom,
    ! [Y3: b,X: b] :
      ( ~ ( ord_less_eq_b @ Y3 @ X )
     => ( ord_less_b @ X @ Y3 ) ) ).

% not_le_imp_less
thf(fact_432_not__le__imp__less,axiom,
    ! [Y3: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y3 @ X )
     => ( ord_less_nat @ X @ Y3 ) ) ).

% not_le_imp_less
thf(fact_433_not__le__imp__less,axiom,
    ! [Y3: real,X: real] :
      ( ~ ( ord_less_eq_real @ Y3 @ X )
     => ( ord_less_real @ X @ Y3 ) ) ).

% not_le_imp_less
thf(fact_434_not__le__imp__less,axiom,
    ! [Y3: int,X: int] :
      ( ~ ( ord_less_eq_int @ Y3 @ X )
     => ( ord_less_int @ X @ Y3 ) ) ).

% not_le_imp_less
thf(fact_435_less__le__not__le,axiom,
    ( ord_less_b
    = ( ^ [X4: b,Y5: b] :
          ( ( ord_less_eq_b @ X4 @ Y5 )
          & ~ ( ord_less_eq_b @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_436_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y5 )
          & ~ ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_437_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X4: real,Y5: real] :
          ( ( ord_less_eq_real @ X4 @ Y5 )
          & ~ ( ord_less_eq_real @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_438_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X4: int,Y5: int] :
          ( ( ord_less_eq_int @ X4 @ Y5 )
          & ~ ( ord_less_eq_int @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_439_dense__le,axiom,
    ! [Y3: real,Z3: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ X3 @ Y3 )
         => ( ord_less_eq_real @ X3 @ Z3 ) )
     => ( ord_less_eq_real @ Y3 @ Z3 ) ) ).

% dense_le
thf(fact_440_dense__ge,axiom,
    ! [Z3: real,Y3: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ Z3 @ X3 )
         => ( ord_less_eq_real @ Y3 @ X3 ) )
     => ( ord_less_eq_real @ Y3 @ Z3 ) ) ).

% dense_ge
thf(fact_441_antisym__conv2,axiom,
    ! [X: b,Y3: b] :
      ( ( ord_less_eq_b @ X @ Y3 )
     => ( ( ~ ( ord_less_b @ X @ Y3 ) )
        = ( X = Y3 ) ) ) ).

% antisym_conv2
thf(fact_442_antisym__conv2,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X @ Y3 )
     => ( ( ~ ( ord_less_nat @ X @ Y3 ) )
        = ( X = Y3 ) ) ) ).

% antisym_conv2
thf(fact_443_antisym__conv2,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_eq_real @ X @ Y3 )
     => ( ( ~ ( ord_less_real @ X @ Y3 ) )
        = ( X = Y3 ) ) ) ).

% antisym_conv2
thf(fact_444_antisym__conv2,axiom,
    ! [X: int,Y3: int] :
      ( ( ord_less_eq_int @ X @ Y3 )
     => ( ( ~ ( ord_less_int @ X @ Y3 ) )
        = ( X = Y3 ) ) ) ).

% antisym_conv2
thf(fact_445_antisym__conv1,axiom,
    ! [X: b,Y3: b] :
      ( ~ ( ord_less_b @ X @ Y3 )
     => ( ( ord_less_eq_b @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% antisym_conv1
thf(fact_446_antisym__conv1,axiom,
    ! [X: nat,Y3: nat] :
      ( ~ ( ord_less_nat @ X @ Y3 )
     => ( ( ord_less_eq_nat @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% antisym_conv1
thf(fact_447_antisym__conv1,axiom,
    ! [X: real,Y3: real] :
      ( ~ ( ord_less_real @ X @ Y3 )
     => ( ( ord_less_eq_real @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% antisym_conv1
thf(fact_448_antisym__conv1,axiom,
    ! [X: int,Y3: int] :
      ( ~ ( ord_less_int @ X @ Y3 )
     => ( ( ord_less_eq_int @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% antisym_conv1
thf(fact_449_nless__le,axiom,
    ! [A: b,B: b] :
      ( ( ~ ( ord_less_b @ A @ B ) )
      = ( ~ ( ord_less_eq_b @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_450_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_451_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_452_nless__le,axiom,
    ! [A: int,B: int] :
      ( ( ~ ( ord_less_int @ A @ B ) )
      = ( ~ ( ord_less_eq_int @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_453_leI,axiom,
    ! [X: b,Y3: b] :
      ( ~ ( ord_less_b @ X @ Y3 )
     => ( ord_less_eq_b @ Y3 @ X ) ) ).

% leI
thf(fact_454_leI,axiom,
    ! [X: nat,Y3: nat] :
      ( ~ ( ord_less_nat @ X @ Y3 )
     => ( ord_less_eq_nat @ Y3 @ X ) ) ).

% leI
thf(fact_455_leI,axiom,
    ! [X: real,Y3: real] :
      ( ~ ( ord_less_real @ X @ Y3 )
     => ( ord_less_eq_real @ Y3 @ X ) ) ).

% leI
thf(fact_456_leI,axiom,
    ! [X: int,Y3: int] :
      ( ~ ( ord_less_int @ X @ Y3 )
     => ( ord_less_eq_int @ Y3 @ X ) ) ).

% leI
thf(fact_457_leD,axiom,
    ! [Y3: b,X: b] :
      ( ( ord_less_eq_b @ Y3 @ X )
     => ~ ( ord_less_b @ X @ Y3 ) ) ).

% leD
thf(fact_458_leD,axiom,
    ! [Y3: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y3 @ X )
     => ~ ( ord_less_nat @ X @ Y3 ) ) ).

% leD
thf(fact_459_leD,axiom,
    ! [Y3: real,X: real] :
      ( ( ord_less_eq_real @ Y3 @ X )
     => ~ ( ord_less_real @ X @ Y3 ) ) ).

% leD
thf(fact_460_leD,axiom,
    ! [Y3: int,X: int] :
      ( ( ord_less_eq_int @ Y3 @ X )
     => ~ ( ord_less_int @ X @ Y3 ) ) ).

% leD
thf(fact_461_lift__Suc__antimono__le,axiom,
    ! [F: nat > b,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_eq_b @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N2 )
       => ( ord_less_eq_b @ ( F @ N2 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_462_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N2 )
       => ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_463_lift__Suc__antimono__le,axiom,
    ! [F: nat > real,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N2 )
       => ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_464_lift__Suc__antimono__le,axiom,
    ! [F: nat > int,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N2 )
       => ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_465_lift__Suc__mono__le,axiom,
    ! [F: nat > b,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_eq_b @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N2 )
       => ( ord_less_eq_b @ ( F @ N ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_466_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N2 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_467_lift__Suc__mono__le,axiom,
    ! [F: nat > real,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N2 )
       => ( ord_less_eq_real @ ( F @ N ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_468_lift__Suc__mono__le,axiom,
    ! [F: nat > int,N: nat,N2: nat] :
      ( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N2 )
       => ( ord_less_eq_int @ ( F @ N ) @ ( F @ N2 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_469_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_470_strict__inc__induct,axiom,
    ! [I2: nat,J3: nat,P: nat > $o] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ! [I3: nat] :
            ( ( J3
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J3 )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I2 ) ) ) ) ).

% strict_inc_induct
thf(fact_471_less__Suc__induct,axiom,
    ! [I2: nat,J3: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K2: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K2 )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K2 )
                   => ( P @ I3 @ K2 ) ) ) ) )
         => ( P @ I2 @ J3 ) ) ) ) ).

% less_Suc_induct
thf(fact_472_less__trans__Suc,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ( ord_less_nat @ J3 @ K )
       => ( ord_less_nat @ ( suc @ I2 ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_473_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_474_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_475_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M6: nat] :
            ( ( M
              = ( suc @ M6 ) )
            & ( ord_less_nat @ N @ M6 ) ) ) ) ).

% Suc_less_eq2
thf(fact_476_All__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ N )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ I4 ) ) ) ) ).

% All_less_Suc
thf(fact_477_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_478_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_479_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ N )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ I4 ) ) ) ) ).

% Ex_less_Suc
thf(fact_480_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_481_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_482_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_483_Suc__lessE,axiom,
    ! [I2: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I2 ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I2 @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_484_complete__interval,axiom,
    ! [A: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: nat] :
              ( ( ord_less_eq_nat @ A @ C2 )
              & ( ord_less_eq_nat @ C2 @ B )
              & ! [X6: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X6 )
                    & ( ord_less_nat @ X6 @ C2 ) )
                 => ( P @ X6 ) )
              & ! [D: nat] :
                  ( ! [X3: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X3 )
                        & ( ord_less_nat @ X3 @ D ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_nat @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_485_complete__interval,axiom,
    ! [A: real,B: real,P: real > $o] :
      ( ( ord_less_real @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: real] :
              ( ( ord_less_eq_real @ A @ C2 )
              & ( ord_less_eq_real @ C2 @ B )
              & ! [X6: real] :
                  ( ( ( ord_less_eq_real @ A @ X6 )
                    & ( ord_less_real @ X6 @ C2 ) )
                 => ( P @ X6 ) )
              & ! [D: real] :
                  ( ! [X3: real] :
                      ( ( ( ord_less_eq_real @ A @ X3 )
                        & ( ord_less_real @ X3 @ D ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_real @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_486_complete__interval,axiom,
    ! [A: int,B: int,P: int > $o] :
      ( ( ord_less_int @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: int] :
              ( ( ord_less_eq_int @ A @ C2 )
              & ( ord_less_eq_int @ C2 @ B )
              & ! [X6: int] :
                  ( ( ( ord_less_eq_int @ A @ X6 )
                    & ( ord_less_int @ X6 @ C2 ) )
                 => ( P @ X6 ) )
              & ! [D: int] :
                  ( ! [X3: int] :
                      ( ( ( ord_less_eq_int @ A @ X3 )
                        & ( ord_less_int @ X3 @ D ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_int @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_487_eucl__less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X4: real,Y5: real] :
          ( ( ord_less_eq_real @ X4 @ Y5 )
          & ~ ( ord_less_eq_real @ Y5 @ X4 ) ) ) ) ).

% eucl_less_le_not_le
thf(fact_488_verit__comp__simplify1_I3_J,axiom,
    ! [B4: b,A5: b] :
      ( ( ~ ( ord_less_eq_b @ B4 @ A5 ) )
      = ( ord_less_b @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_489_verit__comp__simplify1_I3_J,axiom,
    ! [B4: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B4 @ A5 ) )
      = ( ord_less_nat @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_490_verit__comp__simplify1_I3_J,axiom,
    ! [B4: real,A5: real] :
      ( ( ~ ( ord_less_eq_real @ B4 @ A5 ) )
      = ( ord_less_real @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_491_verit__comp__simplify1_I3_J,axiom,
    ! [B4: int,A5: int] :
      ( ( ~ ( ord_less_eq_int @ B4 @ A5 ) )
      = ( ord_less_int @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_492_pinf_I6_J,axiom,
    ! [T: b] :
    ? [Z: b] :
    ! [X6: b] :
      ( ( ord_less_b @ Z @ X6 )
     => ~ ( ord_less_eq_b @ X6 @ T ) ) ).

% pinf(6)
thf(fact_493_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ~ ( ord_less_eq_nat @ X6 @ T ) ) ).

% pinf(6)
thf(fact_494_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ~ ( ord_less_eq_real @ X6 @ T ) ) ).

% pinf(6)
thf(fact_495_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ~ ( ord_less_eq_int @ X6 @ T ) ) ).

% pinf(6)
thf(fact_496_pinf_I8_J,axiom,
    ! [T: b] :
    ? [Z: b] :
    ! [X6: b] :
      ( ( ord_less_b @ Z @ X6 )
     => ( ord_less_eq_b @ T @ X6 ) ) ).

% pinf(8)
thf(fact_497_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ( ord_less_eq_nat @ T @ X6 ) ) ).

% pinf(8)
thf(fact_498_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ( ord_less_eq_real @ T @ X6 ) ) ).

% pinf(8)
thf(fact_499_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ( ord_less_eq_int @ T @ X6 ) ) ).

% pinf(8)
thf(fact_500_minf_I6_J,axiom,
    ! [T: b] :
    ? [Z: b] :
    ! [X6: b] :
      ( ( ord_less_b @ X6 @ Z )
     => ( ord_less_eq_b @ X6 @ T ) ) ).

% minf(6)
thf(fact_501_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ( ord_less_eq_nat @ X6 @ T ) ) ).

% minf(6)
thf(fact_502_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ( ord_less_eq_real @ X6 @ T ) ) ).

% minf(6)
thf(fact_503_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ( ord_less_eq_int @ X6 @ T ) ) ).

% minf(6)
thf(fact_504_minf_I8_J,axiom,
    ! [T: b] :
    ? [Z: b] :
    ! [X6: b] :
      ( ( ord_less_b @ X6 @ Z )
     => ~ ( ord_less_eq_b @ T @ X6 ) ) ).

% minf(8)
thf(fact_505_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ~ ( ord_less_eq_nat @ T @ X6 ) ) ).

% minf(8)
thf(fact_506_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ~ ( ord_less_eq_real @ T @ X6 ) ) ).

% minf(8)
thf(fact_507_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ~ ( ord_less_eq_int @ T @ X6 ) ) ).

% minf(8)
thf(fact_508_interval__def,axiom,
    ( interval_b
    = ( ^ [I5: set_b] :
        ! [X4: b,Y5: b,Z4: b] :
          ( ( member_b @ X4 @ I5 )
         => ( ( member_b @ Z4 @ I5 )
           => ( ( ord_less_eq_b @ X4 @ Y5 )
             => ( ( ord_less_eq_b @ Y5 @ Z4 )
               => ( member_b @ Y5 @ I5 ) ) ) ) ) ) ) ).

% interval_def
thf(fact_509_interval__def,axiom,
    ( interval_nat
    = ( ^ [I5: set_nat] :
        ! [X4: nat,Y5: nat,Z4: nat] :
          ( ( member_nat @ X4 @ I5 )
         => ( ( member_nat @ Z4 @ I5 )
           => ( ( ord_less_eq_nat @ X4 @ Y5 )
             => ( ( ord_less_eq_nat @ Y5 @ Z4 )
               => ( member_nat @ Y5 @ I5 ) ) ) ) ) ) ) ).

% interval_def
thf(fact_510_interval__def,axiom,
    ( interval_real
    = ( ^ [I5: set_real] :
        ! [X4: real,Y5: real,Z4: real] :
          ( ( member_real @ X4 @ I5 )
         => ( ( member_real @ Z4 @ I5 )
           => ( ( ord_less_eq_real @ X4 @ Y5 )
             => ( ( ord_less_eq_real @ Y5 @ Z4 )
               => ( member_real @ Y5 @ I5 ) ) ) ) ) ) ) ).

