TPTP Problem File: SLH0341^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Query_Optimization/0009_Dtree/prob_01195_052539__15097212_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1495 ( 646 unt; 206 typ;   0 def)
%            Number of atoms       : 3861 (1412 equ;   0 cnn)
%            Maximal formula atoms :   17 (   2 avg)
%            Number of connectives : 12541 ( 641   ~; 180   |; 260   &;10157   @)
%                                         (   0 <=>;1303  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   25 (   6 avg)
%            Number of types       :   21 (  20 usr)
%            Number of type conns  : 1089 (1089   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  189 ( 186 usr;  21 con; 0-4 aty)
%            Number of variables   : 4049 ( 697   ^;3304   !;  48   ?;4049   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-18 16:06:19.902
%------------------------------------------------------------------------------
% Could-be-implicit typings (20)
thf(ty_n_t__Product____Type__Oprod_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_Mtf__b_J,type,
    produc6708371838016462714_b_b_b: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J_J,type,
    set_se3183138701204633190_a_b_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mt__Dtree__Odtree_Itf__a_Mtf__b_J_J,type,
    produc5177672665255943253ee_a_b: $tType ).

thf(ty_n_t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    fset_P5281107635120001194_a_b_b: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    set_Pr3012420139608375472_a_b_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_M_062_Itf__b_Mtf__a_J_J,type,
    produc1083523234014712191_b_b_a: $tType ).

thf(ty_n_t__Product____Type__Oprod_Itf__b_Mt__Dtree__Odtree_Itf__a_Mtf__b_J_J,type,
    produc3469756349985706280ee_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    produc4558475209616630778_a_b_b: $tType ).

thf(ty_n_t__Set__Oset_It__Dtree__Odtree_Itf__a_Mtf__b_J_J,type,
    set_dtree_a_b: $tType ).

thf(ty_n_t__Product____Type__Oprod_Itf__b_Mtf__b_J,type,
    product_prod_b_b: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    set_set_b: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    set_a_a: $tType ).

thf(ty_n_t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    dtree_a_b: $tType ).

thf(ty_n_t__FSet__Ofset_It__Nat__Onat_J,type,
    fset_nat: $tType ).

thf(ty_n_t__FSet__Ofset_Itf__b_J,type,
    fset_b: $tType ).

thf(ty_n_t__Set__Oset_Itf__b_J,type,
    set_b: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__b,type,
    b: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (186)
thf(sy_c_Basic__BNFs_Ofsts_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b,type,
    basic_7578771248400840636_a_b_b: produc4558475209616630778_a_b_b > set_dtree_a_b ).

thf(sy_c_Dtree_Odhead_001tf__a_001tf__b,type,
    dhead_a_b: dtree_a_b > ( b > a ) > b > a ).

thf(sy_c_Dtree_Odhead__rel_001tf__a_001tf__b,type,
    dhead_rel_a_b: produc1083523234014712191_b_b_a > produc1083523234014712191_b_b_a > $o ).

thf(sy_c_Dtree_Odtail_001tf__a_001tf__b,type,
    dtail_a_b: dtree_a_b > ( b > a ) > b > a ).

thf(sy_c_Dtree_Odtail__rel_001tf__a_001tf__b,type,
    dtail_rel_a_b: produc1083523234014712191_b_b_a > produc1083523234014712191_b_b_a > $o ).

thf(sy_c_Dtree_Odtree_ONode_001tf__a_001tf__b,type,
    node_a_b: a > fset_P5281107635120001194_a_b_b > dtree_a_b ).

thf(sy_c_Dtree_Odtree_Ocase__dtree_001tf__a_001tf__b_001tf__a,type,
    case_dtree_a_b_a: ( a > fset_P5281107635120001194_a_b_b > a ) > dtree_a_b > a ).

thf(sy_c_Dtree_Odtree_Odarcs_001tf__a_001tf__b,type,
    darcs_a_b: dtree_a_b > set_b ).

thf(sy_c_Dtree_Odtree_Odverts_001tf__a_001tf__b,type,
    dverts_a_b: dtree_a_b > set_a ).

thf(sy_c_Dtree_Odtree_Oroot_001tf__a_001tf__b,type,
    root_a_b: dtree_a_b > a ).

thf(sy_c_Dtree_Odtree_Osucs_001tf__a_001tf__b,type,
    sucs_a_b: dtree_a_b > fset_P5281107635120001194_a_b_b ).

thf(sy_c_Dtree_Owf__darcs_001tf__a_001tf__b,type,
    wf_darcs_a_b: dtree_a_b > $o ).

thf(sy_c_Dtree_Owf__darcs_H_001tf__a_001tf__b,type,
    wf_darcs_a_b2: dtree_a_b > $o ).

thf(sy_c_Dtree_Owf__darcs_H__rel_001tf__a_001tf__b,type,
    wf_darcs_rel_a_b: dtree_a_b > dtree_a_b > $o ).

thf(sy_c_Dtree_Owf__dverts_001tf__a_001tf__b,type,
    wf_dverts_a_b: dtree_a_b > $o ).

thf(sy_c_Dtree_Owf__dverts_H_001tf__a_001tf__b,type,
    wf_dverts_a_b2: dtree_a_b > $o ).

thf(sy_c_Dtree_Owf__dverts_H__rel_001tf__a_001tf__b,type,
    wf_dverts_rel_a_b: dtree_a_b > dtree_a_b > $o ).

thf(sy_c_FSet_Offold_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001_062_Itf__b_Mtf__a_J,type,
    ffold_8367945289176929151_b_b_a: ( produc4558475209616630778_a_b_b > ( b > a ) > b > a ) > ( b > a ) > fset_P5281107635120001194_a_b_b > b > a ).

thf(sy_c_FSet_Offold_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001tf__a,type,
    ffold_2783168711033344739_b_b_a: ( produc4558475209616630778_a_b_b > a > a ) > a > fset_P5281107635120001194_a_b_b > a ).

thf(sy_c_FSet_Ofimage_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    fimage7457256623133068659_a_b_b: ( produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b ) > fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b ).

thf(sy_c_FSet_Ofimage_001tf__b_001tf__b,type,
    fimage_b_b: ( b > b ) > fset_b > fset_b ).

thf(sy_c_FSet_Ofinsert_001t__Nat__Onat,type,
    finsert_nat: nat > fset_nat > fset_nat ).

thf(sy_c_FSet_Ofinsert_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    finser8437519239679886002_a_b_b: produc4558475209616630778_a_b_b > fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b ).

thf(sy_c_FSet_Ofinsert_001tf__b,type,
    finsert_b: b > fset_b > fset_b ).

thf(sy_c_FSet_Ofmember_001t__Nat__Onat,type,
    fmember_nat: nat > fset_nat > $o ).

thf(sy_c_FSet_Ofmember_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    fmembe3173364709796808819_a_b_b: produc4558475209616630778_a_b_b > fset_P5281107635120001194_a_b_b > $o ).

thf(sy_c_FSet_Ofmember_001tf__b,type,
    fmember_b: b > fset_b > $o ).

thf(sy_c_FSet_Ofset_Ofset_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    fset_P783253628892185035_a_b_b: fset_P5281107635120001194_a_b_b > set_Pr3012420139608375472_a_b_b ).

thf(sy_c_FSet_Ofset_Ofset_001tf__b,type,
    fset_b2: fset_b > set_b ).

thf(sy_c_FSet_Ofthe__elem_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    fthe_e7442499522476018237_a_b_b: fset_P5281107635120001194_a_b_b > produc4558475209616630778_a_b_b ).

thf(sy_c_Finite__Set_Ocomp__fun__commute_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001_062_Itf__b_Mtf__a_J,type,
    finite7715548283558590705_b_b_a: ( produc4558475209616630778_a_b_b > ( b > a ) > b > a ) > $o ).

thf(sy_c_Finite__Set_Ocomp__fun__commute_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001tf__a,type,
    finite414203908571218417_b_b_a: ( produc4558475209616630778_a_b_b > a > a ) > $o ).

thf(sy_c_Finite__Set_Ocomp__fun__commute_001t__Product____Type__Oprod_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_Mtf__b_J_001t__Set__Oset_Itf__b_J,type,
    finite4381541246406268242_set_b: ( produc6708371838016462714_b_b_b > set_b > set_b ) > $o ).

thf(sy_c_Finite__Set_Ocomp__fun__commute_001t__Product____Type__Oprod_Itf__b_Mtf__b_J_001t__Set__Oset_Itf__b_J,type,
    finite7340995349656252681_set_b: ( product_prod_b_b > set_b > set_b ) > $o ).

thf(sy_c_Finite__Set_Ocomp__fun__commute_001tf__b_001t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    finite3301421349078847953_set_b: ( b > set_set_b > set_set_b ) > $o ).

thf(sy_c_Finite__Set_Ocomp__fun__commute_001tf__b_001t__Set__Oset_Itf__b_J,type,
    finite4863250414163961073_set_b: ( b > set_b > set_b ) > $o ).

thf(sy_c_Fun_Ocomp_001_062_Itf__b_Mtf__a_J_001_062_Itf__b_Mtf__a_J_001_062_Itf__b_Mtf__a_J,type,
    comp_b_a_b_a_b_a: ( ( b > a ) > b > a ) > ( ( b > a ) > b > a ) > ( b > a ) > b > a ).

thf(sy_c_Fun_Ocomp_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001t__Product____Type__Oprod_Itf__b_Mt__Dtree__Odtree_Itf__a_Mtf__b_J_J,type,
    comp_P1139271906589003649ee_a_b: ( produc4558475209616630778_a_b_b > dtree_a_b ) > ( produc3469756349985706280ee_a_b > produc4558475209616630778_a_b_b ) > produc3469756349985706280ee_a_b > dtree_a_b ).

thf(sy_c_Fun_Ocomp_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001tf__b_001t__Product____Type__Oprod_Itf__b_Mt__Dtree__Odtree_Itf__a_Mtf__b_J_J,type,
    comp_P6702227762116406538ee_a_b: ( produc4558475209616630778_a_b_b > b ) > ( produc3469756349985706280ee_a_b > produc4558475209616630778_a_b_b ) > produc3469756349985706280ee_a_b > b ).

thf(sy_c_Fun_Ocomp_001tf__a_001tf__a_001tf__a,type,
    comp_a_a_a: ( a > a ) > ( a > a ) > a > a ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_M_Eo_J,type,
    minus_6397467918800550972_b_b_o: ( produc4558475209616630778_a_b_b > $o ) > ( produc4558475209616630778_a_b_b > $o ) > produc4558475209616630778_a_b_b > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_Itf__b_M_Eo_J,type,
    minus_minus_b_o: ( b > $o ) > ( b > $o ) > b > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    minus_1250967532242559235_a_b_b: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    minus_1392386589478415753_a_b_b: set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__b_J,type,
    minus_minus_set_b: set_b > set_b > set_b ).

thf(sy_c_If_001_062_Itf__b_Mtf__a_J,type,
    if_b_a: $o > ( b > a ) > ( b > a ) > b > a ).

thf(sy_c_If_001t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    if_fse8812573537926886756_a_b_b: $o > fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b ).

thf(sy_c_If_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    if_Pro6329973184163622324_a_b_b: $o > produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b ).

thf(sy_c_If_001t__Set__Oset_Itf__b_J,type,
    if_set_b: $o > set_b > set_b > set_b ).

thf(sy_c_If_001tf__a,type,
    if_a: $o > a > a > a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001_062_It__Dtree__Odtree_Itf__a_Mtf__b_J_M_062_Itf__b_M_Eo_J_J,type,
    inf_in8207984165653407081_b_b_o: ( dtree_a_b > b > $o ) > ( dtree_a_b > b > $o ) > dtree_a_b > b > $o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001_062_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_M_Eo_J,type,
    inf_in55627642082981827_b_b_o: ( produc4558475209616630778_a_b_b > $o ) > ( produc4558475209616630778_a_b_b > $o ) > produc4558475209616630778_a_b_b > $o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001_062_Itf__b_M_Eo_J,type,
    inf_inf_b_o: ( b > $o ) > ( b > $o ) > b > $o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    inf_in7138637532943773244_a_b_b: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    inf_in6138156342456174402_a_b_b: set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
    inf_inf_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__b_J,type,
    inf_inf_set_b: set_b > set_b > set_b ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_I_062_Itf__a_Mtf__a_J_M_Eo_J,type,
    sup_sup_a_a_o: ( ( a > a ) > $o ) > ( ( a > a ) > $o ) > ( a > a ) > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_It__Dtree__Odtree_Itf__a_Mtf__b_J_M_062_Itf__b_M_Eo_J_J,type,
    sup_su6709851091347060739_b_b_o: ( dtree_a_b > b > $o ) > ( dtree_a_b > b > $o ) > dtree_a_b > b > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_It__Dtree__Odtree_Itf__a_Mtf__b_J_M_Eo_J,type,
    sup_sup_dtree_a_b_o: ( dtree_a_b > $o ) > ( dtree_a_b > $o ) > dtree_a_b > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_M_Eo_J,type,
    sup_su4209747780764569001_b_b_o: ( produc4558475209616630778_a_b_b > $o ) > ( produc4558475209616630778_a_b_b > $o ) > produc4558475209616630778_a_b_b > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_It__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J_M_Eo_J,type,
    sup_su5450082668191030131_b_b_o: ( set_Pr3012420139608375472_a_b_b > $o ) > ( set_Pr3012420139608375472_a_b_b > $o ) > set_Pr3012420139608375472_a_b_b > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_It__Set__Oset_Itf__b_J_M_Eo_J,type,
    sup_sup_set_b_o: ( set_b > $o ) > ( set_b > $o ) > set_b > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_Itf__a_M_Eo_J,type,
    sup_sup_a_o: ( a > $o ) > ( a > $o ) > a > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_Itf__b_M_Eo_J,type,
    sup_sup_b_o: ( b > $o ) > ( b > $o ) > b > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_Eo,type,
    sup_sup_o: $o > $o > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    sup_su860928060825958358_a_b_b: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__FSet__Ofset_Itf__b_J,type,
    sup_sup_fset_b: fset_b > fset_b > fset_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    sup_sup_set_a_a: set_a_a > set_a_a > set_a_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Dtree__Odtree_Itf__a_Mtf__b_J_J,type,
    sup_su8994539500306794332ee_a_b: set_dtree_a_b > set_dtree_a_b > set_dtree_a_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    sup_su2887895092731772380_a_b_b: set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J_J,type,
    sup_su5350426443513267090_a_b_b: set_se3183138701204633190_a_b_b > set_se3183138701204633190_a_b_b > set_se3183138701204633190_a_b_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    sup_sup_set_set_b: set_set_b > set_set_b > set_set_b ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
    sup_sup_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__b_J,type,
    sup_sup_set_b: set_b > set_b > set_b ).

thf(sy_c_Nat_Osize__class_Osize_001t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    size_size_dtree_a_b: dtree_a_b > nat ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Dtree__Odtree_Itf__a_Mtf__b_J_M_062_Itf__b_M_Eo_J_J,type,
    bot_bo471016548657204587_b_b_o: dtree_a_b > b > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_M_Eo_J,type,
    bot_bo7321339186913516097_b_b_o: produc4558475209616630778_a_b_b > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
    bot_bot_a_o: a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__b_M_Eo_J,type,
    bot_bot_b_o: b > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__FSet__Ofset_It__Nat__Onat_J,type,
    bot_bot_fset_nat: fset_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    bot_bo2895716411488905534_a_b_b: fset_P5281107635120001194_a_b_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__FSet__Ofset_Itf__b_J,type,
    bot_bot_fset_b: fset_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    bot_bot_set_a_a: set_a_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Dtree__Odtree_Itf__a_Mtf__b_J_J,type,
    bot_bo8730652382759064772ee_a_b: set_dtree_a_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    bot_bo3721250822024684356_a_b_b: set_Pr3012420139608375472_a_b_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J_J,type,
    bot_bo2537099559385417978_a_b_b: set_se3183138701204633190_a_b_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    bot_bot_set_set_b: set_set_b ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__b_J,type,
    bot_bot_set_b: set_b ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_M_Eo_J,type,
    ord_le2302600385889936001_b_b_o: ( produc4558475209616630778_a_b_b > $o ) > ( produc4558475209616630778_a_b_b > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_Itf__b_M_Eo_J,type,
    ord_less_b_o: ( b > $o ) > ( b > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    ord_le7001451600920047870_a_b_b: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    ord_le3723863380492978948_a_b_b: set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__b_J,type,
    ord_less_set_b: set_b > set_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Dtree__Odtree_Itf__a_Mtf__b_J_M_062_Itf__b_M_Eo_J_J,type,
    ord_le2403992017558287159_b_b_o: ( dtree_a_b > b > $o ) > ( dtree_a_b > b > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_M_Eo_J,type,
    ord_le8988533026730861429_b_b_o: ( produc4558475209616630778_a_b_b > $o ) > ( produc4558475209616630778_a_b_b > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_Itf__b_M_Eo_J,type,
    ord_less_eq_b_o: ( b > $o ) > ( b > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    ord_le789900035998834954_a_b_b: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    ord_le146215904626753808_a_b_b: set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__b_J,type,
    ord_less_eq_set_b: set_b > set_b > $o ).

thf(sy_c_Product__Type_OPair_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001_062_Itf__b_Mtf__a_J,type,
    produc1993688775741047735_b_b_a: dtree_a_b > ( b > a ) > produc1083523234014712191_b_b_a ).

thf(sy_c_Product__Type_OPair_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    produc7805419539522982029ee_a_b: dtree_a_b > dtree_a_b > produc5177672665255943253ee_a_b ).

thf(sy_c_Product__Type_OPair_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b,type,
    produc331601717337510060_a_b_b: dtree_a_b > b > produc4558475209616630778_a_b_b ).

thf(sy_c_Product__Type_OPair_001tf__b_001t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    produc3542686128043086370ee_a_b: b > dtree_a_b > produc3469756349985706280ee_a_b ).

thf(sy_c_Product__Type_OPair_001tf__b_001tf__b,type,
    product_Pair_b_b: b > b > product_prod_b_b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001_062_Itf__b_Mtf__a_J_001_Eo,type,
    produc1457303364454389452_b_a_o: ( dtree_a_b > ( b > a ) > $o ) > produc1083523234014712191_b_b_a > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001_062_Itf__b_Mtf__a_J_001t__Set__Oset_Itf__a_J,type,
    produc8900335303124983186_set_a: ( dtree_a_b > ( b > a ) > set_a ) > produc1083523234014712191_b_b_a > set_a ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001_062_Itf__b_Mtf__a_J_001t__Set__Oset_Itf__b_J,type,
    produc8900335307428211987_set_b: ( dtree_a_b > ( b > a ) > set_b ) > produc1083523234014712191_b_b_a > set_b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001_Eo,type,
    produc3512921791960644726_a_b_o: ( dtree_a_b > dtree_a_b > $o ) > produc5177672665255943253ee_a_b > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001t__Set__Oset_Itf__a_J,type,
    produc5055721712236111420_set_a: ( dtree_a_b > dtree_a_b > set_a ) > produc5177672665255943253ee_a_b > set_a ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001t__Set__Oset_Itf__b_J,type,
    produc5055721716539340221_set_b: ( dtree_a_b > dtree_a_b > set_b ) > produc5177672665255943253ee_a_b > set_b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001_062_I_062_Itf__b_Mtf__a_J_M_062_Itf__b_Mtf__a_J_J,type,
    produc4313903556115589696_a_b_a: ( dtree_a_b > b > ( b > a ) > b > a ) > produc4558475209616630778_a_b_b > ( b > a ) > b > a ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001_062_I_062_Itf__b_Mtf__a_J_M_Eo_J,type,
    produc9194724151488670482_b_a_o: ( dtree_a_b > b > ( b > a ) > $o ) > produc4558475209616630778_a_b_b > ( b > a ) > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001_062_Itf__a_M_Eo_J,type,
    produc6139810021161713496_b_a_o: ( dtree_a_b > b > a > $o ) > produc4558475209616630778_a_b_b > a > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001_062_Itf__a_Mtf__a_J,type,
    produc2242037354397874494_b_a_a: ( dtree_a_b > b > a > a ) > produc4558475209616630778_a_b_b > a > a ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001_Eo,type,
    produc1325217093046185599_b_b_o: ( dtree_a_b > b > $o ) > produc4558475209616630778_a_b_b > $o ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    produc5460679229782211283_a_b_b: ( dtree_a_b > b > produc4558475209616630778_a_b_b ) > produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    produc3604202691690672244et_a_a: ( dtree_a_b > b > set_a_a ) > produc4558475209616630778_a_b_b > set_a_a ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001t__Set__Oset_It__Dtree__Odtree_Itf__a_Mtf__b_J_J,type,
    produc2854446210517299721ee_a_b: ( dtree_a_b > b > set_dtree_a_b ) > produc4558475209616630778_a_b_b > set_dtree_a_b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    produc2559767781221151625_a_b_b: ( dtree_a_b > b > set_Pr3012420139608375472_a_b_b ) > produc4558475209616630778_a_b_b > set_Pr3012420139608375472_a_b_b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001t__Set__Oset_It__Set__Oset_Itf__b_J_J,type,
    produc3243052509580634150_set_b: ( dtree_a_b > b > set_set_b ) > produc4558475209616630778_a_b_b > set_set_b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001t__Set__Oset_Itf__a_J,type,
    produc5617419904392314821_set_a: ( dtree_a_b > b > set_a ) > produc4558475209616630778_a_b_b > set_a ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001t__Set__Oset_Itf__b_J,type,
    produc5617419908695543622_set_b: ( dtree_a_b > b > set_b ) > produc4558475209616630778_a_b_b > set_b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001tf__a,type,
    produc3664522937540588133_b_b_a: ( dtree_a_b > b > a ) > produc4558475209616630778_a_b_b > a ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b_001tf__b,type,
    produc3664522937540588134_b_b_b: ( dtree_a_b > b > b ) > produc4558475209616630778_a_b_b > b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001tf__b_001_062_It__Set__Oset_Itf__b_J_Mt__Set__Oset_Itf__b_J_J,type,
    produc9053033572752107902_set_b: ( produc4558475209616630778_a_b_b > b > set_b > set_b ) > produc6708371838016462714_b_b_b > set_b > set_b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001tf__b_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    produc1296939142185513033_a_b_b: ( b > dtree_a_b > produc4558475209616630778_a_b_b ) > produc3469756349985706280ee_a_b > produc4558475209616630778_a_b_b ).

thf(sy_c_Product__Type_Oprod_Ocase__prod_001tf__b_001tf__b_001_062_It__Set__Oset_Itf__b_J_Mt__Set__Oset_Itf__b_J_J,type,
    produc831963642587629969_set_b: ( b > b > set_b > set_b ) > product_prod_b_b > set_b > set_b ).

thf(sy_c_Product__Type_Oprod_Ofst_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b,type,
    produc697780174058963904_a_b_b: produc4558475209616630778_a_b_b > dtree_a_b ).

thf(sy_c_Product__Type_Oprod_Ofst_001tf__b_001t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    produc3908864584764540214ee_a_b: produc3469756349985706280ee_a_b > b ).

thf(sy_c_Product__Type_Oprod_Osnd_001t__Dtree__Odtree_Itf__a_Mtf__b_J_001tf__b,type,
    produc5748100250121904638_a_b_b: produc4558475209616630778_a_b_b > b ).

thf(sy_c_Product__Type_Oprod_Osnd_001tf__b_001t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    produc8959184660827480948ee_a_b: produc3469756349985706280ee_a_b > dtree_a_b ).

thf(sy_c_Set_OBall_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    ball_P8580587655522039760_a_b_b: set_Pr3012420139608375472_a_b_b > ( produc4558475209616630778_a_b_b > $o ) > $o ).

thf(sy_c_Set_OBall_001tf__b,type,
    ball_b: set_b > ( b > $o ) > $o ).

thf(sy_c_Set_OCollect_001_062_Itf__a_Mtf__a_J,type,
    collect_a_a: ( ( a > a ) > $o ) > set_a_a ).

thf(sy_c_Set_OCollect_001t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    collect_dtree_a_b: ( dtree_a_b > $o ) > set_dtree_a_b ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    collec1368399972772960719_a_b_b: ( produc4558475209616630778_a_b_b > $o ) > set_Pr3012420139608375472_a_b_b ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    collec5997417077270831749_a_b_b: ( set_Pr3012420139608375472_a_b_b > $o ) > set_se3183138701204633190_a_b_b ).

thf(sy_c_Set_OCollect_001t__Set__Oset_Itf__b_J,type,
    collect_set_b: ( set_b > $o ) > set_set_b ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_OCollect_001tf__b,type,
    collect_b: ( b > $o ) > set_b ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001_062_Itf__a_Mtf__a_J,type,
    image_1490412026869653094_b_a_a: ( produc4558475209616630778_a_b_b > a > a ) > set_Pr3012420139608375472_a_b_b > set_a_a ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    image_7065894828672115579ee_a_b: ( produc4558475209616630778_a_b_b > dtree_a_b ) > set_Pr3012420139608375472_a_b_b > set_dtree_a_b ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    image_6081965176830705659_a_b_b: ( produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b ) > set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_001tf__b,type,
    image_3908709015779211070_b_b_b: ( produc4558475209616630778_a_b_b > b ) > set_Pr3012420139608375472_a_b_b > set_b ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    image_4903599603319290215_a_b_b: ( set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b ) > set_se3183138701204633190_a_b_b > set_se3183138701204633190_a_b_b ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__b_J_001t__Set__Oset_Itf__b_J,type,
    image_set_b_set_b: ( set_b > set_b ) > set_set_b > set_set_b ).

thf(sy_c_Set_Oimage_001tf__b_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    image_7642607452437185460_a_b_b: ( b > produc4558475209616630778_a_b_b ) > set_b > set_Pr3012420139608375472_a_b_b ).

thf(sy_c_Set_Oimage_001tf__b_001tf__b,type,
    image_b_b: ( b > b ) > set_b > set_b ).

thf(sy_c_Set_Oinsert_001_062_Itf__a_Mtf__a_J,type,
    insert_a_a: ( a > a ) > set_a_a > set_a_a ).

thf(sy_c_Set_Oinsert_001t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    insert_dtree_a_b: dtree_a_b > set_dtree_a_b > set_dtree_a_b ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    insert1613891728210272810_a_b_b: produc4558475209616630778_a_b_b > set_Pr3012420139608375472_a_b_b > set_Pr3012420139608375472_a_b_b ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    insert8355695866607091424_a_b_b: set_Pr3012420139608375472_a_b_b > set_se3183138701204633190_a_b_b > set_se3183138701204633190_a_b_b ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_Itf__b_J,type,
    insert_set_b: set_b > set_set_b > set_set_b ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set_Oinsert_001tf__b,type,
    insert_b: b > set_b > set_b ).

thf(sy_c_Set_Ois__singleton_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    is_sin1118336051388392454_a_b_b: set_Pr3012420139608375472_a_b_b > $o ).

thf(sy_c_Set_Ois__singleton_001tf__b,type,
    is_singleton_b: set_b > $o ).

thf(sy_c_Set_Othe__elem_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    the_el4127461656392778949_a_b_b: set_Pr3012420139608375472_a_b_b > produc4558475209616630778_a_b_b ).

thf(sy_c_Set_Othe__elem_001tf__b,type,
    the_elem_b: set_b > b ).

thf(sy_c_Wellfounded_Oaccp_001t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    accp_dtree_a_b: ( dtree_a_b > dtree_a_b > $o ) > dtree_a_b > $o ).

thf(sy_c_Wellfounded_Oaccp_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_M_062_Itf__b_Mtf__a_J_J,type,
    accp_P1416650344722773512_b_b_a: ( produc1083523234014712191_b_b_a > produc1083523234014712191_b_b_a > $o ) > produc1083523234014712191_b_b_a > $o ).

thf(sy_c_member_001_062_Itf__a_Mtf__a_J,type,
    member_a_a: ( a > a ) > set_a_a > $o ).

thf(sy_c_member_001t__Dtree__Odtree_Itf__a_Mtf__b_J,type,
    member_dtree_a_b: dtree_a_b > set_dtree_a_b > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J,type,
    member4380921116106875537_a_b_b: produc4558475209616630778_a_b_b > set_Pr3012420139608375472_a_b_b > $o ).

thf(sy_c_member_001t__Set__Oset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J,type,
    member7431159781899395911_a_b_b: set_Pr3012420139608375472_a_b_b > set_se3183138701204633190_a_b_b > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__b_J,type,
    member_set_b: set_b > set_set_b > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_c_member_001tf__b,type,
    member_b: b > set_b > $o ).

thf(sy_v_def,type,
    def: b > a ).

thf(sy_v_e,type,
    e: b ).

thf(sy_v_e3____,type,
    e3: b ).

thf(sy_v_r,type,
    r: a ).

thf(sy_v_t,type,
    t: dtree_a_b ).

thf(sy_v_x_H____,type,
    x: produc4558475209616630778_a_b_b ).

thf(sy_v_x____,type,
    x2: dtree_a_b ).

thf(sy_v_xs,type,
    xs: fset_P5281107635120001194_a_b_b ).

thf(sy_v_xsa____,type,
    xsa: fset_P5281107635120001194_a_b_b ).

% Relevant facts (1277)
thf(fact_0_False,axiom,
    e3 != e ).

% False
thf(fact_1__C1_C,axiom,
    wf_darcs_a_b @ ( node_a_b @ r @ xsa ) ).

% "1"
thf(fact_2__C0_C,axiom,
    member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ t @ e ) @ ( fset_P783253628892185035_a_b_b @ xsa ) ).

% "0"
thf(fact_3__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062x_Ae3_O_Ax_H_A_061_A_Ix_M_Ae3_J_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [X: dtree_a_b,E3: b] :
        ( x
       != ( produc331601717337510060_a_b_b @ X @ E3 ) ) ).

% \<open>\<And>thesis. (\<And>x e3. x' = (x, e3) \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_4_insert_Oprems_I2_J,axiom,
    wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ).

% insert.prems(2)
thf(fact_5_assms_I2_J,axiom,
    wf_darcs_a_b @ ( node_a_b @ r @ xs ) ).

% assms(2)
thf(fact_6_dtree_Oinject,axiom,
    ! [X1: a,X2: fset_P5281107635120001194_a_b_b,Y1: a,Y2: fset_P5281107635120001194_a_b_b] :
      ( ( ( node_a_b @ X1 @ X2 )
        = ( node_a_b @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y2 ) ) ) ).

% dtree.inject
thf(fact_7_assms_I1_J,axiom,
    member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ t @ e ) @ ( fset_P783253628892185035_a_b_b @ xs ) ).

% assms(1)
thf(fact_8_insert_Oprems_I1_J,axiom,
    member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ t @ e ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ).

% insert.prems(1)
thf(fact_9_insert_OIH,axiom,
    ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ t @ e ) @ ( fset_P783253628892185035_a_b_b @ xsa ) )
   => ( ( wf_darcs_a_b @ ( node_a_b @ r @ xsa ) )
     => ( ( ffold_2783168711033344739_b_b_a
          @ ( produc2242037354397874494_b_a_a
            @ ^ [X3: dtree_a_b,E2: b,B: a] :
                ( if_a
                @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ xsa ) )
                  | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                  | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ xsa ) ) )
                @ B
                @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
          @ ( def @ e )
          @ xsa )
        = ( root_a_b @ t ) ) ) ) ).

% insert.IH
thf(fact_10__092_060open_062ffold_A_I_092_060lambda_062_Ix_M_Ae2_J_Ab_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Idef_Ae_J_Axs_A_061_Affold_A_I_092_060lambda_062_Ix_M_Ae2_J_Ab_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_Axs_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_Axs_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Idef_Ae_J_Axs_092_060close_062,axiom,
    ( ( ffold_2783168711033344739_b_b_a
      @ ( produc2242037354397874494_b_a_a
        @ ^ [X3: dtree_a_b,E2: b,B: a] :
            ( if_a
            @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
              | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
              | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
            @ B
            @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
      @ ( def @ e )
      @ xsa )
    = ( ffold_2783168711033344739_b_b_a
      @ ( produc2242037354397874494_b_a_a
        @ ^ [X3: dtree_a_b,E2: b,B: a] :
            ( if_a
            @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ xsa ) )
              | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
              | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ xsa ) ) )
            @ B
            @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
      @ ( def @ e )
      @ xsa ) ) ).

% \<open>ffold (\<lambda>(x, e2) b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (def e) xs = ffold (\<lambda>(x, e2) b. if (x, e2) \<notin> fset xs \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r xs) then b else if e = e2 then dtree.root x else dhead x def e) (def e) xs\<close>
thf(fact_11__092_060open_062ffold_A_I_092_060lambda_062_Ix_M_Ae2_J_Ab_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Idef_Ae_J_A_Ifinsert_Ax_H_Axs_J_A_061_A_Icase_Ax_H_Aof_A_Ix_M_Ae2_J_A_092_060Rightarrow_062_A_092_060lambda_062b_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Iffold_A_I_092_060lambda_062_Ix_M_Ae2_J_Ab_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Idef_Ae_J_Axs_J_092_060close_062,axiom,
    ( ( ffold_2783168711033344739_b_b_a
      @ ( produc2242037354397874494_b_a_a
        @ ^ [X3: dtree_a_b,E2: b,B: a] :
            ( if_a
            @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
              | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
              | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
            @ B
            @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
      @ ( def @ e )
      @ ( finser8437519239679886002_a_b_b @ x @ xsa ) )
    = ( produc2242037354397874494_b_a_a
      @ ^ [X3: dtree_a_b,E2: b,B: a] :
          ( if_a
          @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
            | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
            | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
          @ B
          @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) )
      @ x
      @ ( ffold_2783168711033344739_b_b_a
        @ ( produc2242037354397874494_b_a_a
          @ ^ [X3: dtree_a_b,E2: b,B: a] :
              ( if_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
                | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
              @ B
              @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
        @ ( def @ e )
        @ xsa ) ) ) ).

% \<open>ffold (\<lambda>(x, e2) b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (def e) (finsert x' xs) = (case x' of (x, e2) \<Rightarrow> \<lambda>b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (ffold (\<lambda>(x, e2) b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (def e) xs)\<close>
thf(fact_12_calculation,axiom,
    ( ( ffold_2783168711033344739_b_b_a
      @ ( produc2242037354397874494_b_a_a
        @ ^ [X3: dtree_a_b,E2: b,B: a] :
            ( if_a
            @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
              | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
              | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
            @ B
            @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
      @ ( def @ e )
      @ ( finser8437519239679886002_a_b_b @ x @ xsa ) )
    = ( ffold_2783168711033344739_b_b_a
      @ ( produc2242037354397874494_b_a_a
        @ ^ [X3: dtree_a_b,E2: b,B: a] :
            ( if_a
            @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ xsa ) )
              | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
              | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ xsa ) ) )
            @ B
            @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
      @ ( def @ e )
      @ xsa ) ) ).

% calculation
thf(fact_13_dtree_Osel_I1_J,axiom,
    ! [X1: a,X2: fset_P5281107635120001194_a_b_b] :
      ( ( root_a_b @ ( node_a_b @ X1 @ X2 ) )
      = X1 ) ).

% dtree.sel(1)
thf(fact_14_dhead_Oelims,axiom,
    ! [X4: dtree_a_b,Xa: b > a,Y: b > a] :
      ( ( ( dhead_a_b @ X4 @ Xa )
        = Y )
     => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
            ( ( X4
              = ( node_a_b @ R @ Xs ) )
           => ( Y
             != ( ^ [E: b] :
                    ( ffold_2783168711033344739_b_b_a
                    @ ( produc2242037354397874494_b_a_a
                      @ ^ [X3: dtree_a_b,E2: b,B: a] :
                          ( if_a
                          @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                            | ~ ( member_b @ E @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                            | ~ ( wf_darcs_a_b @ ( node_a_b @ R @ Xs ) ) )
                          @ B
                          @ ( if_a @ ( E = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Xa @ E ) ) ) )
                    @ ( Xa @ E )
                    @ Xs ) ) ) ) ) ).

% dhead.elims
thf(fact_15_dhead_Osimps,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,Def: b > a] :
      ( ( dhead_a_b @ ( node_a_b @ R2 @ Xs2 ) @ Def )
      = ( ^ [E: b] :
            ( ffold_2783168711033344739_b_b_a
            @ ( produc2242037354397874494_b_a_a
              @ ^ [X3: dtree_a_b,E2: b,B: a] :
                  ( if_a
                  @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                    | ~ ( member_b @ E @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                    | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
                  @ B
                  @ ( if_a @ ( E = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E ) ) ) )
            @ ( Def @ E )
            @ Xs2 ) ) ) ).

% dhead.simps
thf(fact_16_dtree_Oexhaust,axiom,
    ! [Y: dtree_a_b] :
      ~ ! [X12: a,X22: fset_P5281107635120001194_a_b_b] :
          ( Y
         != ( node_a_b @ X12 @ X22 ) ) ).

% dtree.exhaust
thf(fact_17_dverts__mset_Ocases,axiom,
    ! [X4: dtree_a_b] :
      ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
          ( X4
         != ( node_a_b @ R @ Xs ) ) ).

% dverts_mset.cases
thf(fact_18_dhead__ffold__f__alt,axiom,
    ! [P: fset_P5281107635120001194_a_b_b > $o,R2: a,Q: produc4558475209616630778_a_b_b > a > $o,E4: b,R3: produc4558475209616630778_a_b_b > a > a,Def: b > a,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( P
        = ( ^ [Xs3: fset_P5281107635120001194_a_b_b] : ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs3 ) ) ) )
     => ( ( Q
          = ( produc6139810021161713496_b_a_o
            @ ^ [X3: dtree_a_b,E2: b,Uu: a] : ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) ) ) )
       => ( ( R3
            = ( produc2242037354397874494_b_a_a
              @ ^ [X3: dtree_a_b,E2: b,Uu: a] : ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) ) )
         => ( ( produc2242037354397874494_b_a_a
              @ ^ [X3: dtree_a_b,E2: b,B: a] :
                  ( if_a
                  @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                    | ~ ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                    | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
                  @ B
                  @ ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) ) )
            = ( ^ [A: produc4558475209616630778_a_b_b,B: a] :
                  ( if_a
                  @ ( ~ ( member4380921116106875537_a_b_b @ A @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                    | ~ ( Q @ A @ B )
                    | ~ ( P @ Xs2 ) )
                  @ B
                  @ ( R3 @ A @ B ) ) ) ) ) ) ) ).

% dhead_ffold_f_alt
thf(fact_19_dhead__notelem__eq__def,axiom,
    ! [E4: b,T: dtree_a_b,Def: b > a] :
      ( ~ ( member_b @ E4 @ ( darcs_a_b @ T ) )
     => ( ( dhead_a_b @ T @ Def @ E4 )
        = ( Def @ E4 ) ) ) ).

% dhead_notelem_eq_def
thf(fact_20_dhead__in__child__eq__child,axiom,
    ! [T: dtree_a_b,E1: b,Xs2: fset_P5281107635120001194_a_b_b,E4: b,R2: a,Def: b > a] :
      ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
     => ( ( member_b @ E4 @ ( darcs_a_b @ T ) )
       => ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
         => ( ( dhead_a_b @ ( node_a_b @ R2 @ Xs2 ) @ Def @ E4 )
            = ( dhead_a_b @ T @ Def @ E4 ) ) ) ) ) ).

% dhead_in_child_eq_child
thf(fact_21_disjoint__darcs__if__wf__aux1,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,T1: dtree_a_b,E1: b] :
      ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T1 @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
       => ~ ( member_b @ E1 @ ( darcs_a_b @ T1 ) ) ) ) ).

% disjoint_darcs_if_wf_aux1
thf(fact_22_disjoint__darcs__if__wf__aux3,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,T1: dtree_a_b,E1: b,T2: dtree_a_b,E22: b] :
      ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T1 @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
       => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T2 @ E22 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ~ ( member_b @ E22 @ ( darcs_a_b @ T1 ) ) ) ) ) ).

% disjoint_darcs_if_wf_aux3
thf(fact_23_disjoint__darcs__if__wf__aux4,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,T1: dtree_a_b,E1: b,T2: dtree_a_b,E22: b] :
      ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T1 @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
       => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T2 @ E22 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( ( ( produc331601717337510060_a_b_b @ T1 @ E1 )
             != ( produc331601717337510060_a_b_b @ T2 @ E22 ) )
           => ( E1 != E22 ) ) ) ) ) ).

% disjoint_darcs_if_wf_aux4
thf(fact_24_dhead__in__child__eq__child__ffold,axiom,
    ! [T: dtree_a_b,E1: b,Xs2: fset_P5281107635120001194_a_b_b,E4: b,R2: a,Def: b > a] :
      ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
     => ( ( member_b @ E4 @ ( darcs_a_b @ T ) )
       => ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
         => ( ( ffold_2783168711033344739_b_b_a
              @ ( produc2242037354397874494_b_a_a
                @ ^ [X3: dtree_a_b,E2: b,B: a] :
                    ( if_a
                    @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                      | ~ ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                      | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
                    @ B
                    @ ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) ) )
              @ ( Def @ E4 )
              @ Xs2 )
            = ( dhead_a_b @ T @ Def @ E4 ) ) ) ) ) ).

% dhead_in_child_eq_child_ffold
thf(fact_25_case__prod__conv,axiom,
    ! [F: dtree_a_b > b > a > $o,A2: dtree_a_b,B2: b] :
      ( ( produc6139810021161713496_b_a_o @ F @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) )
      = ( F @ A2 @ B2 ) ) ).

% case_prod_conv
thf(fact_26_case__prod__conv,axiom,
    ! [F: dtree_a_b > b > b,A2: dtree_a_b,B2: b] :
      ( ( produc3664522937540588134_b_b_b @ F @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) )
      = ( F @ A2 @ B2 ) ) ).

% case_prod_conv
thf(fact_27_case__prod__conv,axiom,
    ! [F: dtree_a_b > b > a,A2: dtree_a_b,B2: b] :
      ( ( produc3664522937540588133_b_b_a @ F @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) )
      = ( F @ A2 @ B2 ) ) ).

% case_prod_conv
thf(fact_28_case__prod__conv,axiom,
    ! [F: b > dtree_a_b > produc4558475209616630778_a_b_b,A2: b,B2: dtree_a_b] :
      ( ( produc1296939142185513033_a_b_b @ F @ ( produc3542686128043086370ee_a_b @ A2 @ B2 ) )
      = ( F @ A2 @ B2 ) ) ).

% case_prod_conv
thf(fact_29_case__prod__conv,axiom,
    ! [F: b > b > set_b > set_b,A2: b,B2: b] :
      ( ( produc831963642587629969_set_b @ F @ ( product_Pair_b_b @ A2 @ B2 ) )
      = ( F @ A2 @ B2 ) ) ).

% case_prod_conv
thf(fact_30_case__prod__conv,axiom,
    ! [F: dtree_a_b > b > a > a,A2: dtree_a_b,B2: b] :
      ( ( produc2242037354397874494_b_a_a @ F @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) )
      = ( F @ A2 @ B2 ) ) ).

% case_prod_conv
thf(fact_31_singleton__conv,axiom,
    ! [A2: dtree_a_b] :
      ( ( collect_dtree_a_b
        @ ^ [X3: dtree_a_b] : ( X3 = A2 ) )
      = ( insert_dtree_a_b @ A2 @ bot_bo8730652382759064772ee_a_b ) ) ).

% singleton_conv
thf(fact_32_singleton__conv,axiom,
    ! [A2: produc4558475209616630778_a_b_b] :
      ( ( collec1368399972772960719_a_b_b
        @ ^ [X3: produc4558475209616630778_a_b_b] : ( X3 = A2 ) )
      = ( insert1613891728210272810_a_b_b @ A2 @ bot_bo3721250822024684356_a_b_b ) ) ).

% singleton_conv
thf(fact_33_singleton__conv,axiom,
    ! [A2: a] :
      ( ( collect_a
        @ ^ [X3: a] : ( X3 = A2 ) )
      = ( insert_a @ A2 @ bot_bot_set_a ) ) ).

% singleton_conv
thf(fact_34_singleton__conv,axiom,
    ! [A2: b] :
      ( ( collect_b
        @ ^ [X3: b] : ( X3 = A2 ) )
      = ( insert_b @ A2 @ bot_bot_set_b ) ) ).

% singleton_conv
thf(fact_35_singleton__conv2,axiom,
    ! [A2: dtree_a_b] :
      ( ( collect_dtree_a_b
        @ ( ^ [Y3: dtree_a_b,Z: dtree_a_b] : ( Y3 = Z )
          @ A2 ) )
      = ( insert_dtree_a_b @ A2 @ bot_bo8730652382759064772ee_a_b ) ) ).

% singleton_conv2
thf(fact_36_singleton__conv2,axiom,
    ! [A2: produc4558475209616630778_a_b_b] :
      ( ( collec1368399972772960719_a_b_b
        @ ( ^ [Y3: produc4558475209616630778_a_b_b,Z: produc4558475209616630778_a_b_b] : ( Y3 = Z )
          @ A2 ) )
      = ( insert1613891728210272810_a_b_b @ A2 @ bot_bo3721250822024684356_a_b_b ) ) ).

% singleton_conv2
thf(fact_37_singleton__conv2,axiom,
    ! [A2: a] :
      ( ( collect_a
        @ ( ^ [Y3: a,Z: a] : ( Y3 = Z )
          @ A2 ) )
      = ( insert_a @ A2 @ bot_bot_set_a ) ) ).

% singleton_conv2
thf(fact_38_singleton__conv2,axiom,
    ! [A2: b] :
      ( ( collect_b
        @ ( ^ [Y3: b,Z: b] : ( Y3 = Z )
          @ A2 ) )
      = ( insert_b @ A2 @ bot_bot_set_b ) ) ).

% singleton_conv2
thf(fact_39__092_060open_062_Icase_A_Ix_M_Ae3_J_Aof_A_Ix_M_Ae2_J_A_092_060Rightarrow_062_A_092_060lambda_062b_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Iffold_A_I_092_060lambda_062_Ix_M_Ae2_J_Ab_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Idef_Ae_J_Axs_J_A_061_Affold_A_I_092_060lambda_062_Ix_M_Ae2_J_Ab_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Idef_Ae_J_Axs_092_060close_062,axiom,
    ( ( produc2242037354397874494_b_a_a
      @ ^ [X3: dtree_a_b,E2: b,B: a] :
          ( if_a
          @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
            | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
            | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
          @ B
          @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) )
      @ ( produc331601717337510060_a_b_b @ x2 @ e3 )
      @ ( ffold_2783168711033344739_b_b_a
        @ ( produc2242037354397874494_b_a_a
          @ ^ [X3: dtree_a_b,E2: b,B: a] :
              ( if_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
                | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
              @ B
              @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
        @ ( def @ e )
        @ xsa ) )
    = ( ffold_2783168711033344739_b_b_a
      @ ( produc2242037354397874494_b_a_a
        @ ^ [X3: dtree_a_b,E2: b,B: a] :
            ( if_a
            @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
              | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
              | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
            @ B
            @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
      @ ( def @ e )
      @ xsa ) ) ).

% \<open>(case (x, e3) of (x, e2) \<Rightarrow> \<lambda>b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (ffold (\<lambda>(x, e2) b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (def e) xs) = ffold (\<lambda>(x, e2) b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (def e) xs\<close>
thf(fact_40__092_060open_062_Icase_Ax_H_Aof_A_Ix_M_Ae2_J_A_092_060Rightarrow_062_A_092_060lambda_062b_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Iffold_A_I_092_060lambda_062_Ix_M_Ae2_J_Ab_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Idef_Ae_J_Axs_J_A_061_A_Icase_A_Ix_M_Ae3_J_Aof_A_Ix_M_Ae2_J_A_092_060Rightarrow_062_A_092_060lambda_062b_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Iffold_A_I_092_060lambda_062_Ix_M_Ae2_J_Ab_O_Aif_A_Ix_M_Ae2_J_A_092_060notin_062_Afset_A_Ifinsert_Ax_H_Axs_J_A_092_060or_062_Ae_A_092_060notin_062_Adarcs_Ax_A_092_060union_062_A_123e2_125_A_092_060or_062_A_092_060not_062_Awf__darcs_A_INode_Ar_A_Ifinsert_Ax_H_Axs_J_J_Athen_Ab_Aelse_Aif_Ae_A_061_Ae2_Athen_Adtree_Oroot_Ax_Aelse_Adhead_Ax_Adef_Ae_J_A_Idef_Ae_J_Axs_J_092_060close_062,axiom,
    ( ( produc2242037354397874494_b_a_a
      @ ^ [X3: dtree_a_b,E2: b,B: a] :
          ( if_a
          @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
            | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
            | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
          @ B
          @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) )
      @ x
      @ ( ffold_2783168711033344739_b_b_a
        @ ( produc2242037354397874494_b_a_a
          @ ^ [X3: dtree_a_b,E2: b,B: a] :
              ( if_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
                | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
              @ B
              @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
        @ ( def @ e )
        @ xsa ) )
    = ( produc2242037354397874494_b_a_a
      @ ^ [X3: dtree_a_b,E2: b,B: a] :
          ( if_a
          @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
            | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
            | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
          @ B
          @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) )
      @ ( produc331601717337510060_a_b_b @ x2 @ e3 )
      @ ( ffold_2783168711033344739_b_b_a
        @ ( produc2242037354397874494_b_a_a
          @ ^ [X3: dtree_a_b,E2: b,B: a] :
              ( if_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) )
                | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ) ) )
              @ B
              @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
        @ ( def @ e )
        @ xsa ) ) ) ).

% \<open>(case x' of (x, e2) \<Rightarrow> \<lambda>b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (ffold (\<lambda>(x, e2) b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (def e) xs) = (case (x, e3) of (x, e2) \<Rightarrow> \<lambda>b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (ffold (\<lambda>(x, e2) b. if (x, e2) \<notin> fset (finsert x' xs) \<or> e \<notin> darcs x \<union> {e2} \<or> \<not> wf_darcs (Node r (finsert x' xs)) then b else if e = e2 then dtree.root x else dhead x def e) (def e) xs)\<close>
thf(fact_41_Un__insert__left,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b,C: set_Pr3012420139608375472_a_b_b] :
      ( ( sup_su2887895092731772380_a_b_b @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) @ C )
      = ( insert1613891728210272810_a_b_b @ A2 @ ( sup_su2887895092731772380_a_b_b @ B3 @ C ) ) ) ).

% Un_insert_left
thf(fact_42_Un__insert__left,axiom,
    ! [A2: dtree_a_b,B3: set_dtree_a_b,C: set_dtree_a_b] :
      ( ( sup_su8994539500306794332ee_a_b @ ( insert_dtree_a_b @ A2 @ B3 ) @ C )
      = ( insert_dtree_a_b @ A2 @ ( sup_su8994539500306794332ee_a_b @ B3 @ C ) ) ) ).

% Un_insert_left
thf(fact_43_Un__insert__left,axiom,
    ! [A2: set_b,B3: set_set_b,C: set_set_b] :
      ( ( sup_sup_set_set_b @ ( insert_set_b @ A2 @ B3 ) @ C )
      = ( insert_set_b @ A2 @ ( sup_sup_set_set_b @ B3 @ C ) ) ) ).

% Un_insert_left
thf(fact_44_Un__insert__left,axiom,
    ! [A2: b,B3: set_b,C: set_b] :
      ( ( sup_sup_set_b @ ( insert_b @ A2 @ B3 ) @ C )
      = ( insert_b @ A2 @ ( sup_sup_set_b @ B3 @ C ) ) ) ).

% Un_insert_left
thf(fact_45_Un__insert__right,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,A2: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( sup_su2887895092731772380_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) )
      = ( insert1613891728210272810_a_b_b @ A2 @ ( sup_su2887895092731772380_a_b_b @ A3 @ B3 ) ) ) ).

% Un_insert_right
thf(fact_46_Un__insert__right,axiom,
    ! [A3: set_dtree_a_b,A2: dtree_a_b,B3: set_dtree_a_b] :
      ( ( sup_su8994539500306794332ee_a_b @ A3 @ ( insert_dtree_a_b @ A2 @ B3 ) )
      = ( insert_dtree_a_b @ A2 @ ( sup_su8994539500306794332ee_a_b @ A3 @ B3 ) ) ) ).

% Un_insert_right
thf(fact_47_Un__insert__right,axiom,
    ! [A3: set_set_b,A2: set_b,B3: set_set_b] :
      ( ( sup_sup_set_set_b @ A3 @ ( insert_set_b @ A2 @ B3 ) )
      = ( insert_set_b @ A2 @ ( sup_sup_set_set_b @ A3 @ B3 ) ) ) ).

% Un_insert_right
thf(fact_48_Un__insert__right,axiom,
    ! [A3: set_b,A2: b,B3: set_b] :
      ( ( sup_sup_set_b @ A3 @ ( insert_b @ A2 @ B3 ) )
      = ( insert_b @ A2 @ ( sup_sup_set_b @ A3 @ B3 ) ) ) ).

% Un_insert_right
thf(fact_49_Un__empty,axiom,
    ! [A3: set_set_b,B3: set_set_b] :
      ( ( ( sup_sup_set_set_b @ A3 @ B3 )
        = bot_bot_set_set_b )
      = ( ( A3 = bot_bot_set_set_b )
        & ( B3 = bot_bot_set_set_b ) ) ) ).

% Un_empty
thf(fact_50_Un__empty,axiom,
    ! [A3: set_a,B3: set_a] :
      ( ( ( sup_sup_set_a @ A3 @ B3 )
        = bot_bot_set_a )
      = ( ( A3 = bot_bot_set_a )
        & ( B3 = bot_bot_set_a ) ) ) ).

% Un_empty
thf(fact_51_Un__empty,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ( sup_sup_set_b @ A3 @ B3 )
        = bot_bot_set_b )
      = ( ( A3 = bot_bot_set_b )
        & ( B3 = bot_bot_set_b ) ) ) ).

% Un_empty
thf(fact_52_singletonI,axiom,
    ! [A2: a > a] : ( member_a_a @ A2 @ ( insert_a_a @ A2 @ bot_bot_set_a_a ) ) ).

% singletonI
thf(fact_53_singletonI,axiom,
    ! [A2: dtree_a_b] : ( member_dtree_a_b @ A2 @ ( insert_dtree_a_b @ A2 @ bot_bo8730652382759064772ee_a_b ) ) ).

% singletonI
thf(fact_54_singletonI,axiom,
    ! [A2: set_b] : ( member_set_b @ A2 @ ( insert_set_b @ A2 @ bot_bot_set_set_b ) ) ).

% singletonI
thf(fact_55_singletonI,axiom,
    ! [A2: set_Pr3012420139608375472_a_b_b] : ( member7431159781899395911_a_b_b @ A2 @ ( insert8355695866607091424_a_b_b @ A2 @ bot_bo2537099559385417978_a_b_b ) ) ).

% singletonI
thf(fact_56_singletonI,axiom,
    ! [A2: a] : ( member_a @ A2 @ ( insert_a @ A2 @ bot_bot_set_a ) ) ).

% singletonI
thf(fact_57_singletonI,axiom,
    ! [A2: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ A2 @ ( insert1613891728210272810_a_b_b @ A2 @ bot_bo3721250822024684356_a_b_b ) ) ).

% singletonI
thf(fact_58_singletonI,axiom,
    ! [A2: b] : ( member_b @ A2 @ ( insert_b @ A2 @ bot_bot_set_b ) ) ).

% singletonI
thf(fact_59_sup__bot__left,axiom,
    ! [X4: set_set_b] :
      ( ( sup_sup_set_set_b @ bot_bot_set_set_b @ X4 )
      = X4 ) ).

% sup_bot_left
thf(fact_60_sup__bot__left,axiom,
    ! [X4: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ X4 )
      = X4 ) ).

% sup_bot_left
thf(fact_61_sup__bot__left,axiom,
    ! [X4: produc4558475209616630778_a_b_b > $o] :
      ( ( sup_su4209747780764569001_b_b_o @ bot_bo7321339186913516097_b_b_o @ X4 )
      = X4 ) ).

% sup_bot_left
thf(fact_62_sup__bot__left,axiom,
    ! [X4: dtree_a_b > b > $o] :
      ( ( sup_su6709851091347060739_b_b_o @ bot_bo471016548657204587_b_b_o @ X4 )
      = X4 ) ).

% sup_bot_left
thf(fact_63_sup__bot__left,axiom,
    ! [X4: b > $o] :
      ( ( sup_sup_b_o @ bot_bot_b_o @ X4 )
      = X4 ) ).

% sup_bot_left
thf(fact_64_sup__bot__left,axiom,
    ! [X4: set_b] :
      ( ( sup_sup_set_b @ bot_bot_set_b @ X4 )
      = X4 ) ).

