TPTP Problem File: SLH0344^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Risk_Free_Lending/0000_Risk_Free_Lending/prob_01682_053590__6030648_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1388 ( 606 unt; 117 typ;   0 def)
%            Number of atoms       : 3597 (1098 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 9422 ( 393   ~;  94   |; 161   &;7274   @)
%                                         (   0 <=>;1500  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   18 (   6 avg)
%            Number of types       :   11 (  10 usr)
%            Number of type conns  :  659 ( 659   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  110 ( 107 usr;  15 con; 0-4 aty)
%            Number of variables   : 3274 ( 284   ^;2863   !; 127   ?;3274   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 15:58:08.498
%------------------------------------------------------------------------------
% Could-be-implicit typings (10)
thf(ty_n_t__Set__Oset_It__Risk____Free____Lending__Oaccount_J,type,
    set_Ri1641125681238393385ccount: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_Mt__Real__Oreal_J_J,type,
    set_nat_real: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Risk____Free____Lending__Oaccount,type,
    risk_Free_account: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
    set_int: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_t__Int__Oint,type,
    int: $tType ).

% Explicit typings (107)
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
    one_one_int: int ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
    plus_plus_int: int > int > int ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Risk____Free____Lending__Oaccount,type,
    plus_p1863581527469039996ccount: risk_Free_account > risk_Free_account > risk_Free_account ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
    times_times_real: real > real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_I_062_It__Nat__Onat_Mt__Real__Oreal_J_M_Eo_J,type,
    uminus8324563361911858795real_o: ( ( nat > real ) > $o ) > ( nat > real ) > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Nat__Onat_M_Eo_J,type,
    uminus_uminus_nat_o: ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001_062_It__Real__Oreal_M_Eo_J,type,
    uminus_uminus_real_o: ( real > $o ) > real > $o ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
    uminus_uminus_int: int > int ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Risk____Free____Lending__Oaccount,type,
    uminus3377898441596595772ccount: risk_Free_account > risk_Free_account ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Real__Oreal_J_J,type,
    uminus5090605358382610586t_real: set_nat_real > set_nat_real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Nat__Onat_J,type,
    uminus5710092332889474511et_nat: set_nat > set_nat ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Real__Oreal_J,type,
    uminus612125837232591019t_real: set_real > set_real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
    zero_zero_int: int ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Risk____Free____Lending__Oaccount,type,
    zero_z1425366712893667068ccount: risk_Free_account ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001_062_It__Nat__Onat_Mt__Real__Oreal_J_001t__Int__Oint,type,
    groups777517501785750147al_int: ( ( nat > real ) > int ) > set_nat_real > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001_062_It__Nat__Onat_Mt__Real__Oreal_J_001t__Nat__Onat,type,
    groups780007972294800423al_nat: ( ( nat > real ) > nat ) > set_nat_real > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001_062_It__Nat__Onat_Mt__Real__Oreal_J_001t__Real__Oreal,type,
    groups4253619806861319043l_real: ( ( nat > real ) > real ) > set_nat_real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001_062_It__Nat__Onat_Mt__Real__Oreal_J_001t__Risk____Free____Lending__Oaccount,type,
    groups383684539861946442ccount: ( ( nat > real ) > risk_Free_account ) > set_nat_real > risk_Free_account ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
    groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
    groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Int__Oint,type,
    groups1932886352136224148al_int: ( real > int ) > set_real > int ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Nat__Onat,type,
    groups1935376822645274424al_nat: ( real > nat ) > set_real > nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
    groups8097168146408367636l_real: ( real > real ) > set_real > real ).

thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Risk____Free____Lending__Oaccount,type,
    groups8516999891779824987ccount: ( real > risk_Free_account ) > set_real > risk_Free_account ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Real__Oreal,type,
    if_real: $o > real > real > real ).

thf(sy_c_Int_Onat,type,
    nat2: int > nat ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
    semiri1314217659103216013at_int: nat > int ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
    semiri1316708129612266289at_nat: nat > nat ).

thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
    semiri5074537144036343181t_real: nat > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Int__Oint,type,
    neg_nu3811975205180677377ec_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__dec_001t__Real__Oreal,type,
    neg_nu6075765906172075777c_real: real > real ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
    neg_nu5851722552734809277nc_int: int > int ).

thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
    neg_nu8295874005876285629c_real: real > real ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_I_062_It__Nat__Onat_Mt__Real__Oreal_J_M_Eo_J,type,
    ord_less_nat_real_o: ( ( nat > real ) > $o ) > ( ( nat > real ) > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Real__Oreal_M_Eo_J,type,
    ord_less_real_o: ( real > $o ) > ( real > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
    ord_less_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Risk____Free____Lending__Oaccount,type,
    ord_le2131251472502387783ccount: risk_Free_account > risk_Free_account > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Real__Oreal_J_J,type,
    ord_le3527643927072297637t_real: set_nat_real > set_nat_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_062_It__Nat__Onat_Mt__Real__Oreal_J_M_Eo_J,type,
    ord_le7676461544873280788real_o: ( ( nat > real ) > $o ) > ( ( nat > real ) > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_Mt__Real__Oreal_J,type,
    ord_less_eq_nat_real: ( nat > real ) > ( nat > real ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Real__Oreal_M_Eo_J,type,
    ord_less_eq_real_o: ( real > $o ) > ( real > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
    ord_less_eq_int: int > int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Risk____Free____Lending__Oaccount,type,
    ord_le4245800335709223507ccount: risk_Free_account > risk_Free_account > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Real__Oreal_J_J,type,
    ord_le2908806416726583473t_real: set_nat_real > set_nat_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
    ord_less_eq_set_int: set_int > set_int > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Risk____Free____Lending__Oaccount_J,type,
    ord_le4487465848215339657ccount: set_Ri1641125681238393385ccount > set_Ri1641125681238393385ccount > $o ).

thf(sy_c_Orderings_Oordering__top_001t__Nat__Onat,type,
    ordering_top_nat: ( nat > nat > $o ) > ( nat > nat > $o ) > nat > $o ).

thf(sy_c_Orderings_Oordering__top_001t__Set__Oset_It__Nat__Onat_J,type,
    ordering_top_set_nat: ( set_nat > set_nat > $o ) > ( set_nat > set_nat > $o ) > set_nat > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_I_062_It__Nat__Onat_Mt__Real__Oreal_J_M_Eo_J,type,
    top_top_nat_real_o: ( nat > real ) > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Nat__Onat_M_Eo_J,type,
    top_top_nat_o: nat > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Real__Oreal_M_Eo_J,type,
    top_top_real_o: real > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Real__Oreal_J_J,type,
    top_top_set_nat_real: set_nat_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
    top_top_set_real: set_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    top_top_set_set_nat: set_set_nat ).

thf(sy_c_Ordinal__Arithmetic_Ofin__support_001t__Real__Oreal_001t__Nat__Onat,type,
    ordina1579063754167848977al_nat: real > set_nat > set_nat_real ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
    divide_divide_int: int > int > int ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
    divide_divide_real: real > real > real ).

thf(sy_c_Risk__Free__Lending_Oaccount_OAbs__account,type,
    risk_F5458100604530014700ccount: ( nat > real ) > risk_Free_account ).

thf(sy_c_Risk__Free__Lending_Oaccount_ORep__account,type,
    risk_F170160801229183585ccount: risk_Free_account > nat > real ).

thf(sy_c_Risk__Free__Lending_Obulk__update__account,type,
    risk_F2412532053715321062ccount: nat > ( nat > real ) > real > risk_Free_account > risk_Free_account ).

thf(sy_c_Risk__Free__Lending_Ocash__reserve,type,
    risk_F1914734008469130493eserve: risk_Free_account > real ).

thf(sy_c_Risk__Free__Lending_Ojust__cash,type,
    risk_Free_just_cash: real > risk_Free_account ).

thf(sy_c_Risk__Free__Lending_Oloan,type,
    risk_Free_loan: nat > real > risk_Free_account ).

thf(sy_c_Risk__Free__Lending_Onet__asset__value,type,
    risk_F2906766666041932210_value: risk_Free_account > real ).

thf(sy_c_Risk__Free__Lending_Oreturn__loans,type,
    risk_F2121631595377017831_loans: ( nat > real ) > risk_Free_account > risk_Free_account ).

thf(sy_c_Risk__Free__Lending_Oshortest__period,type,
    risk_F4612863212915232279period: risk_Free_account > nat ).

thf(sy_c_Risk__Free__Lending_Ostrictly__solvent,type,
    risk_F1636578016437888323olvent: risk_Free_account > $o ).

thf(sy_c_Risk__Free__Lending_Oupdate__account,type,
    risk_F444380041991734328ccount: ( nat > real ) > real > risk_Free_account > risk_Free_account ).

thf(sy_c_Risk__Free__Lending_Ovalid__transfer,type,
    risk_F1023690899723030139ansfer: risk_Free_account > risk_Free_account > $o ).

thf(sy_c_Set_OCollect_001_062_It__Nat__Onat_Mt__Real__Oreal_J,type,
    collect_nat_real: ( ( nat > real ) > $o ) > set_nat_real ).

thf(sy_c_Set_OCollect_001t__Int__Oint,type,
    collect_int: ( int > $o ) > set_int ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set_OCollect_001t__Risk____Free____Lending__Oaccount,type,
    collec1856553087948576712ccount: ( risk_Free_account > $o ) > set_Ri1641125681238393385ccount ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001_062_It__Nat__Onat_Mt__Real__Oreal_J,type,
    set_or1122926678442080148t_real: ( nat > real ) > set_nat_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Int__Oint,type,
    set_ord_atMost_int: int > set_int ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
    set_ord_atMost_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Real__Oreal,type,
    set_ord_atMost_real: real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Risk____Free____Lending__Oaccount,type,
    set_or3854930313887350124ccount: risk_Free_account > set_Ri1641125681238393385ccount ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or4236626031148496127et_nat: set_nat > set_set_nat ).

thf(sy_c_Typedef_Otype__definition_001t__Risk____Free____Lending__Oaccount_001_062_It__Nat__Onat_Mt__Real__Oreal_J,type,
    type_d8982087200295354172t_real: ( risk_Free_account > nat > real ) > ( ( nat > real ) > risk_Free_account ) > set_nat_real > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_Mt__Real__Oreal_J,type,
    member_nat_real: ( nat > real ) > set_nat_real > $o ).

thf(sy_c_member_001t__Int__Oint,type,
    member_int: int > set_int > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_c_member_001t__Risk____Free____Lending__Oaccount,type,
    member5612106785598075018ccount: risk_Free_account > set_Ri1641125681238393385ccount > $o ).

thf(sy_v_n,type,
    n: nat ).

thf(sy_v_x,type,
    x: real ).

% Relevant facts (1265)
thf(fact_0_Abs__account__inverse,axiom,
    ! [Y: nat > real] :
      ( ( member_nat_real @ Y @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
     => ( ( risk_F170160801229183585ccount @ ( risk_F5458100604530014700ccount @ Y ) )
        = Y ) ) ).

% Abs_account_inverse
thf(fact_1__092_060open_062_I_092_060lambda_062m_O_Aif_An_A_061_Am_Athen_Ax_Aelse_A0_J_A_092_060in_062_Afin__support_A0_AUNIV_092_060close_062,axiom,
    ( member_nat_real
    @ ^ [M: nat] : ( if_real @ ( n = M ) @ x @ zero_zero_real )
    @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ) ).

% \<open>(\<lambda>m. if n = m then x else 0) \<in> fin_support 0 UNIV\<close>
thf(fact_2_Rep__account__inject,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ( risk_F170160801229183585ccount @ X )
        = ( risk_F170160801229183585ccount @ Y ) )
      = ( X = Y ) ) ).

% Rep_account_inject
thf(fact_3_Rep__account__inverse,axiom,
    ! [X: risk_Free_account] :
      ( ( risk_F5458100604530014700ccount @ ( risk_F170160801229183585ccount @ X ) )
      = X ) ).

% Rep_account_inverse
thf(fact_4_loan__def,axiom,
    ( risk_Free_loan
    = ( ^ [N: nat,X2: real] :
          ( risk_F5458100604530014700ccount
          @ ^ [M: nat] : ( if_real @ ( N = M ) @ X2 @ zero_zero_real ) ) ) ) ).

% loan_def
thf(fact_5_Abs__account__cases,axiom,
    ! [X: risk_Free_account] :
      ~ ! [Y2: nat > real] :
          ( ( X
            = ( risk_F5458100604530014700ccount @ Y2 ) )
         => ~ ( member_nat_real @ Y2 @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ) ) ).

% Abs_account_cases
thf(fact_6_Abs__account__induct,axiom,
    ! [P: risk_Free_account > $o,X: risk_Free_account] :
      ( ! [Y2: nat > real] :
          ( ( member_nat_real @ Y2 @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
         => ( P @ ( risk_F5458100604530014700ccount @ Y2 ) ) )
     => ( P @ X ) ) ).

% Abs_account_induct
thf(fact_7_Abs__account__inject,axiom,
    ! [X: nat > real,Y: nat > real] :
      ( ( member_nat_real @ X @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
     => ( ( member_nat_real @ Y @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
       => ( ( ( risk_F5458100604530014700ccount @ X )
            = ( risk_F5458100604530014700ccount @ Y ) )
          = ( X = Y ) ) ) ) ).

% Abs_account_inject
thf(fact_8_Rep__account,axiom,
    ! [X: risk_Free_account] : ( member_nat_real @ ( risk_F170160801229183585ccount @ X ) @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ) ).

% Rep_account
thf(fact_9_Rep__account__cases,axiom,
    ! [Y: nat > real] :
      ( ( member_nat_real @ Y @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
     => ~ ! [X3: risk_Free_account] :
            ( Y
           != ( risk_F170160801229183585ccount @ X3 ) ) ) ).

% Rep_account_cases
thf(fact_10_Rep__account__induct,axiom,
    ! [Y: nat > real,P: ( nat > real ) > $o] :
      ( ( member_nat_real @ Y @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) )
     => ( ! [X3: risk_Free_account] : ( P @ ( risk_F170160801229183585ccount @ X3 ) )
       => ( P @ Y ) ) ) ).

% Rep_account_induct
thf(fact_11_shortest__period___092_060pi_062,axiom,
    ! [Alpha: risk_Free_account,I: nat] :
      ( ( ( risk_F170160801229183585ccount @ Alpha @ I )
       != zero_zero_real )
     => ( ( risk_F170160801229183585ccount @ Alpha @ ( risk_F4612863212915232279period @ Alpha ) )
       != zero_zero_real ) ) ).

% shortest_period_\<pi>
thf(fact_12_zero__reorient,axiom,
    ! [X: real] :
      ( ( zero_zero_real = X )
      = ( X = zero_zero_real ) ) ).

% zero_reorient
thf(fact_13_zero__reorient,axiom,
    ! [X: risk_Free_account] :
      ( ( zero_z1425366712893667068ccount = X )
      = ( X = zero_z1425366712893667068ccount ) ) ).

% zero_reorient
thf(fact_14_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_15_zero__reorient,axiom,
    ! [X: int] :
      ( ( zero_zero_int = X )
      = ( X = zero_zero_int ) ) ).

% zero_reorient
thf(fact_16_Rep__account__zero,axiom,
    ( ( risk_F170160801229183585ccount @ zero_z1425366712893667068ccount )
    = ( ^ [Uu: nat] : zero_zero_real ) ) ).

% Rep_account_zero
thf(fact_17_zero__account__def,axiom,
    ( zero_z1425366712893667068ccount
    = ( risk_F5458100604530014700ccount
      @ ^ [Uu: nat] : zero_zero_real ) ) ).

% zero_account_def
thf(fact_18_UNIV__I,axiom,
    ! [X: nat > real] : ( member_nat_real @ X @ top_top_set_nat_real ) ).

% UNIV_I
thf(fact_19_UNIV__I,axiom,
    ! [X: real] : ( member_real @ X @ top_top_set_real ) ).

% UNIV_I
thf(fact_20_UNIV__I,axiom,
    ! [X: nat] : ( member_nat @ X @ top_top_set_nat ) ).

% UNIV_I
thf(fact_21_iso__tuple__UNIV__I,axiom,
    ! [X: nat > real] : ( member_nat_real @ X @ top_top_set_nat_real ) ).

% iso_tuple_UNIV_I
thf(fact_22_iso__tuple__UNIV__I,axiom,
    ! [X: real] : ( member_real @ X @ top_top_set_real ) ).

% iso_tuple_UNIV_I
thf(fact_23_iso__tuple__UNIV__I,axiom,
    ! [X: nat] : ( member_nat @ X @ top_top_set_nat ) ).

% iso_tuple_UNIV_I
thf(fact_24_type__definition__account,axiom,
    type_d8982087200295354172t_real @ risk_F170160801229183585ccount @ risk_F5458100604530014700ccount @ ( ordina1579063754167848977al_nat @ zero_zero_real @ top_top_set_nat ) ).

% type_definition_account
thf(fact_25_UNIV__def,axiom,
    ( top_top_set_nat
    = ( collect_nat
      @ ^ [X2: nat] : $true ) ) ).

% UNIV_def
thf(fact_26_cash__reserve__def,axiom,
    ( risk_F1914734008469130493eserve
    = ( ^ [Alpha2: risk_Free_account] : ( risk_F170160801229183585ccount @ Alpha2 @ zero_zero_nat ) ) ) ).

% cash_reserve_def
thf(fact_27_net__asset__value__zero,axiom,
    ( ( risk_F2906766666041932210_value @ zero_z1425366712893667068ccount )
    = zero_zero_real ) ).

% net_asset_value_zero
thf(fact_28_shortest__period__bound,axiom,
    ! [Alpha: risk_Free_account,I: nat] :
      ( ( ( risk_F170160801229183585ccount @ Alpha @ I )
       != zero_zero_real )
     => ( ord_less_eq_nat @ I @ ( risk_F4612863212915232279period @ Alpha ) ) ) ).

% shortest_period_bound
thf(fact_29_greater__than__shortest__period__zero,axiom,
    ! [Alpha: risk_Free_account,M2: nat] :
      ( ( ord_less_nat @ ( risk_F4612863212915232279period @ Alpha ) @ M2 )
     => ( ( risk_F170160801229183585ccount @ Alpha @ M2 )
        = zero_zero_real ) ) ).

% greater_than_shortest_period_zero
thf(fact_30_Rep__account__just__cash,axiom,
    ! [C: real] :
      ( ( risk_F170160801229183585ccount @ ( risk_Free_just_cash @ C ) )
      = ( ^ [N: nat] : ( if_real @ ( N = zero_zero_nat ) @ C @ zero_zero_real ) ) ) ).

% Rep_account_just_cash
thf(fact_31_just__cash__def,axiom,
    ( risk_Free_just_cash
    = ( ^ [C2: real] :
          ( risk_F5458100604530014700ccount
          @ ^ [N: nat] : ( if_real @ ( N = zero_zero_nat ) @ C2 @ zero_zero_real ) ) ) ) ).

% just_cash_def
thf(fact_32_UNIV__eq__I,axiom,
    ! [A: set_nat_real] :
      ( ! [X3: nat > real] : ( member_nat_real @ X3 @ A )
     => ( top_top_set_nat_real = A ) ) ).

% UNIV_eq_I
thf(fact_33_UNIV__eq__I,axiom,
    ! [A: set_real] :
      ( ! [X3: real] : ( member_real @ X3 @ A )
     => ( top_top_set_real = A ) ) ).

% UNIV_eq_I
thf(fact_34_UNIV__eq__I,axiom,
    ! [A: set_nat] :
      ( ! [X3: nat] : ( member_nat @ X3 @ A )
     => ( top_top_set_nat = A ) ) ).

% UNIV_eq_I
thf(fact_35_dual__order_Orefl,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_36_dual__order_Orefl,axiom,
    ! [A2: real] : ( ord_less_eq_real @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_37_dual__order_Orefl,axiom,
    ! [A2: risk_Free_account] : ( ord_le4245800335709223507ccount @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_38_dual__order_Orefl,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_39_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_40_order__refl,axiom,
    ! [X: real] : ( ord_less_eq_real @ X @ X ) ).

% order_refl
thf(fact_41_order__refl,axiom,
    ! [X: risk_Free_account] : ( ord_le4245800335709223507ccount @ X @ X ) ).

% order_refl
thf(fact_42_order__refl,axiom,
    ! [X: int] : ( ord_less_eq_int @ X @ X ) ).

% order_refl
thf(fact_43_le__zero__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_44_not__gr__zero,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_45_net__asset__value__just__cash__left__inverse,axiom,
    ! [C: real] :
      ( ( risk_F2906766666041932210_value @ ( risk_Free_just_cash @ C ) )
      = C ) ).

% net_asset_value_just_cash_left_inverse
thf(fact_46_just__cash__embed,axiom,
    ( ( ^ [Y3: real,Z: real] : ( Y3 = Z ) )
    = ( ^ [A3: real,B: real] :
          ( ( risk_Free_just_cash @ A3 )
          = ( risk_Free_just_cash @ B ) ) ) ) ).

% just_cash_embed
thf(fact_47_order__less__imp__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_48_order__less__imp__not__less,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ~ ( ord_le2131251472502387783ccount @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_49_order__less__imp__not__less,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_50_order__less__imp__not__less,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_51_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_52_order__le__imp__less__or__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_real @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_53_order__le__imp__less__or__eq,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ Y )
     => ( ( ord_le2131251472502387783ccount @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_54_order__le__imp__less__or__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_int @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_55_linorder__le__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_56_linorder__le__less__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
      | ( ord_less_real @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_57_linorder__le__less__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
      | ( ord_less_int @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_58_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_59_order__less__imp__not__eq2,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_60_order__less__imp__not__eq2,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_61_order__less__imp__not__eq2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_62_order__less__imp__not__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_63_order__less__imp__not__eq,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_64_order__less__imp__not__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_65_order__less__imp__not__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_66_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_67_order__less__le__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_68_order__less__le__subst2,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_69_order__less__le__subst2,axiom,
    ! [A2: int,B2: int,F: int > nat,C: nat] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_70_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_71_order__less__le__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_72_order__less__le__subst2,axiom,
    ! [A2: real,B2: real,F: real > real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_73_order__less__le__subst2,axiom,
    ! [A2: int,B2: int,F: int > real,C: real] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_74_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_le4245800335709223507ccount @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_75_order__less__le__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ord_le4245800335709223507ccount @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_76_order__less__le__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_77_order__less__le__subst1,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_78_order__less__le__subst1,axiom,
    ! [A2: risk_Free_account,F: nat > risk_Free_account,B2: nat,C: nat] :
      ( ( ord_le2131251472502387783ccount @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_79_order__less__le__subst1,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_80_order__less__le__subst1,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_81_order__less__le__subst1,axiom,
    ! [A2: real,F: real > real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_82_order__less__le__subst1,axiom,
    ! [A2: risk_Free_account,F: real > risk_Free_account,B2: real,C: real] :
      ( ( ord_le2131251472502387783ccount @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_83_order__less__le__subst1,axiom,
    ! [A2: int,F: real > int,B2: real,C: real] :
      ( ( ord_less_int @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_84_order__less__le__subst1,axiom,
    ! [A2: nat,F: risk_Free_account > nat,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_le4245800335709223507ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_85_order__less__le__subst1,axiom,
    ! [A2: real,F: risk_Free_account > real,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_le4245800335709223507ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_86_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_87_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_real @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_88_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_89_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_90_order__le__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_91_order__le__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_real @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_92_order__le__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_93_order__le__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_94_order__le__less__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_95_order__le__less__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( ord_less_real @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_96_order__le__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_97_order__le__less__subst1,axiom,
    ! [A2: nat,F: risk_Free_account > nat,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_98_order__le__less__subst1,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_99_order__le__less__subst1,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_100_order__le__less__subst1,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_101_order__le__less__subst1,axiom,
    ! [A2: real,F: risk_Free_account > real,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_102_order__le__less__subst1,axiom,
    ! [A2: real,F: real > real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_103_order__le__less__subst1,axiom,
    ! [A2: real,F: int > real,B2: int,C: int] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_104_order__le__less__subst1,axiom,
    ! [A2: risk_Free_account,F: nat > risk_Free_account,B2: nat,C: nat] :
      ( ( ord_le4245800335709223507ccount @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_105_order__le__less__subst1,axiom,
    ! [A2: risk_Free_account,F: risk_Free_account > risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A2 @ ( F @ B2 ) )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_106_linorder__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
      | ( X = Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_107_linorder__less__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
      | ( X = Y )
      | ( ord_less_real @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_108_linorder__less__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
      | ( X = Y )
      | ( ord_less_int @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_109_mem__Collect__eq,axiom,
    ! [A2: nat > real,P: ( nat > real ) > $o] :
      ( ( member_nat_real @ A2 @ ( collect_nat_real @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_110_mem__Collect__eq,axiom,
    ! [A2: real,P: real > $o] :
      ( ( member_real @ A2 @ ( collect_real @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_111_mem__Collect__eq,axiom,
    ! [A2: nat,P: nat > $o] :
      ( ( member_nat @ A2 @ ( collect_nat @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_112_Collect__mem__eq,axiom,
    ! [A: set_nat_real] :
      ( ( collect_nat_real
        @ ^ [X2: nat > real] : ( member_nat_real @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_113_Collect__mem__eq,axiom,
    ! [A: set_real] :
      ( ( collect_real
        @ ^ [X2: real] : ( member_real @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_114_Collect__mem__eq,axiom,
    ! [A: set_nat] :
      ( ( collect_nat
        @ ^ [X2: nat] : ( member_nat @ X2 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_115_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_116_order__less__le__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_117_order__less__le__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ Z2 )
       => ( ord_less_real @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_118_order__less__le__trans,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account,Z2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( ( ord_le4245800335709223507ccount @ Y @ Z2 )
       => ( ord_le2131251472502387783ccount @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_119_order__less__le__trans,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ Z2 )
       => ( ord_less_int @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_120_order__less__imp__triv,axiom,
    ! [X: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_121_order__less__imp__triv,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account,P: $o] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( ( ord_le2131251472502387783ccount @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_122_order__less__imp__triv,axiom,
    ! [X: real,Y: real,P: $o] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_real @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_123_order__less__imp__triv,axiom,
    ! [X: int,Y: int,P: $o] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_int @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_124_order__le__less__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_125_order__le__less__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_real @ Y @ Z2 )
       => ( ord_less_real @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_126_order__le__less__trans,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account,Z2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ Y )
     => ( ( ord_le2131251472502387783ccount @ Y @ Z2 )
       => ( ord_le2131251472502387783ccount @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_127_order__le__less__trans,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_int @ Y @ Z2 )
       => ( ord_less_int @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_128_order__neq__le__trans,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 != B2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% order_neq_le_trans
thf(fact_129_order__neq__le__trans,axiom,
    ! [A2: real,B2: real] :
      ( ( A2 != B2 )
     => ( ( ord_less_eq_real @ A2 @ B2 )
       => ( ord_less_real @ A2 @ B2 ) ) ) ).

% order_neq_le_trans
thf(fact_130_order__neq__le__trans,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( A2 != B2 )
     => ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
       => ( ord_le2131251472502387783ccount @ A2 @ B2 ) ) ) ).

% order_neq_le_trans
thf(fact_131_order__neq__le__trans,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 != B2 )
     => ( ( ord_less_eq_int @ A2 @ B2 )
       => ( ord_less_int @ A2 @ B2 ) ) ) ).

% order_neq_le_trans
thf(fact_132_order__less__not__sym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_133_order__less__not__sym,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ~ ( ord_le2131251472502387783ccount @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_134_order__less__not__sym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_135_order__less__not__sym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_136_order__le__neq__trans,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% order_le_neq_trans
thf(fact_137_order__le__neq__trans,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_real @ A2 @ B2 ) ) ) ).

% order_le_neq_trans
thf(fact_138_order__le__neq__trans,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_le2131251472502387783ccount @ A2 @ B2 ) ) ) ).

% order_le_neq_trans
thf(fact_139_order__le__neq__trans,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_int @ A2 @ B2 ) ) ) ).

