TPTP Problem File: SLH0310^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Hales_Jewett/0002_Hales_Jewett/prob_00972_040503__5756500_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1552 ( 529 unt; 273 typ;   0 def)
%            Number of atoms       : 3957 (1269 equ;   0 cnn)
%            Maximal formula atoms :   16 (   3 avg)
%            Number of connectives : 12810 ( 408   ~;  43   |; 306   &;10283   @)
%                                         (   0 <=>;1770  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   24 (   7 avg)
%            Number of types       :   30 (  29 usr)
%            Number of type conns  : 3617 (3617   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  247 ( 244 usr;  27 con; 0-6 aty)
%            Number of variables   : 4259 ( 560   ^;3575   !; 124   ?;4259   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 09:46:01.516
%------------------------------------------------------------------------------
% Could-be-implicit typings (29)
thf(ty_n_t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_na8175506400003264433at_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_M_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    set_na6857298508006588994at_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    set_na3764207730537033026at_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_na8778986904112484418at_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_na8843485148432118594at_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Nat__Onat_J_J,type,
    set_na7938001796681673538at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    set_se3022870823424313865at_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J_J,type,
    set_na2445831480116662482_nat_o: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    set_nat_nat_nat_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_M_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J_J,type,
    set_nat_nat_nat_nat2: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_nat_nat_nat_nat3: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Nat__Onat_J_J,type,
    set_nat_nat_nat_nat4: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J,type,
    set_nat_nat_nat_nat5: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J_J,type,
    set_set_nat_nat_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J_J,type,
    set_set_nat_nat_nat2: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J_J,type,
    set_nat_nat_nat_o: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_M_Eo_J_J,type,
    set_nat_nat_nat_o2: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_nat_nat_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J,type,
    set_nat_nat_nat2: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_set_nat_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_Mt__Set__Oset_It__Nat__Onat_J_J_J,type,
    set_nat_set_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J_J,type,
    set_nat_nat_o: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J_J,type,
    set_set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_nat_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Nat__Onat_M_Eo_J_J,type,
    set_nat_o: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_I_Eo_J,type,
    set_o: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

% Explicit typings (244)
thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J,type,
    comple2115216063353097951_nat_o: set_na2445831480116662482_nat_o > ( ( nat > nat ) > nat > nat ) > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_M_Eo_J,type,
    comple8231226574009213710_nat_o: set_nat_nat_nat_o2 > ( ( nat > nat ) > nat ) > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J,type,
    comple3396693796109600270_nat_o: set_nat_nat_nat_o > ( nat > nat > nat ) > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    comple8312177224774716605_nat_o: set_nat_nat_o > ( nat > nat ) > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_It__Nat__Onat_M_Eo_J,type,
    comple8317665133742190828_nat_o: set_nat_o > nat > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    comple2450677804321093138at_nat: set_nat_nat > nat > nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_Eo,type,
    complete_Sup_Sup_o: set_o > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Nat__Onat,type,
    complete_Sup_Sup_nat: set_nat > nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    comple2605510978757769510at_nat: set_se3022870823424313865at_nat > set_nat_nat_nat_nat3 ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J,type,
    comple1667856448326461495at_nat: set_set_nat_nat_nat2 > set_nat_nat_nat2 ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    comple8167887107183641911at_nat: set_set_nat_nat_nat > set_nat_nat_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    comple5448282615319421384at_nat: set_set_nat_nat > set_nat_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Nat__Onat_J,type,
    comple7399068483239264473et_nat: set_set_nat > set_nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    comple548664676211718543et_nat: set_set_set_nat > set_set_nat ).

thf(sy_c_Disjoint__Sets_Odisjoint__family__on_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    disjoi7602357403334959542at_nat: ( ( ( nat > nat ) > nat > nat ) > set_nat_nat ) > set_nat_nat_nat_nat3 > $o ).

thf(sy_c_Disjoint__Sets_Odisjoint__family__on_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Nat__Onat,type,
    disjoi4499352858376688327at_nat: ( ( ( nat > nat ) > nat > nat ) > set_nat ) > set_nat_nat_nat_nat3 > $o ).

thf(sy_c_Disjoint__Sets_Odisjoint__family__on_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    disjoi6791097502120082503at_nat: ( ( ( nat > nat ) > nat ) > set_nat_nat ) > set_nat_nat_nat2 > $o ).

thf(sy_c_Disjoint__Sets_Odisjoint__family__on_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    disjoi6465797165137320664at_nat: ( ( ( nat > nat ) > nat ) > set_nat ) > set_nat_nat_nat2 > $o ).

thf(sy_c_Disjoint__Sets_Odisjoint__family__on_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    disjoi7073777283103234375at_nat: ( ( nat > nat > nat ) > set_nat_nat ) > set_nat_nat_nat > $o ).

thf(sy_c_Disjoint__Sets_Odisjoint__family__on_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Nat__Onat,type,
    disjoi8792851549502830552at_nat: ( ( nat > nat > nat ) > set_nat ) > set_nat_nat_nat > $o ).

thf(sy_c_Disjoint__Sets_Odisjoint__family__on_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    disjoi1861224156391448920at_nat: ( ( nat > nat ) > set_nat_nat ) > set_nat_nat > $o ).

thf(sy_c_Disjoint__Sets_Odisjoint__family__on_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    disjoi831272138528337257at_nat: ( ( nat > nat ) > set_nat ) > set_nat_nat > $o ).

thf(sy_c_Disjoint__Sets_Odisjoint__family__on_001t__Nat__Onat_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    disjoi8598568060105092073at_nat: ( nat > set_nat_nat ) > set_nat > $o ).