% sup_bot_left
thf(fact_65_sup__bot__right,axiom,
    ! [X4: set_set_b] :
      ( ( sup_sup_set_set_b @ X4 @ bot_bot_set_set_b )
      = X4 ) ).

% sup_bot_right
thf(fact_66_sup__bot__right,axiom,
    ! [X4: set_a] :
      ( ( sup_sup_set_a @ X4 @ bot_bot_set_a )
      = X4 ) ).

% sup_bot_right
thf(fact_67_sup__bot__right,axiom,
    ! [X4: produc4558475209616630778_a_b_b > $o] :
      ( ( sup_su4209747780764569001_b_b_o @ X4 @ bot_bo7321339186913516097_b_b_o )
      = X4 ) ).

% sup_bot_right
thf(fact_68_sup__bot__right,axiom,
    ! [X4: dtree_a_b > b > $o] :
      ( ( sup_su6709851091347060739_b_b_o @ X4 @ bot_bo471016548657204587_b_b_o )
      = X4 ) ).

% sup_bot_right
thf(fact_69_sup__bot__right,axiom,
    ! [X4: b > $o] :
      ( ( sup_sup_b_o @ X4 @ bot_bot_b_o )
      = X4 ) ).

% sup_bot_right
thf(fact_70_sup__bot__right,axiom,
    ! [X4: set_b] :
      ( ( sup_sup_set_b @ X4 @ bot_bot_set_b )
      = X4 ) ).

% sup_bot_right
thf(fact_71_bot__eq__sup__iff,axiom,
    ! [X4: set_set_b,Y: set_set_b] :
      ( ( bot_bot_set_set_b
        = ( sup_sup_set_set_b @ X4 @ Y ) )
      = ( ( X4 = bot_bot_set_set_b )
        & ( Y = bot_bot_set_set_b ) ) ) ).

% bot_eq_sup_iff
thf(fact_72_bot__eq__sup__iff,axiom,
    ! [X4: set_a,Y: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ X4 @ Y ) )
      = ( ( X4 = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% bot_eq_sup_iff
thf(fact_73_bot__eq__sup__iff,axiom,
    ! [X4: produc4558475209616630778_a_b_b > $o,Y: produc4558475209616630778_a_b_b > $o] :
      ( ( bot_bo7321339186913516097_b_b_o
        = ( sup_su4209747780764569001_b_b_o @ X4 @ Y ) )
      = ( ( X4 = bot_bo7321339186913516097_b_b_o )
        & ( Y = bot_bo7321339186913516097_b_b_o ) ) ) ).

% bot_eq_sup_iff
thf(fact_74_bot__eq__sup__iff,axiom,
    ! [X4: dtree_a_b > b > $o,Y: dtree_a_b > b > $o] :
      ( ( bot_bo471016548657204587_b_b_o
        = ( sup_su6709851091347060739_b_b_o @ X4 @ Y ) )
      = ( ( X4 = bot_bo471016548657204587_b_b_o )
        & ( Y = bot_bo471016548657204587_b_b_o ) ) ) ).

% bot_eq_sup_iff
thf(fact_75_bot__eq__sup__iff,axiom,
    ! [X4: b > $o,Y: b > $o] :
      ( ( bot_bot_b_o
        = ( sup_sup_b_o @ X4 @ Y ) )
      = ( ( X4 = bot_bot_b_o )
        & ( Y = bot_bot_b_o ) ) ) ).

% bot_eq_sup_iff
thf(fact_76_bot__eq__sup__iff,axiom,
    ! [X4: set_b,Y: set_b] :
      ( ( bot_bot_set_b
        = ( sup_sup_set_b @ X4 @ Y ) )
      = ( ( X4 = bot_bot_set_b )
        & ( Y = bot_bot_set_b ) ) ) ).

% bot_eq_sup_iff
thf(fact_77_x__def,axiom,
    ( x
    = ( produc331601717337510060_a_b_b @ x2 @ e3 ) ) ).

% x_def
thf(fact_78_old_Oprod_Oinject,axiom,
    ! [A2: dtree_a_b,B2: b > a,A4: dtree_a_b,B4: b > a] :
      ( ( ( produc1993688775741047735_b_b_a @ A2 @ B2 )
        = ( produc1993688775741047735_b_b_a @ A4 @ B4 ) )
      = ( ( A2 = A4 )
        & ( B2 = B4 ) ) ) ).

% old.prod.inject
thf(fact_79_old_Oprod_Oinject,axiom,
    ! [A2: dtree_a_b,B2: dtree_a_b,A4: dtree_a_b,B4: dtree_a_b] :
      ( ( ( produc7805419539522982029ee_a_b @ A2 @ B2 )
        = ( produc7805419539522982029ee_a_b @ A4 @ B4 ) )
      = ( ( A2 = A4 )
        & ( B2 = B4 ) ) ) ).

% old.prod.inject
thf(fact_80_old_Oprod_Oinject,axiom,
    ! [A2: dtree_a_b,B2: b,A4: dtree_a_b,B4: b] :
      ( ( ( produc331601717337510060_a_b_b @ A2 @ B2 )
        = ( produc331601717337510060_a_b_b @ A4 @ B4 ) )
      = ( ( A2 = A4 )
        & ( B2 = B4 ) ) ) ).

% old.prod.inject
thf(fact_81_prod_Oinject,axiom,
    ! [X1: dtree_a_b,X2: b > a,Y1: dtree_a_b,Y2: b > a] :
      ( ( ( produc1993688775741047735_b_b_a @ X1 @ X2 )
        = ( produc1993688775741047735_b_b_a @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y2 ) ) ) ).

% prod.inject
thf(fact_82_prod_Oinject,axiom,
    ! [X1: dtree_a_b,X2: dtree_a_b,Y1: dtree_a_b,Y2: dtree_a_b] :
      ( ( ( produc7805419539522982029ee_a_b @ X1 @ X2 )
        = ( produc7805419539522982029ee_a_b @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y2 ) ) ) ).

% prod.inject
thf(fact_83_prod_Oinject,axiom,
    ! [X1: dtree_a_b,X2: b,Y1: dtree_a_b,Y2: b] :
      ( ( ( produc331601717337510060_a_b_b @ X1 @ X2 )
        = ( produc331601717337510060_a_b_b @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X2 = Y2 ) ) ) ).

% prod.inject
thf(fact_84_empty__Collect__eq,axiom,
    ! [P: produc4558475209616630778_a_b_b > $o] :
      ( ( bot_bo3721250822024684356_a_b_b
        = ( collec1368399972772960719_a_b_b @ P ) )
      = ( ! [X3: produc4558475209616630778_a_b_b] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_85_empty__Collect__eq,axiom,
    ! [P: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P ) )
      = ( ! [X3: a] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_86_empty__Collect__eq,axiom,
    ! [P: b > $o] :
      ( ( bot_bot_set_b
        = ( collect_b @ P ) )
      = ( ! [X3: b] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_87_Collect__empty__eq,axiom,
    ! [P: produc4558475209616630778_a_b_b > $o] :
      ( ( ( collec1368399972772960719_a_b_b @ P )
        = bot_bo3721250822024684356_a_b_b )
      = ( ! [X3: produc4558475209616630778_a_b_b] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_88_Collect__empty__eq,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_89_Collect__empty__eq,axiom,
    ! [P: b > $o] :
      ( ( ( collect_b @ P )
        = bot_bot_set_b )
      = ( ! [X3: b] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_90_mem__Collect__eq,axiom,
    ! [A2: a > a,P: ( a > a ) > $o] :
      ( ( member_a_a @ A2 @ ( collect_a_a @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_91_mem__Collect__eq,axiom,
    ! [A2: dtree_a_b,P: dtree_a_b > $o] :
      ( ( member_dtree_a_b @ A2 @ ( collect_dtree_a_b @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_92_mem__Collect__eq,axiom,
    ! [A2: set_b,P: set_b > $o] :
      ( ( member_set_b @ A2 @ ( collect_set_b @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_93_mem__Collect__eq,axiom,
    ! [A2: set_Pr3012420139608375472_a_b_b,P: set_Pr3012420139608375472_a_b_b > $o] :
      ( ( member7431159781899395911_a_b_b @ A2 @ ( collec5997417077270831749_a_b_b @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_94_mem__Collect__eq,axiom,
    ! [A2: a,P: a > $o] :
      ( ( member_a @ A2 @ ( collect_a @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_95_mem__Collect__eq,axiom,
    ! [A2: produc4558475209616630778_a_b_b,P: produc4558475209616630778_a_b_b > $o] :
      ( ( member4380921116106875537_a_b_b @ A2 @ ( collec1368399972772960719_a_b_b @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_96_mem__Collect__eq,axiom,
    ! [A2: b,P: b > $o] :
      ( ( member_b @ A2 @ ( collect_b @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_97_Collect__mem__eq,axiom,
    ! [A3: set_a_a] :
      ( ( collect_a_a
        @ ^ [X3: a > a] : ( member_a_a @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_98_Collect__mem__eq,axiom,
    ! [A3: set_dtree_a_b] :
      ( ( collect_dtree_a_b
        @ ^ [X3: dtree_a_b] : ( member_dtree_a_b @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_99_Collect__mem__eq,axiom,
    ! [A3: set_set_b] :
      ( ( collect_set_b
        @ ^ [X3: set_b] : ( member_set_b @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_100_Collect__mem__eq,axiom,
    ! [A3: set_se3183138701204633190_a_b_b] :
      ( ( collec5997417077270831749_a_b_b
        @ ^ [X3: set_Pr3012420139608375472_a_b_b] : ( member7431159781899395911_a_b_b @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_101_Collect__mem__eq,axiom,
    ! [A3: set_a] :
      ( ( collect_a
        @ ^ [X3: a] : ( member_a @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_102_Collect__mem__eq,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b] :
      ( ( collec1368399972772960719_a_b_b
        @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_103_Collect__mem__eq,axiom,
    ! [A3: set_b] :
      ( ( collect_b
        @ ^ [X3: b] : ( member_b @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_104_Collect__cong,axiom,
    ! [P: b > $o,Q: b > $o] :
      ( ! [X: b] :
          ( ( P @ X )
          = ( Q @ X ) )
     => ( ( collect_b @ P )
        = ( collect_b @ Q ) ) ) ).

% Collect_cong
thf(fact_105_Collect__cong,axiom,
    ! [P: produc4558475209616630778_a_b_b > $o,Q: produc4558475209616630778_a_b_b > $o] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( P @ X )
          = ( Q @ X ) )
     => ( ( collec1368399972772960719_a_b_b @ P )
        = ( collec1368399972772960719_a_b_b @ Q ) ) ) ).

% Collect_cong
thf(fact_106_all__not__in__conv,axiom,
    ! [A3: set_a_a] :
      ( ( ! [X3: a > a] :
            ~ ( member_a_a @ X3 @ A3 ) )
      = ( A3 = bot_bot_set_a_a ) ) ).

% all_not_in_conv
thf(fact_107_all__not__in__conv,axiom,
    ! [A3: set_dtree_a_b] :
      ( ( ! [X3: dtree_a_b] :
            ~ ( member_dtree_a_b @ X3 @ A3 ) )
      = ( A3 = bot_bo8730652382759064772ee_a_b ) ) ).

% all_not_in_conv
thf(fact_108_all__not__in__conv,axiom,
    ! [A3: set_set_b] :
      ( ( ! [X3: set_b] :
            ~ ( member_set_b @ X3 @ A3 ) )
      = ( A3 = bot_bot_set_set_b ) ) ).

% all_not_in_conv
thf(fact_109_all__not__in__conv,axiom,
    ! [A3: set_se3183138701204633190_a_b_b] :
      ( ( ! [X3: set_Pr3012420139608375472_a_b_b] :
            ~ ( member7431159781899395911_a_b_b @ X3 @ A3 ) )
      = ( A3 = bot_bo2537099559385417978_a_b_b ) ) ).

% all_not_in_conv
thf(fact_110_all__not__in__conv,axiom,
    ! [A3: set_a] :
      ( ( ! [X3: a] :
            ~ ( member_a @ X3 @ A3 ) )
      = ( A3 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_111_all__not__in__conv,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b] :
      ( ( ! [X3: produc4558475209616630778_a_b_b] :
            ~ ( member4380921116106875537_a_b_b @ X3 @ A3 ) )
      = ( A3 = bot_bo3721250822024684356_a_b_b ) ) ).

% all_not_in_conv
thf(fact_112_all__not__in__conv,axiom,
    ! [A3: set_b] :
      ( ( ! [X3: b] :
            ~ ( member_b @ X3 @ A3 ) )
      = ( A3 = bot_bot_set_b ) ) ).

% all_not_in_conv
thf(fact_113_empty__iff,axiom,
    ! [C2: a > a] :
      ~ ( member_a_a @ C2 @ bot_bot_set_a_a ) ).

% empty_iff
thf(fact_114_empty__iff,axiom,
    ! [C2: dtree_a_b] :
      ~ ( member_dtree_a_b @ C2 @ bot_bo8730652382759064772ee_a_b ) ).

% empty_iff
thf(fact_115_empty__iff,axiom,
    ! [C2: set_b] :
      ~ ( member_set_b @ C2 @ bot_bot_set_set_b ) ).

% empty_iff
thf(fact_116_empty__iff,axiom,
    ! [C2: set_Pr3012420139608375472_a_b_b] :
      ~ ( member7431159781899395911_a_b_b @ C2 @ bot_bo2537099559385417978_a_b_b ) ).

% empty_iff
thf(fact_117_empty__iff,axiom,
    ! [C2: a] :
      ~ ( member_a @ C2 @ bot_bot_set_a ) ).

% empty_iff
thf(fact_118_empty__iff,axiom,
    ! [C2: produc4558475209616630778_a_b_b] :
      ~ ( member4380921116106875537_a_b_b @ C2 @ bot_bo3721250822024684356_a_b_b ) ).

% empty_iff
thf(fact_119_empty__iff,axiom,
    ! [C2: b] :
      ~ ( member_b @ C2 @ bot_bot_set_b ) ).

% empty_iff
thf(fact_120_insert__absorb2,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( insert1613891728210272810_a_b_b @ X4 @ ( insert1613891728210272810_a_b_b @ X4 @ A3 ) )
      = ( insert1613891728210272810_a_b_b @ X4 @ A3 ) ) ).

% insert_absorb2
thf(fact_121_insert__absorb2,axiom,
    ! [X4: dtree_a_b,A3: set_dtree_a_b] :
      ( ( insert_dtree_a_b @ X4 @ ( insert_dtree_a_b @ X4 @ A3 ) )
      = ( insert_dtree_a_b @ X4 @ A3 ) ) ).

% insert_absorb2
thf(fact_122_insert__absorb2,axiom,
    ! [X4: b,A3: set_b] :
      ( ( insert_b @ X4 @ ( insert_b @ X4 @ A3 ) )
      = ( insert_b @ X4 @ A3 ) ) ).

% insert_absorb2
thf(fact_123_insert__iff,axiom,
    ! [A2: a > a,B2: a > a,A3: set_a_a] :
      ( ( member_a_a @ A2 @ ( insert_a_a @ B2 @ A3 ) )
      = ( ( A2 = B2 )
        | ( member_a_a @ A2 @ A3 ) ) ) ).

% insert_iff
thf(fact_124_insert__iff,axiom,
    ! [A2: dtree_a_b,B2: dtree_a_b,A3: set_dtree_a_b] :
      ( ( member_dtree_a_b @ A2 @ ( insert_dtree_a_b @ B2 @ A3 ) )
      = ( ( A2 = B2 )
        | ( member_dtree_a_b @ A2 @ A3 ) ) ) ).

% insert_iff
thf(fact_125_insert__iff,axiom,
    ! [A2: set_b,B2: set_b,A3: set_set_b] :
      ( ( member_set_b @ A2 @ ( insert_set_b @ B2 @ A3 ) )
      = ( ( A2 = B2 )
        | ( member_set_b @ A2 @ A3 ) ) ) ).

% insert_iff
thf(fact_126_insert__iff,axiom,
    ! [A2: set_Pr3012420139608375472_a_b_b,B2: set_Pr3012420139608375472_a_b_b,A3: set_se3183138701204633190_a_b_b] :
      ( ( member7431159781899395911_a_b_b @ A2 @ ( insert8355695866607091424_a_b_b @ B2 @ A3 ) )
      = ( ( A2 = B2 )
        | ( member7431159781899395911_a_b_b @ A2 @ A3 ) ) ) ).

% insert_iff
thf(fact_127_insert__iff,axiom,
    ! [A2: a,B2: a,A3: set_a] :
      ( ( member_a @ A2 @ ( insert_a @ B2 @ A3 ) )
      = ( ( A2 = B2 )
        | ( member_a @ A2 @ A3 ) ) ) ).

% insert_iff
thf(fact_128_insert__iff,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ A2 @ ( insert1613891728210272810_a_b_b @ B2 @ A3 ) )
      = ( ( A2 = B2 )
        | ( member4380921116106875537_a_b_b @ A2 @ A3 ) ) ) ).

% insert_iff
thf(fact_129_insert__iff,axiom,
    ! [A2: b,B2: b,A3: set_b] :
      ( ( member_b @ A2 @ ( insert_b @ B2 @ A3 ) )
      = ( ( A2 = B2 )
        | ( member_b @ A2 @ A3 ) ) ) ).

% insert_iff
thf(fact_130_insertCI,axiom,
    ! [A2: a > a,B3: set_a_a,B2: a > a] :
      ( ( ~ ( member_a_a @ A2 @ B3 )
       => ( A2 = B2 ) )
     => ( member_a_a @ A2 @ ( insert_a_a @ B2 @ B3 ) ) ) ).

% insertCI
thf(fact_131_insertCI,axiom,
    ! [A2: dtree_a_b,B3: set_dtree_a_b,B2: dtree_a_b] :
      ( ( ~ ( member_dtree_a_b @ A2 @ B3 )
       => ( A2 = B2 ) )
     => ( member_dtree_a_b @ A2 @ ( insert_dtree_a_b @ B2 @ B3 ) ) ) ).

% insertCI
thf(fact_132_insertCI,axiom,
    ! [A2: set_b,B3: set_set_b,B2: set_b] :
      ( ( ~ ( member_set_b @ A2 @ B3 )
       => ( A2 = B2 ) )
     => ( member_set_b @ A2 @ ( insert_set_b @ B2 @ B3 ) ) ) ).

% insertCI
thf(fact_133_insertCI,axiom,
    ! [A2: set_Pr3012420139608375472_a_b_b,B3: set_se3183138701204633190_a_b_b,B2: set_Pr3012420139608375472_a_b_b] :
      ( ( ~ ( member7431159781899395911_a_b_b @ A2 @ B3 )
       => ( A2 = B2 ) )
     => ( member7431159781899395911_a_b_b @ A2 @ ( insert8355695866607091424_a_b_b @ B2 @ B3 ) ) ) ).

% insertCI
thf(fact_134_insertCI,axiom,
    ! [A2: a,B3: set_a,B2: a] :
      ( ( ~ ( member_a @ A2 @ B3 )
       => ( A2 = B2 ) )
     => ( member_a @ A2 @ ( insert_a @ B2 @ B3 ) ) ) ).

% insertCI
thf(fact_135_insertCI,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b,B2: produc4558475209616630778_a_b_b] :
      ( ( ~ ( member4380921116106875537_a_b_b @ A2 @ B3 )
       => ( A2 = B2 ) )
     => ( member4380921116106875537_a_b_b @ A2 @ ( insert1613891728210272810_a_b_b @ B2 @ B3 ) ) ) ).

% insertCI
thf(fact_136_insertCI,axiom,
    ! [A2: b,B3: set_b,B2: b] :
      ( ( ~ ( member_b @ A2 @ B3 )
       => ( A2 = B2 ) )
     => ( member_b @ A2 @ ( insert_b @ B2 @ B3 ) ) ) ).

% insertCI
thf(fact_137_sup__apply,axiom,
    ( sup_su4209747780764569001_b_b_o
    = ( ^ [F2: produc4558475209616630778_a_b_b > $o,G: produc4558475209616630778_a_b_b > $o,X3: produc4558475209616630778_a_b_b] : ( sup_sup_o @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ).

% sup_apply
thf(fact_138_sup__apply,axiom,
    ( sup_su6709851091347060739_b_b_o
    = ( ^ [F2: dtree_a_b > b > $o,G: dtree_a_b > b > $o,X3: dtree_a_b] : ( sup_sup_b_o @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ).

% sup_apply
thf(fact_139_sup__apply,axiom,
    ( sup_sup_b_o
    = ( ^ [F2: b > $o,G: b > $o,X3: b] : ( sup_sup_o @ ( F2 @ X3 ) @ ( G @ X3 ) ) ) ) ).

% sup_apply
thf(fact_140_sup_Oright__idem,axiom,
    ! [A2: set_set_b,B2: set_set_b] :
      ( ( sup_sup_set_set_b @ ( sup_sup_set_set_b @ A2 @ B2 ) @ B2 )
      = ( sup_sup_set_set_b @ A2 @ B2 ) ) ).

% sup.right_idem
thf(fact_141_sup_Oright__idem,axiom,
    ! [A2: nat,B2: nat] :
      ( ( sup_sup_nat @ ( sup_sup_nat @ A2 @ B2 ) @ B2 )
      = ( sup_sup_nat @ A2 @ B2 ) ) ).

% sup.right_idem
thf(fact_142_sup_Oright__idem,axiom,
    ! [A2: produc4558475209616630778_a_b_b > $o,B2: produc4558475209616630778_a_b_b > $o] :
      ( ( sup_su4209747780764569001_b_b_o @ ( sup_su4209747780764569001_b_b_o @ A2 @ B2 ) @ B2 )
      = ( sup_su4209747780764569001_b_b_o @ A2 @ B2 ) ) ).

% sup.right_idem
thf(fact_143_sup_Oright__idem,axiom,
    ! [A2: dtree_a_b > b > $o,B2: dtree_a_b > b > $o] :
      ( ( sup_su6709851091347060739_b_b_o @ ( sup_su6709851091347060739_b_b_o @ A2 @ B2 ) @ B2 )
      = ( sup_su6709851091347060739_b_b_o @ A2 @ B2 ) ) ).

% sup.right_idem
thf(fact_144_sup_Oright__idem,axiom,
    ! [A2: b > $o,B2: b > $o] :
      ( ( sup_sup_b_o @ ( sup_sup_b_o @ A2 @ B2 ) @ B2 )
      = ( sup_sup_b_o @ A2 @ B2 ) ) ).

% sup.right_idem
thf(fact_145_sup_Oright__idem,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ A2 @ B2 ) @ B2 )
      = ( sup_sup_set_b @ A2 @ B2 ) ) ).

% sup.right_idem
thf(fact_146_sup__left__idem,axiom,
    ! [X4: set_set_b,Y: set_set_b] :
      ( ( sup_sup_set_set_b @ X4 @ ( sup_sup_set_set_b @ X4 @ Y ) )
      = ( sup_sup_set_set_b @ X4 @ Y ) ) ).

% sup_left_idem
thf(fact_147_sup__left__idem,axiom,
    ! [X4: nat,Y: nat] :
      ( ( sup_sup_nat @ X4 @ ( sup_sup_nat @ X4 @ Y ) )
      = ( sup_sup_nat @ X4 @ Y ) ) ).

% sup_left_idem
thf(fact_148_sup__left__idem,axiom,
    ! [X4: produc4558475209616630778_a_b_b > $o,Y: produc4558475209616630778_a_b_b > $o] :
      ( ( sup_su4209747780764569001_b_b_o @ X4 @ ( sup_su4209747780764569001_b_b_o @ X4 @ Y ) )
      = ( sup_su4209747780764569001_b_b_o @ X4 @ Y ) ) ).

% sup_left_idem
thf(fact_149_sup__left__idem,axiom,
    ! [X4: dtree_a_b > b > $o,Y: dtree_a_b > b > $o] :
      ( ( sup_su6709851091347060739_b_b_o @ X4 @ ( sup_su6709851091347060739_b_b_o @ X4 @ Y ) )
      = ( sup_su6709851091347060739_b_b_o @ X4 @ Y ) ) ).

% sup_left_idem
thf(fact_150_sup__left__idem,axiom,
    ! [X4: b > $o,Y: b > $o] :
      ( ( sup_sup_b_o @ X4 @ ( sup_sup_b_o @ X4 @ Y ) )
      = ( sup_sup_b_o @ X4 @ Y ) ) ).

% sup_left_idem
thf(fact_151_sup__left__idem,axiom,
    ! [X4: set_b,Y: set_b] :
      ( ( sup_sup_set_b @ X4 @ ( sup_sup_set_b @ X4 @ Y ) )
      = ( sup_sup_set_b @ X4 @ Y ) ) ).

% sup_left_idem
thf(fact_152_sup_Oleft__idem,axiom,
    ! [A2: set_set_b,B2: set_set_b] :
      ( ( sup_sup_set_set_b @ A2 @ ( sup_sup_set_set_b @ A2 @ B2 ) )
      = ( sup_sup_set_set_b @ A2 @ B2 ) ) ).

% sup.left_idem
thf(fact_153_sup_Oleft__idem,axiom,
    ! [A2: nat,B2: nat] :
      ( ( sup_sup_nat @ A2 @ ( sup_sup_nat @ A2 @ B2 ) )
      = ( sup_sup_nat @ A2 @ B2 ) ) ).

% sup.left_idem
thf(fact_154_sup_Oleft__idem,axiom,
    ! [A2: produc4558475209616630778_a_b_b > $o,B2: produc4558475209616630778_a_b_b > $o] :
      ( ( sup_su4209747780764569001_b_b_o @ A2 @ ( sup_su4209747780764569001_b_b_o @ A2 @ B2 ) )
      = ( sup_su4209747780764569001_b_b_o @ A2 @ B2 ) ) ).

% sup.left_idem
thf(fact_155_sup_Oleft__idem,axiom,
    ! [A2: dtree_a_b > b > $o,B2: dtree_a_b > b > $o] :
      ( ( sup_su6709851091347060739_b_b_o @ A2 @ ( sup_su6709851091347060739_b_b_o @ A2 @ B2 ) )
      = ( sup_su6709851091347060739_b_b_o @ A2 @ B2 ) ) ).

% sup.left_idem
thf(fact_156_sup_Oleft__idem,axiom,
    ! [A2: b > $o,B2: b > $o] :
      ( ( sup_sup_b_o @ A2 @ ( sup_sup_b_o @ A2 @ B2 ) )
      = ( sup_sup_b_o @ A2 @ B2 ) ) ).

% sup.left_idem
thf(fact_157_sup_Oleft__idem,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( sup_sup_set_b @ A2 @ ( sup_sup_set_b @ A2 @ B2 ) )
      = ( sup_sup_set_b @ A2 @ B2 ) ) ).

% sup.left_idem
thf(fact_158_sup__idem,axiom,
    ! [X4: set_set_b] :
      ( ( sup_sup_set_set_b @ X4 @ X4 )
      = X4 ) ).

% sup_idem
thf(fact_159_sup__idem,axiom,
    ! [X4: nat] :
      ( ( sup_sup_nat @ X4 @ X4 )
      = X4 ) ).

% sup_idem
thf(fact_160_sup__idem,axiom,
    ! [X4: produc4558475209616630778_a_b_b > $o] :
      ( ( sup_su4209747780764569001_b_b_o @ X4 @ X4 )
      = X4 ) ).

% sup_idem
thf(fact_161_sup__idem,axiom,
    ! [X4: dtree_a_b > b > $o] :
      ( ( sup_su6709851091347060739_b_b_o @ X4 @ X4 )
      = X4 ) ).

% sup_idem
thf(fact_162_sup__idem,axiom,
    ! [X4: b > $o] :
      ( ( sup_sup_b_o @ X4 @ X4 )
      = X4 ) ).

% sup_idem
thf(fact_163_sup__idem,axiom,
    ! [X4: set_b] :
      ( ( sup_sup_set_b @ X4 @ X4 )
      = X4 ) ).

% sup_idem
thf(fact_164_sup_Oidem,axiom,
    ! [A2: set_set_b] :
      ( ( sup_sup_set_set_b @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_165_sup_Oidem,axiom,
    ! [A2: nat] :
      ( ( sup_sup_nat @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_166_sup_Oidem,axiom,
    ! [A2: produc4558475209616630778_a_b_b > $o] :
      ( ( sup_su4209747780764569001_b_b_o @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_167_sup_Oidem,axiom,
    ! [A2: dtree_a_b > b > $o] :
      ( ( sup_su6709851091347060739_b_b_o @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_168_sup_Oidem,axiom,
    ! [A2: b > $o] :
      ( ( sup_sup_b_o @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_169_sup_Oidem,axiom,
    ! [A2: set_b] :
      ( ( sup_sup_set_b @ A2 @ A2 )
      = A2 ) ).

% sup.idem
thf(fact_170_Un__iff,axiom,
    ! [C2: a > a,A3: set_a_a,B3: set_a_a] :
      ( ( member_a_a @ C2 @ ( sup_sup_set_a_a @ A3 @ B3 ) )
      = ( ( member_a_a @ C2 @ A3 )
        | ( member_a_a @ C2 @ B3 ) ) ) ).

% Un_iff
thf(fact_171_Un__iff,axiom,
    ! [C2: dtree_a_b,A3: set_dtree_a_b,B3: set_dtree_a_b] :
      ( ( member_dtree_a_b @ C2 @ ( sup_su8994539500306794332ee_a_b @ A3 @ B3 ) )
      = ( ( member_dtree_a_b @ C2 @ A3 )
        | ( member_dtree_a_b @ C2 @ B3 ) ) ) ).

% Un_iff
thf(fact_172_Un__iff,axiom,
    ! [C2: set_Pr3012420139608375472_a_b_b,A3: set_se3183138701204633190_a_b_b,B3: set_se3183138701204633190_a_b_b] :
      ( ( member7431159781899395911_a_b_b @ C2 @ ( sup_su5350426443513267090_a_b_b @ A3 @ B3 ) )
      = ( ( member7431159781899395911_a_b_b @ C2 @ A3 )
        | ( member7431159781899395911_a_b_b @ C2 @ B3 ) ) ) ).

% Un_iff
thf(fact_173_Un__iff,axiom,
    ! [C2: a,A3: set_a,B3: set_a] :
      ( ( member_a @ C2 @ ( sup_sup_set_a @ A3 @ B3 ) )
      = ( ( member_a @ C2 @ A3 )
        | ( member_a @ C2 @ B3 ) ) ) ).

% Un_iff
thf(fact_174_Un__iff,axiom,
    ! [C2: set_b,A3: set_set_b,B3: set_set_b] :
      ( ( member_set_b @ C2 @ ( sup_sup_set_set_b @ A3 @ B3 ) )
      = ( ( member_set_b @ C2 @ A3 )
        | ( member_set_b @ C2 @ B3 ) ) ) ).

% Un_iff
thf(fact_175_Un__iff,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ ( sup_su2887895092731772380_a_b_b @ A3 @ B3 ) )
      = ( ( member4380921116106875537_a_b_b @ C2 @ A3 )
        | ( member4380921116106875537_a_b_b @ C2 @ B3 ) ) ) ).

% Un_iff
thf(fact_176_Un__iff,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ ( sup_sup_set_b @ A3 @ B3 ) )
      = ( ( member_b @ C2 @ A3 )
        | ( member_b @ C2 @ B3 ) ) ) ).

% Un_iff
thf(fact_177_UnCI,axiom,
    ! [C2: a > a,B3: set_a_a,A3: set_a_a] :
      ( ( ~ ( member_a_a @ C2 @ B3 )
       => ( member_a_a @ C2 @ A3 ) )
     => ( member_a_a @ C2 @ ( sup_sup_set_a_a @ A3 @ B3 ) ) ) ).

% UnCI
thf(fact_178_UnCI,axiom,
    ! [C2: dtree_a_b,B3: set_dtree_a_b,A3: set_dtree_a_b] :
      ( ( ~ ( member_dtree_a_b @ C2 @ B3 )
       => ( member_dtree_a_b @ C2 @ A3 ) )
     => ( member_dtree_a_b @ C2 @ ( sup_su8994539500306794332ee_a_b @ A3 @ B3 ) ) ) ).

% UnCI
thf(fact_179_UnCI,axiom,
    ! [C2: set_Pr3012420139608375472_a_b_b,B3: set_se3183138701204633190_a_b_b,A3: set_se3183138701204633190_a_b_b] :
      ( ( ~ ( member7431159781899395911_a_b_b @ C2 @ B3 )
       => ( member7431159781899395911_a_b_b @ C2 @ A3 ) )
     => ( member7431159781899395911_a_b_b @ C2 @ ( sup_su5350426443513267090_a_b_b @ A3 @ B3 ) ) ) ).

% UnCI
thf(fact_180_UnCI,axiom,
    ! [C2: a,B3: set_a,A3: set_a] :
      ( ( ~ ( member_a @ C2 @ B3 )
       => ( member_a @ C2 @ A3 ) )
     => ( member_a @ C2 @ ( sup_sup_set_a @ A3 @ B3 ) ) ) ).

% UnCI
thf(fact_181_UnCI,axiom,
    ! [C2: set_b,B3: set_set_b,A3: set_set_b] :
      ( ( ~ ( member_set_b @ C2 @ B3 )
       => ( member_set_b @ C2 @ A3 ) )
     => ( member_set_b @ C2 @ ( sup_sup_set_set_b @ A3 @ B3 ) ) ) ).

% UnCI
thf(fact_182_UnCI,axiom,
    ! [C2: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( ~ ( member4380921116106875537_a_b_b @ C2 @ B3 )
       => ( member4380921116106875537_a_b_b @ C2 @ A3 ) )
     => ( member4380921116106875537_a_b_b @ C2 @ ( sup_su2887895092731772380_a_b_b @ A3 @ B3 ) ) ) ).

% UnCI
thf(fact_183_UnCI,axiom,
    ! [C2: b,B3: set_b,A3: set_b] :
      ( ( ~ ( member_b @ C2 @ B3 )
       => ( member_b @ C2 @ A3 ) )
     => ( member_b @ C2 @ ( sup_sup_set_b @ A3 @ B3 ) ) ) ).

% UnCI
thf(fact_184_case__prodI2,axiom,
    ! [P2: produc1083523234014712191_b_b_a,C2: dtree_a_b > ( b > a ) > $o] :
      ( ! [A5: dtree_a_b,B5: b > a] :
          ( ( P2
            = ( produc1993688775741047735_b_b_a @ A5 @ B5 ) )
         => ( C2 @ A5 @ B5 ) )
     => ( produc1457303364454389452_b_a_o @ C2 @ P2 ) ) ).

% case_prodI2
thf(fact_185_case__prodI2,axiom,
    ! [P2: produc5177672665255943253ee_a_b,C2: dtree_a_b > dtree_a_b > $o] :
      ( ! [A5: dtree_a_b,B5: dtree_a_b] :
          ( ( P2
            = ( produc7805419539522982029ee_a_b @ A5 @ B5 ) )
         => ( C2 @ A5 @ B5 ) )
     => ( produc3512921791960644726_a_b_o @ C2 @ P2 ) ) ).

% case_prodI2
thf(fact_186_case__prodI2,axiom,
    ! [P2: produc4558475209616630778_a_b_b,C2: dtree_a_b > b > $o] :
      ( ! [A5: dtree_a_b,B5: b] :
          ( ( P2
            = ( produc331601717337510060_a_b_b @ A5 @ B5 ) )
         => ( C2 @ A5 @ B5 ) )
     => ( produc1325217093046185599_b_b_o @ C2 @ P2 ) ) ).

% case_prodI2
thf(fact_187_case__prodI,axiom,
    ! [F: dtree_a_b > ( b > a ) > $o,A2: dtree_a_b,B2: b > a] :
      ( ( F @ A2 @ B2 )
     => ( produc1457303364454389452_b_a_o @ F @ ( produc1993688775741047735_b_b_a @ A2 @ B2 ) ) ) ).

% case_prodI
thf(fact_188_case__prodI,axiom,
    ! [F: dtree_a_b > dtree_a_b > $o,A2: dtree_a_b,B2: dtree_a_b] :
      ( ( F @ A2 @ B2 )
     => ( produc3512921791960644726_a_b_o @ F @ ( produc7805419539522982029ee_a_b @ A2 @ B2 ) ) ) ).

% case_prodI
thf(fact_189_case__prodI,axiom,
    ! [F: dtree_a_b > b > $o,A2: dtree_a_b,B2: b] :
      ( ( F @ A2 @ B2 )
     => ( produc1325217093046185599_b_b_o @ F @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) ) ) ).

% case_prodI
thf(fact_190_mem__case__prodI2,axiom,
    ! [P2: produc4558475209616630778_a_b_b,Z2: b,C2: dtree_a_b > b > set_b] :
      ( ! [A5: dtree_a_b,B5: b] :
          ( ( P2
            = ( produc331601717337510060_a_b_b @ A5 @ B5 ) )
         => ( member_b @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member_b @ Z2 @ ( produc5617419908695543622_set_b @ C2 @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_191_mem__case__prodI2,axiom,
    ! [P2: produc4558475209616630778_a_b_b,Z2: produc4558475209616630778_a_b_b,C2: dtree_a_b > b > set_Pr3012420139608375472_a_b_b] :
      ( ! [A5: dtree_a_b,B5: b] :
          ( ( P2
            = ( produc331601717337510060_a_b_b @ A5 @ B5 ) )
         => ( member4380921116106875537_a_b_b @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member4380921116106875537_a_b_b @ Z2 @ ( produc2559767781221151625_a_b_b @ C2 @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_192_mem__case__prodI2,axiom,
    ! [P2: produc4558475209616630778_a_b_b,Z2: a,C2: dtree_a_b > b > set_a] :
      ( ! [A5: dtree_a_b,B5: b] :
          ( ( P2
            = ( produc331601717337510060_a_b_b @ A5 @ B5 ) )
         => ( member_a @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member_a @ Z2 @ ( produc5617419904392314821_set_a @ C2 @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_193_mem__case__prodI2,axiom,
    ! [P2: produc4558475209616630778_a_b_b,Z2: set_b,C2: dtree_a_b > b > set_set_b] :
      ( ! [A5: dtree_a_b,B5: b] :
          ( ( P2
            = ( produc331601717337510060_a_b_b @ A5 @ B5 ) )
         => ( member_set_b @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member_set_b @ Z2 @ ( produc3243052509580634150_set_b @ C2 @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_194_mem__case__prodI2,axiom,
    ! [P2: produc4558475209616630778_a_b_b,Z2: a > a,C2: dtree_a_b > b > set_a_a] :
      ( ! [A5: dtree_a_b,B5: b] :
          ( ( P2
            = ( produc331601717337510060_a_b_b @ A5 @ B5 ) )
         => ( member_a_a @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member_a_a @ Z2 @ ( produc3604202691690672244et_a_a @ C2 @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_195_mem__case__prodI2,axiom,
    ! [P2: produc4558475209616630778_a_b_b,Z2: dtree_a_b,C2: dtree_a_b > b > set_dtree_a_b] :
      ( ! [A5: dtree_a_b,B5: b] :
          ( ( P2
            = ( produc331601717337510060_a_b_b @ A5 @ B5 ) )
         => ( member_dtree_a_b @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member_dtree_a_b @ Z2 @ ( produc2854446210517299721ee_a_b @ C2 @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_196_mem__case__prodI2,axiom,
    ! [P2: produc1083523234014712191_b_b_a,Z2: b,C2: dtree_a_b > ( b > a ) > set_b] :
      ( ! [A5: dtree_a_b,B5: b > a] :
          ( ( P2
            = ( produc1993688775741047735_b_b_a @ A5 @ B5 ) )
         => ( member_b @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member_b @ Z2 @ ( produc8900335307428211987_set_b @ C2 @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_197_mem__case__prodI2,axiom,
    ! [P2: produc1083523234014712191_b_b_a,Z2: a,C2: dtree_a_b > ( b > a ) > set_a] :
      ( ! [A5: dtree_a_b,B5: b > a] :
          ( ( P2
            = ( produc1993688775741047735_b_b_a @ A5 @ B5 ) )
         => ( member_a @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member_a @ Z2 @ ( produc8900335303124983186_set_a @ C2 @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_198_mem__case__prodI2,axiom,
    ! [P2: produc5177672665255943253ee_a_b,Z2: b,C2: dtree_a_b > dtree_a_b > set_b] :
      ( ! [A5: dtree_a_b,B5: dtree_a_b] :
          ( ( P2
            = ( produc7805419539522982029ee_a_b @ A5 @ B5 ) )
         => ( member_b @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member_b @ Z2 @ ( produc5055721716539340221_set_b @ C2 @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_199_mem__case__prodI2,axiom,
    ! [P2: produc5177672665255943253ee_a_b,Z2: a,C2: dtree_a_b > dtree_a_b > set_a] :
      ( ! [A5: dtree_a_b,B5: dtree_a_b] :
          ( ( P2
            = ( produc7805419539522982029ee_a_b @ A5 @ B5 ) )
         => ( member_a @ Z2 @ ( C2 @ A5 @ B5 ) ) )
     => ( member_a @ Z2 @ ( produc5055721712236111420_set_a @ C2 @ P2 ) ) ) ).

% mem_case_prodI2
thf(fact_200_mem__case__prodI,axiom,
    ! [Z2: b,C2: dtree_a_b > b > set_b,A2: dtree_a_b,B2: b] :
      ( ( member_b @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member_b @ Z2 @ ( produc5617419908695543622_set_b @ C2 @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_201_mem__case__prodI,axiom,
    ! [Z2: produc4558475209616630778_a_b_b,C2: dtree_a_b > b > set_Pr3012420139608375472_a_b_b,A2: dtree_a_b,B2: b] :
      ( ( member4380921116106875537_a_b_b @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member4380921116106875537_a_b_b @ Z2 @ ( produc2559767781221151625_a_b_b @ C2 @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_202_mem__case__prodI,axiom,
    ! [Z2: a,C2: dtree_a_b > b > set_a,A2: dtree_a_b,B2: b] :
      ( ( member_a @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member_a @ Z2 @ ( produc5617419904392314821_set_a @ C2 @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_203_mem__case__prodI,axiom,
    ! [Z2: set_b,C2: dtree_a_b > b > set_set_b,A2: dtree_a_b,B2: b] :
      ( ( member_set_b @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member_set_b @ Z2 @ ( produc3243052509580634150_set_b @ C2 @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_204_mem__case__prodI,axiom,
    ! [Z2: a > a,C2: dtree_a_b > b > set_a_a,A2: dtree_a_b,B2: b] :
      ( ( member_a_a @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member_a_a @ Z2 @ ( produc3604202691690672244et_a_a @ C2 @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_205_mem__case__prodI,axiom,
    ! [Z2: dtree_a_b,C2: dtree_a_b > b > set_dtree_a_b,A2: dtree_a_b,B2: b] :
      ( ( member_dtree_a_b @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member_dtree_a_b @ Z2 @ ( produc2854446210517299721ee_a_b @ C2 @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_206_mem__case__prodI,axiom,
    ! [Z2: b,C2: dtree_a_b > ( b > a ) > set_b,A2: dtree_a_b,B2: b > a] :
      ( ( member_b @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member_b @ Z2 @ ( produc8900335307428211987_set_b @ C2 @ ( produc1993688775741047735_b_b_a @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_207_mem__case__prodI,axiom,
    ! [Z2: a,C2: dtree_a_b > ( b > a ) > set_a,A2: dtree_a_b,B2: b > a] :
      ( ( member_a @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member_a @ Z2 @ ( produc8900335303124983186_set_a @ C2 @ ( produc1993688775741047735_b_b_a @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_208_mem__case__prodI,axiom,
    ! [Z2: b,C2: dtree_a_b > dtree_a_b > set_b,A2: dtree_a_b,B2: dtree_a_b] :
      ( ( member_b @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member_b @ Z2 @ ( produc5055721716539340221_set_b @ C2 @ ( produc7805419539522982029ee_a_b @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_209_mem__case__prodI,axiom,
    ! [Z2: a,C2: dtree_a_b > dtree_a_b > set_a,A2: dtree_a_b,B2: dtree_a_b] :
      ( ( member_a @ Z2 @ ( C2 @ A2 @ B2 ) )
     => ( member_a @ Z2 @ ( produc5055721712236111420_set_a @ C2 @ ( produc7805419539522982029ee_a_b @ A2 @ B2 ) ) ) ) ).

% mem_case_prodI
thf(fact_210_sup__bot_Oright__neutral,axiom,
    ! [A2: set_set_b] :
      ( ( sup_sup_set_set_b @ A2 @ bot_bot_set_set_b )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_211_sup__bot_Oright__neutral,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_212_sup__bot_Oright__neutral,axiom,
    ! [A2: produc4558475209616630778_a_b_b > $o] :
      ( ( sup_su4209747780764569001_b_b_o @ A2 @ bot_bo7321339186913516097_b_b_o )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_213_sup__bot_Oright__neutral,axiom,
    ! [A2: dtree_a_b > b > $o] :
      ( ( sup_su6709851091347060739_b_b_o @ A2 @ bot_bo471016548657204587_b_b_o )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_214_sup__bot_Oright__neutral,axiom,
    ! [A2: b > $o] :
      ( ( sup_sup_b_o @ A2 @ bot_bot_b_o )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_215_sup__bot_Oright__neutral,axiom,
    ! [A2: set_b] :
      ( ( sup_sup_set_b @ A2 @ bot_bot_set_b )
      = A2 ) ).

% sup_bot.right_neutral
thf(fact_216_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: set_set_b,B2: set_set_b] :
      ( ( bot_bot_set_set_b
        = ( sup_sup_set_set_b @ A2 @ B2 ) )
      = ( ( A2 = bot_bot_set_set_b )
        & ( B2 = bot_bot_set_set_b ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_217_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ A2 @ B2 ) )
      = ( ( A2 = bot_bot_set_a )
        & ( B2 = bot_bot_set_a ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_218_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: produc4558475209616630778_a_b_b > $o,B2: produc4558475209616630778_a_b_b > $o] :
      ( ( bot_bo7321339186913516097_b_b_o
        = ( sup_su4209747780764569001_b_b_o @ A2 @ B2 ) )
      = ( ( A2 = bot_bo7321339186913516097_b_b_o )
        & ( B2 = bot_bo7321339186913516097_b_b_o ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_219_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: dtree_a_b > b > $o,B2: dtree_a_b > b > $o] :
      ( ( bot_bo471016548657204587_b_b_o
        = ( sup_su6709851091347060739_b_b_o @ A2 @ B2 ) )
      = ( ( A2 = bot_bo471016548657204587_b_b_o )
        & ( B2 = bot_bo471016548657204587_b_b_o ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_220_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: b > $o,B2: b > $o] :
      ( ( bot_bot_b_o
        = ( sup_sup_b_o @ A2 @ B2 ) )
      = ( ( A2 = bot_bot_b_o )
        & ( B2 = bot_bot_b_o ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_221_sup__bot_Oneutr__eq__iff,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( bot_bot_set_b
        = ( sup_sup_set_b @ A2 @ B2 ) )
      = ( ( A2 = bot_bot_set_b )
        & ( B2 = bot_bot_set_b ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_222_sup__bot_Oleft__neutral,axiom,
    ! [A2: set_set_b] :
      ( ( sup_sup_set_set_b @ bot_bot_set_set_b @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_223_sup__bot_Oleft__neutral,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_224_sup__bot_Oleft__neutral,axiom,
    ! [A2: produc4558475209616630778_a_b_b > $o] :
      ( ( sup_su4209747780764569001_b_b_o @ bot_bo7321339186913516097_b_b_o @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_225_sup__bot_Oleft__neutral,axiom,
    ! [A2: dtree_a_b > b > $o] :
      ( ( sup_su6709851091347060739_b_b_o @ bot_bo471016548657204587_b_b_o @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_226_sup__bot_Oleft__neutral,axiom,
    ! [A2: b > $o] :
      ( ( sup_sup_b_o @ bot_bot_b_o @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_227_sup__bot_Oleft__neutral,axiom,
    ! [A2: set_b] :
      ( ( sup_sup_set_b @ bot_bot_set_b @ A2 )
      = A2 ) ).

% sup_bot.left_neutral
thf(fact_228_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: set_set_b,B2: set_set_b] :
      ( ( ( sup_sup_set_set_b @ A2 @ B2 )
        = bot_bot_set_set_b )
      = ( ( A2 = bot_bot_set_set_b )
        & ( B2 = bot_bot_set_set_b ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_229_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( sup_sup_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ( A2 = bot_bot_set_a )
        & ( B2 = bot_bot_set_a ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_230_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: produc4558475209616630778_a_b_b > $o,B2: produc4558475209616630778_a_b_b > $o] :
      ( ( ( sup_su4209747780764569001_b_b_o @ A2 @ B2 )
        = bot_bo7321339186913516097_b_b_o )
      = ( ( A2 = bot_bo7321339186913516097_b_b_o )
        & ( B2 = bot_bo7321339186913516097_b_b_o ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_231_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: dtree_a_b > b > $o,B2: dtree_a_b > b > $o] :
      ( ( ( sup_su6709851091347060739_b_b_o @ A2 @ B2 )
        = bot_bo471016548657204587_b_b_o )
      = ( ( A2 = bot_bo471016548657204587_b_b_o )
        & ( B2 = bot_bo471016548657204587_b_b_o ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_232_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: b > $o,B2: b > $o] :
      ( ( ( sup_sup_b_o @ A2 @ B2 )
        = bot_bot_b_o )
      = ( ( A2 = bot_bot_b_o )
        & ( B2 = bot_bot_b_o ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_233_sup__bot_Oeq__neutr__iff,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( ( sup_sup_set_b @ A2 @ B2 )
        = bot_bot_set_b )
      = ( ( A2 = bot_bot_set_b )
        & ( B2 = bot_bot_set_b ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_234_sup__eq__bot__iff,axiom,
    ! [X4: set_set_b,Y: set_set_b] :
      ( ( ( sup_sup_set_set_b @ X4 @ Y )
        = bot_bot_set_set_b )
      = ( ( X4 = bot_bot_set_set_b )
        & ( Y = bot_bot_set_set_b ) ) ) ).

% sup_eq_bot_iff
thf(fact_235_sup__eq__bot__iff,axiom,
    ! [X4: set_a,Y: set_a] :
      ( ( ( sup_sup_set_a @ X4 @ Y )
        = bot_bot_set_a )
      = ( ( X4 = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% sup_eq_bot_iff
thf(fact_236_sup__eq__bot__iff,axiom,
    ! [X4: produc4558475209616630778_a_b_b > $o,Y: produc4558475209616630778_a_b_b > $o] :
      ( ( ( sup_su4209747780764569001_b_b_o @ X4 @ Y )
        = bot_bo7321339186913516097_b_b_o )
      = ( ( X4 = bot_bo7321339186913516097_b_b_o )
        & ( Y = bot_bo7321339186913516097_b_b_o ) ) ) ).

% sup_eq_bot_iff
thf(fact_237_sup__eq__bot__iff,axiom,
    ! [X4: dtree_a_b > b > $o,Y: dtree_a_b > b > $o] :
      ( ( ( sup_su6709851091347060739_b_b_o @ X4 @ Y )
        = bot_bo471016548657204587_b_b_o )
      = ( ( X4 = bot_bo471016548657204587_b_b_o )
        & ( Y = bot_bo471016548657204587_b_b_o ) ) ) ).

% sup_eq_bot_iff
thf(fact_238_sup__eq__bot__iff,axiom,
    ! [X4: b > $o,Y: b > $o] :
      ( ( ( sup_sup_b_o @ X4 @ Y )
        = bot_bot_b_o )
      = ( ( X4 = bot_bot_b_o )
        & ( Y = bot_bot_b_o ) ) ) ).

% sup_eq_bot_iff
thf(fact_239_sup__eq__bot__iff,axiom,
    ! [X4: set_b,Y: set_b] :
      ( ( ( sup_sup_set_b @ X4 @ Y )
        = bot_bot_set_b )
      = ( ( X4 = bot_bot_set_b )
        & ( Y = bot_bot_set_b ) ) ) ).

% sup_eq_bot_iff
thf(fact_240_case__prodI2_H,axiom,
    ! [P2: produc4558475209616630778_a_b_b,C2: dtree_a_b > b > a > $o,X4: a] :
      ( ! [A5: dtree_a_b,B5: b] :
          ( ( ( produc331601717337510060_a_b_b @ A5 @ B5 )
            = P2 )
         => ( C2 @ A5 @ B5 @ X4 ) )
     => ( produc6139810021161713496_b_a_o @ C2 @ P2 @ X4 ) ) ).

% case_prodI2'
thf(fact_241__C4_C,axiom,
    ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ x2 ) @ ( insert_b @ e3 @ bot_bot_set_b ) ) ) ).

% "4"
thf(fact_242_insert_Ohyps,axiom,
    ~ ( fmembe3173364709796808819_a_b_b @ x @ xsa ) ).

% insert.hyps
thf(fact_243_bot__set__def,axiom,
    ( bot_bo3721250822024684356_a_b_b
    = ( collec1368399972772960719_a_b_b @ bot_bo7321339186913516097_b_b_o ) ) ).

% bot_set_def
thf(fact_244_bot__set__def,axiom,
    ( bot_bot_set_a
    = ( collect_a @ bot_bot_a_o ) ) ).

% bot_set_def
thf(fact_245_bot__set__def,axiom,
    ( bot_bot_set_b
    = ( collect_b @ bot_bot_b_o ) ) ).

% bot_set_def
thf(fact_246_mem__case__prodE,axiom,
    ! [Z2: b,C2: dtree_a_b > b > set_b,P2: produc4558475209616630778_a_b_b] :
      ( ( member_b @ Z2 @ ( produc5617419908695543622_set_b @ C2 @ P2 ) )
     => ~ ! [X: dtree_a_b,Y4: b] :
            ( ( P2
              = ( produc331601717337510060_a_b_b @ X @ Y4 ) )
           => ~ ( member_b @ Z2 @ ( C2 @ X @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_247_mem__case__prodE,axiom,
    ! [Z2: produc4558475209616630778_a_b_b,C2: dtree_a_b > b > set_Pr3012420139608375472_a_b_b,P2: produc4558475209616630778_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ Z2 @ ( produc2559767781221151625_a_b_b @ C2 @ P2 ) )
     => ~ ! [X: dtree_a_b,Y4: b] :
            ( ( P2
              = ( produc331601717337510060_a_b_b @ X @ Y4 ) )
           => ~ ( member4380921116106875537_a_b_b @ Z2 @ ( C2 @ X @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_248_mem__case__prodE,axiom,
    ! [Z2: a,C2: dtree_a_b > b > set_a,P2: produc4558475209616630778_a_b_b] :
      ( ( member_a @ Z2 @ ( produc5617419904392314821_set_a @ C2 @ P2 ) )
     => ~ ! [X: dtree_a_b,Y4: b] :
            ( ( P2
              = ( produc331601717337510060_a_b_b @ X @ Y4 ) )
           => ~ ( member_a @ Z2 @ ( C2 @ X @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_249_mem__case__prodE,axiom,
    ! [Z2: set_b,C2: dtree_a_b > b > set_set_b,P2: produc4558475209616630778_a_b_b] :
      ( ( member_set_b @ Z2 @ ( produc3243052509580634150_set_b @ C2 @ P2 ) )
     => ~ ! [X: dtree_a_b,Y4: b] :
            ( ( P2
              = ( produc331601717337510060_a_b_b @ X @ Y4 ) )
           => ~ ( member_set_b @ Z2 @ ( C2 @ X @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_250_mem__case__prodE,axiom,
    ! [Z2: a > a,C2: dtree_a_b > b > set_a_a,P2: produc4558475209616630778_a_b_b] :
      ( ( member_a_a @ Z2 @ ( produc3604202691690672244et_a_a @ C2 @ P2 ) )
     => ~ ! [X: dtree_a_b,Y4: b] :
            ( ( P2
              = ( produc331601717337510060_a_b_b @ X @ Y4 ) )
           => ~ ( member_a_a @ Z2 @ ( C2 @ X @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_251_mem__case__prodE,axiom,
    ! [Z2: dtree_a_b,C2: dtree_a_b > b > set_dtree_a_b,P2: produc4558475209616630778_a_b_b] :
      ( ( member_dtree_a_b @ Z2 @ ( produc2854446210517299721ee_a_b @ C2 @ P2 ) )
     => ~ ! [X: dtree_a_b,Y4: b] :
            ( ( P2
              = ( produc331601717337510060_a_b_b @ X @ Y4 ) )
           => ~ ( member_dtree_a_b @ Z2 @ ( C2 @ X @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_252_mem__case__prodE,axiom,
    ! [Z2: b,C2: dtree_a_b > ( b > a ) > set_b,P2: produc1083523234014712191_b_b_a] :
      ( ( member_b @ Z2 @ ( produc8900335307428211987_set_b @ C2 @ P2 ) )
     => ~ ! [X: dtree_a_b,Y4: b > a] :
            ( ( P2
              = ( produc1993688775741047735_b_b_a @ X @ Y4 ) )
           => ~ ( member_b @ Z2 @ ( C2 @ X @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_253_mem__case__prodE,axiom,
    ! [Z2: a,C2: dtree_a_b > ( b > a ) > set_a,P2: produc1083523234014712191_b_b_a] :
      ( ( member_a @ Z2 @ ( produc8900335303124983186_set_a @ C2 @ P2 ) )
     => ~ ! [X: dtree_a_b,Y4: b > a] :
            ( ( P2
              = ( produc1993688775741047735_b_b_a @ X @ Y4 ) )
           => ~ ( member_a @ Z2 @ ( C2 @ X @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_254_mem__case__prodE,axiom,
    ! [Z2: b,C2: dtree_a_b > dtree_a_b > set_b,P2: produc5177672665255943253ee_a_b] :
      ( ( member_b @ Z2 @ ( produc5055721716539340221_set_b @ C2 @ P2 ) )
     => ~ ! [X: dtree_a_b,Y4: dtree_a_b] :
            ( ( P2
              = ( produc7805419539522982029ee_a_b @ X @ Y4 ) )
           => ~ ( member_b @ Z2 @ ( C2 @ X @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_255_mem__case__prodE,axiom,
    ! [Z2: a,C2: dtree_a_b > dtree_a_b > set_a,P2: produc5177672665255943253ee_a_b] :
      ( ( member_a @ Z2 @ ( produc5055721712236111420_set_a @ C2 @ P2 ) )
     => ~ ! [X: dtree_a_b,Y4: dtree_a_b] :
            ( ( P2
              = ( produc7805419539522982029ee_a_b @ X @ Y4 ) )
           => ~ ( member_a @ Z2 @ ( C2 @ X @ Y4 ) ) ) ) ).