% order_le_neq_trans
thf(fact_140_order__antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_141_order__antisym__conv,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ( ( ord_less_eq_real @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_142_order__antisym__conv,axiom,
    ! [Y: risk_Free_account,X: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ Y @ X )
     => ( ( ord_le4245800335709223507ccount @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_143_order__antisym__conv,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ( ( ord_less_eq_int @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_144_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_145_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_146_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_real @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_147_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_148_order__less__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_149_order__less__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_150_order__less__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ord_less_real @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_151_order__less__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > int,C: int] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ord_less_int @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_152_order__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_153_order__less__subst2,axiom,
    ! [A2: real,B2: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_le2131251472502387783ccount @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_154_order__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_155_order__less__subst1,axiom,
    ! [A2: nat,F: risk_Free_account > nat,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_156_order__less__subst1,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_157_order__less__subst1,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_158_order__less__subst1,axiom,
    ! [A2: risk_Free_account,F: nat > risk_Free_account,B2: nat,C: nat] :
      ( ( ord_le2131251472502387783ccount @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_159_order__less__subst1,axiom,
    ! [A2: risk_Free_account,F: risk_Free_account > risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ ( F @ B2 ) )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_160_order__less__subst1,axiom,
    ! [A2: risk_Free_account,F: real > risk_Free_account,B2: real,C: real] :
      ( ( ord_le2131251472502387783ccount @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_161_order__less__subst1,axiom,
    ! [A2: risk_Free_account,F: int > risk_Free_account,B2: int,C: int] :
      ( ( ord_le2131251472502387783ccount @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_int @ B2 @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_int @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_162_order__less__subst1,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_163_order__less__subst1,axiom,
    ! [A2: real,F: risk_Free_account > real,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_164_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_165_order__less__irrefl,axiom,
    ! [X: risk_Free_account] :
      ~ ( ord_le2131251472502387783ccount @ X @ X ) ).

% order_less_irrefl
thf(fact_166_order__less__irrefl,axiom,
    ! [X: real] :
      ~ ( ord_less_real @ X @ X ) ).

% order_less_irrefl
thf(fact_167_order__less__irrefl,axiom,
    ! [X: int] :
      ~ ( ord_less_int @ X @ X ) ).

% order_less_irrefl
thf(fact_168_order__less__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_169_order__less__imp__le,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_170_order__less__imp__le,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( ord_le4245800335709223507ccount @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_171_order__less__imp__le,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_172_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_173_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_174_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_175_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_176_ord__less__eq__subst,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_177_ord__less__eq__subst,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_178_ord__less__eq__subst,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_179_ord__less__eq__subst,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > int,C: int] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_180_ord__less__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_181_ord__less__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_182_ord__eq__less__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_183_ord__eq__less__subst,axiom,
    ! [A2: risk_Free_account,F: nat > risk_Free_account,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_184_ord__eq__less__subst,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_185_ord__eq__less__subst,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_186_ord__eq__less__subst,axiom,
    ! [A2: nat,F: risk_Free_account > nat,B2: risk_Free_account,C: risk_Free_account] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_187_ord__eq__less__subst,axiom,
    ! [A2: risk_Free_account,F: risk_Free_account > risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_188_ord__eq__less__subst,axiom,
    ! [A2: real,F: risk_Free_account > real,B2: risk_Free_account,C: risk_Free_account] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_189_ord__eq__less__subst,axiom,
    ! [A2: int,F: risk_Free_account > int,B2: risk_Free_account,C: risk_Free_account] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le2131251472502387783ccount @ X3 @ Y2 )
             => ( ord_less_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_190_ord__eq__less__subst,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_191_ord__eq__less__subst,axiom,
    ! [A2: risk_Free_account,F: real > risk_Free_account,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_real @ X3 @ Y2 )
             => ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le2131251472502387783ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_192_linorder__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_not_less
thf(fact_193_linorder__not__less,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_real @ X @ Y ) )
      = ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_not_less
thf(fact_194_linorder__not__less,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_int @ X @ Y ) )
      = ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_not_less
thf(fact_195_linorder__le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_196_linorder__le__cases,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_eq_real @ X @ Y )
     => ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_197_linorder__le__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_eq_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_198_order__less__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_199_order__less__trans,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account,Z2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( ( ord_le2131251472502387783ccount @ Y @ Z2 )
       => ( ord_le2131251472502387783ccount @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_200_order__less__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ( ord_less_real @ Y @ Z2 )
       => ( ord_less_real @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_201_order__less__trans,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ord_less_int @ X @ Y )
     => ( ( ord_less_int @ Y @ Z2 )
       => ( ord_less_int @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_202_order__less__asym_H,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_203_order__less__asym_H,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ~ ( ord_le2131251472502387783ccount @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_204_order__less__asym_H,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ~ ( ord_less_real @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_205_order__less__asym_H,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ~ ( ord_less_int @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_206_linorder__neq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
      = ( ( ord_less_nat @ X @ Y )
        | ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_207_linorder__neq__iff,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
      = ( ( ord_less_real @ X @ Y )
        | ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_208_linorder__neq__iff,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
      = ( ( ord_less_int @ X @ Y )
        | ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_209_order__less__asym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_asym
thf(fact_210_order__less__asym,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ~ ( ord_le2131251472502387783ccount @ Y @ X ) ) ).

% order_less_asym
thf(fact_211_order__less__asym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ~ ( ord_less_real @ Y @ X ) ) ).

% order_less_asym
thf(fact_212_order__less__asym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ~ ( ord_less_int @ Y @ X ) ) ).

% order_less_asym
thf(fact_213_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_214_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_215_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le4245800335709223507ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_216_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_217_ord__le__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_218_ord__le__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_219_ord__le__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le4245800335709223507ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_220_ord__le__eq__subst,axiom,
    ! [A2: real,B2: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_221_ord__le__eq__subst,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_222_ord__le__eq__subst,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_223_ord__eq__le__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_224_ord__eq__le__subst,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_225_ord__eq__le__subst,axiom,
    ! [A2: risk_Free_account,F: nat > risk_Free_account,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le4245800335709223507ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_226_ord__eq__le__subst,axiom,
    ! [A2: int,F: nat > int,B2: nat,C: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_227_ord__eq__le__subst,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_228_ord__eq__le__subst,axiom,
    ! [A2: real,F: real > real,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_229_ord__eq__le__subst,axiom,
    ! [A2: risk_Free_account,F: real > risk_Free_account,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le4245800335709223507ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_230_ord__eq__le__subst,axiom,
    ! [A2: int,F: real > int,B2: real,C: real] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_231_ord__eq__le__subst,axiom,
    ! [A2: nat,F: risk_Free_account > nat,B2: risk_Free_account,C: risk_Free_account] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_le4245800335709223507ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_232_ord__eq__le__subst,axiom,
    ! [A2: real,F: risk_Free_account > real,B2: risk_Free_account,C: risk_Free_account] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_le4245800335709223507ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_233_linorder__not__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y ) )
      = ( ord_less_nat @ Y @ X ) ) ).

% linorder_not_le
thf(fact_234_linorder__not__le,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_eq_real @ X @ Y ) )
      = ( ord_less_real @ Y @ X ) ) ).

% linorder_not_le
thf(fact_235_linorder__not__le,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_eq_int @ X @ Y ) )
      = ( ord_less_int @ Y @ X ) ) ).

% linorder_not_le
thf(fact_236_linorder__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_linear
thf(fact_237_linorder__linear,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
      | ( ord_less_eq_real @ Y @ X ) ) ).

% linorder_linear
thf(fact_238_linorder__linear,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
      | ( ord_less_eq_int @ Y @ X ) ) ).

% linorder_linear
thf(fact_239_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_240_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_241_order__less__le,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [X2: risk_Free_account,Y4: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_242_order__less__le,axiom,
    ( ord_less_int
    = ( ^ [X2: int,Y4: int] :
          ( ( ord_less_eq_int @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_243_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_nat @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_244_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_real @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_245_order__le__less,axiom,
    ( ord_le4245800335709223507ccount
    = ( ^ [X2: risk_Free_account,Y4: risk_Free_account] :
          ( ( ord_le2131251472502387783ccount @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_246_order__le__less,axiom,
    ( ord_less_eq_int
    = ( ^ [X2: int,Y4: int] :
          ( ( ord_less_int @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_247_order__eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_248_order__eq__refl,axiom,
    ! [X: real,Y: real] :
      ( ( X = Y )
     => ( ord_less_eq_real @ X @ Y ) ) ).

% order_eq_refl
thf(fact_249_order__eq__refl,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( X = Y )
     => ( ord_le4245800335709223507ccount @ X @ Y ) ) ).

% order_eq_refl
thf(fact_250_order__eq__refl,axiom,
    ! [X: int,Y: int] :
      ( ( X = Y )
     => ( ord_less_eq_int @ X @ Y ) ) ).

% order_eq_refl
thf(fact_251_linorder__neqE,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_252_linorder__neqE,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_253_linorder__neqE,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_254_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_255_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_256_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_le4245800335709223507ccount @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le4245800335709223507ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_257_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_258_order__subst2,axiom,
    ! [A2: real,B2: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_259_order__subst2,axiom,
    ! [A2: real,B2: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_260_order__subst2,axiom,
    ! [A2: real,B2: real,F: real > risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_le4245800335709223507ccount @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le4245800335709223507ccount @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_261_order__subst2,axiom,
    ! [A2: real,B2: real,F: real > int,C: int] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_int @ ( F @ B2 ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_int @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_262_order__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > nat,C: nat] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_263_order__subst2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,F: risk_Free_account > real,C: real] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( ord_less_eq_real @ ( F @ B2 ) @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_264_order__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_265_order__subst1,axiom,
    ! [A2: nat,F: real > nat,B2: real,C: real] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_266_order__subst1,axiom,
    ! [A2: nat,F: risk_Free_account > nat,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_le4245800335709223507ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_267_order__subst1,axiom,
    ! [A2: nat,F: int > nat,B2: int,C: int] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_268_order__subst1,axiom,
    ! [A2: real,F: nat > real,B2: nat,C: nat] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_269_order__subst1,axiom,
    ! [A2: real,F: real > real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_270_order__subst1,axiom,
    ! [A2: real,F: risk_Free_account > real,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_le4245800335709223507ccount @ B2 @ C )
       => ( ! [X3: risk_Free_account,Y2: risk_Free_account] :
              ( ( ord_le4245800335709223507ccount @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_271_order__subst1,axiom,
    ! [A2: real,F: int > real,B2: int,C: int] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ! [X3: int,Y2: int] :
              ( ( ord_less_eq_int @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_272_order__subst1,axiom,
    ! [A2: risk_Free_account,F: nat > risk_Free_account,B2: nat,C: nat] :
      ( ( ord_le4245800335709223507ccount @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le4245800335709223507ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_273_order__subst1,axiom,
    ! [A2: risk_Free_account,F: real > risk_Free_account,B2: real,C: real] :
      ( ( ord_le4245800335709223507ccount @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le4245800335709223507ccount @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_274_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A3: nat,B: nat] :
          ( ( ord_less_eq_nat @ A3 @ B )
          & ( ord_less_eq_nat @ B @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_275_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: real,Z: real] : ( Y3 = Z ) )
    = ( ^ [A3: real,B: real] :
          ( ( ord_less_eq_real @ A3 @ B )
          & ( ord_less_eq_real @ B @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_276_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: risk_Free_account,Z: risk_Free_account] : ( Y3 = Z ) )
    = ( ^ [A3: risk_Free_account,B: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ A3 @ B )
          & ( ord_le4245800335709223507ccount @ B @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_277_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    = ( ^ [A3: int,B: int] :
          ( ( ord_less_eq_int @ A3 @ B )
          & ( ord_less_eq_int @ B @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_278_antisym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_279_antisym,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_280_antisym,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( ord_le4245800335709223507ccount @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_281_antisym,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_282_dual__order_Ostrict__implies__order,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_283_dual__order_Ostrict__implies__order,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_real @ B2 @ A2 )
     => ( ord_less_eq_real @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_284_dual__order_Ostrict__implies__order,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ B2 @ A2 )
     => ( ord_le4245800335709223507ccount @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_285_dual__order_Ostrict__implies__order,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ord_less_eq_int @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_286_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_287_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_288_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_real @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_289_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_290_order_Ostrict__implies__order,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_291_order_Ostrict__implies__order,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ord_less_eq_real @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_292_order_Ostrict__implies__order,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ord_le4245800335709223507ccount @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_293_order_Ostrict__implies__order,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_eq_int @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_294_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_295_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B: real,A3: real] :
          ( ( ord_less_eq_real @ B @ A3 )
          & ~ ( ord_less_eq_real @ A3 @ B ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_296_dual__order_Ostrict__iff__not,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [B: risk_Free_account,A3: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ B @ A3 )
          & ~ ( ord_le4245800335709223507ccount @ A3 @ B ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_297_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [B: int,A3: int] :
          ( ( ord_less_eq_int @ B @ A3 )
          & ~ ( ord_less_eq_int @ A3 @ B ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_298_dual__order_Ostrict__trans2,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_299_dual__order_Ostrict__trans2,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ord_less_real @ B2 @ A2 )
     => ( ( ord_less_eq_real @ C @ B2 )
       => ( ord_less_real @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_300_dual__order_Ostrict__trans2,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ B2 @ A2 )
     => ( ( ord_le4245800335709223507ccount @ C @ B2 )
       => ( ord_le2131251472502387783ccount @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_301_dual__order_Ostrict__trans2,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ B2 )
       => ( ord_less_int @ C @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_302_dual__order_Ostrict__trans1,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_303_dual__order_Ostrict__trans1,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ord_less_eq_real @ B2 @ A2 )
     => ( ( ord_less_real @ C @ B2 )
       => ( ord_less_real @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_304_dual__order_Ostrict__trans1,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ B2 @ A2 )
     => ( ( ord_le2131251472502387783ccount @ C @ B2 )
       => ( ord_le2131251472502387783ccount @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_305_dual__order_Ostrict__trans1,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ B2 )
       => ( ord_less_int @ C @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_306_order_Ostrict__implies__not__eq,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_307_order_Ostrict__implies__not__eq,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_308_order_Ostrict__implies__not__eq,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_309_order_Ostrict__implies__not__eq,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_310_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B @ A3 )
          & ( A3 != B ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_311_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B: real,A3: real] :
          ( ( ord_less_eq_real @ B @ A3 )
          & ( A3 != B ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_312_dual__order_Ostrict__iff__order,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [B: risk_Free_account,A3: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ B @ A3 )
          & ( A3 != B ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_313_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [B: int,A3: int] :
          ( ( ord_less_eq_int @ B @ A3 )
          & ( A3 != B ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_314_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B: nat,A3: nat] :
          ( ( ord_less_nat @ B @ A3 )
          | ( A3 = B ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_315_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B: real,A3: real] :
          ( ( ord_less_real @ B @ A3 )
          | ( A3 = B ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_316_dual__order_Oorder__iff__strict,axiom,
    ( ord_le4245800335709223507ccount
    = ( ^ [B: risk_Free_account,A3: risk_Free_account] :
          ( ( ord_le2131251472502387783ccount @ B @ A3 )
          | ( A3 = B ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_317_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [B: int,A3: int] :
          ( ( ord_less_int @ B @ A3 )
          | ( A3 = B ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_318_dual__order_Ostrict__trans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C @ B2 )
       => ( ord_less_nat @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_319_dual__order_Ostrict__trans,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ B2 @ A2 )
     => ( ( ord_le2131251472502387783ccount @ C @ B2 )
       => ( ord_le2131251472502387783ccount @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_320_dual__order_Ostrict__trans,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ord_less_real @ B2 @ A2 )
     => ( ( ord_less_real @ C @ B2 )
       => ( ord_less_real @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_321_dual__order_Ostrict__trans,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ( ( ord_less_int @ C @ B2 )
       => ( ord_less_int @ C @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_322_dense__le__bounded,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_real @ X @ Y )
     => ( ! [W: real] :
            ( ( ord_less_real @ X @ W )
           => ( ( ord_less_real @ W @ Y )
             => ( ord_less_eq_real @ W @ Z2 ) ) )
       => ( ord_less_eq_real @ Y @ Z2 ) ) ) ).

% dense_le_bounded
thf(fact_323_dense__ge__bounded,axiom,
    ! [Z2: real,X: real,Y: real] :
      ( ( ord_less_real @ Z2 @ X )
     => ( ! [W: real] :
            ( ( ord_less_real @ Z2 @ W )
           => ( ( ord_less_real @ W @ X )
             => ( ord_less_eq_real @ Y @ W ) ) )
       => ( ord_less_eq_real @ Y @ Z2 ) ) ) ).

% dense_ge_bounded
thf(fact_324_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_325_not__less__iff__gr__or__eq,axiom,
    ! [X: real,Y: real] :
      ( ( ~ ( ord_less_real @ X @ Y ) )
      = ( ( ord_less_real @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_326_not__less__iff__gr__or__eq,axiom,
    ! [X: int,Y: int] :
      ( ( ~ ( ord_less_int @ X @ Y ) )
      = ( ( ord_less_int @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_327_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B: nat] :
          ( ( ord_less_eq_nat @ A3 @ B )
          & ~ ( ord_less_eq_nat @ B @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_328_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B: real] :
          ( ( ord_less_eq_real @ A3 @ B )
          & ~ ( ord_less_eq_real @ B @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_329_order_Ostrict__iff__not,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [A3: risk_Free_account,B: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ A3 @ B )
          & ~ ( ord_le4245800335709223507ccount @ B @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_330_order_Ostrict__iff__not,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B: int] :
          ( ( ord_less_eq_int @ A3 @ B )
          & ~ ( ord_less_eq_int @ B @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_331_order_Ostrict__trans2,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_332_order_Ostrict__trans2,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_333_order_Ostrict__trans2,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ord_le4245800335709223507ccount @ B2 @ C )
       => ( ord_le2131251472502387783ccount @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_334_order_Ostrict__trans2,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% order.strict_trans2
thf(fact_335_order_Ostrict__trans1,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_336_order_Ostrict__trans1,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_real @ B2 @ C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_337_order_Ostrict__trans1,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ord_le2131251472502387783ccount @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_338_order_Ostrict__trans1,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% order.strict_trans1
thf(fact_339_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B: nat] :
          ( ( ord_less_eq_nat @ A3 @ B )
          & ( A3 != B ) ) ) ) ).

% order.strict_iff_order
thf(fact_340_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B: real] :
          ( ( ord_less_eq_real @ A3 @ B )
          & ( A3 != B ) ) ) ) ).

% order.strict_iff_order
thf(fact_341_order_Ostrict__iff__order,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [A3: risk_Free_account,B: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ A3 @ B )
          & ( A3 != B ) ) ) ) ).

% order.strict_iff_order
thf(fact_342_order_Ostrict__iff__order,axiom,
    ( ord_less_int
    = ( ^ [A3: int,B: int] :
          ( ( ord_less_eq_int @ A3 @ B )
          & ( A3 != B ) ) ) ) ).

% order.strict_iff_order
thf(fact_343_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B: nat] :
          ( ( ord_less_nat @ A3 @ B )
          | ( A3 = B ) ) ) ) ).

% order.order_iff_strict
thf(fact_344_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B: real] :
          ( ( ord_less_real @ A3 @ B )
          | ( A3 = B ) ) ) ) ).

% order.order_iff_strict
thf(fact_345_order_Oorder__iff__strict,axiom,
    ( ord_le4245800335709223507ccount
    = ( ^ [A3: risk_Free_account,B: risk_Free_account] :
          ( ( ord_le2131251472502387783ccount @ A3 @ B )
          | ( A3 = B ) ) ) ) ).

% order.order_iff_strict
thf(fact_346_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_int
    = ( ^ [A3: int,B: int] :
          ( ( ord_less_int @ A3 @ B )
          | ( A3 = B ) ) ) ) ).

% order.order_iff_strict
thf(fact_347_order_Ostrict__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_348_order_Ostrict__trans,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ord_le2131251472502387783ccount @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_349_order_Ostrict__trans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_real @ B2 @ C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_350_order_Ostrict__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% order.strict_trans
thf(fact_351_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A4: nat,B3: nat] :
          ( ( ord_less_nat @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: nat] : ( P @ A4 @ A4 )
       => ( ! [A4: nat,B3: nat] :
              ( ( P @ B3 @ A4 )
             => ( P @ A4 @ B3 ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_352_linorder__less__wlog,axiom,
    ! [P: real > real > $o,A2: real,B2: real] :
      ( ! [A4: real,B3: real] :
          ( ( ord_less_real @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: real] : ( P @ A4 @ A4 )
       => ( ! [A4: real,B3: real] :
              ( ( P @ B3 @ A4 )
             => ( P @ A4 @ B3 ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_353_linorder__less__wlog,axiom,
    ! [P: int > int > $o,A2: int,B2: int] :
      ( ! [A4: int,B3: int] :
          ( ( ord_less_int @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: int] : ( P @ A4 @ A4 )
       => ( ! [A4: int,B3: int] :
              ( ( P @ B3 @ A4 )
             => ( P @ A4 @ B3 ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_354_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X4: nat] : ( P2 @ X4 ) )
    = ( ^ [P3: nat > $o] :
        ? [N: nat] :
          ( ( P3 @ N )
          & ! [M: nat] :
              ( ( ord_less_nat @ M @ N )
             => ~ ( P3 @ M ) ) ) ) ) ).

% exists_least_iff
thf(fact_355_dual__order_Oirrefl,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_356_dual__order_Oirrefl,axiom,
    ! [A2: risk_Free_account] :
      ~ ( ord_le2131251472502387783ccount @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_357_dual__order_Oirrefl,axiom,
    ! [A2: real] :
      ~ ( ord_less_real @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_358_dual__order_Oirrefl,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_359_dual__order_Otrans,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C @ B2 )
       => ( ord_less_eq_nat @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_360_dual__order_Otrans,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ord_less_eq_real @ B2 @ A2 )
     => ( ( ord_less_eq_real @ C @ B2 )
       => ( ord_less_eq_real @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_361_dual__order_Otrans,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ B2 @ A2 )
     => ( ( ord_le4245800335709223507ccount @ C @ B2 )
       => ( ord_le4245800335709223507ccount @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_362_dual__order_Otrans,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ C @ B2 )
       => ( ord_less_eq_int @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_363_dual__order_Oasym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ~ ( ord_less_nat @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_364_dual__order_Oasym,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ B2 @ A2 )
     => ~ ( ord_le2131251472502387783ccount @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_365_dual__order_Oasym,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_real @ B2 @ A2 )
     => ~ ( ord_less_real @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_366_dual__order_Oasym,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ A2 )
     => ~ ( ord_less_int @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_367_dual__order_Oantisym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_368_dual__order_Oantisym,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_eq_real @ B2 @ A2 )
     => ( ( ord_less_eq_real @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_369_dual__order_Oantisym,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ B2 @ A2 )
     => ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_370_dual__order_Oantisym,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ B2 @ A2 )
     => ( ( ord_less_eq_int @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_371_not__le__imp__less,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X )
     => ( ord_less_nat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_372_not__le__imp__less,axiom,
    ! [Y: real,X: real] :
      ( ~ ( ord_less_eq_real @ Y @ X )
     => ( ord_less_real @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_373_not__le__imp__less,axiom,
    ! [Y: int,X: int] :
      ( ~ ( ord_less_eq_int @ Y @ X )
     => ( ord_less_int @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_374_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ~ ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_375_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ~ ( ord_less_eq_real @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_376_less__le__not__le,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [X2: risk_Free_account,Y4: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ X2 @ Y4 )
          & ~ ( ord_le4245800335709223507ccount @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_377_less__le__not__le,axiom,
    ( ord_less_int
    = ( ^ [X2: int,Y4: int] :
          ( ( ord_less_eq_int @ X2 @ Y4 )
          & ~ ( ord_less_eq_int @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_378_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A3: nat,B: nat] :
          ( ( ord_less_eq_nat @ B @ A3 )
          & ( ord_less_eq_nat @ A3 @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_379_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: real,Z: real] : ( Y3 = Z ) )
    = ( ^ [A3: real,B: real] :
          ( ( ord_less_eq_real @ B @ A3 )
          & ( ord_less_eq_real @ A3 @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_380_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: risk_Free_account,Z: risk_Free_account] : ( Y3 = Z ) )
    = ( ^ [A3: risk_Free_account,B: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ B @ A3 )
          & ( ord_le4245800335709223507ccount @ A3 @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_381_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    = ( ^ [A3: int,B: int] :
          ( ( ord_less_eq_int @ B @ A3 )
          & ( ord_less_eq_int @ A3 @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_382_linorder__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_383_linorder__cases,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_384_linorder__cases,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_385_dense__le,axiom,
    ! [Y: real,Z2: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ X3 @ Y )
         => ( ord_less_eq_real @ X3 @ Z2 ) )
     => ( ord_less_eq_real @ Y @ Z2 ) ) ).

% dense_le
thf(fact_386_dense__ge,axiom,
    ! [Z2: real,Y: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ Z2 @ X3 )
         => ( ord_less_eq_real @ Y @ X3 ) )
     => ( ord_less_eq_real @ Y @ Z2 ) ) ).

% dense_ge
thf(fact_387_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: nat,B3: nat] :
            ( ( P @ B3 @ A4 )
           => ( P @ A4 @ B3 ) )
       => ( P @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_388_linorder__wlog,axiom,
    ! [P: real > real > $o,A2: real,B2: real] :
      ( ! [A4: real,B3: real] :
          ( ( ord_less_eq_real @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: real,B3: real] :
            ( ( P @ B3 @ A4 )
           => ( P @ A4 @ B3 ) )
       => ( P @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_389_linorder__wlog,axiom,
    ! [P: int > int > $o,A2: int,B2: int] :
      ( ! [A4: int,B3: int] :
          ( ( ord_less_eq_int @ A4 @ B3 )
         => ( P @ A4 @ B3 ) )
     => ( ! [A4: int,B3: int] :
            ( ( P @ B3 @ A4 )
           => ( P @ A4 @ B3 ) )
       => ( P @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_390_antisym__conv3,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_391_antisym__conv3,axiom,
    ! [Y: real,X: real] :
      ( ~ ( ord_less_real @ Y @ X )
     => ( ( ~ ( ord_less_real @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_392_antisym__conv3,axiom,
    ! [Y: int,X: int] :
      ( ~ ( ord_less_int @ Y @ X )
     => ( ( ~ ( ord_less_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_393_less__induct,axiom,
    ! [P: nat > $o,A2: nat] :
      ( ! [X3: nat] :
          ( ! [Y5: nat] :
              ( ( ord_less_nat @ Y5 @ X3 )
             => ( P @ Y5 ) )
         => ( P @ X3 ) )
     => ( P @ A2 ) ) ).

% less_induct
thf(fact_394_ord__less__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_395_ord__less__eq__trans,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_le2131251472502387783ccount @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_396_ord__less__eq__trans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_397_ord__less__eq__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_398_ord__eq__less__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_nat @ B2 @ C )
       => ( ord_less_nat @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_399_ord__eq__less__trans,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( A2 = B2 )
     => ( ( ord_le2131251472502387783ccount @ B2 @ C )
       => ( ord_le2131251472502387783ccount @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_400_ord__eq__less__trans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( A2 = B2 )
     => ( ( ord_less_real @ B2 @ C )
       => ( ord_less_real @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_401_ord__eq__less__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( A2 = B2 )
     => ( ( ord_less_int @ B2 @ C )
       => ( ord_less_int @ A2 @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_402_order__trans,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z2 )
       => ( ord_less_eq_nat @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_403_order__trans,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ Z2 )
       => ( ord_less_eq_real @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_404_order__trans,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account,Z2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ Y )
     => ( ( ord_le4245800335709223507ccount @ Y @ Z2 )
       => ( ord_le4245800335709223507ccount @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_405_order__trans,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ Z2 )
       => ( ord_less_eq_int @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_406_order_Otrans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% order.trans
thf(fact_407_order_Otrans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% order.trans
thf(fact_408_order_Otrans,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( ord_le4245800335709223507ccount @ B2 @ C )
       => ( ord_le4245800335709223507ccount @ A2 @ C ) ) ) ).

% order.trans
thf(fact_409_order_Otrans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% order.trans
thf(fact_410_order_Oasym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order.asym
thf(fact_411_order_Oasym,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ~ ( ord_le2131251472502387783ccount @ B2 @ A2 ) ) ).

% order.asym
thf(fact_412_order_Oasym,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ~ ( ord_less_real @ B2 @ A2 ) ) ).

% order.asym
thf(fact_413_order_Oasym,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ~ ( ord_less_int @ B2 @ A2 ) ) ).