% interval_def
thf(fact_511_interval__def,axiom,
    ( interval_int
    = ( ^ [I5: set_int] :
        ! [X4: int,Y5: int,Z4: int] :
          ( ( member_int @ X4 @ I5 )
         => ( ( member_int @ Z4 @ I5 )
           => ( ( ord_less_eq_int @ X4 @ Y5 )
             => ( ( ord_less_eq_int @ Y5 @ Z4 )
               => ( member_int @ Y5 @ I5 ) ) ) ) ) ) ) ).

% interval_def
thf(fact_512_down__ray__def,axiom,
    ( down_ray_b
    = ( ^ [I5: set_b] :
        ! [X4: b,Y5: b] :
          ( ( member_b @ Y5 @ I5 )
         => ( ( ord_less_eq_b @ X4 @ Y5 )
           => ( member_b @ X4 @ I5 ) ) ) ) ) ).

% down_ray_def
thf(fact_513_down__ray__def,axiom,
    ( down_ray_nat
    = ( ^ [I5: set_nat] :
        ! [X4: nat,Y5: nat] :
          ( ( member_nat @ Y5 @ I5 )
         => ( ( ord_less_eq_nat @ X4 @ Y5 )
           => ( member_nat @ X4 @ I5 ) ) ) ) ) ).

% down_ray_def
thf(fact_514_down__ray__def,axiom,
    ( down_ray_real
    = ( ^ [I5: set_real] :
        ! [X4: real,Y5: real] :
          ( ( member_real @ Y5 @ I5 )
         => ( ( ord_less_eq_real @ X4 @ Y5 )
           => ( member_real @ X4 @ I5 ) ) ) ) ) ).

% down_ray_def
thf(fact_515_down__ray__def,axiom,
    ( down_ray_int
    = ( ^ [I5: set_int] :
        ! [X4: int,Y5: int] :
          ( ( member_int @ Y5 @ I5 )
         => ( ( ord_less_eq_int @ X4 @ Y5 )
           => ( member_int @ X4 @ I5 ) ) ) ) ) ).

% down_ray_def
thf(fact_516_up__ray__def,axiom,
    ( up_ray_b
    = ( ^ [I5: set_b] :
        ! [X4: b,Y5: b] :
          ( ( member_b @ X4 @ I5 )
         => ( ( ord_less_eq_b @ X4 @ Y5 )
           => ( member_b @ Y5 @ I5 ) ) ) ) ) ).

% up_ray_def
thf(fact_517_up__ray__def,axiom,
    ( up_ray_nat
    = ( ^ [I5: set_nat] :
        ! [X4: nat,Y5: nat] :
          ( ( member_nat @ X4 @ I5 )
         => ( ( ord_less_eq_nat @ X4 @ Y5 )
           => ( member_nat @ Y5 @ I5 ) ) ) ) ) ).

% up_ray_def
thf(fact_518_up__ray__def,axiom,
    ( up_ray_real
    = ( ^ [I5: set_real] :
        ! [X4: real,Y5: real] :
          ( ( member_real @ X4 @ I5 )
         => ( ( ord_less_eq_real @ X4 @ Y5 )
           => ( member_real @ Y5 @ I5 ) ) ) ) ) ).

% up_ray_def
thf(fact_519_up__ray__def,axiom,
    ( up_ray_int
    = ( ^ [I5: set_int] :
        ! [X4: int,Y5: int] :
          ( ( member_int @ X4 @ I5 )
         => ( ( ord_less_eq_int @ X4 @ Y5 )
           => ( member_int @ Y5 @ I5 ) ) ) ) ) ).

% up_ray_def
thf(fact_520_Greatest__equality,axiom,
    ! [P: b > $o,X: b] :
      ( ( P @ X )
     => ( ! [Y: b] :
            ( ( P @ Y )
           => ( ord_less_eq_b @ Y @ X ) )
       => ( ( order_Greatest_b @ P )
          = X ) ) ) ).

% Greatest_equality
thf(fact_521_Greatest__equality,axiom,
    ! [P: real > $o,X: real] :
      ( ( P @ X )
     => ( ! [Y: real] :
            ( ( P @ Y )
           => ( ord_less_eq_real @ Y @ X ) )
       => ( ( order_Greatest_real @ P )
          = X ) ) ) ).

% Greatest_equality
thf(fact_522_Greatest__equality,axiom,
    ! [P: int > $o,X: int] :
      ( ( P @ X )
     => ( ! [Y: int] :
            ( ( P @ Y )
           => ( ord_less_eq_int @ Y @ X ) )
       => ( ( order_Greatest_int @ P )
          = X ) ) ) ).

% Greatest_equality
thf(fact_523_Greatest__equality,axiom,
    ! [P: nat > $o,X: nat] :
      ( ( P @ X )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ X ) )
       => ( ( order_Greatest_nat @ P )
          = X ) ) ) ).

% Greatest_equality
thf(fact_524_GreatestI2__order,axiom,
    ! [P: b > $o,X: b,Q: b > $o] :
      ( ( P @ X )
     => ( ! [Y: b] :
            ( ( P @ Y )
           => ( ord_less_eq_b @ Y @ X ) )
       => ( ! [X3: b] :
              ( ( P @ X3 )
             => ( ! [Y6: b] :
                    ( ( P @ Y6 )
                   => ( ord_less_eq_b @ Y6 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_Greatest_b @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_525_GreatestI2__order,axiom,
    ! [P: real > $o,X: real,Q: real > $o] :
      ( ( P @ X )
     => ( ! [Y: real] :
            ( ( P @ Y )
           => ( ord_less_eq_real @ Y @ X ) )
       => ( ! [X3: real] :
              ( ( P @ X3 )
             => ( ! [Y6: real] :
                    ( ( P @ Y6 )
                   => ( ord_less_eq_real @ Y6 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_Greatest_real @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_526_GreatestI2__order,axiom,
    ! [P: int > $o,X: int,Q: int > $o] :
      ( ( P @ X )
     => ( ! [Y: int] :
            ( ( P @ Y )
           => ( ord_less_eq_int @ Y @ X ) )
       => ( ! [X3: int] :
              ( ( P @ X3 )
             => ( ! [Y6: int] :
                    ( ( P @ Y6 )
                   => ( ord_less_eq_int @ Y6 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_Greatest_int @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_527_GreatestI2__order,axiom,
    ! [P: nat > $o,X: nat,Q: nat > $o] :
      ( ( P @ X )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ X ) )
       => ( ! [X3: nat] :
              ( ( P @ X3 )
             => ( ! [Y6: nat] :
                    ( ( P @ Y6 )
                   => ( ord_less_eq_nat @ Y6 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_Greatest_nat @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_528_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_529_le__trans,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( ord_less_eq_nat @ J3 @ K )
       => ( ord_less_eq_nat @ I2 @ K ) ) ) ).

% le_trans
thf(fact_530_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_531_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_532_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_533_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y6: nat] :
                ( ( P @ Y6 )
               => ( ord_less_eq_nat @ Y6 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_534_GreatestI__ex__nat,axiom,
    ! [P: nat > $o,B: nat] :
      ( ? [X_12: nat] : ( P @ X_12 )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_ex_nat
thf(fact_535_Greatest__le__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ B ) )
       => ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).

% Greatest_le_nat
thf(fact_536_GreatestI__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y: nat] :
            ( ( P @ Y )
           => ( ord_less_eq_nat @ Y @ B ) )
       => ( P @ ( order_Greatest_nat @ P ) ) ) ) ).

% GreatestI_nat
thf(fact_537_verit__comp__simplify1_I2_J,axiom,
    ! [A: b] : ( ord_less_eq_b @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_538_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_539_verit__comp__simplify1_I2_J,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_540_verit__comp__simplify1_I2_J,axiom,
    ! [A: int] : ( ord_less_eq_int @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_541_verit__la__disequality,axiom,
    ! [A: b,B: b] :
      ( ( A = B )
      | ~ ( ord_less_eq_b @ A @ B )
      | ~ ( ord_less_eq_b @ B @ A ) ) ).

% verit_la_disequality
thf(fact_542_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_543_verit__la__disequality,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
      | ~ ( ord_less_eq_real @ A @ B )
      | ~ ( ord_less_eq_real @ B @ A ) ) ).

% verit_la_disequality
thf(fact_544_verit__la__disequality,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
      | ~ ( ord_less_eq_int @ A @ B )
      | ~ ( ord_less_eq_int @ B @ A ) ) ).

% verit_la_disequality
thf(fact_545_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ~ ( ord_less_nat @ T @ X6 ) ) ).

% minf(7)
thf(fact_546_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ~ ( ord_less_real @ T @ X6 ) ) ).

% minf(7)
thf(fact_547_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ~ ( ord_less_int @ T @ X6 ) ) ).

% minf(7)
thf(fact_548_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ( ord_less_nat @ X6 @ T ) ) ).

% minf(5)
thf(fact_549_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ( ord_less_real @ X6 @ T ) ) ).

% minf(5)
thf(fact_550_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ( ord_less_int @ X6 @ T ) ) ).

% minf(5)
thf(fact_551_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_552_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_553_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_554_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_555_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_556_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_557_minf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z5: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z5 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z5 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ X6 @ Z )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_558_minf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z5: real] :
        ! [X3: real] :
          ( ( ord_less_real @ X3 @ Z5 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z5 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: real] :
          ! [X6: real] :
            ( ( ord_less_real @ X6 @ Z )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_559_minf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z5: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z5 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z5 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: int] :
          ! [X6: int] :
            ( ( ord_less_int @ X6 @ Z )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_560_minf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z5: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z5 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z5 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ X6 @ Z )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_561_minf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z5: real] :
        ! [X3: real] :
          ( ( ord_less_real @ X3 @ Z5 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z5 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: real] :
          ! [X6: real] :
            ( ( ord_less_real @ X6 @ Z )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_562_minf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z5: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z5 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z5 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: int] :
          ! [X6: int] :
            ( ( ord_less_int @ X6 @ Z )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_563_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ( ord_less_nat @ T @ X6 ) ) ).

% pinf(7)
thf(fact_564_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ( ord_less_real @ T @ X6 ) ) ).

% pinf(7)
thf(fact_565_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ( ord_less_int @ T @ X6 ) ) ).

% pinf(7)
thf(fact_566_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ~ ( ord_less_nat @ X6 @ T ) ) ).

% pinf(5)
thf(fact_567_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ~ ( ord_less_real @ X6 @ T ) ) ).

% pinf(5)
thf(fact_568_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ~ ( ord_less_int @ X6 @ T ) ) ).

% pinf(5)
thf(fact_569_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_570_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_571_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_572_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_573_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_574_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_575_pinf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z5: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z5 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z5 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ Z @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_576_pinf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z5: real] :
        ! [X3: real] :
          ( ( ord_less_real @ Z5 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z5 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: real] :
          ! [X6: real] :
            ( ( ord_less_real @ Z @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_577_pinf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z5: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z5 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z5 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: int] :
          ! [X6: int] :
            ( ( ord_less_int @ Z @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_578_pinf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z5: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z5 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z5 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ Z @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_579_pinf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z5: real] :
        ! [X3: real] :
          ( ( ord_less_real @ Z5 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z5 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: real] :
          ! [X6: real] :
            ( ( ord_less_real @ Z @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_580_pinf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z5: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z5 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z5: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z5 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z: int] :
          ! [X6: int] :
            ( ( ord_less_int @ Z @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_581_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_582_verit__comp__simplify1_I1_J,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_583_verit__comp__simplify1_I1_J,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_584_ex__gt__or__lt,axiom,
    ! [A: real] :
    ? [B3: real] :
      ( ( ord_less_real @ A @ B3 )
      | ( ord_less_real @ B3 @ A ) ) ).

% ex_gt_or_lt
thf(fact_585_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I: nat] :
                  ( ( ord_less_nat @ K2 @ I )
                 => ( P @ I ) )
             => ( P @ K2 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_586_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N )
            & ! [I: nat] :
                ( ( ord_less_eq_nat @ I @ K2 )
               => ~ ( P @ I ) )
            & ( P @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_587_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M7: nat] :
      ( ( P @ X )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M7 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X6: nat] :
                    ( ( P @ X6 )
                   => ( ord_less_eq_nat @ X6 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_588_seq__mono__lemma,axiom,
    ! [M: nat,D2: nat > real,E: nat > real] :
      ( ! [N3: nat] :
          ( ( ord_less_eq_nat @ M @ N3 )
         => ( ord_less_real @ ( D2 @ N3 ) @ ( E @ N3 ) ) )
     => ( ! [N3: nat] :
            ( ( ord_less_eq_nat @ M @ N3 )
           => ( ord_less_eq_real @ ( E @ N3 ) @ ( E @ M ) ) )
       => ! [N5: nat] :
            ( ( ord_less_eq_nat @ M @ N5 )
           => ( ord_less_real @ ( D2 @ N5 ) @ ( E @ M ) ) ) ) ) ).

% seq_mono_lemma
thf(fact_589_linordered__field__no__lb,axiom,
    ! [X6: real] :
    ? [Y: real] : ( ord_less_real @ Y @ X6 ) ).

% linordered_field_no_lb
thf(fact_590_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_591_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_592_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_593_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_594_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_595_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_596_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_597_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% not0_implies_Suc
thf(fact_598_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_599_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_600_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_601_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_602_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y: nat] : ( P @ zero_zero_nat @ ( suc @ Y ) )
       => ( ! [X3: nat,Y: nat] :
              ( ( P @ X3 @ Y )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_603_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( P @ ( suc @ N3 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_604_old_Onat_Oexhaust,axiom,
    ! [Y3: nat] :
      ( ( Y3 != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y3
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_605_nat_OdiscI,axiom,
    ! [Nat: nat,X2: nat] :
      ( ( Nat
        = ( suc @ X2 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_606_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_607_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_608_nat_Odistinct_I1_J,axiom,
    ! [X2: nat] :
      ( zero_zero_nat
     != ( suc @ X2 ) ) ).

% nat.distinct(1)
thf(fact_609_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_610_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_611_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_612_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_613_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N3 )
                  & ~ ( P @ M2 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_614_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_615_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_616_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_617_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_618_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_619_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_620_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J4: nat] :
            ( ( M
              = ( suc @ J4 ) )
            & ( ord_less_nat @ J4 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_621_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M4: nat] :
          ( N
          = ( suc @ M4 ) ) ) ).

% gr0_implies_Suc
thf(fact_622_All__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ ( suc @ I4 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_623_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M5: nat] :
            ( N
            = ( suc @ M5 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_624_Ex__less__Suc2,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ ( suc @ I4 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_625_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I: nat] :
                ( ( ord_less_nat @ I @ K2 )
               => ~ ( P @ I ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_626_linordered__field__no__ub,axiom,
    ! [X6: real] :
    ? [X_1: real] : ( ord_less_real @ X6 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_627_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_628_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_629_list__decode_Ocases,axiom,
    ! [X: nat] :
      ( ( X != zero_zero_nat )
     => ~ ! [N3: nat] :
            ( X
           != ( suc @ N3 ) ) ) ).