% mem_case_prodE
thf(fact_256_case__prodE,axiom,
    ! [C2: dtree_a_b > ( b > a ) > $o,P2: produc1083523234014712191_b_b_a] :
      ( ( produc1457303364454389452_b_a_o @ C2 @ P2 )
     => ~ ! [X: dtree_a_b,Y4: b > a] :
            ( ( P2
              = ( produc1993688775741047735_b_b_a @ X @ Y4 ) )
           => ~ ( C2 @ X @ Y4 ) ) ) ).

% case_prodE
thf(fact_257_case__prodE,axiom,
    ! [C2: dtree_a_b > dtree_a_b > $o,P2: produc5177672665255943253ee_a_b] :
      ( ( produc3512921791960644726_a_b_o @ C2 @ P2 )
     => ~ ! [X: dtree_a_b,Y4: dtree_a_b] :
            ( ( P2
              = ( produc7805419539522982029ee_a_b @ X @ Y4 ) )
           => ~ ( C2 @ X @ Y4 ) ) ) ).

% case_prodE
thf(fact_258_case__prodE,axiom,
    ! [C2: dtree_a_b > b > $o,P2: produc4558475209616630778_a_b_b] :
      ( ( produc1325217093046185599_b_b_o @ C2 @ P2 )
     => ~ ! [X: dtree_a_b,Y4: b] :
            ( ( P2
              = ( produc331601717337510060_a_b_b @ X @ Y4 ) )
           => ~ ( C2 @ X @ Y4 ) ) ) ).

% case_prodE
thf(fact_259_case__prodD,axiom,
    ! [F: dtree_a_b > ( b > a ) > $o,A2: dtree_a_b,B2: b > a] :
      ( ( produc1457303364454389452_b_a_o @ F @ ( produc1993688775741047735_b_b_a @ A2 @ B2 ) )
     => ( F @ A2 @ B2 ) ) ).

% case_prodD
thf(fact_260_case__prodD,axiom,
    ! [F: dtree_a_b > dtree_a_b > $o,A2: dtree_a_b,B2: dtree_a_b] :
      ( ( produc3512921791960644726_a_b_o @ F @ ( produc7805419539522982029ee_a_b @ A2 @ B2 ) )
     => ( F @ A2 @ B2 ) ) ).

% case_prodD
thf(fact_261_case__prodD,axiom,
    ! [F: dtree_a_b > b > $o,A2: dtree_a_b,B2: b] :
      ( ( produc1325217093046185599_b_b_o @ F @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) )
     => ( F @ A2 @ B2 ) ) ).

% case_prodD
thf(fact_262_sup__set__def,axiom,
    ( sup_sup_set_a_a
    = ( ^ [A6: set_a_a,B6: set_a_a] :
          ( collect_a_a
          @ ( sup_sup_a_a_o
            @ ^ [X3: a > a] : ( member_a_a @ X3 @ A6 )
            @ ^ [X3: a > a] : ( member_a_a @ X3 @ B6 ) ) ) ) ) ).

% sup_set_def
thf(fact_263_sup__set__def,axiom,
    ( sup_su8994539500306794332ee_a_b
    = ( ^ [A6: set_dtree_a_b,B6: set_dtree_a_b] :
          ( collect_dtree_a_b
          @ ( sup_sup_dtree_a_b_o
            @ ^ [X3: dtree_a_b] : ( member_dtree_a_b @ X3 @ A6 )
            @ ^ [X3: dtree_a_b] : ( member_dtree_a_b @ X3 @ B6 ) ) ) ) ) ).

% sup_set_def
thf(fact_264_sup__set__def,axiom,
    ( sup_su5350426443513267090_a_b_b
    = ( ^ [A6: set_se3183138701204633190_a_b_b,B6: set_se3183138701204633190_a_b_b] :
          ( collec5997417077270831749_a_b_b
          @ ( sup_su5450082668191030131_b_b_o
            @ ^ [X3: set_Pr3012420139608375472_a_b_b] : ( member7431159781899395911_a_b_b @ X3 @ A6 )
            @ ^ [X3: set_Pr3012420139608375472_a_b_b] : ( member7431159781899395911_a_b_b @ X3 @ B6 ) ) ) ) ) ).

% sup_set_def
thf(fact_265_sup__set__def,axiom,
    ( sup_sup_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( collect_a
          @ ( sup_sup_a_o
            @ ^ [X3: a] : ( member_a @ X3 @ A6 )
            @ ^ [X3: a] : ( member_a @ X3 @ B6 ) ) ) ) ) ).

% sup_set_def
thf(fact_266_sup__set__def,axiom,
    ( sup_sup_set_set_b
    = ( ^ [A6: set_set_b,B6: set_set_b] :
          ( collect_set_b
          @ ( sup_sup_set_b_o
            @ ^ [X3: set_b] : ( member_set_b @ X3 @ A6 )
            @ ^ [X3: set_b] : ( member_set_b @ X3 @ B6 ) ) ) ) ) ).

% sup_set_def
thf(fact_267_sup__set__def,axiom,
    ( sup_su2887895092731772380_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
          ( collec1368399972772960719_a_b_b
          @ ( sup_su4209747780764569001_b_b_o
            @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ A6 )
            @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ B6 ) ) ) ) ) ).

% sup_set_def
thf(fact_268_sup__set__def,axiom,
    ( sup_sup_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( collect_b
          @ ( sup_sup_b_o
            @ ^ [X3: b] : ( member_b @ X3 @ A6 )
            @ ^ [X3: b] : ( member_b @ X3 @ B6 ) ) ) ) ) ).

% sup_set_def
thf(fact_269_case__prodE_H,axiom,
    ! [C2: dtree_a_b > b > a > $o,P2: produc4558475209616630778_a_b_b,Z2: a] :
      ( ( produc6139810021161713496_b_a_o @ C2 @ P2 @ Z2 )
     => ~ ! [X: dtree_a_b,Y4: b] :
            ( ( P2
              = ( produc331601717337510060_a_b_b @ X @ Y4 ) )
           => ~ ( C2 @ X @ Y4 @ Z2 ) ) ) ).

% case_prodE'
thf(fact_270_case__prodD_H,axiom,
    ! [R3: dtree_a_b > b > a > $o,A2: dtree_a_b,B2: b,C2: a] :
      ( ( produc6139810021161713496_b_a_o @ R3 @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) @ C2 )
     => ( R3 @ A2 @ B2 @ C2 ) ) ).

% case_prodD'
thf(fact_271_dtail_Ocases,axiom,
    ! [X4: produc1083523234014712191_b_b_a] :
      ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b,Def2: b > a] :
          ( X4
         != ( produc1993688775741047735_b_b_a @ ( node_a_b @ R @ Xs ) @ Def2 ) ) ).

% dtail.cases
thf(fact_272_is__subtree_Ocases,axiom,
    ! [X4: produc5177672665255943253ee_a_b] :
      ~ ! [X: dtree_a_b,R: a,Xs: fset_P5281107635120001194_a_b_b] :
          ( X4
         != ( produc7805419539522982029ee_a_b @ X @ ( node_a_b @ R @ Xs ) ) ) ).

% is_subtree.cases
thf(fact_273_singleton__uneq,axiom,
    ! [R2: a,T: dtree_a_b,E4: b] :
      ( ( node_a_b @ R2 @ ( finser8437519239679886002_a_b_b @ ( produc331601717337510060_a_b_b @ T @ E4 ) @ bot_bo2895716411488905534_a_b_b ) )
     != T ) ).

% singleton_uneq
thf(fact_274_Pair__inject,axiom,
    ! [A2: dtree_a_b,B2: b > a,A4: dtree_a_b,B4: b > a] :
      ( ( ( produc1993688775741047735_b_b_a @ A2 @ B2 )
        = ( produc1993688775741047735_b_b_a @ A4 @ B4 ) )
     => ~ ( ( A2 = A4 )
         => ( B2 != B4 ) ) ) ).

% Pair_inject
thf(fact_275_Pair__inject,axiom,
    ! [A2: dtree_a_b,B2: dtree_a_b,A4: dtree_a_b,B4: dtree_a_b] :
      ( ( ( produc7805419539522982029ee_a_b @ A2 @ B2 )
        = ( produc7805419539522982029ee_a_b @ A4 @ B4 ) )
     => ~ ( ( A2 = A4 )
         => ( B2 != B4 ) ) ) ).

% Pair_inject
thf(fact_276_Pair__inject,axiom,
    ! [A2: dtree_a_b,B2: b,A4: dtree_a_b,B4: b] :
      ( ( ( produc331601717337510060_a_b_b @ A2 @ B2 )
        = ( produc331601717337510060_a_b_b @ A4 @ B4 ) )
     => ~ ( ( A2 = A4 )
         => ( B2 != B4 ) ) ) ).

% Pair_inject
thf(fact_277_prod__cases,axiom,
    ! [P: produc1083523234014712191_b_b_a > $o,P2: produc1083523234014712191_b_b_a] :
      ( ! [A5: dtree_a_b,B5: b > a] : ( P @ ( produc1993688775741047735_b_b_a @ A5 @ B5 ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_278_prod__cases,axiom,
    ! [P: produc5177672665255943253ee_a_b > $o,P2: produc5177672665255943253ee_a_b] :
      ( ! [A5: dtree_a_b,B5: dtree_a_b] : ( P @ ( produc7805419539522982029ee_a_b @ A5 @ B5 ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_279_prod__cases,axiom,
    ! [P: produc4558475209616630778_a_b_b > $o,P2: produc4558475209616630778_a_b_b] :
      ( ! [A5: dtree_a_b,B5: b] : ( P @ ( produc331601717337510060_a_b_b @ A5 @ B5 ) )
     => ( P @ P2 ) ) ).

% prod_cases
thf(fact_280_surj__pair,axiom,
    ! [P2: produc1083523234014712191_b_b_a] :
    ? [X: dtree_a_b,Y4: b > a] :
      ( P2
      = ( produc1993688775741047735_b_b_a @ X @ Y4 ) ) ).

% surj_pair
thf(fact_281_surj__pair,axiom,
    ! [P2: produc5177672665255943253ee_a_b] :
    ? [X: dtree_a_b,Y4: dtree_a_b] :
      ( P2
      = ( produc7805419539522982029ee_a_b @ X @ Y4 ) ) ).

% surj_pair
thf(fact_282_surj__pair,axiom,
    ! [P2: produc4558475209616630778_a_b_b] :
    ? [X: dtree_a_b,Y4: b] :
      ( P2
      = ( produc331601717337510060_a_b_b @ X @ Y4 ) ) ).

% surj_pair
thf(fact_283_old_Oprod_Oexhaust,axiom,
    ! [Y: produc1083523234014712191_b_b_a] :
      ~ ! [A5: dtree_a_b,B5: b > a] :
          ( Y
         != ( produc1993688775741047735_b_b_a @ A5 @ B5 ) ) ).

% old.prod.exhaust
thf(fact_284_old_Oprod_Oexhaust,axiom,
    ! [Y: produc5177672665255943253ee_a_b] :
      ~ ! [A5: dtree_a_b,B5: dtree_a_b] :
          ( Y
         != ( produc7805419539522982029ee_a_b @ A5 @ B5 ) ) ).

% old.prod.exhaust
thf(fact_285_old_Oprod_Oexhaust,axiom,
    ! [Y: produc4558475209616630778_a_b_b] :
      ~ ! [A5: dtree_a_b,B5: b] :
          ( Y
         != ( produc331601717337510060_a_b_b @ A5 @ B5 ) ) ).

% old.prod.exhaust
thf(fact_286_ex__in__conv,axiom,
    ! [A3: set_a_a] :
      ( ( ? [X3: a > a] : ( member_a_a @ X3 @ A3 ) )
      = ( A3 != bot_bot_set_a_a ) ) ).

% ex_in_conv
thf(fact_287_ex__in__conv,axiom,
    ! [A3: set_dtree_a_b] :
      ( ( ? [X3: dtree_a_b] : ( member_dtree_a_b @ X3 @ A3 ) )
      = ( A3 != bot_bo8730652382759064772ee_a_b ) ) ).

% ex_in_conv
thf(fact_288_ex__in__conv,axiom,
    ! [A3: set_set_b] :
      ( ( ? [X3: set_b] : ( member_set_b @ X3 @ A3 ) )
      = ( A3 != bot_bot_set_set_b ) ) ).

% ex_in_conv
thf(fact_289_ex__in__conv,axiom,
    ! [A3: set_se3183138701204633190_a_b_b] :
      ( ( ? [X3: set_Pr3012420139608375472_a_b_b] : ( member7431159781899395911_a_b_b @ X3 @ A3 ) )
      = ( A3 != bot_bo2537099559385417978_a_b_b ) ) ).

% ex_in_conv
thf(fact_290_ex__in__conv,axiom,
    ! [A3: set_a] :
      ( ( ? [X3: a] : ( member_a @ X3 @ A3 ) )
      = ( A3 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_291_ex__in__conv,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b] :
      ( ( ? [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ A3 ) )
      = ( A3 != bot_bo3721250822024684356_a_b_b ) ) ).

% ex_in_conv
thf(fact_292_ex__in__conv,axiom,
    ! [A3: set_b] :
      ( ( ? [X3: b] : ( member_b @ X3 @ A3 ) )
      = ( A3 != bot_bot_set_b ) ) ).

% ex_in_conv
thf(fact_293_equals0I,axiom,
    ! [A3: set_a_a] :
      ( ! [Y4: a > a] :
          ~ ( member_a_a @ Y4 @ A3 )
     => ( A3 = bot_bot_set_a_a ) ) ).

% equals0I
thf(fact_294_equals0I,axiom,
    ! [A3: set_dtree_a_b] :
      ( ! [Y4: dtree_a_b] :
          ~ ( member_dtree_a_b @ Y4 @ A3 )
     => ( A3 = bot_bo8730652382759064772ee_a_b ) ) ).

% equals0I
thf(fact_295_equals0I,axiom,
    ! [A3: set_set_b] :
      ( ! [Y4: set_b] :
          ~ ( member_set_b @ Y4 @ A3 )
     => ( A3 = bot_bot_set_set_b ) ) ).

% equals0I
thf(fact_296_equals0I,axiom,
    ! [A3: set_se3183138701204633190_a_b_b] :
      ( ! [Y4: set_Pr3012420139608375472_a_b_b] :
          ~ ( member7431159781899395911_a_b_b @ Y4 @ A3 )
     => ( A3 = bot_bo2537099559385417978_a_b_b ) ) ).

% equals0I
thf(fact_297_equals0I,axiom,
    ! [A3: set_a] :
      ( ! [Y4: a] :
          ~ ( member_a @ Y4 @ A3 )
     => ( A3 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_298_equals0I,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b] :
      ( ! [Y4: produc4558475209616630778_a_b_b] :
          ~ ( member4380921116106875537_a_b_b @ Y4 @ A3 )
     => ( A3 = bot_bo3721250822024684356_a_b_b ) ) ).

% equals0I
thf(fact_299_equals0I,axiom,
    ! [A3: set_b] :
      ( ! [Y4: b] :
          ~ ( member_b @ Y4 @ A3 )
     => ( A3 = bot_bot_set_b ) ) ).

% equals0I
thf(fact_300_equals0D,axiom,
    ! [A3: set_a_a,A2: a > a] :
      ( ( A3 = bot_bot_set_a_a )
     => ~ ( member_a_a @ A2 @ A3 ) ) ).

% equals0D
thf(fact_301_equals0D,axiom,
    ! [A3: set_dtree_a_b,A2: dtree_a_b] :
      ( ( A3 = bot_bo8730652382759064772ee_a_b )
     => ~ ( member_dtree_a_b @ A2 @ A3 ) ) ).

% equals0D
thf(fact_302_equals0D,axiom,
    ! [A3: set_set_b,A2: set_b] :
      ( ( A3 = bot_bot_set_set_b )
     => ~ ( member_set_b @ A2 @ A3 ) ) ).

% equals0D
thf(fact_303_equals0D,axiom,
    ! [A3: set_se3183138701204633190_a_b_b,A2: set_Pr3012420139608375472_a_b_b] :
      ( ( A3 = bot_bo2537099559385417978_a_b_b )
     => ~ ( member7431159781899395911_a_b_b @ A2 @ A3 ) ) ).

% equals0D
thf(fact_304_equals0D,axiom,
    ! [A3: set_a,A2: a] :
      ( ( A3 = bot_bot_set_a )
     => ~ ( member_a @ A2 @ A3 ) ) ).

% equals0D
thf(fact_305_equals0D,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,A2: produc4558475209616630778_a_b_b] :
      ( ( A3 = bot_bo3721250822024684356_a_b_b )
     => ~ ( member4380921116106875537_a_b_b @ A2 @ A3 ) ) ).

% equals0D
thf(fact_306_equals0D,axiom,
    ! [A3: set_b,A2: b] :
      ( ( A3 = bot_bot_set_b )
     => ~ ( member_b @ A2 @ A3 ) ) ).

% equals0D
thf(fact_307_emptyE,axiom,
    ! [A2: a > a] :
      ~ ( member_a_a @ A2 @ bot_bot_set_a_a ) ).

% emptyE
thf(fact_308_emptyE,axiom,
    ! [A2: dtree_a_b] :
      ~ ( member_dtree_a_b @ A2 @ bot_bo8730652382759064772ee_a_b ) ).

% emptyE
thf(fact_309_emptyE,axiom,
    ! [A2: set_b] :
      ~ ( member_set_b @ A2 @ bot_bot_set_set_b ) ).

% emptyE
thf(fact_310_emptyE,axiom,
    ! [A2: set_Pr3012420139608375472_a_b_b] :
      ~ ( member7431159781899395911_a_b_b @ A2 @ bot_bo2537099559385417978_a_b_b ) ).

% emptyE
thf(fact_311_emptyE,axiom,
    ! [A2: a] :
      ~ ( member_a @ A2 @ bot_bot_set_a ) ).

% emptyE
thf(fact_312_emptyE,axiom,
    ! [A2: produc4558475209616630778_a_b_b] :
      ~ ( member4380921116106875537_a_b_b @ A2 @ bot_bo3721250822024684356_a_b_b ) ).

% emptyE
thf(fact_313_emptyE,axiom,
    ! [A2: b] :
      ~ ( member_b @ A2 @ bot_bot_set_b ) ).

% emptyE
thf(fact_314_mk__disjoint__insert,axiom,
    ! [A2: a > a,A3: set_a_a] :
      ( ( member_a_a @ A2 @ A3 )
     => ? [B7: set_a_a] :
          ( ( A3
            = ( insert_a_a @ A2 @ B7 ) )
          & ~ ( member_a_a @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_315_mk__disjoint__insert,axiom,
    ! [A2: dtree_a_b,A3: set_dtree_a_b] :
      ( ( member_dtree_a_b @ A2 @ A3 )
     => ? [B7: set_dtree_a_b] :
          ( ( A3
            = ( insert_dtree_a_b @ A2 @ B7 ) )
          & ~ ( member_dtree_a_b @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_316_mk__disjoint__insert,axiom,
    ! [A2: set_b,A3: set_set_b] :
      ( ( member_set_b @ A2 @ A3 )
     => ? [B7: set_set_b] :
          ( ( A3
            = ( insert_set_b @ A2 @ B7 ) )
          & ~ ( member_set_b @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_317_mk__disjoint__insert,axiom,
    ! [A2: set_Pr3012420139608375472_a_b_b,A3: set_se3183138701204633190_a_b_b] :
      ( ( member7431159781899395911_a_b_b @ A2 @ A3 )
     => ? [B7: set_se3183138701204633190_a_b_b] :
          ( ( A3
            = ( insert8355695866607091424_a_b_b @ A2 @ B7 ) )
          & ~ ( member7431159781899395911_a_b_b @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_318_mk__disjoint__insert,axiom,
    ! [A2: a,A3: set_a] :
      ( ( member_a @ A2 @ A3 )
     => ? [B7: set_a] :
          ( ( A3
            = ( insert_a @ A2 @ B7 ) )
          & ~ ( member_a @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_319_mk__disjoint__insert,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ A2 @ A3 )
     => ? [B7: set_Pr3012420139608375472_a_b_b] :
          ( ( A3
            = ( insert1613891728210272810_a_b_b @ A2 @ B7 ) )
          & ~ ( member4380921116106875537_a_b_b @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_320_mk__disjoint__insert,axiom,
    ! [A2: b,A3: set_b] :
      ( ( member_b @ A2 @ A3 )
     => ? [B7: set_b] :
          ( ( A3
            = ( insert_b @ A2 @ B7 ) )
          & ~ ( member_b @ A2 @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_321_insert__commute,axiom,
    ! [X4: produc4558475209616630778_a_b_b,Y: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( insert1613891728210272810_a_b_b @ X4 @ ( insert1613891728210272810_a_b_b @ Y @ A3 ) )
      = ( insert1613891728210272810_a_b_b @ Y @ ( insert1613891728210272810_a_b_b @ X4 @ A3 ) ) ) ).

% insert_commute
thf(fact_322_insert__commute,axiom,
    ! [X4: dtree_a_b,Y: dtree_a_b,A3: set_dtree_a_b] :
      ( ( insert_dtree_a_b @ X4 @ ( insert_dtree_a_b @ Y @ A3 ) )
      = ( insert_dtree_a_b @ Y @ ( insert_dtree_a_b @ X4 @ A3 ) ) ) ).

% insert_commute
thf(fact_323_insert__commute,axiom,
    ! [X4: b,Y: b,A3: set_b] :
      ( ( insert_b @ X4 @ ( insert_b @ Y @ A3 ) )
      = ( insert_b @ Y @ ( insert_b @ X4 @ A3 ) ) ) ).

% insert_commute
thf(fact_324_insert__eq__iff,axiom,
    ! [A2: a > a,A3: set_a_a,B2: a > a,B3: set_a_a] :
      ( ~ ( member_a_a @ A2 @ A3 )
     => ( ~ ( member_a_a @ B2 @ B3 )
       => ( ( ( insert_a_a @ A2 @ A3 )
            = ( insert_a_a @ B2 @ B3 ) )
          = ( ( ( A2 = B2 )
             => ( A3 = B3 ) )
            & ( ( A2 != B2 )
             => ? [C3: set_a_a] :
                  ( ( A3
                    = ( insert_a_a @ B2 @ C3 ) )
                  & ~ ( member_a_a @ B2 @ C3 )
                  & ( B3
                    = ( insert_a_a @ A2 @ C3 ) )
                  & ~ ( member_a_a @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_325_insert__eq__iff,axiom,
    ! [A2: dtree_a_b,A3: set_dtree_a_b,B2: dtree_a_b,B3: set_dtree_a_b] :
      ( ~ ( member_dtree_a_b @ A2 @ A3 )
     => ( ~ ( member_dtree_a_b @ B2 @ B3 )
       => ( ( ( insert_dtree_a_b @ A2 @ A3 )
            = ( insert_dtree_a_b @ B2 @ B3 ) )
          = ( ( ( A2 = B2 )
             => ( A3 = B3 ) )
            & ( ( A2 != B2 )
             => ? [C3: set_dtree_a_b] :
                  ( ( A3
                    = ( insert_dtree_a_b @ B2 @ C3 ) )
                  & ~ ( member_dtree_a_b @ B2 @ C3 )
                  & ( B3
                    = ( insert_dtree_a_b @ A2 @ C3 ) )
                  & ~ ( member_dtree_a_b @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_326_insert__eq__iff,axiom,
    ! [A2: set_b,A3: set_set_b,B2: set_b,B3: set_set_b] :
      ( ~ ( member_set_b @ A2 @ A3 )
     => ( ~ ( member_set_b @ B2 @ B3 )
       => ( ( ( insert_set_b @ A2 @ A3 )
            = ( insert_set_b @ B2 @ B3 ) )
          = ( ( ( A2 = B2 )
             => ( A3 = B3 ) )
            & ( ( A2 != B2 )
             => ? [C3: set_set_b] :
                  ( ( A3
                    = ( insert_set_b @ B2 @ C3 ) )
                  & ~ ( member_set_b @ B2 @ C3 )
                  & ( B3
                    = ( insert_set_b @ A2 @ C3 ) )
                  & ~ ( member_set_b @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_327_insert__eq__iff,axiom,
    ! [A2: set_Pr3012420139608375472_a_b_b,A3: set_se3183138701204633190_a_b_b,B2: set_Pr3012420139608375472_a_b_b,B3: set_se3183138701204633190_a_b_b] :
      ( ~ ( member7431159781899395911_a_b_b @ A2 @ A3 )
     => ( ~ ( member7431159781899395911_a_b_b @ B2 @ B3 )
       => ( ( ( insert8355695866607091424_a_b_b @ A2 @ A3 )
            = ( insert8355695866607091424_a_b_b @ B2 @ B3 ) )
          = ( ( ( A2 = B2 )
             => ( A3 = B3 ) )
            & ( ( A2 != B2 )
             => ? [C3: set_se3183138701204633190_a_b_b] :
                  ( ( A3
                    = ( insert8355695866607091424_a_b_b @ B2 @ C3 ) )
                  & ~ ( member7431159781899395911_a_b_b @ B2 @ C3 )
                  & ( B3
                    = ( insert8355695866607091424_a_b_b @ A2 @ C3 ) )
                  & ~ ( member7431159781899395911_a_b_b @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_328_insert__eq__iff,axiom,
    ! [A2: a,A3: set_a,B2: a,B3: set_a] :
      ( ~ ( member_a @ A2 @ A3 )
     => ( ~ ( member_a @ B2 @ B3 )
       => ( ( ( insert_a @ A2 @ A3 )
            = ( insert_a @ B2 @ B3 ) )
          = ( ( ( A2 = B2 )
             => ( A3 = B3 ) )
            & ( ( A2 != B2 )
             => ? [C3: set_a] :
                  ( ( A3
                    = ( insert_a @ B2 @ C3 ) )
                  & ~ ( member_a @ B2 @ C3 )
                  & ( B3
                    = ( insert_a @ A2 @ C3 ) )
                  & ~ ( member_a @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_329_insert__eq__iff,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B2: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ~ ( member4380921116106875537_a_b_b @ A2 @ A3 )
     => ( ~ ( member4380921116106875537_a_b_b @ B2 @ B3 )
       => ( ( ( insert1613891728210272810_a_b_b @ A2 @ A3 )
            = ( insert1613891728210272810_a_b_b @ B2 @ B3 ) )
          = ( ( ( A2 = B2 )
             => ( A3 = B3 ) )
            & ( ( A2 != B2 )
             => ? [C3: set_Pr3012420139608375472_a_b_b] :
                  ( ( A3
                    = ( insert1613891728210272810_a_b_b @ B2 @ C3 ) )
                  & ~ ( member4380921116106875537_a_b_b @ B2 @ C3 )
                  & ( B3
                    = ( insert1613891728210272810_a_b_b @ A2 @ C3 ) )
                  & ~ ( member4380921116106875537_a_b_b @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_330_insert__eq__iff,axiom,
    ! [A2: b,A3: set_b,B2: b,B3: set_b] :
      ( ~ ( member_b @ A2 @ A3 )
     => ( ~ ( member_b @ B2 @ B3 )
       => ( ( ( insert_b @ A2 @ A3 )
            = ( insert_b @ B2 @ B3 ) )
          = ( ( ( A2 = B2 )
             => ( A3 = B3 ) )
            & ( ( A2 != B2 )
             => ? [C3: set_b] :
                  ( ( A3
                    = ( insert_b @ B2 @ C3 ) )
                  & ~ ( member_b @ B2 @ C3 )
                  & ( B3
                    = ( insert_b @ A2 @ C3 ) )
                  & ~ ( member_b @ A2 @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_331_insert__absorb,axiom,
    ! [A2: a,A3: set_a] :
      ( ( member_a @ A2 @ A3 )
     => ( ( insert_a @ A2 @ A3 )
        = A3 ) ) ).

% insert_absorb
thf(fact_332_insert__absorb,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ A2 @ A3 )
     => ( ( insert1613891728210272810_a_b_b @ A2 @ A3 )
        = A3 ) ) ).

% insert_absorb
thf(fact_333_insert__absorb,axiom,
    ! [A2: b,A3: set_b] :
      ( ( member_b @ A2 @ A3 )
     => ( ( insert_b @ A2 @ A3 )
        = A3 ) ) ).

% insert_absorb
thf(fact_334_insert__ident,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ~ ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( ~ ( member4380921116106875537_a_b_b @ X4 @ B3 )
       => ( ( ( insert1613891728210272810_a_b_b @ X4 @ A3 )
            = ( insert1613891728210272810_a_b_b @ X4 @ B3 ) )
          = ( A3 = B3 ) ) ) ) ).

% insert_ident
thf(fact_335_insert__ident,axiom,
    ! [X4: b,A3: set_b,B3: set_b] :
      ( ~ ( member_b @ X4 @ A3 )
     => ( ~ ( member_b @ X4 @ B3 )
       => ( ( ( insert_b @ X4 @ A3 )
            = ( insert_b @ X4 @ B3 ) )
          = ( A3 = B3 ) ) ) ) ).

% insert_ident
thf(fact_336_Set_Oset__insert,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ~ ! [B7: set_Pr3012420139608375472_a_b_b] :
            ( ( A3
              = ( insert1613891728210272810_a_b_b @ X4 @ B7 ) )
           => ( member4380921116106875537_a_b_b @ X4 @ B7 ) ) ) ).

% Set.set_insert
thf(fact_337_Set_Oset__insert,axiom,
    ! [X4: b,A3: set_b] :
      ( ( member_b @ X4 @ A3 )
     => ~ ! [B7: set_b] :
            ( ( A3
              = ( insert_b @ X4 @ B7 ) )
           => ( member_b @ X4 @ B7 ) ) ) ).

% Set.set_insert
thf(fact_338_insertI2,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b,B2: produc4558475209616630778_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ A2 @ B3 )
     => ( member4380921116106875537_a_b_b @ A2 @ ( insert1613891728210272810_a_b_b @ B2 @ B3 ) ) ) ).

% insertI2
thf(fact_339_insertI2,axiom,
    ! [A2: b,B3: set_b,B2: b] :
      ( ( member_b @ A2 @ B3 )
     => ( member_b @ A2 @ ( insert_b @ B2 @ B3 ) ) ) ).

% insertI2
thf(fact_340_insertI1,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b] : ( member4380921116106875537_a_b_b @ A2 @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) ) ).

% insertI1
thf(fact_341_insertI1,axiom,
    ! [A2: b,B3: set_b] : ( member_b @ A2 @ ( insert_b @ A2 @ B3 ) ) ).

% insertI1
thf(fact_342_insertE,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ A2 @ ( insert1613891728210272810_a_b_b @ B2 @ A3 ) )
     => ( ( A2 != B2 )
       => ( member4380921116106875537_a_b_b @ A2 @ A3 ) ) ) ).

% insertE
thf(fact_343_insertE,axiom,
    ! [A2: b,B2: b,A3: set_b] :
      ( ( member_b @ A2 @ ( insert_b @ B2 @ A3 ) )
     => ( ( A2 != B2 )
       => ( member_b @ A2 @ A3 ) ) ) ).

% insertE
thf(fact_344_sup__left__commute,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ( sup_sup_set_b @ X4 @ ( sup_sup_set_b @ Y @ Z2 ) )
      = ( sup_sup_set_b @ Y @ ( sup_sup_set_b @ X4 @ Z2 ) ) ) ).

% sup_left_commute
thf(fact_345_sup_Oleft__commute,axiom,
    ! [B2: set_b,A2: set_b,C2: set_b] :
      ( ( sup_sup_set_b @ B2 @ ( sup_sup_set_b @ A2 @ C2 ) )
      = ( sup_sup_set_b @ A2 @ ( sup_sup_set_b @ B2 @ C2 ) ) ) ).

% sup.left_commute
thf(fact_346_sup__commute,axiom,
    ( sup_sup_set_b
    = ( ^ [X3: set_b,Y5: set_b] : ( sup_sup_set_b @ Y5 @ X3 ) ) ) ).

% sup_commute
thf(fact_347_sup_Ocommute,axiom,
    ( sup_sup_set_b
    = ( ^ [A: set_b,B: set_b] : ( sup_sup_set_b @ B @ A ) ) ) ).

% sup.commute
thf(fact_348_sup__assoc,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ X4 @ Y ) @ Z2 )
      = ( sup_sup_set_b @ X4 @ ( sup_sup_set_b @ Y @ Z2 ) ) ) ).

% sup_assoc
thf(fact_349_sup_Oassoc,axiom,
    ! [A2: set_b,B2: set_b,C2: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ A2 @ B2 ) @ C2 )
      = ( sup_sup_set_b @ A2 @ ( sup_sup_set_b @ B2 @ C2 ) ) ) ).

% sup.assoc
thf(fact_350_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_b
    = ( ^ [X3: set_b,Y5: set_b] : ( sup_sup_set_b @ Y5 @ X3 ) ) ) ).

% inf_sup_aci(5)
thf(fact_351_inf__sup__aci_I6_J,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ X4 @ Y ) @ Z2 )
      = ( sup_sup_set_b @ X4 @ ( sup_sup_set_b @ Y @ Z2 ) ) ) ).

% inf_sup_aci(6)
thf(fact_352_inf__sup__aci_I7_J,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ( sup_sup_set_b @ X4 @ ( sup_sup_set_b @ Y @ Z2 ) )
      = ( sup_sup_set_b @ Y @ ( sup_sup_set_b @ X4 @ Z2 ) ) ) ).

% inf_sup_aci(7)
thf(fact_353_inf__sup__aci_I8_J,axiom,
    ! [X4: set_b,Y: set_b] :
      ( ( sup_sup_set_b @ X4 @ ( sup_sup_set_b @ X4 @ Y ) )
      = ( sup_sup_set_b @ X4 @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_354_Un__left__commute,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( sup_sup_set_b @ A3 @ ( sup_sup_set_b @ B3 @ C ) )
      = ( sup_sup_set_b @ B3 @ ( sup_sup_set_b @ A3 @ C ) ) ) ).

% Un_left_commute
thf(fact_355_Un__left__absorb,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( sup_sup_set_b @ A3 @ ( sup_sup_set_b @ A3 @ B3 ) )
      = ( sup_sup_set_b @ A3 @ B3 ) ) ).

% Un_left_absorb
thf(fact_356_Un__commute,axiom,
    ( sup_sup_set_b
    = ( ^ [A6: set_b,B6: set_b] : ( sup_sup_set_b @ B6 @ A6 ) ) ) ).

% Un_commute
thf(fact_357_Un__absorb,axiom,
    ! [A3: set_b] :
      ( ( sup_sup_set_b @ A3 @ A3 )
      = A3 ) ).

% Un_absorb
thf(fact_358_Un__assoc,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ A3 @ B3 ) @ C )
      = ( sup_sup_set_b @ A3 @ ( sup_sup_set_b @ B3 @ C ) ) ) ).

% Un_assoc
thf(fact_359_ball__Un,axiom,
    ! [A3: set_b,B3: set_b,P: b > $o] :
      ( ( ! [X3: b] :
            ( ( member_b @ X3 @ ( sup_sup_set_b @ A3 @ B3 ) )
           => ( P @ X3 ) ) )
      = ( ! [X3: b] :
            ( ( member_b @ X3 @ A3 )
           => ( P @ X3 ) )
        & ! [X3: b] :
            ( ( member_b @ X3 @ B3 )
           => ( P @ X3 ) ) ) ) ).

% ball_Un
thf(fact_360_bex__Un,axiom,
    ! [A3: set_b,B3: set_b,P: b > $o] :
      ( ( ? [X3: b] :
            ( ( member_b @ X3 @ ( sup_sup_set_b @ A3 @ B3 ) )
            & ( P @ X3 ) ) )
      = ( ? [X3: b] :
            ( ( member_b @ X3 @ A3 )
            & ( P @ X3 ) )
        | ? [X3: b] :
            ( ( member_b @ X3 @ B3 )
            & ( P @ X3 ) ) ) ) ).

% bex_Un
thf(fact_361_UnI2,axiom,
    ! [C2: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ B3 )
     => ( member4380921116106875537_a_b_b @ C2 @ ( sup_su2887895092731772380_a_b_b @ A3 @ B3 ) ) ) ).

% UnI2
thf(fact_362_UnI2,axiom,
    ! [C2: b,B3: set_b,A3: set_b] :
      ( ( member_b @ C2 @ B3 )
     => ( member_b @ C2 @ ( sup_sup_set_b @ A3 @ B3 ) ) ) ).

% UnI2
thf(fact_363_UnI1,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ A3 )
     => ( member4380921116106875537_a_b_b @ C2 @ ( sup_su2887895092731772380_a_b_b @ A3 @ B3 ) ) ) ).

% UnI1
thf(fact_364_UnI1,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ A3 )
     => ( member_b @ C2 @ ( sup_sup_set_b @ A3 @ B3 ) ) ) ).

% UnI1
thf(fact_365_UnE,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ ( sup_su2887895092731772380_a_b_b @ A3 @ B3 ) )
     => ( ~ ( member4380921116106875537_a_b_b @ C2 @ A3 )
       => ( member4380921116106875537_a_b_b @ C2 @ B3 ) ) ) ).

% UnE
thf(fact_366_UnE,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ ( sup_sup_set_b @ A3 @ B3 ) )
     => ( ~ ( member_b @ C2 @ A3 )
       => ( member_b @ C2 @ B3 ) ) ) ).

% UnE
thf(fact_367_empty__def,axiom,
    ( bot_bot_set_b
    = ( collect_b
      @ ^ [X3: b] : $false ) ) ).

% empty_def
thf(fact_368_insert__Collect,axiom,
    ! [A2: b,P: b > $o] :
      ( ( insert_b @ A2 @ ( collect_b @ P ) )
      = ( collect_b
        @ ^ [U: b] :
            ( ( U != A2 )
           => ( P @ U ) ) ) ) ).

% insert_Collect
thf(fact_369_insert__compr,axiom,
    ( insert1613891728210272810_a_b_b
    = ( ^ [A: produc4558475209616630778_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
          ( collec1368399972772960719_a_b_b
          @ ^ [X3: produc4558475209616630778_a_b_b] :
              ( ( X3 = A )
              | ( member4380921116106875537_a_b_b @ X3 @ B6 ) ) ) ) ) ).

% insert_compr
thf(fact_370_insert__compr,axiom,
    ( insert_b
    = ( ^ [A: b,B6: set_b] :
          ( collect_b
          @ ^ [X3: b] :
              ( ( X3 = A )
              | ( member_b @ X3 @ B6 ) ) ) ) ) ).

% insert_compr
thf(fact_371_prod_Ocase__distrib,axiom,
    ! [H: ( a > a ) > a > a,F: dtree_a_b > b > a > a,Prod: produc4558475209616630778_a_b_b] :
      ( ( H @ ( produc2242037354397874494_b_a_a @ F @ Prod ) )
      = ( produc2242037354397874494_b_a_a
        @ ^ [X13: dtree_a_b,X23: b] : ( H @ ( F @ X13 @ X23 ) )
        @ Prod ) ) ).

% prod.case_distrib
thf(fact_372_Collect__disj__eq,axiom,
    ! [P: b > $o,Q: b > $o] :
      ( ( collect_b
        @ ^ [X3: b] :
            ( ( P @ X3 )
            | ( Q @ X3 ) ) )
      = ( sup_sup_set_b @ ( collect_b @ P ) @ ( collect_b @ Q ) ) ) ).

% Collect_disj_eq
thf(fact_373_Un__def,axiom,
    ( sup_su2887895092731772380_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
          ( collec1368399972772960719_a_b_b
          @ ^ [X3: produc4558475209616630778_a_b_b] :
              ( ( member4380921116106875537_a_b_b @ X3 @ A6 )
              | ( member4380921116106875537_a_b_b @ X3 @ B6 ) ) ) ) ) ).

% Un_def
thf(fact_374_Un__def,axiom,
    ( sup_sup_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( collect_b
          @ ^ [X3: b] :
              ( ( member_b @ X3 @ A6 )
              | ( member_b @ X3 @ B6 ) ) ) ) ) ).

% Un_def
thf(fact_375_singleton__inject,axiom,
    ! [A2: b,B2: b] :
      ( ( ( insert_b @ A2 @ bot_bot_set_b )
        = ( insert_b @ B2 @ bot_bot_set_b ) )
     => ( A2 = B2 ) ) ).

% singleton_inject
thf(fact_376_insert__not__empty,axiom,
    ! [A2: b,A3: set_b] :
      ( ( insert_b @ A2 @ A3 )
     != bot_bot_set_b ) ).

% insert_not_empty
thf(fact_377_doubleton__eq__iff,axiom,
    ! [A2: b,B2: b,C2: b,D: b] :
      ( ( ( insert_b @ A2 @ ( insert_b @ B2 @ bot_bot_set_b ) )
        = ( insert_b @ C2 @ ( insert_b @ D @ bot_bot_set_b ) ) )
      = ( ( ( A2 = C2 )
          & ( B2 = D ) )
        | ( ( A2 = D )
          & ( B2 = C2 ) ) ) ) ).

% doubleton_eq_iff
thf(fact_378_singleton__iff,axiom,
    ! [B2: produc4558475209616630778_a_b_b,A2: produc4558475209616630778_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ B2 @ ( insert1613891728210272810_a_b_b @ A2 @ bot_bo3721250822024684356_a_b_b ) )
      = ( B2 = A2 ) ) ).

% singleton_iff
thf(fact_379_singleton__iff,axiom,
    ! [B2: b,A2: b] :
      ( ( member_b @ B2 @ ( insert_b @ A2 @ bot_bot_set_b ) )
      = ( B2 = A2 ) ) ).

% singleton_iff
thf(fact_380_singletonD,axiom,
    ! [B2: produc4558475209616630778_a_b_b,A2: produc4558475209616630778_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ B2 @ ( insert1613891728210272810_a_b_b @ A2 @ bot_bo3721250822024684356_a_b_b ) )
     => ( B2 = A2 ) ) ).

% singletonD
thf(fact_381_singletonD,axiom,
    ! [B2: b,A2: b] :
      ( ( member_b @ B2 @ ( insert_b @ A2 @ bot_bot_set_b ) )
     => ( B2 = A2 ) ) ).

% singletonD
thf(fact_382_old_Oprod_Ocase,axiom,
    ! [F: dtree_a_b > b > a > a,X1: dtree_a_b,X2: b] :
      ( ( produc2242037354397874494_b_a_a @ F @ ( produc331601717337510060_a_b_b @ X1 @ X2 ) )
      = ( F @ X1 @ X2 ) ) ).

% old.prod.case
thf(fact_383_Un__empty__right,axiom,
    ! [A3: set_b] :
      ( ( sup_sup_set_b @ A3 @ bot_bot_set_b )
      = A3 ) ).

% Un_empty_right
thf(fact_384_Un__empty__left,axiom,
    ! [B3: set_b] :
      ( ( sup_sup_set_b @ bot_bot_set_b @ B3 )
      = B3 ) ).

% Un_empty_left
thf(fact_385_Collect__conv__if2,axiom,
    ! [P: b > $o,A2: b] :
      ( ( ( P @ A2 )
       => ( ( collect_b
            @ ^ [X3: b] :
                ( ( A2 = X3 )
                & ( P @ X3 ) ) )
          = ( insert_b @ A2 @ bot_bot_set_b ) ) )
      & ( ~ ( P @ A2 )
       => ( ( collect_b
            @ ^ [X3: b] :
                ( ( A2 = X3 )
                & ( P @ X3 ) ) )
          = bot_bot_set_b ) ) ) ).

% Collect_conv_if2
thf(fact_386_Collect__conv__if,axiom,
    ! [P: b > $o,A2: b] :
      ( ( ( P @ A2 )
       => ( ( collect_b
            @ ^ [X3: b] :
                ( ( X3 = A2 )
                & ( P @ X3 ) ) )
          = ( insert_b @ A2 @ bot_bot_set_b ) ) )
      & ( ~ ( P @ A2 )
       => ( ( collect_b
            @ ^ [X3: b] :
                ( ( X3 = A2 )
                & ( P @ X3 ) ) )
          = bot_bot_set_b ) ) ) ).

% Collect_conv_if
thf(fact_387_cond__case__prod__eta,axiom,
    ! [F: dtree_a_b > b > a > a,G2: produc4558475209616630778_a_b_b > a > a] :
      ( ! [X: dtree_a_b,Y4: b] :
          ( ( F @ X @ Y4 )
          = ( G2 @ ( produc331601717337510060_a_b_b @ X @ Y4 ) ) )
     => ( ( produc2242037354397874494_b_a_a @ F )
        = G2 ) ) ).

% cond_case_prod_eta
thf(fact_388_case__prod__eta,axiom,
    ! [F: produc4558475209616630778_a_b_b > a > a] :
      ( ( produc2242037354397874494_b_a_a
        @ ^ [X3: dtree_a_b,Y5: b] : ( F @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) ) )
      = F ) ).

% case_prod_eta
thf(fact_389_case__prodE2,axiom,
    ! [Q: ( a > a ) > $o,P: dtree_a_b > b > a > a,Z2: produc4558475209616630778_a_b_b] :
      ( ( Q @ ( produc2242037354397874494_b_a_a @ P @ Z2 ) )
     => ~ ! [X: dtree_a_b,Y4: b] :
            ( ( Z2
              = ( produc331601717337510060_a_b_b @ X @ Y4 ) )
           => ~ ( Q @ ( P @ X @ Y4 ) ) ) ) ).

% case_prodE2
thf(fact_390_insert__def,axiom,
    ( insert_b
    = ( ^ [A: b] :
          ( sup_sup_set_b
          @ ( collect_b
            @ ^ [X3: b] : ( X3 = A ) ) ) ) ) ).

% insert_def
thf(fact_391_singleton__Un__iff,axiom,
    ! [X4: b,A3: set_b,B3: set_b] :
      ( ( ( insert_b @ X4 @ bot_bot_set_b )
        = ( sup_sup_set_b @ A3 @ B3 ) )
      = ( ( ( A3 = bot_bot_set_b )
          & ( B3
            = ( insert_b @ X4 @ bot_bot_set_b ) ) )
        | ( ( A3
            = ( insert_b @ X4 @ bot_bot_set_b ) )
          & ( B3 = bot_bot_set_b ) )
        | ( ( A3
            = ( insert_b @ X4 @ bot_bot_set_b ) )
          & ( B3
            = ( insert_b @ X4 @ bot_bot_set_b ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_392_Un__singleton__iff,axiom,
    ! [A3: set_b,B3: set_b,X4: b] :
      ( ( ( sup_sup_set_b @ A3 @ B3 )
        = ( insert_b @ X4 @ bot_bot_set_b ) )
      = ( ( ( A3 = bot_bot_set_b )
          & ( B3
            = ( insert_b @ X4 @ bot_bot_set_b ) ) )
        | ( ( A3
            = ( insert_b @ X4 @ bot_bot_set_b ) )
          & ( B3 = bot_bot_set_b ) )
        | ( ( A3
            = ( insert_b @ X4 @ bot_bot_set_b ) )
          & ( B3
            = ( insert_b @ X4 @ bot_bot_set_b ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_393_insert__is__Un,axiom,
    ( insert_b
    = ( ^ [A: b] : ( sup_sup_set_b @ ( insert_b @ A @ bot_bot_set_b ) ) ) ) ).

% insert_is_Un
thf(fact_394_finsert_Orep__eq,axiom,
    ! [X4: b,Xa: fset_b] :
      ( ( fset_b2 @ ( finsert_b @ X4 @ Xa ) )
      = ( insert_b @ X4 @ ( fset_b2 @ Xa ) ) ) ).

% finsert.rep_eq
thf(fact_395_finsert_Orep__eq,axiom,
    ! [X4: produc4558475209616630778_a_b_b,Xa: fset_P5281107635120001194_a_b_b] :
      ( ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ X4 @ Xa ) )
      = ( insert1613891728210272810_a_b_b @ X4 @ ( fset_P783253628892185035_a_b_b @ Xa ) ) ) ).

% finsert.rep_eq
thf(fact_396_union__fset,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Xa: fset_P5281107635120001194_a_b_b] :
      ( ( fset_P783253628892185035_a_b_b @ ( sup_su860928060825958358_a_b_b @ X4 @ Xa ) )
      = ( sup_su2887895092731772380_a_b_b @ ( fset_P783253628892185035_a_b_b @ X4 ) @ ( fset_P783253628892185035_a_b_b @ Xa ) ) ) ).

% union_fset
thf(fact_397_union__fset,axiom,
    ! [X4: fset_b,Xa: fset_b] :
      ( ( fset_b2 @ ( sup_sup_fset_b @ X4 @ Xa ) )
      = ( sup_sup_set_b @ ( fset_b2 @ X4 ) @ ( fset_b2 @ Xa ) ) ) ).

% union_fset
thf(fact_398_bot__fset_Orep__eq,axiom,
    ( ( fset_P783253628892185035_a_b_b @ bot_bo2895716411488905534_a_b_b )
    = bot_bo3721250822024684356_a_b_b ) ).

% bot_fset.rep_eq
thf(fact_399_bot__fset_Orep__eq,axiom,
    ( ( fset_b2 @ bot_bot_fset_b )
    = bot_bot_set_b ) ).

% bot_fset.rep_eq
thf(fact_400_dhead__ffold__f__alt__commute,axiom,
    ! [P: fset_P5281107635120001194_a_b_b > $o,R2: a,Q: produc4558475209616630778_a_b_b > a > $o,E4: b,R3: produc4558475209616630778_a_b_b > a > a,Def: b > a,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( P
        = ( ^ [Xs3: fset_P5281107635120001194_a_b_b] : ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs3 ) ) ) )
     => ( ( Q
          = ( produc6139810021161713496_b_a_o
            @ ^ [X3: dtree_a_b,E2: b,Uu: a] : ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) ) ) )
       => ( ( R3
            = ( produc2242037354397874494_b_a_a
              @ ^ [X3: dtree_a_b,E2: b,Uu: a] : ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) ) )
         => ( finite414203908571218417_b_b_a
            @ ^ [A: produc4558475209616630778_a_b_b,B: a] :
                ( if_a
                @ ( ~ ( member4380921116106875537_a_b_b @ A @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                  | ~ ( Q @ A @ B )
                  | ~ ( P @ Xs2 ) )
                @ B
                @ ( R3 @ A @ B ) ) ) ) ) ) ).

% dhead_ffold_f_alt_commute
thf(fact_401_dhead__commute,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,E4: b,R2: a,Def: b > a] :
      ( finite414203908571218417_b_b_a
      @ ( produc2242037354397874494_b_a_a
        @ ^ [X3: dtree_a_b,E2: b,B: a] :
            ( if_a
            @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
              | ~ ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
              | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
            @ B
            @ ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) ) ) ) ).

% dhead_commute
thf(fact_402__C2_C,axiom,
    ord_le789900035998834954_a_b_b @ xsa @ ( finser8437519239679886002_a_b_b @ x @ xsa ) ).

% "2"
thf(fact_403_dhead__ffold__supset,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,Ys: fset_P5281107635120001194_a_b_b,R2: a,E4: b,Def: b > a] :
      ( ( ord_le789900035998834954_a_b_b @ Xs2 @ Ys )
     => ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Ys ) )
       => ( ( ffold_2783168711033344739_b_b_a
            @ ( produc2242037354397874494_b_a_a
              @ ^ [X3: dtree_a_b,E2: b,B: a] :
                  ( if_a
                  @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Ys ) )
                    | ~ ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                    | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Ys ) ) )
                  @ B
                  @ ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) ) )
            @ ( Def @ E4 )
            @ Xs2 )
          = ( ffold_2783168711033344739_b_b_a
            @ ( produc2242037354397874494_b_a_a
              @ ^ [X3: dtree_a_b,E2: b,B: a] :
                  ( if_a
                  @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                    | ~ ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                    | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
                  @ B
                  @ ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) ) )
            @ ( Def @ E4 )
            @ Xs2 ) ) ) ) ).

% dhead_ffold_supset
thf(fact_404_dhead__ffold__notelem__eq__def,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,E4: b,Ys: fset_P5281107635120001194_a_b_b,R2: a,Def: b > a] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [T3: dtree_a_b,E12: b] :
                ( ~ ( member_b @ E4 @ ( darcs_a_b @ T3 ) )
                & ( E4 != E12 ) )
            @ X ) )
     => ( ( ffold_2783168711033344739_b_b_a
          @ ( produc2242037354397874494_b_a_a
            @ ^ [X3: dtree_a_b,E2: b,B: a] :
                ( if_a
                @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Ys ) )
                  | ~ ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                  | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Ys ) ) )
                @ B
                @ ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) ) )
          @ ( Def @ E4 )
          @ Xs2 )
        = ( Def @ E4 ) ) ) ).

% dhead_ffold_notelem_eq_def
thf(fact_405_dhead__commute__aux,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,E4: b,R2: a,Def: b > a,Y: produc4558475209616630778_a_b_b,X4: produc4558475209616630778_a_b_b,Z2: a] :
      ( ( comp_a_a_a
        @ ( produc2242037354397874494_b_a_a
          @ ^ [X3: dtree_a_b,E2: b,B: a] :
              ( if_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                | ~ ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
              @ B
              @ ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) )
          @ Y )
        @ ( produc2242037354397874494_b_a_a
          @ ^ [X3: dtree_a_b,E2: b,B: a] :
              ( if_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                | ~ ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
              @ B
              @ ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) )
          @ X4 )
        @ Z2 )
      = ( comp_a_a_a
        @ ( produc2242037354397874494_b_a_a
          @ ^ [X3: dtree_a_b,E2: b,B: a] :
              ( if_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                | ~ ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
              @ B
              @ ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) )
          @ X4 )
        @ ( produc2242037354397874494_b_a_a
          @ ^ [X3: dtree_a_b,E2: b,B: a] :
              ( if_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                | ~ ( member_b @ E4 @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
              @ B
              @ ( if_a @ ( E4 = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Def @ E4 ) ) )
          @ Y )
        @ Z2 ) ) ).

% dhead_commute_aux
thf(fact_406_dhead_Opelims,axiom,
    ! [X4: dtree_a_b,Xa: b > a,Y: b > a] :
      ( ( ( dhead_a_b @ X4 @ Xa )
        = Y )
     => ( ( accp_P1416650344722773512_b_b_a @ dhead_rel_a_b @ ( produc1993688775741047735_b_b_a @ X4 @ Xa ) )
       => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
              ( ( X4
                = ( node_a_b @ R @ Xs ) )
             => ( ( Y
                  = ( ^ [E: b] :
                        ( ffold_2783168711033344739_b_b_a
                        @ ( produc2242037354397874494_b_a_a
                          @ ^ [X3: dtree_a_b,E2: b,B: a] :
                              ( if_a
                              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                                | ~ ( member_b @ E @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                                | ~ ( wf_darcs_a_b @ ( node_a_b @ R @ Xs ) ) )
                              @ B
                              @ ( if_a @ ( E = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ Xa @ E ) ) ) )
                        @ ( Xa @ E )
                        @ Xs ) ) )
               => ~ ( accp_P1416650344722773512_b_b_a @ dhead_rel_a_b @ ( produc1993688775741047735_b_b_a @ ( node_a_b @ R @ Xs ) @ Xa ) ) ) ) ) ) ).