% order.asym
thf(fact_414_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_415_order__antisym,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ord_less_eq_real @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_416_order__antisym,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ Y )
     => ( ( ord_le4245800335709223507ccount @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_417_order__antisym,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ord_less_eq_int @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_418_antisym__conv2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_419_antisym__conv2,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ Y )
     => ( ( ~ ( ord_less_real @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_420_antisym__conv2,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ X @ Y )
     => ( ( ~ ( ord_le2131251472502387783ccount @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_421_antisym__conv2,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ( ~ ( ord_less_int @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_422_antisym__conv1,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_423_antisym__conv1,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ( ord_less_eq_real @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_424_antisym__conv1,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ~ ( ord_le2131251472502387783ccount @ X @ Y )
     => ( ( ord_le4245800335709223507ccount @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_425_antisym__conv1,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ( ord_less_eq_int @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_426_ord__le__eq__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_427_ord__le__eq__trans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_428_ord__le__eq__trans,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_le4245800335709223507ccount @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_429_ord__le__eq__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ( B2 = C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_430_ord__eq__le__trans,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_nat @ B2 @ C )
       => ( ord_less_eq_nat @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_431_ord__eq__le__trans,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_real @ B2 @ C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_432_ord__eq__le__trans,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( A2 = B2 )
     => ( ( ord_le4245800335709223507ccount @ B2 @ C )
       => ( ord_le4245800335709223507ccount @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_433_ord__eq__le__trans,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_int @ B2 @ C )
       => ( ord_less_eq_int @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_434_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_435_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: real,Z: real] : ( Y3 = Z ) )
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ( ord_less_eq_real @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_436_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: risk_Free_account,Z: risk_Free_account] : ( Y3 = Z ) )
    = ( ^ [X2: risk_Free_account,Y4: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ X2 @ Y4 )
          & ( ord_le4245800335709223507ccount @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_437_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
    = ( ^ [X2: int,Y4: int] :
          ( ( ord_less_eq_int @ X2 @ Y4 )
          & ( ord_less_eq_int @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_438_less__imp__neq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_439_less__imp__neq,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_440_less__imp__neq,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_441_less__imp__neq,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_int @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_442_le__cases3,axiom,
    ! [X: nat,Y: nat,Z2: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z2 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z2 )
           => ~ ( ord_less_eq_nat @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z2 @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z2 )
               => ~ ( ord_less_eq_nat @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z2 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_443_le__cases3,axiom,
    ! [X: real,Y: real,Z2: real] :
      ( ( ( ord_less_eq_real @ X @ Y )
       => ~ ( ord_less_eq_real @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_real @ Y @ X )
         => ~ ( ord_less_eq_real @ X @ Z2 ) )
       => ( ( ( ord_less_eq_real @ X @ Z2 )
           => ~ ( ord_less_eq_real @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_real @ Z2 @ Y )
             => ~ ( ord_less_eq_real @ Y @ X ) )
           => ( ( ( ord_less_eq_real @ Y @ Z2 )
               => ~ ( ord_less_eq_real @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_real @ Z2 @ X )
                 => ~ ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_444_le__cases3,axiom,
    ! [X: int,Y: int,Z2: int] :
      ( ( ( ord_less_eq_int @ X @ Y )
       => ~ ( ord_less_eq_int @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_int @ Y @ X )
         => ~ ( ord_less_eq_int @ X @ Z2 ) )
       => ( ( ( ord_less_eq_int @ X @ Z2 )
           => ~ ( ord_less_eq_int @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_int @ Z2 @ Y )
             => ~ ( ord_less_eq_int @ Y @ X ) )
           => ( ( ( ord_less_eq_int @ Y @ Z2 )
               => ~ ( ord_less_eq_int @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_int @ Z2 @ X )
                 => ~ ( ord_less_eq_int @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_445_dense,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ Y )
     => ? [Z3: real] :
          ( ( ord_less_real @ X @ Z3 )
          & ( ord_less_real @ Z3 @ Y ) ) ) ).

% dense
thf(fact_446_nle__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_eq_nat @ A2 @ B2 ) )
      = ( ( ord_less_eq_nat @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_447_nle__le,axiom,
    ! [A2: real,B2: real] :
      ( ( ~ ( ord_less_eq_real @ A2 @ B2 ) )
      = ( ( ord_less_eq_real @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_448_nle__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ~ ( ord_less_eq_int @ A2 @ B2 ) )
      = ( ( ord_less_eq_int @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_449_nless__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_nat @ A2 @ B2 ) )
      = ( ~ ( ord_less_eq_nat @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_450_nless__le,axiom,
    ! [A2: real,B2: real] :
      ( ( ~ ( ord_less_real @ A2 @ B2 ) )
      = ( ~ ( ord_less_eq_real @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_451_nless__le,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ~ ( ord_le2131251472502387783ccount @ A2 @ B2 ) )
      = ( ~ ( ord_le4245800335709223507ccount @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_452_nless__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ~ ( ord_less_int @ A2 @ B2 ) )
      = ( ~ ( ord_less_eq_int @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_453_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_454_gt__ex,axiom,
    ! [X: real] :
    ? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).

% gt_ex
thf(fact_455_gt__ex,axiom,
    ! [X: int] :
    ? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).

% gt_ex
thf(fact_456_lt__ex,axiom,
    ! [X: real] :
    ? [Y2: real] : ( ord_less_real @ Y2 @ X ) ).

% lt_ex
thf(fact_457_lt__ex,axiom,
    ! [X: int] :
    ? [Y2: int] : ( ord_less_int @ Y2 @ X ) ).

% lt_ex
thf(fact_458_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_459_leI,axiom,
    ! [X: real,Y: real] :
      ( ~ ( ord_less_real @ X @ Y )
     => ( ord_less_eq_real @ Y @ X ) ) ).

% leI
thf(fact_460_leI,axiom,
    ! [X: int,Y: int] :
      ( ~ ( ord_less_int @ X @ Y )
     => ( ord_less_eq_int @ Y @ X ) ) ).

% leI
thf(fact_461_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_462_leD,axiom,
    ! [Y: real,X: real] :
      ( ( ord_less_eq_real @ Y @ X )
     => ~ ( ord_less_real @ X @ Y ) ) ).

% leD
thf(fact_463_leD,axiom,
    ! [Y: risk_Free_account,X: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ Y @ X )
     => ~ ( ord_le2131251472502387783ccount @ X @ Y ) ) ).

% leD
thf(fact_464_leD,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ Y @ X )
     => ~ ( ord_less_int @ X @ Y ) ) ).

% leD
thf(fact_465_top__set__def,axiom,
    ( top_top_set_nat
    = ( collect_nat @ top_top_nat_o ) ) ).

% top_set_def
thf(fact_466_top_Onot__eq__extremum,axiom,
    ! [A2: set_nat] :
      ( ( A2 != top_top_set_nat )
      = ( ord_less_set_nat @ A2 @ top_top_set_nat ) ) ).

% top.not_eq_extremum
thf(fact_467_top_Oextremum__strict,axiom,
    ! [A2: set_nat] :
      ~ ( ord_less_set_nat @ top_top_set_nat @ A2 ) ).

% top.extremum_strict
thf(fact_468_top_Oextremum__uniqueI,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ top_top_set_nat @ A2 )
     => ( A2 = top_top_set_nat ) ) ).

% top.extremum_uniqueI
thf(fact_469_top_Oextremum__unique,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ top_top_set_nat @ A2 )
      = ( A2 = top_top_set_nat ) ) ).

% top.extremum_unique
thf(fact_470_top__greatest,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ A2 @ top_top_set_nat ) ).

% top_greatest
thf(fact_471_gr__zeroI,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr_zeroI
thf(fact_472_not__less__zero,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less_zero
thf(fact_473_gr__implies__not__zero,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_474_zero__less__iff__neq__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( N2 != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_475_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_476_type__copy__obj__one__point__absE,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,S: risk_Free_account] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ top_top_set_nat_real )
     => ~ ! [X3: nat > real] :
            ( S
           != ( Abs @ X3 ) ) ) ).

% type_copy_obj_one_point_absE
thf(fact_477_loan__just__cash,axiom,
    ! [C: real] :
      ( ( risk_Free_loan @ zero_zero_nat @ C )
      = ( risk_Free_just_cash @ C ) ) ).

% loan_just_cash
thf(fact_478_zero__account__alt__def,axiom,
    ( ( risk_Free_just_cash @ zero_zero_real )
    = zero_z1425366712893667068ccount ) ).

% zero_account_alt_def
thf(fact_479_UNIV__witness,axiom,
    ? [X3: nat > real] : ( member_nat_real @ X3 @ top_top_set_nat_real ) ).

% UNIV_witness
thf(fact_480_UNIV__witness,axiom,
    ? [X3: real] : ( member_real @ X3 @ top_top_set_real ) ).

% UNIV_witness
thf(fact_481_UNIV__witness,axiom,
    ? [X3: nat] : ( member_nat @ X3 @ top_top_set_nat ) ).

% UNIV_witness
thf(fact_482_bot__nat__0_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).

% bot_nat_0.extremum
thf(fact_483_le0,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% le0
thf(fact_484_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A2 ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_485_neq0__conv,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% neq0_conv
thf(fact_486_less__nat__zero__code,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_487_ex__least__nat__le,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K: nat] :
            ( ( ord_less_eq_nat @ K @ N2 )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K )
               => ~ ( P @ I2 ) )
            & ( P @ K ) ) ) ) ).

% ex_least_nat_le
thf(fact_488_type__copy__ex__RepI,axiom,
    ! [Rep: risk_Free_account > nat > real,Abs: ( nat > real ) > risk_Free_account,F2: ( nat > real ) > $o] :
      ( ( type_d8982087200295354172t_real @ Rep @ Abs @ top_top_set_nat_real )
     => ( ( ? [X5: nat > real] : ( F2 @ X5 ) )
        = ( ? [B: risk_Free_account] : ( F2 @ ( Rep @ B ) ) ) ) ) ).

% type_copy_ex_RepI
thf(fact_489_nat__descend__induct,axiom,
    ! [N2: nat,P: nat > $o,M2: nat] :
      ( ! [K: nat] :
          ( ( ord_less_nat @ N2 @ K )
         => ( P @ K ) )
     => ( ! [K: nat] :
            ( ( ord_less_eq_nat @ K @ N2 )
           => ( ! [I2: nat] :
                  ( ( ord_less_nat @ K @ I2 )
                 => ( P @ I2 ) )
             => ( P @ K ) ) )
       => ( P @ M2 ) ) ) ).

% nat_descend_induct
thf(fact_490_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_491_just__cash__order__embed,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B: real] : ( ord_le4245800335709223507ccount @ ( risk_Free_just_cash @ A3 ) @ ( risk_Free_just_cash @ B ) ) ) ) ).

% just_cash_order_embed
thf(fact_492_net__asset__value__mono,axiom,
    ! [Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
     => ( ord_less_eq_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).

% net_asset_value_mono
thf(fact_493_subset__UNIV,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ top_top_set_nat ) ).

% subset_UNIV
thf(fact_494_nat__neq__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( M2 != N2 )
      = ( ( ord_less_nat @ M2 @ N2 )
        | ( ord_less_nat @ N2 @ M2 ) ) ) ).

% nat_neq_iff
thf(fact_495_less__not__refl,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_not_refl
thf(fact_496_less__not__refl2,axiom,
    ! [N2: nat,M2: nat] :
      ( ( ord_less_nat @ N2 @ M2 )
     => ( M2 != N2 ) ) ).

% less_not_refl2
thf(fact_497_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_498_less__irrefl__nat,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_irrefl_nat
thf(fact_499_nat__less__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ( P @ M3 ) )
         => ( P @ N3 ) )
     => ( P @ N2 ) ) ).

% nat_less_induct
thf(fact_500_infinite__descent,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
              & ~ ( P @ M3 ) ) )
     => ( P @ N2 ) ) ).

% infinite_descent
thf(fact_501_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_502_le__refl,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).

% le_refl
thf(fact_503_le__trans,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K2 )
       => ( ord_less_eq_nat @ I @ K2 ) ) ) ).

% le_trans
thf(fact_504_eq__imp__le,axiom,
    ! [M2: nat,N2: nat] :
      ( ( M2 = N2 )
     => ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% eq_imp_le
thf(fact_505_le__antisym,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ M2 )
       => ( M2 = N2 ) ) ) ).

% le_antisym
thf(fact_506_nat__le__linear,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
      | ( ord_less_eq_nat @ N2 @ M2 ) ) ).

% nat_le_linear
thf(fact_507_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K2: nat,B2: nat] :
      ( ( P @ K2 )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B2 ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_508_infinite__descent0,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M3: nat] :
                  ( ( ord_less_nat @ M3 @ N3 )
                  & ~ ( P @ M3 ) ) ) )
       => ( P @ N2 ) ) ) ).

% infinite_descent0
thf(fact_509_gr__implies__not0,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_510_less__zeroE,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_zeroE
thf(fact_511_not__less0,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less0
thf(fact_512_not__gr0,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr0
thf(fact_513_gr0I,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr0I
thf(fact_514_bot__nat__0_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_515_le__0__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_516_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
     => ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_517_bot__nat__0_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
      = ( A2 = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_518_less__eq__nat_Osimps_I1_J,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% less_eq_nat.simps(1)
thf(fact_519_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M: nat,N: nat] :
          ( ( ord_less_eq_nat @ M @ N )
          & ( M != N ) ) ) ) ).

% nat_less_le
thf(fact_520_less__imp__le__nat,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% less_imp_le_nat
thf(fact_521_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M: nat,N: nat] :
          ( ( ord_less_nat @ M @ N )
          | ( M = N ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_522_less__or__eq__imp__le,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ( ord_less_nat @ M2 @ N2 )
        | ( M2 = N2 ) )
     => ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% less_or_eq_imp_le
thf(fact_523_le__neq__implies__less,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ( M2 != N2 )
       => ( ord_less_nat @ M2 @ N2 ) ) ) ).

% le_neq_implies_less
thf(fact_524_top__empty__eq,axiom,
    ( top_top_nat_real_o
    = ( ^ [X2: nat > real] : ( member_nat_real @ X2 @ top_top_set_nat_real ) ) ) ).

% top_empty_eq
thf(fact_525_top__empty__eq,axiom,
    ( top_top_real_o
    = ( ^ [X2: real] : ( member_real @ X2 @ top_top_set_real ) ) ) ).

% top_empty_eq
thf(fact_526_top__empty__eq,axiom,
    ( top_top_nat_o
    = ( ^ [X2: nat] : ( member_nat @ X2 @ top_top_set_nat ) ) ) ).

% top_empty_eq
thf(fact_527_field__lbound__gt__zero,axiom,
    ! [D1: real,D2: real] :
      ( ( ord_less_real @ zero_zero_real @ D1 )
     => ( ( ord_less_real @ zero_zero_real @ D2 )
       => ? [E: real] :
            ( ( ord_less_real @ zero_zero_real @ E )
            & ( ord_less_real @ E @ D1 )
            & ( ord_less_real @ E @ D2 ) ) ) ) ).

% field_lbound_gt_zero
thf(fact_528_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_529_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).

% less_numeral_extra(3)
thf(fact_530_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_numeral_extra(3)
thf(fact_531_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ~ ( ord_less_eq_nat @ T @ X6 ) ) ).

% minf(8)
thf(fact_532_minf_I8_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ~ ( ord_less_eq_real @ T @ X6 ) ) ).

% minf(8)
thf(fact_533_minf_I8_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ~ ( ord_less_eq_int @ T @ X6 ) ) ).

% minf(8)
thf(fact_534_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( ord_less_eq_nat @ X6 @ T ) ) ).

% minf(6)
thf(fact_535_minf_I6_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( ord_less_eq_real @ X6 @ T ) ) ).

% minf(6)
thf(fact_536_minf_I6_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ( ord_less_eq_int @ X6 @ T ) ) ).

% minf(6)
thf(fact_537_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( ord_less_eq_nat @ T @ X6 ) ) ).

% pinf(8)
thf(fact_538_pinf_I8_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( ord_less_eq_real @ T @ X6 ) ) ).

% pinf(8)
thf(fact_539_pinf_I8_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ( ord_less_eq_int @ T @ X6 ) ) ).

% pinf(8)
thf(fact_540_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ~ ( ord_less_eq_nat @ X6 @ T ) ) ).

% pinf(6)
thf(fact_541_pinf_I6_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ~ ( ord_less_eq_real @ X6 @ T ) ) ).

% pinf(6)
thf(fact_542_pinf_I6_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ~ ( ord_less_eq_int @ X6 @ T ) ) ).

% pinf(6)
thf(fact_543_verit__comp__simplify1_I3_J,axiom,
    ! [B4: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B4 @ A5 ) )
      = ( ord_less_nat @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_544_verit__comp__simplify1_I3_J,axiom,
    ! [B4: real,A5: real] :
      ( ( ~ ( ord_less_eq_real @ B4 @ A5 ) )
      = ( ord_less_real @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_545_verit__comp__simplify1_I3_J,axiom,
    ! [B4: int,A5: int] :
      ( ( ~ ( ord_less_eq_int @ B4 @ A5 ) )
      = ( ord_less_int @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_546_subsetI,axiom,
    ! [A: set_nat_real,B5: set_nat_real] :
      ( ! [X3: nat > real] :
          ( ( member_nat_real @ X3 @ A )
         => ( member_nat_real @ X3 @ B5 ) )
     => ( ord_le2908806416726583473t_real @ A @ B5 ) ) ).

% subsetI
thf(fact_547_subsetI,axiom,
    ! [A: set_real,B5: set_real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A )
         => ( member_real @ X3 @ B5 ) )
     => ( ord_less_eq_set_real @ A @ B5 ) ) ).

% subsetI
thf(fact_548_less__account__def,axiom,
    ( ord_le2131251472502387783ccount
    = ( ^ [Alpha_1: risk_Free_account,Alpha_2: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ Alpha_1 @ Alpha_2 )
          & ~ ( ord_le4245800335709223507ccount @ Alpha_2 @ Alpha_1 ) ) ) ) ).

% less_account_def
thf(fact_549_conj__subset__def,axiom,
    ! [A: set_nat,P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ A
        @ ( collect_nat
          @ ^ [X2: nat] :
              ( ( P @ X2 )
              & ( Q @ X2 ) ) ) )
      = ( ( ord_less_eq_set_nat @ A @ ( collect_nat @ P ) )
        & ( ord_less_eq_set_nat @ A @ ( collect_nat @ Q ) ) ) ) ).

% conj_subset_def
thf(fact_550_pred__subset__eq,axiom,
    ! [R: set_nat_real,S2: set_nat_real] :
      ( ( ord_le7676461544873280788real_o
        @ ^ [X2: nat > real] : ( member_nat_real @ X2 @ R )
        @ ^ [X2: nat > real] : ( member_nat_real @ X2 @ S2 ) )
      = ( ord_le2908806416726583473t_real @ R @ S2 ) ) ).

% pred_subset_eq
thf(fact_551_pred__subset__eq,axiom,
    ! [R: set_real,S2: set_real] :
      ( ( ord_less_eq_real_o
        @ ^ [X2: real] : ( member_real @ X2 @ R )
        @ ^ [X2: real] : ( member_real @ X2 @ S2 ) )
      = ( ord_less_eq_set_real @ R @ S2 ) ) ).

% pred_subset_eq
thf(fact_552_less__eq__real__def,axiom,
    ( ord_less_eq_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_real @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% less_eq_real_def
thf(fact_553_Collect__mono__iff,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) )
      = ( ! [X2: nat] :
            ( ( P @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_554_less__eq__set__def,axiom,
    ( ord_le2908806416726583473t_real
    = ( ^ [A6: set_nat_real,B6: set_nat_real] :
          ( ord_le7676461544873280788real_o
          @ ^ [X2: nat > real] : ( member_nat_real @ X2 @ A6 )
          @ ^ [X2: nat > real] : ( member_nat_real @ X2 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_555_less__eq__set__def,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A6: set_real,B6: set_real] :
          ( ord_less_eq_real_o
          @ ^ [X2: real] : ( member_real @ X2 @ A6 )
          @ ^ [X2: real] : ( member_real @ X2 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_556_complete__real,axiom,
    ! [S2: set_real] :
      ( ? [X6: real] : ( member_real @ X6 @ S2 )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( member_real @ X3 @ S2 )
           => ( ord_less_eq_real @ X3 @ Z4 ) )
       => ? [Y2: real] :
            ( ! [X6: real] :
                ( ( member_real @ X6 @ S2 )
               => ( ord_less_eq_real @ X6 @ Y2 ) )
            & ! [Z4: real] :
                ( ! [X3: real] :
                    ( ( member_real @ X3 @ S2 )
                   => ( ord_less_eq_real @ X3 @ Z4 ) )
               => ( ord_less_eq_real @ Y2 @ Z4 ) ) ) ) ) ).

% complete_real
thf(fact_557_Collect__mono,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_558_subset__iff,axiom,
    ( ord_le2908806416726583473t_real
    = ( ^ [A6: set_nat_real,B6: set_nat_real] :
        ! [T2: nat > real] :
          ( ( member_nat_real @ T2 @ A6 )
         => ( member_nat_real @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_559_subset__iff,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A6: set_real,B6: set_real] :
        ! [T2: real] :
          ( ( member_real @ T2 @ A6 )
         => ( member_real @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_560_subset__eq,axiom,
    ( ord_le2908806416726583473t_real
    = ( ^ [A6: set_nat_real,B6: set_nat_real] :
        ! [X2: nat > real] :
          ( ( member_nat_real @ X2 @ A6 )
         => ( member_nat_real @ X2 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_561_subset__eq,axiom,
    ( ord_less_eq_set_real
    = ( ^ [A6: set_real,B6: set_real] :
        ! [X2: real] :
          ( ( member_real @ X2 @ A6 )
         => ( member_real @ X2 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_562_subsetD,axiom,
    ! [A: set_nat_real,B5: set_nat_real,C: nat > real] :
      ( ( ord_le2908806416726583473t_real @ A @ B5 )
     => ( ( member_nat_real @ C @ A )
       => ( member_nat_real @ C @ B5 ) ) ) ).

% subsetD
thf(fact_563_subsetD,axiom,
    ! [A: set_real,B5: set_real,C: real] :
      ( ( ord_less_eq_set_real @ A @ B5 )
     => ( ( member_real @ C @ A )
       => ( member_real @ C @ B5 ) ) ) ).

% subsetD
thf(fact_564_in__mono,axiom,
    ! [A: set_nat_real,B5: set_nat_real,X: nat > real] :
      ( ( ord_le2908806416726583473t_real @ A @ B5 )
     => ( ( member_nat_real @ X @ A )
       => ( member_nat_real @ X @ B5 ) ) ) ).

% in_mono
thf(fact_565_in__mono,axiom,
    ! [A: set_real,B5: set_real,X: real] :
      ( ( ord_less_eq_set_real @ A @ B5 )
     => ( ( member_real @ X @ A )
       => ( member_real @ X @ B5 ) ) ) ).

% in_mono
thf(fact_566_Collect__subset,axiom,
    ! [A: set_nat_real,P: ( nat > real ) > $o] :
      ( ord_le2908806416726583473t_real
      @ ( collect_nat_real
        @ ^ [X2: nat > real] :
            ( ( member_nat_real @ X2 @ A )
            & ( P @ X2 ) ) )
      @ A ) ).

% Collect_subset
thf(fact_567_Collect__subset,axiom,
    ! [A: set_real,P: real > $o] :
      ( ord_less_eq_set_real
      @ ( collect_real
        @ ^ [X2: real] :
            ( ( member_real @ X2 @ A )
            & ( P @ X2 ) ) )
      @ A ) ).

% Collect_subset
thf(fact_568_Collect__subset,axiom,
    ! [A: set_nat,P: nat > $o] :
      ( ord_less_eq_set_nat
      @ ( collect_nat
        @ ^ [X2: nat] :
            ( ( member_nat @ X2 @ A )
            & ( P @ X2 ) ) )
      @ A ) ).

% Collect_subset
thf(fact_569_verit__la__disequality,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_nat @ A2 @ B2 )
      | ~ ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_570_verit__la__disequality,axiom,
    ! [A2: real,B2: real] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_real @ A2 @ B2 )
      | ~ ( ord_less_eq_real @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_571_verit__la__disequality,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 = B2 )
      | ~ ( ord_less_eq_int @ A2 @ B2 )
      | ~ ( ord_less_eq_int @ B2 @ A2 ) ) ).

% verit_la_disequality
thf(fact_572_verit__comp__simplify1_I2_J,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_573_verit__comp__simplify1_I2_J,axiom,
    ! [A2: real] : ( ord_less_eq_real @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_574_verit__comp__simplify1_I2_J,axiom,
    ! [A2: risk_Free_account] : ( ord_le4245800335709223507ccount @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_575_verit__comp__simplify1_I2_J,axiom,
    ! [A2: int] : ( ord_less_eq_int @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_576_verit__comp__simplify1_I1_J,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_577_verit__comp__simplify1_I1_J,axiom,
    ! [A2: risk_Free_account] :
      ~ ( ord_le2131251472502387783ccount @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_578_verit__comp__simplify1_I1_J,axiom,
    ! [A2: real] :
      ~ ( ord_less_real @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_579_verit__comp__simplify1_I1_J,axiom,
    ! [A2: int] :
      ~ ( ord_less_int @ A2 @ A2 ) ).

% verit_comp_simplify1(1)
thf(fact_580_pinf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_581_pinf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: real] :
          ! [X6: real] :
            ( ( ord_less_real @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_582_pinf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: int] :
          ! [X6: int] :
            ( ( ord_less_int @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_583_pinf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_584_pinf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: real] :
          ! [X6: real] :
            ( ( ord_less_real @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_585_pinf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: int] :
          ! [X6: int] :
            ( ( ord_less_int @ Z3 @ X6 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_586_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_587_pinf_I3_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_588_pinf_I3_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(3)
thf(fact_589_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_590_pinf_I4_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_591_pinf_I4_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ( X6 != T ) ) ).

% pinf(4)
thf(fact_592_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ~ ( ord_less_nat @ X6 @ T ) ) ).

% pinf(5)
thf(fact_593_pinf_I5_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ~ ( ord_less_real @ X6 @ T ) ) ).

% pinf(5)
thf(fact_594_pinf_I5_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ~ ( ord_less_int @ X6 @ T ) ) ).

% pinf(5)
thf(fact_595_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ Z3 @ X6 )
     => ( ord_less_nat @ T @ X6 ) ) ).

% pinf(7)
thf(fact_596_pinf_I7_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ Z3 @ X6 )
     => ( ord_less_real @ T @ X6 ) ) ).

% pinf(7)
thf(fact_597_pinf_I7_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ Z3 @ X6 )
     => ( ord_less_int @ T @ X6 ) ) ).

% pinf(7)
thf(fact_598_minf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_599_minf_I1_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: real] :
          ! [X6: real] :
            ( ( ord_less_real @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_600_minf_I1_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: int] :
          ! [X6: int] :
            ( ( ord_less_int @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                & ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                & ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(1)
thf(fact_601_minf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: nat] :
          ! [X6: nat] :
            ( ( ord_less_nat @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_602_minf_I2_J,axiom,
    ! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
      ( ? [Z4: real] :
        ! [X3: real] :
          ( ( ord_less_real @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: real] :
          ! [X3: real] :
            ( ( ord_less_real @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: real] :
          ! [X6: real] :
            ( ( ord_less_real @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_603_minf_I2_J,axiom,
    ! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
      ( ? [Z4: int] :
        ! [X3: int] :
          ( ( ord_less_int @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: int] :
          ! [X3: int] :
            ( ( ord_less_int @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z3: int] :
          ! [X6: int] :
            ( ( ord_less_int @ X6 @ Z3 )
           => ( ( ( P @ X6 )
                | ( Q @ X6 ) )
              = ( ( P4 @ X6 )
                | ( Q2 @ X6 ) ) ) ) ) ) ).

% minf(2)
thf(fact_604_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_605_minf_I3_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_606_minf_I3_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(3)
thf(fact_607_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_608_minf_I4_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_609_minf_I4_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ( X6 != T ) ) ).

% minf(4)
thf(fact_610_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ( ord_less_nat @ X6 @ T ) ) ).

% minf(5)
thf(fact_611_minf_I5_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ( ord_less_real @ X6 @ T ) ) ).

% minf(5)
thf(fact_612_minf_I5_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ( ord_less_int @ X6 @ T ) ) ).

% minf(5)
thf(fact_613_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z3: nat] :
    ! [X6: nat] :
      ( ( ord_less_nat @ X6 @ Z3 )
     => ~ ( ord_less_nat @ T @ X6 ) ) ).

% minf(7)
thf(fact_614_minf_I7_J,axiom,
    ! [T: real] :
    ? [Z3: real] :
    ! [X6: real] :
      ( ( ord_less_real @ X6 @ Z3 )
     => ~ ( ord_less_real @ T @ X6 ) ) ).

% minf(7)
thf(fact_615_minf_I7_J,axiom,
    ! [T: int] :
    ? [Z3: int] :
    ! [X6: int] :
      ( ( ord_less_int @ X6 @ Z3 )
     => ~ ( ord_less_int @ T @ X6 ) ) ).

% minf(7)
thf(fact_616_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_617_le__numeral__extra_I3_J,axiom,
    ord_less_eq_real @ zero_zero_real @ zero_zero_real ).