% list_decode.cases
thf(fact_630_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_12: nat] : ( P @ X_12 )
       => ? [N3: nat] :
            ( ~ ( P @ N3 )
            & ( P @ ( suc @ N3 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_631_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X4: real,Y5: real] :
          ( ( ord_less_real @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% less_eq_real_def
thf(fact_632_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_633_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_634_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_635_complete__real,axiom,
    ! [S2: set_real] :
      ( ? [X6: real] : ( member_real @ X6 @ S2 )
     => ( ? [Z5: real] :
          ! [X3: real] :
            ( ( member_real @ X3 @ S2 )
           => ( ord_less_eq_real @ X3 @ Z5 ) )
       => ? [Y: real] :
            ( ! [X6: real] :
                ( ( member_real @ X6 @ S2 )
               => ( ord_less_eq_real @ X6 @ Y ) )
            & ! [Z5: real] :
                ( ! [X3: real] :
                    ( ( member_real @ X3 @ S2 )
                   => ( ord_less_eq_real @ X3 @ Z5 ) )
               => ( ord_less_eq_real @ Y @ Z5 ) ) ) ) ) ).

% complete_real
thf(fact_636_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_637_field__lbound__gt__zero,axiom,
    ! [D1: real,D22: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D22 )
       => ? [E2: real] :
            ( ( ord_less_real @ zero_zero_real @ E2 )
            & ( ord_less_real @ E2 @ D1 )
            & ( ord_less_real @ E2 @ D22 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_638_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_639_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_640_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_641_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_642_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_643_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_644_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_645_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_646_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_647_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_648_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_649_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_650_of__nat__0__less__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% of_nat_0_less_iff
thf(fact_651_harm__pos__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( harmonic_harm_real @ N ) )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% harm_pos_iff
thf(fact_652_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_653_of__nat__eq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = ( semiri5074537144036343181t_real @ N ) )
      = ( M = N ) ) ).

% of_nat_eq_iff
thf(fact_654_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M )
        = zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_655_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_656_of__nat__eq__0__iff,axiom,
    ! [M: nat] :
      ( ( ( semiri5074537144036343181t_real @ M )
        = zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_657_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_658_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_659_of__nat__0__eq__iff,axiom,
    ! [N: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N ) )
      = ( zero_zero_nat = N ) ) ).

% of_nat_0_eq_iff
thf(fact_660_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_661_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_662_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_663_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_664_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_665_of__nat__le__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% of_nat_le_iff
thf(fact_666_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_667_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_668_of__nat__less__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_iff
thf(fact_669_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_670_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_671_of__nat__le__0__iff,axiom,
    ! [M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
      = ( M = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_672_real__arch__simple,axiom,
    ! [X: real] :
    ? [N3: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ).

% real_arch_simple
thf(fact_673_reals__Archimedean2,axiom,
    ! [X: real] :
    ? [N3: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ).

% reals_Archimedean2
thf(fact_674_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_675_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_676_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_677_harm__nonneg,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( harmonic_harm_real @ N ) ) ).

% harm_nonneg
thf(fact_678_harm__expand_I1_J,axiom,
    ( ( harmonic_harm_real @ zero_zero_nat )
    = zero_zero_real ) ).

% harm_expand(1)
thf(fact_679_harm__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_real @ ( harmonic_harm_real @ M ) @ ( harmonic_harm_real @ N ) ) ) ).

% harm_mono
thf(fact_680_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).

% of_nat_0_le_iff
thf(fact_681_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).

% of_nat_0_le_iff
thf(fact_682_of__nat__0__le__iff,axiom,
    ! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).

% of_nat_0_le_iff
thf(fact_683_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_684_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_685_of__nat__less__0__iff,axiom,
    ! [M: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_686_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
     != zero_zero_nat ) ).

% of_nat_neq_0
thf(fact_687_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
     != zero_zero_int ) ).

% of_nat_neq_0
thf(fact_688_of__nat__neq__0,axiom,
    ! [N: nat] :
      ( ( semiri5074537144036343181t_real @ ( suc @ N ) )
     != zero_zero_real ) ).

% of_nat_neq_0
thf(fact_689_of__nat__mono,axiom,
    ! [I2: nat,J3: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I2 ) @ ( semiri1316708129612266289at_nat @ J3 ) ) ) ).

% of_nat_mono
thf(fact_690_of__nat__mono,axiom,
    ! [I2: nat,J3: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I2 ) @ ( semiri5074537144036343181t_real @ J3 ) ) ) ).

% of_nat_mono
thf(fact_691_of__nat__mono,axiom,
    ! [I2: nat,J3: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I2 ) @ ( semiri1314217659103216013at_int @ J3 ) ) ) ).

% of_nat_mono
thf(fact_692_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_693_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_694_of__nat__less__imp__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% of_nat_less_imp_less
thf(fact_695_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_696_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_697_less__imp__of__nat__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% less_imp_of_nat_less
thf(fact_698_harm__pos,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_real @ zero_zero_real @ ( harmonic_harm_real @ N ) ) ) ).

% harm_pos
thf(fact_699_pos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ~ ! [N3: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% pos_int_cases
thf(fact_700_zero__less__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_int @ zero_zero_int @ K )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( K
            = ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_701_bgauge__existence__lemma,axiom,
    ! [S: set_real,Q3: real > real > $o] :
      ( ( ! [X4: real] :
            ( ( member_real @ X4 @ S )
           => ? [D3: real] :
                ( ( ord_less_real @ zero_zero_real @ D3 )
                & ( Q3 @ D3 @ X4 ) ) ) )
      = ( ! [X4: real] :
          ? [D3: real] :
            ( ( ord_less_real @ zero_zero_real @ D3 )
            & ( ( member_real @ X4 @ S )
             => ( Q3 @ D3 @ X4 ) ) ) ) ) ).

% bgauge_existence_lemma
thf(fact_702_ex__inverse__of__nat__less,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) @ X ) ) ) ).

% ex_inverse_of_nat_less
thf(fact_703_real__archimedian__rdiv__eq__0,axiom,
    ! [X: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ! [M4: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ M4 )
             => ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M4 ) @ X ) @ C ) )
         => ( X = zero_zero_real ) ) ) ) ).

% real_archimedian_rdiv_eq_0
thf(fact_704_inverse__eq__iff__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
      = ( A = B ) ) ).

% inverse_eq_iff_eq
thf(fact_705_inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
      = A ) ).

% inverse_inverse_eq
thf(fact_706_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).

% of_nat_mult
thf(fact_707_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).

% of_nat_mult
thf(fact_708_of__nat__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).

% of_nat_mult
thf(fact_709_inverse__nonzero__iff__nonzero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% inverse_nonzero_iff_nonzero
thf(fact_710_inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% inverse_zero
thf(fact_711_inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
      = ( times_times_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) ) ) ).

% inverse_mult_distrib
thf(fact_712_inverse__nonpositive__iff__nonpositive,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% inverse_nonpositive_iff_nonpositive
thf(fact_713_inverse__nonnegative__iff__nonnegative,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% inverse_nonnegative_iff_nonnegative
thf(fact_714_inverse__less__iff__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less
thf(fact_715_inverse__less__iff__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_real @ B @ A ) ) ) ) ).

% inverse_less_iff_less_neg
thf(fact_716_inverse__negative__iff__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% inverse_negative_iff_negative
thf(fact_717_inverse__positive__iff__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% inverse_positive_iff_positive
thf(fact_718_inverse__le__iff__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le
thf(fact_719_inverse__le__iff__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
          = ( ord_less_eq_real @ B @ A ) ) ) ) ).

% inverse_le_iff_le_neg
thf(fact_720_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_721_nonneg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ~ ! [N3: nat] :
            ( K
           != ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% nonneg_int_cases
thf(fact_722_zero__le__imp__eq__int,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K )
     => ? [N3: nat] :
          ( K
          = ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_723_imp__le__cong,axiom,
    ! [X: int,X7: int,P: $o,P4: $o] :
      ( ( X = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
           => P4 ) ) ) ) ).

% imp_le_cong
thf(fact_724_conj__le__cong,axiom,
    ! [X: int,X7: int,P: $o,P4: $o] :
      ( ( X = X7 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X7 )
            & P4 ) ) ) ) ).

% conj_le_cong
thf(fact_725_nonzero__inverse__mult__distrib,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( inverse_inverse_real @ ( times_times_real @ A @ B ) )
          = ( times_times_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ) ).

% nonzero_inverse_mult_distrib
thf(fact_726_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_727_int__if,axiom,
    ! [P: $o,A: nat,B: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ A ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% int_if
thf(fact_728_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( semiri1314217659103216013at_int @ A3 )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_729_int__int__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( semiri1314217659103216013at_int @ M )
        = ( semiri1314217659103216013at_int @ N ) )
      = ( M = N ) ) ).

% int_int_eq
thf(fact_730_mult__inverse__of__nat__commute,axiom,
    ! [Xa: nat,X: real] :
      ( ( times_times_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa ) ) @ X )
      = ( times_times_real @ X @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ Xa ) ) ) ) ).

% mult_inverse_of_nat_commute
thf(fact_731_inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( A = B ) ) ).

% inverse_eq_imp_eq
thf(fact_732_mult__commute__imp__mult__inverse__commute,axiom,
    ! [Y3: real,X: real] :
      ( ( ( times_times_real @ Y3 @ X )
        = ( times_times_real @ X @ Y3 ) )
     => ( ( times_times_real @ ( inverse_inverse_real @ Y3 ) @ X )
        = ( times_times_real @ X @ ( inverse_inverse_real @ Y3 ) ) ) ) ).

% mult_commute_imp_mult_inverse_commute
thf(fact_733_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_734_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_735_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_736_mult_Oassoc,axiom,
    ! [A: real,B: real,C: real] :
      ( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.assoc
thf(fact_737_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_738_mult_Oassoc,axiom,
    ! [A: int,B: int,C: int] :
      ( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.assoc
thf(fact_739_mult_Ocommute,axiom,
    ( times_times_real
    = ( ^ [A3: real,B2: real] : ( times_times_real @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_740_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_741_mult_Ocommute,axiom,
    ( times_times_int
    = ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).

% mult.commute
thf(fact_742_mult_Oleft__commute,axiom,
    ! [B: real,A: real,C: real] :
      ( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
      = ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_743_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_744_mult_Oleft__commute,axiom,
    ! [B: int,A: int,C: int] :
      ( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
      = ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_745_nonzero__imp__inverse__nonzero,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ A )
       != zero_zero_real ) ) ).

% nonzero_imp_inverse_nonzero
thf(fact_746_nonzero__inverse__inverse__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( inverse_inverse_real @ A ) )
        = A ) ) ).

% nonzero_inverse_inverse_eq
thf(fact_747_nonzero__inverse__eq__imp__eq,axiom,
    ! [A: real,B: real] :
      ( ( ( inverse_inverse_real @ A )
        = ( inverse_inverse_real @ B ) )
     => ( ( A != zero_zero_real )
       => ( ( B != zero_zero_real )
         => ( A = B ) ) ) ) ).

% nonzero_inverse_eq_imp_eq
thf(fact_748_inverse__zero__imp__zero,axiom,
    ! [A: real] :
      ( ( ( inverse_inverse_real @ A )
        = zero_zero_real )
     => ( A = zero_zero_real ) ) ).

% inverse_zero_imp_zero
thf(fact_749_field__class_Ofield__inverse__zero,axiom,
    ( ( inverse_inverse_real @ zero_zero_real )
    = zero_zero_real ) ).

% field_class.field_inverse_zero
thf(fact_750_mult__of__nat__commute,axiom,
    ! [X: nat,Y3: nat] :
      ( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y3 )
      = ( times_times_nat @ Y3 @ ( semiri1316708129612266289at_nat @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_751_mult__of__nat__commute,axiom,
    ! [X: nat,Y3: int] :
      ( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y3 )
      = ( times_times_int @ Y3 @ ( semiri1314217659103216013at_int @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_752_mult__of__nat__commute,axiom,
    ! [X: nat,Y3: real] :
      ( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y3 )
      = ( times_times_real @ Y3 @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% mult_of_nat_commute
thf(fact_753_inverse__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_eq_real @ B @ A ) )
        & ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
         => ( ord_less_eq_real @ A @ B ) ) ) ) ).

% inverse_le_iff
thf(fact_754_inverse__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
         => ( ord_less_real @ B @ A ) )
        & ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
         => ( ord_less_real @ A @ B ) ) ) ) ).

% inverse_less_iff
thf(fact_755_inverse__less__imp__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less
thf(fact_756_less__imp__inverse__less,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less
thf(fact_757_inverse__less__imp__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ B @ A ) ) ) ).

% inverse_less_imp_less_neg
thf(fact_758_less__imp__inverse__less__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% less_imp_inverse_less_neg
thf(fact_759_inverse__negative__imp__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ A @ zero_zero_real ) ) ) ).

% inverse_negative_imp_negative
thf(fact_760_inverse__positive__imp__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) )
     => ( ( A != zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ A ) ) ) ).

% inverse_positive_imp_positive
thf(fact_761_negative__imp__inverse__negative,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ord_less_real @ ( inverse_inverse_real @ A ) @ zero_zero_real ) ) ).

% negative_imp_inverse_negative
thf(fact_762_positive__imp__inverse__positive,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ A ) ) ) ).

% positive_imp_inverse_positive
thf(fact_763_reals__Archimedean3,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ! [Y6: real] :
        ? [N3: nat] : ( ord_less_real @ Y6 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).

% reals_Archimedean3
thf(fact_764_le__imp__inverse__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le_neg
thf(fact_765_inverse__le__imp__le__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le_neg
thf(fact_766_le__imp__inverse__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ ( inverse_inverse_real @ B ) @ ( inverse_inverse_real @ A ) ) ) ) ).

% le_imp_inverse_le
thf(fact_767_inverse__le__imp__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( inverse_inverse_real @ A ) @ ( inverse_inverse_real @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_eq_real @ B @ A ) ) ) ).

% inverse_le_imp_le
thf(fact_768_real__arch__inverse,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
      = ( ? [N4: nat] :
            ( ( N4 != zero_zero_nat )
            & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N4 ) ) )
            & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N4 ) ) @ E ) ) ) ) ).

% real_arch_inverse
thf(fact_769_forall__pos__mono,axiom,
    ! [P: real > $o,E: real] :
      ( ! [D4: real,E2: real] :
          ( ( ord_less_real @ D4 @ E2 )
         => ( ( P @ D4 )
           => ( P @ E2 ) ) )
     => ( ! [N3: nat] :
            ( ( N3 != zero_zero_nat )
           => ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P @ E ) ) ) ) ).