% dhead.pelims
thf(fact_407_finsert__absorb2,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( finser8437519239679886002_a_b_b @ X4 @ ( finser8437519239679886002_a_b_b @ X4 @ A3 ) )
      = ( finser8437519239679886002_a_b_b @ X4 @ A3 ) ) ).

% finsert_absorb2
thf(fact_408_fsubset__antisym,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ( ord_le789900035998834954_a_b_b @ B3 @ A3 )
       => ( A3 = B3 ) ) ) ).

% fsubset_antisym
thf(fact_409_le__sup__iff,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ( ord_less_eq_set_b @ ( sup_sup_set_b @ X4 @ Y ) @ Z2 )
      = ( ( ord_less_eq_set_b @ X4 @ Z2 )
        & ( ord_less_eq_set_b @ Y @ Z2 ) ) ) ).

% le_sup_iff
thf(fact_410_le__sup__iff,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b,Z2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ X4 @ Y ) @ Z2 )
      = ( ( ord_le789900035998834954_a_b_b @ X4 @ Z2 )
        & ( ord_le789900035998834954_a_b_b @ Y @ Z2 ) ) ) ).

% le_sup_iff
thf(fact_411_le__sup__iff,axiom,
    ! [X4: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ X4 @ Y ) @ Z2 )
      = ( ( ord_less_eq_nat @ X4 @ Z2 )
        & ( ord_less_eq_nat @ Y @ Z2 ) ) ) ).

% le_sup_iff
thf(fact_412_sup_Obounded__iff,axiom,
    ! [B2: set_b,C2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ ( sup_sup_set_b @ B2 @ C2 ) @ A2 )
      = ( ( ord_less_eq_set_b @ B2 @ A2 )
        & ( ord_less_eq_set_b @ C2 @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_413_sup_Obounded__iff,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ B2 @ C2 ) @ A2 )
      = ( ( ord_le789900035998834954_a_b_b @ B2 @ A2 )
        & ( ord_le789900035998834954_a_b_b @ C2 @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_414_sup_Obounded__iff,axiom,
    ! [B2: nat,C2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B2 @ C2 ) @ A2 )
      = ( ( ord_less_eq_nat @ B2 @ A2 )
        & ( ord_less_eq_nat @ C2 @ A2 ) ) ) ).

% sup.bounded_iff
thf(fact_415_ball__empty,axiom,
    ! [P: b > $o,X5: b] :
      ( ( member_b @ X5 @ bot_bot_set_b )
     => ( P @ X5 ) ) ).

% ball_empty
thf(fact_416_finsert__iff,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ A2 @ ( finser8437519239679886002_a_b_b @ B2 @ A3 ) )
      = ( ( A2 = B2 )
        | ( fmembe3173364709796808819_a_b_b @ A2 @ A3 ) ) ) ).

% finsert_iff
thf(fact_417_finsertCI,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b,B2: produc4558475209616630778_a_b_b] :
      ( ( ~ ( fmembe3173364709796808819_a_b_b @ A2 @ B3 )
       => ( A2 = B2 ) )
     => ( fmembe3173364709796808819_a_b_b @ A2 @ ( finser8437519239679886002_a_b_b @ B2 @ B3 ) ) ) ).

% finsertCI
thf(fact_418_fempty__iff,axiom,
    ! [C2: produc4558475209616630778_a_b_b] :
      ~ ( fmembe3173364709796808819_a_b_b @ C2 @ bot_bo2895716411488905534_a_b_b ) ).

% fempty_iff
thf(fact_419_all__not__fin__conv,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b] :
      ( ( ! [X3: produc4558475209616630778_a_b_b] :
            ~ ( fmembe3173364709796808819_a_b_b @ X3 @ A3 ) )
      = ( A3 = bot_bo2895716411488905534_a_b_b ) ) ).

% all_not_fin_conv
thf(fact_420_fsubsetI,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( fmembe3173364709796808819_a_b_b @ X @ A3 )
         => ( fmembe3173364709796808819_a_b_b @ X @ B3 ) )
     => ( ord_le789900035998834954_a_b_b @ A3 @ B3 ) ) ).

% fsubsetI
thf(fact_421_funionCI,axiom,
    ! [C2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( ~ ( fmembe3173364709796808819_a_b_b @ C2 @ B3 )
       => ( fmembe3173364709796808819_a_b_b @ C2 @ A3 ) )
     => ( fmembe3173364709796808819_a_b_b @ C2 @ ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) ) ) ).

% funionCI
thf(fact_422_funion__iff,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) )
      = ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
        | ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ) ).

% funion_iff
thf(fact_423_fsubset__fempty,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ bot_bo2895716411488905534_a_b_b )
      = ( A3 = bot_bo2895716411488905534_a_b_b ) ) ).

% fsubset_fempty
thf(fact_424_fempty__fsubsetI,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ bot_bo2895716411488905534_a_b_b @ X4 ) ).

% fempty_fsubsetI
thf(fact_425_funion__finsert__right,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,A2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( sup_su860928060825958358_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) )
      = ( finser8437519239679886002_a_b_b @ A2 @ ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) ) ) ).

% funion_finsert_right
thf(fact_426_funion__finsert__left,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b] :
      ( ( sup_su860928060825958358_a_b_b @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) @ C )
      = ( finser8437519239679886002_a_b_b @ A2 @ ( sup_su860928060825958358_a_b_b @ B3 @ C ) ) ) ).

% funion_finsert_left
thf(fact_427_finsert__fsubset,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ ( finser8437519239679886002_a_b_b @ X4 @ A3 ) @ B3 )
      = ( ( fmembe3173364709796808819_a_b_b @ X4 @ B3 )
        & ( ord_le789900035998834954_a_b_b @ A3 @ B3 ) ) ) ).

% finsert_fsubset
thf(fact_428_femptyE,axiom,
    ! [A2: produc4558475209616630778_a_b_b] :
      ~ ( fmembe3173364709796808819_a_b_b @ A2 @ bot_bo2895716411488905534_a_b_b ) ).

% femptyE
thf(fact_429_funionE,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) )
     => ( ~ ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
       => ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ) ).

% funionE
thf(fact_430_Ball__def,axiom,
    ( ball_P8580587655522039760_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,P3: produc4558475209616630778_a_b_b > $o] :
        ! [X3: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X3 @ A6 )
         => ( P3 @ X3 ) ) ) ) ).

% Ball_def
thf(fact_431_Ball__def,axiom,
    ( ball_b
    = ( ^ [A6: set_b,P3: b > $o] :
        ! [X3: b] :
          ( ( member_b @ X3 @ A6 )
         => ( P3 @ X3 ) ) ) ) ).

% Ball_def
thf(fact_432_funionI1,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
     => ( fmembe3173364709796808819_a_b_b @ C2 @ ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) ) ) ).

% funionI1
thf(fact_433_funionI2,axiom,
    ! [C2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ B3 )
     => ( fmembe3173364709796808819_a_b_b @ C2 @ ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) ) ) ).

% funionI2
thf(fact_434_ffold__cong,axiom,
    ! [F: produc4558475209616630778_a_b_b > a > a,G2: produc4558475209616630778_a_b_b > a > a,A3: fset_P5281107635120001194_a_b_b,S: a,T: a,B3: fset_P5281107635120001194_a_b_b] :
      ( ( finite414203908571218417_b_b_a @ F )
     => ( ( finite414203908571218417_b_b_a @ G2 )
       => ( ! [X: produc4558475209616630778_a_b_b] :
              ( ( fmembe3173364709796808819_a_b_b @ X @ A3 )
             => ( ( F @ X )
                = ( G2 @ X ) ) )
         => ( ( S = T )
           => ( ( A3 = B3 )
             => ( ( ffold_2783168711033344739_b_b_a @ F @ S @ A3 )
                = ( ffold_2783168711033344739_b_b_a @ G2 @ T @ B3 ) ) ) ) ) ) ) ).

% ffold_cong
thf(fact_435_ex__fin__conv,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b] :
      ( ( ? [X3: produc4558475209616630778_a_b_b] : ( fmembe3173364709796808819_a_b_b @ X3 @ A3 ) )
      = ( A3 != bot_bo2895716411488905534_a_b_b ) ) ).

% ex_fin_conv
thf(fact_436_funion__mono,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,D2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ C )
     => ( ( ord_le789900035998834954_a_b_b @ B3 @ D2 )
       => ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) @ ( sup_su860928060825958358_a_b_b @ C @ D2 ) ) ) ) ).

% funion_mono
thf(fact_437_funion__least,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ C )
     => ( ( ord_le789900035998834954_a_b_b @ B3 @ C )
       => ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) @ C ) ) ) ).

% funion_least
thf(fact_438_funion__upper1,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ A3 @ ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) ) ).

% funion_upper1
thf(fact_439_funion__upper2,axiom,
    ! [B3: fset_P5281107635120001194_a_b_b,A3: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ B3 @ ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) ) ).

% funion_upper2
thf(fact_440_equalsffemptyD,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,A2: produc4558475209616630778_a_b_b] :
      ( ( A3 = bot_bo2895716411488905534_a_b_b )
     => ~ ( fmembe3173364709796808819_a_b_b @ A2 @ A3 ) ) ).

% equalsffemptyD
thf(fact_441_equalsffemptyI,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b] :
      ( ! [Y4: produc4558475209616630778_a_b_b] :
          ~ ( fmembe3173364709796808819_a_b_b @ Y4 @ A3 )
     => ( A3 = bot_bo2895716411488905534_a_b_b ) ) ).

% equalsffemptyI
thf(fact_442_funion__absorb1,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ( sup_su860928060825958358_a_b_b @ A3 @ B3 )
        = B3 ) ) ).

% funion_absorb1
thf(fact_443_funion__absorb2,axiom,
    ! [B3: fset_P5281107635120001194_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B3 @ A3 )
     => ( ( sup_su860928060825958358_a_b_b @ A3 @ B3 )
        = A3 ) ) ).

% funion_absorb2
thf(fact_444_fsubset__finsert,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
     => ( ( ord_le789900035998834954_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ X4 @ B3 ) )
        = ( ord_le789900035998834954_a_b_b @ A3 @ B3 ) ) ) ).

% fsubset_finsert
thf(fact_445_fsubset__funion__eq,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [A6: fset_P5281107635120001194_a_b_b,B6: fset_P5281107635120001194_a_b_b] :
          ( ( sup_su860928060825958358_a_b_b @ A6 @ B6 )
          = B6 ) ) ) ).

% fsubset_funion_eq
thf(fact_446_fset__eq__fsubset,axiom,
    ( ( ^ [Y3: fset_P5281107635120001194_a_b_b,Z: fset_P5281107635120001194_a_b_b] : ( Y3 = Z ) )
    = ( ^ [A6: fset_P5281107635120001194_a_b_b,B6: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ A6 @ B6 )
          & ( ord_le789900035998834954_a_b_b @ B6 @ A6 ) ) ) ) ).

% fset_eq_fsubset
thf(fact_447_eqfelem__imp__iff,axiom,
    ! [X4: produc4558475209616630778_a_b_b,Y: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( X4 = Y )
     => ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
        = ( fmembe3173364709796808819_a_b_b @ Y @ A3 ) ) ) ).

% eqfelem_imp_iff
thf(fact_448_if__split__fmem2,axiom,
    ! [A2: produc4558475209616630778_a_b_b,Q: $o,X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ A2 @ ( if_fse8812573537926886756_a_b_b @ Q @ X4 @ Y ) )
      = ( ( Q
         => ( fmembe3173364709796808819_a_b_b @ A2 @ X4 ) )
        & ( ~ Q
         => ( fmembe3173364709796808819_a_b_b @ A2 @ Y ) ) ) ) ).

% if_split_fmem2
thf(fact_449_if__split__fmem1,axiom,
    ! [Q: $o,X4: produc4558475209616630778_a_b_b,Y: produc4558475209616630778_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ ( if_Pro6329973184163622324_a_b_b @ Q @ X4 @ Y ) @ B2 )
      = ( ( Q
         => ( fmembe3173364709796808819_a_b_b @ X4 @ B2 ) )
        & ( ~ Q
         => ( fmembe3173364709796808819_a_b_b @ Y @ B2 ) ) ) ) ).

% if_split_fmem1
thf(fact_450_eqfset__imp__iff,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,X4: produc4558475209616630778_a_b_b] :
      ( ( A3 = B3 )
     => ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
        = ( fmembe3173364709796808819_a_b_b @ X4 @ B3 ) ) ) ).

% eqfset_imp_iff
thf(fact_451_fsubset__trans,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ( ord_le789900035998834954_a_b_b @ B3 @ C )
       => ( ord_le789900035998834954_a_b_b @ A3 @ C ) ) ) ).

% fsubset_trans
thf(fact_452_eq__fmem__trans,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( A2 = B2 )
     => ( ( fmembe3173364709796808819_a_b_b @ B2 @ A3 )
       => ( fmembe3173364709796808819_a_b_b @ A2 @ A3 ) ) ) ).

% eq_fmem_trans
thf(fact_453_fsubset__refl,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ A3 @ A3 ) ).

% fsubset_refl
thf(fact_454_fequalityD2,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( A3 = B3 )
     => ( ord_le789900035998834954_a_b_b @ B3 @ A3 ) ) ).

% fequalityD2
thf(fact_455_fequalityD1,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( A3 = B3 )
     => ( ord_le789900035998834954_a_b_b @ A3 @ B3 ) ) ).

% fequalityD1
thf(fact_456_fequalityCE,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,C2: produc4558475209616630778_a_b_b] :
      ( ( A3 = B3 )
     => ( ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
         => ~ ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) )
       => ~ ( ~ ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
           => ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ) ) ).

% fequalityCE
thf(fact_457_fequalityE,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( A3 = B3 )
     => ~ ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
         => ~ ( ord_le789900035998834954_a_b_b @ B3 @ A3 ) ) ) ).

% fequalityE
thf(fact_458_fsubsetD,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,C2: produc4558475209616630778_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
       => ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ) ).

% fsubsetD
thf(fact_459_fset__eqI,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( fmembe3173364709796808819_a_b_b @ X @ A3 )
          = ( fmembe3173364709796808819_a_b_b @ X @ B3 ) )
     => ( A3 = B3 ) ) ).

% fset_eqI
thf(fact_460_fin__mono,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,X4: produc4558475209616630778_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
       => ( fmembe3173364709796808819_a_b_b @ X4 @ B3 ) ) ) ).

% fin_mono
thf(fact_461_fmember_Orep__eq,axiom,
    ( fmember_b
    = ( ^ [X3: b,Xa2: fset_b] : ( member_b @ X3 @ ( fset_b2 @ Xa2 ) ) ) ) ).

% fmember.rep_eq
thf(fact_462_fmember_Orep__eq,axiom,
    ( fmembe3173364709796808819_a_b_b
    = ( ^ [X3: produc4558475209616630778_a_b_b,Xa2: fset_P5281107635120001194_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ Xa2 ) ) ) ) ).

% fmember.rep_eq
thf(fact_463_notin__fset,axiom,
    ! [X4: b,S2: fset_b] :
      ( ( ~ ( fmember_b @ X4 @ S2 ) )
      = ( ~ ( member_b @ X4 @ ( fset_b2 @ S2 ) ) ) ) ).

% notin_fset
thf(fact_464_notin__fset,axiom,
    ! [X4: produc4558475209616630778_a_b_b,S2: fset_P5281107635120001194_a_b_b] :
      ( ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ S2 ) )
      = ( ~ ( member4380921116106875537_a_b_b @ X4 @ ( fset_P783253628892185035_a_b_b @ S2 ) ) ) ) ).

% notin_fset
thf(fact_465_fmember__iff__member__fset,axiom,
    ( fmember_b
    = ( ^ [X3: b,A6: fset_b] : ( member_b @ X3 @ ( fset_b2 @ A6 ) ) ) ) ).

% fmember_iff_member_fset
thf(fact_466_fmember__iff__member__fset,axiom,
    ( fmembe3173364709796808819_a_b_b
    = ( ^ [X3: produc4558475209616630778_a_b_b,A6: fset_P5281107635120001194_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ A6 ) ) ) ) ).

% fmember_iff_member_fset
thf(fact_467_fset__induct__stronger,axiom,
    ! [P: fset_P5281107635120001194_a_b_b > $o,S2: fset_P5281107635120001194_a_b_b] :
      ( ( P @ bot_bo2895716411488905534_a_b_b )
     => ( ! [X: produc4558475209616630778_a_b_b,S3: fset_P5281107635120001194_a_b_b] :
            ( ~ ( fmembe3173364709796808819_a_b_b @ X @ S3 )
           => ( ( P @ S3 )
             => ( P @ ( finser8437519239679886002_a_b_b @ X @ S3 ) ) ) )
       => ( P @ S2 ) ) ) ).

% fset_induct_stronger
thf(fact_468_mk__disjoint__finsert,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ A2 @ A3 )
     => ? [B7: fset_P5281107635120001194_a_b_b] :
          ( ( A3
            = ( finser8437519239679886002_a_b_b @ A2 @ B7 ) )
          & ~ ( fmembe3173364709796808819_a_b_b @ A2 @ B7 ) ) ) ).

% mk_disjoint_finsert
thf(fact_469_fset__strong__cases,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( Xs2 != bot_bo2895716411488905534_a_b_b )
     => ~ ! [Ys2: fset_P5281107635120001194_a_b_b,X: produc4558475209616630778_a_b_b] :
            ( ~ ( fmembe3173364709796808819_a_b_b @ X @ Ys2 )
           => ( Xs2
             != ( finser8437519239679886002_a_b_b @ X @ Ys2 ) ) ) ) ).

% fset_strong_cases
thf(fact_470_fsingleton__iff,axiom,
    ! [B2: produc4558475209616630778_a_b_b,A2: produc4558475209616630778_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ B2 @ ( finser8437519239679886002_a_b_b @ A2 @ bot_bo2895716411488905534_a_b_b ) )
      = ( B2 = A2 ) ) ).

% fsingleton_iff
thf(fact_471_finsert__eq__iff,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ~ ( fmembe3173364709796808819_a_b_b @ A2 @ A3 )
     => ( ~ ( fmembe3173364709796808819_a_b_b @ B2 @ B3 )
       => ( ( ( finser8437519239679886002_a_b_b @ A2 @ A3 )
            = ( finser8437519239679886002_a_b_b @ B2 @ B3 ) )
          = ( ( ( A2 = B2 )
             => ( A3 = B3 ) )
            & ( ( A2 != B2 )
             => ? [C3: fset_P5281107635120001194_a_b_b] :
                  ( ( A3
                    = ( finser8437519239679886002_a_b_b @ B2 @ C3 ) )
                  & ~ ( fmembe3173364709796808819_a_b_b @ B2 @ C3 )
                  & ( B3
                    = ( finser8437519239679886002_a_b_b @ A2 @ C3 ) )
                  & ~ ( fmembe3173364709796808819_a_b_b @ A2 @ C3 ) ) ) ) ) ) ) ).

% finsert_eq_iff
thf(fact_472_finsert__absorb,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ A2 @ A3 )
     => ( ( finser8437519239679886002_a_b_b @ A2 @ A3 )
        = A3 ) ) ).

% finsert_absorb
thf(fact_473_finsert__ident,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
     => ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ B3 )
       => ( ( ( finser8437519239679886002_a_b_b @ X4 @ A3 )
            = ( finser8437519239679886002_a_b_b @ X4 @ B3 ) )
          = ( A3 = B3 ) ) ) ) ).

% finsert_ident
thf(fact_474_fset__induct2,axiom,
    ! [P: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b > $o,Xsa: fset_P5281107635120001194_a_b_b,Ysa: fset_P5281107635120001194_a_b_b] :
      ( ( P @ bot_bo2895716411488905534_a_b_b @ bot_bo2895716411488905534_a_b_b )
     => ( ! [X: produc4558475209616630778_a_b_b,Xs: fset_P5281107635120001194_a_b_b] :
            ( ~ ( fmembe3173364709796808819_a_b_b @ X @ Xs )
           => ( P @ ( finser8437519239679886002_a_b_b @ X @ Xs ) @ bot_bo2895716411488905534_a_b_b ) )
       => ( ! [Y4: produc4558475209616630778_a_b_b,Ys2: fset_P5281107635120001194_a_b_b] :
              ( ~ ( fmembe3173364709796808819_a_b_b @ Y4 @ Ys2 )
             => ( P @ bot_bo2895716411488905534_a_b_b @ ( finser8437519239679886002_a_b_b @ Y4 @ Ys2 ) ) )
         => ( ! [X: produc4558475209616630778_a_b_b,Xs: fset_P5281107635120001194_a_b_b,Y4: produc4558475209616630778_a_b_b,Ys2: fset_P5281107635120001194_a_b_b] :
                ( ( P @ Xs @ Ys2 )
               => ( ~ ( fmembe3173364709796808819_a_b_b @ X @ Xs )
                 => ( ~ ( fmembe3173364709796808819_a_b_b @ Y4 @ Ys2 )
                   => ( P @ ( finser8437519239679886002_a_b_b @ X @ Xs ) @ ( finser8437519239679886002_a_b_b @ Y4 @ Ys2 ) ) ) ) )
           => ( P @ Xsa @ Ysa ) ) ) ) ) ).

% fset_induct2
thf(fact_475_set__finsert,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
     => ~ ! [B7: fset_P5281107635120001194_a_b_b] :
            ( ( A3
              = ( finser8437519239679886002_a_b_b @ X4 @ B7 ) )
           => ( fmembe3173364709796808819_a_b_b @ X4 @ B7 ) ) ) ).

% set_finsert
thf(fact_476_finsertI2,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b,B2: produc4558475209616630778_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ A2 @ B3 )
     => ( fmembe3173364709796808819_a_b_b @ A2 @ ( finser8437519239679886002_a_b_b @ B2 @ B3 ) ) ) ).

% finsertI2
thf(fact_477_finsertI1,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b] : ( fmembe3173364709796808819_a_b_b @ A2 @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) ) ).

% finsertI1
thf(fact_478_finsertE,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ A2 @ ( finser8437519239679886002_a_b_b @ B2 @ A3 ) )
     => ( ( A2 != B2 )
       => ( fmembe3173364709796808819_a_b_b @ A2 @ A3 ) ) ) ).

% finsertE
thf(fact_479_fsubset__fsingletonD,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,X4: produc4558475209616630778_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) )
     => ( ( A3 = bot_bo2895716411488905534_a_b_b )
        | ( A3
          = ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) ) ) ).

% fsubset_fsingletonD
thf(fact_480_fsubset__finsertI2,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,B2: produc4558475209616630778_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ord_le789900035998834954_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ B2 @ B3 ) ) ) ).

% fsubset_finsertI2
thf(fact_481_fsubset__finsertI,axiom,
    ! [B3: fset_P5281107635120001194_a_b_b,A2: produc4558475209616630778_a_b_b] : ( ord_le789900035998834954_a_b_b @ B3 @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) ) ).

% fsubset_finsertI
thf(fact_482_finsert__mono,axiom,
    ! [C: fset_P5281107635120001194_a_b_b,D2: fset_P5281107635120001194_a_b_b,A2: produc4558475209616630778_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ C @ D2 )
     => ( ord_le789900035998834954_a_b_b @ ( finser8437519239679886002_a_b_b @ A2 @ C ) @ ( finser8437519239679886002_a_b_b @ A2 @ D2 ) ) ) ).

% finsert_mono
thf(fact_483_comp__fun__commute_Offold__finsert2,axiom,
    ! [F: produc4558475209616630778_a_b_b > a > a,X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,Z2: a] :
      ( ( finite414203908571218417_b_b_a @ F )
     => ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
       => ( ( ffold_2783168711033344739_b_b_a @ F @ Z2 @ ( finser8437519239679886002_a_b_b @ X4 @ A3 ) )
          = ( ffold_2783168711033344739_b_b_a @ F @ ( F @ X4 @ Z2 ) @ A3 ) ) ) ) ).

% comp_fun_commute.ffold_finsert2
thf(fact_484_comp__fun__commute_Offold__finsert,axiom,
    ! [F: produc4558475209616630778_a_b_b > a > a,X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,Z2: a] :
      ( ( finite414203908571218417_b_b_a @ F )
     => ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
       => ( ( ffold_2783168711033344739_b_b_a @ F @ Z2 @ ( finser8437519239679886002_a_b_b @ X4 @ A3 ) )
          = ( F @ X4 @ ( ffold_2783168711033344739_b_b_a @ F @ Z2 @ A3 ) ) ) ) ) ).

% comp_fun_commute.ffold_finsert
thf(fact_485_comp__fun__commute_Offold__fun__left__comm,axiom,
    ! [F: produc4558475209616630778_a_b_b > a > a,X4: produc4558475209616630778_a_b_b,Z2: a,A3: fset_P5281107635120001194_a_b_b] :
      ( ( finite414203908571218417_b_b_a @ F )
     => ( ( F @ X4 @ ( ffold_2783168711033344739_b_b_a @ F @ Z2 @ A3 ) )
        = ( ffold_2783168711033344739_b_b_a @ F @ ( F @ X4 @ Z2 ) @ A3 ) ) ) ).

% comp_fun_commute.ffold_fun_left_comm
thf(fact_486_inf__sup__ord_I4_J,axiom,
    ! [Y: set_b,X4: set_b] : ( ord_less_eq_set_b @ Y @ ( sup_sup_set_b @ X4 @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_487_inf__sup__ord_I4_J,axiom,
    ! [Y: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ Y @ ( sup_su860928060825958358_a_b_b @ X4 @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_488_inf__sup__ord_I4_J,axiom,
    ! [Y: nat,X4: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X4 @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_489_inf__sup__ord_I3_J,axiom,
    ! [X4: set_b,Y: set_b] : ( ord_less_eq_set_b @ X4 @ ( sup_sup_set_b @ X4 @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_490_inf__sup__ord_I3_J,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ X4 @ ( sup_su860928060825958358_a_b_b @ X4 @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_491_inf__sup__ord_I3_J,axiom,
    ! [X4: nat,Y: nat] : ( ord_less_eq_nat @ X4 @ ( sup_sup_nat @ X4 @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_492_le__supE,axiom,
    ! [A2: set_b,B2: set_b,X4: set_b] :
      ( ( ord_less_eq_set_b @ ( sup_sup_set_b @ A2 @ B2 ) @ X4 )
     => ~ ( ( ord_less_eq_set_b @ A2 @ X4 )
         => ~ ( ord_less_eq_set_b @ B2 @ X4 ) ) ) ).

% le_supE
thf(fact_493_le__supE,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) @ X4 )
     => ~ ( ( ord_le789900035998834954_a_b_b @ A2 @ X4 )
         => ~ ( ord_le789900035998834954_a_b_b @ B2 @ X4 ) ) ) ).

% le_supE
thf(fact_494_le__supE,axiom,
    ! [A2: nat,B2: nat,X4: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B2 ) @ X4 )
     => ~ ( ( ord_less_eq_nat @ A2 @ X4 )
         => ~ ( ord_less_eq_nat @ B2 @ X4 ) ) ) ).

% le_supE
thf(fact_495_le__supI,axiom,
    ! [A2: set_b,X4: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ X4 )
     => ( ( ord_less_eq_set_b @ B2 @ X4 )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ A2 @ B2 ) @ X4 ) ) ) ).

% le_supI
thf(fact_496_le__supI,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ X4 )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ X4 )
       => ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) @ X4 ) ) ) ).

% le_supI
thf(fact_497_le__supI,axiom,
    ! [A2: nat,X4: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ X4 )
     => ( ( ord_less_eq_nat @ B2 @ X4 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B2 ) @ X4 ) ) ) ).

% le_supI
thf(fact_498_sup__ge1,axiom,
    ! [X4: set_b,Y: set_b] : ( ord_less_eq_set_b @ X4 @ ( sup_sup_set_b @ X4 @ Y ) ) ).

% sup_ge1
thf(fact_499_sup__ge1,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ X4 @ ( sup_su860928060825958358_a_b_b @ X4 @ Y ) ) ).

% sup_ge1
thf(fact_500_sup__ge1,axiom,
    ! [X4: nat,Y: nat] : ( ord_less_eq_nat @ X4 @ ( sup_sup_nat @ X4 @ Y ) ) ).

% sup_ge1
thf(fact_501_sup__ge2,axiom,
    ! [Y: set_b,X4: set_b] : ( ord_less_eq_set_b @ Y @ ( sup_sup_set_b @ X4 @ Y ) ) ).

% sup_ge2
thf(fact_502_sup__ge2,axiom,
    ! [Y: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ Y @ ( sup_su860928060825958358_a_b_b @ X4 @ Y ) ) ).

% sup_ge2
thf(fact_503_sup__ge2,axiom,
    ! [Y: nat,X4: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X4 @ Y ) ) ).

% sup_ge2
thf(fact_504_le__supI1,axiom,
    ! [X4: set_b,A2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ X4 @ A2 )
     => ( ord_less_eq_set_b @ X4 @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_505_le__supI1,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ A2 )
     => ( ord_le789900035998834954_a_b_b @ X4 @ ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_506_le__supI1,axiom,
    ! [X4: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ X4 @ A2 )
     => ( ord_less_eq_nat @ X4 @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% le_supI1
thf(fact_507_le__supI2,axiom,
    ! [X4: set_b,B2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ X4 @ B2 )
     => ( ord_less_eq_set_b @ X4 @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_508_le__supI2,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ B2 )
     => ( ord_le789900035998834954_a_b_b @ X4 @ ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_509_le__supI2,axiom,
    ! [X4: nat,B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ X4 @ B2 )
     => ( ord_less_eq_nat @ X4 @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% le_supI2
thf(fact_510_sup_Omono,axiom,
    ! [C2: set_b,A2: set_b,D: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ C2 @ A2 )
     => ( ( ord_less_eq_set_b @ D @ B2 )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ C2 @ D ) @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_511_sup_Omono,axiom,
    ! [C2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b,D: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ C2 @ A2 )
     => ( ( ord_le789900035998834954_a_b_b @ D @ B2 )
       => ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ C2 @ D ) @ ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_512_sup_Omono,axiom,
    ! [C2: nat,A2: nat,D: nat,B2: nat] :
      ( ( ord_less_eq_nat @ C2 @ A2 )
     => ( ( ord_less_eq_nat @ D @ B2 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ C2 @ D ) @ ( sup_sup_nat @ A2 @ B2 ) ) ) ) ).

% sup.mono
thf(fact_513_sup__mono,axiom,
    ! [A2: set_b,C2: set_b,B2: set_b,D: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ C2 )
     => ( ( ord_less_eq_set_b @ B2 @ D )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ A2 @ B2 ) @ ( sup_sup_set_b @ C2 @ D ) ) ) ) ).

% sup_mono
thf(fact_514_sup__mono,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,D: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ C2 )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ D )
       => ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) @ ( sup_su860928060825958358_a_b_b @ C2 @ D ) ) ) ) ).

% sup_mono
thf(fact_515_sup__mono,axiom,
    ! [A2: nat,C2: nat,B2: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ C2 )
     => ( ( ord_less_eq_nat @ B2 @ D )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B2 ) @ ( sup_sup_nat @ C2 @ D ) ) ) ) ).

% sup_mono
thf(fact_516_sup__least,axiom,
    ! [Y: set_b,X4: set_b,Z2: set_b] :
      ( ( ord_less_eq_set_b @ Y @ X4 )
     => ( ( ord_less_eq_set_b @ Z2 @ X4 )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ Y @ Z2 ) @ X4 ) ) ) ).

% sup_least
thf(fact_517_sup__least,axiom,
    ! [Y: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b,Z2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ Y @ X4 )
     => ( ( ord_le789900035998834954_a_b_b @ Z2 @ X4 )
       => ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ Y @ Z2 ) @ X4 ) ) ) ).

% sup_least
thf(fact_518_sup__least,axiom,
    ! [Y: nat,X4: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ Y @ X4 )
     => ( ( ord_less_eq_nat @ Z2 @ X4 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ Y @ Z2 ) @ X4 ) ) ) ).

% sup_least
thf(fact_519_le__iff__sup,axiom,
    ( ord_less_eq_set_b
    = ( ^ [X3: set_b,Y5: set_b] :
          ( ( sup_sup_set_b @ X3 @ Y5 )
          = Y5 ) ) ) ).

% le_iff_sup
thf(fact_520_le__iff__sup,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [X3: fset_P5281107635120001194_a_b_b,Y5: fset_P5281107635120001194_a_b_b] :
          ( ( sup_su860928060825958358_a_b_b @ X3 @ Y5 )
          = Y5 ) ) ) ).

% le_iff_sup
thf(fact_521_le__iff__sup,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y5: nat] :
          ( ( sup_sup_nat @ X3 @ Y5 )
          = Y5 ) ) ) ).

% le_iff_sup
thf(fact_522_sup_OorderE,axiom,
    ! [B2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ B2 @ A2 )
     => ( A2
        = ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_523_sup_OorderE,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B2 @ A2 )
     => ( A2
        = ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_524_sup_OorderE,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( A2
        = ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% sup.orderE
thf(fact_525_sup_OorderI,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( A2
        = ( sup_sup_set_b @ A2 @ B2 ) )
     => ( ord_less_eq_set_b @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_526_sup_OorderI,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( A2
        = ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) )
     => ( ord_le789900035998834954_a_b_b @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_527_sup_OorderI,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2
        = ( sup_sup_nat @ A2 @ B2 ) )
     => ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% sup.orderI
thf(fact_528_sup__unique,axiom,
    ! [F: set_b > set_b > set_b,X4: set_b,Y: set_b] :
      ( ! [X: set_b,Y4: set_b] : ( ord_less_eq_set_b @ X @ ( F @ X @ Y4 ) )
     => ( ! [X: set_b,Y4: set_b] : ( ord_less_eq_set_b @ Y4 @ ( F @ X @ Y4 ) )
       => ( ! [X: set_b,Y4: set_b,Z3: set_b] :
              ( ( ord_less_eq_set_b @ Y4 @ X )
             => ( ( ord_less_eq_set_b @ Z3 @ X )
               => ( ord_less_eq_set_b @ ( F @ Y4 @ Z3 ) @ X ) ) )
         => ( ( sup_sup_set_b @ X4 @ Y )
            = ( F @ X4 @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_529_sup__unique,axiom,
    ! [F: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ X @ ( F @ X @ Y4 ) )
     => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ Y4 @ ( F @ X @ Y4 ) )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b,Z3: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ Y4 @ X )
             => ( ( ord_le789900035998834954_a_b_b @ Z3 @ X )
               => ( ord_le789900035998834954_a_b_b @ ( F @ Y4 @ Z3 ) @ X ) ) )
         => ( ( sup_su860928060825958358_a_b_b @ X4 @ Y )
            = ( F @ X4 @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_530_sup__unique,axiom,
    ! [F: nat > nat > nat,X4: nat,Y: nat] :
      ( ! [X: nat,Y4: nat] : ( ord_less_eq_nat @ X @ ( F @ X @ Y4 ) )
     => ( ! [X: nat,Y4: nat] : ( ord_less_eq_nat @ Y4 @ ( F @ X @ Y4 ) )
       => ( ! [X: nat,Y4: nat,Z3: nat] :
              ( ( ord_less_eq_nat @ Y4 @ X )
             => ( ( ord_less_eq_nat @ Z3 @ X )
               => ( ord_less_eq_nat @ ( F @ Y4 @ Z3 ) @ X ) ) )
         => ( ( sup_sup_nat @ X4 @ Y )
            = ( F @ X4 @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_531_sup_Oabsorb1,axiom,
    ! [B2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ B2 @ A2 )
     => ( ( sup_sup_set_b @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_532_sup_Oabsorb1,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B2 @ A2 )
     => ( ( sup_su860928060825958358_a_b_b @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_533_sup_Oabsorb1,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( sup_sup_nat @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb1
thf(fact_534_sup_Oabsorb2,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ B2 )
     => ( ( sup_sup_set_b @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_535_sup_Oabsorb2,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( sup_su860928060825958358_a_b_b @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_536_sup_Oabsorb2,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( sup_sup_nat @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb2
thf(fact_537_sup__absorb1,axiom,
    ! [Y: set_b,X4: set_b] :
      ( ( ord_less_eq_set_b @ Y @ X4 )
     => ( ( sup_sup_set_b @ X4 @ Y )
        = X4 ) ) ).

% sup_absorb1
thf(fact_538_sup__absorb1,axiom,
    ! [Y: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ Y @ X4 )
     => ( ( sup_su860928060825958358_a_b_b @ X4 @ Y )
        = X4 ) ) ).

% sup_absorb1
thf(fact_539_sup__absorb1,axiom,
    ! [Y: nat,X4: nat] :
      ( ( ord_less_eq_nat @ Y @ X4 )
     => ( ( sup_sup_nat @ X4 @ Y )
        = X4 ) ) ).

% sup_absorb1
thf(fact_540_sup__absorb2,axiom,
    ! [X4: set_b,Y: set_b] :
      ( ( ord_less_eq_set_b @ X4 @ Y )
     => ( ( sup_sup_set_b @ X4 @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_541_sup__absorb2,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
     => ( ( sup_su860928060825958358_a_b_b @ X4 @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_542_sup__absorb2,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( sup_sup_nat @ X4 @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_543_sup_OboundedE,axiom,
    ! [B2: set_b,C2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ ( sup_sup_set_b @ B2 @ C2 ) @ A2 )
     => ~ ( ( ord_less_eq_set_b @ B2 @ A2 )
         => ~ ( ord_less_eq_set_b @ C2 @ A2 ) ) ) ).

% sup.boundedE
thf(fact_544_sup_OboundedE,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ B2 @ C2 ) @ A2 )
     => ~ ( ( ord_le789900035998834954_a_b_b @ B2 @ A2 )
         => ~ ( ord_le789900035998834954_a_b_b @ C2 @ A2 ) ) ) ).

% sup.boundedE
thf(fact_545_sup_OboundedE,axiom,
    ! [B2: nat,C2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B2 @ C2 ) @ A2 )
     => ~ ( ( ord_less_eq_nat @ B2 @ A2 )
         => ~ ( ord_less_eq_nat @ C2 @ A2 ) ) ) ).

% sup.boundedE
thf(fact_546_sup_OboundedI,axiom,
    ! [B2: set_b,A2: set_b,C2: set_b] :
      ( ( ord_less_eq_set_b @ B2 @ A2 )
     => ( ( ord_less_eq_set_b @ C2 @ A2 )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ B2 @ C2 ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_547_sup_OboundedI,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B2 @ A2 )
     => ( ( ord_le789900035998834954_a_b_b @ C2 @ A2 )
       => ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ B2 @ C2 ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_548_sup_OboundedI,axiom,
    ! [B2: nat,A2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C2 @ A2 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ B2 @ C2 ) @ A2 ) ) ) ).

% sup.boundedI
thf(fact_549_sup_Oorder__iff,axiom,
    ( ord_less_eq_set_b
    = ( ^ [B: set_b,A: set_b] :
          ( A
          = ( sup_sup_set_b @ A @ B ) ) ) ) ).

% sup.order_iff
thf(fact_550_sup_Oorder__iff,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [B: fset_P5281107635120001194_a_b_b,A: fset_P5281107635120001194_a_b_b] :
          ( A
          = ( sup_su860928060825958358_a_b_b @ A @ B ) ) ) ) ).

% sup.order_iff
thf(fact_551_sup_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B: nat,A: nat] :
          ( A
          = ( sup_sup_nat @ A @ B ) ) ) ) ).

% sup.order_iff
thf(fact_552_sup_Ocobounded1,axiom,
    ! [A2: set_b,B2: set_b] : ( ord_less_eq_set_b @ A2 @ ( sup_sup_set_b @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_553_sup_Ocobounded1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ A2 @ ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_554_sup_Ocobounded1,axiom,
    ! [A2: nat,B2: nat] : ( ord_less_eq_nat @ A2 @ ( sup_sup_nat @ A2 @ B2 ) ) ).

% sup.cobounded1
thf(fact_555_sup_Ocobounded2,axiom,
    ! [B2: set_b,A2: set_b] : ( ord_less_eq_set_b @ B2 @ ( sup_sup_set_b @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_556_sup_Ocobounded2,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ B2 @ ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_557_sup_Ocobounded2,axiom,
    ! [B2: nat,A2: nat] : ( ord_less_eq_nat @ B2 @ ( sup_sup_nat @ A2 @ B2 ) ) ).

% sup.cobounded2
thf(fact_558_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_b
    = ( ^ [B: set_b,A: set_b] :
          ( ( sup_sup_set_b @ A @ B )
          = A ) ) ) ).

% sup.absorb_iff1
thf(fact_559_sup_Oabsorb__iff1,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [B: fset_P5281107635120001194_a_b_b,A: fset_P5281107635120001194_a_b_b] :
          ( ( sup_su860928060825958358_a_b_b @ A @ B )
          = A ) ) ) ).

% sup.absorb_iff1
thf(fact_560_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B: nat,A: nat] :
          ( ( sup_sup_nat @ A @ B )
          = A ) ) ) ).

% sup.absorb_iff1
thf(fact_561_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A: set_b,B: set_b] :
          ( ( sup_sup_set_b @ A @ B )
          = B ) ) ) ).

% sup.absorb_iff2
thf(fact_562_sup_Oabsorb__iff2,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [A: fset_P5281107635120001194_a_b_b,B: fset_P5281107635120001194_a_b_b] :
          ( ( sup_su860928060825958358_a_b_b @ A @ B )
          = B ) ) ) ).

% sup.absorb_iff2
thf(fact_563_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B: nat] :
          ( ( sup_sup_nat @ A @ B )
          = B ) ) ) ).

% sup.absorb_iff2
thf(fact_564_sup_OcoboundedI1,axiom,
    ! [C2: set_b,A2: set_b,B2: set_b] :
      ( ( ord_less_eq_set_b @ C2 @ A2 )
     => ( ord_less_eq_set_b @ C2 @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_565_sup_OcoboundedI1,axiom,
    ! [C2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ C2 @ A2 )
     => ( ord_le789900035998834954_a_b_b @ C2 @ ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_566_sup_OcoboundedI1,axiom,
    ! [C2: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ C2 @ A2 )
     => ( ord_less_eq_nat @ C2 @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% sup.coboundedI1
thf(fact_567_sup_OcoboundedI2,axiom,
    ! [C2: set_b,B2: set_b,A2: set_b] :
      ( ( ord_less_eq_set_b @ C2 @ B2 )
     => ( ord_less_eq_set_b @ C2 @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_568_sup_OcoboundedI2,axiom,
    ! [C2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ C2 @ B2 )
     => ( ord_le789900035998834954_a_b_b @ C2 @ ( sup_su860928060825958358_a_b_b @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_569_sup_OcoboundedI2,axiom,
    ! [C2: nat,B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ C2 @ B2 )
     => ( ord_less_eq_nat @ C2 @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% sup.coboundedI2
thf(fact_570_ffold__commute__supset,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,Ys: fset_P5281107635120001194_a_b_b,P: fset_P5281107635120001194_a_b_b > $o,Q: produc4558475209616630778_a_b_b > a > $o,R3: produc4558475209616630778_a_b_b > a > a,Acc: a] :
      ( ( ord_le789900035998834954_a_b_b @ Xs2 @ Ys )
     => ( ( P @ Ys )
       => ( ! [Ys2: fset_P5281107635120001194_a_b_b,Xs: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ Xs @ Ys2 )
             => ( ( P @ Ys2 )
               => ( P @ Xs ) ) )
         => ( ! [Xs: fset_P5281107635120001194_a_b_b] :
                ( finite414203908571218417_b_b_a
                @ ^ [A: produc4558475209616630778_a_b_b,B: a] :
                    ( if_a
                    @ ( ~ ( member4380921116106875537_a_b_b @ A @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                      | ~ ( Q @ A @ B )
                      | ~ ( P @ Xs ) )
                    @ B
                    @ ( R3 @ A @ B ) ) )
           => ( ( ffold_2783168711033344739_b_b_a
                @ ^ [A: produc4558475209616630778_a_b_b,B: a] :
                    ( if_a
                    @ ( ~ ( member4380921116106875537_a_b_b @ A @ ( fset_P783253628892185035_a_b_b @ Ys ) )
                      | ~ ( Q @ A @ B )
                      | ~ ( P @ Ys ) )
                    @ B
                    @ ( R3 @ A @ B ) )
                @ Acc
                @ Xs2 )
              = ( ffold_2783168711033344739_b_b_a
                @ ^ [A: produc4558475209616630778_a_b_b,B: a] :
                    ( if_a
                    @ ( ~ ( member4380921116106875537_a_b_b @ A @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                      | ~ ( Q @ A @ B )
                      | ~ ( P @ Xs2 ) )
                    @ B
                    @ ( R3 @ A @ B ) )
                @ Acc
                @ Xs2 ) ) ) ) ) ) ).

% ffold_commute_supset
thf(fact_571_wf__darcs__sub,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,Ys: fset_P5281107635120001194_a_b_b,R4: a,R2: a] :
      ( ( ord_le789900035998834954_a_b_b @ Xs2 @ Ys )
     => ( ( wf_darcs_a_b @ ( node_a_b @ R4 @ Ys ) )
       => ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) ) ) ).

% wf_darcs_sub
thf(fact_572_fset__cong,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( ( fset_P783253628892185035_a_b_b @ X4 )
        = ( fset_P783253628892185035_a_b_b @ Y ) )
      = ( X4 = Y ) ) ).

% fset_cong
thf(fact_573_funion__fsingleton__iff,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,X4: produc4558475209616630778_a_b_b] :
      ( ( ( sup_su860928060825958358_a_b_b @ A3 @ B3 )
        = ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) )
      = ( ( ( A3 = bot_bo2895716411488905534_a_b_b )
          & ( B3
            = ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) )
        | ( ( A3
            = ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) )
          & ( B3 = bot_bo2895716411488905534_a_b_b ) )
        | ( ( A3
            = ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) )
          & ( B3
            = ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) ) ) ) ).

% funion_fsingleton_iff
thf(fact_574_fsingleton__funion__iff,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b )
        = ( sup_su860928060825958358_a_b_b @ A3 @ B3 ) )
      = ( ( ( A3 = bot_bo2895716411488905534_a_b_b )
          & ( B3
            = ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) )
        | ( ( A3
            = ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) )
          & ( B3 = bot_bo2895716411488905534_a_b_b ) )
        | ( ( A3
            = ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) )
          & ( B3
            = ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) ) ) ) ).

% fsingleton_funion_iff
thf(fact_575_finsert__not__fempty,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( finser8437519239679886002_a_b_b @ A2 @ A3 )
     != bot_bo2895716411488905534_a_b_b ) ).

% finsert_not_fempty
thf(fact_576_fsingleton__inject,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B2: produc4558475209616630778_a_b_b] :
      ( ( ( finser8437519239679886002_a_b_b @ A2 @ bot_bo2895716411488905534_a_b_b )
        = ( finser8437519239679886002_a_b_b @ B2 @ bot_bo2895716411488905534_a_b_b ) )
     => ( A2 = B2 ) ) ).

% fsingleton_inject
thf(fact_577_finsert__is__funion,axiom,
    ( finser8437519239679886002_a_b_b
    = ( ^ [A: produc4558475209616630778_a_b_b] : ( sup_su860928060825958358_a_b_b @ ( finser8437519239679886002_a_b_b @ A @ bot_bo2895716411488905534_a_b_b ) ) ) ) ).

% finsert_is_funion
thf(fact_578_fdoubleton__eq__iff,axiom,
    ! [A2: produc4558475209616630778_a_b_b,B2: produc4558475209616630778_a_b_b,C2: produc4558475209616630778_a_b_b,D: produc4558475209616630778_a_b_b] :
      ( ( ( finser8437519239679886002_a_b_b @ A2 @ ( finser8437519239679886002_a_b_b @ B2 @ bot_bo2895716411488905534_a_b_b ) )
        = ( finser8437519239679886002_a_b_b @ C2 @ ( finser8437519239679886002_a_b_b @ D @ bot_bo2895716411488905534_a_b_b ) ) )
      = ( ( ( A2 = C2 )
          & ( B2 = D ) )
        | ( ( A2 = D )
          & ( B2 = C2 ) ) ) ) ).

% fdoubleton_eq_iff
thf(fact_579_finsert__commute,axiom,
    ! [X4: produc4558475209616630778_a_b_b,Y: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( finser8437519239679886002_a_b_b @ X4 @ ( finser8437519239679886002_a_b_b @ Y @ A3 ) )
      = ( finser8437519239679886002_a_b_b @ Y @ ( finser8437519239679886002_a_b_b @ X4 @ A3 ) ) ) ).

% finsert_commute
thf(fact_580_fset__exhaust,axiom,
    ! [S2: fset_P5281107635120001194_a_b_b] :
      ( ( S2 != bot_bo2895716411488905534_a_b_b )
     => ~ ! [X: produc4558475209616630778_a_b_b,S4: fset_P5281107635120001194_a_b_b] :
            ( S2
           != ( finser8437519239679886002_a_b_b @ X @ S4 ) ) ) ).

% fset_exhaust
thf(fact_581_FSet_Ofset__induct,axiom,
    ! [P: fset_P5281107635120001194_a_b_b > $o,S2: fset_P5281107635120001194_a_b_b] :
      ( ( P @ bot_bo2895716411488905534_a_b_b )
     => ( ! [X: produc4558475209616630778_a_b_b,S3: fset_P5281107635120001194_a_b_b] :
            ( ( P @ S3 )
           => ( P @ ( finser8437519239679886002_a_b_b @ X @ S3 ) ) )
       => ( P @ S2 ) ) ) ).

% FSet.fset_induct
thf(fact_582_disjoint__darcs__single,axiom,
    ! [E4: b,T: dtree_a_b] :
      ( ( ~ ( member_b @ E4 @ ( darcs_a_b @ T ) ) )
      = ( ! [X3: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ ( produc331601717337510060_a_b_b @ T @ E4 ) @ bot_bo2895716411488905534_a_b_b ) ) )
           => ( produc1325217093046185599_b_b_o
              @ ^ [Y5: dtree_a_b,E12: b] :
                  ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                  & ! [Z4: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ ( produc331601717337510060_a_b_b @ T @ E4 ) @ bot_bo2895716411488905534_a_b_b ) ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Aa: dtree_a_b,E2: b] :
                            ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                              = bot_bot_set_b )
                            | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                              = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                        @ Z4 ) ) )
              @ X3 ) ) ) ) ).

% disjoint_darcs_single
thf(fact_583_wf__darcs__if__darcs_H__aux,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,R2: a] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [Y5: dtree_a_b,E: b] : ( wf_darcs_a_b @ Y5 )
            @ X ) )
     => ( ! [X: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
           => ( produc1325217093046185599_b_b_o
              @ ^ [Y5: dtree_a_b,E12: b] :
                  ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                  & ! [Z4: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Aa: dtree_a_b,E2: b] :
                            ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                              = bot_bot_set_b )
                            | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                              = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                        @ Z4 ) ) )
              @ X ) )
       => ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) ) ) ).

% wf_darcs_if_darcs'_aux
thf(fact_584_disjoint__darcs__if__wf__xs,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ! [X5: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [Y5: dtree_a_b,E12: b] :
                ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                & ! [Z4: produc4558475209616630778_a_b_b] :
                    ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                   => ( produc1325217093046185599_b_b_o
                      @ ^ [Aa: dtree_a_b,E2: b] :
                          ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                            = bot_bot_set_b )
                          | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                            = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                      @ Z4 ) ) )
            @ X5 ) ) ) ).

% disjoint_darcs_if_wf_xs
thf(fact_585_dtail__ffold__notelem__eq__def,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,E4: b,Ys: fset_P5281107635120001194_a_b_b,R2: a,Def: b > a] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [T3: dtree_a_b,E12: b] :
                ~ ( member_b @ E4 @ ( darcs_a_b @ T3 ) )
            @ X ) )
     => ( ( ffold_8367945289176929151_b_b_a
          @ ( produc4313903556115589696_a_b_a
            @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
                ( if_b_a
                @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Ys ) )
                  | ~ ( member_b @ E4 @ ( darcs_a_b @ X3 ) )
                  | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Ys ) ) )
                @ B
                @ ( dtail_a_b @ X3 @ Def ) ) )
          @ Def
          @ Xs2 )
        = Def ) ) ).

% dtail_ffold_notelem_eq_def
thf(fact_586_disjoint__darcs__subset,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,Ys: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ Xs2 @ Ys )
     => ( ! [X: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Ys ) )
           => ( produc1325217093046185599_b_b_o
              @ ^ [Y5: dtree_a_b,E12: b] :
                  ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                  & ! [Z4: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Ys ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Aa: dtree_a_b,E2: b] :
                            ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                              = bot_bot_set_b )
                            | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                              = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                        @ Z4 ) ) )
              @ X ) )
       => ! [X5: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
           => ( produc1325217093046185599_b_b_o
              @ ^ [Y5: dtree_a_b,E12: b] :
                  ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                  & ! [Z4: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Aa: dtree_a_b,E2: b] :
                            ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                              = bot_bot_set_b )
                            | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                              = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                        @ Z4 ) ) )
              @ X5 ) ) ) ) ).

% disjoint_darcs_subset
thf(fact_587_sup__Un__eq,axiom,
    ! [R3: set_Pr3012420139608375472_a_b_b,S2: set_Pr3012420139608375472_a_b_b] :
      ( ( sup_su4209747780764569001_b_b_o
        @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ R3 )
        @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ S2 ) )
      = ( ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ ( sup_su2887895092731772380_a_b_b @ R3 @ S2 ) ) ) ) ).

% sup_Un_eq
thf(fact_588_sup__Un__eq,axiom,
    ! [R3: set_b,S2: set_b] :
      ( ( sup_sup_b_o
        @ ^ [X3: b] : ( member_b @ X3 @ R3 )
        @ ^ [X3: b] : ( member_b @ X3 @ S2 ) )
      = ( ^ [X3: b] : ( member_b @ X3 @ ( sup_sup_set_b @ R3 @ S2 ) ) ) ) ).

% sup_Un_eq
thf(fact_589_order__refl,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ X4 @ X4 ) ).

% order_refl
thf(fact_590_order__refl,axiom,
    ! [X4: nat] : ( ord_less_eq_nat @ X4 @ X4 ) ).

% order_refl
thf(fact_591_dual__order_Orefl,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_592_dual__order_Orefl,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_593_empty__subsetI,axiom,
    ! [A3: set_b] : ( ord_less_eq_set_b @ bot_bot_set_b @ A3 ) ).

% empty_subsetI
thf(fact_594_subset__empty,axiom,
    ! [A3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ bot_bot_set_b )
      = ( A3 = bot_bot_set_b ) ) ).

% subset_empty
thf(fact_595_insert__subset,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( ord_le146215904626753808_a_b_b @ ( insert1613891728210272810_a_b_b @ X4 @ A3 ) @ B3 )
      = ( ( member4380921116106875537_a_b_b @ X4 @ B3 )
        & ( ord_le146215904626753808_a_b_b @ A3 @ B3 ) ) ) ).

% insert_subset
thf(fact_596_insert__subset,axiom,
    ! [X4: b,A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ ( insert_b @ X4 @ A3 ) @ B3 )
      = ( ( member_b @ X4 @ B3 )
        & ( ord_less_eq_set_b @ A3 @ B3 ) ) ) ).

% insert_subset
thf(fact_597_Int__iff,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) )
      = ( ( member4380921116106875537_a_b_b @ C2 @ A3 )
        & ( member4380921116106875537_a_b_b @ C2 @ B3 ) ) ) ).

% Int_iff
thf(fact_598_Int__iff,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ ( inf_inf_set_b @ A3 @ B3 ) )
      = ( ( member_b @ C2 @ A3 )
        & ( member_b @ C2 @ B3 ) ) ) ).

% Int_iff
thf(fact_599_IntI,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ A3 )
     => ( ( member4380921116106875537_a_b_b @ C2 @ B3 )
       => ( member4380921116106875537_a_b_b @ C2 @ ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) ) ) ) ).

% IntI
thf(fact_600_IntI,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ A3 )
     => ( ( member_b @ C2 @ B3 )
       => ( member_b @ C2 @ ( inf_inf_set_b @ A3 @ B3 ) ) ) ) ).