% le_numeral_extra(3)
thf(fact_618_le__numeral__extra_I3_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% le_numeral_extra(3)
thf(fact_619_just__cash__valid__transfer,axiom,
    ! [C: real,T: real] :
      ( ( risk_F1023690899723030139ansfer @ ( risk_Free_just_cash @ C ) @ ( risk_Free_just_cash @ T ) )
      = ( ( ord_less_eq_real @ zero_zero_real @ T )
        & ( ord_less_eq_real @ T @ C ) ) ) ).

% just_cash_valid_transfer
thf(fact_620_complete__interval,axiom,
    ! [A2: nat,B2: nat,P: nat > $o] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( P @ A2 )
       => ( ~ ( P @ B2 )
         => ? [C3: nat] :
              ( ( ord_less_eq_nat @ A2 @ C3 )
              & ( ord_less_eq_nat @ C3 @ B2 )
              & ! [X6: nat] :
                  ( ( ( ord_less_eq_nat @ A2 @ X6 )
                    & ( ord_less_nat @ X6 @ C3 ) )
                 => ( P @ X6 ) )
              & ! [D: nat] :
                  ( ! [X3: nat] :
                      ( ( ( ord_less_eq_nat @ A2 @ X3 )
                        & ( ord_less_nat @ X3 @ D ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_nat @ D @ C3 ) ) ) ) ) ) ).

% complete_interval
thf(fact_621_complete__interval,axiom,
    ! [A2: real,B2: real,P: real > $o] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( P @ A2 )
       => ( ~ ( P @ B2 )
         => ? [C3: real] :
              ( ( ord_less_eq_real @ A2 @ C3 )
              & ( ord_less_eq_real @ C3 @ B2 )
              & ! [X6: real] :
                  ( ( ( ord_less_eq_real @ A2 @ X6 )
                    & ( ord_less_real @ X6 @ C3 ) )
                 => ( P @ X6 ) )
              & ! [D: real] :
                  ( ! [X3: real] :
                      ( ( ( ord_less_eq_real @ A2 @ X3 )
                        & ( ord_less_real @ X3 @ D ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_real @ D @ C3 ) ) ) ) ) ) ).

% complete_interval
thf(fact_622_complete__interval,axiom,
    ! [A2: int,B2: int,P: int > $o] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ( P @ A2 )
       => ( ~ ( P @ B2 )
         => ? [C3: int] :
              ( ( ord_less_eq_int @ A2 @ C3 )
              & ( ord_less_eq_int @ C3 @ B2 )
              & ! [X6: int] :
                  ( ( ( ord_less_eq_int @ A2 @ X6 )
                    & ( ord_less_int @ X6 @ C3 ) )
                 => ( P @ X6 ) )
              & ! [D: int] :
                  ( ! [X3: int] :
                      ( ( ( ord_less_eq_int @ A2 @ X3 )
                        & ( ord_less_int @ X3 @ D ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_int @ D @ C3 ) ) ) ) ) ) ).

% complete_interval
thf(fact_623_valid__transfer__alt__def,axiom,
    ( risk_F1023690899723030139ansfer
    = ( ^ [Alpha2: risk_Free_account,Tau: risk_Free_account] :
          ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ Tau )
          & ( ord_le4245800335709223507ccount @ Tau @ Alpha2 ) ) ) ) ).

% valid_transfer_alt_def
thf(fact_624_strictly__solvent__non__negative__cash,axiom,
    ! [Alpha: risk_Free_account] :
      ( ( risk_F1636578016437888323olvent @ Alpha )
     => ( ord_less_eq_real @ zero_zero_real @ ( risk_F1914734008469130493eserve @ Alpha ) ) ) ).

% strictly_solvent_non_negative_cash
thf(fact_625_bot__nat__0_Oordering__top__axioms,axiom,
    ( ordering_top_nat
    @ ^ [X2: nat,Y4: nat] : ( ord_less_eq_nat @ Y4 @ X2 )
    @ ^ [X2: nat,Y4: nat] : ( ord_less_nat @ Y4 @ X2 )
    @ zero_zero_nat ) ).

% bot_nat_0.ordering_top_axioms
thf(fact_626_top_Oordering__top__axioms,axiom,
    ordering_top_set_nat @ ord_less_eq_set_nat @ ord_less_set_nat @ top_top_set_nat ).

% top.ordering_top_axioms
thf(fact_627_return__loans__just__cash,axiom,
    ! [Rho: nat > real,C: real] :
      ( ( ( Rho @ zero_zero_nat )
        = zero_zero_real )
     => ( ( risk_F2121631595377017831_loans @ Rho @ ( risk_Free_just_cash @ C ) )
        = ( risk_Free_just_cash @ C ) ) ) ).

% return_loans_just_cash
thf(fact_628_subset__Collect__iff,axiom,
    ! [B5: set_nat_real,A: set_nat_real,P: ( nat > real ) > $o] :
      ( ( ord_le2908806416726583473t_real @ B5 @ A )
     => ( ( ord_le2908806416726583473t_real @ B5
          @ ( collect_nat_real
            @ ^ [X2: nat > real] :
                ( ( member_nat_real @ X2 @ A )
                & ( P @ X2 ) ) ) )
        = ( ! [X2: nat > real] :
              ( ( member_nat_real @ X2 @ B5 )
             => ( P @ X2 ) ) ) ) ) ).

% subset_Collect_iff
thf(fact_629_subset__Collect__iff,axiom,
    ! [B5: set_real,A: set_real,P: real > $o] :
      ( ( ord_less_eq_set_real @ B5 @ A )
     => ( ( ord_less_eq_set_real @ B5
          @ ( collect_real
            @ ^ [X2: real] :
                ( ( member_real @ X2 @ A )
                & ( P @ X2 ) ) ) )
        = ( ! [X2: real] :
              ( ( member_real @ X2 @ B5 )
             => ( P @ X2 ) ) ) ) ) ).

% subset_Collect_iff
thf(fact_630_subset__Collect__iff,axiom,
    ! [B5: set_nat,A: set_nat,P: nat > $o] :
      ( ( ord_less_eq_set_nat @ B5 @ A )
     => ( ( ord_less_eq_set_nat @ B5
          @ ( collect_nat
            @ ^ [X2: nat] :
                ( ( member_nat @ X2 @ A )
                & ( P @ X2 ) ) ) )
        = ( ! [X2: nat] :
              ( ( member_nat @ X2 @ B5 )
             => ( P @ X2 ) ) ) ) ) ).

% subset_Collect_iff
thf(fact_631_return__loans__zero,axiom,
    ! [Rho: nat > real] :
      ( ( risk_F2121631595377017831_loans @ Rho @ zero_z1425366712893667068ccount )
      = zero_z1425366712893667068ccount ) ).

% return_loans_zero
thf(fact_632_less__set__def,axiom,
    ( ord_le3527643927072297637t_real
    = ( ^ [A6: set_nat_real,B6: set_nat_real] :
          ( ord_less_nat_real_o
          @ ^ [X2: nat > real] : ( member_nat_real @ X2 @ A6 )
          @ ^ [X2: nat > real] : ( member_nat_real @ X2 @ B6 ) ) ) ) ).

% less_set_def
thf(fact_633_less__set__def,axiom,
    ( ord_less_set_real
    = ( ^ [A6: set_real,B6: set_real] :
          ( ord_less_real_o
          @ ^ [X2: real] : ( member_real @ X2 @ A6 )
          @ ^ [X2: real] : ( member_real @ X2 @ B6 ) ) ) ) ).

% less_set_def
thf(fact_634_psubsetD,axiom,
    ! [A: set_nat_real,B5: set_nat_real,C: nat > real] :
      ( ( ord_le3527643927072297637t_real @ A @ B5 )
     => ( ( member_nat_real @ C @ A )
       => ( member_nat_real @ C @ B5 ) ) ) ).

% psubsetD
thf(fact_635_psubsetD,axiom,
    ! [A: set_real,B5: set_real,C: real] :
      ( ( ord_less_set_real @ A @ B5 )
     => ( ( member_real @ C @ A )
       => ( member_real @ C @ B5 ) ) ) ).

% psubsetD
thf(fact_636_ordering__top_Oextremum__uniqueI,axiom,
    ! [Less_eq: nat > nat > $o,Less: nat > nat > $o,Top: nat,A2: nat] :
      ( ( ordering_top_nat @ Less_eq @ Less @ Top )
     => ( ( Less_eq @ Top @ A2 )
       => ( A2 = Top ) ) ) ).

% ordering_top.extremum_uniqueI
thf(fact_637_ordering__top_Onot__eq__extremum,axiom,
    ! [Less_eq: nat > nat > $o,Less: nat > nat > $o,Top: nat,A2: nat] :
      ( ( ordering_top_nat @ Less_eq @ Less @ Top )
     => ( ( A2 != Top )
        = ( Less @ A2 @ Top ) ) ) ).

% ordering_top.not_eq_extremum
thf(fact_638_ordering__top_Oextremum__unique,axiom,
    ! [Less_eq: nat > nat > $o,Less: nat > nat > $o,Top: nat,A2: nat] :
      ( ( ordering_top_nat @ Less_eq @ Less @ Top )
     => ( ( Less_eq @ Top @ A2 )
        = ( A2 = Top ) ) ) ).

% ordering_top.extremum_unique
thf(fact_639_ordering__top_Oextremum__strict,axiom,
    ! [Less_eq: nat > nat > $o,Less: nat > nat > $o,Top: nat,A2: nat] :
      ( ( ordering_top_nat @ Less_eq @ Less @ Top )
     => ~ ( Less @ Top @ A2 ) ) ).

% ordering_top.extremum_strict
thf(fact_640_ordering__top_Oextremum,axiom,
    ! [Less_eq: nat > nat > $o,Less: nat > nat > $o,Top: nat,A2: nat] :
      ( ( ordering_top_nat @ Less_eq @ Less @ Top )
     => ( Less_eq @ A2 @ Top ) ) ).

% ordering_top.extremum
thf(fact_641_only__strictly__solvent__accounts__can__transfer,axiom,
    ! [Alpha: risk_Free_account,Tau2: risk_Free_account] :
      ( ( risk_F1023690899723030139ansfer @ Alpha @ Tau2 )
     => ( risk_F1636578016437888323olvent @ Alpha ) ) ).

% only_strictly_solvent_accounts_can_transfer
thf(fact_642_ex__gt__or__lt,axiom,
    ! [A2: real] :
    ? [B3: real] :
      ( ( ord_less_real @ A2 @ B3 )
      | ( ord_less_real @ B3 @ A2 ) ) ).

% ex_gt_or_lt
thf(fact_643_strictly__solvent__alt__def,axiom,
    ( risk_F1636578016437888323olvent
    = ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount ) ) ).

% strictly_solvent_alt_def
thf(fact_644_strictly__solvent__just__cash__equiv,axiom,
    ! [C: real] :
      ( ( risk_F1636578016437888323olvent @ ( risk_Free_just_cash @ C ) )
      = ( ord_less_eq_real @ zero_zero_real @ C ) ) ).

% strictly_solvent_just_cash_equiv
thf(fact_645_strictly__solvent__net__asset__value,axiom,
    ! [Alpha: risk_Free_account] :
      ( ( risk_F1636578016437888323olvent @ Alpha )
     => ( ord_less_eq_real @ zero_zero_real @ ( risk_F2906766666041932210_value @ Alpha ) ) ) ).

% strictly_solvent_net_asset_value
thf(fact_646_subset__CollectI,axiom,
    ! [B5: set_nat_real,A: set_nat_real,Q: ( nat > real ) > $o,P: ( nat > real ) > $o] :
      ( ( ord_le2908806416726583473t_real @ B5 @ A )
     => ( ! [X3: nat > real] :
            ( ( member_nat_real @ X3 @ B5 )
           => ( ( Q @ X3 )
             => ( P @ X3 ) ) )
       => ( ord_le2908806416726583473t_real
          @ ( collect_nat_real
            @ ^ [X2: nat > real] :
                ( ( member_nat_real @ X2 @ B5 )
                & ( Q @ X2 ) ) )
          @ ( collect_nat_real
            @ ^ [X2: nat > real] :
                ( ( member_nat_real @ X2 @ A )
                & ( P @ X2 ) ) ) ) ) ) ).

% subset_CollectI
thf(fact_647_subset__CollectI,axiom,
    ! [B5: set_real,A: set_real,Q: real > $o,P: real > $o] :
      ( ( ord_less_eq_set_real @ B5 @ A )
     => ( ! [X3: real] :
            ( ( member_real @ X3 @ B5 )
           => ( ( Q @ X3 )
             => ( P @ X3 ) ) )
       => ( ord_less_eq_set_real
          @ ( collect_real
            @ ^ [X2: real] :
                ( ( member_real @ X2 @ B5 )
                & ( Q @ X2 ) ) )
          @ ( collect_real
            @ ^ [X2: real] :
                ( ( member_real @ X2 @ A )
                & ( P @ X2 ) ) ) ) ) ) ).

% subset_CollectI
thf(fact_648_subset__CollectI,axiom,
    ! [B5: set_nat,A: set_nat,Q: nat > $o,P: nat > $o] :
      ( ( ord_less_eq_set_nat @ B5 @ A )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ B5 )
           => ( ( Q @ X3 )
             => ( P @ X3 ) ) )
       => ( ord_less_eq_set_nat
          @ ( collect_nat
            @ ^ [X2: nat] :
                ( ( member_nat @ X2 @ B5 )
                & ( Q @ X2 ) ) )
          @ ( collect_nat
            @ ^ [X2: nat] :
                ( ( member_nat @ X2 @ A )
                & ( P @ X2 ) ) ) ) ) ) ).

% subset_CollectI
thf(fact_649_return__loans__mono,axiom,
    ! [Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ! [N3: nat] : ( ord_less_real @ ( Rho @ N3 ) @ one_one_real )
     => ( ! [N3: nat,M4: nat] :
            ( ( ord_less_eq_nat @ N3 @ M4 )
           => ( ord_less_eq_real @ ( Rho @ N3 ) @ ( Rho @ M4 ) ) )
       => ( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
         => ( ord_le4245800335709223507ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) @ ( risk_F2121631595377017831_loans @ Rho @ Beta ) ) ) ) ) ).

% return_loans_mono
thf(fact_650_prop__restrict,axiom,
    ! [X: nat > real,Z5: set_nat_real,X7: set_nat_real,P: ( nat > real ) > $o] :
      ( ( member_nat_real @ X @ Z5 )
     => ( ( ord_le2908806416726583473t_real @ Z5
          @ ( collect_nat_real
            @ ^ [X2: nat > real] :
                ( ( member_nat_real @ X2 @ X7 )
                & ( P @ X2 ) ) ) )
       => ( P @ X ) ) ) ).

% prop_restrict
thf(fact_651_prop__restrict,axiom,
    ! [X: real,Z5: set_real,X7: set_real,P: real > $o] :
      ( ( member_real @ X @ Z5 )
     => ( ( ord_less_eq_set_real @ Z5
          @ ( collect_real
            @ ^ [X2: real] :
                ( ( member_real @ X2 @ X7 )
                & ( P @ X2 ) ) ) )
       => ( P @ X ) ) ) ).

% prop_restrict
thf(fact_652_prop__restrict,axiom,
    ! [X: nat,Z5: set_nat,X7: set_nat,P: nat > $o] :
      ( ( member_nat @ X @ Z5 )
     => ( ( ord_less_eq_set_nat @ Z5
          @ ( collect_nat
            @ ^ [X2: nat] :
                ( ( member_nat @ X2 @ X7 )
                & ( P @ X2 ) ) ) )
       => ( P @ X ) ) ) ).

% prop_restrict
thf(fact_653_Collect__restrict,axiom,
    ! [X7: set_nat_real,P: ( nat > real ) > $o] :
      ( ord_le2908806416726583473t_real
      @ ( collect_nat_real
        @ ^ [X2: nat > real] :
            ( ( member_nat_real @ X2 @ X7 )
            & ( P @ X2 ) ) )
      @ X7 ) ).

% Collect_restrict
thf(fact_654_Collect__restrict,axiom,
    ! [X7: set_real,P: real > $o] :
      ( ord_less_eq_set_real
      @ ( collect_real
        @ ^ [X2: real] :
            ( ( member_real @ X2 @ X7 )
            & ( P @ X2 ) ) )
      @ X7 ) ).

% Collect_restrict
thf(fact_655_Collect__restrict,axiom,
    ! [X7: set_nat,P: nat > $o] :
      ( ord_less_eq_set_nat
      @ ( collect_nat
        @ ^ [X2: nat] :
            ( ( member_nat @ X2 @ X7 )
            & ( P @ X2 ) ) )
      @ X7 ) ).

% Collect_restrict
thf(fact_656_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_657_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_658_of__nat__0__less__iff,axiom,
    ! [N2: nat] :
      ( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% of_nat_0_less_iff
thf(fact_659_of__nat__eq__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ( semiri1314217659103216013at_int @ M2 )
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( M2 = N2 ) ) ).

% of_nat_eq_iff
thf(fact_660_of__nat__eq__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ M2 )
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( M2 = N2 ) ) ).

% of_nat_eq_iff
thf(fact_661_of__nat__1,axiom,
    ( ( semiri1316708129612266289at_nat @ one_one_nat )
    = one_one_nat ) ).

% of_nat_1
thf(fact_662_of__nat__1,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% of_nat_1
thf(fact_663_of__nat__1,axiom,
    ( ( semiri5074537144036343181t_real @ one_one_nat )
    = one_one_real ) ).

% of_nat_1
thf(fact_664_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_nat
        = ( semiri1316708129612266289at_nat @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_665_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_int
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_666_of__nat__1__eq__iff,axiom,
    ! [N2: nat] :
      ( ( one_one_real
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( N2 = one_one_nat ) ) ).

% of_nat_1_eq_iff
thf(fact_667_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri1316708129612266289at_nat @ N2 )
        = one_one_nat )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_668_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri1314217659103216013at_int @ N2 )
        = one_one_int )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_669_of__nat__eq__1__iff,axiom,
    ! [N2: nat] :
      ( ( ( semiri5074537144036343181t_real @ N2 )
        = one_one_real )
      = ( N2 = one_one_nat ) ) ).

% of_nat_eq_1_iff
thf(fact_670_of__nat__0,axiom,
    ( ( semiri1316708129612266289at_nat @ zero_zero_nat )
    = zero_zero_nat ) ).

% of_nat_0
thf(fact_671_of__nat__0,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% of_nat_0
thf(fact_672_of__nat__0,axiom,
    ( ( semiri5074537144036343181t_real @ zero_zero_nat )
    = zero_zero_real ) ).

% of_nat_0
thf(fact_673_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_nat
        = ( semiri1316708129612266289at_nat @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_674_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_int
        = ( semiri1314217659103216013at_int @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_675_of__nat__0__eq__iff,axiom,
    ! [N2: nat] :
      ( ( zero_zero_real
        = ( semiri5074537144036343181t_real @ N2 ) )
      = ( zero_zero_nat = N2 ) ) ).

% of_nat_0_eq_iff
thf(fact_676_of__nat__eq__0__iff,axiom,
    ! [M2: nat] :
      ( ( ( semiri1316708129612266289at_nat @ M2 )
        = zero_zero_nat )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_677_of__nat__eq__0__iff,axiom,
    ! [M2: nat] :
      ( ( ( semiri1314217659103216013at_int @ M2 )
        = zero_zero_int )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_678_of__nat__eq__0__iff,axiom,
    ! [M2: nat] :
      ( ( ( semiri5074537144036343181t_real @ M2 )
        = zero_zero_real )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_eq_0_iff
thf(fact_679_of__nat__le__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% of_nat_le_iff
thf(fact_680_of__nat__le__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% of_nat_le_iff
thf(fact_681_of__nat__le__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% of_nat_le_iff
thf(fact_682_of__nat__less__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) )
      = ( ord_less_nat @ M2 @ N2 ) ) ).

% of_nat_less_iff
thf(fact_683_of__nat__less__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_nat @ M2 @ N2 ) ) ).

% of_nat_less_iff
thf(fact_684_of__nat__less__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N2 ) )
      = ( ord_less_nat @ M2 @ N2 ) ) ).

% of_nat_less_iff
thf(fact_685_of__nat__le__0__iff,axiom,
    ! [M2: nat] :
      ( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ zero_zero_nat )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_686_of__nat__le__0__iff,axiom,
    ! [M2: nat] :
      ( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M2 ) @ zero_zero_real )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_687_of__nat__le__0__iff,axiom,
    ! [M2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ zero_zero_int )
      = ( M2 = zero_zero_nat ) ) ).

% of_nat_le_0_iff
thf(fact_688_one__reorient,axiom,
    ! [X: real] :
      ( ( one_one_real = X )
      = ( X = one_one_real ) ) ).

% one_reorient
thf(fact_689_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_690_one__reorient,axiom,
    ! [X: int] :
      ( ( one_one_int = X )
      = ( X = one_one_int ) ) ).

% one_reorient
thf(fact_691_int__ops_I1_J,axiom,
    ( ( semiri1314217659103216013at_int @ zero_zero_nat )
    = zero_zero_int ) ).

% int_ops(1)
thf(fact_692_nat__int__comparison_I2_J,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_int_comparison(2)
thf(fact_693_nat__int__comparison_I3_J,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_int_comparison(3)
thf(fact_694_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_695_le__numeral__extra_I4_J,axiom,
    ord_less_eq_real @ one_one_real @ one_one_real ).

% le_numeral_extra(4)
thf(fact_696_le__numeral__extra_I4_J,axiom,
    ord_less_eq_int @ one_one_int @ one_one_int ).

% le_numeral_extra(4)
thf(fact_697_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_698_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ one_one_real ) ).

% less_numeral_extra(4)
thf(fact_699_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ one_one_int ) ).

% less_numeral_extra(4)
thf(fact_700_nat__less__as__int,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_less_as_int
thf(fact_701_nat__leq__as__int,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_leq_as_int
thf(fact_702_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_703_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_704_of__nat__0__le__iff,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) ) ).

% of_nat_0_le_iff
thf(fact_705_of__nat__less__0__iff,axiom,
    ! [M2: nat] :
      ~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ zero_zero_nat ) ).

% of_nat_less_0_iff
thf(fact_706_of__nat__less__0__iff,axiom,
    ! [M2: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ zero_zero_int ) ).

% of_nat_less_0_iff
thf(fact_707_of__nat__less__0__iff,axiom,
    ! [M2: nat] :
      ~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ zero_zero_real ) ).

% of_nat_less_0_iff
thf(fact_708_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).

% of_nat_mono
thf(fact_709_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).

% of_nat_mono
thf(fact_710_of__nat__mono,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).

% of_nat_mono
thf(fact_711_of__nat__less__imp__less,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) )
     => ( ord_less_nat @ M2 @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_712_of__nat__less__imp__less,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
     => ( ord_less_nat @ M2 @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_713_of__nat__less__imp__less,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N2 ) )
     => ( ord_less_nat @ M2 @ N2 ) ) ).

% of_nat_less_imp_less
thf(fact_714_less__imp__of__nat__less,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_715_less__imp__of__nat__less,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_716_less__imp__of__nat__less,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).

% less_imp_of_nat_less
thf(fact_717_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_718_less__numeral__extra_I1_J,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% less_numeral_extra(1)
thf(fact_719_less__numeral__extra_I1_J,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% less_numeral_extra(1)
thf(fact_720_net__asset__value__def,axiom,
    ( risk_F2906766666041932210_value
    = ( ^ [Alpha2: risk_Free_account] :
          ( groups6591440286371151544t_real @ ( risk_F170160801229183585ccount @ Alpha2 )
          @ ( collect_nat
            @ ^ [I4: nat] :
                ( ( risk_F170160801229183585ccount @ Alpha2 @ I4 )
               != zero_zero_real ) ) ) ) ) ).

% net_asset_value_def
thf(fact_721_of__nat__sum,axiom,
    ! [F: nat > nat,A: set_nat] :
      ( ( semiri5074537144036343181t_real @ ( groups3542108847815614940at_nat @ F @ A ) )
      = ( groups6591440286371151544t_real
        @ ^ [X2: nat] : ( semiri5074537144036343181t_real @ ( F @ X2 ) )
        @ A ) ) ).

% of_nat_sum
thf(fact_722_sum_Oneutral__const,axiom,
    ! [A: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [Uu: nat] : zero_zero_real
        @ A )
      = zero_zero_real ) ).

% sum.neutral_const
thf(fact_723_bulk__update__safety,axiom,
    ! [I: real,Rho: nat > real,Alpha: risk_Free_account,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ I )
     => ( ! [N3: nat] : ( ord_less_real @ ( Rho @ N3 ) @ one_one_real )
       => ( ! [N3: nat,M4: nat] :
              ( ( ord_less_eq_nat @ N3 @ M4 )
             => ( ord_less_eq_real @ ( Rho @ N3 ) @ ( Rho @ M4 ) ) )
         => ( ( risk_F1636578016437888323olvent @ Alpha )
           => ( ord_less_eq_real @ zero_zero_real @ ( risk_F2906766666041932210_value @ ( risk_F2412532053715321062ccount @ N2 @ Rho @ I @ Alpha ) ) ) ) ) ) ) ).

% bulk_update_safety
thf(fact_724_sum__nonneg,axiom,
    ! [A: set_nat_real,F: ( nat > real ) > nat] :
      ( ! [X3: nat > real] :
          ( ( member_nat_real @ X3 @ A )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups780007972294800423al_nat @ F @ A ) ) ) ).

% sum_nonneg
thf(fact_725_sum__nonneg,axiom,
    ! [A: set_real,F: real > nat] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A )
         => ( ord_less_eq_nat @ zero_zero_nat @ ( F @ X3 ) ) )
     => ( ord_less_eq_nat @ zero_zero_nat @ ( groups1935376822645274424al_nat @ F @ A ) ) ) ).

% sum_nonneg
thf(fact_726_sum__nonneg,axiom,
    ! [A: set_nat_real,F: ( nat > real ) > real] :
      ( ! [X3: nat > real] :
          ( ( member_nat_real @ X3 @ A )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups4253619806861319043l_real @ F @ A ) ) ) ).

% sum_nonneg
thf(fact_727_sum__nonneg,axiom,
    ! [A: set_real,F: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups8097168146408367636l_real @ F @ A ) ) ) ).

% sum_nonneg
thf(fact_728_sum__nonneg,axiom,
    ! [A: set_nat_real,F: ( nat > real ) > risk_Free_account] :
      ( ! [X3: nat > real] :
          ( ( member_nat_real @ X3 @ A )
         => ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ ( F @ X3 ) ) )
     => ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ ( groups383684539861946442ccount @ F @ A ) ) ) ).

% sum_nonneg
thf(fact_729_sum__nonneg,axiom,
    ! [A: set_real,F: real > risk_Free_account] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A )
         => ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ ( F @ X3 ) ) )
     => ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ ( groups8516999891779824987ccount @ F @ A ) ) ) ).

% sum_nonneg
thf(fact_730_sum__nonneg,axiom,
    ! [A: set_nat_real,F: ( nat > real ) > int] :
      ( ! [X3: nat > real] :
          ( ( member_nat_real @ X3 @ A )
         => ( ord_less_eq_int @ zero_zero_int @ ( F @ X3 ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( groups777517501785750147al_int @ F @ A ) ) ) ).

% sum_nonneg
thf(fact_731_sum__nonneg,axiom,
    ! [A: set_real,F: real > int] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A )
         => ( ord_less_eq_int @ zero_zero_int @ ( F @ X3 ) ) )
     => ( ord_less_eq_int @ zero_zero_int @ ( groups1932886352136224148al_int @ F @ A ) ) ) ).

% sum_nonneg
thf(fact_732_sum__nonneg,axiom,
    ! [A: set_nat,F: nat > real] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A )
         => ( ord_less_eq_real @ zero_zero_real @ ( F @ X3 ) ) )
     => ( ord_less_eq_real @ zero_zero_real @ ( groups6591440286371151544t_real @ F @ A ) ) ) ).

% sum_nonneg
thf(fact_733_sum__nonpos,axiom,
    ! [A: set_nat_real,F: ( nat > real ) > nat] :
      ( ! [X3: nat > real] :
          ( ( member_nat_real @ X3 @ A )
         => ( ord_less_eq_nat @ ( F @ X3 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups780007972294800423al_nat @ F @ A ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_734_sum__nonpos,axiom,
    ! [A: set_real,F: real > nat] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A )
         => ( ord_less_eq_nat @ ( F @ X3 ) @ zero_zero_nat ) )
     => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ A ) @ zero_zero_nat ) ) ).