% forall_pos_mono
thf(fact_770_forall__pos__mono__1,axiom,
    ! [P: real > $o,E: real] :
      ( ! [D4: real,E2: real] :
          ( ( ord_less_real @ D4 @ E2 )
         => ( ( P @ D4 )
           => ( P @ E2 ) ) )
     => ( ! [N3: nat] : ( P @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) )
       => ( ( ord_less_real @ zero_zero_real @ E )
         => ( P @ E ) ) ) ) ).

% forall_pos_mono_1
thf(fact_771_ex__less__of__nat__mult,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N3: nat] : ( ord_less_real @ Y3 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).

% ex_less_of_nat_mult
thf(fact_772_zle__int,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% zle_int
thf(fact_773_reals__Archimedean,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ? [N3: nat] : ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N3 ) ) ) @ X ) ) ).

% reals_Archimedean
thf(fact_774_not__real__square__gt__zero,axiom,
    ! [X: real] :
      ( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
      = ( X = zero_zero_real ) ) ).

% not_real_square_gt_zero
thf(fact_775_mult__zero__left,axiom,
    ! [A: real] :
      ( ( times_times_real @ zero_zero_real @ A )
      = zero_zero_real ) ).

% mult_zero_left
thf(fact_776_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_777_mult__zero__left,axiom,
    ! [A: int] :
      ( ( times_times_int @ zero_zero_int @ A )
      = zero_zero_int ) ).

% mult_zero_left
thf(fact_778_mult__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% mult_zero_right
thf(fact_779_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_780_mult__zero__right,axiom,
    ! [A: int] :
      ( ( times_times_int @ A @ zero_zero_int )
      = zero_zero_int ) ).

% mult_zero_right
thf(fact_781_mult__eq__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% mult_eq_0_iff
thf(fact_782_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_783_mult__eq__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
      = ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% mult_eq_0_iff
thf(fact_784_vector__space__over__itself_Oscale__eq__0__iff,axiom,
    ! [A: real,X: real] :
      ( ( ( times_times_real @ A @ X )
        = zero_zero_real )
      = ( ( A = zero_zero_real )
        | ( X = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_eq_0_iff
thf(fact_785_vector__space__over__itself_Oscale__zero__left,axiom,
    ! [X: real] :
      ( ( times_times_real @ zero_zero_real @ X )
      = zero_zero_real ) ).

% vector_space_over_itself.scale_zero_left
thf(fact_786_mult__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ( times_times_real @ A @ C )
        = ( times_times_real @ B @ C ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_787_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_788_mult__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ( times_times_int @ A @ C )
        = ( times_times_int @ B @ C ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_789_mult__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ( times_times_real @ C @ A )
        = ( times_times_real @ C @ B ) )
      = ( ( C = zero_zero_real )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_790_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_791_mult__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ( times_times_int @ C @ A )
        = ( times_times_int @ C @ B ) )
      = ( ( C = zero_zero_int )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_792_vector__space__over__itself_Oscale__cancel__right,axiom,
    ! [A: real,X: real,B: real] :
      ( ( ( times_times_real @ A @ X )
        = ( times_times_real @ B @ X ) )
      = ( ( A = B )
        | ( X = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_cancel_right
thf(fact_793_vector__space__over__itself_Oscale__cancel__left,axiom,
    ! [A: real,X: real,Y3: real] :
      ( ( ( times_times_real @ A @ X )
        = ( times_times_real @ A @ Y3 ) )
      = ( ( X = Y3 )
        | ( A = zero_zero_real ) ) ) ).

% vector_space_over_itself.scale_cancel_left
thf(fact_794_vector__space__over__itself_Oscale__zero__right,axiom,
    ! [A: real] :
      ( ( times_times_real @ A @ zero_zero_real )
      = zero_zero_real ) ).

% vector_space_over_itself.scale_zero_right
thf(fact_795_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_796_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_797_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_798_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_799_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_800_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_801_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_802_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_803_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_804_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_805_int__ops_I7_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(7)
thf(fact_806_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_807_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_808_mult__le__mono2,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J3 ) ) ) ).

% mult_le_mono2
thf(fact_809_mult__le__mono1,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J3 @ K ) ) ) ).

% mult_le_mono1
thf(fact_810_mult__le__mono,axiom,
    ! [I2: nat,J3: nat,K: nat,L2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( ord_less_eq_nat @ K @ L2 )
       => ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J3 @ L2 ) ) ) ) ).

% mult_le_mono
thf(fact_811_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_812_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_813_times__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( times_times_int @ K @ zero_zero_int )
      = zero_zero_int ) ).

% times_int_code(1)
thf(fact_814_times__int__code_I2_J,axiom,
    ! [L2: int] :
      ( ( times_times_int @ zero_zero_int @ L2 )
      = zero_zero_int ) ).

% times_int_code(2)
thf(fact_815_mult__less__mono2,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J3 ) ) ) ) ).

% mult_less_mono2
thf(fact_816_mult__less__mono1,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J3 @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_817_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_818_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_819_zmult__zless__mono2,axiom,
    ! [I2: int,J3: int,K: int] :
      ( ( ord_less_int @ I2 @ J3 )
     => ( ( ord_less_int @ zero_zero_int @ K )
       => ( ord_less_int @ ( times_times_int @ K @ I2 ) @ ( times_times_int @ K @ J3 ) ) ) ) ).

% zmult_zless_mono2
thf(fact_820_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y3: real] :
      ( ( X != Y3 )
     => ( ~ ( ord_less_real @ X @ Y3 )
       => ( ord_less_real @ Y3 @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_821_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y3: int] :
      ( ( X != Y3 )
     => ( ~ ( ord_less_int @ X @ Y3 )
       => ( ord_less_int @ Y3 @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_822_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_823_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_824_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_825_zmult__zless__mono2__lemma,axiom,
    ! [I2: int,J3: int,K: nat] :
      ( ( ord_less_int @ I2 @ J3 )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I2 ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J3 ) ) ) ) ).

% zmult_zless_mono2_lemma
thf(fact_826_mult__right__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ A @ C )
          = ( times_times_real @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_827_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_828_mult__right__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ A @ C )
          = ( times_times_int @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_829_mult__left__cancel,axiom,
    ! [C: real,A: real,B: real] :
      ( ( C != zero_zero_real )
     => ( ( ( times_times_real @ C @ A )
          = ( times_times_real @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_830_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_831_mult__left__cancel,axiom,
    ! [C: int,A: int,B: int] :
      ( ( C != zero_zero_int )
     => ( ( ( times_times_int @ C @ A )
          = ( times_times_int @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_832_vector__space__over__itself_Oscale__right__imp__eq,axiom,
    ! [X: real,A: real,B: real] :
      ( ( X != zero_zero_real )
     => ( ( ( times_times_real @ A @ X )
          = ( times_times_real @ B @ X ) )
       => ( A = B ) ) ) ).

% vector_space_over_itself.scale_right_imp_eq
thf(fact_833_vector__space__over__itself_Oscale__left__imp__eq,axiom,
    ! [A: real,X: real,Y3: real] :
      ( ( A != zero_zero_real )
     => ( ( ( times_times_real @ A @ X )
          = ( times_times_real @ A @ Y3 ) )
       => ( X = Y3 ) ) ) ).

% vector_space_over_itself.scale_left_imp_eq
thf(fact_834_no__zero__divisors,axiom,
    ! [A: real,B: real] :
      ( ( A != zero_zero_real )
     => ( ( B != zero_zero_real )
       => ( ( times_times_real @ A @ B )
         != zero_zero_real ) ) ) ).

% no_zero_divisors
thf(fact_835_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_836_no__zero__divisors,axiom,
    ! [A: int,B: int] :
      ( ( A != zero_zero_int )
     => ( ( B != zero_zero_int )
       => ( ( times_times_int @ A @ B )
         != zero_zero_int ) ) ) ).

% no_zero_divisors
thf(fact_837_divisors__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
        = zero_zero_real )
     => ( ( A = zero_zero_real )
        | ( B = zero_zero_real ) ) ) ).

% divisors_zero
thf(fact_838_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_839_divisors__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
        = zero_zero_int )
     => ( ( A = zero_zero_int )
        | ( B = zero_zero_int ) ) ) ).

% divisors_zero
thf(fact_840_mult__not__zero,axiom,
    ! [A: real,B: real] :
      ( ( ( times_times_real @ A @ B )
       != zero_zero_real )
     => ( ( A != zero_zero_real )
        & ( B != zero_zero_real ) ) ) ).

% mult_not_zero
thf(fact_841_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_842_mult__not__zero,axiom,
    ! [A: int,B: int] :
      ( ( ( times_times_int @ A @ B )
       != zero_zero_int )
     => ( ( A != zero_zero_int )
        & ( B != zero_zero_int ) ) ) ).

% mult_not_zero
thf(fact_843_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_mono
thf(fact_844_mult__mono,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_mono
thf(fact_845_mult__mono,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_mono
thf(fact_846_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_847_mult__mono_H,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_848_mult__mono_H,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_849_zero__le__square,axiom,
    ! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).

% zero_le_square
thf(fact_850_zero__le__square,axiom,
    ! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).

% zero_le_square
thf(fact_851_split__mult__pos__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_852_split__mult__pos__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_853_mult__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_854_mult__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_855_mult__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_856_mult__nonpos__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_857_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_858_mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_859_mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_860_mult__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_861_mult__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_eq_int @ B @ A )
     => ( ( ord_less_eq_int @ C @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_862_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_863_mult__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_864_mult__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_865_mult__le__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_866_mult__le__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_867_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_868_split__mult__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ B @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B ) ) )
     => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).

% split_mult_neg_le
thf(fact_869_split__mult__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ B @ zero_zero_int ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ zero_zero_int @ B ) ) )
     => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).

% split_mult_neg_le
thf(fact_870_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_871_mult__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_872_mult__nonneg__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_873_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_874_mult__nonneg__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos
thf(fact_875_mult__nonneg__nonpos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos
thf(fact_876_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_877_mult__nonpos__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_nonpos_nonneg
thf(fact_878_mult__nonpos__nonneg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ B )
       => ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_nonpos_nonneg
thf(fact_879_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_880_mult__nonneg__nonpos2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_881_mult__nonneg__nonpos2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A )
     => ( ( ord_less_eq_int @ B @ zero_zero_int )
       => ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_882_zero__le__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A )
          & ( ord_less_eq_real @ zero_zero_real @ B ) )
        | ( ( ord_less_eq_real @ A @ zero_zero_real )
          & ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).

% zero_le_mult_iff
thf(fact_883_zero__le__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ A )
          & ( ord_less_eq_int @ zero_zero_int @ B ) )
        | ( ( ord_less_eq_int @ A @ zero_zero_int )
          & ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).

% zero_le_mult_iff
thf(fact_884_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_885_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_886_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_887_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_888_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_889_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_890_mult__less__cancel__right__disj,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_891_mult__less__cancel__right__disj,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right_disj
thf(fact_892_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_893_mult__strict__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_894_mult__strict__right__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_895_mult__strict__right__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_896_mult__strict__right__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).

% mult_strict_right_mono_neg
thf(fact_897_mult__less__cancel__left__disj,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
          & ( ord_less_real @ A @ B ) )
        | ( ( ord_less_real @ C @ zero_zero_real )
          & ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_898_mult__less__cancel__left__disj,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
          & ( ord_less_int @ A @ B ) )
        | ( ( ord_less_int @ C @ zero_zero_int )
          & ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left_disj
thf(fact_899_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_900_mult__strict__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_901_mult__strict__left__mono,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_902_mult__strict__left__mono__neg,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_903_mult__strict__left__mono__neg,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ord_less_int @ B @ A )
     => ( ( ord_less_int @ C @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).

% mult_strict_left_mono_neg
thf(fact_904_mult__less__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_905_mult__less__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ A @ B ) ) ) ).

% mult_less_cancel_left_pos
thf(fact_906_mult__less__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_real @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_907_mult__less__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_int @ B @ A ) ) ) ).

% mult_less_cancel_left_neg
thf(fact_908_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_909_zero__less__mult__pos2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_910_zero__less__mult__pos2,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_911_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_912_zero__less__mult__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ( ord_less_real @ zero_zero_real @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_913_zero__less__mult__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ A )
       => ( ord_less_int @ zero_zero_int @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_914_zero__less__mult__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ zero_zero_real @ B ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).

% zero_less_mult_iff
thf(fact_915_zero__less__mult__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ zero_zero_int @ B ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).

% zero_less_mult_iff
thf(fact_916_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_917_mult__pos__neg2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).

% mult_pos_neg2
thf(fact_918_mult__pos__neg2,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).

% mult_pos_neg2
thf(fact_919_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_920_mult__pos__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_921_mult__pos__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_922_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_923_mult__pos__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_pos_neg
thf(fact_924_mult__pos__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ A )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_pos_neg
thf(fact_925_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_926_mult__neg__pos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ B )
       => ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).

% mult_neg_pos
thf(fact_927_mult__neg__pos,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B )
       => ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).

% mult_neg_pos
thf(fact_928_mult__less__0__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A )
          & ( ord_less_real @ B @ zero_zero_real ) )
        | ( ( ord_less_real @ A @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_929_mult__less__0__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
      = ( ( ( ord_less_int @ zero_zero_int @ A )
          & ( ord_less_int @ B @ zero_zero_int ) )
        | ( ( ord_less_int @ A @ zero_zero_int )
          & ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).

% mult_less_0_iff
thf(fact_930_not__square__less__zero,axiom,
    ! [A: real] :
      ~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).

% not_square_less_zero
thf(fact_931_not__square__less__zero,axiom,
    ! [A: int] :
      ~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).

% not_square_less_zero
thf(fact_932_mult__neg__neg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ zero_zero_real )
     => ( ( ord_less_real @ B @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_933_mult__neg__neg,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ zero_zero_int )
     => ( ( ord_less_int @ B @ zero_zero_int )
       => ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).