% IntI
thf(fact_601_Un__subset__iff,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( ord_less_eq_set_b @ ( sup_sup_set_b @ A3 @ B3 ) @ C )
      = ( ( ord_less_eq_set_b @ A3 @ C )
        & ( ord_less_eq_set_b @ B3 @ C ) ) ) ).

% Un_subset_iff
thf(fact_602_inf_Obounded__iff,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ ( inf_in7138637532943773244_a_b_b @ B2 @ C2 ) )
      = ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
        & ( ord_le789900035998834954_a_b_b @ A2 @ C2 ) ) ) ).

% inf.bounded_iff
thf(fact_603_inf_Obounded__iff,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( inf_inf_nat @ B2 @ C2 ) )
      = ( ( ord_less_eq_nat @ A2 @ B2 )
        & ( ord_less_eq_nat @ A2 @ C2 ) ) ) ).

% inf.bounded_iff
thf(fact_604_le__inf__iff,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b,Z2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ ( inf_in7138637532943773244_a_b_b @ Y @ Z2 ) )
      = ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
        & ( ord_le789900035998834954_a_b_b @ X4 @ Z2 ) ) ) ).

% le_inf_iff
thf(fact_605_le__inf__iff,axiom,
    ! [X4: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X4 @ ( inf_inf_nat @ Y @ Z2 ) )
      = ( ( ord_less_eq_nat @ X4 @ Y )
        & ( ord_less_eq_nat @ X4 @ Z2 ) ) ) ).

% le_inf_iff
thf(fact_606_boolean__algebra_Oconj__zero__left,axiom,
    ! [X4: set_b] :
      ( ( inf_inf_set_b @ bot_bot_set_b @ X4 )
      = bot_bot_set_b ) ).

% boolean_algebra.conj_zero_left
thf(fact_607_boolean__algebra_Oconj__zero__right,axiom,
    ! [X4: set_b] :
      ( ( inf_inf_set_b @ X4 @ bot_bot_set_b )
      = bot_bot_set_b ) ).

% boolean_algebra.conj_zero_right
thf(fact_608_inf__bot__right,axiom,
    ! [X4: set_b] :
      ( ( inf_inf_set_b @ X4 @ bot_bot_set_b )
      = bot_bot_set_b ) ).

% inf_bot_right
thf(fact_609_inf__bot__left,axiom,
    ! [X4: set_b] :
      ( ( inf_inf_set_b @ bot_bot_set_b @ X4 )
      = bot_bot_set_b ) ).

% inf_bot_left
thf(fact_610_singleton__insert__inj__eq_H,axiom,
    ! [A2: b,A3: set_b,B2: b] :
      ( ( ( insert_b @ A2 @ A3 )
        = ( insert_b @ B2 @ bot_bot_set_b ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_b @ A3 @ ( insert_b @ B2 @ bot_bot_set_b ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_611_singleton__insert__inj__eq,axiom,
    ! [B2: b,A2: b,A3: set_b] :
      ( ( ( insert_b @ B2 @ bot_bot_set_b )
        = ( insert_b @ A2 @ A3 ) )
      = ( ( A2 = B2 )
        & ( ord_less_eq_set_b @ A3 @ ( insert_b @ B2 @ bot_bot_set_b ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_612_sup__inf__absorb,axiom,
    ! [X4: set_b,Y: set_b] :
      ( ( sup_sup_set_b @ X4 @ ( inf_inf_set_b @ X4 @ Y ) )
      = X4 ) ).

% sup_inf_absorb
thf(fact_613_inf__sup__absorb,axiom,
    ! [X4: set_b,Y: set_b] :
      ( ( inf_inf_set_b @ X4 @ ( sup_sup_set_b @ X4 @ Y ) )
      = X4 ) ).

% inf_sup_absorb
thf(fact_614_Int__insert__right__if1,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ A2 @ A3 )
     => ( ( inf_in6138156342456174402_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) )
        = ( insert1613891728210272810_a_b_b @ A2 @ ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_615_Int__insert__right__if1,axiom,
    ! [A2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ A2 @ A3 )
     => ( ( inf_inf_set_b @ A3 @ ( insert_b @ A2 @ B3 ) )
        = ( insert_b @ A2 @ ( inf_inf_set_b @ A3 @ B3 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_616_Int__insert__right__if0,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ~ ( member4380921116106875537_a_b_b @ A2 @ A3 )
     => ( ( inf_in6138156342456174402_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) )
        = ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) ) ) ).

% Int_insert_right_if0
thf(fact_617_Int__insert__right__if0,axiom,
    ! [A2: b,A3: set_b,B3: set_b] :
      ( ~ ( member_b @ A2 @ A3 )
     => ( ( inf_inf_set_b @ A3 @ ( insert_b @ A2 @ B3 ) )
        = ( inf_inf_set_b @ A3 @ B3 ) ) ) ).

% Int_insert_right_if0
thf(fact_618_insert__inter__insert,axiom,
    ! [A2: b,A3: set_b,B3: set_b] :
      ( ( inf_inf_set_b @ ( insert_b @ A2 @ A3 ) @ ( insert_b @ A2 @ B3 ) )
      = ( insert_b @ A2 @ ( inf_inf_set_b @ A3 @ B3 ) ) ) ).

% insert_inter_insert
thf(fact_619_Int__insert__left__if1,axiom,
    ! [A2: produc4558475209616630778_a_b_b,C: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ A2 @ C )
     => ( ( inf_in6138156342456174402_a_b_b @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) @ C )
        = ( insert1613891728210272810_a_b_b @ A2 @ ( inf_in6138156342456174402_a_b_b @ B3 @ C ) ) ) ) ).

% Int_insert_left_if1
thf(fact_620_Int__insert__left__if1,axiom,
    ! [A2: b,C: set_b,B3: set_b] :
      ( ( member_b @ A2 @ C )
     => ( ( inf_inf_set_b @ ( insert_b @ A2 @ B3 ) @ C )
        = ( insert_b @ A2 @ ( inf_inf_set_b @ B3 @ C ) ) ) ) ).

% Int_insert_left_if1
thf(fact_621_Int__insert__left__if0,axiom,
    ! [A2: produc4558475209616630778_a_b_b,C: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ~ ( member4380921116106875537_a_b_b @ A2 @ C )
     => ( ( inf_in6138156342456174402_a_b_b @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) @ C )
        = ( inf_in6138156342456174402_a_b_b @ B3 @ C ) ) ) ).

% Int_insert_left_if0
thf(fact_622_Int__insert__left__if0,axiom,
    ! [A2: b,C: set_b,B3: set_b] :
      ( ~ ( member_b @ A2 @ C )
     => ( ( inf_inf_set_b @ ( insert_b @ A2 @ B3 ) @ C )
        = ( inf_inf_set_b @ B3 @ C ) ) ) ).

% Int_insert_left_if0
thf(fact_623_Un__Int__eq_I1_J,axiom,
    ! [S2: set_b,T4: set_b] :
      ( ( inf_inf_set_b @ ( sup_sup_set_b @ S2 @ T4 ) @ S2 )
      = S2 ) ).

% Un_Int_eq(1)
thf(fact_624_Un__Int__eq_I2_J,axiom,
    ! [S2: set_b,T4: set_b] :
      ( ( inf_inf_set_b @ ( sup_sup_set_b @ S2 @ T4 ) @ T4 )
      = T4 ) ).

% Un_Int_eq(2)
thf(fact_625_Un__Int__eq_I3_J,axiom,
    ! [S2: set_b,T4: set_b] :
      ( ( inf_inf_set_b @ S2 @ ( sup_sup_set_b @ S2 @ T4 ) )
      = S2 ) ).

% Un_Int_eq(3)
thf(fact_626_Un__Int__eq_I4_J,axiom,
    ! [T4: set_b,S2: set_b] :
      ( ( inf_inf_set_b @ T4 @ ( sup_sup_set_b @ S2 @ T4 ) )
      = T4 ) ).

% Un_Int_eq(4)
thf(fact_627_Int__Un__eq_I1_J,axiom,
    ! [S2: set_b,T4: set_b] :
      ( ( sup_sup_set_b @ ( inf_inf_set_b @ S2 @ T4 ) @ S2 )
      = S2 ) ).

% Int_Un_eq(1)
thf(fact_628_Int__Un__eq_I2_J,axiom,
    ! [S2: set_b,T4: set_b] :
      ( ( sup_sup_set_b @ ( inf_inf_set_b @ S2 @ T4 ) @ T4 )
      = T4 ) ).

% Int_Un_eq(2)
thf(fact_629_Int__Un__eq_I3_J,axiom,
    ! [S2: set_b,T4: set_b] :
      ( ( sup_sup_set_b @ S2 @ ( inf_inf_set_b @ S2 @ T4 ) )
      = S2 ) ).

% Int_Un_eq(3)
thf(fact_630_Int__Un__eq_I4_J,axiom,
    ! [T4: set_b,S2: set_b] :
      ( ( sup_sup_set_b @ T4 @ ( inf_inf_set_b @ S2 @ T4 ) )
      = T4 ) ).

% Int_Un_eq(4)
thf(fact_631_insert__disjoint_I1_J,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( ( inf_in6138156342456174402_a_b_b @ ( insert1613891728210272810_a_b_b @ A2 @ A3 ) @ B3 )
        = bot_bo3721250822024684356_a_b_b )
      = ( ~ ( member4380921116106875537_a_b_b @ A2 @ B3 )
        & ( ( inf_in6138156342456174402_a_b_b @ A3 @ B3 )
          = bot_bo3721250822024684356_a_b_b ) ) ) ).

% insert_disjoint(1)
thf(fact_632_insert__disjoint_I1_J,axiom,
    ! [A2: b,A3: set_b,B3: set_b] :
      ( ( ( inf_inf_set_b @ ( insert_b @ A2 @ A3 ) @ B3 )
        = bot_bot_set_b )
      = ( ~ ( member_b @ A2 @ B3 )
        & ( ( inf_inf_set_b @ A3 @ B3 )
          = bot_bot_set_b ) ) ) ).

% insert_disjoint(1)
thf(fact_633_insert__disjoint_I2_J,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( bot_bo3721250822024684356_a_b_b
        = ( inf_in6138156342456174402_a_b_b @ ( insert1613891728210272810_a_b_b @ A2 @ A3 ) @ B3 ) )
      = ( ~ ( member4380921116106875537_a_b_b @ A2 @ B3 )
        & ( bot_bo3721250822024684356_a_b_b
          = ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_634_insert__disjoint_I2_J,axiom,
    ! [A2: b,A3: set_b,B3: set_b] :
      ( ( bot_bot_set_b
        = ( inf_inf_set_b @ ( insert_b @ A2 @ A3 ) @ B3 ) )
      = ( ~ ( member_b @ A2 @ B3 )
        & ( bot_bot_set_b
          = ( inf_inf_set_b @ A3 @ B3 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_635_disjoint__insert_I1_J,axiom,
    ! [B3: set_Pr3012420139608375472_a_b_b,A2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( ( inf_in6138156342456174402_a_b_b @ B3 @ ( insert1613891728210272810_a_b_b @ A2 @ A3 ) )
        = bot_bo3721250822024684356_a_b_b )
      = ( ~ ( member4380921116106875537_a_b_b @ A2 @ B3 )
        & ( ( inf_in6138156342456174402_a_b_b @ B3 @ A3 )
          = bot_bo3721250822024684356_a_b_b ) ) ) ).

% disjoint_insert(1)
thf(fact_636_disjoint__insert_I1_J,axiom,
    ! [B3: set_b,A2: b,A3: set_b] :
      ( ( ( inf_inf_set_b @ B3 @ ( insert_b @ A2 @ A3 ) )
        = bot_bot_set_b )
      = ( ~ ( member_b @ A2 @ B3 )
        & ( ( inf_inf_set_b @ B3 @ A3 )
          = bot_bot_set_b ) ) ) ).

% disjoint_insert(1)
thf(fact_637_disjoint__insert_I2_J,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,B2: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( bot_bo3721250822024684356_a_b_b
        = ( inf_in6138156342456174402_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ B2 @ B3 ) ) )
      = ( ~ ( member4380921116106875537_a_b_b @ B2 @ A3 )
        & ( bot_bo3721250822024684356_a_b_b
          = ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_638_disjoint__insert_I2_J,axiom,
    ! [A3: set_b,B2: b,B3: set_b] :
      ( ( bot_bot_set_b
        = ( inf_inf_set_b @ A3 @ ( insert_b @ B2 @ B3 ) ) )
      = ( ~ ( member_b @ B2 @ A3 )
        & ( bot_bot_set_b
          = ( inf_inf_set_b @ A3 @ B3 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_639_Int__Collect__mono,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b,P: produc4558475209616630778_a_b_b > $o,Q: produc4558475209616630778_a_b_b > $o] :
      ( ( ord_le146215904626753808_a_b_b @ A3 @ B3 )
     => ( ! [X: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X @ A3 )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_le146215904626753808_a_b_b @ ( inf_in6138156342456174402_a_b_b @ A3 @ ( collec1368399972772960719_a_b_b @ P ) ) @ ( inf_in6138156342456174402_a_b_b @ B3 @ ( collec1368399972772960719_a_b_b @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_640_Int__Collect__mono,axiom,
    ! [A3: set_b,B3: set_b,P: b > $o,Q: b > $o] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ! [X: b] :
            ( ( member_b @ X @ A3 )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_less_eq_set_b @ ( inf_inf_set_b @ A3 @ ( collect_b @ P ) ) @ ( inf_inf_set_b @ B3 @ ( collect_b @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_641_pred__subset__eq2,axiom,
    ! [R3: set_Pr3012420139608375472_a_b_b,S2: set_Pr3012420139608375472_a_b_b] :
      ( ( ord_le2403992017558287159_b_b_o
        @ ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ R3 )
        @ ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ S2 ) )
      = ( ord_le146215904626753808_a_b_b @ R3 @ S2 ) ) ).

% pred_subset_eq2
thf(fact_642_Un__Int__assoc__eq,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( ( sup_sup_set_b @ ( inf_inf_set_b @ A3 @ B3 ) @ C )
        = ( inf_inf_set_b @ A3 @ ( sup_sup_set_b @ B3 @ C ) ) )
      = ( ord_less_eq_set_b @ C @ A3 ) ) ).

% Un_Int_assoc_eq
thf(fact_643_boolean__algebra_Oconj__disj__distrib,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ( inf_inf_set_b @ X4 @ ( sup_sup_set_b @ Y @ Z2 ) )
      = ( sup_sup_set_b @ ( inf_inf_set_b @ X4 @ Y ) @ ( inf_inf_set_b @ X4 @ Z2 ) ) ) ).

% boolean_algebra.conj_disj_distrib
thf(fact_644_boolean__algebra_Odisj__conj__distrib,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ( sup_sup_set_b @ X4 @ ( inf_inf_set_b @ Y @ Z2 ) )
      = ( inf_inf_set_b @ ( sup_sup_set_b @ X4 @ Y ) @ ( sup_sup_set_b @ X4 @ Z2 ) ) ) ).

% boolean_algebra.disj_conj_distrib
thf(fact_645_boolean__algebra_Oconj__disj__distrib2,axiom,
    ! [Y: set_b,Z2: set_b,X4: set_b] :
      ( ( inf_inf_set_b @ ( sup_sup_set_b @ Y @ Z2 ) @ X4 )
      = ( sup_sup_set_b @ ( inf_inf_set_b @ Y @ X4 ) @ ( inf_inf_set_b @ Z2 @ X4 ) ) ) ).

% boolean_algebra.conj_disj_distrib2
thf(fact_646_boolean__algebra_Odisj__conj__distrib2,axiom,
    ! [Y: set_b,Z2: set_b,X4: set_b] :
      ( ( sup_sup_set_b @ ( inf_inf_set_b @ Y @ Z2 ) @ X4 )
      = ( inf_inf_set_b @ ( sup_sup_set_b @ Y @ X4 ) @ ( sup_sup_set_b @ Z2 @ X4 ) ) ) ).

% boolean_algebra.disj_conj_distrib2
thf(fact_647_Int__Collect,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,P: produc4558475209616630778_a_b_b > $o] :
      ( ( member4380921116106875537_a_b_b @ X4 @ ( inf_in6138156342456174402_a_b_b @ A3 @ ( collec1368399972772960719_a_b_b @ P ) ) )
      = ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
        & ( P @ X4 ) ) ) ).

% Int_Collect
thf(fact_648_Int__Collect,axiom,
    ! [X4: b,A3: set_b,P: b > $o] :
      ( ( member_b @ X4 @ ( inf_inf_set_b @ A3 @ ( collect_b @ P ) ) )
      = ( ( member_b @ X4 @ A3 )
        & ( P @ X4 ) ) ) ).

% Int_Collect
thf(fact_649_Int__def,axiom,
    ( inf_in6138156342456174402_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
          ( collec1368399972772960719_a_b_b
          @ ^ [X3: produc4558475209616630778_a_b_b] :
              ( ( member4380921116106875537_a_b_b @ X3 @ A6 )
              & ( member4380921116106875537_a_b_b @ X3 @ B6 ) ) ) ) ) ).

% Int_def
thf(fact_650_Int__def,axiom,
    ( inf_inf_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( collect_b
          @ ^ [X3: b] :
              ( ( member_b @ X3 @ A6 )
              & ( member_b @ X3 @ B6 ) ) ) ) ) ).

% Int_def
thf(fact_651_subrelI,axiom,
    ! [R2: set_Pr3012420139608375472_a_b_b,S: set_Pr3012420139608375472_a_b_b] :
      ( ! [X: dtree_a_b,Y4: b] :
          ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X @ Y4 ) @ R2 )
         => ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X @ Y4 ) @ S ) )
     => ( ord_le146215904626753808_a_b_b @ R2 @ S ) ) ).

% subrelI
thf(fact_652_IntD2,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) )
     => ( member4380921116106875537_a_b_b @ C2 @ B3 ) ) ).

% IntD2
thf(fact_653_IntD2,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ ( inf_inf_set_b @ A3 @ B3 ) )
     => ( member_b @ C2 @ B3 ) ) ).

% IntD2
thf(fact_654_IntD1,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) )
     => ( member4380921116106875537_a_b_b @ C2 @ A3 ) ) ).

% IntD1
thf(fact_655_IntD1,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ ( inf_inf_set_b @ A3 @ B3 ) )
     => ( member_b @ C2 @ A3 ) ) ).

% IntD1
thf(fact_656_IntE,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) )
     => ~ ( ( member4380921116106875537_a_b_b @ C2 @ A3 )
         => ~ ( member4380921116106875537_a_b_b @ C2 @ B3 ) ) ) ).

% IntE
thf(fact_657_IntE,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ ( inf_inf_set_b @ A3 @ B3 ) )
     => ~ ( ( member_b @ C2 @ A3 )
         => ~ ( member_b @ C2 @ B3 ) ) ) ).

% IntE
thf(fact_658_comp__fun__commute__Image__fold,axiom,
    ! [S2: set_Pr3012420139608375472_a_b_b] :
      ( finite4381541246406268242_set_b
      @ ( produc9053033572752107902_set_b
        @ ^ [X3: produc4558475209616630778_a_b_b,Y5: b,A6: set_b] : ( if_set_b @ ( member4380921116106875537_a_b_b @ X3 @ S2 ) @ ( insert_b @ Y5 @ A6 ) @ A6 ) ) ) ).

% comp_fun_commute_Image_fold
thf(fact_659_comp__fun__commute__Image__fold,axiom,
    ! [S2: set_b] :
      ( finite7340995349656252681_set_b
      @ ( produc831963642587629969_set_b
        @ ^ [X3: b,Y5: b,A6: set_b] : ( if_set_b @ ( member_b @ X3 @ S2 ) @ ( insert_b @ Y5 @ A6 ) @ A6 ) ) ) ).

% comp_fun_commute_Image_fold
thf(fact_660_inf_OcoboundedI2,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B2 @ C2 )
     => ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) @ C2 ) ) ).

% inf.coboundedI2
thf(fact_661_inf_OcoboundedI2,axiom,
    ! [B2: nat,C2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ C2 )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ C2 ) ) ).

% inf.coboundedI2
thf(fact_662_inf_OcoboundedI1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ C2 )
     => ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) @ C2 ) ) ).

% inf.coboundedI1
thf(fact_663_inf_OcoboundedI1,axiom,
    ! [A2: nat,C2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ C2 )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ C2 ) ) ).

% inf.coboundedI1
thf(fact_664_inf_Oabsorb__iff2,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [B: fset_P5281107635120001194_a_b_b,A: fset_P5281107635120001194_a_b_b] :
          ( ( inf_in7138637532943773244_a_b_b @ A @ B )
          = B ) ) ) ).

% inf.absorb_iff2
thf(fact_665_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [B: nat,A: nat] :
          ( ( inf_inf_nat @ A @ B )
          = B ) ) ) ).

% inf.absorb_iff2
thf(fact_666_inf_Oabsorb__iff1,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [A: fset_P5281107635120001194_a_b_b,B: fset_P5281107635120001194_a_b_b] :
          ( ( inf_in7138637532943773244_a_b_b @ A @ B )
          = A ) ) ) ).

% inf.absorb_iff1
thf(fact_667_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B: nat] :
          ( ( inf_inf_nat @ A @ B )
          = A ) ) ) ).

% inf.absorb_iff1
thf(fact_668_inf_Ocobounded2,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) @ B2 ) ).

% inf.cobounded2
thf(fact_669_inf_Ocobounded2,axiom,
    ! [A2: nat,B2: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ B2 ) ).

% inf.cobounded2
thf(fact_670_inf_Ocobounded1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) @ A2 ) ).

% inf.cobounded1
thf(fact_671_inf_Ocobounded1,axiom,
    ! [A2: nat,B2: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ A2 ) ).

% inf.cobounded1
thf(fact_672_inf_Oorder__iff,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [A: fset_P5281107635120001194_a_b_b,B: fset_P5281107635120001194_a_b_b] :
          ( A
          = ( inf_in7138637532943773244_a_b_b @ A @ B ) ) ) ) ).

% inf.order_iff
thf(fact_673_inf_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B: nat] :
          ( A
          = ( inf_inf_nat @ A @ B ) ) ) ) ).

% inf.order_iff
thf(fact_674_inf__greatest,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b,Z2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
     => ( ( ord_le789900035998834954_a_b_b @ X4 @ Z2 )
       => ( ord_le789900035998834954_a_b_b @ X4 @ ( inf_in7138637532943773244_a_b_b @ Y @ Z2 ) ) ) ) ).

% inf_greatest
thf(fact_675_inf__greatest,axiom,
    ! [X4: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ord_less_eq_nat @ X4 @ Z2 )
       => ( ord_less_eq_nat @ X4 @ ( inf_inf_nat @ Y @ Z2 ) ) ) ) ).

% inf_greatest
thf(fact_676_inf_OboundedI,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( ord_le789900035998834954_a_b_b @ A2 @ C2 )
       => ( ord_le789900035998834954_a_b_b @ A2 @ ( inf_in7138637532943773244_a_b_b @ B2 @ C2 ) ) ) ) ).

% inf.boundedI
thf(fact_677_inf_OboundedI,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ A2 @ C2 )
       => ( ord_less_eq_nat @ A2 @ ( inf_inf_nat @ B2 @ C2 ) ) ) ) ).

% inf.boundedI
thf(fact_678_inf_OboundedE,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ ( inf_in7138637532943773244_a_b_b @ B2 @ C2 ) )
     => ~ ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
         => ~ ( ord_le789900035998834954_a_b_b @ A2 @ C2 ) ) ) ).

% inf.boundedE
thf(fact_679_inf_OboundedE,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( inf_inf_nat @ B2 @ C2 ) )
     => ~ ( ( ord_less_eq_nat @ A2 @ B2 )
         => ~ ( ord_less_eq_nat @ A2 @ C2 ) ) ) ).

% inf.boundedE
thf(fact_680_inf__absorb2,axiom,
    ! [Y: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ Y @ X4 )
     => ( ( inf_in7138637532943773244_a_b_b @ X4 @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_681_inf__absorb2,axiom,
    ! [Y: nat,X4: nat] :
      ( ( ord_less_eq_nat @ Y @ X4 )
     => ( ( inf_inf_nat @ X4 @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_682_inf__absorb1,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
     => ( ( inf_in7138637532943773244_a_b_b @ X4 @ Y )
        = X4 ) ) ).

% inf_absorb1
thf(fact_683_inf__absorb1,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( inf_inf_nat @ X4 @ Y )
        = X4 ) ) ).

% inf_absorb1
thf(fact_684_inf_Oabsorb2,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B2 @ A2 )
     => ( ( inf_in7138637532943773244_a_b_b @ A2 @ B2 )
        = B2 ) ) ).

% inf.absorb2
thf(fact_685_inf_Oabsorb2,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( inf_inf_nat @ A2 @ B2 )
        = B2 ) ) ).

% inf.absorb2
thf(fact_686_inf_Oabsorb1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( inf_in7138637532943773244_a_b_b @ A2 @ B2 )
        = A2 ) ) ).

% inf.absorb1
thf(fact_687_inf_Oabsorb1,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( inf_inf_nat @ A2 @ B2 )
        = A2 ) ) ).

% inf.absorb1
thf(fact_688_le__iff__inf,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [X3: fset_P5281107635120001194_a_b_b,Y5: fset_P5281107635120001194_a_b_b] :
          ( ( inf_in7138637532943773244_a_b_b @ X3 @ Y5 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_689_le__iff__inf,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y5: nat] :
          ( ( inf_inf_nat @ X3 @ Y5 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_690_inf__unique,axiom,
    ! [F: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( F @ X @ Y4 ) @ X )
     => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( F @ X @ Y4 ) @ Y4 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b,Z3: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ( ord_le789900035998834954_a_b_b @ X @ Z3 )
               => ( ord_le789900035998834954_a_b_b @ X @ ( F @ Y4 @ Z3 ) ) ) )
         => ( ( inf_in7138637532943773244_a_b_b @ X4 @ Y )
            = ( F @ X4 @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_691_inf__unique,axiom,
    ! [F: nat > nat > nat,X4: nat,Y: nat] :
      ( ! [X: nat,Y4: nat] : ( ord_less_eq_nat @ ( F @ X @ Y4 ) @ X )
     => ( ! [X: nat,Y4: nat] : ( ord_less_eq_nat @ ( F @ X @ Y4 ) @ Y4 )
       => ( ! [X: nat,Y4: nat,Z3: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ( ord_less_eq_nat @ X @ Z3 )
               => ( ord_less_eq_nat @ X @ ( F @ Y4 @ Z3 ) ) ) )
         => ( ( inf_inf_nat @ X4 @ Y )
            = ( F @ X4 @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_692_inf_OorderI,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( A2
        = ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) )
     => ( ord_le789900035998834954_a_b_b @ A2 @ B2 ) ) ).

% inf.orderI
thf(fact_693_inf_OorderI,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2
        = ( inf_inf_nat @ A2 @ B2 ) )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% inf.orderI
thf(fact_694_inf_OorderE,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( A2
        = ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) ) ) ).

% inf.orderE
thf(fact_695_inf_OorderE,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( A2
        = ( inf_inf_nat @ A2 @ B2 ) ) ) ).

% inf.orderE
thf(fact_696_le__infI2,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B2 @ X4 )
     => ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) @ X4 ) ) ).

% le_infI2
thf(fact_697_le__infI2,axiom,
    ! [B2: nat,X4: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ X4 )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ X4 ) ) ).

% le_infI2
thf(fact_698_le__infI1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ X4 )
     => ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) @ X4 ) ) ).

% le_infI1
thf(fact_699_le__infI1,axiom,
    ! [A2: nat,X4: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ X4 )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ X4 ) ) ).

% le_infI1
thf(fact_700_inf__mono,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,D: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ C2 )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ D )
       => ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) @ ( inf_in7138637532943773244_a_b_b @ C2 @ D ) ) ) ) ).

% inf_mono
thf(fact_701_inf__mono,axiom,
    ! [A2: nat,C2: nat,B2: nat,D: nat] :
      ( ( ord_less_eq_nat @ A2 @ C2 )
     => ( ( ord_less_eq_nat @ B2 @ D )
       => ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ ( inf_inf_nat @ C2 @ D ) ) ) ) ).

% inf_mono
thf(fact_702_le__infI,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ A2 )
     => ( ( ord_le789900035998834954_a_b_b @ X4 @ B2 )
       => ( ord_le789900035998834954_a_b_b @ X4 @ ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) ) ) ) ).

% le_infI
thf(fact_703_le__infI,axiom,
    ! [X4: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ X4 @ A2 )
     => ( ( ord_less_eq_nat @ X4 @ B2 )
       => ( ord_less_eq_nat @ X4 @ ( inf_inf_nat @ A2 @ B2 ) ) ) ) ).

% le_infI
thf(fact_704_le__infE,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ ( inf_in7138637532943773244_a_b_b @ A2 @ B2 ) )
     => ~ ( ( ord_le789900035998834954_a_b_b @ X4 @ A2 )
         => ~ ( ord_le789900035998834954_a_b_b @ X4 @ B2 ) ) ) ).

% le_infE
thf(fact_705_le__infE,axiom,
    ! [X4: nat,A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ X4 @ ( inf_inf_nat @ A2 @ B2 ) )
     => ~ ( ( ord_less_eq_nat @ X4 @ A2 )
         => ~ ( ord_less_eq_nat @ X4 @ B2 ) ) ) ).

% le_infE
thf(fact_706_inf__le2,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ X4 @ Y ) @ Y ) ).

% inf_le2
thf(fact_707_inf__le2,axiom,
    ! [X4: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X4 @ Y ) @ Y ) ).

% inf_le2
thf(fact_708_inf__le1,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ X4 @ Y ) @ X4 ) ).

% inf_le1
thf(fact_709_inf__le1,axiom,
    ! [X4: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X4 @ Y ) @ X4 ) ).

% inf_le1
thf(fact_710_inf__sup__ord_I1_J,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ X4 @ Y ) @ X4 ) ).

% inf_sup_ord(1)
thf(fact_711_inf__sup__ord_I1_J,axiom,
    ! [X4: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X4 @ Y ) @ X4 ) ).

% inf_sup_ord(1)
thf(fact_712_inf__sup__ord_I2_J,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ X4 @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_713_inf__sup__ord_I2_J,axiom,
    ! [X4: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X4 @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_714_sup__inf__distrib2,axiom,
    ! [Y: set_b,Z2: set_b,X4: set_b] :
      ( ( sup_sup_set_b @ ( inf_inf_set_b @ Y @ Z2 ) @ X4 )
      = ( inf_inf_set_b @ ( sup_sup_set_b @ Y @ X4 ) @ ( sup_sup_set_b @ Z2 @ X4 ) ) ) ).

% sup_inf_distrib2
thf(fact_715_sup__inf__distrib1,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ( sup_sup_set_b @ X4 @ ( inf_inf_set_b @ Y @ Z2 ) )
      = ( inf_inf_set_b @ ( sup_sup_set_b @ X4 @ Y ) @ ( sup_sup_set_b @ X4 @ Z2 ) ) ) ).

% sup_inf_distrib1
thf(fact_716_inf__sup__distrib2,axiom,
    ! [Y: set_b,Z2: set_b,X4: set_b] :
      ( ( inf_inf_set_b @ ( sup_sup_set_b @ Y @ Z2 ) @ X4 )
      = ( sup_sup_set_b @ ( inf_inf_set_b @ Y @ X4 ) @ ( inf_inf_set_b @ Z2 @ X4 ) ) ) ).

% inf_sup_distrib2
thf(fact_717_inf__sup__distrib1,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ( inf_inf_set_b @ X4 @ ( sup_sup_set_b @ Y @ Z2 ) )
      = ( sup_sup_set_b @ ( inf_inf_set_b @ X4 @ Y ) @ ( inf_inf_set_b @ X4 @ Z2 ) ) ) ).

% inf_sup_distrib1
thf(fact_718_distrib__imp2,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ! [X: set_b,Y4: set_b,Z3: set_b] :
          ( ( sup_sup_set_b @ X @ ( inf_inf_set_b @ Y4 @ Z3 ) )
          = ( inf_inf_set_b @ ( sup_sup_set_b @ X @ Y4 ) @ ( sup_sup_set_b @ X @ Z3 ) ) )
     => ( ( inf_inf_set_b @ X4 @ ( sup_sup_set_b @ Y @ Z2 ) )
        = ( sup_sup_set_b @ ( inf_inf_set_b @ X4 @ Y ) @ ( inf_inf_set_b @ X4 @ Z2 ) ) ) ) ).

% distrib_imp2
thf(fact_719_distrib__imp1,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] :
      ( ! [X: set_b,Y4: set_b,Z3: set_b] :
          ( ( inf_inf_set_b @ X @ ( sup_sup_set_b @ Y4 @ Z3 ) )
          = ( sup_sup_set_b @ ( inf_inf_set_b @ X @ Y4 ) @ ( inf_inf_set_b @ X @ Z3 ) ) )
     => ( ( sup_sup_set_b @ X4 @ ( inf_inf_set_b @ Y @ Z2 ) )
        = ( inf_inf_set_b @ ( sup_sup_set_b @ X4 @ Y ) @ ( sup_sup_set_b @ X4 @ Z2 ) ) ) ) ).

% distrib_imp1
thf(fact_720_disjoint__iff__not__equal,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ( inf_inf_set_b @ A3 @ B3 )
        = bot_bot_set_b )
      = ( ! [X3: b] :
            ( ( member_b @ X3 @ A3 )
           => ! [Y5: b] :
                ( ( member_b @ Y5 @ B3 )
               => ( X3 != Y5 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_721_Int__empty__right,axiom,
    ! [A3: set_b] :
      ( ( inf_inf_set_b @ A3 @ bot_bot_set_b )
      = bot_bot_set_b ) ).

% Int_empty_right
thf(fact_722_Int__empty__left,axiom,
    ! [B3: set_b] :
      ( ( inf_inf_set_b @ bot_bot_set_b @ B3 )
      = bot_bot_set_b ) ).

% Int_empty_left
thf(fact_723_disjoint__iff,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( ( inf_in6138156342456174402_a_b_b @ A3 @ B3 )
        = bot_bo3721250822024684356_a_b_b )
      = ( ! [X3: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X3 @ A3 )
           => ~ ( member4380921116106875537_a_b_b @ X3 @ B3 ) ) ) ) ).

% disjoint_iff
thf(fact_724_disjoint__iff,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ( inf_inf_set_b @ A3 @ B3 )
        = bot_bot_set_b )
      = ( ! [X3: b] :
            ( ( member_b @ X3 @ A3 )
           => ~ ( member_b @ X3 @ B3 ) ) ) ) ).

% disjoint_iff
thf(fact_725_Int__emptyI,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X @ A3 )
         => ~ ( member4380921116106875537_a_b_b @ X @ B3 ) )
     => ( ( inf_in6138156342456174402_a_b_b @ A3 @ B3 )
        = bot_bo3721250822024684356_a_b_b ) ) ).

% Int_emptyI
thf(fact_726_Int__emptyI,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ! [X: b] :
          ( ( member_b @ X @ A3 )
         => ~ ( member_b @ X @ B3 ) )
     => ( ( inf_inf_set_b @ A3 @ B3 )
        = bot_bot_set_b ) ) ).

% Int_emptyI
thf(fact_727_Int__insert__right,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( ( member4380921116106875537_a_b_b @ A2 @ A3 )
       => ( ( inf_in6138156342456174402_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) )
          = ( insert1613891728210272810_a_b_b @ A2 @ ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) ) ) )
      & ( ~ ( member4380921116106875537_a_b_b @ A2 @ A3 )
       => ( ( inf_in6138156342456174402_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) )
          = ( inf_in6138156342456174402_a_b_b @ A3 @ B3 ) ) ) ) ).

% Int_insert_right
thf(fact_728_Int__insert__right,axiom,
    ! [A2: b,A3: set_b,B3: set_b] :
      ( ( ( member_b @ A2 @ A3 )
       => ( ( inf_inf_set_b @ A3 @ ( insert_b @ A2 @ B3 ) )
          = ( insert_b @ A2 @ ( inf_inf_set_b @ A3 @ B3 ) ) ) )
      & ( ~ ( member_b @ A2 @ A3 )
       => ( ( inf_inf_set_b @ A3 @ ( insert_b @ A2 @ B3 ) )
          = ( inf_inf_set_b @ A3 @ B3 ) ) ) ) ).

% Int_insert_right
thf(fact_729_Int__insert__left,axiom,
    ! [A2: produc4558475209616630778_a_b_b,C: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( ( member4380921116106875537_a_b_b @ A2 @ C )
       => ( ( inf_in6138156342456174402_a_b_b @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) @ C )
          = ( insert1613891728210272810_a_b_b @ A2 @ ( inf_in6138156342456174402_a_b_b @ B3 @ C ) ) ) )
      & ( ~ ( member4380921116106875537_a_b_b @ A2 @ C )
       => ( ( inf_in6138156342456174402_a_b_b @ ( insert1613891728210272810_a_b_b @ A2 @ B3 ) @ C )
          = ( inf_in6138156342456174402_a_b_b @ B3 @ C ) ) ) ) ).

% Int_insert_left
thf(fact_730_Int__insert__left,axiom,
    ! [A2: b,C: set_b,B3: set_b] :
      ( ( ( member_b @ A2 @ C )
       => ( ( inf_inf_set_b @ ( insert_b @ A2 @ B3 ) @ C )
          = ( insert_b @ A2 @ ( inf_inf_set_b @ B3 @ C ) ) ) )
      & ( ~ ( member_b @ A2 @ C )
       => ( ( inf_inf_set_b @ ( insert_b @ A2 @ B3 ) @ C )
          = ( inf_inf_set_b @ B3 @ C ) ) ) ) ).

% Int_insert_left
thf(fact_731_Un__Int__distrib2,axiom,
    ! [B3: set_b,C: set_b,A3: set_b] :
      ( ( sup_sup_set_b @ ( inf_inf_set_b @ B3 @ C ) @ A3 )
      = ( inf_inf_set_b @ ( sup_sup_set_b @ B3 @ A3 ) @ ( sup_sup_set_b @ C @ A3 ) ) ) ).

% Un_Int_distrib2
thf(fact_732_Int__Un__distrib2,axiom,
    ! [B3: set_b,C: set_b,A3: set_b] :
      ( ( inf_inf_set_b @ ( sup_sup_set_b @ B3 @ C ) @ A3 )
      = ( sup_sup_set_b @ ( inf_inf_set_b @ B3 @ A3 ) @ ( inf_inf_set_b @ C @ A3 ) ) ) ).

% Int_Un_distrib2
thf(fact_733_Un__Int__distrib,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( sup_sup_set_b @ A3 @ ( inf_inf_set_b @ B3 @ C ) )
      = ( inf_inf_set_b @ ( sup_sup_set_b @ A3 @ B3 ) @ ( sup_sup_set_b @ A3 @ C ) ) ) ).

% Un_Int_distrib
thf(fact_734_Int__Un__distrib,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( inf_inf_set_b @ A3 @ ( sup_sup_set_b @ B3 @ C ) )
      = ( sup_sup_set_b @ ( inf_inf_set_b @ A3 @ B3 ) @ ( inf_inf_set_b @ A3 @ C ) ) ) ).

% Int_Un_distrib
thf(fact_735_Un__Int__crazy,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( sup_sup_set_b @ ( sup_sup_set_b @ ( inf_inf_set_b @ A3 @ B3 ) @ ( inf_inf_set_b @ B3 @ C ) ) @ ( inf_inf_set_b @ C @ A3 ) )
      = ( inf_inf_set_b @ ( inf_inf_set_b @ ( sup_sup_set_b @ A3 @ B3 ) @ ( sup_sup_set_b @ B3 @ C ) ) @ ( sup_sup_set_b @ C @ A3 ) ) ) ).

% Un_Int_crazy
thf(fact_736_subset__insertI2,axiom,
    ! [A3: set_b,B3: set_b,B2: b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ord_less_eq_set_b @ A3 @ ( insert_b @ B2 @ B3 ) ) ) ).

% subset_insertI2
thf(fact_737_subset__insertI,axiom,
    ! [B3: set_b,A2: b] : ( ord_less_eq_set_b @ B3 @ ( insert_b @ A2 @ B3 ) ) ).

% subset_insertI
thf(fact_738_subset__insert,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ~ ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( ( ord_le146215904626753808_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ X4 @ B3 ) )
        = ( ord_le146215904626753808_a_b_b @ A3 @ B3 ) ) ) ).

% subset_insert
thf(fact_739_subset__insert,axiom,
    ! [X4: b,A3: set_b,B3: set_b] :
      ( ~ ( member_b @ X4 @ A3 )
     => ( ( ord_less_eq_set_b @ A3 @ ( insert_b @ X4 @ B3 ) )
        = ( ord_less_eq_set_b @ A3 @ B3 ) ) ) ).

% subset_insert
thf(fact_740_insert__mono,axiom,
    ! [C: set_b,D2: set_b,A2: b] :
      ( ( ord_less_eq_set_b @ C @ D2 )
     => ( ord_less_eq_set_b @ ( insert_b @ A2 @ C ) @ ( insert_b @ A2 @ D2 ) ) ) ).

% insert_mono
thf(fact_741_subset__Un__eq,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( ( sup_sup_set_b @ A6 @ B6 )
          = B6 ) ) ) ).

% subset_Un_eq
thf(fact_742_subset__UnE,axiom,
    ! [C: set_b,A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ C @ ( sup_sup_set_b @ A3 @ B3 ) )
     => ~ ! [A7: set_b] :
            ( ( ord_less_eq_set_b @ A7 @ A3 )
           => ! [B8: set_b] :
                ( ( ord_less_eq_set_b @ B8 @ B3 )
               => ( C
                 != ( sup_sup_set_b @ A7 @ B8 ) ) ) ) ) ).

% subset_UnE
thf(fact_743_Un__absorb2,axiom,
    ! [B3: set_b,A3: set_b] :
      ( ( ord_less_eq_set_b @ B3 @ A3 )
     => ( ( sup_sup_set_b @ A3 @ B3 )
        = A3 ) ) ).

% Un_absorb2
thf(fact_744_Un__absorb1,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( sup_sup_set_b @ A3 @ B3 )
        = B3 ) ) ).

% Un_absorb1
thf(fact_745_Un__upper2,axiom,
    ! [B3: set_b,A3: set_b] : ( ord_less_eq_set_b @ B3 @ ( sup_sup_set_b @ A3 @ B3 ) ) ).

% Un_upper2
thf(fact_746_Un__upper1,axiom,
    ! [A3: set_b,B3: set_b] : ( ord_less_eq_set_b @ A3 @ ( sup_sup_set_b @ A3 @ B3 ) ) ).

% Un_upper1
thf(fact_747_Un__least,axiom,
    ! [A3: set_b,C: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ C )
     => ( ( ord_less_eq_set_b @ B3 @ C )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ A3 @ B3 ) @ C ) ) ) ).

% Un_least
thf(fact_748_Un__mono,axiom,
    ! [A3: set_b,C: set_b,B3: set_b,D2: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ C )
     => ( ( ord_less_eq_set_b @ B3 @ D2 )
       => ( ord_less_eq_set_b @ ( sup_sup_set_b @ A3 @ B3 ) @ ( sup_sup_set_b @ C @ D2 ) ) ) ) ).

% Un_mono
thf(fact_749_dtail__notelem__eq__def,axiom,
    ! [E4: b,T: dtree_a_b,Def: b > a] :
      ( ~ ( member_b @ E4 @ ( darcs_a_b @ T ) )
     => ( ( dtail_a_b @ T @ Def @ E4 )
        = ( Def @ E4 ) ) ) ).

% dtail_notelem_eq_def
thf(fact_750_distrib__inf__le,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] : ( ord_less_eq_set_b @ ( sup_sup_set_b @ ( inf_inf_set_b @ X4 @ Y ) @ ( inf_inf_set_b @ X4 @ Z2 ) ) @ ( inf_inf_set_b @ X4 @ ( sup_sup_set_b @ Y @ Z2 ) ) ) ).

% distrib_inf_le
thf(fact_751_distrib__inf__le,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b,Z2: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ ( inf_in7138637532943773244_a_b_b @ X4 @ Y ) @ ( inf_in7138637532943773244_a_b_b @ X4 @ Z2 ) ) @ ( inf_in7138637532943773244_a_b_b @ X4 @ ( sup_su860928060825958358_a_b_b @ Y @ Z2 ) ) ) ).

% distrib_inf_le
thf(fact_752_distrib__inf__le,axiom,
    ! [X4: nat,Y: nat,Z2: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ ( inf_inf_nat @ X4 @ Y ) @ ( inf_inf_nat @ X4 @ Z2 ) ) @ ( inf_inf_nat @ X4 @ ( sup_sup_nat @ Y @ Z2 ) ) ) ).

% distrib_inf_le
thf(fact_753_distrib__sup__le,axiom,
    ! [X4: set_b,Y: set_b,Z2: set_b] : ( ord_less_eq_set_b @ ( sup_sup_set_b @ X4 @ ( inf_inf_set_b @ Y @ Z2 ) ) @ ( inf_inf_set_b @ ( sup_sup_set_b @ X4 @ Y ) @ ( sup_sup_set_b @ X4 @ Z2 ) ) ) ).

% distrib_sup_le
thf(fact_754_distrib__sup__le,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b,Z2: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( sup_su860928060825958358_a_b_b @ X4 @ ( inf_in7138637532943773244_a_b_b @ Y @ Z2 ) ) @ ( inf_in7138637532943773244_a_b_b @ ( sup_su860928060825958358_a_b_b @ X4 @ Y ) @ ( sup_su860928060825958358_a_b_b @ X4 @ Z2 ) ) ) ).

% distrib_sup_le
thf(fact_755_distrib__sup__le,axiom,
    ! [X4: nat,Y: nat,Z2: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ X4 @ ( inf_inf_nat @ Y @ Z2 ) ) @ ( inf_inf_nat @ ( sup_sup_nat @ X4 @ Y ) @ ( sup_sup_nat @ X4 @ Z2 ) ) ) ).

% distrib_sup_le
thf(fact_756_subset__singleton__iff,axiom,
    ! [X6: set_b,A2: b] :
      ( ( ord_less_eq_set_b @ X6 @ ( insert_b @ A2 @ bot_bot_set_b ) )
      = ( ( X6 = bot_bot_set_b )
        | ( X6
          = ( insert_b @ A2 @ bot_bot_set_b ) ) ) ) ).

% subset_singleton_iff
thf(fact_757_subset__singletonD,axiom,
    ! [A3: set_b,X4: b] :
      ( ( ord_less_eq_set_b @ A3 @ ( insert_b @ X4 @ bot_bot_set_b ) )
     => ( ( A3 = bot_bot_set_b )
        | ( A3
          = ( insert_b @ X4 @ bot_bot_set_b ) ) ) ) ).

% subset_singletonD
thf(fact_758_less__eq__fset_Orep__eq,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [X3: fset_P5281107635120001194_a_b_b,Xa2: fset_P5281107635120001194_a_b_b] : ( ord_le146215904626753808_a_b_b @ ( fset_P783253628892185035_a_b_b @ X3 ) @ ( fset_P783253628892185035_a_b_b @ Xa2 ) ) ) ) ).

% less_eq_fset.rep_eq
thf(fact_759_nle__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_eq_nat @ A2 @ B2 ) )
      = ( ( ord_less_eq_nat @ B2 @ A2 )
        & ( B2 != A2 ) ) ) ).

% nle_le
thf(fact_760_le__cases3,axiom,
    ! [X4: nat,Y: nat,Z2: nat] :
      ( ( ( ord_less_eq_nat @ X4 @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z2 ) )
     => ( ( ( ord_less_eq_nat @ Y @ X4 )
         => ~ ( ord_less_eq_nat @ X4 @ Z2 ) )
       => ( ( ( ord_less_eq_nat @ X4 @ Z2 )
           => ~ ( ord_less_eq_nat @ Z2 @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z2 @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X4 ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z2 )
               => ~ ( ord_less_eq_nat @ Z2 @ X4 ) )
             => ~ ( ( ord_less_eq_nat @ Z2 @ X4 )
                 => ~ ( ord_less_eq_nat @ X4 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_761_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: fset_P5281107635120001194_a_b_b,Z: fset_P5281107635120001194_a_b_b] : ( Y3 = Z ) )
    = ( ^ [X3: fset_P5281107635120001194_a_b_b,Y5: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ X3 @ Y5 )
          & ( ord_le789900035998834954_a_b_b @ Y5 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_762_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [X3: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y5 )
          & ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_763_ord__eq__le__trans,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( A2 = B2 )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ C2 )
       => ( ord_le789900035998834954_a_b_b @ A2 @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_764_ord__eq__le__trans,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ord_less_eq_nat @ A2 @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_765_ord__le__eq__trans,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( B2 = C2 )
       => ( ord_le789900035998834954_a_b_b @ A2 @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_766_ord__le__eq__trans,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( B2 = C2 )
       => ( ord_less_eq_nat @ A2 @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_767_order__antisym,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
     => ( ( ord_le789900035998834954_a_b_b @ Y @ X4 )
       => ( X4 = Y ) ) ) ).

% order_antisym
thf(fact_768_order__antisym,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ord_less_eq_nat @ Y @ X4 )
       => ( X4 = Y ) ) ) ).

% order_antisym
thf(fact_769_order_Otrans,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ C2 )
       => ( ord_le789900035998834954_a_b_b @ A2 @ C2 ) ) ) ).

% order.trans
thf(fact_770_order_Otrans,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ord_less_eq_nat @ A2 @ C2 ) ) ) ).

% order.trans
thf(fact_771_order__trans,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b,Z2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
     => ( ( ord_le789900035998834954_a_b_b @ Y @ Z2 )
       => ( ord_le789900035998834954_a_b_b @ X4 @ Z2 ) ) ) ).

% order_trans
thf(fact_772_order__trans,axiom,
    ! [X4: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z2 )
       => ( ord_less_eq_nat @ X4 @ Z2 ) ) ) ).

% order_trans
thf(fact_773_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B5: nat] :
          ( ( ord_less_eq_nat @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: nat,B5: nat] :
            ( ( P @ B5 @ A5 )
           => ( P @ A5 @ B5 ) )
       => ( P @ A2 @ B2 ) ) ) ).

% linorder_wlog
thf(fact_774_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: fset_P5281107635120001194_a_b_b,Z: fset_P5281107635120001194_a_b_b] : ( Y3 = Z ) )
    = ( ^ [A: fset_P5281107635120001194_a_b_b,B: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ B @ A )
          & ( ord_le789900035998834954_a_b_b @ A @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_775_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ B @ A )
          & ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% dual_order.eq_iff
thf(fact_776_dual__order_Oantisym,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B2 @ A2 )
     => ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_777_dual__order_Oantisym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( A2 = B2 ) ) ) ).

% dual_order.antisym
thf(fact_778_dual__order_Otrans,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B2 @ A2 )
     => ( ( ord_le789900035998834954_a_b_b @ C2 @ B2 )
       => ( ord_le789900035998834954_a_b_b @ C2 @ A2 ) ) ) ).

% dual_order.trans
thf(fact_779_dual__order_Otrans,axiom,
    ! [B2: nat,A2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C2 @ B2 )
       => ( ord_less_eq_nat @ C2 @ A2 ) ) ) ).

% dual_order.trans
thf(fact_780_antisym,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_781_antisym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% antisym
thf(fact_782_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: fset_P5281107635120001194_a_b_b,Z: fset_P5281107635120001194_a_b_b] : ( Y3 = Z ) )
    = ( ^ [A: fset_P5281107635120001194_a_b_b,B: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ A @ B )
          & ( ord_le789900035998834954_a_b_b @ B @ A ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_783_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ A @ B )
          & ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_784_order__subst1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,F: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ ( F @ B2 ) )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le789900035998834954_a_b_b @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_785_order__subst1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,F: nat > fset_P5281107635120001194_a_b_b,B2: nat,C2: nat] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le789900035998834954_a_b_b @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_786_order__subst1,axiom,
    ! [A2: nat,F: fset_P5281107635120001194_a_b_b > nat,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_787_order__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_788_order__subst2,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,F: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( ord_le789900035998834954_a_b_b @ ( F @ B2 ) @ C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le789900035998834954_a_b_b @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_789_order__subst2,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,F: fset_P5281107635120001194_a_b_b > nat,C2: nat] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_790_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_le789900035998834954_a_b_b @ ( F @ B2 ) @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le789900035998834954_a_b_b @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_791_order__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_792_order__eq__refl,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( X4 = Y )
     => ( ord_le789900035998834954_a_b_b @ X4 @ Y ) ) ).

% order_eq_refl
thf(fact_793_order__eq__refl,axiom,
    ! [X4: nat,Y: nat] :
      ( ( X4 = Y )
     => ( ord_less_eq_nat @ X4 @ Y ) ) ).

% order_eq_refl
thf(fact_794_linorder__linear,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
      | ( ord_less_eq_nat @ Y @ X4 ) ) ).

% linorder_linear
thf(fact_795_ord__eq__le__subst,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,F: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le789900035998834954_a_b_b @ A2 @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_796_ord__eq__le__subst,axiom,
    ! [A2: nat,F: fset_P5281107635120001194_a_b_b > nat,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_797_ord__eq__le__subst,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,F: nat > fset_P5281107635120001194_a_b_b,B2: nat,C2: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le789900035998834954_a_b_b @ A2 @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_798_ord__eq__le__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C2: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A2 @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_799_ord__le__eq__subst,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,F: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le789900035998834954_a_b_b @ ( F @ A2 ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_800_ord__le__eq__subst,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,F: fset_P5281107635120001194_a_b_b > nat,C2: nat] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_801_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le789900035998834954_a_b_b @ ( F @ A2 ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_802_ord__le__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A2 ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_803_linorder__le__cases,axiom,
    ! [X4: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X4 @ Y )
     => ( ord_less_eq_nat @ Y @ X4 ) ) ).

% linorder_le_cases
thf(fact_804_order__antisym__conv,axiom,
    ! [Y: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ Y @ X4 )
     => ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% order_antisym_conv
thf(fact_805_order__antisym__conv,axiom,
    ! [Y: nat,X4: nat] :
      ( ( ord_less_eq_nat @ Y @ X4 )
     => ( ( ord_less_eq_nat @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% order_antisym_conv
thf(fact_806_boolean__algebra__cancel_Osup2,axiom,
    ! [B3: set_b,K: set_b,B2: set_b,A2: set_b] :
      ( ( B3
        = ( sup_sup_set_b @ K @ B2 ) )
     => ( ( sup_sup_set_b @ A2 @ B3 )
        = ( sup_sup_set_b @ K @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_807_boolean__algebra__cancel_Osup1,axiom,
    ! [A3: set_b,K: set_b,A2: set_b,B2: set_b] :
      ( ( A3
        = ( sup_sup_set_b @ K @ A2 ) )
     => ( ( sup_sup_set_b @ A3 @ B2 )
        = ( sup_sup_set_b @ K @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_808_sup__Un__eq2,axiom,
    ! [R3: set_Pr3012420139608375472_a_b_b,S2: set_Pr3012420139608375472_a_b_b] :
      ( ( sup_su6709851091347060739_b_b_o
        @ ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ R3 )
        @ ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ S2 ) )
      = ( ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ ( sup_su2887895092731772380_a_b_b @ R3 @ S2 ) ) ) ) ).

% sup_Un_eq2
thf(fact_809_bot__empty__eq2,axiom,
    ( bot_bo471016548657204587_b_b_o
    = ( ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ bot_bo3721250822024684356_a_b_b ) ) ) ).

% bot_empty_eq2
thf(fact_810_pred__equals__eq2,axiom,
    ! [R3: set_Pr3012420139608375472_a_b_b,S2: set_Pr3012420139608375472_a_b_b] :
      ( ( ( ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ R3 ) )
        = ( ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ S2 ) ) )
      = ( R3 = S2 ) ) ).

% pred_equals_eq2
thf(fact_811_disjoint__darcs__if__wf__aux2,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,T1: dtree_a_b,E1: b,T2: dtree_a_b,E22: b] :
      ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T1 @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
       => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T2 @ E22 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( ( ( produc331601717337510060_a_b_b @ T1 @ E1 )
             != ( produc331601717337510060_a_b_b @ T2 @ E22 ) )
           => ( ( inf_inf_set_b @ ( darcs_a_b @ T1 ) @ ( darcs_a_b @ T2 ) )
              = bot_bot_set_b ) ) ) ) ) ).