% sum_nonpos
thf(fact_735_sum__nonpos,axiom,
    ! [A: set_nat_real,F: ( nat > real ) > real] :
      ( ! [X3: nat > real] :
          ( ( member_nat_real @ X3 @ A )
         => ( ord_less_eq_real @ ( F @ X3 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups4253619806861319043l_real @ F @ A ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_736_sum__nonpos,axiom,
    ! [A: set_real,F: real > real] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A )
         => ( ord_less_eq_real @ ( F @ X3 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ A ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_737_sum__nonpos,axiom,
    ! [A: set_nat_real,F: ( nat > real ) > risk_Free_account] :
      ( ! [X3: nat > real] :
          ( ( member_nat_real @ X3 @ A )
         => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ zero_z1425366712893667068ccount ) )
     => ( ord_le4245800335709223507ccount @ ( groups383684539861946442ccount @ F @ A ) @ zero_z1425366712893667068ccount ) ) ).

% sum_nonpos
thf(fact_738_sum__nonpos,axiom,
    ! [A: set_real,F: real > risk_Free_account] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A )
         => ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ zero_z1425366712893667068ccount ) )
     => ( ord_le4245800335709223507ccount @ ( groups8516999891779824987ccount @ F @ A ) @ zero_z1425366712893667068ccount ) ) ).

% sum_nonpos
thf(fact_739_sum__nonpos,axiom,
    ! [A: set_nat_real,F: ( nat > real ) > int] :
      ( ! [X3: nat > real] :
          ( ( member_nat_real @ X3 @ A )
         => ( ord_less_eq_int @ ( F @ X3 ) @ zero_zero_int ) )
     => ( ord_less_eq_int @ ( groups777517501785750147al_int @ F @ A ) @ zero_zero_int ) ) ).

% sum_nonpos
thf(fact_740_sum__nonpos,axiom,
    ! [A: set_real,F: real > int] :
      ( ! [X3: real] :
          ( ( member_real @ X3 @ A )
         => ( ord_less_eq_int @ ( F @ X3 ) @ zero_zero_int ) )
     => ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ A ) @ zero_zero_int ) ) ).

% sum_nonpos
thf(fact_741_sum__nonpos,axiom,
    ! [A: set_nat,F: nat > real] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A )
         => ( ord_less_eq_real @ ( F @ X3 ) @ zero_zero_real ) )
     => ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ A ) @ zero_zero_real ) ) ).

% sum_nonpos
thf(fact_742_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_743_zero__less__one,axiom,
    ord_less_real @ zero_zero_real @ one_one_real ).

% zero_less_one
thf(fact_744_zero__less__one,axiom,
    ord_less_int @ zero_zero_int @ one_one_int ).

% zero_less_one
thf(fact_745_bulk__update__account__zero,axiom,
    ! [N2: nat,Rho: nat > real,I: real] :
      ( ( risk_F2412532053715321062ccount @ N2 @ Rho @ I @ zero_z1425366712893667068ccount )
      = zero_z1425366712893667068ccount ) ).

% bulk_update_account_zero
thf(fact_746_less__one,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ one_one_nat )
      = ( N2 = zero_zero_nat ) ) ).

% less_one
thf(fact_747_less__int__code_I1_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).

% less_int_code(1)
thf(fact_748_nonneg__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ~ ! [N3: nat] :
            ( K2
           != ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% nonneg_int_cases
thf(fact_749_zero__le__imp__eq__int,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ? [N3: nat] :
          ( K2
          = ( semiri1314217659103216013at_int @ N3 ) ) ) ).

% zero_le_imp_eq_int
thf(fact_750_int__one__le__iff__zero__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ one_one_int @ Z2 )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% int_one_le_iff_zero_less
thf(fact_751_int__ops_I2_J,axiom,
    ( ( semiri1314217659103216013at_int @ one_one_nat )
    = one_one_int ) ).

% int_ops(2)
thf(fact_752_nat__int__comparison_I1_J,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A3: nat,B: nat] :
          ( ( semiri1314217659103216013at_int @ A3 )
          = ( semiri1314217659103216013at_int @ B ) ) ) ) ).

% nat_int_comparison(1)
thf(fact_753_int__if,axiom,
    ! [P: $o,A2: nat,B2: nat] :
      ( ( P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A2 @ B2 ) )
          = ( semiri1314217659103216013at_int @ A2 ) ) )
      & ( ~ P
       => ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A2 @ B2 ) )
          = ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).

% int_if
thf(fact_754_verit__la__generic,axiom,
    ! [A2: int,X: int] :
      ( ( ord_less_eq_int @ A2 @ X )
      | ( A2 = X )
      | ( ord_less_eq_int @ X @ A2 ) ) ).

% verit_la_generic
thf(fact_755_conj__le__cong,axiom,
    ! [X: int,X8: int,P: $o,P4: $o] :
      ( ( X = X8 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X8 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
            & P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X8 )
            & P4 ) ) ) ) ).

% conj_le_cong
thf(fact_756_imp__le__cong,axiom,
    ! [X: int,X8: int,P: $o,P4: $o] :
      ( ( X = X8 )
     => ( ( ( ord_less_eq_int @ zero_zero_int @ X8 )
         => ( P = P4 ) )
       => ( ( ( ord_less_eq_int @ zero_zero_int @ X )
           => P )
          = ( ( ord_less_eq_int @ zero_zero_int @ X8 )
           => P4 ) ) ) ) ).

% imp_le_cong
thf(fact_757_less__eq__int__code_I1_J,axiom,
    ord_less_eq_int @ zero_zero_int @ zero_zero_int ).

% less_eq_int_code(1)
thf(fact_758_bulk__update__account_Osimps_I1_J,axiom,
    ! [Uu2: nat > real,Uv: real,Alpha: risk_Free_account] :
      ( ( risk_F2412532053715321062ccount @ zero_zero_nat @ Uu2 @ Uv @ Alpha )
      = Alpha ) ).

% bulk_update_account.simps(1)
thf(fact_759_linorder__neqE__linordered__idom,axiom,
    ! [X: real,Y: real] :
      ( ( X != Y )
     => ( ~ ( ord_less_real @ X @ Y )
       => ( ord_less_real @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_760_linorder__neqE__linordered__idom,axiom,
    ! [X: int,Y: int] :
      ( ( X != Y )
     => ( ~ ( ord_less_int @ X @ Y )
       => ( ord_less_int @ Y @ X ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_761_zle__int,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
      = ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% zle_int
thf(fact_762_sum_Oswap,axiom,
    ! [G: nat > nat > real,B5: set_nat,A: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [I4: nat] : ( groups6591440286371151544t_real @ ( G @ I4 ) @ B5 )
        @ A )
      = ( groups6591440286371151544t_real
        @ ^ [J3: nat] :
            ( groups6591440286371151544t_real
            @ ^ [I4: nat] : ( G @ I4 @ J3 )
            @ A )
        @ B5 ) ) ).

% sum.swap
thf(fact_763_zero__neq__one,axiom,
    zero_zero_real != one_one_real ).

% zero_neq_one
thf(fact_764_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_765_zero__neq__one,axiom,
    zero_zero_int != one_one_int ).

% zero_neq_one
thf(fact_766_sum_Oneutral,axiom,
    ! [A: set_nat,G: nat > real] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A )
         => ( ( G @ X3 )
            = zero_zero_real ) )
     => ( ( groups6591440286371151544t_real @ G @ A )
        = zero_zero_real ) ) ).

% sum.neutral
thf(fact_767_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: ( nat > real ) > real,A: set_nat_real] :
      ( ( ( groups4253619806861319043l_real @ G @ A )
       != zero_zero_real )
     => ~ ! [A4: nat > real] :
            ( ( member_nat_real @ A4 @ A )
           => ( ( G @ A4 )
              = zero_zero_real ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_768_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: real > real,A: set_real] :
      ( ( ( groups8097168146408367636l_real @ G @ A )
       != zero_zero_real )
     => ~ ! [A4: real] :
            ( ( member_real @ A4 @ A )
           => ( ( G @ A4 )
              = zero_zero_real ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_769_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: ( nat > real ) > risk_Free_account,A: set_nat_real] :
      ( ( ( groups383684539861946442ccount @ G @ A )
       != zero_z1425366712893667068ccount )
     => ~ ! [A4: nat > real] :
            ( ( member_nat_real @ A4 @ A )
           => ( ( G @ A4 )
              = zero_z1425366712893667068ccount ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_770_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: real > risk_Free_account,A: set_real] :
      ( ( ( groups8516999891779824987ccount @ G @ A )
       != zero_z1425366712893667068ccount )
     => ~ ! [A4: real] :
            ( ( member_real @ A4 @ A )
           => ( ( G @ A4 )
              = zero_z1425366712893667068ccount ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_771_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: ( nat > real ) > nat,A: set_nat_real] :
      ( ( ( groups780007972294800423al_nat @ G @ A )
       != zero_zero_nat )
     => ~ ! [A4: nat > real] :
            ( ( member_nat_real @ A4 @ A )
           => ( ( G @ A4 )
              = zero_zero_nat ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_772_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: real > nat,A: set_real] :
      ( ( ( groups1935376822645274424al_nat @ G @ A )
       != zero_zero_nat )
     => ~ ! [A4: real] :
            ( ( member_real @ A4 @ A )
           => ( ( G @ A4 )
              = zero_zero_nat ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_773_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: ( nat > real ) > int,A: set_nat_real] :
      ( ( ( groups777517501785750147al_int @ G @ A )
       != zero_zero_int )
     => ~ ! [A4: nat > real] :
            ( ( member_nat_real @ A4 @ A )
           => ( ( G @ A4 )
              = zero_zero_int ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_774_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: real > int,A: set_real] :
      ( ( ( groups1932886352136224148al_int @ G @ A )
       != zero_zero_int )
     => ~ ! [A4: real] :
            ( ( member_real @ A4 @ A )
           => ( ( G @ A4 )
              = zero_zero_int ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_775_sum_Onot__neutral__contains__not__neutral,axiom,
    ! [G: nat > real,A: set_nat] :
      ( ( ( groups6591440286371151544t_real @ G @ A )
       != zero_zero_real )
     => ~ ! [A4: nat] :
            ( ( member_nat @ A4 @ A )
           => ( ( G @ A4 )
              = zero_zero_real ) ) ) ).

% sum.not_neutral_contains_not_neutral
thf(fact_776_zero__less__imp__eq__int,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ? [N3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N3 )
          & ( K2
            = ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% zero_less_imp_eq_int
thf(fact_777_pos__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ~ ! [N3: nat] :
            ( ( K2
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% pos_int_cases
thf(fact_778_sum__mono,axiom,
    ! [K3: set_nat_real,F: ( nat > real ) > nat,G: ( nat > real ) > nat] :
      ( ! [I3: nat > real] :
          ( ( member_nat_real @ I3 @ K3 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups780007972294800423al_nat @ F @ K3 ) @ ( groups780007972294800423al_nat @ G @ K3 ) ) ) ).

% sum_mono
thf(fact_779_sum__mono,axiom,
    ! [K3: set_real,F: real > nat,G: real > nat] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K3 )
         => ( ord_less_eq_nat @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ K3 ) @ ( groups1935376822645274424al_nat @ G @ K3 ) ) ) ).

% sum_mono
thf(fact_780_sum__mono,axiom,
    ! [K3: set_nat_real,F: ( nat > real ) > real,G: ( nat > real ) > real] :
      ( ! [I3: nat > real] :
          ( ( member_nat_real @ I3 @ K3 )
         => ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_real @ ( groups4253619806861319043l_real @ F @ K3 ) @ ( groups4253619806861319043l_real @ G @ K3 ) ) ) ).

% sum_mono
thf(fact_781_sum__mono,axiom,
    ! [K3: set_real,F: real > real,G: real > real] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K3 )
         => ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ K3 ) @ ( groups8097168146408367636l_real @ G @ K3 ) ) ) ).

% sum_mono
thf(fact_782_sum__mono,axiom,
    ! [K3: set_nat_real,F: ( nat > real ) > risk_Free_account,G: ( nat > real ) > risk_Free_account] :
      ( ! [I3: nat > real] :
          ( ( member_nat_real @ I3 @ K3 )
         => ( ord_le4245800335709223507ccount @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_le4245800335709223507ccount @ ( groups383684539861946442ccount @ F @ K3 ) @ ( groups383684539861946442ccount @ G @ K3 ) ) ) ).

% sum_mono
thf(fact_783_sum__mono,axiom,
    ! [K3: set_real,F: real > risk_Free_account,G: real > risk_Free_account] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K3 )
         => ( ord_le4245800335709223507ccount @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_le4245800335709223507ccount @ ( groups8516999891779824987ccount @ F @ K3 ) @ ( groups8516999891779824987ccount @ G @ K3 ) ) ) ).

% sum_mono
thf(fact_784_sum__mono,axiom,
    ! [K3: set_nat_real,F: ( nat > real ) > int,G: ( nat > real ) > int] :
      ( ! [I3: nat > real] :
          ( ( member_nat_real @ I3 @ K3 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups777517501785750147al_int @ F @ K3 ) @ ( groups777517501785750147al_int @ G @ K3 ) ) ) ).

% sum_mono
thf(fact_785_sum__mono,axiom,
    ! [K3: set_real,F: real > int,G: real > int] :
      ( ! [I3: real] :
          ( ( member_real @ I3 @ K3 )
         => ( ord_less_eq_int @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ K3 ) @ ( groups1932886352136224148al_int @ G @ K3 ) ) ) ).

% sum_mono
thf(fact_786_sum__mono,axiom,
    ! [K3: set_nat,F: nat > real,G: nat > real] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ K3 )
         => ( ord_less_eq_real @ ( F @ I3 ) @ ( G @ I3 ) ) )
     => ( ord_less_eq_real @ ( groups6591440286371151544t_real @ F @ K3 ) @ ( groups6591440286371151544t_real @ G @ K3 ) ) ) ).

% sum_mono
thf(fact_787_bulk__update__account__mono,axiom,
    ! [I: real,Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account,N2: nat] :
      ( ( ord_less_eq_real @ zero_zero_real @ I )
     => ( ! [N3: nat] : ( ord_less_real @ ( Rho @ N3 ) @ one_one_real )
       => ( ! [N3: nat,M4: nat] :
              ( ( ord_less_eq_nat @ N3 @ M4 )
             => ( ord_less_eq_real @ ( Rho @ N3 ) @ ( Rho @ M4 ) ) )
         => ( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
           => ( ord_le4245800335709223507ccount @ ( risk_F2412532053715321062ccount @ N2 @ Rho @ I @ Alpha ) @ ( risk_F2412532053715321062ccount @ N2 @ Rho @ I @ Beta ) ) ) ) ) ) ).

% bulk_update_account_mono
thf(fact_788_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_789_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_790_not__one__le__zero,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).

% not_one_le_zero
thf(fact_791_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_792_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_793_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_794_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_795_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_796_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_int @ zero_zero_int @ one_one_int ).

% zero_less_one_class.zero_le_one
thf(fact_797_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_798_not__one__less__zero,axiom,
    ~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).

% not_one_less_zero
thf(fact_799_not__one__less__zero,axiom,
    ~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).

% not_one_less_zero
thf(fact_800_update__account__mono,axiom,
    ! [I: real,Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ( ord_less_eq_real @ zero_zero_real @ I )
     => ( ! [N3: nat] : ( ord_less_real @ ( Rho @ N3 ) @ one_one_real )
       => ( ! [N3: nat,M4: nat] :
              ( ( ord_less_eq_nat @ N3 @ M4 )
             => ( ord_less_eq_real @ ( Rho @ N3 ) @ ( Rho @ M4 ) ) )
         => ( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
           => ( ord_le4245800335709223507ccount @ ( risk_F444380041991734328ccount @ Rho @ I @ Alpha ) @ ( risk_F444380041991734328ccount @ Rho @ I @ Beta ) ) ) ) ) ) ).

% update_account_mono
thf(fact_801_update__preserves__strictly__solvent,axiom,
    ! [I: real,Rho: nat > real,Alpha: risk_Free_account] :
      ( ( ord_less_eq_real @ zero_zero_real @ I )
     => ( ! [N3: nat] : ( ord_less_real @ ( Rho @ N3 ) @ one_one_real )
       => ( ! [N3: nat,M4: nat] :
              ( ( ord_less_eq_nat @ N3 @ M4 )
             => ( ord_less_eq_real @ ( Rho @ N3 ) @ ( Rho @ M4 ) ) )
         => ( ( risk_F1636578016437888323olvent @ Alpha )
           => ( risk_F1636578016437888323olvent @ ( risk_F444380041991734328ccount @ Rho @ I @ Alpha ) ) ) ) ) ) ).

% update_preserves_strictly_solvent
thf(fact_802_reals__Archimedean2,axiom,
    ! [X: real] :
    ? [N3: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ).

% reals_Archimedean2
thf(fact_803_real__arch__simple,axiom,
    ! [X: real] :
    ? [N3: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N3 ) ) ).

% real_arch_simple
thf(fact_804_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ zero_zero_real )
    = one_one_real ) ).

% dbl_inc_simps(2)
thf(fact_805_dbl__inc__simps_I2_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
    = one_one_int ) ).

% dbl_inc_simps(2)
thf(fact_806_net__asset__value__shortest__period__ge,axiom,
    ! [Alpha: risk_Free_account,N2: nat] :
      ( ( ord_less_eq_nat @ ( risk_F4612863212915232279period @ Alpha ) @ N2 )
     => ( ( risk_F2906766666041932210_value @ Alpha )
        = ( groups6591440286371151544t_real @ ( risk_F170160801229183585ccount @ Alpha ) @ ( set_ord_atMost_nat @ N2 ) ) ) ) ).

% net_asset_value_shortest_period_ge
thf(fact_807_update__account__zero,axiom,
    ! [Rho: nat > real,I: real] :
      ( ( risk_F444380041991734328ccount @ Rho @ I @ zero_z1425366712893667068ccount )
      = zero_z1425366712893667068ccount ) ).

% update_account_zero
thf(fact_808_partial__nav__just__cash,axiom,
    ! [A2: real,N2: nat] :
      ( ( groups6591440286371151544t_real @ ( risk_F170160801229183585ccount @ ( risk_Free_just_cash @ A2 ) ) @ ( set_ord_atMost_nat @ N2 ) )
      = A2 ) ).

% partial_nav_just_cash
thf(fact_809_less__eq__account__def,axiom,
    ( ord_le4245800335709223507ccount
    = ( ^ [Alpha_1: risk_Free_account,Alpha_2: risk_Free_account] :
        ! [N: nat] : ( ord_less_eq_real @ ( groups6591440286371151544t_real @ ( risk_F170160801229183585ccount @ Alpha_1 ) @ ( set_ord_atMost_nat @ N ) ) @ ( groups6591440286371151544t_real @ ( risk_F170160801229183585ccount @ Alpha_2 ) @ ( set_ord_atMost_nat @ N ) ) ) ) ) ).

% less_eq_account_def
thf(fact_810_net__asset__value__alt__def,axiom,
    ( risk_F2906766666041932210_value
    = ( ^ [Alpha2: risk_Free_account] : ( groups6591440286371151544t_real @ ( risk_F170160801229183585ccount @ Alpha2 ) @ ( set_ord_atMost_nat @ ( risk_F4612863212915232279period @ Alpha2 ) ) ) ) ) ).

% net_asset_value_alt_def
thf(fact_811_strictly__solvent__def,axiom,
    ( risk_F1636578016437888323olvent
    = ( ^ [Alpha2: risk_Free_account] :
        ! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( groups6591440286371151544t_real @ ( risk_F170160801229183585ccount @ Alpha2 ) @ ( set_ord_atMost_nat @ N ) ) ) ) ) ).

% strictly_solvent_def
thf(fact_812_atMost__subset__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_set_real @ ( set_ord_atMost_real @ X ) @ ( set_ord_atMost_real @ Y ) )
      = ( ord_less_eq_real @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_813_atMost__subset__iff,axiom,
    ! [X: risk_Free_account,Y: risk_Free_account] :
      ( ( ord_le4487465848215339657ccount @ ( set_or3854930313887350124ccount @ X ) @ ( set_or3854930313887350124ccount @ Y ) )
      = ( ord_le4245800335709223507ccount @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_814_atMost__subset__iff,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_set_int @ ( set_ord_atMost_int @ X ) @ ( set_ord_atMost_int @ Y ) )
      = ( ord_less_eq_int @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_815_atMost__subset__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ X ) @ ( set_ord_atMost_nat @ Y ) )
      = ( ord_less_eq_nat @ X @ Y ) ) ).

% atMost_subset_iff
thf(fact_816_atMost__iff,axiom,
    ! [I: nat > real,K2: nat > real] :
      ( ( member_nat_real @ I @ ( set_or1122926678442080148t_real @ K2 ) )
      = ( ord_less_eq_nat_real @ I @ K2 ) ) ).

% atMost_iff
thf(fact_817_atMost__iff,axiom,
    ! [I: real,K2: real] :
      ( ( member_real @ I @ ( set_ord_atMost_real @ K2 ) )
      = ( ord_less_eq_real @ I @ K2 ) ) ).

% atMost_iff
thf(fact_818_atMost__iff,axiom,
    ! [I: risk_Free_account,K2: risk_Free_account] :
      ( ( member5612106785598075018ccount @ I @ ( set_or3854930313887350124ccount @ K2 ) )
      = ( ord_le4245800335709223507ccount @ I @ K2 ) ) ).

% atMost_iff
thf(fact_819_atMost__iff,axiom,
    ! [I: int,K2: int] :
      ( ( member_int @ I @ ( set_ord_atMost_int @ K2 ) )
      = ( ord_less_eq_int @ I @ K2 ) ) ).

% atMost_iff
thf(fact_820_atMost__iff,axiom,
    ! [I: nat,K2: nat] :
      ( ( member_nat @ I @ ( set_ord_atMost_nat @ K2 ) )
      = ( ord_less_eq_nat @ I @ K2 ) ) ).

% atMost_iff
thf(fact_821_not__UNIV__le__Iic,axiom,
    ! [H: nat] :
      ~ ( ord_less_eq_set_nat @ top_top_set_nat @ ( set_ord_atMost_nat @ H ) ) ).

% not_UNIV_le_Iic
thf(fact_822_atMost__eq__UNIV__iff,axiom,
    ! [X: set_nat] :
      ( ( ( set_or4236626031148496127et_nat @ X )
        = top_top_set_set_nat )
      = ( X = top_top_set_nat ) ) ).

% atMost_eq_UNIV_iff
thf(fact_823_atMost__def,axiom,
    ( set_ord_atMost_real
    = ( ^ [U: real] :
          ( collect_real
          @ ^ [X2: real] : ( ord_less_eq_real @ X2 @ U ) ) ) ) ).

% atMost_def
thf(fact_824_atMost__def,axiom,
    ( set_or3854930313887350124ccount
    = ( ^ [U: risk_Free_account] :
          ( collec1856553087948576712ccount
          @ ^ [X2: risk_Free_account] : ( ord_le4245800335709223507ccount @ X2 @ U ) ) ) ) ).

% atMost_def
thf(fact_825_atMost__def,axiom,
    ( set_ord_atMost_int
    = ( ^ [U: int] :
          ( collect_int
          @ ^ [X2: int] : ( ord_less_eq_int @ X2 @ U ) ) ) ) ).

% atMost_def
thf(fact_826_atMost__def,axiom,
    ( set_ord_atMost_nat
    = ( ^ [U: nat] :
          ( collect_nat
          @ ^ [X2: nat] : ( ord_less_eq_nat @ X2 @ U ) ) ) ) ).

% atMost_def
thf(fact_827_atMost__UNIV__triv,axiom,
    ( ( set_or4236626031148496127et_nat @ top_top_set_nat )
    = top_top_set_set_nat ) ).

% atMost_UNIV_triv
thf(fact_828_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M5: nat] :
      ( ( P @ X )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M5 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X6: nat] :
                    ( ( P @ X6 )
                   => ( ord_less_eq_nat @ X6 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_829_not__UNIV__eq__Iic,axiom,
    ! [H2: nat] :
      ( top_top_set_nat
     != ( set_ord_atMost_nat @ H2 ) ) ).

% not_UNIV_eq_Iic
thf(fact_830_neg__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_int @ K2 @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( ( K2
              = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).

% neg_int_cases
thf(fact_831_inverse__of__nat__le,axiom,
    ! [N2: nat,M2: nat] :
      ( ( ord_less_eq_nat @ N2 @ M2 )
     => ( ( N2 != zero_zero_nat )
       => ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ M2 ) ) @ ( divide_divide_real @ one_one_real @ ( semiri5074537144036343181t_real @ N2 ) ) ) ) ) ).

% inverse_of_nat_le
thf(fact_832_nat__less__iff,axiom,
    ! [W2: int,M2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ W2 )
     => ( ( ord_less_nat @ ( nat2 @ W2 ) @ M2 )
        = ( ord_less_int @ W2 @ ( semiri1314217659103216013at_int @ M2 ) ) ) ) ).

% nat_less_iff
thf(fact_833_add_Oinverse__inverse,axiom,
    ! [A2: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ A2 ) )
      = A2 ) ).

% add.inverse_inverse
thf(fact_834_add_Oinverse__inverse,axiom,
    ! [A2: risk_Free_account] :
      ( ( uminus3377898441596595772ccount @ ( uminus3377898441596595772ccount @ A2 ) )
      = A2 ) ).

% add.inverse_inverse
thf(fact_835_add_Oinverse__inverse,axiom,
    ! [A2: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A2 ) )
      = A2 ) ).

% add.inverse_inverse
thf(fact_836_neg__equal__iff__equal,axiom,
    ! [A2: int,B2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = ( uminus_uminus_int @ B2 ) )
      = ( A2 = B2 ) ) ).

% neg_equal_iff_equal
thf(fact_837_neg__equal__iff__equal,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ( uminus3377898441596595772ccount @ A2 )
        = ( uminus3377898441596595772ccount @ B2 ) )
      = ( A2 = B2 ) ) ).

% neg_equal_iff_equal
thf(fact_838_neg__equal__iff__equal,axiom,
    ! [A2: real,B2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = ( uminus_uminus_real @ B2 ) )
      = ( A2 = B2 ) ) ).

% neg_equal_iff_equal
thf(fact_839_verit__minus__simplify_I4_J,axiom,
    ! [B2: int] :
      ( ( uminus_uminus_int @ ( uminus_uminus_int @ B2 ) )
      = B2 ) ).

% verit_minus_simplify(4)
thf(fact_840_verit__minus__simplify_I4_J,axiom,
    ! [B2: risk_Free_account] :
      ( ( uminus3377898441596595772ccount @ ( uminus3377898441596595772ccount @ B2 ) )
      = B2 ) ).

% verit_minus_simplify(4)
thf(fact_841_verit__minus__simplify_I4_J,axiom,
    ! [B2: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B2 ) )
      = B2 ) ).

% verit_minus_simplify(4)
thf(fact_842_neg__le__iff__le,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B2 ) @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_eq_real @ A2 @ B2 ) ) ).

% neg_le_iff_le
thf(fact_843_neg__le__iff__le,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( uminus3377898441596595772ccount @ B2 ) @ ( uminus3377898441596595772ccount @ A2 ) )
      = ( ord_le4245800335709223507ccount @ A2 @ B2 ) ) ).

% neg_le_iff_le
thf(fact_844_neg__le__iff__le,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ B2 ) @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_eq_int @ A2 @ B2 ) ) ).

% neg_le_iff_le
thf(fact_845_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_int @ zero_zero_int )
    = zero_zero_int ) ).

% add.inverse_neutral
thf(fact_846_add_Oinverse__neutral,axiom,
    ( ( uminus3377898441596595772ccount @ zero_z1425366712893667068ccount )
    = zero_z1425366712893667068ccount ) ).

% add.inverse_neutral
thf(fact_847_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_848_neg__0__equal__iff__equal,axiom,
    ! [A2: int] :
      ( ( zero_zero_int
        = ( uminus_uminus_int @ A2 ) )
      = ( zero_zero_int = A2 ) ) ).

% neg_0_equal_iff_equal
thf(fact_849_neg__0__equal__iff__equal,axiom,
    ! [A2: risk_Free_account] :
      ( ( zero_z1425366712893667068ccount
        = ( uminus3377898441596595772ccount @ A2 ) )
      = ( zero_z1425366712893667068ccount = A2 ) ) ).

% neg_0_equal_iff_equal
thf(fact_850_neg__0__equal__iff__equal,axiom,
    ! [A2: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A2 ) )
      = ( zero_zero_real = A2 ) ) ).

% neg_0_equal_iff_equal
thf(fact_851_neg__equal__0__iff__equal,axiom,
    ! [A2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% neg_equal_0_iff_equal
thf(fact_852_neg__equal__0__iff__equal,axiom,
    ! [A2: risk_Free_account] :
      ( ( ( uminus3377898441596595772ccount @ A2 )
        = zero_z1425366712893667068ccount )
      = ( A2 = zero_z1425366712893667068ccount ) ) ).