% mult_neg_neg
thf(fact_934_mult__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_935_mult__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_936_mult__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A @ B ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_937_mult__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_int @ zero_zero_int @ C )
         => ( ord_less_eq_int @ A @ B ) )
        & ( ( ord_less_int @ C @ zero_zero_int )
         => ( ord_less_eq_int @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_938_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_939_mult__left__less__imp__less,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_940_mult__left__less__imp__less,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_941_mult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_942_mult__strict__mono,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D2 )
       => ( ( ord_less_real @ zero_zero_real @ B )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_943_mult__strict__mono,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D2 )
       => ( ( ord_less_int @ zero_zero_int @ B )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_944_mult__less__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_945_mult__less__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_946_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_947_mult__right__less__imp__less,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_real @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_948_mult__right__less__imp__less,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_eq_int @ zero_zero_int @ C )
       => ( ord_less_int @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_949_mult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_950_mult__strict__mono_H,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_real @ C @ D2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_951_mult__strict__mono_H,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_int @ C @ D2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_952_mult__less__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ C )
         => ( ord_less_real @ A @ B ) )
        & ( ( ord_less_eq_real @ C @ zero_zero_real )
         => ( ord_less_real @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_953_mult__less__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ C )
         => ( ord_less_int @ A @ B ) )
        & ( ( ord_less_eq_int @ C @ zero_zero_int )
         => ( ord_less_int @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_954_mult__le__cancel__left__neg,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_955_mult__le__cancel__left__neg,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ C @ zero_zero_int )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_956_mult__le__cancel__left__pos,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
        = ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_957_mult__le__cancel__left__pos,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_int @ zero_zero_int @ C )
     => ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
        = ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_958_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_959_mult__left__le__imp__le,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_960_mult__left__le__imp__le,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_961_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_962_mult__right__le__imp__le,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_963_mult__right__le__imp__le,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
     => ( ( ord_less_int @ zero_zero_int @ C )
       => ( ord_less_eq_int @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_964_mult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_965_mult__le__less__imp__less,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D2 )
       => ( ( ord_less_real @ zero_zero_real @ A )
         => ( ( ord_less_eq_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_966_mult__le__less__imp__less,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ( ord_less_int @ C @ D2 )
       => ( ( ord_less_int @ zero_zero_int @ A )
         => ( ( ord_less_eq_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_967_mult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_968_mult__less__le__imp__less,axiom,
    ! [A: real,B: real,C: real,D2: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D2 )
       => ( ( ord_less_eq_real @ zero_zero_real @ A )
         => ( ( ord_less_real @ zero_zero_real @ C )
           => ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_969_mult__less__le__imp__less,axiom,
    ! [A: int,B: int,C: int,D2: int] :
      ( ( ord_less_int @ A @ B )
     => ( ( ord_less_eq_int @ C @ D2 )
       => ( ( ord_less_eq_int @ zero_zero_int @ A )
         => ( ( ord_less_int @ zero_zero_int @ C )
           => ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_970_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_971_nat__mult__less__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel_disj
thf(fact_972_real__arch__invD,axiom,
    ! [E: real] :
      ( ( ord_less_real @ zero_zero_real @ E )
     => ? [N3: nat] :
          ( ( N3 != zero_zero_nat )
          & ( ord_less_real @ zero_zero_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) )
          & ( ord_less_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ N3 ) ) @ E ) ) ) ).

% real_arch_invD
thf(fact_973_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_974_mult__le__cancel__iff1,axiom,
    ! [Z3: real,X: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ Z3 )
     => ( ( ord_less_eq_real @ ( times_times_real @ X @ Z3 ) @ ( times_times_real @ Y3 @ Z3 ) )
        = ( ord_less_eq_real @ X @ Y3 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_975_mult__le__cancel__iff1,axiom,
    ! [Z3: int,X: int,Y3: int] :
      ( ( ord_less_int @ zero_zero_int @ Z3 )
     => ( ( ord_less_eq_int @ ( times_times_int @ X @ Z3 ) @ ( times_times_int @ Y3 @ Z3 ) )
        = ( ord_less_eq_int @ X @ Y3 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_976_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_977_mult__less__iff1,axiom,
    ! [Z3: real,X: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ Z3 )
     => ( ( ord_less_real @ ( times_times_real @ X @ Z3 ) @ ( times_times_real @ Y3 @ Z3 ) )
        = ( ord_less_real @ X @ Y3 ) ) ) ).

% mult_less_iff1
thf(fact_978_mult__less__iff1,axiom,
    ! [Z3: int,X: int,Y3: int] :
      ( ( ord_less_int @ zero_zero_int @ Z3 )
     => ( ( ord_less_int @ ( times_times_int @ X @ Z3 ) @ ( times_times_int @ Y3 @ Z3 ) )
        = ( ord_less_int @ X @ Y3 ) ) ) ).

% mult_less_iff1
thf(fact_979_nat__mult__eq__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ( times_times_nat @ K @ M )
          = ( times_times_nat @ K @ N ) )
        = ( M = N ) ) ) ).

% nat_mult_eq_cancel1
thf(fact_980_nat__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% nat_mult_less_cancel1
thf(fact_981_mult__le__cancel__iff2,axiom,
    ! [Z3: real,X: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ Z3 )
     => ( ( ord_less_eq_real @ ( times_times_real @ Z3 @ X ) @ ( times_times_real @ Z3 @ Y3 ) )
        = ( ord_less_eq_real @ X @ Y3 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_982_mult__le__cancel__iff2,axiom,
    ! [Z3: int,X: int,Y3: int] :
      ( ( ord_less_int @ zero_zero_int @ Z3 )
     => ( ( ord_less_eq_int @ ( times_times_int @ Z3 @ X ) @ ( times_times_int @ Z3 @ Y3 ) )
        = ( ord_less_eq_int @ X @ Y3 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_983_fps__inverse__zero_H,axiom,
    ( ( ( inverse_inverse_real @ zero_zero_real )
      = zero_zero_real )
   => ( ( invers68952373231134600s_real @ zero_z7760665558314615101s_real )
      = zero_z7760665558314615101s_real ) ) ).

% fps_inverse_zero'
thf(fact_984_mult__delta__left,axiom,
    ! [B: $o,X: real,Y3: real] :
      ( ( B
       => ( ( times_times_real @ ( if_real @ B @ X @ zero_zero_real ) @ Y3 )
          = ( times_times_real @ X @ Y3 ) ) )
      & ( ~ B
       => ( ( times_times_real @ ( if_real @ B @ X @ zero_zero_real ) @ Y3 )
          = zero_zero_real ) ) ) ).

% mult_delta_left
thf(fact_985_mult__delta__left,axiom,
    ! [B: $o,X: nat,Y3: nat] :
      ( ( B
       => ( ( times_times_nat @ ( if_nat @ B @ X @ zero_zero_nat ) @ Y3 )
          = ( times_times_nat @ X @ Y3 ) ) )
      & ( ~ B
       => ( ( times_times_nat @ ( if_nat @ B @ X @ zero_zero_nat ) @ Y3 )
          = zero_zero_nat ) ) ) ).

% mult_delta_left
thf(fact_986_mult__delta__left,axiom,
    ! [B: $o,X: int,Y3: int] :
      ( ( B
       => ( ( times_times_int @ ( if_int @ B @ X @ zero_zero_int ) @ Y3 )
          = ( times_times_int @ X @ Y3 ) ) )
      & ( ~ B
       => ( ( times_times_int @ ( if_int @ B @ X @ zero_zero_int ) @ Y3 )
          = zero_zero_int ) ) ) ).

% mult_delta_left
thf(fact_987_mult__delta__right,axiom,
    ! [B: $o,X: real,Y3: real] :
      ( ( B
       => ( ( times_times_real @ X @ ( if_real @ B @ Y3 @ zero_zero_real ) )
          = ( times_times_real @ X @ Y3 ) ) )
      & ( ~ B
       => ( ( times_times_real @ X @ ( if_real @ B @ Y3 @ zero_zero_real ) )
          = zero_zero_real ) ) ) ).

% mult_delta_right
thf(fact_988_mult__delta__right,axiom,
    ! [B: $o,X: nat,Y3: nat] :
      ( ( B
       => ( ( times_times_nat @ X @ ( if_nat @ B @ Y3 @ zero_zero_nat ) )
          = ( times_times_nat @ X @ Y3 ) ) )
      & ( ~ B
       => ( ( times_times_nat @ X @ ( if_nat @ B @ Y3 @ zero_zero_nat ) )
          = zero_zero_nat ) ) ) ).

% mult_delta_right
thf(fact_989_mult__delta__right,axiom,
    ! [B: $o,X: int,Y3: int] :
      ( ( B
       => ( ( times_times_int @ X @ ( if_int @ B @ Y3 @ zero_zero_int ) )
          = ( times_times_int @ X @ Y3 ) ) )
      & ( ~ B
       => ( ( times_times_int @ X @ ( if_int @ B @ Y3 @ zero_zero_int ) )
          = zero_zero_int ) ) ) ).

% mult_delta_right
thf(fact_990_neg__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_int @ K @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( ( K
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% neg_int_cases
thf(fact_991_neg__equal__iff__equal,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_992_neg__equal__iff__equal,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_993_add_Oinverse__inverse,axiom,
    ! [A: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_994_add_Oinverse__inverse,axiom,
    ! [A: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_995_verit__minus__simplify_I4_J,axiom,
    ! [B: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_996_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_997_neg__le__iff__le,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_998_neg__le__iff__le,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_999_neg__equal__zero,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = A )
      = ( A = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_1000_neg__equal__zero,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = A )
      = ( A = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_1001_equal__neg__zero,axiom,
    ! [A: int] :
      ( ( A
        = ( uminus_uminus_int @ A ) )
      = ( A = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_1002_equal__neg__zero,axiom,
    ! [A: real] :
      ( ( A
        = ( uminus_uminus_real @ A ) )
      = ( A = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_1003_neg__equal__0__iff__equal,axiom,
    ! [A: int] :
      ( ( ( uminus_uminus_int @ A )
        = zero_zero_int )
      = ( A = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_1004_neg__equal__0__iff__equal,axiom,
    ! [A: real] :
      ( ( ( uminus_uminus_real @ A )
        = zero_zero_real )
      = ( A = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_1005_neg__0__equal__iff__equal,axiom,
    ! [A: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A ) )
      = ( zero_zero_int = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_1006_neg__0__equal__iff__equal,axiom,
    ! [A: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A ) )
      = ( zero_zero_real = A ) ) ).

% neg_0_equal_iff_equal
thf(fact_1007_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_1008_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_1009_neg__less__iff__less,axiom,
    ! [B: int,A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_1010_neg__less__iff__less,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ B ) ) ).

% neg_less_iff_less
thf(fact_1011_inverse__minus__eq,axiom,
    ! [A: real] :
      ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
      = ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ).

% inverse_minus_eq
thf(fact_1012_neg__0__le__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_1013_neg__0__le__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_1014_neg__le__0__iff__le,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_le_0_iff_le
thf(fact_1015_neg__le__0__iff__le,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_le_0_iff_le
thf(fact_1016_less__eq__neg__nonpos,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_1017_less__eq__neg__nonpos,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_eq_int @ A @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_1018_neg__less__eq__nonneg,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_1019_neg__less__eq__nonneg,axiom,
    ! [A: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_eq_int @ zero_zero_int @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_1020_neg__less__0__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_0_iff_less
thf(fact_1021_neg__less__0__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_0_iff_less
thf(fact_1022_neg__0__less__iff__less,axiom,
    ! [A: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_1023_neg__0__less__iff__less,axiom,
    ! [A: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_1024_neg__less__pos,axiom,
    ! [A: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
      = ( ord_less_int @ zero_zero_int @ A ) ) ).

% neg_less_pos
thf(fact_1025_neg__less__pos,axiom,
    ! [A: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
      = ( ord_less_real @ zero_zero_real @ A ) ) ).

% neg_less_pos
thf(fact_1026_less__neg__neg,axiom,
    ! [A: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
      = ( ord_less_int @ A @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_1027_less__neg__neg,axiom,
    ! [A: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
      = ( ord_less_real @ A @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_1028_negative__eq__positive,axiom,
    ! [N: nat,M: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
        = ( semiri1314217659103216013at_int @ M ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_1029_negative__zle,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zle
thf(fact_1030_negative__zless,axiom,
    ! [N: nat,M: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).

% negative_zless
thf(fact_1031_le__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% le_minus_iff
thf(fact_1032_le__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% le_minus_iff
thf(fact_1033_minus__le__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_1034_minus__le__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_1035_le__imp__neg__le,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% le_imp_neg_le
thf(fact_1036_le__imp__neg__le,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_eq_int @ A @ B )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% le_imp_neg_le
thf(fact_1037_less__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
      = ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).

% less_minus_iff
thf(fact_1038_less__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
      = ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).

% less_minus_iff
thf(fact_1039_minus__less__iff,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
      = ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_1040_minus__less__iff,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
      = ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).

% minus_less_iff
thf(fact_1041_verit__negate__coefficient_I2_J,axiom,
    ! [A: int,B: int] :
      ( ( ord_less_int @ A @ B )
     => ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_1042_verit__negate__coefficient_I2_J,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_1043_uminus__int__code_I1_J,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% uminus_int_code(1)
thf(fact_1044_int__cases2,axiom,
    ! [Z3: int] :
      ( ! [N3: nat] :
          ( Z3
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( Z3
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% int_cases2
thf(fact_1045_minus__equation__iff,axiom,
    ! [A: int,B: int] :
      ( ( ( uminus_uminus_int @ A )
        = B )
      = ( ( uminus_uminus_int @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_1046_minus__equation__iff,axiom,
    ! [A: real,B: real] :
      ( ( ( uminus_uminus_real @ A )
        = B )
      = ( ( uminus_uminus_real @ B )
        = A ) ) ).

% minus_equation_iff
thf(fact_1047_equation__minus__iff,axiom,
    ! [A: int,B: int] :
      ( ( A
        = ( uminus_uminus_int @ B ) )
      = ( B
        = ( uminus_uminus_int @ A ) ) ) ).

% equation_minus_iff
thf(fact_1048_equation__minus__iff,axiom,
    ! [A: real,B: real] :
      ( ( A
        = ( uminus_uminus_real @ B ) )
      = ( B
        = ( uminus_uminus_real @ A ) ) ) ).

% equation_minus_iff
thf(fact_1049_verit__negate__coefficient_I3_J,axiom,
    ! [A: int,B: int] :
      ( ( A = B )
     => ( ( uminus_uminus_int @ A )
        = ( uminus_uminus_int @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_1050_verit__negate__coefficient_I3_J,axiom,
    ! [A: real,B: real] :
      ( ( A = B )
     => ( ( uminus_uminus_real @ A )
        = ( uminus_uminus_real @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_1051_nonzero__inverse__minus__eq,axiom,
    ! [A: real] :
      ( ( A != zero_zero_real )
     => ( ( inverse_inverse_real @ ( uminus_uminus_real @ A ) )
        = ( uminus_uminus_real @ ( inverse_inverse_real @ A ) ) ) ) ).

% nonzero_inverse_minus_eq
thf(fact_1052_int__of__nat__induct,axiom,
    ! [P: int > $o,Z3: int] :
      ( ! [N3: nat] : ( P @ ( semiri1314217659103216013at_int @ N3 ) )
     => ( ! [N3: nat] : ( P @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) )
       => ( P @ Z3 ) ) ) ).