% disjoint_darcs_if_wf_aux2
thf(fact_812_dtail__f__alt__commute,axiom,
    ! [P: fset_P5281107635120001194_a_b_b > $o,R2: a,Q: produc4558475209616630778_a_b_b > ( b > a ) > $o,E4: b,R3: produc4558475209616630778_a_b_b > ( b > a ) > b > a,Def: b > a,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( P
        = ( ^ [Xs3: fset_P5281107635120001194_a_b_b] : ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs3 ) ) ) )
     => ( ( Q
          = ( produc9194724151488670482_b_a_o
            @ ^ [T12: dtree_a_b,E12: b,B: b > a] : ( member_b @ E4 @ ( darcs_a_b @ T12 ) ) ) )
       => ( ( R3
            = ( produc4313903556115589696_a_b_a
              @ ^ [T12: dtree_a_b,E12: b,B: b > a] : ( dtail_a_b @ T12 @ Def ) ) )
         => ( finite7715548283558590705_b_b_a
            @ ^ [A: produc4558475209616630778_a_b_b,B: b > a] :
                ( if_b_a
                @ ( ~ ( member4380921116106875537_a_b_b @ A @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                  | ~ ( Q @ A @ B )
                  | ~ ( P @ Xs2 ) )
                @ B
                @ ( R3 @ A @ B ) ) ) ) ) ) ).

% dtail_f_alt_commute
thf(fact_813_bot_Oextremum__uniqueI,axiom,
    ! [A2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ bot_bot_set_b )
     => ( A2 = bot_bot_set_b ) ) ).

% bot.extremum_uniqueI
thf(fact_814_bot_Oextremum__uniqueI,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ bot_bo2895716411488905534_a_b_b )
     => ( A2 = bot_bo2895716411488905534_a_b_b ) ) ).

% bot.extremum_uniqueI
thf(fact_815_bot_Oextremum__uniqueI,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ bot_bot_nat )
     => ( A2 = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_816_bot_Oextremum__unique,axiom,
    ! [A2: set_b] :
      ( ( ord_less_eq_set_b @ A2 @ bot_bot_set_b )
      = ( A2 = bot_bot_set_b ) ) ).

% bot.extremum_unique
thf(fact_817_bot_Oextremum__unique,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ bot_bo2895716411488905534_a_b_b )
      = ( A2 = bot_bo2895716411488905534_a_b_b ) ) ).

% bot.extremum_unique
thf(fact_818_bot_Oextremum__unique,axiom,
    ! [A2: nat] :
      ( ( ord_less_eq_nat @ A2 @ bot_bot_nat )
      = ( A2 = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_819_bot_Oextremum,axiom,
    ! [A2: set_b] : ( ord_less_eq_set_b @ bot_bot_set_b @ A2 ) ).

% bot.extremum
thf(fact_820_bot_Oextremum,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ bot_bo2895716411488905534_a_b_b @ A2 ) ).

% bot.extremum
thf(fact_821_bot_Oextremum,axiom,
    ! [A2: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A2 ) ).

% bot.extremum
thf(fact_822_boolean__algebra_Odisj__zero__right,axiom,
    ! [X4: set_b] :
      ( ( sup_sup_set_b @ X4 @ bot_bot_set_b )
      = X4 ) ).

% boolean_algebra.disj_zero_right
thf(fact_823_dtail__in__child__eq__child,axiom,
    ! [T: dtree_a_b,E1: b,Xs2: fset_P5281107635120001194_a_b_b,E4: b,R2: a,Def: b > a] :
      ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
     => ( ( member_b @ E4 @ ( darcs_a_b @ T ) )
       => ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
         => ( ( dtail_a_b @ ( node_a_b @ R2 @ Xs2 ) @ Def @ E4 )
            = ( dtail_a_b @ T @ Def @ E4 ) ) ) ) ) ).

% dtail_in_child_eq_child
thf(fact_824_dtail__f__alt,axiom,
    ! [P: fset_P5281107635120001194_a_b_b > $o,R2: a,Q: produc4558475209616630778_a_b_b > ( b > a ) > $o,E4: b,R3: produc4558475209616630778_a_b_b > ( b > a ) > b > a,Def: b > a,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( P
        = ( ^ [Xs3: fset_P5281107635120001194_a_b_b] : ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs3 ) ) ) )
     => ( ( Q
          = ( produc9194724151488670482_b_a_o
            @ ^ [T12: dtree_a_b,E12: b,B: b > a] : ( member_b @ E4 @ ( darcs_a_b @ T12 ) ) ) )
       => ( ( R3
            = ( produc4313903556115589696_a_b_a
              @ ^ [T12: dtree_a_b,E12: b,B: b > a] : ( dtail_a_b @ T12 @ Def ) ) )
         => ( ( produc4313903556115589696_a_b_a
              @ ^ [T12: dtree_a_b,E12: b,B: b > a] :
                  ( if_b_a
                  @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T12 @ E12 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                    | ~ ( member_b @ E4 @ ( darcs_a_b @ T12 ) )
                    | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
                  @ B
                  @ ( dtail_a_b @ T12 @ Def ) ) )
            = ( ^ [A: produc4558475209616630778_a_b_b,B: b > a] :
                  ( if_b_a
                  @ ( ~ ( member4380921116106875537_a_b_b @ A @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                    | ~ ( Q @ A @ B )
                    | ~ ( P @ Xs2 ) )
                  @ B
                  @ ( R3 @ A @ B ) ) ) ) ) ) ) ).

% dtail_f_alt
thf(fact_825_dtail__in__child__eq__child__ffold,axiom,
    ! [T: dtree_a_b,E1: b,Xs2: fset_P5281107635120001194_a_b_b,E4: b,R2: a,Def: b > a] :
      ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
     => ( ( member_b @ E4 @ ( darcs_a_b @ T ) )
       => ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
         => ( ( ffold_8367945289176929151_b_b_a
              @ ( produc4313903556115589696_a_b_a
                @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
                    ( if_b_a
                    @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                      | ~ ( member_b @ E4 @ ( darcs_a_b @ X3 ) )
                      | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
                    @ B
                    @ ( dtail_a_b @ X3 @ Def ) ) )
              @ Def
              @ Xs2 )
            = ( dtail_a_b @ T @ Def ) ) ) ) ) ).

% dtail_in_child_eq_child_ffold
thf(fact_826_dtail__commute,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,E4: b,R2: a,Def: b > a] :
      ( finite7715548283558590705_b_b_a
      @ ( produc4313903556115589696_a_b_a
        @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
            ( if_b_a
            @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
              | ~ ( member_b @ E4 @ ( darcs_a_b @ X3 ) )
              | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
            @ B
            @ ( dtail_a_b @ X3 @ Def ) ) ) ) ).

% dtail_commute
thf(fact_827_dtail__commute__aux,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,E4: b,R2: a,Def: b > a,Y: produc4558475209616630778_a_b_b,X4: produc4558475209616630778_a_b_b,Z2: b > a] :
      ( ( comp_b_a_b_a_b_a
        @ ( produc4313903556115589696_a_b_a
          @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
              ( if_b_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                | ~ ( member_b @ E4 @ ( darcs_a_b @ X3 ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
              @ B
              @ ( dtail_a_b @ X3 @ Def ) )
          @ Y )
        @ ( produc4313903556115589696_a_b_a
          @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
              ( if_b_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                | ~ ( member_b @ E4 @ ( darcs_a_b @ X3 ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
              @ B
              @ ( dtail_a_b @ X3 @ Def ) )
          @ X4 )
        @ Z2 )
      = ( comp_b_a_b_a_b_a
        @ ( produc4313903556115589696_a_b_a
          @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
              ( if_b_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                | ~ ( member_b @ E4 @ ( darcs_a_b @ X3 ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
              @ B
              @ ( dtail_a_b @ X3 @ Def ) )
          @ X4 )
        @ ( produc4313903556115589696_a_b_a
          @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
              ( if_b_a
              @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                | ~ ( member_b @ E4 @ ( darcs_a_b @ X3 ) )
                | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
              @ B
              @ ( dtail_a_b @ X3 @ Def ) )
          @ Y )
        @ Z2 ) ) ).

% dtail_commute_aux
thf(fact_828_bot__empty__eq,axiom,
    ( bot_bo7321339186913516097_b_b_o
    = ( ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ bot_bo3721250822024684356_a_b_b ) ) ) ).

% bot_empty_eq
thf(fact_829_bot__empty__eq,axiom,
    ( bot_bot_b_o
    = ( ^ [X3: b] : ( member_b @ X3 @ bot_bot_set_b ) ) ) ).

% bot_empty_eq
thf(fact_830_disjoint__darcs__if__wf__aux5,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,T1: dtree_a_b,E1: b,T2: dtree_a_b,E22: b] :
      ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T1 @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
       => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T2 @ E22 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( ( ( produc331601717337510060_a_b_b @ T1 @ E1 )
             != ( produc331601717337510060_a_b_b @ T2 @ E22 ) )
           => ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ T1 ) @ ( insert_b @ E1 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ T2 ) @ ( insert_b @ E22 @ bot_bot_set_b ) ) )
              = bot_bot_set_b ) ) ) ) ) ).

% disjoint_darcs_if_wf_aux5
thf(fact_831_disjoint__darcs__simp,axiom,
    ! [T1: dtree_a_b,E1: b,Xs2: fset_P5281107635120001194_a_b_b,T2: dtree_a_b,E22: b] :
      ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T1 @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
     => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T2 @ E22 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
       => ( ( ( produc331601717337510060_a_b_b @ T1 @ E1 )
           != ( produc331601717337510060_a_b_b @ T2 @ E22 ) )
         => ( ! [X: produc4558475209616630778_a_b_b] :
                ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
               => ( produc1325217093046185599_b_b_o
                  @ ^ [Y5: dtree_a_b,E12: b] :
                      ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                      & ! [Z4: produc4558475209616630778_a_b_b] :
                          ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                         => ( produc1325217093046185599_b_b_o
                            @ ^ [Aa: dtree_a_b,E2: b] :
                                ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                                  = bot_bot_set_b )
                                | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                  = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                            @ Z4 ) ) )
                  @ X ) )
           => ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ T1 ) @ ( insert_b @ E1 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ T2 ) @ ( insert_b @ E22 @ bot_bot_set_b ) ) )
              = bot_bot_set_b ) ) ) ) ) ).

% disjoint_darcs_simp
thf(fact_832_dtail__ffold__supset,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,Ys: fset_P5281107635120001194_a_b_b,R2: a,E4: b,Def: b > a] :
      ( ( ord_le789900035998834954_a_b_b @ Xs2 @ Ys )
     => ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Ys ) )
       => ( ( ffold_8367945289176929151_b_b_a
            @ ( produc4313903556115589696_a_b_a
              @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
                  ( if_b_a
                  @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Ys ) )
                    | ~ ( member_b @ E4 @ ( darcs_a_b @ X3 ) )
                    | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Ys ) ) )
                  @ B
                  @ ( dtail_a_b @ X3 @ Def ) ) )
            @ Def
            @ Xs2 )
          = ( ffold_8367945289176929151_b_b_a
            @ ( produc4313903556115589696_a_b_a
              @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
                  ( if_b_a
                  @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                    | ~ ( member_b @ E4 @ ( darcs_a_b @ X3 ) )
                    | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
                  @ B
                  @ ( dtail_a_b @ X3 @ Def ) ) )
            @ Def
            @ Xs2 ) ) ) ) ).

% dtail_ffold_supset
thf(fact_833_disjoint__darcs__insert,axiom,
    ! [X4: produc4558475209616630778_a_b_b,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ X4 @ Xs2 ) ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [Y5: dtree_a_b,E12: b] :
                ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                & ! [Z4: produc4558475209616630778_a_b_b] :
                    ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ ( finser8437519239679886002_a_b_b @ X4 @ Xs2 ) ) )
                   => ( produc1325217093046185599_b_b_o
                      @ ^ [Aa: dtree_a_b,E2: b] :
                          ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                            = bot_bot_set_b )
                          | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                            = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                      @ Z4 ) ) )
            @ X ) )
     => ! [X5: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [Y5: dtree_a_b,E12: b] :
                ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                & ! [Z4: produc4558475209616630778_a_b_b] :
                    ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                   => ( produc1325217093046185599_b_b_o
                      @ ^ [Aa: dtree_a_b,E2: b] :
                          ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                            = bot_bot_set_b )
                          | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                            = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                      @ Z4 ) ) )
            @ X5 ) ) ) ).

% disjoint_darcs_insert
thf(fact_834_wf__darcs_H_Osimps,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( wf_darcs_a_b2 @ ( node_a_b @ R2 @ Xs2 ) )
      = ( ! [X3: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
           => ( produc1325217093046185599_b_b_o
              @ ^ [Y5: dtree_a_b,E12: b] :
                  ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                  & ! [Z4: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Aa: dtree_a_b,E2: b] :
                            ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                              = bot_bot_set_b )
                            | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                              = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                        @ Z4 ) ) )
              @ X3 ) )
        & ! [X3: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
           => ( produc1325217093046185599_b_b_o
              @ ^ [Y5: dtree_a_b,E: b] : ( wf_darcs_a_b2 @ Y5 )
              @ X3 ) ) ) ) ).

% wf_darcs'.simps
thf(fact_835_wf__darcs_H_Oelims_I1_J,axiom,
    ! [X4: dtree_a_b,Y: $o] :
      ( ( ( wf_darcs_a_b2 @ X4 )
        = Y )
     => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
            ( ( X4
              = ( node_a_b @ R @ Xs ) )
           => ( Y
              = ( ~ ( ! [X3: produc4558475209616630778_a_b_b] :
                        ( ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                       => ( produc1325217093046185599_b_b_o
                          @ ^ [Y5: dtree_a_b,E12: b] :
                              ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                              & ! [Z4: produc4558475209616630778_a_b_b] :
                                  ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                                 => ( produc1325217093046185599_b_b_o
                                    @ ^ [Aa: dtree_a_b,E2: b] :
                                        ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                                          = bot_bot_set_b )
                                        | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                          = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                                    @ Z4 ) ) )
                          @ X3 ) )
                    & ! [X3: produc4558475209616630778_a_b_b] :
                        ( ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                       => ( produc1325217093046185599_b_b_o
                          @ ^ [Y5: dtree_a_b,E: b] : ( wf_darcs_a_b2 @ Y5 )
                          @ X3 ) ) ) ) ) ) ) ).

% wf_darcs'.elims(1)
thf(fact_836_wf__darcs_H_Oelims_I2_J,axiom,
    ! [X4: dtree_a_b] :
      ( ( wf_darcs_a_b2 @ X4 )
     => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
            ( ( X4
              = ( node_a_b @ R @ Xs ) )
           => ~ ( ! [X5: produc4558475209616630778_a_b_b] :
                    ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                   => ( produc1325217093046185599_b_b_o
                      @ ^ [Y5: dtree_a_b,E12: b] :
                          ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                          & ! [Z4: produc4558475209616630778_a_b_b] :
                              ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                             => ( produc1325217093046185599_b_b_o
                                @ ^ [Aa: dtree_a_b,E2: b] :
                                    ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                                      = bot_bot_set_b )
                                    | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                      = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                                @ Z4 ) ) )
                      @ X5 ) )
                & ! [X5: produc4558475209616630778_a_b_b] :
                    ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                   => ( produc1325217093046185599_b_b_o
                      @ ^ [Y5: dtree_a_b,E: b] : ( wf_darcs_a_b2 @ Y5 )
                      @ X5 ) ) ) ) ) ).

% wf_darcs'.elims(2)
thf(fact_837_wf__darcs_H_Oelims_I3_J,axiom,
    ! [X4: dtree_a_b] :
      ( ~ ( wf_darcs_a_b2 @ X4 )
     => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
            ( ( X4
              = ( node_a_b @ R @ Xs ) )
           => ( ! [X: produc4558475209616630778_a_b_b] :
                  ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                 => ( produc1325217093046185599_b_b_o
                    @ ^ [Y5: dtree_a_b,E12: b] :
                        ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                        & ! [Z4: produc4558475209616630778_a_b_b] :
                            ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                           => ( produc1325217093046185599_b_b_o
                              @ ^ [Aa: dtree_a_b,E2: b] :
                                  ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                                    = bot_bot_set_b )
                                  | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                    = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                              @ Z4 ) ) )
                    @ X ) )
              & ! [X: produc4558475209616630778_a_b_b] :
                  ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                 => ( produc1325217093046185599_b_b_o
                    @ ^ [Y5: dtree_a_b,E: b] : ( wf_darcs_a_b2 @ Y5 )
                    @ X ) ) ) ) ) ).

% wf_darcs'.elims(3)
thf(fact_838_disjoint__darcs__if__wf,axiom,
    ! [T: dtree_a_b] :
      ( ( wf_darcs_a_b @ T )
     => ! [X5: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ T ) ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [Y5: dtree_a_b,E12: b] :
                ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                & ! [Z4: produc4558475209616630778_a_b_b] :
                    ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ T ) ) )
                   => ( produc1325217093046185599_b_b_o
                      @ ^ [Aa: dtree_a_b,E2: b] :
                          ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                            = bot_bot_set_b )
                          | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                            = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                      @ Z4 ) ) )
            @ X5 ) ) ) ).

% disjoint_darcs_if_wf
thf(fact_839_fthe__felem__eq,axiom,
    ! [X4: produc4558475209616630778_a_b_b] :
      ( ( fthe_e7442499522476018237_a_b_b @ ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) )
      = X4 ) ).

% fthe_felem_eq
thf(fact_840_subsetI,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X @ A3 )
         => ( member4380921116106875537_a_b_b @ X @ B3 ) )
     => ( ord_le146215904626753808_a_b_b @ A3 @ B3 ) ) ).

% subsetI
thf(fact_841_subsetI,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ! [X: b] :
          ( ( member_b @ X @ A3 )
         => ( member_b @ X @ B3 ) )
     => ( ord_less_eq_set_b @ A3 @ B3 ) ) ).

% subsetI
thf(fact_842_finter__iff,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) )
      = ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
        & ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ) ).

% finter_iff
thf(fact_843_finterI,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
     => ( ( fmembe3173364709796808819_a_b_b @ C2 @ B3 )
       => ( fmembe3173364709796808819_a_b_b @ C2 @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) ) ) ) ).

% finterI
thf(fact_844_finsert__inter__finsert,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( inf_in7138637532943773244_a_b_b @ ( finser8437519239679886002_a_b_b @ A2 @ A3 ) @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) )
      = ( finser8437519239679886002_a_b_b @ A2 @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) ) ) ).

% finsert_inter_finsert
thf(fact_845_inter__fset,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Xa: fset_P5281107635120001194_a_b_b] :
      ( ( fset_P783253628892185035_a_b_b @ ( inf_in7138637532943773244_a_b_b @ X4 @ Xa ) )
      = ( inf_in6138156342456174402_a_b_b @ ( fset_P783253628892185035_a_b_b @ X4 ) @ ( fset_P783253628892185035_a_b_b @ Xa ) ) ) ).

% inter_fset
thf(fact_846_finter__finsert__left__if1,axiom,
    ! [A2: produc4558475209616630778_a_b_b,C: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ A2 @ C )
     => ( ( inf_in7138637532943773244_a_b_b @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) @ C )
        = ( finser8437519239679886002_a_b_b @ A2 @ ( inf_in7138637532943773244_a_b_b @ B3 @ C ) ) ) ) ).

% finter_finsert_left_if1
thf(fact_847_finter__finsert__right__if1,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ A2 @ A3 )
     => ( ( inf_in7138637532943773244_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) )
        = ( finser8437519239679886002_a_b_b @ A2 @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) ) ) ) ).

% finter_finsert_right_if1
thf(fact_848_finter__finsert__left__ifffempty,axiom,
    ! [A2: produc4558475209616630778_a_b_b,C: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ~ ( fmembe3173364709796808819_a_b_b @ A2 @ C )
     => ( ( inf_in7138637532943773244_a_b_b @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) @ C )
        = ( inf_in7138637532943773244_a_b_b @ B3 @ C ) ) ) ).

% finter_finsert_left_ifffempty
thf(fact_849_finter__finsert__right__ifffempty,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ~ ( fmembe3173364709796808819_a_b_b @ A2 @ A3 )
     => ( ( inf_in7138637532943773244_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) )
        = ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) ) ) ).

% finter_finsert_right_ifffempty
thf(fact_850_dtree_Ocollapse,axiom,
    ! [Dtree: dtree_a_b] :
      ( ( node_a_b @ ( root_a_b @ Dtree ) @ ( sucs_a_b @ Dtree ) )
      = Dtree ) ).

% dtree.collapse
thf(fact_851_in__mono,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b,X4: produc4558475209616630778_a_b_b] :
      ( ( ord_le146215904626753808_a_b_b @ A3 @ B3 )
     => ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
       => ( member4380921116106875537_a_b_b @ X4 @ B3 ) ) ) ).

% in_mono
thf(fact_852_in__mono,axiom,
    ! [A3: set_b,B3: set_b,X4: b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( member_b @ X4 @ A3 )
       => ( member_b @ X4 @ B3 ) ) ) ).

% in_mono
thf(fact_853_subsetD,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b,C2: produc4558475209616630778_a_b_b] :
      ( ( ord_le146215904626753808_a_b_b @ A3 @ B3 )
     => ( ( member4380921116106875537_a_b_b @ C2 @ A3 )
       => ( member4380921116106875537_a_b_b @ C2 @ B3 ) ) ) ).

% subsetD
thf(fact_854_subsetD,axiom,
    ! [A3: set_b,B3: set_b,C2: b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( member_b @ C2 @ A3 )
       => ( member_b @ C2 @ B3 ) ) ) ).

% subsetD
thf(fact_855_subset__eq,axiom,
    ( ord_le146215904626753808_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
        ! [X3: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X3 @ A6 )
         => ( member4380921116106875537_a_b_b @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_856_subset__eq,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A6: set_b,B6: set_b] :
        ! [X3: b] :
          ( ( member_b @ X3 @ A6 )
         => ( member_b @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_857_subset__iff,axiom,
    ( ord_le146215904626753808_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
        ! [T3: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ T3 @ A6 )
         => ( member4380921116106875537_a_b_b @ T3 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_858_subset__iff,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A6: set_b,B6: set_b] :
        ! [T3: b] :
          ( ( member_b @ T3 @ A6 )
         => ( member_b @ T3 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_859_less__eq__set__def,axiom,
    ( ord_le146215904626753808_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
          ( ord_le8988533026730861429_b_b_o
          @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ A6 )
          @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_860_less__eq__set__def,axiom,
    ( ord_less_eq_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( ord_less_eq_b_o
          @ ^ [X3: b] : ( member_b @ X3 @ A6 )
          @ ^ [X3: b] : ( member_b @ X3 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_861_pred__subset__eq,axiom,
    ! [R3: set_Pr3012420139608375472_a_b_b,S2: set_Pr3012420139608375472_a_b_b] :
      ( ( ord_le8988533026730861429_b_b_o
        @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ R3 )
        @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ S2 ) )
      = ( ord_le146215904626753808_a_b_b @ R3 @ S2 ) ) ).

% pred_subset_eq
thf(fact_862_pred__subset__eq,axiom,
    ! [R3: set_b,S2: set_b] :
      ( ( ord_less_eq_b_o
        @ ^ [X3: b] : ( member_b @ X3 @ R3 )
        @ ^ [X3: b] : ( member_b @ X3 @ S2 ) )
      = ( ord_less_eq_set_b @ R3 @ S2 ) ) ).

% pred_subset_eq
thf(fact_863_Collect__subset,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,P: produc4558475209616630778_a_b_b > $o] :
      ( ord_le146215904626753808_a_b_b
      @ ( collec1368399972772960719_a_b_b
        @ ^ [X3: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X3 @ A3 )
            & ( P @ X3 ) ) )
      @ A3 ) ).

% Collect_subset
thf(fact_864_Collect__subset,axiom,
    ! [A3: set_b,P: b > $o] :
      ( ord_less_eq_set_b
      @ ( collect_b
        @ ^ [X3: b] :
            ( ( member_b @ X3 @ A3 )
            & ( P @ X3 ) ) )
      @ A3 ) ).

% Collect_subset
thf(fact_865_finterD2,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) )
     => ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ).

% finterD2
thf(fact_866_finterD1,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) )
     => ( fmembe3173364709796808819_a_b_b @ C2 @ A3 ) ) ).

% finterD1
thf(fact_867_finterE,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) )
     => ~ ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
         => ~ ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ) ).

% finterE
thf(fact_868_finter__greatest,axiom,
    ! [C: fset_P5281107635120001194_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ C @ A3 )
     => ( ( ord_le789900035998834954_a_b_b @ C @ B3 )
       => ( ord_le789900035998834954_a_b_b @ C @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) ) ) ) ).

% finter_greatest
thf(fact_869_finter__absorb2,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ( inf_in7138637532943773244_a_b_b @ A3 @ B3 )
        = A3 ) ) ).

% finter_absorb2
thf(fact_870_finter__absorb1,axiom,
    ! [B3: fset_P5281107635120001194_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B3 @ A3 )
     => ( ( inf_in7138637532943773244_a_b_b @ A3 @ B3 )
        = B3 ) ) ).

% finter_absorb1
thf(fact_871_finter__lower2,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) @ B3 ) ).

% finter_lower2
thf(fact_872_finter__lower1,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) @ A3 ) ).

% finter_lower1
thf(fact_873_finter__mono,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,D2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ C )
     => ( ( ord_le789900035998834954_a_b_b @ B3 @ D2 )
       => ( ord_le789900035998834954_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) @ ( inf_in7138637532943773244_a_b_b @ C @ D2 ) ) ) ) ).

% finter_mono
thf(fact_874_dtree_Osel_I2_J,axiom,
    ! [X1: a,X2: fset_P5281107635120001194_a_b_b] :
      ( ( sucs_a_b @ ( node_a_b @ X1 @ X2 ) )
      = X2 ) ).

% dtree.sel(2)
thf(fact_875_inf__Int__eq2,axiom,
    ! [R3: set_Pr3012420139608375472_a_b_b,S2: set_Pr3012420139608375472_a_b_b] :
      ( ( inf_in8207984165653407081_b_b_o
        @ ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ R3 )
        @ ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ S2 ) )
      = ( ^ [X3: dtree_a_b,Y5: b] : ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ Y5 ) @ ( inf_in6138156342456174402_a_b_b @ R3 @ S2 ) ) ) ) ).

% inf_Int_eq2
thf(fact_876_inf__set__def,axiom,
    ( inf_in6138156342456174402_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
          ( collec1368399972772960719_a_b_b
          @ ( inf_in55627642082981827_b_b_o
            @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ A6 )
            @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ B6 ) ) ) ) ) ).

% inf_set_def
thf(fact_877_inf__set__def,axiom,
    ( inf_inf_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( collect_b
          @ ( inf_inf_b_o
            @ ^ [X3: b] : ( member_b @ X3 @ A6 )
            @ ^ [X3: b] : ( member_b @ X3 @ B6 ) ) ) ) ) ).

% inf_set_def
thf(fact_878_inf__Int__eq,axiom,
    ! [R3: set_Pr3012420139608375472_a_b_b,S2: set_Pr3012420139608375472_a_b_b] :
      ( ( inf_in55627642082981827_b_b_o
        @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ R3 )
        @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ S2 ) )
      = ( ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ ( inf_in6138156342456174402_a_b_b @ R3 @ S2 ) ) ) ) ).

% inf_Int_eq
thf(fact_879_inf__Int__eq,axiom,
    ! [R3: set_b,S2: set_b] :
      ( ( inf_inf_b_o
        @ ^ [X3: b] : ( member_b @ X3 @ R3 )
        @ ^ [X3: b] : ( member_b @ X3 @ S2 ) )
      = ( ^ [X3: b] : ( member_b @ X3 @ ( inf_inf_set_b @ R3 @ S2 ) ) ) ) ).

% inf_Int_eq
thf(fact_880_dtree_Oexpand,axiom,
    ! [Dtree: dtree_a_b,Dtree2: dtree_a_b] :
      ( ( ( ( root_a_b @ Dtree )
          = ( root_a_b @ Dtree2 ) )
        & ( ( sucs_a_b @ Dtree )
          = ( sucs_a_b @ Dtree2 ) ) )
     => ( Dtree = Dtree2 ) ) ).

% dtree.expand
thf(fact_881_wf__darcs_H__if__darcs,axiom,
    ! [T: dtree_a_b] :
      ( ( wf_darcs_a_b @ T )
     => ( wf_darcs_a_b2 @ T ) ) ).

% wf_darcs'_if_darcs
thf(fact_882_wf__darcs__if__darcs_H,axiom,
    ! [T: dtree_a_b] :
      ( ( wf_darcs_a_b2 @ T )
     => ( wf_darcs_a_b @ T ) ) ).

% wf_darcs_if_darcs'
thf(fact_883_wf__darcs__iff__darcs_H,axiom,
    wf_darcs_a_b = wf_darcs_a_b2 ).

% wf_darcs_iff_darcs'
thf(fact_884_finter__finsert__left,axiom,
    ! [A2: produc4558475209616630778_a_b_b,C: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ( fmembe3173364709796808819_a_b_b @ A2 @ C )
       => ( ( inf_in7138637532943773244_a_b_b @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) @ C )
          = ( finser8437519239679886002_a_b_b @ A2 @ ( inf_in7138637532943773244_a_b_b @ B3 @ C ) ) ) )
      & ( ~ ( fmembe3173364709796808819_a_b_b @ A2 @ C )
       => ( ( inf_in7138637532943773244_a_b_b @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) @ C )
          = ( inf_in7138637532943773244_a_b_b @ B3 @ C ) ) ) ) ).

% finter_finsert_left
thf(fact_885_finter__finsert__right,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ( fmembe3173364709796808819_a_b_b @ A2 @ A3 )
       => ( ( inf_in7138637532943773244_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) )
          = ( finser8437519239679886002_a_b_b @ A2 @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) ) ) )
      & ( ~ ( fmembe3173364709796808819_a_b_b @ A2 @ A3 )
       => ( ( inf_in7138637532943773244_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) )
          = ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) ) ) ) ).

% finter_finsert_right
thf(fact_886_funion__finter__assoc__eq,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b] :
      ( ( ( sup_su860928060825958358_a_b_b @ ( inf_in7138637532943773244_a_b_b @ A3 @ B3 ) @ C )
        = ( inf_in7138637532943773244_a_b_b @ A3 @ ( sup_su860928060825958358_a_b_b @ B3 @ C ) ) )
      = ( ord_le789900035998834954_a_b_b @ C @ A3 ) ) ).

% funion_finter_assoc_eq
thf(fact_887_dtree_Oexhaust__sel,axiom,
    ! [Dtree: dtree_a_b] :
      ( Dtree
      = ( node_a_b @ ( root_a_b @ Dtree ) @ ( sucs_a_b @ Dtree ) ) ) ).

% dtree.exhaust_sel
thf(fact_888_singleton__uneq_H,axiom,
    ! [R2: a,T: dtree_a_b,E4: b,V: a] :
      ( ( node_a_b @ R2 @ ( finser8437519239679886002_a_b_b @ ( produc331601717337510060_a_b_b @ T @ E4 ) @ bot_bo2895716411488905534_a_b_b ) )
     != ( node_a_b @ V @ ( sucs_a_b @ T ) ) ) ).

% singleton_uneq'
thf(fact_889_wf__darcs__sucs,axiom,
    ! [T: dtree_a_b,X4: produc4558475209616630778_a_b_b,R2: a] :
      ( ( wf_darcs_a_b @ T )
     => ( ( member4380921116106875537_a_b_b @ X4 @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ T ) ) )
       => ( wf_darcs_a_b @ ( node_a_b @ R2 @ ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) ) ) ) ).

% wf_darcs_sucs
thf(fact_890_comp__fun__commute__filter__fold,axiom,
    ! [P: b > $o] :
      ( finite4863250414163961073_set_b
      @ ^ [X3: b,A8: set_b] : ( if_set_b @ ( P @ X3 ) @ ( insert_b @ X3 @ A8 ) @ A8 ) ) ).

% comp_fun_commute_filter_fold
thf(fact_891_disjoint__darcs__img,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,F: dtree_a_b > dtree_a_b] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [Y5: dtree_a_b,E12: b] :
                ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                & ! [Z4: produc4558475209616630778_a_b_b] :
                    ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                   => ( produc1325217093046185599_b_b_o
                      @ ^ [Aa: dtree_a_b,E2: b] :
                          ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                            = bot_bot_set_b )
                          | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                            = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                      @ Z4 ) ) )
            @ X ) )
     => ( ! [X: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
           => ( produc1325217093046185599_b_b_o
              @ ^ [T3: dtree_a_b,E: b] : ( ord_less_eq_set_b @ ( darcs_a_b @ ( F @ T3 ) ) @ ( darcs_a_b @ T3 ) )
              @ X ) )
       => ! [X5: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X5
              @ ( fset_P783253628892185035_a_b_b
                @ ( fimage7457256623133068659_a_b_b
                  @ ( produc5460679229782211283_a_b_b
                    @ ^ [T3: dtree_a_b] : ( produc331601717337510060_a_b_b @ ( F @ T3 ) ) )
                  @ Xs2 ) ) )
           => ( produc1325217093046185599_b_b_o
              @ ^ [Y5: dtree_a_b,E12: b] :
                  ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                  & ! [Z4: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ Z4
                        @ ( fset_P783253628892185035_a_b_b
                          @ ( fimage7457256623133068659_a_b_b
                            @ ( produc5460679229782211283_a_b_b
                              @ ^ [T3: dtree_a_b] : ( produc331601717337510060_a_b_b @ ( F @ T3 ) ) )
                            @ Xs2 ) ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Aa: dtree_a_b,E2: b] :
                            ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                              = bot_bot_set_b )
                            | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                              = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                        @ Z4 ) ) )
              @ X5 ) ) ) ) ).

% disjoint_darcs_img
thf(fact_892_case__prod__app,axiom,
    ( produc2242037354397874494_b_a_a
    = ( ^ [F2: dtree_a_b > b > a > a,X3: produc4558475209616630778_a_b_b,Y5: a] :
          ( produc3664522937540588133_b_b_a
          @ ^ [L: dtree_a_b,R5: b] : ( F2 @ L @ R5 @ Y5 )
          @ X3 ) ) ) ).

% case_prod_app
thf(fact_893_fimage__eqI,axiom,
    ! [B2: produc4558475209616630778_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( B2
        = ( F @ X4 ) )
     => ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
       => ( fmembe3173364709796808819_a_b_b @ B2 @ ( fimage7457256623133068659_a_b_b @ F @ A3 ) ) ) ) ).

% fimage_eqI
thf(fact_894_fimage__finsert,axiom,
    ! [F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,A2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fimage7457256623133068659_a_b_b @ F @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) )
      = ( finser8437519239679886002_a_b_b @ ( F @ A2 ) @ ( fimage7457256623133068659_a_b_b @ F @ B3 ) ) ) ).

% fimage_finsert
thf(fact_895_finsert__fimage,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
     => ( ( finser8437519239679886002_a_b_b @ ( F @ X4 ) @ ( fimage7457256623133068659_a_b_b @ F @ A3 ) )
        = ( fimage7457256623133068659_a_b_b @ F @ A3 ) ) ) ).

% finsert_fimage
thf(fact_896_fset_Omap__ident__strong,axiom,
    ! [T: fset_b,F: b > b] :
      ( ! [Z3: b] :
          ( ( member_b @ Z3 @ ( fset_b2 @ T ) )
         => ( ( F @ Z3 )
            = Z3 ) )
     => ( ( fimage_b_b @ F @ T )
        = T ) ) ).

% fset.map_ident_strong
thf(fact_897_fset_Omap__ident__strong,axiom,
    ! [T: fset_P5281107635120001194_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b] :
      ( ! [Z3: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ Z3 @ ( fset_P783253628892185035_a_b_b @ T ) )
         => ( ( F @ Z3 )
            = Z3 ) )
     => ( ( fimage7457256623133068659_a_b_b @ F @ T )
        = T ) ) ).

% fset.map_ident_strong
thf(fact_898_rev__fimage__eqI,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B2: produc4558475209616630778_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
     => ( ( B2
          = ( F @ X4 ) )
       => ( fmembe3173364709796808819_a_b_b @ B2 @ ( fimage7457256623133068659_a_b_b @ F @ A3 ) ) ) ) ).

% rev_fimage_eqI
thf(fact_899_fimageI,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
     => ( fmembe3173364709796808819_a_b_b @ ( F @ X4 ) @ ( fimage7457256623133068659_a_b_b @ F @ A3 ) ) ) ).

% fimageI
thf(fact_900_fimageE,axiom,
    ! [B2: produc4558475209616630778_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ B2 @ ( fimage7457256623133068659_a_b_b @ F @ A3 ) )
     => ~ ! [X: produc4558475209616630778_a_b_b] :
            ( ( B2
              = ( F @ X ) )
           => ~ ( fmembe3173364709796808819_a_b_b @ X @ A3 ) ) ) ).

% fimageE
thf(fact_901_subset__fimage__iff,axiom,
    ! [B3: fset_P5281107635120001194_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B3 @ ( fimage7457256623133068659_a_b_b @ F @ A3 ) )
      = ( ? [AA: fset_P5281107635120001194_a_b_b] :
            ( ( ord_le789900035998834954_a_b_b @ AA @ A3 )
            & ( B3
              = ( fimage7457256623133068659_a_b_b @ F @ AA ) ) ) ) ) ).

% subset_fimage_iff
thf(fact_902_fimage__mono,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ord_le789900035998834954_a_b_b @ ( fimage7457256623133068659_a_b_b @ F @ A3 ) @ ( fimage7457256623133068659_a_b_b @ F @ B3 ) ) ) ).

% fimage_mono
thf(fact_903_fimage__fsubsetI,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( fmembe3173364709796808819_a_b_b @ X @ A3 )
         => ( fmembe3173364709796808819_a_b_b @ ( F @ X ) @ B3 ) )
     => ( ord_le789900035998834954_a_b_b @ ( fimage7457256623133068659_a_b_b @ F @ A3 ) @ B3 ) ) ).

% fimage_fsubsetI
thf(fact_904_fimage__constant,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,C2: produc4558475209616630778_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
     => ( ( fimage7457256623133068659_a_b_b
          @ ^ [X3: produc4558475209616630778_a_b_b] : C2
          @ A3 )
        = ( finser8437519239679886002_a_b_b @ C2 @ bot_bo2895716411488905534_a_b_b ) ) ) ).

% fimage_constant
thf(fact_905_case__prod__Pair__iden,axiom,
    ! [P2: produc4558475209616630778_a_b_b] :
      ( ( produc5460679229782211283_a_b_b @ produc331601717337510060_a_b_b @ P2 )
      = P2 ) ).

% case_prod_Pair_iden
thf(fact_906_wf__darcs_H_Opelims_I1_J,axiom,
    ! [X4: dtree_a_b,Y: $o] :
      ( ( ( wf_darcs_a_b2 @ X4 )
        = Y )
     => ( ( accp_dtree_a_b @ wf_darcs_rel_a_b @ X4 )
       => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
              ( ( X4
                = ( node_a_b @ R @ Xs ) )
             => ( ( Y
                  = ( ! [X3: produc4558475209616630778_a_b_b] :
                        ( ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                       => ( produc1325217093046185599_b_b_o
                          @ ^ [Y5: dtree_a_b,E12: b] :
                              ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                              & ! [Z4: produc4558475209616630778_a_b_b] :
                                  ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                                 => ( produc1325217093046185599_b_b_o
                                    @ ^ [Aa: dtree_a_b,E2: b] :
                                        ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                                          = bot_bot_set_b )
                                        | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                          = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                                    @ Z4 ) ) )
                          @ X3 ) )
                    & ! [X3: produc4558475209616630778_a_b_b] :
                        ( ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                       => ( produc1325217093046185599_b_b_o
                          @ ^ [Y5: dtree_a_b,E: b] : ( wf_darcs_a_b2 @ Y5 )
                          @ X3 ) ) ) )
               => ~ ( accp_dtree_a_b @ wf_darcs_rel_a_b @ ( node_a_b @ R @ Xs ) ) ) ) ) ) ).

% wf_darcs'.pelims(1)
thf(fact_907_wf__darcs_H_Opelims_I2_J,axiom,
    ! [X4: dtree_a_b] :
      ( ( wf_darcs_a_b2 @ X4 )
     => ( ( accp_dtree_a_b @ wf_darcs_rel_a_b @ X4 )
       => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
              ( ( X4
                = ( node_a_b @ R @ Xs ) )
             => ( ( accp_dtree_a_b @ wf_darcs_rel_a_b @ ( node_a_b @ R @ Xs ) )
               => ~ ( ! [X5: produc4558475209616630778_a_b_b] :
                        ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                       => ( produc1325217093046185599_b_b_o
                          @ ^ [Y5: dtree_a_b,E12: b] :
                              ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                              & ! [Z4: produc4558475209616630778_a_b_b] :
                                  ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                                 => ( produc1325217093046185599_b_b_o
                                    @ ^ [Aa: dtree_a_b,E2: b] :
                                        ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                                          = bot_bot_set_b )
                                        | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                          = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                                    @ Z4 ) ) )
                          @ X5 ) )
                    & ! [X5: produc4558475209616630778_a_b_b] :
                        ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                       => ( produc1325217093046185599_b_b_o
                          @ ^ [Y5: dtree_a_b,E: b] : ( wf_darcs_a_b2 @ Y5 )
                          @ X5 ) ) ) ) ) ) ) ).

% wf_darcs'.pelims(2)
thf(fact_908_wf__darcs_H_Opelims_I3_J,axiom,
    ! [X4: dtree_a_b] :
      ( ~ ( wf_darcs_a_b2 @ X4 )
     => ( ( accp_dtree_a_b @ wf_darcs_rel_a_b @ X4 )
       => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
              ( ( X4
                = ( node_a_b @ R @ Xs ) )
             => ( ( accp_dtree_a_b @ wf_darcs_rel_a_b @ ( node_a_b @ R @ Xs ) )
               => ( ! [X: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Y5: dtree_a_b,E12: b] :
                            ( ~ ( member_b @ E12 @ ( darcs_a_b @ Y5 ) )
                            & ! [Z4: produc4558475209616630778_a_b_b] :
                                ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                               => ( produc1325217093046185599_b_b_o
                                  @ ^ [Aa: dtree_a_b,E2: b] :
                                      ( ( ( inf_inf_set_b @ ( sup_sup_set_b @ ( darcs_a_b @ Y5 ) @ ( insert_b @ E12 @ bot_bot_set_b ) ) @ ( sup_sup_set_b @ ( darcs_a_b @ Aa ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
                                        = bot_bot_set_b )
                                      | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                        = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                                  @ Z4 ) ) )
                        @ X ) )
                  & ! [X: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Y5: dtree_a_b,E: b] : ( wf_darcs_a_b2 @ Y5 )
                        @ X ) ) ) ) ) ) ) ).

% wf_darcs'.pelims(3)
thf(fact_909_Collect__empty__eq__bot,axiom,
    ! [P: b > $o] :
      ( ( ( collect_b @ P )
        = bot_bot_set_b )
      = ( P = bot_bot_b_o ) ) ).

% Collect_empty_eq_bot
thf(fact_910_is__singletonI,axiom,
    ! [X4: b] : ( is_singleton_b @ ( insert_b @ X4 @ bot_bot_set_b ) ) ).

% is_singletonI
thf(fact_911_is__singletonI_H,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b] :
      ( ( A3 != bot_bo3721250822024684356_a_b_b )
     => ( ! [X: produc4558475209616630778_a_b_b,Y4: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X @ A3 )
           => ( ( member4380921116106875537_a_b_b @ Y4 @ A3 )
             => ( X = Y4 ) ) )
       => ( is_sin1118336051388392454_a_b_b @ A3 ) ) ) ).

% is_singletonI'
thf(fact_912_is__singletonI_H,axiom,
    ! [A3: set_b] :
      ( ( A3 != bot_bot_set_b )
     => ( ! [X: b,Y4: b] :
            ( ( member_b @ X @ A3 )
           => ( ( member_b @ Y4 @ A3 )
             => ( X = Y4 ) ) )
       => ( is_singleton_b @ A3 ) ) ) ).

% is_singletonI'
thf(fact_913_is__singleton__def,axiom,
    ( is_singleton_b
    = ( ^ [A6: set_b] :
        ? [X3: b] :
          ( A6
          = ( insert_b @ X3 @ bot_bot_set_b ) ) ) ) ).

% is_singleton_def
thf(fact_914_is__singletonE,axiom,
    ! [A3: set_b] :
      ( ( is_singleton_b @ A3 )
     => ~ ! [X: b] :
            ( A3
           != ( insert_b @ X @ bot_bot_set_b ) ) ) ).

% is_singletonE
thf(fact_915_split__cong,axiom,
    ! [Q2: produc4558475209616630778_a_b_b,F: dtree_a_b > b > a > a,G2: dtree_a_b > b > a > a,P2: produc4558475209616630778_a_b_b] :
      ( ! [X: dtree_a_b,Y4: b] :
          ( ( ( produc331601717337510060_a_b_b @ X @ Y4 )
            = Q2 )
         => ( ( F @ X @ Y4 )
            = ( G2 @ X @ Y4 ) ) )
     => ( ( P2 = Q2 )
       => ( ( produc2242037354397874494_b_a_a @ F @ P2 )
          = ( produc2242037354397874494_b_a_a @ G2 @ Q2 ) ) ) ) ).

% split_cong
thf(fact_916_insert__subsetI,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,X6: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( ( ord_le146215904626753808_a_b_b @ X6 @ A3 )
       => ( ord_le146215904626753808_a_b_b @ ( insert1613891728210272810_a_b_b @ X4 @ X6 ) @ A3 ) ) ) ).

% insert_subsetI
thf(fact_917_insert__subsetI,axiom,
    ! [X4: b,A3: set_b,X6: set_b] :
      ( ( member_b @ X4 @ A3 )
     => ( ( ord_less_eq_set_b @ X6 @ A3 )
       => ( ord_less_eq_set_b @ ( insert_b @ X4 @ X6 ) @ A3 ) ) ) ).

% insert_subsetI
thf(fact_918_subset__emptyI,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ~ ( member4380921116106875537_a_b_b @ X @ A3 )
     => ( ord_le146215904626753808_a_b_b @ A3 @ bot_bo3721250822024684356_a_b_b ) ) ).

% subset_emptyI
thf(fact_919_subset__emptyI,axiom,
    ! [A3: set_b] :
      ( ! [X: b] :
          ~ ( member_b @ X @ A3 )
     => ( ord_less_eq_set_b @ A3 @ bot_bot_set_b ) ) ).

% subset_emptyI
thf(fact_920_ssubst__Pair__rhs,axiom,
    ! [R2: dtree_a_b,S: b,R3: set_Pr3012420139608375472_a_b_b,S5: b] :
      ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ R2 @ S ) @ R3 )
     => ( ( S5 = S )
       => ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ R2 @ S5 ) @ R3 ) ) ) ).

% ssubst_Pair_rhs
thf(fact_921_Collect__restrict,axiom,
    ! [X6: set_Pr3012420139608375472_a_b_b,P: produc4558475209616630778_a_b_b > $o] :
      ( ord_le146215904626753808_a_b_b
      @ ( collec1368399972772960719_a_b_b
        @ ^ [X3: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X3 @ X6 )
            & ( P @ X3 ) ) )
      @ X6 ) ).

% Collect_restrict
thf(fact_922_Collect__restrict,axiom,
    ! [X6: set_b,P: b > $o] :
      ( ord_less_eq_set_b
      @ ( collect_b
        @ ^ [X3: b] :
            ( ( member_b @ X3 @ X6 )
            & ( P @ X3 ) ) )
      @ X6 ) ).

% Collect_restrict
thf(fact_923_prop__restrict,axiom,
    ! [X4: produc4558475209616630778_a_b_b,Z5: set_Pr3012420139608375472_a_b_b,X6: set_Pr3012420139608375472_a_b_b,P: produc4558475209616630778_a_b_b > $o] :
      ( ( member4380921116106875537_a_b_b @ X4 @ Z5 )
     => ( ( ord_le146215904626753808_a_b_b @ Z5
          @ ( collec1368399972772960719_a_b_b
            @ ^ [X3: produc4558475209616630778_a_b_b] :
                ( ( member4380921116106875537_a_b_b @ X3 @ X6 )
                & ( P @ X3 ) ) ) )
       => ( P @ X4 ) ) ) ).

% prop_restrict
thf(fact_924_prop__restrict,axiom,
    ! [X4: b,Z5: set_b,X6: set_b,P: b > $o] :
      ( ( member_b @ X4 @ Z5 )
     => ( ( ord_less_eq_set_b @ Z5
          @ ( collect_b
            @ ^ [X3: b] :
                ( ( member_b @ X3 @ X6 )
                & ( P @ X3 ) ) ) )
       => ( P @ X4 ) ) ) ).

% prop_restrict
thf(fact_925_is__singleton__the__elem,axiom,
    ( is_singleton_b
    = ( ^ [A6: set_b] :
          ( A6
          = ( insert_b @ ( the_elem_b @ A6 ) @ bot_bot_set_b ) ) ) ) ).

% is_singleton_the_elem
thf(fact_926_the__elem__eq,axiom,
    ! [X4: b] :
      ( ( the_elem_b @ ( insert_b @ X4 @ bot_bot_set_b ) )
      = X4 ) ).

% the_elem_eq
thf(fact_927_dtree_Oroot__def,axiom,
    ( root_a_b
    = ( case_dtree_a_b_a
      @ ^ [X13: a,X23: fset_P5281107635120001194_a_b_b] : X13 ) ) ).

% dtree.root_def
thf(fact_928_fthe__elem_Orep__eq,axiom,
    ( fthe_e7442499522476018237_a_b_b
    = ( ^ [X3: fset_P5281107635120001194_a_b_b] : ( the_el4127461656392778949_a_b_b @ ( fset_P783253628892185035_a_b_b @ X3 ) ) ) ) ).

% fthe_elem.rep_eq
thf(fact_929_comp__fun__commute_Offold__rec,axiom,
    ! [F: produc4558475209616630778_a_b_b > a > a,X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,Z2: a] :
      ( ( finite414203908571218417_b_b_a @ F )
     => ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
       => ( ( ffold_2783168711033344739_b_b_a @ F @ Z2 @ A3 )
          = ( F @ X4 @ ( ffold_2783168711033344739_b_b_a @ F @ Z2 @ ( minus_1250967532242559235_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) ) ) ) ) ) ).

% comp_fun_commute.ffold_rec
thf(fact_930_dtail_Opelims,axiom,
    ! [X4: dtree_a_b,Xa: b > a,Y: b > a] :
      ( ( ( dtail_a_b @ X4 @ Xa )
        = Y )
     => ( ( accp_P1416650344722773512_b_b_a @ dtail_rel_a_b @ ( produc1993688775741047735_b_b_a @ X4 @ Xa ) )
       => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
              ( ( X4
                = ( node_a_b @ R @ Xs ) )
             => ( ( Y
                  = ( ^ [E: b] :
                        ( if_a @ ( member_b @ E @ ( image_3908709015779211070_b_b_b @ produc5748100250121904638_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs ) ) ) @ R
                        @ ( ffold_8367945289176929151_b_b_a
                          @ ( produc4313903556115589696_a_b_a
                            @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
                                ( if_b_a
                                @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                                  | ~ ( member_b @ E @ ( darcs_a_b @ X3 ) )
                                  | ~ ( wf_darcs_a_b @ ( node_a_b @ R @ Xs ) ) )
                                @ B
                                @ ( dtail_a_b @ X3 @ Xa ) ) )
                          @ Xa
                          @ Xs
                          @ E ) ) ) )
               => ~ ( accp_P1416650344722773512_b_b_a @ dtail_rel_a_b @ ( produc1993688775741047735_b_b_a @ ( node_a_b @ R @ Xs ) @ Xa ) ) ) ) ) ) ).

% dtail.pelims
thf(fact_931_prod__set__simps_I1_J,axiom,
    ! [X4: dtree_a_b,Y: b] :
      ( ( basic_7578771248400840636_a_b_b @ ( produc331601717337510060_a_b_b @ X4 @ Y ) )
      = ( insert_dtree_a_b @ X4 @ bot_bo8730652382759064772ee_a_b ) ) ).

% prod_set_simps(1)
thf(fact_932_image__eqI,axiom,
    ! [B2: produc4558475209616630778_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( B2
        = ( F @ X4 ) )
     => ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
       => ( member4380921116106875537_a_b_b @ B2 @ ( image_6081965176830705659_a_b_b @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_933_image__eqI,axiom,
    ! [B2: b,F: produc4558475209616630778_a_b_b > b,X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( B2
        = ( F @ X4 ) )
     => ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
       => ( member_b @ B2 @ ( image_3908709015779211070_b_b_b @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_934_image__eqI,axiom,
    ! [B2: produc4558475209616630778_a_b_b,F: b > produc4558475209616630778_a_b_b,X4: b,A3: set_b] :
      ( ( B2
        = ( F @ X4 ) )
     => ( ( member_b @ X4 @ A3 )
       => ( member4380921116106875537_a_b_b @ B2 @ ( image_7642607452437185460_a_b_b @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_935_image__eqI,axiom,
    ! [B2: b,F: b > b,X4: b,A3: set_b] :
      ( ( B2
        = ( F @ X4 ) )
     => ( ( member_b @ X4 @ A3 )
       => ( member_b @ B2 @ ( image_b_b @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_936_image__is__empty,axiom,
    ! [F: b > b,A3: set_b] :
      ( ( ( image_b_b @ F @ A3 )
        = bot_bot_set_b )
      = ( A3 = bot_bot_set_b ) ) ).

% image_is_empty
thf(fact_937_empty__is__image,axiom,
    ! [F: b > b,A3: set_b] :
      ( ( bot_bot_set_b
        = ( image_b_b @ F @ A3 ) )
      = ( A3 = bot_bot_set_b ) ) ).

% empty_is_image
thf(fact_938_image__empty,axiom,
    ! [F: b > b] :
      ( ( image_b_b @ F @ bot_bot_set_b )
      = bot_bot_set_b ) ).

% image_empty
thf(fact_939_insert__image,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,F: produc4558475209616630778_a_b_b > b] :
      ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( ( insert_b @ ( F @ X4 ) @ ( image_3908709015779211070_b_b_b @ F @ A3 ) )
        = ( image_3908709015779211070_b_b_b @ F @ A3 ) ) ) ).

% insert_image
thf(fact_940_insert__image,axiom,
    ! [X4: b,A3: set_b,F: b > b] :
      ( ( member_b @ X4 @ A3 )
     => ( ( insert_b @ ( F @ X4 ) @ ( image_b_b @ F @ A3 ) )
        = ( image_b_b @ F @ A3 ) ) ) ).

% insert_image
thf(fact_941_image__insert,axiom,
    ! [F: b > b,A2: b,B3: set_b] :
      ( ( image_b_b @ F @ ( insert_b @ A2 @ B3 ) )
      = ( insert_b @ ( F @ A2 ) @ ( image_b_b @ F @ B3 ) ) ) ).

% image_insert
thf(fact_942_fminusI,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
     => ( ~ ( fmembe3173364709796808819_a_b_b @ C2 @ B3 )
       => ( fmembe3173364709796808819_a_b_b @ C2 @ ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) ) ) ) ).

% fminusI
thf(fact_943_fminus__iff,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) )
      = ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
        & ~ ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ) ).

% fminus_iff
thf(fact_944_fset_Oset__map,axiom,
    ! [F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,V: fset_P5281107635120001194_a_b_b] :
      ( ( fset_P783253628892185035_a_b_b @ ( fimage7457256623133068659_a_b_b @ F @ V ) )
      = ( image_6081965176830705659_a_b_b @ F @ ( fset_P783253628892185035_a_b_b @ V ) ) ) ).

% fset.set_map
thf(fact_945_fimage_Orep__eq,axiom,
    ! [X4: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,Xa: fset_P5281107635120001194_a_b_b] :
      ( ( fset_P783253628892185035_a_b_b @ ( fimage7457256623133068659_a_b_b @ X4 @ Xa ) )
      = ( image_6081965176830705659_a_b_b @ X4 @ ( fset_P783253628892185035_a_b_b @ Xa ) ) ) ).

% fimage.rep_eq
thf(fact_946_finsert__fminus1,axiom,
    ! [X4: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ X4 @ B3 )
     => ( ( minus_1250967532242559235_a_b_b @ ( finser8437519239679886002_a_b_b @ X4 @ A3 ) @ B3 )
        = ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) ) ) ).

% finsert_fminus1
thf(fact_947_finsert__fminus__single,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( finser8437519239679886002_a_b_b @ A2 @ ( minus_1250967532242559235_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ A2 @ bot_bo2895716411488905534_a_b_b ) ) )
      = ( finser8437519239679886002_a_b_b @ A2 @ A3 ) ) ).