% neg_equal_0_iff_equal
thf(fact_853_neg__equal__0__iff__equal,axiom,
    ! [A2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = zero_zero_real )
      = ( A2 = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_854_equal__neg__zero,axiom,
    ! [A2: int] :
      ( ( A2
        = ( uminus_uminus_int @ A2 ) )
      = ( A2 = zero_zero_int ) ) ).

% equal_neg_zero
thf(fact_855_equal__neg__zero,axiom,
    ! [A2: real] :
      ( ( A2
        = ( uminus_uminus_real @ A2 ) )
      = ( A2 = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_856_neg__equal__zero,axiom,
    ! [A2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = A2 )
      = ( A2 = zero_zero_int ) ) ).

% neg_equal_zero
thf(fact_857_neg__equal__zero,axiom,
    ! [A2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = A2 )
      = ( A2 = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_858_div__by__0,axiom,
    ! [A2: nat] :
      ( ( divide_divide_nat @ A2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_859_div__by__0,axiom,
    ! [A2: real] :
      ( ( divide_divide_real @ A2 @ zero_zero_real )
      = zero_zero_real ) ).

% div_by_0
thf(fact_860_div__by__0,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ A2 @ zero_zero_int )
      = zero_zero_int ) ).

% div_by_0
thf(fact_861_div__0,axiom,
    ! [A2: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% div_0
thf(fact_862_div__0,axiom,
    ! [A2: real] :
      ( ( divide_divide_real @ zero_zero_real @ A2 )
      = zero_zero_real ) ).

% div_0
thf(fact_863_div__0,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ zero_zero_int @ A2 )
      = zero_zero_int ) ).

% div_0
thf(fact_864_neg__less__iff__less,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ B2 ) @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_int @ A2 @ B2 ) ) ).

% neg_less_iff_less
thf(fact_865_neg__less__iff__less,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ ( uminus3377898441596595772ccount @ B2 ) @ ( uminus3377898441596595772ccount @ A2 ) )
      = ( ord_le2131251472502387783ccount @ A2 @ B2 ) ) ).

% neg_less_iff_less
thf(fact_866_neg__less__iff__less,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ B2 ) @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_real @ A2 @ B2 ) ) ).

% neg_less_iff_less
thf(fact_867_neg__less__eq__nonneg,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A2 ) @ A2 )
      = ( ord_less_eq_real @ zero_zero_real @ A2 ) ) ).

% neg_less_eq_nonneg
thf(fact_868_neg__less__eq__nonneg,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A2 ) @ A2 )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% neg_less_eq_nonneg
thf(fact_869_less__eq__neg__nonpos,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ A2 @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_870_less__eq__neg__nonpos,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ A2 @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% less_eq_neg_nonpos
thf(fact_871_neg__le__0__iff__le,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A2 ) ) ).

% neg_le_0_iff_le
thf(fact_872_neg__le__0__iff__le,axiom,
    ! [A2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( uminus3377898441596595772ccount @ A2 ) @ zero_z1425366712893667068ccount )
      = ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ A2 ) ) ).

% neg_le_0_iff_le
thf(fact_873_neg__le__0__iff__le,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A2 ) @ zero_zero_int )
      = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ).

% neg_le_0_iff_le
thf(fact_874_neg__0__le__iff__le,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_875_neg__0__le__iff__le,axiom,
    ! [A2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ ( uminus3377898441596595772ccount @ A2 ) )
      = ( ord_le4245800335709223507ccount @ A2 @ zero_z1425366712893667068ccount ) ) ).

% neg_0_le_iff_le
thf(fact_876_neg__0__le__iff__le,axiom,
    ! [A2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ).

% neg_0_le_iff_le
thf(fact_877_neg__less__0__iff__less,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A2 ) @ zero_zero_int )
      = ( ord_less_int @ zero_zero_int @ A2 ) ) ).

% neg_less_0_iff_less
thf(fact_878_neg__less__0__iff__less,axiom,
    ! [A2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ ( uminus3377898441596595772ccount @ A2 ) @ zero_z1425366712893667068ccount )
      = ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ A2 ) ) ).

% neg_less_0_iff_less
thf(fact_879_neg__less__0__iff__less,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A2 ) @ zero_zero_real )
      = ( ord_less_real @ zero_zero_real @ A2 ) ) ).

% neg_less_0_iff_less
thf(fact_880_neg__0__less__iff__less,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% neg_0_less_iff_less
thf(fact_881_neg__0__less__iff__less,axiom,
    ! [A2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ ( uminus3377898441596595772ccount @ A2 ) )
      = ( ord_le2131251472502387783ccount @ A2 @ zero_z1425366712893667068ccount ) ) ).

% neg_0_less_iff_less
thf(fact_882_neg__0__less__iff__less,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_real @ A2 @ zero_zero_real ) ) ).

% neg_0_less_iff_less
thf(fact_883_neg__less__pos,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A2 ) @ A2 )
      = ( ord_less_int @ zero_zero_int @ A2 ) ) ).

% neg_less_pos
thf(fact_884_neg__less__pos,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A2 ) @ A2 )
      = ( ord_less_real @ zero_zero_real @ A2 ) ) ).

% neg_less_pos
thf(fact_885_less__neg__neg,axiom,
    ! [A2: int] :
      ( ( ord_less_int @ A2 @ ( uminus_uminus_int @ A2 ) )
      = ( ord_less_int @ A2 @ zero_zero_int ) ) ).

% less_neg_neg
thf(fact_886_less__neg__neg,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ A2 @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_real @ A2 @ zero_zero_real ) ) ).

% less_neg_neg
thf(fact_887_div__self,axiom,
    ! [A2: nat] :
      ( ( A2 != zero_zero_nat )
     => ( ( divide_divide_nat @ A2 @ A2 )
        = one_one_nat ) ) ).

% div_self
thf(fact_888_div__self,axiom,
    ! [A2: real] :
      ( ( A2 != zero_zero_real )
     => ( ( divide_divide_real @ A2 @ A2 )
        = one_one_real ) ) ).

% div_self
thf(fact_889_div__self,axiom,
    ! [A2: int] :
      ( ( A2 != zero_zero_int )
     => ( ( divide_divide_int @ A2 @ A2 )
        = one_one_int ) ) ).

% div_self
thf(fact_890_negative__eq__positive,axiom,
    ! [N2: nat,M2: nat] :
      ( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) )
        = ( semiri1314217659103216013at_int @ M2 ) )
      = ( ( N2 = zero_zero_nat )
        & ( M2 = zero_zero_nat ) ) ) ).

% negative_eq_positive
thf(fact_891_negative__zle,axiom,
    ! [N2: nat,M2: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ ( semiri1314217659103216013at_int @ M2 ) ) ).

% negative_zle
thf(fact_892_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu5851722552734809277nc_int @ ( uminus_uminus_int @ one_one_int ) )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_inc_simps(4)
thf(fact_893_dbl__inc__simps_I4_J,axiom,
    ( ( neg_nu8295874005876285629c_real @ ( uminus_uminus_real @ one_one_real ) )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_inc_simps(4)
thf(fact_894_nat__le__0,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ Z2 @ zero_zero_int )
     => ( ( nat2 @ Z2 )
        = zero_zero_nat ) ) ).

% nat_le_0
thf(fact_895_nat__0__iff,axiom,
    ! [I: int] :
      ( ( ( nat2 @ I )
        = zero_zero_nat )
      = ( ord_less_eq_int @ I @ zero_zero_int ) ) ).

% nat_0_iff
thf(fact_896_zless__nat__conj,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
      = ( ( ord_less_int @ zero_zero_int @ Z2 )
        & ( ord_less_int @ W2 @ Z2 ) ) ) ).

% zless_nat_conj
thf(fact_897_nat__zminus__int,axiom,
    ! [N2: nat] :
      ( ( nat2 @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
      = zero_zero_nat ) ).

% nat_zminus_int
thf(fact_898_int__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
          = Z2 ) )
      & ( ~ ( ord_less_eq_int @ zero_zero_int @ Z2 )
       => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
          = zero_zero_int ) ) ) ).

% int_nat_eq
thf(fact_899_zero__less__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ord_less_nat @ zero_zero_nat @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ zero_zero_int @ Z2 ) ) ).

% zero_less_nat_eq
thf(fact_900_real__of__nat__div4,axiom,
    ! [N2: nat,X: nat] : ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ ( divide_divide_nat @ N2 @ X ) ) @ ( divide_divide_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( semiri5074537144036343181t_real @ X ) ) ) ).

% real_of_nat_div4
thf(fact_901_int__ops_I8_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( semiri1314217659103216013at_int @ ( divide_divide_nat @ A2 @ B2 ) )
      = ( divide_divide_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ).

% int_ops(8)
thf(fact_902_nat__div__as__int,axiom,
    ( divide_divide_nat
    = ( ^ [A3: nat,B: nat] : ( nat2 @ ( divide_divide_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% nat_div_as_int
thf(fact_903_equation__minus__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( A2
        = ( uminus_uminus_int @ B2 ) )
      = ( B2
        = ( uminus_uminus_int @ A2 ) ) ) ).

% equation_minus_iff
thf(fact_904_equation__minus__iff,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( A2
        = ( uminus3377898441596595772ccount @ B2 ) )
      = ( B2
        = ( uminus3377898441596595772ccount @ A2 ) ) ) ).

% equation_minus_iff
thf(fact_905_equation__minus__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( A2
        = ( uminus_uminus_real @ B2 ) )
      = ( B2
        = ( uminus_uminus_real @ A2 ) ) ) ).

% equation_minus_iff
thf(fact_906_minus__equation__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ( uminus_uminus_int @ A2 )
        = B2 )
      = ( ( uminus_uminus_int @ B2 )
        = A2 ) ) ).

% minus_equation_iff
thf(fact_907_minus__equation__iff,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ( uminus3377898441596595772ccount @ A2 )
        = B2 )
      = ( ( uminus3377898441596595772ccount @ B2 )
        = A2 ) ) ).

% minus_equation_iff
thf(fact_908_minus__equation__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = B2 )
      = ( ( uminus_uminus_real @ B2 )
        = A2 ) ) ).

% minus_equation_iff
thf(fact_909_verit__negate__coefficient_I3_J,axiom,
    ! [A2: int,B2: int] :
      ( ( A2 = B2 )
     => ( ( uminus_uminus_int @ A2 )
        = ( uminus_uminus_int @ B2 ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_910_verit__negate__coefficient_I3_J,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( A2 = B2 )
     => ( ( uminus3377898441596595772ccount @ A2 )
        = ( uminus3377898441596595772ccount @ B2 ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_911_verit__negate__coefficient_I3_J,axiom,
    ! [A2: real,B2: real] :
      ( ( A2 = B2 )
     => ( ( uminus_uminus_real @ A2 )
        = ( uminus_uminus_real @ B2 ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_912_le__minus__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ ( uminus_uminus_real @ B2 ) )
      = ( ord_less_eq_real @ B2 @ ( uminus_uminus_real @ A2 ) ) ) ).

% le_minus_iff
thf(fact_913_le__minus__iff,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A2 @ ( uminus3377898441596595772ccount @ B2 ) )
      = ( ord_le4245800335709223507ccount @ B2 @ ( uminus3377898441596595772ccount @ A2 ) ) ) ).

% le_minus_iff
thf(fact_914_le__minus__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ ( uminus_uminus_int @ B2 ) )
      = ( ord_less_eq_int @ B2 @ ( uminus_uminus_int @ A2 ) ) ) ).

% le_minus_iff
thf(fact_915_minus__le__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A2 ) @ B2 )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B2 ) @ A2 ) ) ).

% minus_le_iff
thf(fact_916_minus__le__iff,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( uminus3377898441596595772ccount @ A2 ) @ B2 )
      = ( ord_le4245800335709223507ccount @ ( uminus3377898441596595772ccount @ B2 ) @ A2 ) ) ).

% minus_le_iff
thf(fact_917_minus__le__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( uminus_uminus_int @ A2 ) @ B2 )
      = ( ord_less_eq_int @ ( uminus_uminus_int @ B2 ) @ A2 ) ) ).

% minus_le_iff
thf(fact_918_le__imp__neg__le,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B2 ) @ ( uminus_uminus_real @ A2 ) ) ) ).

% le_imp_neg_le
thf(fact_919_le__imp__neg__le,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ A2 @ B2 )
     => ( ord_le4245800335709223507ccount @ ( uminus3377898441596595772ccount @ B2 ) @ ( uminus3377898441596595772ccount @ A2 ) ) ) ).

% le_imp_neg_le
thf(fact_920_le__imp__neg__le,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ B2 )
     => ( ord_less_eq_int @ ( uminus_uminus_int @ B2 ) @ ( uminus_uminus_int @ A2 ) ) ) ).

% le_imp_neg_le
thf(fact_921_verit__negate__coefficient_I2_J,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ B2 )
     => ( ord_less_int @ ( uminus_uminus_int @ B2 ) @ ( uminus_uminus_int @ A2 ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_922_verit__negate__coefficient_I2_J,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ B2 )
     => ( ord_le2131251472502387783ccount @ ( uminus3377898441596595772ccount @ B2 ) @ ( uminus3377898441596595772ccount @ A2 ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_923_verit__negate__coefficient_I2_J,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ord_less_real @ ( uminus_uminus_real @ B2 ) @ ( uminus_uminus_real @ A2 ) ) ) ).

% verit_negate_coefficient(2)
thf(fact_924_less__minus__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ ( uminus_uminus_int @ B2 ) )
      = ( ord_less_int @ B2 @ ( uminus_uminus_int @ A2 ) ) ) ).

% less_minus_iff
thf(fact_925_less__minus__iff,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ A2 @ ( uminus3377898441596595772ccount @ B2 ) )
      = ( ord_le2131251472502387783ccount @ B2 @ ( uminus3377898441596595772ccount @ A2 ) ) ) ).

% less_minus_iff
thf(fact_926_less__minus__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ ( uminus_uminus_real @ B2 ) )
      = ( ord_less_real @ B2 @ ( uminus_uminus_real @ A2 ) ) ) ).

% less_minus_iff
thf(fact_927_minus__less__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ ( uminus_uminus_int @ A2 ) @ B2 )
      = ( ord_less_int @ ( uminus_uminus_int @ B2 ) @ A2 ) ) ).

% minus_less_iff
thf(fact_928_minus__less__iff,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le2131251472502387783ccount @ ( uminus3377898441596595772ccount @ A2 ) @ B2 )
      = ( ord_le2131251472502387783ccount @ ( uminus3377898441596595772ccount @ B2 ) @ A2 ) ) ).

% minus_less_iff
thf(fact_929_minus__less__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ ( uminus_uminus_real @ A2 ) @ B2 )
      = ( ord_less_real @ ( uminus_uminus_real @ B2 ) @ A2 ) ) ).

% minus_less_iff
thf(fact_930_one__neq__neg__one,axiom,
    ( one_one_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% one_neq_neg_one
thf(fact_931_one__neq__neg__one,axiom,
    ( one_one_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% one_neq_neg_one
thf(fact_932_verit__less__mono__div__int2,axiom,
    ! [A: int,B5: int,N2: int] :
      ( ( ord_less_eq_int @ A @ B5 )
     => ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N2 ) )
       => ( ord_less_eq_int @ ( divide_divide_int @ B5 @ N2 ) @ ( divide_divide_int @ A @ N2 ) ) ) ) ).

% verit_less_mono_div_int2
thf(fact_933_sum__divide__distrib,axiom,
    ! [F: nat > real,A: set_nat,R2: real] :
      ( ( divide_divide_real @ ( groups6591440286371151544t_real @ F @ A ) @ R2 )
      = ( groups6591440286371151544t_real
        @ ^ [N: nat] : ( divide_divide_real @ ( F @ N ) @ R2 )
        @ A ) ) ).

% sum_divide_distrib
thf(fact_934_sum__negf,axiom,
    ! [F: nat > real,A: set_nat] :
      ( ( groups6591440286371151544t_real
        @ ^ [X2: nat] : ( uminus_uminus_real @ ( F @ X2 ) )
        @ A )
      = ( uminus_uminus_real @ ( groups6591440286371151544t_real @ F @ A ) ) ) ).

% sum_negf
thf(fact_935_nat__zero__as__int,axiom,
    ( zero_zero_nat
    = ( nat2 @ zero_zero_int ) ) ).

% nat_zero_as_int
thf(fact_936_nat__mono,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ X @ Y )
     => ( ord_less_eq_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ).

% nat_mono
thf(fact_937_ex__nat,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X4: nat] : ( P2 @ X4 ) )
    = ( ^ [P3: nat > $o] :
        ? [X2: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X2 )
          & ( P3 @ ( nat2 @ X2 ) ) ) ) ) ).

% ex_nat
thf(fact_938_all__nat,axiom,
    ( ( ^ [P2: nat > $o] :
        ! [X4: nat] : ( P2 @ X4 ) )
    = ( ^ [P3: nat > $o] :
        ! [X2: int] :
          ( ( ord_less_eq_int @ zero_zero_int @ X2 )
         => ( P3 @ ( nat2 @ X2 ) ) ) ) ) ).

% all_nat
thf(fact_939_eq__nat__nat__iff,axiom,
    ! [Z2: int,Z6: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
       => ( ( ( nat2 @ Z2 )
            = ( nat2 @ Z6 ) )
          = ( Z2 = Z6 ) ) ) ) ).

% eq_nat_nat_iff
thf(fact_940_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% le_minus_one_simps(2)
thf(fact_941_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% le_minus_one_simps(2)
thf(fact_942_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(4)
thf(fact_943_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(4)
thf(fact_944_zero__neq__neg__one,axiom,
    ( zero_zero_int
   != ( uminus_uminus_int @ one_one_int ) ) ).

% zero_neq_neg_one
thf(fact_945_zero__neq__neg__one,axiom,
    ( zero_zero_real
   != ( uminus_uminus_real @ one_one_real ) ) ).

% zero_neq_neg_one
thf(fact_946_less__minus__one__simps_I2_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).

% less_minus_one_simps(2)
thf(fact_947_less__minus__one__simps_I2_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).

% less_minus_one_simps(2)
thf(fact_948_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(4)
thf(fact_949_less__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(4)
thf(fact_950_nat__one__as__int,axiom,
    ( one_one_nat
    = ( nat2 @ one_one_int ) ) ).

% nat_one_as_int
thf(fact_951_not__int__zless__negative,axiom,
    ! [N2: nat,M2: nat] :
      ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M2 ) ) ) ).

% not_int_zless_negative
thf(fact_952_nat__mono__iff,axiom,
    ! [Z2: int,W2: int] :
      ( ( ord_less_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
        = ( ord_less_int @ W2 @ Z2 ) ) ) ).

% nat_mono_iff
thf(fact_953_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% le_minus_one_simps(3)
thf(fact_954_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% le_minus_one_simps(3)
thf(fact_955_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% le_minus_one_simps(1)
thf(fact_956_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% le_minus_one_simps(1)
thf(fact_957_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).

% less_minus_one_simps(3)
thf(fact_958_less__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).

% less_minus_one_simps(3)
thf(fact_959_less__minus__one__simps_I1_J,axiom,
    ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).

% less_minus_one_simps(1)
thf(fact_960_less__minus__one__simps_I1_J,axiom,
    ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).

% less_minus_one_simps(1)
thf(fact_961_nat__le__iff,axiom,
    ! [X: int,N2: nat] :
      ( ( ord_less_eq_nat @ ( nat2 @ X ) @ N2 )
      = ( ord_less_eq_int @ X @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).

% nat_le_iff
thf(fact_962_zless__nat__eq__int__zless,axiom,
    ! [M2: nat,Z2: int] :
      ( ( ord_less_nat @ M2 @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ Z2 ) ) ).

% zless_nat_eq_int_zless
thf(fact_963_int__eq__iff,axiom,
    ! [M2: nat,Z2: int] :
      ( ( ( semiri1314217659103216013at_int @ M2 )
        = Z2 )
      = ( ( M2
          = ( nat2 @ Z2 ) )
        & ( ord_less_eq_int @ zero_zero_int @ Z2 ) ) ) ).

% int_eq_iff
thf(fact_964_nat__0__le,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( semiri1314217659103216013at_int @ ( nat2 @ Z2 ) )
        = Z2 ) ) ).

% nat_0_le
thf(fact_965_int__cases4,axiom,
    ! [M2: int] :
      ( ! [N3: nat] :
          ( M2
         != ( semiri1314217659103216013at_int @ N3 ) )
     => ~ ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( M2
             != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).

% int_cases4
thf(fact_966_int__zle__neg,axiom,
    ! [N2: nat,M2: nat] :
      ( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M2 ) ) )
      = ( ( N2 = zero_zero_nat )
        & ( M2 = zero_zero_nat ) ) ) ).

% int_zle_neg
thf(fact_967_nonpos__int__cases,axiom,
    ! [K2: int] :
      ( ( ord_less_eq_int @ K2 @ zero_zero_int )
     => ~ ! [N3: nat] :
            ( K2
           != ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).

% nonpos_int_cases
thf(fact_968_negative__zle__0,axiom,
    ! [N2: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) @ zero_zero_int ) ).

% negative_zle_0
thf(fact_969_nat__less__eq__zless,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ W2 )
     => ( ( ord_less_nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
        = ( ord_less_int @ W2 @ Z2 ) ) ) ).

% nat_less_eq_zless
thf(fact_970_nat__le__eq__zle,axiom,
    ! [W2: int,Z2: int] :
      ( ( ( ord_less_int @ zero_zero_int @ W2 )
        | ( ord_less_eq_int @ zero_zero_int @ Z2 ) )
     => ( ( ord_less_eq_nat @ ( nat2 @ W2 ) @ ( nat2 @ Z2 ) )
        = ( ord_less_eq_int @ W2 @ Z2 ) ) ) ).

% nat_le_eq_zle
thf(fact_971_nat__eq__iff2,axiom,
    ! [M2: nat,W2: int] :
      ( ( M2
        = ( nat2 @ W2 ) )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W2 )
         => ( W2
            = ( semiri1314217659103216013at_int @ M2 ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W2 )
         => ( M2 = zero_zero_nat ) ) ) ) ).

% nat_eq_iff2
thf(fact_972_nat__eq__iff,axiom,
    ! [W2: int,M2: nat] :
      ( ( ( nat2 @ W2 )
        = M2 )
      = ( ( ( ord_less_eq_int @ zero_zero_int @ W2 )
         => ( W2
            = ( semiri1314217659103216013at_int @ M2 ) ) )
        & ( ~ ( ord_less_eq_int @ zero_zero_int @ W2 )
         => ( M2 = zero_zero_nat ) ) ) ) ).

% nat_eq_iff
thf(fact_973_split__nat,axiom,
    ! [P: nat > $o,I: int] :
      ( ( P @ ( nat2 @ I ) )
      = ( ! [N: nat] :
            ( ( I
              = ( semiri1314217659103216013at_int @ N ) )
           => ( P @ N ) )
        & ( ( ord_less_int @ I @ zero_zero_int )
         => ( P @ zero_zero_nat ) ) ) ) ).

% split_nat
thf(fact_974_le__nat__iff,axiom,
    ! [K2: int,N2: nat] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( ord_less_eq_nat @ N2 @ ( nat2 @ K2 ) )
        = ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N2 ) @ K2 ) ) ) ).

% le_nat_iff
thf(fact_975_int__cases3,axiom,
    ! [K2: int] :
      ( ( K2 != zero_zero_int )
     => ( ! [N3: nat] :
            ( ( K2
              = ( semiri1314217659103216013at_int @ N3 ) )
           => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) )
       => ~ ! [N3: nat] :
              ( ( K2
                = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N3 ) ) )
             => ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ) ).

% int_cases3
thf(fact_976_divide__le__eq__1__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B2 @ A2 ) @ one_one_real )
        = ( ord_less_eq_real @ A2 @ B2 ) ) ) ).

% divide_le_eq_1_neg
thf(fact_977_divide__le__eq__1__pos,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_eq_real @ ( divide_divide_real @ B2 @ A2 ) @ one_one_real )
        = ( ord_less_eq_real @ B2 @ A2 ) ) ) ).

% divide_le_eq_1_pos
thf(fact_978_le__divide__eq__1__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ zero_zero_real )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B2 @ A2 ) )
        = ( ord_less_eq_real @ B2 @ A2 ) ) ) ).

% le_divide_eq_1_neg
thf(fact_979_le__divide__eq__1__pos,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B2 @ A2 ) )
        = ( ord_less_eq_real @ A2 @ B2 ) ) ) ).

% le_divide_eq_1_pos
thf(fact_980_divide__less__0__1__iff,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A2 ) @ zero_zero_real )
      = ( ord_less_real @ A2 @ zero_zero_real ) ) ).

% divide_less_0_1_iff
thf(fact_981_Rep__account__uminus,axiom,
    ! [Alpha: risk_Free_account] :
      ( ( risk_F170160801229183585ccount @ ( uminus3377898441596595772ccount @ Alpha ) )
      = ( ^ [N: nat] : ( uminus_uminus_real @ ( risk_F170160801229183585ccount @ Alpha @ N ) ) ) ) ).

% Rep_account_uminus
thf(fact_982_just__cash__uminus,axiom,
    ! [A2: real] :
      ( ( uminus3377898441596595772ccount @ ( risk_Free_just_cash @ A2 ) )
      = ( risk_Free_just_cash @ ( uminus_uminus_real @ A2 ) ) ) ).

% just_cash_uminus
thf(fact_983_division__ring__divide__zero,axiom,
    ! [A2: real] :
      ( ( divide_divide_real @ A2 @ zero_zero_real )
      = zero_zero_real ) ).

% division_ring_divide_zero
thf(fact_984_divide__cancel__right,axiom,
    ! [A2: real,C: real,B2: real] :
      ( ( ( divide_divide_real @ A2 @ C )
        = ( divide_divide_real @ B2 @ C ) )
      = ( ( C = zero_zero_real )
        | ( A2 = B2 ) ) ) ).

% divide_cancel_right
thf(fact_985_divide__cancel__left,axiom,
    ! [C: real,A2: real,B2: real] :
      ( ( ( divide_divide_real @ C @ A2 )
        = ( divide_divide_real @ C @ B2 ) )
      = ( ( C = zero_zero_real )
        | ( A2 = B2 ) ) ) ).

% divide_cancel_left
thf(fact_986_divide__eq__0__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ( divide_divide_real @ A2 @ B2 )
        = zero_zero_real )
      = ( ( A2 = zero_zero_real )
        | ( B2 = zero_zero_real ) ) ) ).

% divide_eq_0_iff
thf(fact_987_divide__eq__1__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ( divide_divide_real @ A2 @ B2 )
        = one_one_real )
      = ( ( B2 != zero_zero_real )
        & ( A2 = B2 ) ) ) ).

% divide_eq_1_iff
thf(fact_988_one__eq__divide__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( one_one_real
        = ( divide_divide_real @ A2 @ B2 ) )
      = ( ( B2 != zero_zero_real )
        & ( A2 = B2 ) ) ) ).

% one_eq_divide_iff
thf(fact_989_divide__self,axiom,
    ! [A2: real] :
      ( ( A2 != zero_zero_real )
     => ( ( divide_divide_real @ A2 @ A2 )
        = one_one_real ) ) ).

% divide_self
thf(fact_990_divide__self__if,axiom,
    ! [A2: real] :
      ( ( ( A2 = zero_zero_real )
       => ( ( divide_divide_real @ A2 @ A2 )
          = zero_zero_real ) )
      & ( ( A2 != zero_zero_real )
       => ( ( divide_divide_real @ A2 @ A2 )
          = one_one_real ) ) ) ).

% divide_self_if
thf(fact_991_divide__eq__eq__1,axiom,
    ! [B2: real,A2: real] :
      ( ( ( divide_divide_real @ B2 @ A2 )
        = one_one_real )
      = ( ( A2 != zero_zero_real )
        & ( A2 = B2 ) ) ) ).

% divide_eq_eq_1
thf(fact_992_eq__divide__eq__1,axiom,
    ! [B2: real,A2: real] :
      ( ( one_one_real
        = ( divide_divide_real @ B2 @ A2 ) )
      = ( ( A2 != zero_zero_real )
        & ( A2 = B2 ) ) ) ).

% eq_divide_eq_1
thf(fact_993_one__divide__eq__0__iff,axiom,
    ! [A2: real] :
      ( ( ( divide_divide_real @ one_one_real @ A2 )
        = zero_zero_real )
      = ( A2 = zero_zero_real ) ) ).

% one_divide_eq_0_iff
thf(fact_994_zero__eq__1__divide__iff,axiom,
    ! [A2: real] :
      ( ( zero_zero_real
        = ( divide_divide_real @ one_one_real @ A2 ) )
      = ( A2 = zero_zero_real ) ) ).