% int_of_nat_induct
thf(fact_1053_int__cases,axiom,
    ! [Z3: int] :
      ( ! [N3: nat] :
          ( Z3
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( Z3
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).

% int_cases
thf(fact_1054_not__int__zless__negative,axiom,
    ! [N: nat,M: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% not_int_zless_negative
thf(fact_1055_int__cases4,axiom,
    ! [M: int] :
      ( ! [N3: nat] :
          ( M
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( M
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% int_cases4
thf(fact_1056_int__zle__neg,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
      = ( ( N = zero_zero_nat )
        & ( M = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_1057_nonpos__int__cases,axiom,
    ! [K: int] :
      ( ( ord_less_eq_int @ K @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( K
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% nonpos_int_cases
thf(fact_1058_negative__zle__0,axiom,
    ! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_1059_int__cases3,axiom,
    ! [K: int] :
      ( ( K != zero_zero_int )
     => ( ! [N3: nat] :
            ( ( K
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) )
       => ~ ! [N3: nat] :
              ( ( K
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ) ).

% int_cases3
thf(fact_1060_not__zle__0__negative,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ).

% not_zle_0_negative
thf(fact_1061_negD,axiom,
    ! [X: int] :
      ( ( ord_less_int @ X @ zero_zero_int )
     => ? [N3: nat] :
          ( X
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).

% negD
thf(fact_1062_negative__zless__0,axiom,
    ! [N: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_1063_fps__tan__0,axiom,
    ( ( formal3683295897622742886n_real @ zero_zero_real )
    = zero_z7760665558314615101s_real ) ).

% fps_tan_0
thf(fact_1064_real__minus__mult__self__le,axiom,
    ! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X @ X ) ) ).

% real_minus_mult_self_le
thf(fact_1065_real__eq__0__iff__le__ge__0,axiom,
    ! [X: real] :
      ( ( X = zero_zero_real )
      = ( ( ord_less_eq_real @ zero_zero_real @ X )
        & ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ X ) ) ) ) ).

% real_eq_0_iff_le_ge_0
thf(fact_1066_radical__0,axiom,
    ! [N: nat,R2: nat > real > real,A: formal3361831859752904756s_real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( formal8005797870169972230l_real @ R2 @ zero_zero_nat @ A @ N )
        = zero_zero_real ) ) ).

% radical_0
thf(fact_1067_fps__inverse__eq__0_H,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ( inverse_inverse_real @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) )
        = zero_zero_real )
     => ( ( invers68952373231134600s_real @ F )
        = zero_z7760665558314615101s_real ) ) ).

% fps_inverse_eq_0'
thf(fact_1068_fps__inverse__eq__0__iff_H,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ( invers68952373231134600s_real @ F )
        = zero_z7760665558314615101s_real )
      = ( ( inverse_inverse_real @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) )
        = zero_zero_real ) ) ).

% fps_inverse_eq_0_iff'
thf(fact_1069_fps__mult__nth__0,axiom,
    ! [F: formal3361831859752904756s_real,G: formal3361831859752904756s_real] :
      ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ F @ G ) @ zero_zero_nat )
      = ( times_times_real @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) @ ( formal2580924720334399070h_real @ G @ zero_zero_nat ) ) ) ).

% fps_mult_nth_0
thf(fact_1070_fps__mult__nth__0,axiom,
    ! [F: formal_Power_fps_nat,G: formal_Power_fps_nat] :
      ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ F @ G ) @ zero_zero_nat )
      = ( times_times_nat @ ( formal3720337525774269570th_nat @ F @ zero_zero_nat ) @ ( formal3720337525774269570th_nat @ G @ zero_zero_nat ) ) ) ).

% fps_mult_nth_0
thf(fact_1071_fps__mult__nth__0,axiom,
    ! [F: formal_Power_fps_int,G: formal_Power_fps_int] :
      ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ F @ G ) @ zero_zero_nat )
      = ( times_times_int @ ( formal3717847055265219294th_int @ F @ zero_zero_nat ) @ ( formal3717847055265219294th_int @ G @ zero_zero_nat ) ) ) ).

% fps_mult_nth_0
thf(fact_1072_fps__mult__of__nat__nth_I1_J,axiom,
    ! [K: nat,F: formal_Power_fps_nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ ( semiri1524631719018205113ps_nat @ K ) @ F ) @ N )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ K ) @ ( formal3720337525774269570th_nat @ F @ N ) ) ) ).

% fps_mult_of_nat_nth(1)
thf(fact_1073_fps__mult__of__nat__nth_I1_J,axiom,
    ! [K: nat,F: formal_Power_fps_int,N: nat] :
      ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ ( semiri6570152736363784213ps_int @ K ) @ F ) @ N )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ ( formal3717847055265219294th_int @ F @ N ) ) ) ).

% fps_mult_of_nat_nth(1)
thf(fact_1074_fps__mult__of__nat__nth_I1_J,axiom,
    ! [K: nat,F: formal3361831859752904756s_real,N: nat] :
      ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ ( semiri2475410149736220053s_real @ K ) @ F ) @ N )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ K ) @ ( formal2580924720334399070h_real @ F @ N ) ) ) ).

% fps_mult_of_nat_nth(1)
thf(fact_1075_fps__mult__of__nat__nth_I2_J,axiom,
    ! [F: formal_Power_fps_nat,K: nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ F @ ( semiri1524631719018205113ps_nat @ K ) ) @ N )
      = ( times_times_nat @ ( formal3720337525774269570th_nat @ F @ N ) @ ( semiri1316708129612266289at_nat @ K ) ) ) ).

% fps_mult_of_nat_nth(2)
thf(fact_1076_fps__mult__of__nat__nth_I2_J,axiom,
    ! [F: formal_Power_fps_int,K: nat,N: nat] :
      ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ F @ ( semiri6570152736363784213ps_int @ K ) ) @ N )
      = ( times_times_int @ ( formal3717847055265219294th_int @ F @ N ) @ ( semiri1314217659103216013at_int @ K ) ) ) ).

% fps_mult_of_nat_nth(2)
thf(fact_1077_fps__mult__of__nat__nth_I2_J,axiom,
    ! [F: formal3361831859752904756s_real,K: nat,N: nat] :
      ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ F @ ( semiri2475410149736220053s_real @ K ) ) @ N )
      = ( times_times_real @ ( formal2580924720334399070h_real @ F @ N ) @ ( semiri5074537144036343181t_real @ K ) ) ) ).

% fps_mult_of_nat_nth(2)
thf(fact_1078_fps__zero__nth,axiom,
    ! [N: nat] :
      ( ( formal3720337525774269570th_nat @ zero_z8531573698755551073ps_nat @ N )
      = zero_zero_nat ) ).

% fps_zero_nth
thf(fact_1079_fps__zero__nth,axiom,
    ! [N: nat] :
      ( ( formal3717847055265219294th_int @ zero_z4353722679246354365ps_int @ N )
      = zero_zero_int ) ).

% fps_zero_nth
thf(fact_1080_fps__zero__nth,axiom,
    ! [N: nat] :
      ( ( formal2580924720334399070h_real @ zero_z7760665558314615101s_real @ N )
      = zero_zero_real ) ).

% fps_zero_nth
thf(fact_1081_fps__nth__of__nat,axiom,
    ! [N: nat,C: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( semiri1524631719018205113ps_nat @ C ) @ N )
          = ( semiri1316708129612266289at_nat @ C ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3720337525774269570th_nat @ ( semiri1524631719018205113ps_nat @ C ) @ N )
          = zero_zero_nat ) ) ) ).

% fps_nth_of_nat
thf(fact_1082_fps__nth__of__nat,axiom,
    ! [N: nat,C: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( semiri6570152736363784213ps_int @ C ) @ N )
          = ( semiri1314217659103216013at_int @ C ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal3717847055265219294th_int @ ( semiri6570152736363784213ps_int @ C ) @ N )
          = zero_zero_int ) ) ) ).

% fps_nth_of_nat
thf(fact_1083_fps__nth__of__nat,axiom,
    ! [N: nat,C: nat] :
      ( ( ( N = zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( semiri2475410149736220053s_real @ C ) @ N )
          = ( semiri5074537144036343181t_real @ C ) ) )
      & ( ( N != zero_zero_nat )
       => ( ( formal2580924720334399070h_real @ ( semiri2475410149736220053s_real @ C ) @ N )
          = zero_zero_real ) ) ) ).

% fps_nth_of_nat
thf(fact_1084_fps__inverse__idempotent,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ( formal2580924720334399070h_real @ F @ zero_zero_nat )
       != zero_zero_real )
     => ( ( invers68952373231134600s_real @ ( invers68952373231134600s_real @ F ) )
        = F ) ) ).

% fps_inverse_idempotent
thf(fact_1085_fps__inverse__0__iff,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ( formal2580924720334399070h_real @ ( invers68952373231134600s_real @ F ) @ zero_zero_nat )
        = zero_zero_real )
      = ( ( formal2580924720334399070h_real @ F @ zero_zero_nat )
        = zero_zero_real ) ) ).

% fps_inverse_0_iff
thf(fact_1086_fps__inverse__nth__0,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( formal2580924720334399070h_real @ ( invers68952373231134600s_real @ F ) @ zero_zero_nat )
      = ( inverse_inverse_real @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) ) ) ).

% fps_inverse_nth_0
thf(fact_1087_fps__inverse__eq__0__iff,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ( invers68952373231134600s_real @ F )
        = zero_z7760665558314615101s_real )
      = ( ( formal2580924720334399070h_real @ F @ zero_zero_nat )
        = zero_zero_real ) ) ).

% fps_inverse_eq_0_iff
thf(fact_1088_fps__nonzeroI,axiom,
    ! [F: formal_Power_fps_nat,N: nat] :
      ( ( ( formal3720337525774269570th_nat @ F @ N )
       != zero_zero_nat )
     => ( F != zero_z8531573698755551073ps_nat ) ) ).

% fps_nonzeroI
thf(fact_1089_fps__nonzeroI,axiom,
    ! [F: formal_Power_fps_int,N: nat] :
      ( ( ( formal3717847055265219294th_int @ F @ N )
       != zero_zero_int )
     => ( F != zero_z4353722679246354365ps_int ) ) ).

% fps_nonzeroI
thf(fact_1090_fps__nonzeroI,axiom,
    ! [F: formal3361831859752904756s_real,N: nat] :
      ( ( ( formal2580924720334399070h_real @ F @ N )
       != zero_zero_real )
     => ( F != zero_z7760665558314615101s_real ) ) ).

% fps_nonzeroI
thf(fact_1091_fps__nonzero__nth,axiom,
    ! [F: formal_Power_fps_nat] :
      ( ( F != zero_z8531573698755551073ps_nat )
      = ( ? [N4: nat] :
            ( ( formal3720337525774269570th_nat @ F @ N4 )
           != zero_zero_nat ) ) ) ).

% fps_nonzero_nth
thf(fact_1092_fps__nonzero__nth,axiom,
    ! [F: formal_Power_fps_int] :
      ( ( F != zero_z4353722679246354365ps_int )
      = ( ? [N4: nat] :
            ( ( formal3717847055265219294th_int @ F @ N4 )
           != zero_zero_int ) ) ) ).

% fps_nonzero_nth
thf(fact_1093_fps__nonzero__nth,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( F != zero_z7760665558314615101s_real )
      = ( ? [N4: nat] :
            ( ( formal2580924720334399070h_real @ F @ N4 )
           != zero_zero_real ) ) ) ).

% fps_nonzero_nth
thf(fact_1094_fps__nonzero__nth__minimal,axiom,
    ! [F: formal_Power_fps_nat] :
      ( ( F != zero_z8531573698755551073ps_nat )
      = ( ? [N4: nat] :
            ( ( ( formal3720337525774269570th_nat @ F @ N4 )
             != zero_zero_nat )
            & ! [M5: nat] :
                ( ( ord_less_nat @ M5 @ N4 )
               => ( ( formal3720337525774269570th_nat @ F @ M5 )
                  = zero_zero_nat ) ) ) ) ) ).

% fps_nonzero_nth_minimal
thf(fact_1095_fps__nonzero__nth__minimal,axiom,
    ! [F: formal_Power_fps_int] :
      ( ( F != zero_z4353722679246354365ps_int )
      = ( ? [N4: nat] :
            ( ( ( formal3717847055265219294th_int @ F @ N4 )
             != zero_zero_int )
            & ! [M5: nat] :
                ( ( ord_less_nat @ M5 @ N4 )
               => ( ( formal3717847055265219294th_int @ F @ M5 )
                  = zero_zero_int ) ) ) ) ) ).

% fps_nonzero_nth_minimal
thf(fact_1096_fps__nonzero__nth__minimal,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( F != zero_z7760665558314615101s_real )
      = ( ? [N4: nat] :
            ( ( ( formal2580924720334399070h_real @ F @ N4 )
             != zero_zero_real )
            & ! [M5: nat] :
                ( ( ord_less_nat @ M5 @ N4 )
               => ( ( formal2580924720334399070h_real @ F @ M5 )
                  = zero_zero_real ) ) ) ) ) ).

% fps_nonzero_nth_minimal
thf(fact_1097_radical_Osimps_I2_J,axiom,
    ! [R2: nat > real > real,A: formal3361831859752904756s_real,N: nat] :
      ( ( formal8005797870169972230l_real @ R2 @ zero_zero_nat @ A @ ( suc @ N ) )
      = zero_zero_real ) ).

% radical.simps(2)
thf(fact_1098_fps__inverse__0__iff_H,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ( formal2580924720334399070h_real @ ( invers68952373231134600s_real @ F ) @ zero_zero_nat )
        = zero_zero_real )
      = ( ( inverse_inverse_real @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) )
        = zero_zero_real ) ) ).

% fps_inverse_0_iff'
thf(fact_1099_fps__inverse__eq__0,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ( formal2580924720334399070h_real @ F @ zero_zero_nat )
        = zero_zero_real )
     => ( ( invers68952373231134600s_real @ F )
        = zero_z7760665558314615101s_real ) ) ).

% fps_inverse_eq_0
thf(fact_1100_fps__XD__Suc,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( formal814923487339530757XD_nat @ A ) @ ( suc @ N ) )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( suc @ N ) ) @ ( formal3720337525774269570th_nat @ A @ ( suc @ N ) ) ) ) ).

% fps_XD_Suc
thf(fact_1101_fps__XD__Suc,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( formal3717847055265219294th_int @ ( formal812433016830480481XD_int @ A ) @ ( suc @ N ) )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) @ ( formal3717847055265219294th_int @ A @ ( suc @ N ) ) ) ) ).

% fps_XD_Suc
thf(fact_1102_fps__XD__Suc,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( formal2580924720334399070h_real @ ( formal4292469010823635553D_real @ A ) @ ( suc @ N ) )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) @ ( formal2580924720334399070h_real @ A @ ( suc @ N ) ) ) ) ).