% finsert_fminus_single
thf(fact_948_pair__imageI,axiom,
    ! [A2: dtree_a_b,B2: b,A3: set_Pr3012420139608375472_a_b_b,F: dtree_a_b > b > produc4558475209616630778_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) @ A3 )
     => ( member4380921116106875537_a_b_b @ ( F @ A2 @ B2 ) @ ( image_6081965176830705659_a_b_b @ ( produc5460679229782211283_a_b_b @ F ) @ A3 ) ) ) ).

% pair_imageI
thf(fact_949_pair__imageI,axiom,
    ! [A2: dtree_a_b,B2: b,A3: set_Pr3012420139608375472_a_b_b,F: dtree_a_b > b > b] :
      ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) @ A3 )
     => ( member_b @ ( F @ A2 @ B2 ) @ ( image_3908709015779211070_b_b_b @ ( produc3664522937540588134_b_b_b @ F ) @ A3 ) ) ) ).

% pair_imageI
thf(fact_950_pair__imageI,axiom,
    ! [A2: dtree_a_b,B2: b,A3: set_Pr3012420139608375472_a_b_b,F: dtree_a_b > b > a > a] :
      ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ A2 @ B2 ) @ A3 )
     => ( member_a_a @ ( F @ A2 @ B2 ) @ ( image_1490412026869653094_b_a_a @ ( produc2242037354397874494_b_a_a @ F ) @ A3 ) ) ) ).

% pair_imageI
thf(fact_951_image__subsetI,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X @ A3 )
         => ( member4380921116106875537_a_b_b @ ( F @ X ) @ B3 ) )
     => ( ord_le146215904626753808_a_b_b @ ( image_6081965176830705659_a_b_b @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_952_image__subsetI,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,F: produc4558475209616630778_a_b_b > b,B3: set_b] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X @ A3 )
         => ( member_b @ ( F @ X ) @ B3 ) )
     => ( ord_less_eq_set_b @ ( image_3908709015779211070_b_b_b @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_953_image__subsetI,axiom,
    ! [A3: set_b,F: b > produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ! [X: b] :
          ( ( member_b @ X @ A3 )
         => ( member4380921116106875537_a_b_b @ ( F @ X ) @ B3 ) )
     => ( ord_le146215904626753808_a_b_b @ ( image_7642607452437185460_a_b_b @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_954_image__subsetI,axiom,
    ! [A3: set_b,F: b > b,B3: set_b] :
      ( ! [X: b] :
          ( ( member_b @ X @ A3 )
         => ( member_b @ ( F @ X ) @ B3 ) )
     => ( ord_less_eq_set_b @ ( image_b_b @ F @ A3 ) @ B3 ) ) ).

% image_subsetI
thf(fact_955_fminus__fsubset,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] : ( ord_le789900035998834954_a_b_b @ ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) @ A3 ) ).

% fminus_fsubset
thf(fact_956_double__fminus,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ( ord_le789900035998834954_a_b_b @ B3 @ C )
       => ( ( minus_1250967532242559235_a_b_b @ B3 @ ( minus_1250967532242559235_a_b_b @ C @ A3 ) )
          = A3 ) ) ) ).

% double_fminus
thf(fact_957_fminus__mono,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b,D2: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ C )
     => ( ( ord_le789900035998834954_a_b_b @ D2 @ B3 )
       => ( ord_le789900035998834954_a_b_b @ ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) @ ( minus_1250967532242559235_a_b_b @ C @ D2 ) ) ) ) ).

% fminus_mono
thf(fact_958_Compr__image__eq,axiom,
    ! [F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,P: produc4558475209616630778_a_b_b > $o] :
      ( ( collec1368399972772960719_a_b_b
        @ ^ [X3: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X3 @ ( image_6081965176830705659_a_b_b @ F @ A3 ) )
            & ( P @ X3 ) ) )
      = ( image_6081965176830705659_a_b_b @ F
        @ ( collec1368399972772960719_a_b_b
          @ ^ [X3: produc4558475209616630778_a_b_b] :
              ( ( member4380921116106875537_a_b_b @ X3 @ A3 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_959_Compr__image__eq,axiom,
    ! [F: b > produc4558475209616630778_a_b_b,A3: set_b,P: produc4558475209616630778_a_b_b > $o] :
      ( ( collec1368399972772960719_a_b_b
        @ ^ [X3: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X3 @ ( image_7642607452437185460_a_b_b @ F @ A3 ) )
            & ( P @ X3 ) ) )
      = ( image_7642607452437185460_a_b_b @ F
        @ ( collect_b
          @ ^ [X3: b] :
              ( ( member_b @ X3 @ A3 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_960_Compr__image__eq,axiom,
    ! [F: produc4558475209616630778_a_b_b > b,A3: set_Pr3012420139608375472_a_b_b,P: b > $o] :
      ( ( collect_b
        @ ^ [X3: b] :
            ( ( member_b @ X3 @ ( image_3908709015779211070_b_b_b @ F @ A3 ) )
            & ( P @ X3 ) ) )
      = ( image_3908709015779211070_b_b_b @ F
        @ ( collec1368399972772960719_a_b_b
          @ ^ [X3: produc4558475209616630778_a_b_b] :
              ( ( member4380921116106875537_a_b_b @ X3 @ A3 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_961_Compr__image__eq,axiom,
    ! [F: b > b,A3: set_b,P: b > $o] :
      ( ( collect_b
        @ ^ [X3: b] :
            ( ( member_b @ X3 @ ( image_b_b @ F @ A3 ) )
            & ( P @ X3 ) ) )
      = ( image_b_b @ F
        @ ( collect_b
          @ ^ [X3: b] :
              ( ( member_b @ X3 @ A3 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_962_imageE,axiom,
    ! [B2: produc4558475209616630778_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ B2 @ ( image_6081965176830705659_a_b_b @ F @ A3 ) )
     => ~ ! [X: produc4558475209616630778_a_b_b] :
            ( ( B2
              = ( F @ X ) )
           => ~ ( member4380921116106875537_a_b_b @ X @ A3 ) ) ) ).

% imageE
thf(fact_963_imageE,axiom,
    ! [B2: produc4558475209616630778_a_b_b,F: b > produc4558475209616630778_a_b_b,A3: set_b] :
      ( ( member4380921116106875537_a_b_b @ B2 @ ( image_7642607452437185460_a_b_b @ F @ A3 ) )
     => ~ ! [X: b] :
            ( ( B2
              = ( F @ X ) )
           => ~ ( member_b @ X @ A3 ) ) ) ).

% imageE
thf(fact_964_imageE,axiom,
    ! [B2: b,F: produc4558475209616630778_a_b_b > b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( member_b @ B2 @ ( image_3908709015779211070_b_b_b @ F @ A3 ) )
     => ~ ! [X: produc4558475209616630778_a_b_b] :
            ( ( B2
              = ( F @ X ) )
           => ~ ( member4380921116106875537_a_b_b @ X @ A3 ) ) ) ).

% imageE
thf(fact_965_imageE,axiom,
    ! [B2: b,F: b > b,A3: set_b] :
      ( ( member_b @ B2 @ ( image_b_b @ F @ A3 ) )
     => ~ ! [X: b] :
            ( ( B2
              = ( F @ X ) )
           => ~ ( member_b @ X @ A3 ) ) ) ).

% imageE
thf(fact_966_imageI,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( member4380921116106875537_a_b_b @ ( F @ X4 ) @ ( image_6081965176830705659_a_b_b @ F @ A3 ) ) ) ).

% imageI
thf(fact_967_imageI,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,F: produc4558475209616630778_a_b_b > b] :
      ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( member_b @ ( F @ X4 ) @ ( image_3908709015779211070_b_b_b @ F @ A3 ) ) ) ).

% imageI
thf(fact_968_imageI,axiom,
    ! [X4: b,A3: set_b,F: b > produc4558475209616630778_a_b_b] :
      ( ( member_b @ X4 @ A3 )
     => ( member4380921116106875537_a_b_b @ ( F @ X4 ) @ ( image_7642607452437185460_a_b_b @ F @ A3 ) ) ) ).

% imageI
thf(fact_969_imageI,axiom,
    ! [X4: b,A3: set_b,F: b > b] :
      ( ( member_b @ X4 @ A3 )
     => ( member_b @ ( F @ X4 ) @ ( image_b_b @ F @ A3 ) ) ) ).

% imageI
thf(fact_970_rev__image__eqI,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B2: produc4558475209616630778_a_b_b,F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( ( B2
          = ( F @ X4 ) )
       => ( member4380921116106875537_a_b_b @ B2 @ ( image_6081965176830705659_a_b_b @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_971_rev__image__eqI,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B2: b,F: produc4558475209616630778_a_b_b > b] :
      ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( ( B2
          = ( F @ X4 ) )
       => ( member_b @ B2 @ ( image_3908709015779211070_b_b_b @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_972_rev__image__eqI,axiom,
    ! [X4: b,A3: set_b,B2: produc4558475209616630778_a_b_b,F: b > produc4558475209616630778_a_b_b] :
      ( ( member_b @ X4 @ A3 )
     => ( ( B2
          = ( F @ X4 ) )
       => ( member4380921116106875537_a_b_b @ B2 @ ( image_7642607452437185460_a_b_b @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_973_rev__image__eqI,axiom,
    ! [X4: b,A3: set_b,B2: b,F: b > b] :
      ( ( member_b @ X4 @ A3 )
     => ( ( B2
          = ( F @ X4 ) )
       => ( member_b @ B2 @ ( image_b_b @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_974_fminusE,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) )
     => ~ ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
         => ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ) ).

% fminusE
thf(fact_975_fminusD1,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) )
     => ( fmembe3173364709796808819_a_b_b @ C2 @ A3 ) ) ).

% fminusD1
thf(fact_976_fminusD2,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ C2 @ ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) )
     => ~ ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ).

% fminusD2
thf(fact_977_image__Un,axiom,
    ! [F: b > b,A3: set_b,B3: set_b] :
      ( ( image_b_b @ F @ ( sup_sup_set_b @ A3 @ B3 ) )
      = ( sup_sup_set_b @ ( image_b_b @ F @ A3 ) @ ( image_b_b @ F @ B3 ) ) ) ).

% image_Un
thf(fact_978_snd__conv,axiom,
    ! [X1: dtree_a_b,X2: b] :
      ( ( produc5748100250121904638_a_b_b @ ( produc331601717337510060_a_b_b @ X1 @ X2 ) )
      = X2 ) ).

% snd_conv
thf(fact_979_snd__eqD,axiom,
    ! [X4: dtree_a_b,Y: b,A2: b] :
      ( ( ( produc5748100250121904638_a_b_b @ ( produc331601717337510060_a_b_b @ X4 @ Y ) )
        = A2 )
     => ( Y = A2 ) ) ).

% snd_eqD
thf(fact_980_sndI,axiom,
    ! [X4: produc4558475209616630778_a_b_b,Y: dtree_a_b,Z2: b] :
      ( ( X4
        = ( produc331601717337510060_a_b_b @ Y @ Z2 ) )
     => ( ( produc5748100250121904638_a_b_b @ X4 )
        = Z2 ) ) ).

% sndI
thf(fact_981_diff__shunt__var,axiom,
    ! [X4: set_b,Y: set_b] :
      ( ( ( minus_minus_set_b @ X4 @ Y )
        = bot_bot_set_b )
      = ( ord_less_eq_set_b @ X4 @ Y ) ) ).

% diff_shunt_var
thf(fact_982_finsert__fminus__if,axiom,
    ! [X4: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( ( fmembe3173364709796808819_a_b_b @ X4 @ B3 )
       => ( ( minus_1250967532242559235_a_b_b @ ( finser8437519239679886002_a_b_b @ X4 @ A3 ) @ B3 )
          = ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) ) )
      & ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ B3 )
       => ( ( minus_1250967532242559235_a_b_b @ ( finser8437519239679886002_a_b_b @ X4 @ A3 ) @ B3 )
          = ( finser8437519239679886002_a_b_b @ X4 @ ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) ) ) ) ) ).

% finsert_fminus_if
thf(fact_983_fminus__finsert2,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,A2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( minus_1250967532242559235_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) )
      = ( minus_1250967532242559235_a_b_b @ ( minus_1250967532242559235_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ A2 @ bot_bo2895716411488905534_a_b_b ) ) @ B3 ) ) ).

% fminus_finsert2
thf(fact_984_fminus__finsert,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,A2: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( minus_1250967532242559235_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ A2 @ B3 ) )
      = ( minus_1250967532242559235_a_b_b @ ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) @ ( finser8437519239679886002_a_b_b @ A2 @ bot_bo2895716411488905534_a_b_b ) ) ) ).

% fminus_finsert
thf(fact_985_fminus__partition,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ( sup_su860928060825958358_a_b_b @ A3 @ ( minus_1250967532242559235_a_b_b @ B3 @ A3 ) )
        = B3 ) ) ).

% fminus_partition
thf(fact_986_fminus__fsubset__conv,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ ( minus_1250967532242559235_a_b_b @ A3 @ B3 ) @ C )
      = ( ord_le789900035998834954_a_b_b @ A3 @ ( sup_su860928060825958358_a_b_b @ B3 @ C ) ) ) ).

% fminus_fsubset_conv
thf(fact_987_image__constant,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,C2: b] :
      ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( ( image_3908709015779211070_b_b_b
          @ ^ [X3: produc4558475209616630778_a_b_b] : C2
          @ A3 )
        = ( insert_b @ C2 @ bot_bot_set_b ) ) ) ).

% image_constant
thf(fact_988_image__constant,axiom,
    ! [X4: b,A3: set_b,C2: b] :
      ( ( member_b @ X4 @ A3 )
     => ( ( image_b_b
          @ ^ [X3: b] : C2
          @ A3 )
        = ( insert_b @ C2 @ bot_bot_set_b ) ) ) ).

% image_constant
thf(fact_989_image__constant__conv,axiom,
    ! [A3: set_b,C2: b] :
      ( ( ( A3 = bot_bot_set_b )
       => ( ( image_b_b
            @ ^ [X3: b] : C2
            @ A3 )
          = bot_bot_set_b ) )
      & ( ( A3 != bot_bot_set_b )
       => ( ( image_b_b
            @ ^ [X3: b] : C2
            @ A3 )
          = ( insert_b @ C2 @ bot_bot_set_b ) ) ) ) ).

% image_constant_conv
thf(fact_990_Compr__fimage__eq,axiom,
    ! [F: produc4558475209616630778_a_b_b > produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b,P: produc4558475209616630778_a_b_b > $o] :
      ( ( collec1368399972772960719_a_b_b
        @ ^ [X3: produc4558475209616630778_a_b_b] :
            ( ( fmembe3173364709796808819_a_b_b @ X3 @ ( fimage7457256623133068659_a_b_b @ F @ A3 ) )
            & ( P @ X3 ) ) )
      = ( image_6081965176830705659_a_b_b @ F
        @ ( collec1368399972772960719_a_b_b
          @ ^ [X3: produc4558475209616630778_a_b_b] :
              ( ( fmembe3173364709796808819_a_b_b @ X3 @ A3 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_fimage_eq
thf(fact_991_finsert__fminus,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( fmembe3173364709796808819_a_b_b @ A2 @ A3 )
     => ( ( finser8437519239679886002_a_b_b @ A2 @ ( minus_1250967532242559235_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ A2 @ bot_bo2895716411488905534_a_b_b ) ) )
        = A3 ) ) ).

% finsert_fminus
thf(fact_992_fminus__finsert__absorb,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
     => ( ( minus_1250967532242559235_a_b_b @ ( finser8437519239679886002_a_b_b @ X4 @ A3 ) @ ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) )
        = A3 ) ) ).

% fminus_finsert_absorb
thf(fact_993_fminus__single__finsert,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,X4: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ ( minus_1250967532242559235_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) @ B3 )
     => ( ord_le789900035998834954_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ X4 @ B3 ) ) ) ).

% fminus_single_finsert
thf(fact_994_dtree_Oset__intros_I3_J,axiom,
    ! [Ye: produc4558475209616630778_a_b_b,X2: fset_P5281107635120001194_a_b_b,Yf: dtree_a_b,Yh: b,X1: a] :
      ( ( member4380921116106875537_a_b_b @ Ye @ ( fset_P783253628892185035_a_b_b @ X2 ) )
     => ( ( member_dtree_a_b @ Yf @ ( basic_7578771248400840636_a_b_b @ Ye ) )
       => ( ( member_b @ Yh @ ( darcs_a_b @ Yf ) )
         => ( member_b @ Yh @ ( darcs_a_b @ ( node_a_b @ X1 @ X2 ) ) ) ) ) ) ).

% dtree.set_intros(3)
thf(fact_995_dtree_Oset__sel_I3_J,axiom,
    ! [Xe: produc4558475209616630778_a_b_b,A2: dtree_a_b,Xf: dtree_a_b,Xh: b] :
      ( ( member4380921116106875537_a_b_b @ Xe @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ A2 ) ) )
     => ( ( member_dtree_a_b @ Xf @ ( basic_7578771248400840636_a_b_b @ Xe ) )
       => ( ( member_b @ Xh @ ( darcs_a_b @ Xf ) )
         => ( member_b @ Xh @ ( darcs_a_b @ A2 ) ) ) ) ) ).

% dtree.set_sel(3)
thf(fact_996_fsubset__finsert__iff,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,X4: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ X4 @ B3 ) )
      = ( ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
         => ( ord_le789900035998834954_a_b_b @ ( minus_1250967532242559235_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) @ B3 ) )
        & ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
         => ( ord_le789900035998834954_a_b_b @ A3 @ B3 ) ) ) ) ).

% fsubset_finsert_iff
thf(fact_997_comp__fun__commute_Offold__finsert__fremove,axiom,
    ! [F: produc4558475209616630778_a_b_b > a > a,Z2: a,X4: produc4558475209616630778_a_b_b,A3: fset_P5281107635120001194_a_b_b] :
      ( ( finite414203908571218417_b_b_a @ F )
     => ( ( ffold_2783168711033344739_b_b_a @ F @ Z2 @ ( finser8437519239679886002_a_b_b @ X4 @ A3 ) )
        = ( F @ X4 @ ( ffold_2783168711033344739_b_b_a @ F @ Z2 @ ( minus_1250967532242559235_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) ) ) ) ) ).

% comp_fun_commute.ffold_finsert_fremove
thf(fact_998_dtail_Oelims,axiom,
    ! [X4: dtree_a_b,Xa: b > a,Y: b > a] :
      ( ( ( dtail_a_b @ X4 @ Xa )
        = Y )
     => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
            ( ( X4
              = ( node_a_b @ R @ Xs ) )
           => ( Y
             != ( ^ [E: b] :
                    ( if_a @ ( member_b @ E @ ( image_3908709015779211070_b_b_b @ produc5748100250121904638_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs ) ) ) @ R
                    @ ( ffold_8367945289176929151_b_b_a
                      @ ( produc4313903556115589696_a_b_a
                        @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
                            ( if_b_a
                            @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                              | ~ ( member_b @ E @ ( darcs_a_b @ X3 ) )
                              | ~ ( wf_darcs_a_b @ ( node_a_b @ R @ Xs ) ) )
                            @ B
                            @ ( dtail_a_b @ X3 @ Xa ) ) )
                      @ Xa
                      @ Xs
                      @ E ) ) ) ) ) ) ).

% dtail.elims
thf(fact_999_dtail_Osimps,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,Def: b > a] :
      ( ( dtail_a_b @ ( node_a_b @ R2 @ Xs2 ) @ Def )
      = ( ^ [E: b] :
            ( if_a @ ( member_b @ E @ ( image_3908709015779211070_b_b_b @ produc5748100250121904638_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) ) @ R2
            @ ( ffold_8367945289176929151_b_b_a
              @ ( produc4313903556115589696_a_b_a
                @ ^ [X3: dtree_a_b,E2: b,B: b > a] :
                    ( if_b_a
                    @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                      | ~ ( member_b @ E @ ( darcs_a_b @ X3 ) )
                      | ~ ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
                    @ B
                    @ ( dtail_a_b @ X3 @ Def ) ) )
              @ Def
              @ Xs2
              @ E ) ) ) ) ).

% dtail.simps
thf(fact_1000_eq__snd__iff,axiom,
    ! [B2: b,P2: produc4558475209616630778_a_b_b] :
      ( ( B2
        = ( produc5748100250121904638_a_b_b @ P2 ) )
      = ( ? [A: dtree_a_b] :
            ( P2
            = ( produc331601717337510060_a_b_b @ A @ B2 ) ) ) ) ).

% eq_snd_iff
thf(fact_1001_DiffI,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ A3 )
     => ( ~ ( member4380921116106875537_a_b_b @ C2 @ B3 )
       => ( member4380921116106875537_a_b_b @ C2 @ ( minus_1392386589478415753_a_b_b @ A3 @ B3 ) ) ) ) ).

% DiffI
thf(fact_1002_DiffI,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ A3 )
     => ( ~ ( member_b @ C2 @ B3 )
       => ( member_b @ C2 @ ( minus_minus_set_b @ A3 @ B3 ) ) ) ) ).

% DiffI
thf(fact_1003_Diff__iff,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ ( minus_1392386589478415753_a_b_b @ A3 @ B3 ) )
      = ( ( member4380921116106875537_a_b_b @ C2 @ A3 )
        & ~ ( member4380921116106875537_a_b_b @ C2 @ B3 ) ) ) ).

% Diff_iff
thf(fact_1004_Diff__iff,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ ( minus_minus_set_b @ A3 @ B3 ) )
      = ( ( member_b @ C2 @ A3 )
        & ~ ( member_b @ C2 @ B3 ) ) ) ).

% Diff_iff
thf(fact_1005_Diff__cancel,axiom,
    ! [A3: set_b] :
      ( ( minus_minus_set_b @ A3 @ A3 )
      = bot_bot_set_b ) ).

% Diff_cancel
thf(fact_1006_empty__Diff,axiom,
    ! [A3: set_b] :
      ( ( minus_minus_set_b @ bot_bot_set_b @ A3 )
      = bot_bot_set_b ) ).

% empty_Diff
thf(fact_1007_Diff__empty,axiom,
    ! [A3: set_b] :
      ( ( minus_minus_set_b @ A3 @ bot_bot_set_b )
      = A3 ) ).

% Diff_empty
thf(fact_1008_insert__Diff1,axiom,
    ! [X4: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ X4 @ B3 )
     => ( ( minus_1392386589478415753_a_b_b @ ( insert1613891728210272810_a_b_b @ X4 @ A3 ) @ B3 )
        = ( minus_1392386589478415753_a_b_b @ A3 @ B3 ) ) ) ).

% insert_Diff1
thf(fact_1009_insert__Diff1,axiom,
    ! [X4: b,B3: set_b,A3: set_b] :
      ( ( member_b @ X4 @ B3 )
     => ( ( minus_minus_set_b @ ( insert_b @ X4 @ A3 ) @ B3 )
        = ( minus_minus_set_b @ A3 @ B3 ) ) ) ).

% insert_Diff1
thf(fact_1010_Diff__insert0,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ~ ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( ( minus_1392386589478415753_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ X4 @ B3 ) )
        = ( minus_1392386589478415753_a_b_b @ A3 @ B3 ) ) ) ).

% Diff_insert0
thf(fact_1011_Diff__insert0,axiom,
    ! [X4: b,A3: set_b,B3: set_b] :
      ( ~ ( member_b @ X4 @ A3 )
     => ( ( minus_minus_set_b @ A3 @ ( insert_b @ X4 @ B3 ) )
        = ( minus_minus_set_b @ A3 @ B3 ) ) ) ).

% Diff_insert0
thf(fact_1012_Un__Diff__cancel2,axiom,
    ! [B3: set_b,A3: set_b] :
      ( ( sup_sup_set_b @ ( minus_minus_set_b @ B3 @ A3 ) @ A3 )
      = ( sup_sup_set_b @ B3 @ A3 ) ) ).

% Un_Diff_cancel2
thf(fact_1013_Un__Diff__cancel,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( sup_sup_set_b @ A3 @ ( minus_minus_set_b @ B3 @ A3 ) )
      = ( sup_sup_set_b @ A3 @ B3 ) ) ).

% Un_Diff_cancel
thf(fact_1014_Diff__eq__empty__iff,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ( minus_minus_set_b @ A3 @ B3 )
        = bot_bot_set_b )
      = ( ord_less_eq_set_b @ A3 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_1015_insert__Diff__single,axiom,
    ! [A2: b,A3: set_b] :
      ( ( insert_b @ A2 @ ( minus_minus_set_b @ A3 @ ( insert_b @ A2 @ bot_bot_set_b ) ) )
      = ( insert_b @ A2 @ A3 ) ) ).

% insert_Diff_single
thf(fact_1016_Diff__disjoint,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( inf_inf_set_b @ A3 @ ( minus_minus_set_b @ B3 @ A3 ) )
      = bot_bot_set_b ) ).

% Diff_disjoint
thf(fact_1017_minus__fset,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Xa: fset_P5281107635120001194_a_b_b] :
      ( ( fset_P783253628892185035_a_b_b @ ( minus_1250967532242559235_a_b_b @ X4 @ Xa ) )
      = ( minus_1392386589478415753_a_b_b @ ( fset_P783253628892185035_a_b_b @ X4 ) @ ( fset_P783253628892185035_a_b_b @ Xa ) ) ) ).

% minus_fset
thf(fact_1018_comp__fun__commute__Pow__fold,axiom,
    ( finite3301421349078847953_set_b
    @ ^ [X3: b,A6: set_set_b] : ( sup_sup_set_set_b @ A6 @ ( image_set_b_set_b @ ( insert_b @ X3 ) @ A6 ) ) ) ).

% comp_fun_commute_Pow_fold
thf(fact_1019_set__diff__eq,axiom,
    ( minus_1392386589478415753_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
          ( collec1368399972772960719_a_b_b
          @ ^ [X3: produc4558475209616630778_a_b_b] :
              ( ( member4380921116106875537_a_b_b @ X3 @ A6 )
              & ~ ( member4380921116106875537_a_b_b @ X3 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1020_set__diff__eq,axiom,
    ( minus_minus_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( collect_b
          @ ^ [X3: b] :
              ( ( member_b @ X3 @ A6 )
              & ~ ( member_b @ X3 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_1021_minus__set__def,axiom,
    ( minus_1392386589478415753_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
          ( collec1368399972772960719_a_b_b
          @ ( minus_6397467918800550972_b_b_o
            @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ A6 )
            @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_1022_minus__set__def,axiom,
    ( minus_minus_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( collect_b
          @ ( minus_minus_b_o
            @ ^ [X3: b] : ( member_b @ X3 @ A6 )
            @ ^ [X3: b] : ( member_b @ X3 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_1023_DiffE,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ ( minus_1392386589478415753_a_b_b @ A3 @ B3 ) )
     => ~ ( ( member4380921116106875537_a_b_b @ C2 @ A3 )
         => ( member4380921116106875537_a_b_b @ C2 @ B3 ) ) ) ).

% DiffE
thf(fact_1024_DiffE,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ ( minus_minus_set_b @ A3 @ B3 ) )
     => ~ ( ( member_b @ C2 @ A3 )
         => ( member_b @ C2 @ B3 ) ) ) ).

% DiffE
thf(fact_1025_DiffD1,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ ( minus_1392386589478415753_a_b_b @ A3 @ B3 ) )
     => ( member4380921116106875537_a_b_b @ C2 @ A3 ) ) ).

% DiffD1
thf(fact_1026_DiffD1,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ ( minus_minus_set_b @ A3 @ B3 ) )
     => ( member_b @ C2 @ A3 ) ) ).

% DiffD1
thf(fact_1027_DiffD2,axiom,
    ! [C2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ C2 @ ( minus_1392386589478415753_a_b_b @ A3 @ B3 ) )
     => ~ ( member4380921116106875537_a_b_b @ C2 @ B3 ) ) ).

% DiffD2
thf(fact_1028_DiffD2,axiom,
    ! [C2: b,A3: set_b,B3: set_b] :
      ( ( member_b @ C2 @ ( minus_minus_set_b @ A3 @ B3 ) )
     => ~ ( member_b @ C2 @ B3 ) ) ).

% DiffD2
thf(fact_1029_Un__Diff,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( minus_minus_set_b @ ( sup_sup_set_b @ A3 @ B3 ) @ C )
      = ( sup_sup_set_b @ ( minus_minus_set_b @ A3 @ C ) @ ( minus_minus_set_b @ B3 @ C ) ) ) ).

% Un_Diff
thf(fact_1030_insert__Diff__if,axiom,
    ! [X4: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( ( member4380921116106875537_a_b_b @ X4 @ B3 )
       => ( ( minus_1392386589478415753_a_b_b @ ( insert1613891728210272810_a_b_b @ X4 @ A3 ) @ B3 )
          = ( minus_1392386589478415753_a_b_b @ A3 @ B3 ) ) )
      & ( ~ ( member4380921116106875537_a_b_b @ X4 @ B3 )
       => ( ( minus_1392386589478415753_a_b_b @ ( insert1613891728210272810_a_b_b @ X4 @ A3 ) @ B3 )
          = ( insert1613891728210272810_a_b_b @ X4 @ ( minus_1392386589478415753_a_b_b @ A3 @ B3 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_1031_insert__Diff__if,axiom,
    ! [X4: b,B3: set_b,A3: set_b] :
      ( ( ( member_b @ X4 @ B3 )
       => ( ( minus_minus_set_b @ ( insert_b @ X4 @ A3 ) @ B3 )
          = ( minus_minus_set_b @ A3 @ B3 ) ) )
      & ( ~ ( member_b @ X4 @ B3 )
       => ( ( minus_minus_set_b @ ( insert_b @ X4 @ A3 ) @ B3 )
          = ( insert_b @ X4 @ ( minus_minus_set_b @ A3 @ B3 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_1032_in__image__insert__iff,axiom,
    ! [B3: set_se3183138701204633190_a_b_b,X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ! [C4: set_Pr3012420139608375472_a_b_b] :
          ( ( member7431159781899395911_a_b_b @ C4 @ B3 )
         => ~ ( member4380921116106875537_a_b_b @ X4 @ C4 ) )
     => ( ( member7431159781899395911_a_b_b @ A3 @ ( image_4903599603319290215_a_b_b @ ( insert1613891728210272810_a_b_b @ X4 ) @ B3 ) )
        = ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
          & ( member7431159781899395911_a_b_b @ ( minus_1392386589478415753_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ X4 @ bot_bo3721250822024684356_a_b_b ) ) @ B3 ) ) ) ) ).

% in_image_insert_iff
thf(fact_1033_in__image__insert__iff,axiom,
    ! [B3: set_set_b,X4: b,A3: set_b] :
      ( ! [C4: set_b] :
          ( ( member_set_b @ C4 @ B3 )
         => ~ ( member_b @ X4 @ C4 ) )
     => ( ( member_set_b @ A3 @ ( image_set_b_set_b @ ( insert_b @ X4 ) @ B3 ) )
        = ( ( member_b @ X4 @ A3 )
          & ( member_set_b @ ( minus_minus_set_b @ A3 @ ( insert_b @ X4 @ bot_bot_set_b ) ) @ B3 ) ) ) ) ).

% in_image_insert_iff
thf(fact_1034_Diff__insert__absorb,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ~ ( member4380921116106875537_a_b_b @ X4 @ A3 )
     => ( ( minus_1392386589478415753_a_b_b @ ( insert1613891728210272810_a_b_b @ X4 @ A3 ) @ ( insert1613891728210272810_a_b_b @ X4 @ bot_bo3721250822024684356_a_b_b ) )
        = A3 ) ) ).

% Diff_insert_absorb
thf(fact_1035_Diff__insert__absorb,axiom,
    ! [X4: b,A3: set_b] :
      ( ~ ( member_b @ X4 @ A3 )
     => ( ( minus_minus_set_b @ ( insert_b @ X4 @ A3 ) @ ( insert_b @ X4 @ bot_bot_set_b ) )
        = A3 ) ) ).

% Diff_insert_absorb
thf(fact_1036_Diff__insert2,axiom,
    ! [A3: set_b,A2: b,B3: set_b] :
      ( ( minus_minus_set_b @ A3 @ ( insert_b @ A2 @ B3 ) )
      = ( minus_minus_set_b @ ( minus_minus_set_b @ A3 @ ( insert_b @ A2 @ bot_bot_set_b ) ) @ B3 ) ) ).

% Diff_insert2
thf(fact_1037_insert__Diff,axiom,
    ! [A2: produc4558475209616630778_a_b_b,A3: set_Pr3012420139608375472_a_b_b] :
      ( ( member4380921116106875537_a_b_b @ A2 @ A3 )
     => ( ( insert1613891728210272810_a_b_b @ A2 @ ( minus_1392386589478415753_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ A2 @ bot_bo3721250822024684356_a_b_b ) ) )
        = A3 ) ) ).

% insert_Diff
thf(fact_1038_insert__Diff,axiom,
    ! [A2: b,A3: set_b] :
      ( ( member_b @ A2 @ A3 )
     => ( ( insert_b @ A2 @ ( minus_minus_set_b @ A3 @ ( insert_b @ A2 @ bot_bot_set_b ) ) )
        = A3 ) ) ).

% insert_Diff
thf(fact_1039_Diff__insert,axiom,
    ! [A3: set_b,A2: b,B3: set_b] :
      ( ( minus_minus_set_b @ A3 @ ( insert_b @ A2 @ B3 ) )
      = ( minus_minus_set_b @ ( minus_minus_set_b @ A3 @ B3 ) @ ( insert_b @ A2 @ bot_bot_set_b ) ) ) ).

% Diff_insert
thf(fact_1040_subset__Diff__insert,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b,X4: produc4558475209616630778_a_b_b,C: set_Pr3012420139608375472_a_b_b] :
      ( ( ord_le146215904626753808_a_b_b @ A3 @ ( minus_1392386589478415753_a_b_b @ B3 @ ( insert1613891728210272810_a_b_b @ X4 @ C ) ) )
      = ( ( ord_le146215904626753808_a_b_b @ A3 @ ( minus_1392386589478415753_a_b_b @ B3 @ C ) )
        & ~ ( member4380921116106875537_a_b_b @ X4 @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_1041_subset__Diff__insert,axiom,
    ! [A3: set_b,B3: set_b,X4: b,C: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ ( minus_minus_set_b @ B3 @ ( insert_b @ X4 @ C ) ) )
      = ( ( ord_less_eq_set_b @ A3 @ ( minus_minus_set_b @ B3 @ C ) )
        & ~ ( member_b @ X4 @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_1042_Int__Diff__disjoint,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( inf_inf_set_b @ ( inf_inf_set_b @ A3 @ B3 ) @ ( minus_minus_set_b @ A3 @ B3 ) )
      = bot_bot_set_b ) ).

% Int_Diff_disjoint
thf(fact_1043_Diff__triv,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ( inf_inf_set_b @ A3 @ B3 )
        = bot_bot_set_b )
     => ( ( minus_minus_set_b @ A3 @ B3 )
        = A3 ) ) ).

% Diff_triv
thf(fact_1044_Diff__subset__conv,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( ord_less_eq_set_b @ ( minus_minus_set_b @ A3 @ B3 ) @ C )
      = ( ord_less_eq_set_b @ A3 @ ( sup_sup_set_b @ B3 @ C ) ) ) ).

% Diff_subset_conv
thf(fact_1045_Diff__partition,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ B3 )
     => ( ( sup_sup_set_b @ A3 @ ( minus_minus_set_b @ B3 @ A3 ) )
        = B3 ) ) ).

% Diff_partition
thf(fact_1046_Un__Diff__Int,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( sup_sup_set_b @ ( minus_minus_set_b @ A3 @ B3 ) @ ( inf_inf_set_b @ A3 @ B3 ) )
      = A3 ) ).

% Un_Diff_Int
thf(fact_1047_Int__Diff__Un,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( sup_sup_set_b @ ( inf_inf_set_b @ A3 @ B3 ) @ ( minus_minus_set_b @ A3 @ B3 ) )
      = A3 ) ).

% Int_Diff_Un
thf(fact_1048_Diff__Int,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( minus_minus_set_b @ A3 @ ( inf_inf_set_b @ B3 @ C ) )
      = ( sup_sup_set_b @ ( minus_minus_set_b @ A3 @ B3 ) @ ( minus_minus_set_b @ A3 @ C ) ) ) ).

% Diff_Int
thf(fact_1049_Diff__Un,axiom,
    ! [A3: set_b,B3: set_b,C: set_b] :
      ( ( minus_minus_set_b @ A3 @ ( sup_sup_set_b @ B3 @ C ) )
      = ( inf_inf_set_b @ ( minus_minus_set_b @ A3 @ B3 ) @ ( minus_minus_set_b @ A3 @ C ) ) ) ).

% Diff_Un
thf(fact_1050_Diff__single__insert,axiom,
    ! [A3: set_b,X4: b,B3: set_b] :
      ( ( ord_less_eq_set_b @ ( minus_minus_set_b @ A3 @ ( insert_b @ X4 @ bot_bot_set_b ) ) @ B3 )
     => ( ord_less_eq_set_b @ A3 @ ( insert_b @ X4 @ B3 ) ) ) ).

% Diff_single_insert
thf(fact_1051_subset__insert__iff,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,X4: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( ord_le146215904626753808_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ X4 @ B3 ) )
      = ( ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
         => ( ord_le146215904626753808_a_b_b @ ( minus_1392386589478415753_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ X4 @ bot_bo3721250822024684356_a_b_b ) ) @ B3 ) )
        & ( ~ ( member4380921116106875537_a_b_b @ X4 @ A3 )
         => ( ord_le146215904626753808_a_b_b @ A3 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_1052_subset__insert__iff,axiom,
    ! [A3: set_b,X4: b,B3: set_b] :
      ( ( ord_less_eq_set_b @ A3 @ ( insert_b @ X4 @ B3 ) )
      = ( ( ( member_b @ X4 @ A3 )
         => ( ord_less_eq_set_b @ ( minus_minus_set_b @ A3 @ ( insert_b @ X4 @ bot_bot_set_b ) ) @ B3 ) )
        & ( ~ ( member_b @ X4 @ A3 )
         => ( ord_less_eq_set_b @ A3 @ B3 ) ) ) ) ).

% subset_insert_iff
thf(fact_1053_subset__CollectI,axiom,
    ! [B3: set_Pr3012420139608375472_a_b_b,A3: set_Pr3012420139608375472_a_b_b,Q: produc4558475209616630778_a_b_b > $o,P: produc4558475209616630778_a_b_b > $o] :
      ( ( ord_le146215904626753808_a_b_b @ B3 @ A3 )
     => ( ! [X: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X @ B3 )
           => ( ( Q @ X )
             => ( P @ X ) ) )
       => ( ord_le146215904626753808_a_b_b
          @ ( collec1368399972772960719_a_b_b
            @ ^ [X3: produc4558475209616630778_a_b_b] :
                ( ( member4380921116106875537_a_b_b @ X3 @ B3 )
                & ( Q @ X3 ) ) )
          @ ( collec1368399972772960719_a_b_b
            @ ^ [X3: produc4558475209616630778_a_b_b] :
                ( ( member4380921116106875537_a_b_b @ X3 @ A3 )
                & ( P @ X3 ) ) ) ) ) ) ).

% subset_CollectI
thf(fact_1054_subset__CollectI,axiom,
    ! [B3: set_b,A3: set_b,Q: b > $o,P: b > $o] :
      ( ( ord_less_eq_set_b @ B3 @ A3 )
     => ( ! [X: b] :
            ( ( member_b @ X @ B3 )
           => ( ( Q @ X )
             => ( P @ X ) ) )
       => ( ord_less_eq_set_b
          @ ( collect_b
            @ ^ [X3: b] :
                ( ( member_b @ X3 @ B3 )
                & ( Q @ X3 ) ) )
          @ ( collect_b
            @ ^ [X3: b] :
                ( ( member_b @ X3 @ A3 )
                & ( P @ X3 ) ) ) ) ) ) ).

% subset_CollectI
thf(fact_1055_subset__Collect__iff,axiom,
    ! [B3: set_Pr3012420139608375472_a_b_b,A3: set_Pr3012420139608375472_a_b_b,P: produc4558475209616630778_a_b_b > $o] :
      ( ( ord_le146215904626753808_a_b_b @ B3 @ A3 )
     => ( ( ord_le146215904626753808_a_b_b @ B3
          @ ( collec1368399972772960719_a_b_b
            @ ^ [X3: produc4558475209616630778_a_b_b] :
                ( ( member4380921116106875537_a_b_b @ X3 @ A3 )
                & ( P @ X3 ) ) ) )
        = ( ! [X3: produc4558475209616630778_a_b_b] :
              ( ( member4380921116106875537_a_b_b @ X3 @ B3 )
             => ( P @ X3 ) ) ) ) ) ).

% subset_Collect_iff
thf(fact_1056_subset__Collect__iff,axiom,
    ! [B3: set_b,A3: set_b,P: b > $o] :
      ( ( ord_less_eq_set_b @ B3 @ A3 )
     => ( ( ord_less_eq_set_b @ B3
          @ ( collect_b
            @ ^ [X3: b] :
                ( ( member_b @ X3 @ A3 )
                & ( P @ X3 ) ) ) )
        = ( ! [X3: b] :
              ( ( member_b @ X3 @ B3 )
             => ( P @ X3 ) ) ) ) ) ).

% subset_Collect_iff
thf(fact_1057_singleton__suc,axiom,
    ! [T: dtree_a_b,R2: a,E4: b] : ( member_dtree_a_b @ T @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ ( node_a_b @ R2 @ ( finser8437519239679886002_a_b_b @ ( produc331601717337510060_a_b_b @ T @ E4 ) @ bot_bo2895716411488905534_a_b_b ) ) ) ) ) ) ).

% singleton_suc
thf(fact_1058_prod_Ocollapse,axiom,
    ! [Prod: produc4558475209616630778_a_b_b] :
      ( ( produc331601717337510060_a_b_b @ ( produc697780174058963904_a_b_b @ Prod ) @ ( produc5748100250121904638_a_b_b @ Prod ) )
      = Prod ) ).

% prod.collapse
thf(fact_1059_child__uneq,axiom,
    ! [T: dtree_a_b,Xs2: fset_P5281107635120001194_a_b_b,R2: a] :
      ( ( member_dtree_a_b @ T @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
     => ( ( node_a_b @ R2 @ Xs2 )
       != T ) ) ).

% child_uneq
thf(fact_1060_suc__uneq,axiom,
    ! [T1: dtree_a_b,T: dtree_a_b] :
      ( ( member_dtree_a_b @ T1 @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ T ) ) ) )
     => ( T != T1 ) ) ).

% suc_uneq
thf(fact_1061_case__prod__unfold,axiom,
    ( produc2242037354397874494_b_a_a
    = ( ^ [C5: dtree_a_b > b > a > a,P4: produc4558475209616630778_a_b_b] : ( C5 @ ( produc697780174058963904_a_b_b @ P4 ) @ ( produc5748100250121904638_a_b_b @ P4 ) ) ) ) ).

% case_prod_unfold
thf(fact_1062_case__prod__beta_H,axiom,
    ( produc2242037354397874494_b_a_a
    = ( ^ [F2: dtree_a_b > b > a > a,X3: produc4558475209616630778_a_b_b] : ( F2 @ ( produc697780174058963904_a_b_b @ X3 ) @ ( produc5748100250121904638_a_b_b @ X3 ) ) ) ) ).

% case_prod_beta'
thf(fact_1063_fstI,axiom,
    ! [X4: produc4558475209616630778_a_b_b,Y: dtree_a_b,Z2: b] :
      ( ( X4
        = ( produc331601717337510060_a_b_b @ Y @ Z2 ) )
     => ( ( produc697780174058963904_a_b_b @ X4 )
        = Y ) ) ).

% fstI
thf(fact_1064_fst__eqD,axiom,
    ! [X4: dtree_a_b,Y: b,A2: dtree_a_b] :
      ( ( ( produc697780174058963904_a_b_b @ ( produc331601717337510060_a_b_b @ X4 @ Y ) )
        = A2 )
     => ( X4 = A2 ) ) ).

% fst_eqD
thf(fact_1065_fst__conv,axiom,
    ! [X1: dtree_a_b,X2: b] :
      ( ( produc697780174058963904_a_b_b @ ( produc331601717337510060_a_b_b @ X1 @ X2 ) )
      = X1 ) ).

% fst_conv
thf(fact_1066_Product__Type_OCollect__case__prodD,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A3: dtree_a_b > b > $o] :
      ( ( member4380921116106875537_a_b_b @ X4 @ ( collec1368399972772960719_a_b_b @ ( produc1325217093046185599_b_b_o @ A3 ) ) )
     => ( A3 @ ( produc697780174058963904_a_b_b @ X4 ) @ ( produc5748100250121904638_a_b_b @ X4 ) ) ) ).

% Product_Type.Collect_case_prodD
thf(fact_1067_split__beta,axiom,
    ( produc2242037354397874494_b_a_a
    = ( ^ [F2: dtree_a_b > b > a > a,Prod2: produc4558475209616630778_a_b_b] : ( F2 @ ( produc697780174058963904_a_b_b @ Prod2 ) @ ( produc5748100250121904638_a_b_b @ Prod2 ) ) ) ) ).

% split_beta
thf(fact_1068_case__prod__beta,axiom,
    ( produc2242037354397874494_b_a_a
    = ( ^ [F2: dtree_a_b > b > a > a,P4: produc4558475209616630778_a_b_b] : ( F2 @ ( produc697780174058963904_a_b_b @ P4 ) @ ( produc5748100250121904638_a_b_b @ P4 ) ) ) ) ).

% case_prod_beta
thf(fact_1069_prod_Oexhaust__sel,axiom,
    ! [Prod: produc4558475209616630778_a_b_b] :
      ( Prod
      = ( produc331601717337510060_a_b_b @ ( produc697780174058963904_a_b_b @ Prod ) @ ( produc5748100250121904638_a_b_b @ Prod ) ) ) ).

% prod.exhaust_sel
thf(fact_1070_surjective__pairing,axiom,
    ! [T: produc4558475209616630778_a_b_b] :
      ( T
      = ( produc331601717337510060_a_b_b @ ( produc697780174058963904_a_b_b @ T ) @ ( produc5748100250121904638_a_b_b @ T ) ) ) ).

% surjective_pairing
thf(fact_1071_eq__fst__iff,axiom,
    ! [A2: dtree_a_b,P2: produc4558475209616630778_a_b_b] :
      ( ( A2
        = ( produc697780174058963904_a_b_b @ P2 ) )
      = ( ? [B: b] :
            ( P2
            = ( produc331601717337510060_a_b_b @ A2 @ B ) ) ) ) ).

% eq_fst_iff
thf(fact_1072_BNF__Greatest__Fixpoint_Osubst__Pair,axiom,
    ! [P: dtree_a_b > b > $o,X4: dtree_a_b,Y: b,A2: produc4558475209616630778_a_b_b] :
      ( ( P @ X4 @ Y )
     => ( ( A2
          = ( produc331601717337510060_a_b_b @ X4 @ Y ) )
       => ( P @ ( produc697780174058963904_a_b_b @ A2 ) @ ( produc5748100250121904638_a_b_b @ A2 ) ) ) ) ).

% BNF_Greatest_Fixpoint.subst_Pair
thf(fact_1073_prod_Osplit__sel__asm,axiom,
    ! [P: ( a > a ) > $o,F: dtree_a_b > b > a > a,Prod: produc4558475209616630778_a_b_b] :
      ( ( P @ ( produc2242037354397874494_b_a_a @ F @ Prod ) )
      = ( ~ ( ( Prod
              = ( produc331601717337510060_a_b_b @ ( produc697780174058963904_a_b_b @ Prod ) @ ( produc5748100250121904638_a_b_b @ Prod ) ) )
            & ~ ( P @ ( F @ ( produc697780174058963904_a_b_b @ Prod ) @ ( produc5748100250121904638_a_b_b @ Prod ) ) ) ) ) ) ).

% prod.split_sel_asm
thf(fact_1074_prod_Osplit__sel,axiom,
    ! [P: ( a > a ) > $o,F: dtree_a_b > b > a > a,Prod: produc4558475209616630778_a_b_b] :
      ( ( P @ ( produc2242037354397874494_b_a_a @ F @ Prod ) )
      = ( ( Prod
          = ( produc331601717337510060_a_b_b @ ( produc697780174058963904_a_b_b @ Prod ) @ ( produc5748100250121904638_a_b_b @ Prod ) ) )
       => ( P @ ( F @ ( produc697780174058963904_a_b_b @ Prod ) @ ( produc5748100250121904638_a_b_b @ Prod ) ) ) ) ) ).

% prod.split_sel
thf(fact_1075_wf__darcs__rec,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,T1: dtree_a_b] :
      ( ( wf_darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ( ( member_dtree_a_b @ T1 @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
       => ( wf_darcs_a_b @ T1 ) ) ) ).

% wf_darcs_rec
thf(fact_1076_child__uneq_H,axiom,
    ! [T: dtree_a_b,Xs2: fset_P5281107635120001194_a_b_b,R2: a,V: a] :
      ( ( member_dtree_a_b @ T @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
     => ( ( node_a_b @ R2 @ Xs2 )
       != ( node_a_b @ V @ ( sucs_a_b @ T ) ) ) ) ).

% child_uneq'
thf(fact_1077_suc__uneq_H,axiom,
    ! [T1: dtree_a_b,T: dtree_a_b,V: a] :
      ( ( member_dtree_a_b @ T1 @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ T ) ) ) )
     => ( T
       != ( node_a_b @ V @ ( sucs_a_b @ T1 ) ) ) ) ).

% suc_uneq'
thf(fact_1078_darcs__child__subseteq,axiom,
    ! [X4: dtree_a_b,Xs2: fset_P5281107635120001194_a_b_b,R2: a] :
      ( ( member_dtree_a_b @ X4 @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
     => ( ord_less_eq_set_b @ ( darcs_a_b @ X4 ) @ ( darcs_a_b @ ( node_a_b @ R2 @ Xs2 ) ) ) ) ).

% darcs_child_subseteq
thf(fact_1079_snd__fst__flip,axiom,
    ( produc8959184660827480948ee_a_b
    = ( comp_P1139271906589003649ee_a_b @ produc697780174058963904_a_b_b
      @ ( produc1296939142185513033_a_b_b
        @ ^ [X3: b,Y5: dtree_a_b] : ( produc331601717337510060_a_b_b @ Y5 @ X3 ) ) ) ) ).

% snd_fst_flip
thf(fact_1080_fst__snd__flip,axiom,
    ( produc3908864584764540214ee_a_b
    = ( comp_P6702227762116406538ee_a_b @ produc5748100250121904638_a_b_b
      @ ( produc1296939142185513033_a_b_b
        @ ^ [X3: b,Y5: dtree_a_b] : ( produc331601717337510060_a_b_b @ Y5 @ X3 ) ) ) ) ).

% fst_snd_flip
thf(fact_1081_elem__neq__if__fset__neq,axiom,
    ! [F: dtree_a_b > dtree_a_b,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( ( fimage7457256623133068659_a_b_b
          @ ( produc5460679229782211283_a_b_b
            @ ^ [T3: dtree_a_b] : ( produc331601717337510060_a_b_b @ ( F @ T3 ) ) )
          @ Xs2 )
       != Xs2 )
     => ? [X: dtree_a_b] :
          ( ( member_dtree_a_b @ X @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
          & ( ( F @ X )
           != X ) ) ) ).

% elem_neq_if_fset_neq
thf(fact_1082_exE__realizer,axiom,
    ! [P: b > dtree_a_b > $o,P2: produc4558475209616630778_a_b_b,Q: ( a > a ) > $o,F: dtree_a_b > b > a > a] :
      ( ( P @ ( produc5748100250121904638_a_b_b @ P2 ) @ ( produc697780174058963904_a_b_b @ P2 ) )
     => ( ! [X: dtree_a_b,Y4: b] :
            ( ( P @ Y4 @ X )
           => ( Q @ ( F @ X @ Y4 ) ) )
       => ( Q @ ( produc2242037354397874494_b_a_a @ F @ P2 ) ) ) ) ).

% exE_realizer
thf(fact_1083_conjI__realizer,axiom,
    ! [P: dtree_a_b > $o,P2: dtree_a_b,Q: b > $o,Q2: b] :
      ( ( P @ P2 )
     => ( ( Q @ Q2 )
       => ( ( P @ ( produc697780174058963904_a_b_b @ ( produc331601717337510060_a_b_b @ P2 @ Q2 ) ) )
          & ( Q @ ( produc5748100250121904638_a_b_b @ ( produc331601717337510060_a_b_b @ P2 @ Q2 ) ) ) ) ) ) ).

% conjI_realizer
thf(fact_1084_exI__realizer,axiom,
    ! [P: b > dtree_a_b > $o,Y: b,X4: dtree_a_b] :
      ( ( P @ Y @ X4 )
     => ( P @ ( produc5748100250121904638_a_b_b @ ( produc331601717337510060_a_b_b @ X4 @ Y ) ) @ ( produc697780174058963904_a_b_b @ ( produc331601717337510060_a_b_b @ X4 @ Y ) ) ) ) ).

% exI_realizer
thf(fact_1085_dtree__size__img__le,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,F: dtree_a_b > dtree_a_b,R2: a] :
      ( ! [X: dtree_a_b] :
          ( ( member_dtree_a_b @ X @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
         => ( ord_less_eq_nat @ ( size_size_dtree_a_b @ ( F @ X ) ) @ ( size_size_dtree_a_b @ X ) ) )
     => ( ord_less_eq_nat
        @ ( size_size_dtree_a_b
          @ ( node_a_b @ R2
            @ ( fimage7457256623133068659_a_b_b
              @ ( produc5460679229782211283_a_b_b
                @ ^ [T3: dtree_a_b] : ( produc331601717337510060_a_b_b @ ( F @ T3 ) ) )
              @ Xs2 ) ) )
        @ ( size_size_dtree_a_b @ ( node_a_b @ R2 @ Xs2 ) ) ) ) ).

% dtree_size_img_le
thf(fact_1086_wf__dverts__rec,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,T1: dtree_a_b] :
      ( ( wf_dverts_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ( ( member_dtree_a_b @ T1 @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
       => ( wf_dverts_a_b @ T1 ) ) ) ).

% wf_dverts_rec
thf(fact_1087_dtree__size__eq__root,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,R4: a] :
      ( ( size_size_dtree_a_b @ ( node_a_b @ R2 @ Xs2 ) )
      = ( size_size_dtree_a_b @ ( node_a_b @ R4 @ Xs2 ) ) ) ).

% dtree_size_eq_root
thf(fact_1088_size__le__if__child__subset,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,Ys: fset_P5281107635120001194_a_b_b,R2: a,V: a] :
      ( ( ord_le789900035998834954_a_b_b @ Xs2 @ Ys )
     => ( ord_less_eq_nat @ ( size_size_dtree_a_b @ ( node_a_b @ R2 @ Xs2 ) ) @ ( size_size_dtree_a_b @ ( node_a_b @ V @ Ys ) ) ) ) ).

% size_le_if_child_subset
thf(fact_1089_size__le__if__sucs__subset,axiom,
    ! [T1: dtree_a_b,T2: dtree_a_b] :
      ( ( ord_le789900035998834954_a_b_b @ ( sucs_a_b @ T1 ) @ ( sucs_a_b @ T2 ) )
     => ( ord_less_eq_nat @ ( size_size_dtree_a_b @ T1 ) @ ( size_size_dtree_a_b @ T2 ) ) ) ).

% size_le_if_sucs_subset
thf(fact_1090_wf__dverts__sub,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,Ys: fset_P5281107635120001194_a_b_b,R2: a] :
      ( ( ord_le789900035998834954_a_b_b @ Xs2 @ Ys )
     => ( ( wf_dverts_a_b @ ( node_a_b @ R2 @ Ys ) )
       => ( wf_dverts_a_b @ ( node_a_b @ R2 @ Xs2 ) ) ) ) ).

% wf_dverts_sub
thf(fact_1091_dtree__size__img__lt,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,F: dtree_a_b > dtree_a_b,R2: a] :
      ( ! [X: dtree_a_b] :
          ( ( member_dtree_a_b @ X @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
         => ( ord_less_eq_nat @ ( size_size_dtree_a_b @ ( F @ X ) ) @ ( size_size_dtree_a_b @ X ) ) )
     => ( ? [X5: dtree_a_b] :
            ( ( member_dtree_a_b @ X5 @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
            & ( ord_less_nat @ ( size_size_dtree_a_b @ ( F @ X5 ) ) @ ( size_size_dtree_a_b @ X5 ) ) )
       => ( ord_less_nat
          @ ( size_size_dtree_a_b
            @ ( node_a_b @ R2
              @ ( fimage7457256623133068659_a_b_b
                @ ( produc5460679229782211283_a_b_b
                  @ ^ [T3: dtree_a_b] : ( produc331601717337510060_a_b_b @ ( F @ T3 ) ) )
                @ Xs2 ) ) )
          @ ( size_size_dtree_a_b @ ( node_a_b @ R2 @ Xs2 ) ) ) ) ) ).