% zero_eq_1_divide_iff
thf(fact_995_zero__le__divide__1__iff,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A2 ) )
      = ( ord_less_eq_real @ zero_zero_real @ A2 ) ) ).

% zero_le_divide_1_iff
thf(fact_996_divide__le__0__1__iff,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% divide_le_0_1_iff
thf(fact_997_zero__less__divide__1__iff,axiom,
    ! [A2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A2 ) )
      = ( ord_less_real @ zero_zero_real @ A2 ) ) ).

% zero_less_divide_1_iff
thf(fact_998_less__divide__eq__1__pos,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B2 @ A2 ) )
        = ( ord_less_real @ A2 @ B2 ) ) ) ).

% less_divide_eq_1_pos
thf(fact_999_less__divide__eq__1__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ zero_zero_real )
     => ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B2 @ A2 ) )
        = ( ord_less_real @ B2 @ A2 ) ) ) ).

% less_divide_eq_1_neg
thf(fact_1000_divide__less__eq__1__pos,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ zero_zero_real @ A2 )
     => ( ( ord_less_real @ ( divide_divide_real @ B2 @ A2 ) @ one_one_real )
        = ( ord_less_real @ B2 @ A2 ) ) ) ).

% divide_less_eq_1_pos
thf(fact_1001_divide__less__eq__1__neg,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ A2 @ zero_zero_real )
     => ( ( ord_less_real @ ( divide_divide_real @ B2 @ A2 ) @ one_one_real )
        = ( ord_less_real @ A2 @ B2 ) ) ) ).

% divide_less_eq_1_neg
thf(fact_1002_net__asset__value__uminus,axiom,
    ! [Alpha: risk_Free_account] :
      ( ( risk_F2906766666041932210_value @ ( uminus3377898441596595772ccount @ Alpha ) )
      = ( uminus_uminus_real @ ( risk_F2906766666041932210_value @ Alpha ) ) ) ).

% net_asset_value_uminus
thf(fact_1003_uminus__account__def,axiom,
    ( uminus3377898441596595772ccount
    = ( ^ [Alpha2: risk_Free_account] :
          ( risk_F5458100604530014700ccount
          @ ^ [N: nat] : ( uminus_uminus_real @ ( risk_F170160801229183585ccount @ Alpha2 @ N ) ) ) ) ) ).

% uminus_account_def
thf(fact_1004_bulk__update__account__uminus,axiom,
    ! [N2: nat,Rho: nat > real,I: real,Alpha: risk_Free_account] :
      ( ( risk_F2412532053715321062ccount @ N2 @ Rho @ I @ ( uminus3377898441596595772ccount @ Alpha ) )
      = ( uminus3377898441596595772ccount @ ( risk_F2412532053715321062ccount @ N2 @ Rho @ I @ Alpha ) ) ) ).

% bulk_update_account_uminus
thf(fact_1005_return__loans__uminus,axiom,
    ! [Rho: nat > real,Alpha: risk_Free_account] :
      ( ( risk_F2121631595377017831_loans @ Rho @ ( uminus3377898441596595772ccount @ Alpha ) )
      = ( uminus3377898441596595772ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) ) ) ).

% return_loans_uminus
thf(fact_1006_update__account__uminus,axiom,
    ! [Rho: nat > real,I: real,Alpha: risk_Free_account] :
      ( ( risk_F444380041991734328ccount @ Rho @ I @ ( uminus3377898441596595772ccount @ Alpha ) )
      = ( uminus3377898441596595772ccount @ ( risk_F444380041991734328ccount @ Rho @ I @ Alpha ) ) ) ).

% update_account_uminus
thf(fact_1007_shortest__period__uminus,axiom,
    ! [Alpha: risk_Free_account] :
      ( ( risk_F4612863212915232279period @ ( uminus3377898441596595772ccount @ Alpha ) )
      = ( risk_F4612863212915232279period @ Alpha ) ) ).

% shortest_period_uminus
thf(fact_1008_linordered__field__no__lb,axiom,
    ! [X6: real] :
    ? [Y2: real] : ( ord_less_real @ Y2 @ X6 ) ).

% linordered_field_no_lb
thf(fact_1009_linordered__field__no__ub,axiom,
    ! [X6: real] :
    ? [X_1: real] : ( ord_less_real @ X6 @ X_1 ) ).

% linordered_field_no_ub
thf(fact_1010_divide__right__mono__neg,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ C @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ B2 @ C ) @ ( divide_divide_real @ A2 @ C ) ) ) ) ).

% divide_right_mono_neg
thf(fact_1011_divide__nonpos__nonpos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonpos_nonpos
thf(fact_1012_divide__nonpos__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonpos_nonneg
thf(fact_1013_divide__nonneg__nonpos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonneg_nonpos
thf(fact_1014_divide__nonneg__nonneg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonneg_nonneg
thf(fact_1015_zero__le__divide__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A2 @ B2 ) )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A2 )
          & ( ord_less_eq_real @ zero_zero_real @ B2 ) )
        | ( ( ord_less_eq_real @ A2 @ zero_zero_real )
          & ( ord_less_eq_real @ B2 @ zero_zero_real ) ) ) ) ).

% zero_le_divide_iff
thf(fact_1016_divide__right__mono,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B2 )
     => ( ( ord_less_eq_real @ zero_zero_real @ C )
       => ( ord_less_eq_real @ ( divide_divide_real @ A2 @ C ) @ ( divide_divide_real @ B2 @ C ) ) ) ) ).

% divide_right_mono
thf(fact_1017_divide__le__0__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A2 @ B2 ) @ zero_zero_real )
      = ( ( ( ord_less_eq_real @ zero_zero_real @ A2 )
          & ( ord_less_eq_real @ B2 @ zero_zero_real ) )
        | ( ( ord_less_eq_real @ A2 @ zero_zero_real )
          & ( ord_less_eq_real @ zero_zero_real @ B2 ) ) ) ) ).

% divide_le_0_iff
thf(fact_1018_divide__strict__right__mono__neg,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ord_less_real @ B2 @ A2 )
     => ( ( ord_less_real @ C @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ A2 @ C ) @ ( divide_divide_real @ B2 @ C ) ) ) ) ).

% divide_strict_right_mono_neg
thf(fact_1019_divide__strict__right__mono,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ord_less_real @ A2 @ B2 )
     => ( ( ord_less_real @ zero_zero_real @ C )
       => ( ord_less_real @ ( divide_divide_real @ A2 @ C ) @ ( divide_divide_real @ B2 @ C ) ) ) ) ).

% divide_strict_right_mono
thf(fact_1020_zero__less__divide__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A2 @ B2 ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A2 )
          & ( ord_less_real @ zero_zero_real @ B2 ) )
        | ( ( ord_less_real @ A2 @ zero_zero_real )
          & ( ord_less_real @ B2 @ zero_zero_real ) ) ) ) ).

% zero_less_divide_iff
thf(fact_1021_divide__less__cancel,axiom,
    ! [A2: real,C: real,B2: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A2 @ C ) @ ( divide_divide_real @ B2 @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_real @ A2 @ B2 ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_real @ B2 @ A2 ) )
        & ( C != zero_zero_real ) ) ) ).

% divide_less_cancel
thf(fact_1022_divide__less__0__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ord_less_real @ ( divide_divide_real @ A2 @ B2 ) @ zero_zero_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A2 )
          & ( ord_less_real @ B2 @ zero_zero_real ) )
        | ( ( ord_less_real @ A2 @ zero_zero_real )
          & ( ord_less_real @ zero_zero_real @ B2 ) ) ) ) ).

% divide_less_0_iff
thf(fact_1023_divide__pos__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_pos_pos
thf(fact_1024_divide__pos__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_pos_neg
thf(fact_1025_divide__neg__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_neg_pos
thf(fact_1026_divide__neg__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_neg_neg
thf(fact_1027_right__inverse__eq,axiom,
    ! [B2: real,A2: real] :
      ( ( B2 != zero_zero_real )
     => ( ( ( divide_divide_real @ A2 @ B2 )
          = one_one_real )
        = ( A2 = B2 ) ) ) ).

% right_inverse_eq
thf(fact_1028_nonzero__minus__divide__divide,axiom,
    ! [B2: real,A2: real] :
      ( ( B2 != zero_zero_real )
     => ( ( divide_divide_real @ ( uminus_uminus_real @ A2 ) @ ( uminus_uminus_real @ B2 ) )
        = ( divide_divide_real @ A2 @ B2 ) ) ) ).

% nonzero_minus_divide_divide
thf(fact_1029_nonzero__minus__divide__right,axiom,
    ! [B2: real,A2: real] :
      ( ( B2 != zero_zero_real )
     => ( ( uminus_uminus_real @ ( divide_divide_real @ A2 @ B2 ) )
        = ( divide_divide_real @ A2 @ ( uminus_uminus_real @ B2 ) ) ) ) ).

% nonzero_minus_divide_right
thf(fact_1030_divide__nonpos__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonpos_pos
thf(fact_1031_divide__nonpos__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ X @ zero_zero_real )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonpos_neg
thf(fact_1032_divide__nonneg__pos,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ zero_zero_real @ Y )
       => ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).

% divide_nonneg_pos
thf(fact_1033_divide__nonneg__neg,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ Y @ zero_zero_real )
       => ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).

% divide_nonneg_neg
thf(fact_1034_divide__le__cancel,axiom,
    ! [A2: real,C: real,B2: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ A2 @ C ) @ ( divide_divide_real @ B2 @ C ) )
      = ( ( ( ord_less_real @ zero_zero_real @ C )
         => ( ord_less_eq_real @ A2 @ B2 ) )
        & ( ( ord_less_real @ C @ zero_zero_real )
         => ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).

% divide_le_cancel
thf(fact_1035_frac__less2,axiom,
    ! [X: real,Y: real,W2: real,Z2: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W2 )
         => ( ( ord_less_real @ W2 @ Z2 )
           => ( ord_less_real @ ( divide_divide_real @ X @ Z2 ) @ ( divide_divide_real @ Y @ W2 ) ) ) ) ) ) ).

% frac_less2
thf(fact_1036_frac__less,axiom,
    ! [X: real,Y: real,W2: real,Z2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X )
     => ( ( ord_less_real @ X @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W2 )
         => ( ( ord_less_eq_real @ W2 @ Z2 )
           => ( ord_less_real @ ( divide_divide_real @ X @ Z2 ) @ ( divide_divide_real @ Y @ W2 ) ) ) ) ) ) ).

% frac_less
thf(fact_1037_frac__le,axiom,
    ! [Y: real,X: real,W2: real,Z2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ Y )
     => ( ( ord_less_eq_real @ X @ Y )
       => ( ( ord_less_real @ zero_zero_real @ W2 )
         => ( ( ord_less_eq_real @ W2 @ Z2 )
           => ( ord_less_eq_real @ ( divide_divide_real @ X @ Z2 ) @ ( divide_divide_real @ Y @ W2 ) ) ) ) ) ) ).

% frac_le
thf(fact_1038_less__divide__eq__1,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B2 @ A2 ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A2 )
          & ( ord_less_real @ A2 @ B2 ) )
        | ( ( ord_less_real @ A2 @ zero_zero_real )
          & ( ord_less_real @ B2 @ A2 ) ) ) ) ).

% less_divide_eq_1
thf(fact_1039_divide__less__eq__1,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_real @ ( divide_divide_real @ B2 @ A2 ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A2 )
          & ( ord_less_real @ B2 @ A2 ) )
        | ( ( ord_less_real @ A2 @ zero_zero_real )
          & ( ord_less_real @ A2 @ B2 ) )
        | ( A2 = zero_zero_real ) ) ) ).

% divide_less_eq_1
thf(fact_1040_divide__eq__minus__1__iff,axiom,
    ! [A2: real,B2: real] :
      ( ( ( divide_divide_real @ A2 @ B2 )
        = ( uminus_uminus_real @ one_one_real ) )
      = ( ( B2 != zero_zero_real )
        & ( A2
          = ( uminus_uminus_real @ B2 ) ) ) ) ).

% divide_eq_minus_1_iff
thf(fact_1041_le__divide__eq__1,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B2 @ A2 ) )
      = ( ( ( ord_less_real @ zero_zero_real @ A2 )
          & ( ord_less_eq_real @ A2 @ B2 ) )
        | ( ( ord_less_real @ A2 @ zero_zero_real )
          & ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).

% le_divide_eq_1
thf(fact_1042_divide__le__eq__1,axiom,
    ! [B2: real,A2: real] :
      ( ( ord_less_eq_real @ ( divide_divide_real @ B2 @ A2 ) @ one_one_real )
      = ( ( ( ord_less_real @ zero_zero_real @ A2 )
          & ( ord_less_eq_real @ B2 @ A2 ) )
        | ( ( ord_less_real @ A2 @ zero_zero_real )
          & ( ord_less_eq_real @ A2 @ B2 ) )
        | ( A2 = zero_zero_real ) ) ) ).

% divide_le_eq_1
thf(fact_1043_div__neg__neg__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ K2 @ zero_zero_int )
     => ( ( ord_less_int @ L @ K2 )
       => ( ( divide_divide_int @ K2 @ L )
          = zero_zero_int ) ) ) ).

% div_neg_neg_trivial
thf(fact_1044_div__pos__pos__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ K2 )
     => ( ( ord_less_int @ K2 @ L )
       => ( ( divide_divide_int @ K2 @ L )
          = zero_zero_int ) ) ) ).

% div_pos_pos_trivial
thf(fact_1045_div__less,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( ( divide_divide_nat @ M2 @ N2 )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_1046_nat__div__distrib,axiom,
    ! [X: int,Y: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ X )
     => ( ( nat2 @ ( divide_divide_int @ X @ Y ) )
        = ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ).

% nat_div_distrib
thf(fact_1047_ComplI,axiom,
    ! [C: nat > real,A: set_nat_real] :
      ( ~ ( member_nat_real @ C @ A )
     => ( member_nat_real @ C @ ( uminus5090605358382610586t_real @ A ) ) ) ).

% ComplI
thf(fact_1048_ComplI,axiom,
    ! [C: real,A: set_real] :
      ( ~ ( member_real @ C @ A )
     => ( member_real @ C @ ( uminus612125837232591019t_real @ A ) ) ) ).

% ComplI
thf(fact_1049_Compl__iff,axiom,
    ! [C: nat > real,A: set_nat_real] :
      ( ( member_nat_real @ C @ ( uminus5090605358382610586t_real @ A ) )
      = ( ~ ( member_nat_real @ C @ A ) ) ) ).

% Compl_iff
thf(fact_1050_Compl__iff,axiom,
    ! [C: real,A: set_real] :
      ( ( member_real @ C @ ( uminus612125837232591019t_real @ A ) )
      = ( ~ ( member_real @ C @ A ) ) ) ).

% Compl_iff
thf(fact_1051_Compl__eq,axiom,
    ( uminus5090605358382610586t_real
    = ( ^ [A6: set_nat_real] :
          ( collect_nat_real
          @ ^ [X2: nat > real] :
              ~ ( member_nat_real @ X2 @ A6 ) ) ) ) ).

% Compl_eq
thf(fact_1052_Compl__eq,axiom,
    ( uminus612125837232591019t_real
    = ( ^ [A6: set_real] :
          ( collect_real
          @ ^ [X2: real] :
              ~ ( member_real @ X2 @ A6 ) ) ) ) ).

% Compl_eq
thf(fact_1053_Compl__eq,axiom,
    ( uminus5710092332889474511et_nat
    = ( ^ [A6: set_nat] :
          ( collect_nat
          @ ^ [X2: nat] :
              ~ ( member_nat @ X2 @ A6 ) ) ) ) ).

% Compl_eq
thf(fact_1054_Collect__neg__eq,axiom,
    ! [P: nat > $o] :
      ( ( collect_nat
        @ ^ [X2: nat] :
            ~ ( P @ X2 ) )
      = ( uminus5710092332889474511et_nat @ ( collect_nat @ P ) ) ) ).

% Collect_neg_eq
thf(fact_1055_ComplD,axiom,
    ! [C: nat > real,A: set_nat_real] :
      ( ( member_nat_real @ C @ ( uminus5090605358382610586t_real @ A ) )
     => ~ ( member_nat_real @ C @ A ) ) ).

% ComplD
thf(fact_1056_ComplD,axiom,
    ! [C: real,A: set_real] :
      ( ( member_real @ C @ ( uminus612125837232591019t_real @ A ) )
     => ~ ( member_real @ C @ A ) ) ).

% ComplD
thf(fact_1057_uminus__set__def,axiom,
    ( uminus5090605358382610586t_real
    = ( ^ [A6: set_nat_real] :
          ( collect_nat_real
          @ ( uminus8324563361911858795real_o
            @ ^ [X2: nat > real] : ( member_nat_real @ X2 @ A6 ) ) ) ) ) ).

% uminus_set_def
thf(fact_1058_uminus__set__def,axiom,
    ( uminus612125837232591019t_real
    = ( ^ [A6: set_real] :
          ( collect_real
          @ ( uminus_uminus_real_o
            @ ^ [X2: real] : ( member_real @ X2 @ A6 ) ) ) ) ) ).

% uminus_set_def
thf(fact_1059_uminus__set__def,axiom,
    ( uminus5710092332889474511et_nat
    = ( ^ [A6: set_nat] :
          ( collect_nat
          @ ( uminus_uminus_nat_o
            @ ^ [X2: nat] : ( member_nat @ X2 @ A6 ) ) ) ) ) ).

% uminus_set_def
thf(fact_1060_div__le__dividend,axiom,
    ! [M2: nat,N2: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ N2 ) @ M2 ) ).

% div_le_dividend
thf(fact_1061_div__le__mono,axiom,
    ! [M2: nat,N2: nat,K2: nat] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ K2 ) @ ( divide_divide_nat @ N2 @ K2 ) ) ) ).

% div_le_mono
thf(fact_1062_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ( divide_divide_nat @ M2 @ N2 )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M2 @ N2 )
        | ( N2 = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_1063_pos__imp__zdiv__neg__iff,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ zero_zero_int @ B2 )
     => ( ( ord_less_int @ ( divide_divide_int @ A2 @ B2 ) @ zero_zero_int )
        = ( ord_less_int @ A2 @ zero_zero_int ) ) ) ).

% pos_imp_zdiv_neg_iff
thf(fact_1064_neg__imp__zdiv__neg__iff,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ zero_zero_int )
     => ( ( ord_less_int @ ( divide_divide_int @ A2 @ B2 ) @ zero_zero_int )
        = ( ord_less_int @ zero_zero_int @ A2 ) ) ) ).

% neg_imp_zdiv_neg_iff
thf(fact_1065_div__neg__pos__less0,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_int @ ( divide_divide_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% div_neg_pos_less0
thf(fact_1066_div__le__mono2,axiom,
    ! [M2: nat,N2: nat,K2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M2 )
     => ( ( ord_less_eq_nat @ M2 @ N2 )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K2 @ N2 ) @ ( divide_divide_nat @ K2 @ M2 ) ) ) ) ).

% div_le_mono2
thf(fact_1067_div__greater__zero__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M2 @ N2 ) )
      = ( ( ord_less_eq_nat @ N2 @ M2 )
        & ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% div_greater_zero_iff
thf(fact_1068_div__eq__dividend__iff,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M2 )
     => ( ( ( divide_divide_nat @ M2 @ N2 )
          = M2 )
        = ( N2 = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_1069_div__less__dividend,axiom,
    ! [N2: nat,M2: nat] :
      ( ( ord_less_nat @ one_one_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ M2 )
       => ( ord_less_nat @ ( divide_divide_nat @ M2 @ N2 ) @ M2 ) ) ) ).

% div_less_dividend
thf(fact_1070_nonneg1__imp__zdiv__pos__iff,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A2 @ B2 ) )
        = ( ( ord_less_eq_int @ B2 @ A2 )
          & ( ord_less_int @ zero_zero_int @ B2 ) ) ) ) ).

% nonneg1_imp_zdiv_pos_iff
thf(fact_1071_pos__imp__zdiv__nonneg__iff,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ zero_zero_int @ B2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A2 @ B2 ) )
        = ( ord_less_eq_int @ zero_zero_int @ A2 ) ) ) ).

% pos_imp_zdiv_nonneg_iff
thf(fact_1072_neg__imp__zdiv__nonneg__iff,axiom,
    ! [B2: int,A2: int] :
      ( ( ord_less_int @ B2 @ zero_zero_int )
     => ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A2 @ B2 ) )
        = ( ord_less_eq_int @ A2 @ zero_zero_int ) ) ) ).

% neg_imp_zdiv_nonneg_iff
thf(fact_1073_pos__imp__zdiv__pos__iff,axiom,
    ! [K2: int,I: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K2 ) )
        = ( ord_less_eq_int @ K2 @ I ) ) ) ).

% pos_imp_zdiv_pos_iff
thf(fact_1074_div__nonpos__pos__le0,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% div_nonpos_pos_le0
thf(fact_1075_div__nonneg__neg__le0,axiom,
    ! [A2: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).

% div_nonneg_neg_le0
thf(fact_1076_div__int__pos__iff,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K2 @ L ) )
      = ( ( K2 = zero_zero_int )
        | ( L = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ K2 )
          & ( ord_less_eq_int @ zero_zero_int @ L ) )
        | ( ( ord_less_int @ K2 @ zero_zero_int )
          & ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).

% div_int_pos_iff
thf(fact_1077_zdiv__mono2__neg,axiom,
    ! [A2: int,B4: int,B2: int] :
      ( ( ord_less_int @ A2 @ zero_zero_int )
     => ( ( ord_less_int @ zero_zero_int @ B4 )
       => ( ( ord_less_eq_int @ B4 @ B2 )
         => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B4 ) @ ( divide_divide_int @ A2 @ B2 ) ) ) ) ) ).

% zdiv_mono2_neg
thf(fact_1078_zdiv__mono1__neg,axiom,
    ! [A2: int,A5: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ A5 )
     => ( ( ord_less_int @ B2 @ zero_zero_int )
       => ( ord_less_eq_int @ ( divide_divide_int @ A5 @ B2 ) @ ( divide_divide_int @ A2 @ B2 ) ) ) ) ).

% zdiv_mono1_neg
thf(fact_1079_zdiv__eq__0__iff,axiom,
    ! [I: int,K2: int] :
      ( ( ( divide_divide_int @ I @ K2 )
        = zero_zero_int )
      = ( ( K2 = zero_zero_int )
        | ( ( ord_less_eq_int @ zero_zero_int @ I )
          & ( ord_less_int @ I @ K2 ) )
        | ( ( ord_less_eq_int @ I @ zero_zero_int )
          & ( ord_less_int @ K2 @ I ) ) ) ) ).

% zdiv_eq_0_iff
thf(fact_1080_zdiv__mono2,axiom,
    ! [A2: int,B4: int,B2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ A2 )
     => ( ( ord_less_int @ zero_zero_int @ B4 )
       => ( ( ord_less_eq_int @ B4 @ B2 )
         => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B2 ) @ ( divide_divide_int @ A2 @ B4 ) ) ) ) ) ).

% zdiv_mono2
thf(fact_1081_zdiv__mono1,axiom,
    ! [A2: int,A5: int,B2: int] :
      ( ( ord_less_eq_int @ A2 @ A5 )
     => ( ( ord_less_int @ zero_zero_int @ B2 )
       => ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B2 ) @ ( divide_divide_int @ A5 @ B2 ) ) ) ) ).

% zdiv_mono1
thf(fact_1082_int__div__less__self,axiom,
    ! [X: int,K2: int] :
      ( ( ord_less_int @ zero_zero_int @ X )
     => ( ( ord_less_int @ one_one_int @ K2 )
       => ( ord_less_int @ ( divide_divide_int @ X @ K2 ) @ X ) ) ) ).

% int_div_less_self
thf(fact_1083_div__eq__minus1,axiom,
    ! [B2: int] :
      ( ( ord_less_int @ zero_zero_int @ B2 )
     => ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B2 )
        = ( uminus_uminus_int @ one_one_int ) ) ) ).

% div_eq_minus1
thf(fact_1084_nat__div__distrib_H,axiom,
    ! [Y: int,X: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Y )
     => ( ( nat2 @ ( divide_divide_int @ X @ Y ) )
        = ( divide_divide_nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ) ).

% nat_div_distrib'
thf(fact_1085_bits__div__0,axiom,
    ! [A2: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A2 )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_1086_bits__div__0,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ zero_zero_int @ A2 )
      = zero_zero_int ) ).

% bits_div_0
thf(fact_1087_bits__div__by__0,axiom,
    ! [A2: nat] :
      ( ( divide_divide_nat @ A2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_1088_bits__div__by__0,axiom,
    ! [A2: int] :
      ( ( divide_divide_int @ A2 @ zero_zero_int )
      = zero_zero_int ) ).

% bits_div_by_0
thf(fact_1089_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu3811975205180677377ec_int @ zero_zero_int )
    = ( uminus_uminus_int @ one_one_int ) ) ).

% dbl_dec_simps(2)
thf(fact_1090_dbl__dec__simps_I2_J,axiom,
    ( ( neg_nu6075765906172075777c_real @ zero_zero_real )
    = ( uminus_uminus_real @ one_one_real ) ) ).

% dbl_dec_simps(2)
thf(fact_1091_div__pos__neg__trivial,axiom,
    ! [K2: int,L: int] :
      ( ( ord_less_int @ zero_zero_int @ K2 )
     => ( ( ord_less_eq_int @ ( plus_plus_int @ K2 @ L ) @ zero_zero_int )
       => ( ( divide_divide_int @ K2 @ L )
          = ( uminus_uminus_int @ one_one_int ) ) ) ) ).

% div_pos_neg_trivial
thf(fact_1092_one__less__nat__eq,axiom,
    ! [Z2: int] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( nat2 @ Z2 ) )
      = ( ord_less_int @ one_one_int @ Z2 ) ) ).

% one_less_nat_eq
thf(fact_1093_add__left__cancel,axiom,
    ! [A2: int,B2: int,C: int] :
      ( ( ( plus_plus_int @ A2 @ B2 )
        = ( plus_plus_int @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_1094_add__left__cancel,axiom,
    ! [A2: risk_Free_account,B2: risk_Free_account,C: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ A2 @ B2 )
        = ( plus_p1863581527469039996ccount @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_1095_add__left__cancel,axiom,
    ! [A2: real,B2: real,C: real] :
      ( ( ( plus_plus_real @ A2 @ B2 )
        = ( plus_plus_real @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_1096_add__left__cancel,axiom,
    ! [A2: nat,B2: nat,C: nat] :
      ( ( ( plus_plus_nat @ A2 @ B2 )
        = ( plus_plus_nat @ A2 @ C ) )
      = ( B2 = C ) ) ).

% add_left_cancel
thf(fact_1097_add__right__cancel,axiom,
    ! [B2: int,A2: int,C: int] :
      ( ( ( plus_plus_int @ B2 @ A2 )
        = ( plus_plus_int @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_1098_add__right__cancel,axiom,
    ! [B2: risk_Free_account,A2: risk_Free_account,C: risk_Free_account] :
      ( ( ( plus_p1863581527469039996ccount @ B2 @ A2 )
        = ( plus_p1863581527469039996ccount @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_1099_add__right__cancel,axiom,
    ! [B2: real,A2: real,C: real] :
      ( ( ( plus_plus_real @ B2 @ A2 )
        = ( plus_plus_real @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_1100_add__right__cancel,axiom,
    ! [B2: nat,A2: nat,C: nat] :
      ( ( ( plus_plus_nat @ B2 @ A2 )
        = ( plus_plus_nat @ C @ A2 ) )
      = ( B2 = C ) ) ).

% add_right_cancel
thf(fact_1101_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_1102_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_1103_add__le__cancel__right,axiom,
    ! [A2: nat,C: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
      = ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_1104_add__le__cancel__right,axiom,
    ! [A2: real,C: real,B2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A2 @ C ) @ ( plus_plus_real @ B2 @ C ) )
      = ( ord_less_eq_real @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_1105_add__le__cancel__right,axiom,
    ! [A2: risk_Free_account,C: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ A2 @ C ) @ ( plus_p1863581527469039996ccount @ B2 @ C ) )
      = ( ord_le4245800335709223507ccount @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_1106_add__le__cancel__right,axiom,
    ! [A2: int,C: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ A2 @ C ) @ ( plus_plus_int @ B2 @ C ) )
      = ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_cancel_right
thf(fact_1107_add__le__cancel__left,axiom,
    ! [C: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
      = ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_1108_add__le__cancel__left,axiom,
    ! [C: real,A2: real,B2: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A2 ) @ ( plus_plus_real @ C @ B2 ) )
      = ( ord_less_eq_real @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_1109_add__le__cancel__left,axiom,
    ! [C: risk_Free_account,A2: risk_Free_account,B2: risk_Free_account] :
      ( ( ord_le4245800335709223507ccount @ ( plus_p1863581527469039996ccount @ C @ A2 ) @ ( plus_p1863581527469039996ccount @ C @ B2 ) )
      = ( ord_le4245800335709223507ccount @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_1110_add__le__cancel__left,axiom,
    ! [C: int,A2: int,B2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ C @ A2 ) @ ( plus_plus_int @ C @ B2 ) )
      = ( ord_less_eq_int @ A2 @ B2 ) ) ).