% fps_XD_Suc
thf(fact_1103_fps__ln__0,axiom,
    ! [C: real] :
      ( ( formal2580924720334399070h_real @ ( formal8688746759596762231n_real @ C ) @ zero_zero_nat )
      = zero_zero_real ) ).

% fps_ln_0
thf(fact_1104_fps__cos__nth__1,axiom,
    ! [C: real] :
      ( ( formal2580924720334399070h_real @ ( formal461277676486907980s_real @ C ) @ ( suc @ zero_zero_nat ) )
      = zero_zero_real ) ).

% fps_cos_nth_1
thf(fact_1105_fps__integral__nth__0__Suc_I2_J,axiom,
    ! [A: formal3361831859752904756s_real,A0: real,N: nat] :
      ( ( formal2580924720334399070h_real @ ( formal8984515926053063617l_real @ A @ A0 ) @ ( suc @ N ) )
      = ( times_times_real @ ( inverse_inverse_real @ ( semiri5074537144036343181t_real @ ( suc @ N ) ) ) @ ( formal2580924720334399070h_real @ A @ N ) ) ) ).

% fps_integral_nth_0_Suc(2)
thf(fact_1106_fps__XD__0th,axiom,
    ! [A: formal_Power_fps_nat] :
      ( ( formal3720337525774269570th_nat @ ( formal814923487339530757XD_nat @ A ) @ zero_zero_nat )
      = zero_zero_nat ) ).

% fps_XD_0th
thf(fact_1107_fps__XD__0th,axiom,
    ! [A: formal_Power_fps_int] :
      ( ( formal3717847055265219294th_int @ ( formal812433016830480481XD_int @ A ) @ zero_zero_nat )
      = zero_zero_int ) ).

% fps_XD_0th
thf(fact_1108_fps__XD__0th,axiom,
    ! [A: formal3361831859752904756s_real] :
      ( ( formal2580924720334399070h_real @ ( formal4292469010823635553D_real @ A ) @ zero_zero_nat )
      = zero_zero_real ) ).

% fps_XD_0th
thf(fact_1109_fps__XD__nth,axiom,
    ! [A: formal_Power_fps_nat,N: nat] :
      ( ( formal3720337525774269570th_nat @ ( formal814923487339530757XD_nat @ A ) @ N )
      = ( times_times_nat @ ( semiri1316708129612266289at_nat @ N ) @ ( formal3720337525774269570th_nat @ A @ N ) ) ) ).

% fps_XD_nth
thf(fact_1110_fps__XD__nth,axiom,
    ! [A: formal_Power_fps_int,N: nat] :
      ( ( formal3717847055265219294th_int @ ( formal812433016830480481XD_int @ A ) @ N )
      = ( times_times_int @ ( semiri1314217659103216013at_int @ N ) @ ( formal3717847055265219294th_int @ A @ N ) ) ) ).

% fps_XD_nth
thf(fact_1111_fps__XD__nth,axiom,
    ! [A: formal3361831859752904756s_real,N: nat] :
      ( ( formal2580924720334399070h_real @ ( formal4292469010823635553D_real @ A ) @ N )
      = ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ ( formal2580924720334399070h_real @ A @ N ) ) ) ).

% fps_XD_nth
thf(fact_1112_fps__integral0__zero,axiom,
    ( ( formal8984515926053063617l_real @ zero_z7760665558314615101s_real @ zero_zero_real )
    = zero_z7760665558314615101s_real ) ).

% fps_integral0_zero
thf(fact_1113_fps__integral0__neg,axiom,
    ! [A: formal3361831859752904756s_real] :
      ( ( formal8984515926053063617l_real @ ( uminus8389970968385878141s_real @ A ) @ zero_zero_real )
      = ( uminus8389970968385878141s_real @ ( formal8984515926053063617l_real @ A @ zero_zero_real ) ) ) ).

% fps_integral0_neg
thf(fact_1114_inverse__mult__eq__1,axiom,
    ! [F: formal3361831859752904756s_real] :
      ( ( ( formal2580924720334399070h_real @ F @ zero_zero_nat )
       != zero_zero_real )
     => ( ( times_7561426564079326009s_real @ ( invers68952373231134600s_real @ F ) @ F )
        = one_on8598947968683843321s_real ) ) ).

% inverse_mult_eq_1
thf(fact_1115_fps__cutoff__nth,axiom,
    ! [I2: nat,N: nat,F: formal_Power_fps_nat] :
      ( ( ( ord_less_nat @ I2 @ N )
       => ( ( formal3720337525774269570th_nat @ ( formal4818209184033568742ff_nat @ N @ F ) @ I2 )
          = ( formal3720337525774269570th_nat @ F @ I2 ) ) )
      & ( ~ ( ord_less_nat @ I2 @ N )
       => ( ( formal3720337525774269570th_nat @ ( formal4818209184033568742ff_nat @ N @ F ) @ I2 )
          = zero_zero_nat ) ) ) ).

% fps_cutoff_nth
thf(fact_1116_fps__cutoff__nth,axiom,
    ! [I2: nat,N: nat,F: formal_Power_fps_int] :
      ( ( ( ord_less_nat @ I2 @ N )
       => ( ( formal3717847055265219294th_int @ ( formal4815718713524518466ff_int @ N @ F ) @ I2 )
          = ( formal3717847055265219294th_int @ F @ I2 ) ) )
      & ( ~ ( ord_less_nat @ I2 @ N )
       => ( ( formal3717847055265219294th_int @ ( formal4815718713524518466ff_int @ N @ F ) @ I2 )
          = zero_zero_int ) ) ) ).

% fps_cutoff_nth
thf(fact_1117_fps__cutoff__nth,axiom,
    ! [I2: nat,N: nat,F: formal3361831859752904756s_real] :
      ( ( ( ord_less_nat @ I2 @ N )
       => ( ( formal2580924720334399070h_real @ ( formal1487479903726251970f_real @ N @ F ) @ I2 )
          = ( formal2580924720334399070h_real @ F @ I2 ) ) )
      & ( ~ ( ord_less_nat @ I2 @ N )
       => ( ( formal2580924720334399070h_real @ ( formal1487479903726251970f_real @ N @ F ) @ I2 )
          = zero_zero_real ) ) ) ).

% fps_cutoff_nth
thf(fact_1118_fps__mult__nth__1_H,axiom,
    ! [F: formal3361831859752904756s_real,G: formal3361831859752904756s_real] :
      ( ( formal2580924720334399070h_real @ ( times_7561426564079326009s_real @ F @ G ) @ ( suc @ zero_zero_nat ) )
      = ( plus_plus_real @ ( times_times_real @ ( formal2580924720334399070h_real @ F @ zero_zero_nat ) @ ( formal2580924720334399070h_real @ G @ ( suc @ zero_zero_nat ) ) ) @ ( times_times_real @ ( formal2580924720334399070h_real @ F @ ( suc @ zero_zero_nat ) ) @ ( formal2580924720334399070h_real @ G @ zero_zero_nat ) ) ) ) ).

% fps_mult_nth_1'
thf(fact_1119_fps__mult__nth__1_H,axiom,
    ! [F: formal_Power_fps_nat,G: formal_Power_fps_nat] :
      ( ( formal3720337525774269570th_nat @ ( times_7269705568686124893ps_nat @ F @ G ) @ ( suc @ zero_zero_nat ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( formal3720337525774269570th_nat @ F @ zero_zero_nat ) @ ( formal3720337525774269570th_nat @ G @ ( suc @ zero_zero_nat ) ) ) @ ( times_times_nat @ ( formal3720337525774269570th_nat @ F @ ( suc @ zero_zero_nat ) ) @ ( formal3720337525774269570th_nat @ G @ zero_zero_nat ) ) ) ) ).

% fps_mult_nth_1'
thf(fact_1120_fps__mult__nth__1_H,axiom,
    ! [F: formal_Power_fps_int,G: formal_Power_fps_int] :
      ( ( formal3717847055265219294th_int @ ( times_3091854549176928185ps_int @ F @ G ) @ ( suc @ zero_zero_nat ) )
      = ( plus_plus_int @ ( times_times_int @ ( formal3717847055265219294th_int @ F @ zero_zero_nat ) @ ( formal3717847055265219294th_int @ G @ ( suc @ zero_zero_nat ) ) ) @ ( times_times_int @ ( formal3717847055265219294th_int @ F @ ( suc @ zero_zero_nat ) ) @ ( formal3717847055265219294th_int @ G @ zero_zero_nat ) ) ) ) ).

% fps_mult_nth_1'
thf(fact_1121_fps__XDp0,axiom,
    ( ( formal9197787955091086413Dp_nat @ zero_zero_nat )
    = formal814923487339530757XD_nat ) ).

% fps_XDp0
thf(fact_1122_fps__XDp0,axiom,
    ( ( formal9195297484582036137Dp_int @ zero_zero_int )
    = formal812433016830480481XD_int ) ).

% fps_XDp0
thf(fact_1123_fps__XDp0,axiom,
    ( ( formal2839450981996073129p_real @ zero_zero_real )
    = formal4292469010823635553D_real ) ).

% fps_XDp0
thf(fact_1124_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1125_add__right__cancel,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ( plus_plus_real @ B @ A )
        = ( plus_plus_real @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1126_add__right__cancel,axiom,
    ! [B: int,A: int,C: int] :
      ( ( ( plus_plus_int @ B @ A )
        = ( plus_plus_int @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_1127_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1128_add__left__cancel,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ( plus_plus_real @ A @ B )
        = ( plus_plus_real @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1129_add__left__cancel,axiom,
    ! [A: int,B: int,C: int] :
      ( ( ( plus_plus_int @ A @ B )
        = ( plus_plus_int @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_1130_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1131_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_1132_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_1133_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_1134_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_1135_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1136_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1137_add__le__cancel__left,axiom,
    ! [C: int,A: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_1138_add__le__cancel__right,axiom,
    ! [A: int,C: int,B: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
      = ( ord_less_eq_int @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_1139_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_1140_real__add__minus__iff,axiom,
    ! [X: real,A: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
        = zero_zero_real )
      = ( X = A ) ) ).

% real_add_minus_iff
thf(fact_1141_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_1142_zadd__int__left,axiom,
    ! [M: nat,N: nat,Z3: int] :
      ( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z3 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z3 ) ) ).

% zadd_int_left
thf(fact_1143_int__ops_I5_J,axiom,
    ! [A: nat,B: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).

% int_ops(5)
thf(fact_1144_int__plus,axiom,
    ! [N: nat,M: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).

% int_plus
thf(fact_1145_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_1146_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_1147_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_1148_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_1149_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_1150_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_1151_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_1152_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_1153_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_1154_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_1155_le__Suc__ex,axiom,
    ! [K: nat,L2: nat] :
      ( ( ord_less_eq_nat @ K @ L2 )
     => ? [N3: nat] :
          ( L2
          = ( plus_plus_nat @ K @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_1156_add__le__mono,axiom,
    ! [I2: nat,J3: nat,K: nat,L2: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( ord_less_eq_nat @ K @ L2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ L2 ) ) ) ) ).

% add_le_mono
thf(fact_1157_add__le__mono1,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ K ) ) ) ).

% add_le_mono1
thf(fact_1158_trans__le__add1,axiom,
    ! [I2: nat,J3: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ J3 @ M ) ) ) ).

% trans_le_add1
thf(fact_1159_trans__le__add2,axiom,
    ! [I2: nat,J3: nat,M: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ M @ J3 ) ) ) ).

% trans_le_add2
thf(fact_1160_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( plus_plus_nat @ M5 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1161_add__lessD1,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I2 @ J3 ) @ K )
     => ( ord_less_nat @ I2 @ K ) ) ).

% add_lessD1
thf(fact_1162_add__less__mono,axiom,
    ! [I2: nat,J3: nat,K: nat,L2: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ( ord_less_nat @ K @ L2 )
       => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ L2 ) ) ) ) ).

% add_less_mono
thf(fact_1163_not__add__less1,axiom,
    ! [I2: nat,J3: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I2 @ J3 ) @ I2 ) ).

% not_add_less1
thf(fact_1164_not__add__less2,axiom,
    ! [J3: nat,I2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J3 @ I2 ) @ I2 ) ).

% not_add_less2
thf(fact_1165_add__less__mono1,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J3 @ K ) ) ) ).

% add_less_mono1
thf(fact_1166_trans__less__add1,axiom,
    ! [I2: nat,J3: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ J3 @ M ) ) ) ).

% trans_less_add1
thf(fact_1167_trans__less__add2,axiom,
    ! [I2: nat,J3: nat,M: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ( ord_less_nat @ I2 @ ( plus_plus_nat @ M @ J3 ) ) ) ).

% trans_less_add2
thf(fact_1168_less__add__eq__less,axiom,
    ! [K: nat,L2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L2 )
     => ( ( ( plus_plus_nat @ M @ L2 )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_1169_plus__int__code_I1_J,axiom,
    ! [K: int] :
      ( ( plus_plus_int @ K @ zero_zero_int )
      = K ) ).

% plus_int_code(1)
thf(fact_1170_plus__int__code_I2_J,axiom,
    ! [L2: int] :
      ( ( plus_plus_int @ zero_zero_int @ L2 )
      = L2 ) ).

% plus_int_code(2)
thf(fact_1171_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1172_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_1173_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1174_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1175_less__imp__add__positive,axiom,
    ! [I2: nat,J3: nat] :
      ( ( ord_less_nat @ I2 @ J3 )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I2 @ K2 )
            = J3 ) ) ) ).

% less_imp_add_positive
thf(fact_1176_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K2: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1177_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( suc @ ( plus_plus_nat @ M5 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1178_less__add__Suc2,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ M @ I2 ) ) ) ).

% less_add_Suc2
thf(fact_1179_less__add__Suc1,axiom,
    ! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ I2 @ M ) ) ) ).

% less_add_Suc1
thf(fact_1180_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q4: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q4 ) ) ) ) ).

% less_natE
thf(fact_1181_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_nat @ M4 @ N3 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1182_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_1183_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W2: int,Z4: int] :
        ? [N4: nat] :
          ( Z4
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_1184_real__0__le__add__iff,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y3 ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y3 ) ) ).

% real_0_le_add_iff
thf(fact_1185_real__add__le__0__iff,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y3 ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y3 @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_1186_real__add__less__0__iff,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y3 ) @ zero_zero_real )
      = ( ord_less_real @ Y3 @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_1187_real__0__less__add__iff,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y3 ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y3 ) ) ).