% dtree_size_img_lt
thf(fact_1092_disjoint__dverts__if__wf__sucs,axiom,
    ! [T: dtree_a_b] :
      ( ( wf_dverts_a_b @ T )
     => ! [X5: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ T ) ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [Y5: dtree_a_b,E12: b] :
              ! [Z4: produc4558475209616630778_a_b_b] :
                ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ T ) ) )
               => ( produc1325217093046185599_b_b_o
                  @ ^ [Aa: dtree_a_b,E2: b] :
                      ( ( ( inf_inf_set_a @ ( dverts_a_b @ Y5 ) @ ( dverts_a_b @ Aa ) )
                        = bot_bot_set_a )
                      | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                        = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                  @ Z4 ) )
            @ X5 ) ) ) ).

% disjoint_dverts_if_wf_sucs
thf(fact_1093_order__le__imp__less__or__eq,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
     => ( ( ord_le7001451600920047870_a_b_b @ X4 @ Y )
        | ( X4 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1094_order__le__imp__less__or__eq,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ord_less_nat @ X4 @ Y )
        | ( X4 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1095_linorder__le__less__linear,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
      | ( ord_less_nat @ Y @ X4 ) ) ).

% linorder_le_less_linear
thf(fact_1096_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_le789900035998834954_a_b_b @ ( F @ B2 ) @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_le7001451600920047870_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le7001451600920047870_a_b_b @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_1097_order__less__le__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ ( F @ B2 ) @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_less_le_subst2
thf(fact_1098_order__less__le__subst1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,F: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ A2 @ ( F @ B2 ) )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le7001451600920047870_a_b_b @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1099_order__less__le__subst1,axiom,
    ! [A2: nat,F: fset_P5281107635120001194_a_b_b > nat,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1100_order__less__le__subst1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,F: nat > fset_P5281107635120001194_a_b_b,B2: nat,C2: nat] :
      ( ( ord_le7001451600920047870_a_b_b @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le7001451600920047870_a_b_b @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1101_order__less__le__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C2: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1102_order__le__less__subst2,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,F: fset_P5281107635120001194_a_b_b > fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( ord_le7001451600920047870_a_b_b @ ( F @ B2 ) @ C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le7001451600920047870_a_b_b @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_1103_order__le__less__subst2,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,F: fset_P5281107635120001194_a_b_b > nat,C2: nat] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C2 )
       => ( ! [X: fset_P5281107635120001194_a_b_b,Y4: fset_P5281107635120001194_a_b_b] :
              ( ( ord_le789900035998834954_a_b_b @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_1104_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_le7001451600920047870_a_b_b @ ( F @ B2 ) @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le789900035998834954_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le7001451600920047870_a_b_b @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_1105_order__le__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_le_less_subst2
thf(fact_1106_order__le__less__subst1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,F: nat > fset_P5281107635120001194_a_b_b,B2: nat,C2: nat] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_le7001451600920047870_a_b_b @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le7001451600920047870_a_b_b @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1107_order__le__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1108_order__less__le__trans,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b,Z2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ X4 @ Y )
     => ( ( ord_le789900035998834954_a_b_b @ Y @ Z2 )
       => ( ord_le7001451600920047870_a_b_b @ X4 @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_1109_order__less__le__trans,axiom,
    ! [X4: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z2 )
       => ( ord_less_nat @ X4 @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_1110_order__le__less__trans,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b,Z2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
     => ( ( ord_le7001451600920047870_a_b_b @ Y @ Z2 )
       => ( ord_le7001451600920047870_a_b_b @ X4 @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_1111_order__le__less__trans,axiom,
    ! [X4: nat,Y: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ord_less_nat @ Y @ Z2 )
       => ( ord_less_nat @ X4 @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_1112_order__neq__le__trans,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( A2 != B2 )
     => ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
       => ( ord_le7001451600920047870_a_b_b @ A2 @ B2 ) ) ) ).

% order_neq_le_trans
thf(fact_1113_order__neq__le__trans,axiom,
    ! [A2: nat,B2: nat] :
      ( ( A2 != B2 )
     => ( ( ord_less_eq_nat @ A2 @ B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% order_neq_le_trans
thf(fact_1114_order__le__neq__trans,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_le7001451600920047870_a_b_b @ A2 @ B2 ) ) ) ).

% order_le_neq_trans
thf(fact_1115_order__le__neq__trans,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_nat @ A2 @ B2 ) ) ) ).

% order_le_neq_trans
thf(fact_1116_order__less__imp__le,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ X4 @ Y )
     => ( ord_le789900035998834954_a_b_b @ X4 @ Y ) ) ).

% order_less_imp_le
thf(fact_1117_order__less__imp__le,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( ord_less_eq_nat @ X4 @ Y ) ) ).

% order_less_imp_le
thf(fact_1118_linorder__not__less,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X4 @ Y ) )
      = ( ord_less_eq_nat @ Y @ X4 ) ) ).

% linorder_not_less
thf(fact_1119_linorder__not__le,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X4 @ Y ) )
      = ( ord_less_nat @ Y @ X4 ) ) ).

% linorder_not_le
thf(fact_1120_order__less__le,axiom,
    ( ord_le7001451600920047870_a_b_b
    = ( ^ [X3: fset_P5281107635120001194_a_b_b,Y5: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ X3 @ Y5 )
          & ( X3 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_1121_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y5 )
          & ( X3 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_1122_order__le__less,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [X3: fset_P5281107635120001194_a_b_b,Y5: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le7001451600920047870_a_b_b @ X3 @ Y5 )
          | ( X3 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_1123_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y5: nat] :
          ( ( ord_less_nat @ X3 @ Y5 )
          | ( X3 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_1124_dual__order_Ostrict__implies__order,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ B2 @ A2 )
     => ( ord_le789900035998834954_a_b_b @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_1125_dual__order_Ostrict__implies__order,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ord_less_eq_nat @ B2 @ A2 ) ) ).

% dual_order.strict_implies_order
thf(fact_1126_order_Ostrict__implies__order,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ A2 @ B2 )
     => ( ord_le789900035998834954_a_b_b @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_1127_order_Ostrict__implies__order,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ord_less_eq_nat @ A2 @ B2 ) ) ).

% order.strict_implies_order
thf(fact_1128_dual__order_Ostrict__iff__not,axiom,
    ( ord_le7001451600920047870_a_b_b
    = ( ^ [B: fset_P5281107635120001194_a_b_b,A: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ B @ A )
          & ~ ( ord_le789900035998834954_a_b_b @ A @ B ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1129_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B: nat,A: nat] :
          ( ( ord_less_eq_nat @ B @ A )
          & ~ ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1130_dual__order_Ostrict__trans2,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ B2 @ A2 )
     => ( ( ord_le789900035998834954_a_b_b @ C2 @ B2 )
       => ( ord_le7001451600920047870_a_b_b @ C2 @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_1131_dual__order_Ostrict__trans2,axiom,
    ! [B2: nat,A2: nat,C2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_eq_nat @ C2 @ B2 )
       => ( ord_less_nat @ C2 @ A2 ) ) ) ).

% dual_order.strict_trans2
thf(fact_1132_dual__order_Ostrict__trans1,axiom,
    ! [B2: fset_P5281107635120001194_a_b_b,A2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ B2 @ A2 )
     => ( ( ord_le7001451600920047870_a_b_b @ C2 @ B2 )
       => ( ord_le7001451600920047870_a_b_b @ C2 @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_1133_dual__order_Ostrict__trans1,axiom,
    ! [B2: nat,A2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C2 @ B2 )
       => ( ord_less_nat @ C2 @ A2 ) ) ) ).

% dual_order.strict_trans1
thf(fact_1134_dual__order_Ostrict__iff__order,axiom,
    ( ord_le7001451600920047870_a_b_b
    = ( ^ [B: fset_P5281107635120001194_a_b_b,A: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ B @ A )
          & ( A != B ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1135_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B: nat,A: nat] :
          ( ( ord_less_eq_nat @ B @ A )
          & ( A != B ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1136_dual__order_Oorder__iff__strict,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [B: fset_P5281107635120001194_a_b_b,A: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le7001451600920047870_a_b_b @ B @ A )
          | ( A = B ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1137_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B: nat,A: nat] :
          ( ( ord_less_nat @ B @ A )
          | ( A = B ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1138_order_Ostrict__iff__not,axiom,
    ( ord_le7001451600920047870_a_b_b
    = ( ^ [A: fset_P5281107635120001194_a_b_b,B: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ A @ B )
          & ~ ( ord_le789900035998834954_a_b_b @ B @ A ) ) ) ) ).

% order.strict_iff_not
thf(fact_1139_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ A @ B )
          & ~ ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% order.strict_iff_not
thf(fact_1140_order_Ostrict__trans2,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ A2 @ B2 )
     => ( ( ord_le789900035998834954_a_b_b @ B2 @ C2 )
       => ( ord_le7001451600920047870_a_b_b @ A2 @ C2 ) ) ) ).

% order.strict_trans2
thf(fact_1141_order_Ostrict__trans2,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_eq_nat @ B2 @ C2 )
       => ( ord_less_nat @ A2 @ C2 ) ) ) ).

% order.strict_trans2
thf(fact_1142_order_Ostrict__trans1,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b,C2: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
     => ( ( ord_le7001451600920047870_a_b_b @ B2 @ C2 )
       => ( ord_le7001451600920047870_a_b_b @ A2 @ C2 ) ) ) ).

% order.strict_trans1
thf(fact_1143_order_Ostrict__trans1,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C2 )
       => ( ord_less_nat @ A2 @ C2 ) ) ) ).

% order.strict_trans1
thf(fact_1144_order_Ostrict__iff__order,axiom,
    ( ord_le7001451600920047870_a_b_b
    = ( ^ [A: fset_P5281107635120001194_a_b_b,B: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ A @ B )
          & ( A != B ) ) ) ) ).

% order.strict_iff_order
thf(fact_1145_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_eq_nat @ A @ B )
          & ( A != B ) ) ) ) ).

% order.strict_iff_order
thf(fact_1146_order_Oorder__iff__strict,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [A: fset_P5281107635120001194_a_b_b,B: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le7001451600920047870_a_b_b @ A @ B )
          | ( A = B ) ) ) ) ).

% order.order_iff_strict
thf(fact_1147_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A: nat,B: nat] :
          ( ( ord_less_nat @ A @ B )
          | ( A = B ) ) ) ) ).

% order.order_iff_strict
thf(fact_1148_not__le__imp__less,axiom,
    ! [Y: nat,X4: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X4 )
     => ( ord_less_nat @ X4 @ Y ) ) ).

% not_le_imp_less
thf(fact_1149_less__le__not__le,axiom,
    ( ord_le7001451600920047870_a_b_b
    = ( ^ [X3: fset_P5281107635120001194_a_b_b,Y5: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ X3 @ Y5 )
          & ~ ( ord_le789900035998834954_a_b_b @ Y5 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1150_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y5 )
          & ~ ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1151_antisym__conv2,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
     => ( ( ~ ( ord_le7001451600920047870_a_b_b @ X4 @ Y ) )
        = ( X4 = Y ) ) ) ).

% antisym_conv2
thf(fact_1152_antisym__conv2,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ~ ( ord_less_nat @ X4 @ Y ) )
        = ( X4 = Y ) ) ) ).

% antisym_conv2
thf(fact_1153_antisym__conv1,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ~ ( ord_le7001451600920047870_a_b_b @ X4 @ Y )
     => ( ( ord_le789900035998834954_a_b_b @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% antisym_conv1
thf(fact_1154_antisym__conv1,axiom,
    ! [X4: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X4 @ Y )
     => ( ( ord_less_eq_nat @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% antisym_conv1
thf(fact_1155_nless__le,axiom,
    ! [A2: fset_P5281107635120001194_a_b_b,B2: fset_P5281107635120001194_a_b_b] :
      ( ( ~ ( ord_le7001451600920047870_a_b_b @ A2 @ B2 ) )
      = ( ~ ( ord_le789900035998834954_a_b_b @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_1156_nless__le,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ~ ( ord_less_nat @ A2 @ B2 ) )
      = ( ~ ( ord_less_eq_nat @ A2 @ B2 )
        | ( A2 = B2 ) ) ) ).

% nless_le
thf(fact_1157_leI,axiom,
    ! [X4: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X4 @ Y )
     => ( ord_less_eq_nat @ Y @ X4 ) ) ).

% leI
thf(fact_1158_leD,axiom,
    ! [Y: fset_P5281107635120001194_a_b_b,X4: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ Y @ X4 )
     => ~ ( ord_le7001451600920047870_a_b_b @ X4 @ Y ) ) ).

% leD
thf(fact_1159_leD,axiom,
    ! [Y: nat,X4: nat] :
      ( ( ord_less_eq_nat @ Y @ X4 )
     => ~ ( ord_less_nat @ X4 @ Y ) ) ).

% leD
thf(fact_1160_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I: nat] :
                  ( ( ord_less_nat @ K2 @ I )
                 => ( P @ I ) )
             => ( P @ K2 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_1161_less__infI1,axiom,
    ! [A2: nat,X4: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ X4 )
     => ( ord_less_nat @ ( inf_inf_nat @ A2 @ B2 ) @ X4 ) ) ).

% less_infI1
thf(fact_1162_less__infI2,axiom,
    ! [B2: nat,X4: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ X4 )
     => ( ord_less_nat @ ( inf_inf_nat @ A2 @ B2 ) @ X4 ) ) ).

% less_infI2
thf(fact_1163_inf_Oabsorb3,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( inf_inf_nat @ A2 @ B2 )
        = A2 ) ) ).

% inf.absorb3
thf(fact_1164_inf_Oabsorb4,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( inf_inf_nat @ A2 @ B2 )
        = B2 ) ) ).

% inf.absorb4
thf(fact_1165_inf_Ostrict__boundedE,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( ord_less_nat @ A2 @ ( inf_inf_nat @ B2 @ C2 ) )
     => ~ ( ( ord_less_nat @ A2 @ B2 )
         => ~ ( ord_less_nat @ A2 @ C2 ) ) ) ).

% inf.strict_boundedE
thf(fact_1166_inf_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [A: nat,B: nat] :
          ( ( A
            = ( inf_inf_nat @ A @ B ) )
          & ( A != B ) ) ) ) ).

% inf.strict_order_iff
thf(fact_1167_inf_Ostrict__coboundedI1,axiom,
    ! [A2: nat,C2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ C2 )
     => ( ord_less_nat @ ( inf_inf_nat @ A2 @ B2 ) @ C2 ) ) ).

% inf.strict_coboundedI1
thf(fact_1168_inf_Ostrict__coboundedI2,axiom,
    ! [B2: nat,C2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ C2 )
     => ( ord_less_nat @ ( inf_inf_nat @ A2 @ B2 ) @ C2 ) ) ).

% inf.strict_coboundedI2
thf(fact_1169_gt__ex,axiom,
    ! [X4: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X4 @ X_1 ) ).

% gt_ex
thf(fact_1170_less__imp__neq,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( X4 != Y ) ) ).

% less_imp_neq
thf(fact_1171_order_Oasym,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order.asym
thf(fact_1172_ord__eq__less__trans,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( A2 = B2 )
     => ( ( ord_less_nat @ B2 @ C2 )
       => ( ord_less_nat @ A2 @ C2 ) ) ) ).

% ord_eq_less_trans
thf(fact_1173_ord__less__eq__trans,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( B2 = C2 )
       => ( ord_less_nat @ A2 @ C2 ) ) ) ).

% ord_less_eq_trans
thf(fact_1174_less__induct,axiom,
    ! [P: nat > $o,A2: nat] :
      ( ! [X: nat] :
          ( ! [Y6: nat] :
              ( ( ord_less_nat @ Y6 @ X )
             => ( P @ Y6 ) )
         => ( P @ X ) )
     => ( P @ A2 ) ) ).

% less_induct
thf(fact_1175_antisym__conv3,axiom,
    ! [Y: nat,X4: nat] :
      ( ~ ( ord_less_nat @ Y @ X4 )
     => ( ( ~ ( ord_less_nat @ X4 @ Y ) )
        = ( X4 = Y ) ) ) ).

% antisym_conv3
thf(fact_1176_linorder__cases,axiom,
    ! [X4: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X4 @ Y )
     => ( ( X4 != Y )
       => ( ord_less_nat @ Y @ X4 ) ) ) ).

% linorder_cases
thf(fact_1177_dual__order_Oasym,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ~ ( ord_less_nat @ A2 @ B2 ) ) ).

% dual_order.asym
thf(fact_1178_dual__order_Oirrefl,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ A2 ) ).

% dual_order.irrefl
thf(fact_1179_exists__least__iff,axiom,
    ( ( ^ [P5: nat > $o] :
        ? [X7: nat] : ( P5 @ X7 ) )
    = ( ^ [P3: nat > $o] :
        ? [N2: nat] :
          ( ( P3 @ N2 )
          & ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
             => ~ ( P3 @ M2 ) ) ) ) ) ).

% exists_least_iff
thf(fact_1180_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A2: nat,B2: nat] :
      ( ! [A5: nat,B5: nat] :
          ( ( ord_less_nat @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: nat] : ( P @ A5 @ A5 )
       => ( ! [A5: nat,B5: nat] :
              ( ( P @ B5 @ A5 )
             => ( P @ A5 @ B5 ) )
         => ( P @ A2 @ B2 ) ) ) ) ).

% linorder_less_wlog
thf(fact_1181_order_Ostrict__trans,axiom,
    ! [A2: nat,B2: nat,C2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ B2 @ C2 )
       => ( ord_less_nat @ A2 @ C2 ) ) ) ).

% order.strict_trans
thf(fact_1182_not__less__iff__gr__or__eq,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X4 @ Y ) )
      = ( ( ord_less_nat @ Y @ X4 )
        | ( X4 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1183_dual__order_Ostrict__trans,axiom,
    ! [B2: nat,A2: nat,C2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( ord_less_nat @ C2 @ B2 )
       => ( ord_less_nat @ C2 @ A2 ) ) ) ).

% dual_order.strict_trans
thf(fact_1184_order_Ostrict__implies__not__eq,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( A2 != B2 ) ) ).

% order.strict_implies_not_eq
thf(fact_1185_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( A2 != B2 ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_1186_linorder__neqE,axiom,
    ! [X4: nat,Y: nat] :
      ( ( X4 != Y )
     => ( ~ ( ord_less_nat @ X4 @ Y )
       => ( ord_less_nat @ Y @ X4 ) ) ) ).

% linorder_neqE
thf(fact_1187_order__less__asym,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ~ ( ord_less_nat @ Y @ X4 ) ) ).

% order_less_asym
thf(fact_1188_linorder__neq__iff,axiom,
    ! [X4: nat,Y: nat] :
      ( ( X4 != Y )
      = ( ( ord_less_nat @ X4 @ Y )
        | ( ord_less_nat @ Y @ X4 ) ) ) ).

% linorder_neq_iff
thf(fact_1189_order__less__asym_H,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ~ ( ord_less_nat @ B2 @ A2 ) ) ).

% order_less_asym'
thf(fact_1190_order__less__trans,axiom,
    ! [X4: nat,Y: nat,Z2: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( ( ord_less_nat @ Y @ Z2 )
       => ( ord_less_nat @ X4 @ Z2 ) ) ) ).

% order_less_trans
thf(fact_1191_ord__eq__less__subst,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C2: nat] :
      ( ( A2
        = ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1192_ord__less__eq__subst,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ( F @ B2 )
          = C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C2 ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1193_order__less__irrefl,axiom,
    ! [X4: nat] :
      ~ ( ord_less_nat @ X4 @ X4 ) ).

% order_less_irrefl
thf(fact_1194_order__less__subst1,axiom,
    ! [A2: nat,F: nat > nat,B2: nat,C2: nat] :
      ( ( ord_less_nat @ A2 @ ( F @ B2 ) )
     => ( ( ord_less_nat @ B2 @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A2 @ ( F @ C2 ) ) ) ) ) ).

% order_less_subst1
thf(fact_1195_order__less__subst2,axiom,
    ! [A2: nat,B2: nat,F: nat > nat,C2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ ( F @ B2 ) @ C2 )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A2 ) @ C2 ) ) ) ) ).

% order_less_subst2
thf(fact_1196_order__less__not__sym,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ~ ( ord_less_nat @ Y @ X4 ) ) ).

% order_less_not_sym
thf(fact_1197_order__less__imp__triv,axiom,
    ! [X4: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( ( ord_less_nat @ Y @ X4 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_1198_linorder__less__linear,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
      | ( X4 = Y )
      | ( ord_less_nat @ Y @ X4 ) ) ).

% linorder_less_linear
thf(fact_1199_order__less__imp__not__eq,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( X4 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_1200_order__less__imp__not__eq2,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( Y != X4 ) ) ).

% order_less_imp_not_eq2
thf(fact_1201_order__less__imp__not__less,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ~ ( ord_less_nat @ Y @ X4 ) ) ).

% order_less_imp_not_less
thf(fact_1202_dtree_Oset__sel_I1_J,axiom,
    ! [A2: dtree_a_b] : ( member_a @ ( root_a_b @ A2 ) @ ( dverts_a_b @ A2 ) ) ).

% dtree.set_sel(1)
thf(fact_1203_bot_Oextremum__strict,axiom,
    ! [A2: set_b] :
      ~ ( ord_less_set_b @ A2 @ bot_bot_set_b ) ).

% bot.extremum_strict
thf(fact_1204_bot_Oextremum__strict,axiom,
    ! [A2: nat] :
      ~ ( ord_less_nat @ A2 @ bot_bot_nat ) ).

% bot.extremum_strict
thf(fact_1205_bot_Onot__eq__extremum,axiom,
    ! [A2: set_b] :
      ( ( A2 != bot_bot_set_b )
      = ( ord_less_set_b @ bot_bot_set_b @ A2 ) ) ).

% bot.not_eq_extremum
thf(fact_1206_bot_Onot__eq__extremum,axiom,
    ! [A2: nat] :
      ( ( A2 != bot_bot_nat )
      = ( ord_less_nat @ bot_bot_nat @ A2 ) ) ).

% bot.not_eq_extremum
thf(fact_1207_dtree_Oset__intros_I1_J,axiom,
    ! [X1: a,X2: fset_P5281107635120001194_a_b_b] : ( member_a @ X1 @ ( dverts_a_b @ ( node_a_b @ X1 @ X2 ) ) ) ).

% dtree.set_intros(1)
thf(fact_1208_less__supI1,axiom,
    ! [X4: set_b,A2: set_b,B2: set_b] :
      ( ( ord_less_set_b @ X4 @ A2 )
     => ( ord_less_set_b @ X4 @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% less_supI1
thf(fact_1209_less__supI1,axiom,
    ! [X4: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ X4 @ A2 )
     => ( ord_less_nat @ X4 @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% less_supI1
thf(fact_1210_less__supI2,axiom,
    ! [X4: set_b,B2: set_b,A2: set_b] :
      ( ( ord_less_set_b @ X4 @ B2 )
     => ( ord_less_set_b @ X4 @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% less_supI2
thf(fact_1211_less__supI2,axiom,
    ! [X4: nat,B2: nat,A2: nat] :
      ( ( ord_less_nat @ X4 @ B2 )
     => ( ord_less_nat @ X4 @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% less_supI2
thf(fact_1212_sup_Oabsorb3,axiom,
    ! [B2: set_b,A2: set_b] :
      ( ( ord_less_set_b @ B2 @ A2 )
     => ( ( sup_sup_set_b @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb3
thf(fact_1213_sup_Oabsorb3,axiom,
    ! [B2: nat,A2: nat] :
      ( ( ord_less_nat @ B2 @ A2 )
     => ( ( sup_sup_nat @ A2 @ B2 )
        = A2 ) ) ).

% sup.absorb3
thf(fact_1214_sup_Oabsorb4,axiom,
    ! [A2: set_b,B2: set_b] :
      ( ( ord_less_set_b @ A2 @ B2 )
     => ( ( sup_sup_set_b @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb4
thf(fact_1215_sup_Oabsorb4,axiom,
    ! [A2: nat,B2: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( sup_sup_nat @ A2 @ B2 )
        = B2 ) ) ).

% sup.absorb4
thf(fact_1216_sup_Ostrict__boundedE,axiom,
    ! [B2: set_b,C2: set_b,A2: set_b] :
      ( ( ord_less_set_b @ ( sup_sup_set_b @ B2 @ C2 ) @ A2 )
     => ~ ( ( ord_less_set_b @ B2 @ A2 )
         => ~ ( ord_less_set_b @ C2 @ A2 ) ) ) ).

% sup.strict_boundedE
thf(fact_1217_sup_Ostrict__boundedE,axiom,
    ! [B2: nat,C2: nat,A2: nat] :
      ( ( ord_less_nat @ ( sup_sup_nat @ B2 @ C2 ) @ A2 )
     => ~ ( ( ord_less_nat @ B2 @ A2 )
         => ~ ( ord_less_nat @ C2 @ A2 ) ) ) ).

% sup.strict_boundedE
thf(fact_1218_sup_Ostrict__order__iff,axiom,
    ( ord_less_set_b
    = ( ^ [B: set_b,A: set_b] :
          ( ( A
            = ( sup_sup_set_b @ A @ B ) )
          & ( A != B ) ) ) ) ).

% sup.strict_order_iff
thf(fact_1219_sup_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [B: nat,A: nat] :
          ( ( A
            = ( sup_sup_nat @ A @ B ) )
          & ( A != B ) ) ) ) ).

% sup.strict_order_iff
thf(fact_1220_sup_Ostrict__coboundedI1,axiom,
    ! [C2: set_b,A2: set_b,B2: set_b] :
      ( ( ord_less_set_b @ C2 @ A2 )
     => ( ord_less_set_b @ C2 @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% sup.strict_coboundedI1
thf(fact_1221_sup_Ostrict__coboundedI1,axiom,
    ! [C2: nat,A2: nat,B2: nat] :
      ( ( ord_less_nat @ C2 @ A2 )
     => ( ord_less_nat @ C2 @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% sup.strict_coboundedI1
thf(fact_1222_sup_Ostrict__coboundedI2,axiom,
    ! [C2: set_b,B2: set_b,A2: set_b] :
      ( ( ord_less_set_b @ C2 @ B2 )
     => ( ord_less_set_b @ C2 @ ( sup_sup_set_b @ A2 @ B2 ) ) ) ).

% sup.strict_coboundedI2
thf(fact_1223_sup_Ostrict__coboundedI2,axiom,
    ! [C2: nat,B2: nat,A2: nat] :
      ( ( ord_less_nat @ C2 @ B2 )
     => ( ord_less_nat @ C2 @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).

% sup.strict_coboundedI2
thf(fact_1224_fset__linorder__max__induct,axiom,
    ! [P: fset_nat > $o,S2: fset_nat] :
      ( ( P @ bot_bot_fset_nat )
     => ( ! [X: nat,S3: fset_nat] :
            ( ! [Y6: nat] :
                ( ( fmember_nat @ Y6 @ S3 )
               => ( ord_less_nat @ Y6 @ X ) )
           => ( ( P @ S3 )
             => ( P @ ( finsert_nat @ X @ S3 ) ) ) )
       => ( P @ S2 ) ) ) ).

% fset_linorder_max_induct
thf(fact_1225_fset__linorder__min__induct,axiom,
    ! [P: fset_nat > $o,S2: fset_nat] :
      ( ( P @ bot_bot_fset_nat )
     => ( ! [X: nat,S3: fset_nat] :
            ( ! [Y6: nat] :
                ( ( fmember_nat @ Y6 @ S3 )
               => ( ord_less_nat @ X @ Y6 ) )
           => ( ( P @ S3 )
             => ( P @ ( finsert_nat @ X @ S3 ) ) ) )
       => ( P @ S2 ) ) ) ).

% fset_linorder_min_induct
thf(fact_1226_dtree_Oset__intros_I2_J,axiom,
    ! [Y: produc4558475209616630778_a_b_b,X2: fset_P5281107635120001194_a_b_b,Ya: dtree_a_b,Yb: a,X1: a] :
      ( ( member4380921116106875537_a_b_b @ Y @ ( fset_P783253628892185035_a_b_b @ X2 ) )
     => ( ( member_dtree_a_b @ Ya @ ( basic_7578771248400840636_a_b_b @ Y ) )
       => ( ( member_a @ Yb @ ( dverts_a_b @ Ya ) )
         => ( member_a @ Yb @ ( dverts_a_b @ ( node_a_b @ X1 @ X2 ) ) ) ) ) ) ).

% dtree.set_intros(2)
thf(fact_1227_dtree_Oset__cases_I1_J,axiom,
    ! [E4: a,A2: dtree_a_b] :
      ( ( member_a @ E4 @ ( dverts_a_b @ A2 ) )
     => ( ! [Z22: fset_P5281107635120001194_a_b_b] :
            ( A2
           != ( node_a_b @ E4 @ Z22 ) )
       => ~ ! [Z1: a,Z22: fset_P5281107635120001194_a_b_b] :
              ( ( A2
                = ( node_a_b @ Z1 @ Z22 ) )
             => ! [X: produc4558475209616630778_a_b_b] :
                  ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Z22 ) )
                 => ! [Xa3: dtree_a_b] :
                      ( ( member_dtree_a_b @ Xa3 @ ( basic_7578771248400840636_a_b_b @ X ) )
                     => ~ ( member_a @ E4 @ ( dverts_a_b @ Xa3 ) ) ) ) ) ) ) ).

% dtree.set_cases(1)
thf(fact_1228_dtree_Oset__sel_I2_J,axiom,
    ! [X4: produc4558475209616630778_a_b_b,A2: dtree_a_b,Xa: dtree_a_b,Xb: a] :
      ( ( member4380921116106875537_a_b_b @ X4 @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ A2 ) ) )
     => ( ( member_dtree_a_b @ Xa @ ( basic_7578771248400840636_a_b_b @ X4 ) )
       => ( ( member_a @ Xb @ ( dverts_a_b @ Xa ) )
         => ( member_a @ Xb @ ( dverts_a_b @ A2 ) ) ) ) ) ).

% dtree.set_sel(2)
thf(fact_1229_root__not__child__if__wf__dverts,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,T1: dtree_a_b,E1: b] :
      ( ( wf_dverts_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T1 @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
       => ~ ( member_a @ R2 @ ( dverts_a_b @ T1 ) ) ) ) ).

% root_not_child_if_wf_dverts
thf(fact_1230_dverts__child__if__not__root,axiom,
    ! [V: a,R2: a,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( member_a @ V @ ( dverts_a_b @ ( node_a_b @ R2 @ Xs2 ) ) )
     => ( ( V != R2 )
       => ? [X: dtree_a_b] :
            ( ( member_dtree_a_b @ X @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
            & ( member_a @ V @ ( dverts_a_b @ X ) ) ) ) ) ).

% dverts_child_if_not_root
thf(fact_1231_dtree__size__decr__aux,axiom,
    ! [X4: dtree_a_b,Y: b,Xs2: fset_P5281107635120001194_a_b_b,R2: a] :
      ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X4 @ Y ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
     => ( ord_less_nat @ ( size_size_dtree_a_b @ X4 ) @ ( size_size_dtree_a_b @ ( node_a_b @ R2 @ Xs2 ) ) ) ) ).

% dtree_size_decr_aux
thf(fact_1232_dverts__child__subseteq,axiom,
    ! [X4: dtree_a_b,Xs2: fset_P5281107635120001194_a_b_b,R2: a] :
      ( ( member_dtree_a_b @ X4 @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
     => ( ord_less_eq_set_a @ ( dverts_a_b @ X4 ) @ ( dverts_a_b @ ( node_a_b @ R2 @ Xs2 ) ) ) ) ).

% dverts_child_subseteq
thf(fact_1233_dverts__suc__subseteq,axiom,
    ! [X4: dtree_a_b,T: dtree_a_b] :
      ( ( member_dtree_a_b @ X4 @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ T ) ) ) )
     => ( ord_less_eq_set_a @ ( dverts_a_b @ X4 ) @ ( dverts_a_b @ T ) ) ) ).

% dverts_suc_subseteq
thf(fact_1234_dverts__suc__if__not__root,axiom,
    ! [V: a,T: dtree_a_b] :
      ( ( member_a @ V @ ( dverts_a_b @ T ) )
     => ( ( V
         != ( root_a_b @ T ) )
       => ? [X: dtree_a_b] :
            ( ( member_dtree_a_b @ X @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ ( sucs_a_b @ T ) ) ) )
            & ( member_a @ V @ ( dverts_a_b @ X ) ) ) ) ) ).

% dverts_suc_if_not_root
thf(fact_1235_root__not__child__if__wf__dverts_H,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( wf_dverts_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ! [X5: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [T12: dtree_a_b,E12: b] :
                ~ ( member_a @ R2 @ ( dverts_a_b @ T12 ) )
            @ X5 ) ) ) ).

% root_not_child_if_wf_dverts'
thf(fact_1236_disjoint__dverts__if__wf__aux,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b,T1: dtree_a_b,E1: b,T2: dtree_a_b,E22: b] :
      ( ( wf_dverts_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T1 @ E1 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
       => ( ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ T2 @ E22 ) @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( ( ( produc331601717337510060_a_b_b @ T1 @ E1 )
             != ( produc331601717337510060_a_b_b @ T2 @ E22 ) )
           => ( ( inf_inf_set_a @ ( dverts_a_b @ T1 ) @ ( dverts_a_b @ T2 ) )
              = bot_bot_set_a ) ) ) ) ) ).

% disjoint_dverts_if_wf_aux
thf(fact_1237_dtree__size__decr__aux_H,axiom,
    ! [T1: dtree_a_b,Xs2: fset_P5281107635120001194_a_b_b,R2: a] :
      ( ( member_dtree_a_b @ T1 @ ( image_7065894828672115579ee_a_b @ produc697780174058963904_a_b_b @ ( fset_P783253628892185035_a_b_b @ Xs2 ) ) )
     => ( ord_less_nat @ ( size_size_dtree_a_b @ T1 ) @ ( size_size_dtree_a_b @ ( node_a_b @ R2 @ Xs2 ) ) ) ) ).

% dtree_size_decr_aux'
thf(fact_1238_disjoint__dverts__if__wf,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( wf_dverts_a_b @ ( node_a_b @ R2 @ Xs2 ) )
     => ! [X5: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [Y5: dtree_a_b,E12: b] :
              ! [Z4: produc4558475209616630778_a_b_b] :
                ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
               => ( produc1325217093046185599_b_b_o
                  @ ^ [Aa: dtree_a_b,E2: b] :
                      ( ( ( inf_inf_set_a @ ( dverts_a_b @ Y5 ) @ ( dverts_a_b @ Aa ) )
                        = bot_bot_set_a )
                      | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                        = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                  @ Z4 ) )
            @ X5 ) ) ) ).

% disjoint_dverts_if_wf
thf(fact_1239_wf__dverts__if__dverts_H__aux,axiom,
    ! [Xs2: fset_P5281107635120001194_a_b_b,R2: a] :
      ( ! [X: produc4558475209616630778_a_b_b] :
          ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
         => ( produc1325217093046185599_b_b_o
            @ ^ [Y5: dtree_a_b,E: b] : ( wf_dverts_a_b @ Y5 )
            @ X ) )
     => ( ! [X: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
           => ( produc1325217093046185599_b_b_o
              @ ^ [Y5: dtree_a_b,E12: b] :
                  ( ~ ( member_a @ R2 @ ( dverts_a_b @ Y5 ) )
                  & ! [Z4: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Aa: dtree_a_b,E2: b] :
                            ( ( ( inf_inf_set_a @ ( dverts_a_b @ Y5 ) @ ( dverts_a_b @ Aa ) )
                              = bot_bot_set_a )
                            | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                              = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                        @ Z4 ) ) )
              @ X ) )
       => ( wf_dverts_a_b @ ( node_a_b @ R2 @ Xs2 ) ) ) ) ).

% wf_dverts_if_dverts'_aux
thf(fact_1240_wf__dverts_H_Oelims_I3_J,axiom,
    ! [X4: dtree_a_b] :
      ( ~ ( wf_dverts_a_b2 @ X4 )
     => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
            ( ( X4
              = ( node_a_b @ R @ Xs ) )
           => ! [X: produc4558475209616630778_a_b_b] :
                ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs ) )
               => ( produc1325217093046185599_b_b_o
                  @ ^ [Y5: dtree_a_b,E12: b] :
                      ( ~ ( member_a @ R @ ( dverts_a_b @ Y5 ) )
                      & ! [Z4: produc4558475209616630778_a_b_b] :
                          ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                         => ( produc1325217093046185599_b_b_o
                            @ ^ [Aa: dtree_a_b,E2: b] :
                                ( ( ( inf_inf_set_a @ ( dverts_a_b @ Y5 ) @ ( dverts_a_b @ Aa ) )
                                  = bot_bot_set_a )
                                | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                  = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                            @ Z4 ) )
                      & ( wf_dverts_a_b2 @ Y5 ) )
                  @ X ) ) ) ) ).

% wf_dverts'.elims(3)
thf(fact_1241_wf__dverts_H_Oelims_I2_J,axiom,
    ! [X4: dtree_a_b] :
      ( ( wf_dverts_a_b2 @ X4 )
     => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
            ( ( X4
              = ( node_a_b @ R @ Xs ) )
           => ~ ! [X5: produc4558475209616630778_a_b_b] :
                  ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                 => ( produc1325217093046185599_b_b_o
                    @ ^ [Y5: dtree_a_b,E12: b] :
                        ( ~ ( member_a @ R @ ( dverts_a_b @ Y5 ) )
                        & ! [Z4: produc4558475209616630778_a_b_b] :
                            ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                           => ( produc1325217093046185599_b_b_o
                              @ ^ [Aa: dtree_a_b,E2: b] :
                                  ( ( ( inf_inf_set_a @ ( dverts_a_b @ Y5 ) @ ( dverts_a_b @ Aa ) )
                                    = bot_bot_set_a )
                                  | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                    = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                              @ Z4 ) )
                        & ( wf_dverts_a_b2 @ Y5 ) )
                    @ X5 ) ) ) ) ).

% wf_dverts'.elims(2)
thf(fact_1242_pfsubset__eq,axiom,
    ( ord_le7001451600920047870_a_b_b
    = ( ^ [A6: fset_P5281107635120001194_a_b_b,B6: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ A6 @ B6 )
          & ( A6 != B6 ) ) ) ) ).

% pfsubset_eq
thf(fact_1243_less__fset__def,axiom,
    ( ord_le7001451600920047870_a_b_b
    = ( ^ [Xs3: fset_P5281107635120001194_a_b_b,Ys3: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ Xs3 @ Ys3 )
          & ( Xs3 != Ys3 ) ) ) ) ).

% less_fset_def
thf(fact_1244_pfsubset__imp__fsubset,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ A3 @ B3 )
     => ( ord_le789900035998834954_a_b_b @ A3 @ B3 ) ) ).

% pfsubset_imp_fsubset
thf(fact_1245_fsubset__not__fsubset__eq,axiom,
    ( ord_le7001451600920047870_a_b_b
    = ( ^ [A6: fset_P5281107635120001194_a_b_b,B6: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le789900035998834954_a_b_b @ A6 @ B6 )
          & ~ ( ord_le789900035998834954_a_b_b @ B6 @ A6 ) ) ) ) ).

% fsubset_not_fsubset_eq
thf(fact_1246_fsubset__pfsubset__trans,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le789900035998834954_a_b_b @ A3 @ B3 )
     => ( ( ord_le7001451600920047870_a_b_b @ B3 @ C )
       => ( ord_le7001451600920047870_a_b_b @ A3 @ C ) ) ) ).

% fsubset_pfsubset_trans
thf(fact_1247_pfsubset__fsubset__trans,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,C: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ A3 @ B3 )
     => ( ( ord_le789900035998834954_a_b_b @ B3 @ C )
       => ( ord_le7001451600920047870_a_b_b @ A3 @ C ) ) ) ).

% pfsubset_fsubset_trans
thf(fact_1248_fsubset__iff__pfsubset__eq,axiom,
    ( ord_le789900035998834954_a_b_b
    = ( ^ [A6: fset_P5281107635120001194_a_b_b,B6: fset_P5281107635120001194_a_b_b] :
          ( ( ord_le7001451600920047870_a_b_b @ A6 @ B6 )
          | ( A6 = B6 ) ) ) ) ).

% fsubset_iff_pfsubset_eq
thf(fact_1249_pfsubsetD,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b,C2: produc4558475209616630778_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ A3 @ B3 )
     => ( ( fmembe3173364709796808819_a_b_b @ C2 @ A3 )
       => ( fmembe3173364709796808819_a_b_b @ C2 @ B3 ) ) ) ).

% pfsubsetD
thf(fact_1250_not__psubset__empty,axiom,
    ! [A3: set_b] :
      ~ ( ord_less_set_b @ A3 @ bot_bot_set_b ) ).

% not_psubset_empty
thf(fact_1251_pfsubset__imp__ex__fmem,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ A3 @ B3 )
     => ? [B5: produc4558475209616630778_a_b_b] : ( fmembe3173364709796808819_a_b_b @ B5 @ ( minus_1250967532242559235_a_b_b @ B3 @ A3 ) ) ) ).

% pfsubset_imp_ex_fmem
thf(fact_1252_psubset__imp__ex__mem,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( ord_le3723863380492978948_a_b_b @ A3 @ B3 )
     => ? [B5: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ B5 @ ( minus_1392386589478415753_a_b_b @ B3 @ A3 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1253_psubset__imp__ex__mem,axiom,
    ! [A3: set_b,B3: set_b] :
      ( ( ord_less_set_b @ A3 @ B3 )
     => ? [B5: b] : ( member_b @ B5 @ ( minus_minus_set_b @ B3 @ A3 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_1254_psubset__insert__iff,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,X4: produc4558475209616630778_a_b_b,B3: set_Pr3012420139608375472_a_b_b] :
      ( ( ord_le3723863380492978948_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ X4 @ B3 ) )
      = ( ( ( member4380921116106875537_a_b_b @ X4 @ B3 )
         => ( ord_le3723863380492978948_a_b_b @ A3 @ B3 ) )
        & ( ~ ( member4380921116106875537_a_b_b @ X4 @ B3 )
         => ( ( ( member4380921116106875537_a_b_b @ X4 @ A3 )
             => ( ord_le3723863380492978948_a_b_b @ ( minus_1392386589478415753_a_b_b @ A3 @ ( insert1613891728210272810_a_b_b @ X4 @ bot_bo3721250822024684356_a_b_b ) ) @ B3 ) )
            & ( ~ ( member4380921116106875537_a_b_b @ X4 @ A3 )
             => ( ord_le146215904626753808_a_b_b @ A3 @ B3 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_1255_psubset__insert__iff,axiom,
    ! [A3: set_b,X4: b,B3: set_b] :
      ( ( ord_less_set_b @ A3 @ ( insert_b @ X4 @ B3 ) )
      = ( ( ( member_b @ X4 @ B3 )
         => ( ord_less_set_b @ A3 @ B3 ) )
        & ( ~ ( member_b @ X4 @ B3 )
         => ( ( ( member_b @ X4 @ A3 )
             => ( ord_less_set_b @ ( minus_minus_set_b @ A3 @ ( insert_b @ X4 @ bot_bot_set_b ) ) @ B3 ) )
            & ( ~ ( member_b @ X4 @ A3 )
             => ( ord_less_eq_set_b @ A3 @ B3 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_1256_pfsubset__finsert__iff,axiom,
    ! [A3: fset_P5281107635120001194_a_b_b,X4: produc4558475209616630778_a_b_b,B3: fset_P5281107635120001194_a_b_b] :
      ( ( ord_le7001451600920047870_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ X4 @ B3 ) )
      = ( ( ( fmembe3173364709796808819_a_b_b @ X4 @ B3 )
         => ( ord_le7001451600920047870_a_b_b @ A3 @ B3 ) )
        & ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ B3 )
         => ( ( ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
             => ( ord_le7001451600920047870_a_b_b @ ( minus_1250967532242559235_a_b_b @ A3 @ ( finser8437519239679886002_a_b_b @ X4 @ bot_bo2895716411488905534_a_b_b ) ) @ B3 ) )
            & ( ~ ( fmembe3173364709796808819_a_b_b @ X4 @ A3 )
             => ( ord_le789900035998834954_a_b_b @ A3 @ B3 ) ) ) ) ) ) ).

% pfsubset_finsert_iff
thf(fact_1257_wf__dverts_H_Osimps,axiom,
    ! [R2: a,Xs2: fset_P5281107635120001194_a_b_b] :
      ( ( wf_dverts_a_b2 @ ( node_a_b @ R2 @ Xs2 ) )
      = ( ! [X3: produc4558475209616630778_a_b_b] :
            ( ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
           => ( produc1325217093046185599_b_b_o
              @ ^ [Y5: dtree_a_b,E12: b] :
                  ( ~ ( member_a @ R2 @ ( dverts_a_b @ Y5 ) )
                  & ! [Z4: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs2 ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Aa: dtree_a_b,E2: b] :
                            ( ( ( inf_inf_set_a @ ( dverts_a_b @ Y5 ) @ ( dverts_a_b @ Aa ) )
                              = bot_bot_set_a )
                            | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                              = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                        @ Z4 ) )
                  & ( wf_dverts_a_b2 @ Y5 ) )
              @ X3 ) ) ) ) ).

% wf_dverts'.simps
thf(fact_1258_wf__dverts_H_Oelims_I1_J,axiom,
    ! [X4: dtree_a_b,Y: $o] :
      ( ( ( wf_dverts_a_b2 @ X4 )
        = Y )
     => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
            ( ( X4
              = ( node_a_b @ R @ Xs ) )
           => ( Y
              = ( ~ ! [X3: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Y5: dtree_a_b,E12: b] :
                            ( ~ ( member_a @ R @ ( dverts_a_b @ Y5 ) )
                            & ! [Z4: produc4558475209616630778_a_b_b] :
                                ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                               => ( produc1325217093046185599_b_b_o
                                  @ ^ [Aa: dtree_a_b,E2: b] :
                                      ( ( ( inf_inf_set_a @ ( dverts_a_b @ Y5 ) @ ( dverts_a_b @ Aa ) )
                                        = bot_bot_set_a )
                                      | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                        = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                                  @ Z4 ) )
                            & ( wf_dverts_a_b2 @ Y5 ) )
                        @ X3 ) ) ) ) ) ) ).

% wf_dverts'.elims(1)
thf(fact_1259_wf__dverts_H_Opelims_I1_J,axiom,
    ! [X4: dtree_a_b,Y: $o] :
      ( ( ( wf_dverts_a_b2 @ X4 )
        = Y )
     => ( ( accp_dtree_a_b @ wf_dverts_rel_a_b @ X4 )
       => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
              ( ( X4
                = ( node_a_b @ R @ Xs ) )
             => ( ( Y
                  = ( ! [X3: produc4558475209616630778_a_b_b] :
                        ( ( member4380921116106875537_a_b_b @ X3 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                       => ( produc1325217093046185599_b_b_o
                          @ ^ [Y5: dtree_a_b,E12: b] :
                              ( ~ ( member_a @ R @ ( dverts_a_b @ Y5 ) )
                              & ! [Z4: produc4558475209616630778_a_b_b] :
                                  ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                                 => ( produc1325217093046185599_b_b_o
                                    @ ^ [Aa: dtree_a_b,E2: b] :
                                        ( ( ( inf_inf_set_a @ ( dverts_a_b @ Y5 ) @ ( dverts_a_b @ Aa ) )
                                          = bot_bot_set_a )
                                        | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                          = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                                    @ Z4 ) )
                              & ( wf_dverts_a_b2 @ Y5 ) )
                          @ X3 ) ) ) )
               => ~ ( accp_dtree_a_b @ wf_dverts_rel_a_b @ ( node_a_b @ R @ Xs ) ) ) ) ) ) ).

% wf_dverts'.pelims(1)
thf(fact_1260_wf__dverts_H_Opelims_I2_J,axiom,
    ! [X4: dtree_a_b] :
      ( ( wf_dverts_a_b2 @ X4 )
     => ( ( accp_dtree_a_b @ wf_dverts_rel_a_b @ X4 )
       => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
              ( ( X4
                = ( node_a_b @ R @ Xs ) )
             => ( ( accp_dtree_a_b @ wf_dverts_rel_a_b @ ( node_a_b @ R @ Xs ) )
               => ~ ! [X5: produc4558475209616630778_a_b_b] :
                      ( ( member4380921116106875537_a_b_b @ X5 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                     => ( produc1325217093046185599_b_b_o
                        @ ^ [Y5: dtree_a_b,E12: b] :
                            ( ~ ( member_a @ R @ ( dverts_a_b @ Y5 ) )
                            & ! [Z4: produc4558475209616630778_a_b_b] :
                                ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                               => ( produc1325217093046185599_b_b_o
                                  @ ^ [Aa: dtree_a_b,E2: b] :
                                      ( ( ( inf_inf_set_a @ ( dverts_a_b @ Y5 ) @ ( dverts_a_b @ Aa ) )
                                        = bot_bot_set_a )
                                      | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                        = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                                  @ Z4 ) )
                            & ( wf_dverts_a_b2 @ Y5 ) )
                        @ X5 ) ) ) ) ) ) ).

% wf_dverts'.pelims(2)
thf(fact_1261_less__set__def,axiom,
    ( ord_le3723863380492978948_a_b_b
    = ( ^ [A6: set_Pr3012420139608375472_a_b_b,B6: set_Pr3012420139608375472_a_b_b] :
          ( ord_le2302600385889936001_b_b_o
          @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ A6 )
          @ ^ [X3: produc4558475209616630778_a_b_b] : ( member4380921116106875537_a_b_b @ X3 @ B6 ) ) ) ) ).

% less_set_def
thf(fact_1262_less__set__def,axiom,
    ( ord_less_set_b
    = ( ^ [A6: set_b,B6: set_b] :
          ( ord_less_b_o
          @ ^ [X3: b] : ( member_b @ X3 @ A6 )
          @ ^ [X3: b] : ( member_b @ X3 @ B6 ) ) ) ) ).

% less_set_def
thf(fact_1263_psubsetD,axiom,
    ! [A3: set_Pr3012420139608375472_a_b_b,B3: set_Pr3012420139608375472_a_b_b,C2: produc4558475209616630778_a_b_b] :
      ( ( ord_le3723863380492978948_a_b_b @ A3 @ B3 )
     => ( ( member4380921116106875537_a_b_b @ C2 @ A3 )
       => ( member4380921116106875537_a_b_b @ C2 @ B3 ) ) ) ).

% psubsetD
thf(fact_1264_psubsetD,axiom,
    ! [A3: set_b,B3: set_b,C2: b] :
      ( ( ord_less_set_b @ A3 @ B3 )
     => ( ( member_b @ C2 @ A3 )
       => ( member_b @ C2 @ B3 ) ) ) ).

% psubsetD
thf(fact_1265_wf__dverts_H_Opelims_I3_J,axiom,
    ! [X4: dtree_a_b] :
      ( ~ ( wf_dverts_a_b2 @ X4 )
     => ( ( accp_dtree_a_b @ wf_dverts_rel_a_b @ X4 )
       => ~ ! [R: a,Xs: fset_P5281107635120001194_a_b_b] :
              ( ( X4
                = ( node_a_b @ R @ Xs ) )
             => ( ( accp_dtree_a_b @ wf_dverts_rel_a_b @ ( node_a_b @ R @ Xs ) )
               => ! [X: produc4558475209616630778_a_b_b] :
                    ( ( member4380921116106875537_a_b_b @ X @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                   => ( produc1325217093046185599_b_b_o
                      @ ^ [Y5: dtree_a_b,E12: b] :
                          ( ~ ( member_a @ R @ ( dverts_a_b @ Y5 ) )
                          & ! [Z4: produc4558475209616630778_a_b_b] :
                              ( ( member4380921116106875537_a_b_b @ Z4 @ ( fset_P783253628892185035_a_b_b @ Xs ) )
                             => ( produc1325217093046185599_b_b_o
                                @ ^ [Aa: dtree_a_b,E2: b] :
                                    ( ( ( inf_inf_set_a @ ( dverts_a_b @ Y5 ) @ ( dverts_a_b @ Aa ) )
                                      = bot_bot_set_a )
                                    | ( ( produc331601717337510060_a_b_b @ Y5 @ E12 )
                                      = ( produc331601717337510060_a_b_b @ Aa @ E2 ) ) )
                                @ Z4 ) )
                          & ( wf_dverts_a_b2 @ Y5 ) )
                      @ X ) ) ) ) ) ) ).

% wf_dverts'.pelims(3)
thf(fact_1266_diff__diff__cancel,axiom,
    ! [I2: nat,N: nat] :
      ( ( ord_less_eq_nat @ I2 @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I2 ) )
        = I2 ) ) ).

% diff_diff_cancel
thf(fact_1267_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B2: nat] :
      ( ( P @ K )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B2 ) )
       => ? [X: nat] :
            ( ( P @ X )
            & ! [Y6: nat] :
                ( ( P @ Y6 )
               => ( ord_less_eq_nat @ Y6 @ X ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_1268_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_1269_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_1270_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_1271_le__trans,axiom,
    ! [I2: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I2 @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I2 @ K ) ) ) ).

% le_trans
thf(fact_1272_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_1273_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_1274_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_1275_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1276_diff__le__mono,axiom,
    ! [M: nat,N: nat,L2: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L2 ) @ ( minus_minus_nat @ N @ L2 ) ) ) ).

% diff_le_mono

% Helper facts (11)
thf(help_If_2_1_If_001tf__a_T,axiom,
    ! [X4: a,Y: a] :
      ( ( if_a @ $false @ X4 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001tf__a_T,axiom,
    ! [X4: a,Y: a] :
      ( ( if_a @ $true @ X4 @ Y )
      = X4 ) ).

thf(help_If_2_1_If_001_062_Itf__b_Mtf__a_J_T,axiom,
    ! [X4: b > a,Y: b > a] :
      ( ( if_b_a @ $false @ X4 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001_062_Itf__b_Mtf__a_J_T,axiom,
    ! [X4: b > a,Y: b > a] :
      ( ( if_b_a @ $true @ X4 @ Y )
      = X4 ) ).

thf(help_If_2_1_If_001t__Set__Oset_Itf__b_J_T,axiom,
    ! [X4: set_b,Y: set_b] :
      ( ( if_set_b @ $false @ X4 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Set__Oset_Itf__b_J_T,axiom,
    ! [X4: set_b,Y: set_b] :
      ( ( if_set_b @ $true @ X4 @ Y )
      = X4 ) ).

thf(help_If_2_1_If_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_T,axiom,
    ! [X4: produc4558475209616630778_a_b_b,Y: produc4558475209616630778_a_b_b] :
      ( ( if_Pro6329973184163622324_a_b_b @ $false @ X4 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_T,axiom,
    ! [X4: produc4558475209616630778_a_b_b,Y: produc4558475209616630778_a_b_b] :
      ( ( if_Pro6329973184163622324_a_b_b @ $true @ X4 @ Y )
      = X4 ) ).

thf(help_If_3_1_If_001t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J_T,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( if_fse8812573537926886756_a_b_b @ $false @ X4 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__FSet__Ofset_It__Product____Type__Oprod_It__Dtree__Odtree_Itf__a_Mtf__b_J_Mtf__b_J_J_T,axiom,
    ! [X4: fset_P5281107635120001194_a_b_b,Y: fset_P5281107635120001194_a_b_b] :
      ( ( if_fse8812573537926886756_a_b_b @ $true @ X4 @ Y )
      = X4 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( ffold_2783168711033344739_b_b_a
      @ ( produc2242037354397874494_b_a_a
        @ ^ [X3: dtree_a_b,E2: b,B: a] :
            ( if_a
            @ ( ~ ( member4380921116106875537_a_b_b @ ( produc331601717337510060_a_b_b @ X3 @ E2 ) @ ( fset_P783253628892185035_a_b_b @ xsa ) )
              | ~ ( member_b @ e @ ( sup_sup_set_b @ ( darcs_a_b @ X3 ) @ ( insert_b @ E2 @ bot_bot_set_b ) ) )
              | ~ ( wf_darcs_a_b @ ( node_a_b @ r @ xsa ) ) )
            @ B
            @ ( if_a @ ( e = E2 ) @ ( root_a_b @ X3 ) @ ( dhead_a_b @ X3 @ def @ e ) ) ) )
      @ ( def @ e )
      @ xsa )
    = ( root_a_b @ t ) ) ).

%------------------------------------------------------------------------------