% add_le_cancel_left
thf(fact_1111_double__eq__0__iff,axiom,
    ! [A2: real] :
      ( ( ( plus_plus_real @ A2 @ A2 )
        = zero_zero_real )
      = ( A2 = zero_zero_real ) ) ).

% double_eq_0_iff
thf(fact_1112_double__eq__0__iff,axiom,
    ! [A2: int] :
      ( ( ( plus_plus_int @ A2 @ A2 )
        = zero_zero_int )
      = ( A2 = zero_zero_int ) ) ).

% double_eq_0_iff
thf(fact_1113_add__0,axiom,
    ! [A2: int] :
      ( ( plus_plus_int @ zero_zero_int @ A2 )
      = A2 ) ).

% add_0
thf(fact_1114_lessI,axiom,
    ! [N2: nat] : ( ord_less_nat @ N2 @ ( suc @ N2 ) ) ).

% lessI
thf(fact_1115_Suc__mono,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N2 ) ) ) ).

% Suc_mono
thf(fact_1116_Suc__less__eq,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N2 ) )
      = ( ord_less_nat @ M2 @ N2 ) ) ).

% Suc_less_eq
thf(fact_1117_Suc__le__mono,axiom,
    ! [N2: nat,M2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( suc @ M2 ) )
      = ( ord_less_eq_nat @ N2 @ M2 ) ) ).

% Suc_le_mono
thf(fact_1118_less__Suc0,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( N2 = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_1119_zero__less__Suc,axiom,
    ! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N2 ) ) ).

% zero_less_Suc
thf(fact_1120_div__by__Suc__0,axiom,
    ! [M2: nat] :
      ( ( divide_divide_nat @ M2 @ ( suc @ zero_zero_nat ) )
      = M2 ) ).

% div_by_Suc_0
thf(fact_1121_nat__1,axiom,
    ( ( nat2 @ one_one_int )
    = ( suc @ zero_zero_nat ) ) ).

% nat_1
thf(fact_1122_negative__zless,axiom,
    ! [N2: nat,M2: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ ( semiri1314217659103216013at_int @ M2 ) ) ).

% negative_zless
thf(fact_1123_zle__add1__eq__le,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ord_less_eq_int @ W2 @ Z2 ) ) ).

% zle_add1_eq_le
thf(fact_1124_Suc__as__int,axiom,
    ( suc
    = ( ^ [A3: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ one_one_int ) ) ) ) ).

% Suc_as_int
thf(fact_1125_int__ops_I4_J,axiom,
    ! [A2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ A2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ one_one_int ) ) ).

% int_ops(4)
thf(fact_1126_int__Suc,axiom,
    ! [N2: nat] :
      ( ( semiri1314217659103216013at_int @ ( suc @ N2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ one_one_int ) ) ).

% int_Suc
thf(fact_1127_zless__iff__Suc__zadd,axiom,
    ( ord_less_int
    = ( ^ [W3: int,Z7: int] :
        ? [N: nat] :
          ( Z7
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N ) ) ) ) ) ) ).

% zless_iff_Suc_zadd
thf(fact_1128_not0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ? [M4: nat] :
          ( N2
          = ( suc @ M4 ) ) ) ).

% not0_implies_Suc
thf(fact_1129_Zero__not__Suc,axiom,
    ! [M2: nat] :
      ( zero_zero_nat
     != ( suc @ M2 ) ) ).

% Zero_not_Suc
thf(fact_1130_Zero__neq__Suc,axiom,
    ! [M2: nat] :
      ( zero_zero_nat
     != ( suc @ M2 ) ) ).

% Zero_neq_Suc
thf(fact_1131_Suc__neq__Zero,axiom,
    ! [M2: nat] :
      ( ( suc @ M2 )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_1132_zero__induct,axiom,
    ! [P: nat > $o,K2: nat] :
      ( ( P @ K2 )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_1133_diff__induct,axiom,
    ! [P: nat > nat > $o,M2: nat,N2: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y2: nat] : ( P @ zero_zero_nat @ ( suc @ Y2 ) )
       => ( ! [X3: nat,Y2: nat] :
              ( ( P @ X3 @ Y2 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y2 ) ) )
         => ( P @ M2 @ N2 ) ) ) ) ).

% diff_induct
thf(fact_1134_nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( P @ ( suc @ N3 ) ) )
       => ( P @ N2 ) ) ) ).

% nat_induct
thf(fact_1135_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_1136_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_1137_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_1138_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_1139_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_1140_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_12: nat] : ( P @ X_12 )
       => ? [N3: nat] :
            ( ~ ( P @ N3 )
            & ( P @ ( suc @ N3 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_1141_Nat_OlessE,axiom,
    ! [I: nat,K2: nat] :
      ( ( ord_less_nat @ I @ K2 )
     => ( ( K2
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K2
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_1142_Suc__lessD,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ N2 )
     => ( ord_less_nat @ M2 @ N2 ) ) ).

% Suc_lessD
thf(fact_1143_Suc__lessE,axiom,
    ! [I: nat,K2: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K2 )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K2
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_1144_Suc__lessI,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( ( ( suc @ M2 )
         != N2 )
       => ( ord_less_nat @ ( suc @ M2 ) @ N2 ) ) ) ).

% Suc_lessI
thf(fact_1145_less__SucE,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N2 ) )
     => ( ~ ( ord_less_nat @ M2 @ N2 )
       => ( M2 = N2 ) ) ) ).

% less_SucE
thf(fact_1146_less__SucI,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( ord_less_nat @ M2 @ ( suc @ N2 ) ) ) ).

% less_SucI
thf(fact_1147_Ex__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
            & ( P @ I4 ) ) )
      = ( ( P @ N2 )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
            & ( P @ I4 ) ) ) ) ).

% Ex_less_Suc
thf(fact_1148_less__Suc__eq,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N2 ) )
      = ( ( ord_less_nat @ M2 @ N2 )
        | ( M2 = N2 ) ) ) ).

% less_Suc_eq
thf(fact_1149_not__less__eq,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ~ ( ord_less_nat @ M2 @ N2 ) )
      = ( ord_less_nat @ N2 @ ( suc @ M2 ) ) ) ).

% not_less_eq
thf(fact_1150_All__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
           => ( P @ I4 ) ) )
      = ( ( P @ N2 )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
           => ( P @ I4 ) ) ) ) ).

% All_less_Suc
thf(fact_1151_Suc__less__eq2,axiom,
    ! [N2: nat,M2: nat] :
      ( ( ord_less_nat @ ( suc @ N2 ) @ M2 )
      = ( ? [M6: nat] :
            ( ( M2
              = ( suc @ M6 ) )
            & ( ord_less_nat @ N2 @ M6 ) ) ) ) ).

% Suc_less_eq2
thf(fact_1152_less__antisym,axiom,
    ! [N2: nat,M2: nat] :
      ( ~ ( ord_less_nat @ N2 @ M2 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M2 ) )
       => ( M2 = N2 ) ) ) ).

% less_antisym
thf(fact_1153_Suc__less__SucD,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N2 ) )
     => ( ord_less_nat @ M2 @ N2 ) ) ).

% Suc_less_SucD
thf(fact_1154_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K2 )
       => ( ord_less_nat @ ( suc @ I ) @ K2 ) ) ) ).

% less_trans_Suc
thf(fact_1155_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K )
                   => ( P @ I3 @ K ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_1156_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_1157_not__less__less__Suc__eq,axiom,
    ! [N2: nat,M2: nat] :
      ( ~ ( ord_less_nat @ N2 @ M2 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M2 ) )
        = ( N2 = M2 ) ) ) ).

% not_less_less_Suc_eq
thf(fact_1158_Suc__leD,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
     => ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% Suc_leD
thf(fact_1159_le__SucE,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M2 @ ( suc @ N2 ) )
     => ( ~ ( ord_less_eq_nat @ M2 @ N2 )
       => ( M2
          = ( suc @ N2 ) ) ) ) ).

% le_SucE
thf(fact_1160_le__SucI,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ord_less_eq_nat @ M2 @ ( suc @ N2 ) ) ) ).

% le_SucI
thf(fact_1161_Suc__le__D,axiom,
    ! [N2: nat,M7: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ M7 )
     => ? [M4: nat] :
          ( M7
          = ( suc @ M4 ) ) ) ).

% Suc_le_D
thf(fact_1162_le__Suc__eq,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M2 @ ( suc @ N2 ) )
      = ( ( ord_less_eq_nat @ M2 @ N2 )
        | ( M2
          = ( suc @ N2 ) ) ) ) ).

% le_Suc_eq
thf(fact_1163_Suc__n__not__le__n,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N2 ) @ N2 ) ).

% Suc_n_not_le_n
thf(fact_1164_not__less__eq__eq,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ~ ( ord_less_eq_nat @ M2 @ N2 ) )
      = ( ord_less_eq_nat @ ( suc @ N2 ) @ M2 ) ) ).

% not_less_eq_eq
thf(fact_1165_full__nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N3 )
             => ( P @ M3 ) )
         => ( P @ N3 ) )
     => ( P @ N2 ) ) ).

% full_nat_induct
thf(fact_1166_nat__induct__at__least,axiom,
    ! [M2: nat,N2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ( P @ M2 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M2 @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_at_least
thf(fact_1167_transitive__stepwise__le,axiom,
    ! [M2: nat,N2: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ! [X3: nat] : ( R @ X3 @ X3 )
       => ( ! [X3: nat,Y2: nat,Z3: nat] :
              ( ( R @ X3 @ Y2 )
             => ( ( R @ Y2 @ Z3 )
               => ( R @ X3 @ Z3 ) ) )
         => ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
           => ( R @ M2 @ N2 ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1168_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_1169_n__not__Suc__n,axiom,
    ! [N2: nat] :
      ( N2
     != ( suc @ N2 ) ) ).

% n_not_Suc_n
thf(fact_1170_Suc__nat__eq__nat__zadd1,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( suc @ ( nat2 @ Z2 ) )
        = ( nat2 @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ) ).

% Suc_nat_eq_nat_zadd1
thf(fact_1171_Ex__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
            & ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
            & ( P @ ( suc @ I4 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_1172_gr0__conv__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( ? [M: nat] :
            ( N2
            = ( suc @ M ) ) ) ) ).

% gr0_conv_Suc
thf(fact_1173_All__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
           => ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
           => ( P @ ( suc @ I4 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_1174_gr0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ? [M4: nat] :
          ( N2
          = ( suc @ M4 ) ) ) ).

% gr0_implies_Suc
thf(fact_1175_less__Suc__eq__0__disj,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N2 ) )
      = ( ( M2 = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M2
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N2 ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_1176_le__imp__less__Suc,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ord_less_nat @ M2 @ ( suc @ N2 ) ) ) ).

% le_imp_less_Suc
thf(fact_1177_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N: nat] : ( ord_less_eq_nat @ ( suc @ N ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1178_less__Suc__eq__le,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N2 ) )
      = ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% less_Suc_eq_le
thf(fact_1179_le__less__Suc__eq,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M2 @ N2 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M2 ) )
        = ( N2 = M2 ) ) ) ).

% le_less_Suc_eq
thf(fact_1180_Suc__le__lessD,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
     => ( ord_less_nat @ M2 @ N2 ) ) ).

% Suc_le_lessD
thf(fact_1181_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ ( suc @ N3 ) )
                 => ( P @ N3 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_1182_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ N3 )
                 => ( P @ ( suc @ N3 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_1183_Suc__le__eq,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
      = ( ord_less_nat @ M2 @ N2 ) ) ).

% Suc_le_eq
thf(fact_1184_Suc__leI,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 ) ) ).

% Suc_leI
thf(fact_1185_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1186_int__ge__induct,axiom,
    ! [K2: int,I: int,P: int > $o] :
      ( ( ord_less_eq_int @ K2 @ I )
     => ( ( P @ K2 )
       => ( ! [I3: int] :
              ( ( ord_less_eq_int @ K2 @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_ge_induct
thf(fact_1187_int__gr__induct,axiom,
    ! [K2: int,I: int,P: int > $o] :
      ( ( ord_less_int @ K2 @ I )
     => ( ( P @ ( plus_plus_int @ K2 @ one_one_int ) )
       => ( ! [I3: int] :
              ( ( ord_less_int @ K2 @ I3 )
             => ( ( P @ I3 )
               => ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
         => ( P @ I ) ) ) ) ).

% int_gr_induct
thf(fact_1188_zless__add1__eq,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
      = ( ( ord_less_int @ W2 @ Z2 )
        | ( W2 = Z2 ) ) ) ).

% zless_add1_eq
thf(fact_1189_Suc__div__le__mono,axiom,
    ! [M2: nat,N2: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ N2 ) @ ( divide_divide_nat @ ( suc @ M2 ) @ N2 ) ) ).

% Suc_div_le_mono
thf(fact_1190_zle__iff__zadd,axiom,
    ( ord_less_eq_int
    = ( ^ [W3: int,Z7: int] :
        ? [N: nat] :
          ( Z7
          = ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N ) ) ) ) ) ).

% zle_iff_zadd
thf(fact_1191_bulk__update__account_Osimps_I2_J,axiom,
    ! [N2: nat,Rho: nat > real,I: real,Alpha: risk_Free_account] :
      ( ( risk_F2412532053715321062ccount @ ( suc @ N2 ) @ Rho @ I @ Alpha )
      = ( risk_F444380041991734328ccount @ Rho @ I @ ( risk_F2412532053715321062ccount @ N2 @ Rho @ I @ Alpha ) ) ) ).

% bulk_update_account.simps(2)
thf(fact_1192_ex__least__nat__less,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K: nat] :
            ( ( ord_less_nat @ K @ N2 )
            & ! [I2: nat] :
                ( ( ord_less_eq_nat @ I2 @ K )
               => ~ ( P @ I2 ) )
            & ( P @ ( suc @ K ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1193_nat__induct__non__zero,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1194_odd__less__0__iff,axiom,
    ! [Z2: int] :
      ( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
      = ( ord_less_int @ Z2 @ zero_zero_int ) ) ).

% odd_less_0_iff
thf(fact_1195_add1__zle__eq,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 )
      = ( ord_less_int @ W2 @ Z2 ) ) ).

% add1_zle_eq
thf(fact_1196_zless__imp__add1__zle,axiom,
    ! [W2: int,Z2: int] :
      ( ( ord_less_int @ W2 @ Z2 )
     => ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 ) ) ).

% zless_imp_add1_zle
thf(fact_1197_not__zle__0__negative,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) ) ).

% not_zle_0_negative
thf(fact_1198_le__imp__0__less,axiom,
    ! [Z2: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).

% le_imp_0_less
thf(fact_1199_negative__zless__0,axiom,
    ! [N2: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ zero_zero_int ) ).

% negative_zless_0
thf(fact_1200_negD,axiom,
    ! [X: int] :
      ( ( ord_less_int @ X @ zero_zero_int )
     => ? [N3: nat] :
          ( X
          = ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N3 ) ) ) ) ) ).

% negD
thf(fact_1201_Rep__account__plus,axiom,
    ! [Alpha_12: risk_Free_account,Alpha_22: risk_Free_account] :
      ( ( risk_F170160801229183585ccount @ ( plus_p1863581527469039996ccount @ Alpha_12 @ Alpha_22 ) )
      = ( ^ [N: nat] : ( plus_plus_real @ ( risk_F170160801229183585ccount @ Alpha_12 @ N ) @ ( risk_F170160801229183585ccount @ Alpha_22 @ N ) ) ) ) ).

% Rep_account_plus
thf(fact_1202_just__cash__plus,axiom,
    ! [A2: real,B2: real] :
      ( ( plus_p1863581527469039996ccount @ ( risk_Free_just_cash @ A2 ) @ ( risk_Free_just_cash @ B2 ) )
      = ( risk_Free_just_cash @ ( plus_plus_real @ A2 @ B2 ) ) ) ).

% just_cash_plus
thf(fact_1203_Nat_Oadd__0__right,axiom,
    ! [M2: nat] :
      ( ( plus_plus_nat @ M2 @ zero_zero_nat )
      = M2 ) ).

% Nat.add_0_right
thf(fact_1204_add__is__0,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M2 @ N2 )
        = zero_zero_nat )
      = ( ( M2 = zero_zero_nat )
        & ( N2 = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1205_add__Suc__right,axiom,
    ! [M2: nat,N2: nat] :
      ( ( plus_plus_nat @ M2 @ ( suc @ N2 ) )
      = ( suc @ ( plus_plus_nat @ M2 @ N2 ) ) ) ).

% add_Suc_right
thf(fact_1206_nat__add__left__cancel__less,axiom,
    ! [K2: nat,M2: nat,N2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K2 @ M2 ) @ ( plus_plus_nat @ K2 @ N2 ) )
      = ( ord_less_nat @ M2 @ N2 ) ) ).

% nat_add_left_cancel_less
thf(fact_1207_nat__add__left__cancel__le,axiom,
    ! [K2: nat,M2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K2 @ M2 ) @ ( plus_plus_nat @ K2 @ N2 ) )
      = ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% nat_add_left_cancel_le
thf(fact_1208_real__add__minus__iff,axiom,
    ! [X: real,A2: real] :
      ( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A2 ) )
        = zero_zero_real )
      = ( X = A2 ) ) ).

% real_add_minus_iff
thf(fact_1209_add__gr__0,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M2 @ N2 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M2 )
        | ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).

% add_gr_0
thf(fact_1210_add__eq__self__zero,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M2 @ N2 )
        = M2 )
     => ( N2 = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1211_plus__nat_Oadd__0,axiom,
    ! [N2: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N2 )
      = N2 ) ).

% plus_nat.add_0
thf(fact_1212_add__lessD1,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K2 )
     => ( ord_less_nat @ I @ K2 ) ) ).

% add_lessD1
thf(fact_1213_add__less__mono,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K2 @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_1214_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_1215_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_1216_add__less__mono1,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ K2 ) ) ) ).

% add_less_mono1
thf(fact_1217_trans__less__add1,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).

% trans_less_add1
thf(fact_1218_trans__less__add2,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).

% trans_less_add2
thf(fact_1219_less__add__eq__less,axiom,
    ! [K2: nat,L: nat,M2: nat,N2: nat] :
      ( ( ord_less_nat @ K2 @ L )
     => ( ( ( plus_plus_nat @ M2 @ L )
          = ( plus_plus_nat @ K2 @ N2 ) )
       => ( ord_less_nat @ M2 @ N2 ) ) ) ).

% less_add_eq_less
thf(fact_1220_add__leE,axiom,
    ! [M2: nat,K2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K2 ) @ N2 )
     => ~ ( ( ord_less_eq_nat @ M2 @ N2 )
         => ~ ( ord_less_eq_nat @ K2 @ N2 ) ) ) ).

% add_leE
thf(fact_1221_le__add1,axiom,
    ! [N2: nat,M2: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ N2 @ M2 ) ) ).

% le_add1
thf(fact_1222_le__add2,axiom,
    ! [N2: nat,M2: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ M2 @ N2 ) ) ).

% le_add2
thf(fact_1223_add__leD1,axiom,
    ! [M2: nat,K2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K2 ) @ N2 )
     => ( ord_less_eq_nat @ M2 @ N2 ) ) ).

% add_leD1
thf(fact_1224_add__leD2,axiom,
    ! [M2: nat,K2: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K2 ) @ N2 )
     => ( ord_less_eq_nat @ K2 @ N2 ) ) ).

% add_leD2
thf(fact_1225_le__Suc__ex,axiom,
    ! [K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ K2 @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K2 @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_1226_add__le__mono,axiom,
    ! [I: nat,J: nat,K2: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K2 @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_1227_add__le__mono1,axiom,
    ! [I: nat,J: nat,K2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K2 ) @ ( plus_plus_nat @ J @ K2 ) ) ) ).

% add_le_mono1
thf(fact_1228_trans__le__add1,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).

% trans_le_add1
thf(fact_1229_trans__le__add2,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).

% trans_le_add2
thf(fact_1230_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M: nat,N: nat] :
        ? [K4: nat] :
          ( N
          = ( plus_plus_nat @ M @ K4 ) ) ) ) ).

% nat_le_iff_add
thf(fact_1231_nat__arith_Osuc1,axiom,
    ! [A: nat,K2: nat,A2: nat] :
      ( ( A
        = ( plus_plus_nat @ K2 @ A2 ) )
     => ( ( suc @ A )
        = ( plus_plus_nat @ K2 @ ( suc @ A2 ) ) ) ) ).

% nat_arith.suc1
thf(fact_1232_add__Suc,axiom,
    ! [M2: nat,N2: nat] :
      ( ( plus_plus_nat @ ( suc @ M2 ) @ N2 )
      = ( suc @ ( plus_plus_nat @ M2 @ N2 ) ) ) ).

% add_Suc
thf(fact_1233_add__Suc__shift,axiom,
    ! [M2: nat,N2: nat] :
      ( ( plus_plus_nat @ ( suc @ M2 ) @ N2 )
      = ( plus_plus_nat @ M2 @ ( suc @ N2 ) ) ) ).

% add_Suc_shift
thf(fact_1234_net__asset__value__plus,axiom,
    ! [Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ( risk_F2906766666041932210_value @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
      = ( plus_plus_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).

% net_asset_value_plus
thf(fact_1235_bulk__update__account__plus,axiom,
    ! [N2: nat,Rho: nat > real,I: real,Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ( risk_F2412532053715321062ccount @ N2 @ Rho @ I @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
      = ( plus_p1863581527469039996ccount @ ( risk_F2412532053715321062ccount @ N2 @ Rho @ I @ Alpha ) @ ( risk_F2412532053715321062ccount @ N2 @ Rho @ I @ Beta ) ) ) ).

% bulk_update_account_plus
thf(fact_1236_return__loans__plus,axiom,
    ! [Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ( risk_F2121631595377017831_loans @ Rho @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
      = ( plus_p1863581527469039996ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) @ ( risk_F2121631595377017831_loans @ Rho @ Beta ) ) ) ).

% return_loans_plus
thf(fact_1237_update__account__plus,axiom,
    ! [Rho: nat > real,I: real,Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ( risk_F444380041991734328ccount @ Rho @ I @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
      = ( plus_p1863581527469039996ccount @ ( risk_F444380041991734328ccount @ Rho @ I @ Alpha ) @ ( risk_F444380041991734328ccount @ Rho @ I @ Beta ) ) ) ).

% update_account_plus
thf(fact_1238_plus__account__def,axiom,
    ( plus_p1863581527469039996ccount
    = ( ^ [Alpha_1: risk_Free_account,Alpha_2: risk_Free_account] :
          ( risk_F5458100604530014700ccount
          @ ^ [N: nat] : ( plus_plus_real @ ( risk_F170160801229183585ccount @ Alpha_1 @ N ) @ ( risk_F170160801229183585ccount @ Alpha_2 @ N ) ) ) ) ) ).

% plus_account_def
thf(fact_1239_additive__strictly__solvent,axiom,
    ! [Alpha_12: risk_Free_account,Alpha_22: risk_Free_account] :
      ( ( risk_F1636578016437888323olvent @ Alpha_12 )
     => ( ( risk_F1636578016437888323olvent @ Alpha_22 )
       => ( risk_F1636578016437888323olvent @ ( plus_p1863581527469039996ccount @ Alpha_12 @ Alpha_22 ) ) ) ) ).

% additive_strictly_solvent
thf(fact_1240_add__is__1,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ( plus_plus_nat @ M2 @ N2 )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M2
            = ( suc @ zero_zero_nat ) )
          & ( N2 = zero_zero_nat ) )
        | ( ( M2 = zero_zero_nat )
          & ( N2
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1241_one__is__add,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M2 @ N2 ) )
      = ( ( ( M2
            = ( suc @ zero_zero_nat ) )
          & ( N2 = zero_zero_nat ) )
        | ( ( M2 = zero_zero_nat )
          & ( N2
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1242_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K )
          & ( ( plus_plus_nat @ I @ K )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_1243_less__natE,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ~ ! [Q3: nat] :
            ( N2
           != ( suc @ ( plus_plus_nat @ M2 @ Q3 ) ) ) ) ).

% less_natE
thf(fact_1244_less__add__Suc1,axiom,
    ! [I: nat,M2: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M2 ) ) ) ).

% less_add_Suc1
thf(fact_1245_less__add__Suc2,axiom,
    ! [I: nat,M2: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M2 @ I ) ) ) ).

% less_add_Suc2
thf(fact_1246_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M: nat,N: nat] :
        ? [K4: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K4 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1247_less__imp__Suc__add,axiom,
    ! [M2: nat,N2: nat] :
      ( ( ord_less_nat @ M2 @ N2 )
     => ? [K: nat] :
          ( N2
          = ( suc @ ( plus_plus_nat @ M2 @ K ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1248_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M2: nat,K2: nat] :
      ( ! [M4: nat,N3: nat] :
          ( ( ord_less_nat @ M4 @ N3 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M2 ) @ K2 ) @ ( F @ ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1249_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N: nat] : ( plus_plus_nat @ N @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1250_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1251_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1252_int__ops_I5_J,axiom,
    ! [A2: nat,B2: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A2 @ B2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ).

% int_ops(5)
thf(fact_1253_int__plus,axiom,
    ! [N2: nat,M2: nat] :
      ( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N2 @ M2 ) )
      = ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M2 ) ) ) ).

% int_plus
thf(fact_1254_real__0__less__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_less_add_iff
thf(fact_1255_real__add__less__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_less_0_iff
thf(fact_1256_real__add__le__0__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
      = ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).

% real_add_le_0_iff
thf(fact_1257_real__0__le__add__iff,axiom,
    ! [X: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).

% real_0_le_add_iff
thf(fact_1258_nat__plus__as__int,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B: nat] : ( nat2 @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).

% nat_plus_as_int
thf(fact_1259_nat__less__real__le,axiom,
    ( ord_less_nat
    = ( ^ [N: nat,M: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M ) ) ) ) ).

% nat_less_real_le
thf(fact_1260_nat__le__real__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [N: nat,M: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ one_one_real ) ) ) ) ).

% nat_le_real_less
thf(fact_1261_nat__add__distrib,axiom,
    ! [Z2: int,Z6: int] :
      ( ( ord_less_eq_int @ zero_zero_int @ Z2 )
     => ( ( ord_less_eq_int @ zero_zero_int @ Z6 )
       => ( ( nat2 @ ( plus_plus_int @ Z2 @ Z6 ) )
          = ( plus_plus_nat @ ( nat2 @ Z2 ) @ ( nat2 @ Z6 ) ) ) ) ) ).

% nat_add_distrib
thf(fact_1262_real__minus__mult__self__le,axiom,
    ! [U2: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U2 @ U2 ) ) @ ( times_times_real @ X @ X ) ) ).

% real_minus_mult_self_le
thf(fact_1263_distribute__interest__plus,axiom,
    ! [I: real,Alpha: risk_Free_account,Beta: risk_Free_account] :
      ( ( risk_Free_just_cash @ ( times_times_real @ I @ ( risk_F2906766666041932210_value @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) ) ) )
      = ( plus_p1863581527469039996ccount @ ( risk_Free_just_cash @ ( times_times_real @ I @ ( risk_F2906766666041932210_value @ Alpha ) ) ) @ ( risk_Free_just_cash @ ( times_times_real @ I @ ( risk_F2906766666041932210_value @ Beta ) ) ) ) ) ).

% distribute_interest_plus
thf(fact_1264_reals__Archimedean3,axiom,
    ! [X: real] :
      ( ( ord_less_real @ zero_zero_real @ X )
     => ! [Y5: real] :
        ? [N3: nat] : ( ord_less_real @ Y5 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X ) ) ) ).

% reals_Archimedean3

% Helper facts (5)
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
    ! [X: real,Y: real] :
      ( ( if_real @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( risk_F170160801229183585ccount
      @ ( risk_F5458100604530014700ccount
        @ ^ [M: nat] : ( if_real @ ( n = M ) @ x @ zero_zero_real ) ) )
    = ( ^ [M: nat] : ( if_real @ ( n = M ) @ x @ zero_zero_real ) ) ) ).

%------------------------------------------------------------------------------