% real_0_less_add_iff
thf(fact_1188_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W2: int,Z4: int] :
        ? [N4: nat] :
          ( Z4
          = ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ ( suc @ N4 ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_1189_incr__mult__lemma,axiom,
    ! [D2: int,P: int > $o,K: int] :
      ( ( ord_less_int @ zero_zero_int @ D2 )
     => ( ! [X3: int] :
            ( ( P @ X3 )
           => ( P @ ( plus_plus_int @ X3 @ D2 ) ) )
       => ( ( ord_less_eq_int @ zero_zero_int @ K )
         => ! [X6: int] :
              ( ( P @ X6 )
             => ( P @ ( plus_plus_int @ X6 @ ( times_times_int @ K @ D2 ) ) ) ) ) ) ) ).

% incr_mult_lemma
thf(fact_1190_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1191_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_1192_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_1193_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_1194_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_1195_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_1196_sum__le__prod1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ one_one_real )
     => ( ( ord_less_eq_real @ B @ one_one_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ A @ B ) ) ) ) ) ).

% sum_le_prod1
thf(fact_1197_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1198_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1199_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1200_odd__nonzero,axiom,
    ! [Z3: int] :
      ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z3 ) @ Z3 )
     != zero_zero_int ) ).

% odd_nonzero
thf(fact_1201_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1202_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_1203_int__Suc,axiom,
    ! [N: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).

% int_Suc
thf(fact_1204_int__ops_I4_J,axiom,
    ! [A: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_1205_odd__less__0__iff,axiom,
    ! [Z3: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z3 ) @ Z3 ) @ zero_zero_int )
      = ( ord_less_int @ Z3 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_1206_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1207_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N4: nat,M5: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N4 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M5 ) ) ) ) ).

% nat_less_real_le
thf(fact_1208_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N4: nat,M5: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N4 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M5 ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_1209_int__one__le__iff__zero__less,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z3 )
      = ( ord_less_int @ zero_zero_int @ Z3 ) ) ).

% int_one_le_iff_zero_less
thf(fact_1210_le__imp__0__less,axiom,
    ! [Z3: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z3 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z3 ) ) ) ).

% le_imp_0_less
thf(fact_1211_pos__zmult__eq__1__iff,axiom,
    ! [M: int,N: int] :
      ( ( ord_less_int @ zero_zero_int @ M )
     => ( ( ( times_times_int @ M @ N )
          = one_one_int )
        = ( ( M = one_one_int )
          & ( N = one_one_int ) ) ) ) ).

% pos_zmult_eq_1_iff
thf(fact_1212_kuhn__lemma,axiom,
    ! [P5: nat,N: nat,Label: ( nat > nat ) > nat > nat] :
      ( ( ord_less_nat @ zero_zero_nat @ P5 )
     => ( ! [X3: nat > nat] :
            ( ! [I: nat] :
                ( ( ord_less_nat @ I @ N )
               => ( ord_less_eq_nat @ ( X3 @ I ) @ P5 ) )
           => ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ N )
               => ( ( ( Label @ X3 @ I3 )
                    = zero_zero_nat )
                  | ( ( Label @ X3 @ I3 )
                    = one_one_nat ) ) ) )
       => ( ! [X3: nat > nat] :
              ( ! [I: nat] :
                  ( ( ord_less_nat @ I @ N )
                 => ( ord_less_eq_nat @ ( X3 @ I ) @ P5 ) )
             => ! [I3: nat] :
                  ( ( ord_less_nat @ I3 @ N )
                 => ( ( ( X3 @ I3 )
                      = zero_zero_nat )
                   => ( ( Label @ X3 @ I3 )
                      = zero_zero_nat ) ) ) )
         => ( ! [X3: nat > nat] :
                ( ! [I: nat] :
                    ( ( ord_less_nat @ I @ N )
                   => ( ord_less_eq_nat @ ( X3 @ I ) @ P5 ) )
               => ! [I3: nat] :
                    ( ( ord_less_nat @ I3 @ N )
                   => ( ( ( X3 @ I3 )
                        = P5 )
                     => ( ( Label @ X3 @ I3 )
                        = one_one_nat ) ) ) )
           => ~ ! [Q4: nat > nat] :
                  ( ! [I: nat] :
                      ( ( ord_less_nat @ I @ N )
                     => ( ord_less_nat @ ( Q4 @ I ) @ P5 ) )
                 => ~ ! [I: nat] :
                        ( ( ord_less_nat @ I @ N )
                       => ? [R3: nat > nat] :
                            ( ! [J: nat] :
                                ( ( ord_less_nat @ J @ N )
                               => ( ( ord_less_eq_nat @ ( Q4 @ J ) @ ( R3 @ J ) )
                                  & ( ord_less_eq_nat @ ( R3 @ J ) @ ( plus_plus_nat @ ( Q4 @ J ) @ one_one_nat ) ) ) )
                            & ? [S3: nat > nat] :
                                ( ! [J: nat] :
                                    ( ( ord_less_nat @ J @ N )
                                   => ( ( ord_less_eq_nat @ ( Q4 @ J ) @ ( S3 @ J ) )
                                      & ( ord_less_eq_nat @ ( S3 @ J ) @ ( plus_plus_nat @ ( Q4 @ J ) @ one_one_nat ) ) ) )
                                & ( ( Label @ R3 @ I )
                                 != ( Label @ S3 @ I ) ) ) ) ) ) ) ) ) ) ).

% kuhn_lemma
thf(fact_1213_kuhn__labelling__lemma_H,axiom,
    ! [P: ( nat > real ) > $o,F: ( nat > real ) > nat > real,Q: nat > $o] :
      ( ! [X3: nat > real] :
          ( ( P @ X3 )
         => ( P @ ( F @ X3 ) ) )
     => ( ! [X3: nat > real] :
            ( ( P @ X3 )
           => ! [I3: nat] :
                ( ( Q @ I3 )
               => ( ( ord_less_eq_real @ zero_zero_real @ ( X3 @ I3 ) )
                  & ( ord_less_eq_real @ ( X3 @ I3 ) @ one_one_real ) ) ) )
       => ? [L3: ( nat > real ) > nat > nat] :
            ( ! [X6: nat > real,I: nat] : ( ord_less_eq_nat @ ( L3 @ X6 @ I ) @ one_one_nat )
            & ! [X6: nat > real,I: nat] :
                ( ( ( P @ X6 )
                  & ( Q @ I )
                  & ( ( X6 @ I )
                    = zero_zero_real ) )
               => ( ( L3 @ X6 @ I )
                  = zero_zero_nat ) )
            & ! [X6: nat > real,I: nat] :
                ( ( ( P @ X6 )
                  & ( Q @ I )
                  & ( ( X6 @ I )
                    = one_one_real ) )
               => ( ( L3 @ X6 @ I )
                  = one_one_nat ) )
            & ! [X6: nat > real,I: nat] :
                ( ( ( P @ X6 )
                  & ( Q @ I )
                  & ( ( L3 @ X6 @ I )
                    = zero_zero_nat ) )
               => ( ord_less_eq_real @ ( X6 @ I ) @ ( F @ X6 @ I ) ) )
            & ! [X6: nat > real,I: nat] :
                ( ( ( P @ X6 )
                  & ( Q @ I )
                  & ( ( L3 @ X6 @ I )
                    = one_one_nat ) )
               => ( ord_less_eq_real @ ( F @ X6 @ I ) @ ( X6 @ I ) ) ) ) ) ) ).

% kuhn_labelling_lemma'
thf(fact_1214_real__of__nat__ge__one__iff,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
      = ( ord_less_eq_nat @ one_one_nat @ N ) ) ).

% real_of_nat_ge_one_iff
thf(fact_1215_square__bound__lemma,axiom,
    ! [X: real] : ( ord_less_real @ X @ ( times_times_real @ ( plus_plus_real @ one_one_real @ X ) @ ( plus_plus_real @ one_one_real @ X ) ) ) ).

% square_bound_lemma
thf(fact_1216_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B3: nat] :
          ( ( P @ A4 @ B3 )
          = ( P @ B3 @ A4 ) )
     => ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
       => ( ! [A4: nat,B3: nat] :
              ( ( P @ A4 @ B3 )
             => ( P @ A4 @ ( plus_plus_nat @ A4 @ B3 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_1217_triangle__Suc,axiom,
    ! [N: nat] :
      ( ( nat_triangle @ ( suc @ N ) )
      = ( plus_plus_nat @ ( nat_triangle @ N ) @ ( suc @ N ) ) ) ).

% triangle_Suc
thf(fact_1218_triangle__0,axiom,
    ( ( nat_triangle @ zero_zero_nat )
    = zero_zero_nat ) ).

% triangle_0
thf(fact_1219_Bernoulli__inequality,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).

% Bernoulli_inequality
thf(fact_1220_real__arch__pow,axiom,
    ! [X: real,Y3: real] :
      ( ( ord_less_real @ one_one_real @ X )
     => ? [N3: nat] : ( ord_less_real @ Y3 @ ( power_power_real @ X @ N3 ) ) ) ).

% real_arch_pow
thf(fact_1221_realpow__pos__nth2,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_real @ zero_zero_real @ A )
     => ? [R3: real] :
          ( ( ord_less_real @ zero_zero_real @ R3 )
          & ( ( power_power_real @ R3 @ ( suc @ N ) )
            = A ) ) ) ).

% realpow_pos_nth2
thf(fact_1222_real__arch__pow__inv,axiom,
    ! [Y3: real,X: real] :
      ( ( ord_less_real @ zero_zero_real @ Y3 )
     => ( ( ord_less_real @ X @ one_one_real )
       => ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X @ N3 ) @ Y3 ) ) ) ).

% real_arch_pow_inv
thf(fact_1223_power__le__one__iff,axiom,
    ! [A: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real )
        = ( ( N = zero_zero_nat )
          | ( ord_less_eq_real @ A @ one_one_real ) ) ) ) ).

% power_le_one_iff
thf(fact_1224_realpow__pos__nth__unique,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [X3: real] :
            ( ( ord_less_real @ zero_zero_real @ X3 )
            & ( ( power_power_real @ X3 @ N )
              = A )
            & ! [Y6: real] :
                ( ( ( ord_less_real @ zero_zero_real @ Y6 )
                  & ( ( power_power_real @ Y6 @ N )
                    = A ) )
               => ( Y6 = X3 ) ) ) ) ) ).

% realpow_pos_nth_unique
thf(fact_1225_realpow__pos__nth,axiom,
    ! [N: nat,A: real] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_real @ zero_zero_real @ A )
       => ? [R3: real] :
            ( ( ord_less_real @ zero_zero_real @ R3 )
            & ( ( power_power_real @ R3 @ N )
              = A ) ) ) ) ).

% realpow_pos_nth
thf(fact_1226_linear__plus__1__le__power,axiom,
    ! [X: real,N: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N ) ) ) ).

% linear_plus_1_le_power
thf(fact_1227_power__Suc__0,axiom,
    ! [N: nat] :
      ( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
      = ( suc @ zero_zero_nat ) ) ).

% power_Suc_0
thf(fact_1228_nat__power__eq__Suc__0__iff,axiom,
    ! [X: nat,M: nat] :
      ( ( ( power_power_nat @ X @ M )
        = ( suc @ zero_zero_nat ) )
      = ( ( M = zero_zero_nat )
        | ( X
          = ( suc @ zero_zero_nat ) ) ) ) ).

% nat_power_eq_Suc_0_iff
thf(fact_1229_nat__zero__less__power__iff,axiom,
    ! [X: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ X )
        | ( N = zero_zero_nat ) ) ) ).

% nat_zero_less_power_iff
thf(fact_1230_nat__power__less__imp__less,axiom,
    ! [I2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ I2 )
     => ( ( ord_less_nat @ ( power_power_nat @ I2 @ M ) @ ( power_power_nat @ I2 @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% nat_power_less_imp_less
thf(fact_1231_nat__one__le__power,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I2 )
     => ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I2 @ N ) ) ) ).

% nat_one_le_power
thf(fact_1232_power__gt__expt,axiom,
    ! [N: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).

% power_gt_expt
thf(fact_1233_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_1234_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_1235_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_1236_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_1237_diff__diff__cancel,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I2 ) )
        = I2 ) ) ).

% diff_diff_cancel
thf(fact_1238_diff__diff__left,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J3 ) @ K )
      = ( minus_minus_nat @ I2 @ ( plus_plus_nat @ J3 @ K ) ) ) ).

% diff_diff_left
thf(fact_1239_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1240_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_1241_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_1242_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J3 @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J3 ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1243_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J3 @ K ) @ I2 )
        = ( minus_minus_nat @ ( plus_plus_nat @ J3 @ I2 ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1244_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( minus_minus_nat @ I2 @ ( minus_minus_nat @ J3 @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ J3 ) ) ) ).

% Nat.diff_diff_right
thf(fact_1245_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_1246_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_1247_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J3 @ K ) ) @ I2 )
        = ( minus_minus_nat @ ( suc @ J3 ) @ ( plus_plus_nat @ K @ I2 ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1248_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( minus_minus_nat @ I2 @ ( suc @ ( minus_minus_nat @ J3 @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ ( suc @ J3 ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1249_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_1250_le__diff__conv,axiom,
    ! [J3: nat,K: nat,I2: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J3 @ K ) @ I2 )
      = ( ord_less_eq_nat @ J3 @ ( plus_plus_nat @ I2 @ K ) ) ) ).

% le_diff_conv
thf(fact_1251_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ J3 @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ J3 ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1252_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J3 ) @ K )
        = ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J3 @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1253_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J3: nat,I2: nat] :
      ( ( ord_less_eq_nat @ K @ J3 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J3 @ I2 ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J3 @ K ) @ I2 ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1254_Nat_Ole__imp__diff__is__add,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J3 )
     => ( ( ( minus_minus_nat @ J3 @ I2 )
          = K )
        = ( J3
          = ( plus_plus_nat @ K @ I2 ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1255_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_1256_less__diff__conv,axiom,
    ! [I2: nat,J3: nat,K: nat] :
      ( ( ord_less_nat @ I2 @ ( minus_minus_nat @ J3 @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ J3 ) ) ).

% less_diff_conv
thf(fact_1257_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_1258_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_1259_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_1260_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_1261_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0

% Helper facts (7)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y3: int] :
      ( ( if_int @ $false @ X @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
    ! [X: int,Y3: int] :
      ( ( if_int @ $true @ X @ Y3 )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y3: nat] :
      ( ( if_nat @ $false @ X @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y3: nat] :
      ( ( if_nat @ $true @ X @ Y3 )
      = X ) ).

thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y3: real] :
      ( ( if_real @ $false @ X @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y3: real] :
      ( ( if_real @ $true @ X @ Y3 )
      = X ) ).

% Conjectures (3)
thf(conj_0,hypothesis,
    ord_less_nat @ jb @ ( suc @ na ) ).

thf(conj_1,hypothesis,
    ord_less_nat @ ib @ jb ).

thf(conj_2,conjecture,
    ord_less_eq_b @ ( g @ na @ ib ) @ ( g @ na @ jb ) ).

%------------------------------------------------------------------------------