thf(sy_c_Disjoint__Sets_Odisjoint__family__on_001t__Nat__Onat_001t__Nat__Onat,type,
    disjoi6798895846410478970at_nat: ( nat > set_nat ) > set_nat > $o ).

thf(sy_c_Fun_Ofun__upd_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    fun_up6644623172326239997at_nat: ( ( nat > nat ) > nat > nat ) > ( nat > nat ) > ( nat > nat ) > ( nat > nat ) > nat > nat ).

thf(sy_c_Fun_Ofun__upd_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    fun_upd_nat_nat_nat: ( ( nat > nat ) > nat ) > ( nat > nat ) > nat > ( nat > nat ) > nat ).

thf(sy_c_Fun_Ofun__upd_001t__Nat__Onat_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    fun_upd_nat_nat_nat2: ( nat > nat > nat ) > nat > ( nat > nat ) > nat > nat > nat ).

thf(sy_c_Fun_Ofun__upd_001t__Nat__Onat_001t__Nat__Onat,type,
    fun_upd_nat_nat: ( nat > nat ) > nat > nat > nat > nat ).

thf(sy_c_Fun_Othe__inv__into_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    the_in5300466440149791684at_nat: set_nat_nat > ( ( nat > nat ) > nat ) > nat > nat > nat ).

thf(sy_c_FuncSet_OPiE_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    piE_na6564615839001774232at_nat: set_nat_nat_nat_nat3 > ( ( ( nat > nat ) > nat > nat ) > set_nat_nat ) > set_na8175506400003264433at_nat ).

thf(sy_c_FuncSet_OPiE_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Nat__Onat,type,
    piE_na4548495224246695081at_nat: set_nat_nat_nat_nat3 > ( ( ( nat > nat ) > nat > nat ) > set_nat ) > set_na7938001796681673538at_nat ).

thf(sy_c_FuncSet_OPiE_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    piE_na6840239867990089257at_nat: set_nat_nat_nat2 > ( ( ( nat > nat ) > nat ) > set_nat_nat ) > set_na8843485148432118594at_nat ).

thf(sy_c_FuncSet_OPiE_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    piE_nat_nat_nat_nat: set_nat_nat_nat2 > ( ( ( nat > nat ) > nat ) > set_nat ) > set_nat_nat_nat_nat5 ).

thf(sy_c_FuncSet_OPiE_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    piE_na7122919648973241129at_nat: set_nat_nat_nat > ( ( nat > nat > nat ) > set_nat_nat ) > set_na8778986904112484418at_nat ).

thf(sy_c_FuncSet_OPiE_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Nat__Onat,type,
    piE_nat_nat_nat_nat2: set_nat_nat_nat > ( ( nat > nat > nat ) > set_nat ) > set_nat_nat_nat_nat4 ).

thf(sy_c_FuncSet_OPiE_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    piE_na8678869062391380393at_nat: set_nat_nat > ( ( nat > nat ) > set_nat_nat_nat ) > set_na3764207730537033026at_nat ).

thf(sy_c_FuncSet_OPiE_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    piE_nat_nat_nat_nat3: set_nat_nat > ( ( nat > nat ) > set_nat_nat ) > set_nat_nat_nat_nat3 ).

thf(sy_c_FuncSet_OPiE_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    piE_nat_nat_nat: set_nat_nat > ( ( nat > nat ) > set_nat ) > set_nat_nat_nat2 ).

thf(sy_c_FuncSet_OPiE_001t__Nat__Onat_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    piE_na2748089427378204713at_nat: set_nat > ( nat > set_nat_nat_nat_nat3 ) > set_na6857298508006588994at_nat ).

thf(sy_c_FuncSet_OPiE_001t__Nat__Onat_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    piE_nat_nat_nat_nat4: set_nat > ( nat > set_nat_nat_nat2 ) > set_nat_nat_nat_nat2 ).

thf(sy_c_FuncSet_OPiE_001t__Nat__Onat_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    piE_nat_nat_nat_nat5: set_nat > ( nat > set_nat_nat_nat ) > set_nat_nat_nat_nat ).

thf(sy_c_FuncSet_OPiE_001t__Nat__Onat_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    piE_nat_nat_nat2: set_nat > ( nat > set_nat_nat ) > set_nat_nat_nat ).

thf(sy_c_FuncSet_OPiE_001t__Nat__Onat_001t__Nat__Onat,type,
    piE_nat_nat: set_nat > ( nat > set_nat ) > set_nat_nat ).

thf(sy_c_FuncSet_OPiE_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    piE_nat_set_nat: set_nat > ( nat > set_set_nat ) > set_nat_set_nat ).

thf(sy_c_FuncSet_Orestrict_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Nat__Onat,type,
    restri2990705262542023965at_nat: ( ( ( nat > nat ) > nat > nat ) > nat ) > set_nat_nat_nat_nat3 > ( ( nat > nat ) > nat > nat ) > nat ).

thf(sy_c_FuncSet_Orestrict_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    restri9050993537824894510at_nat: ( ( ( nat > nat ) > nat ) > nat ) > set_nat_nat_nat2 > ( ( nat > nat ) > nat ) > nat ).

thf(sy_c_FuncSet_Orestrict_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Nat__Onat,type,
    restri2154675885335628590at_nat: ( ( nat > nat > nat ) > nat ) > set_nat_nat_nat > ( nat > nat > nat ) > nat ).

thf(sy_c_FuncSet_Orestrict_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    restri4446420529079022766at_nat: ( ( nat > nat ) > nat > nat ) > set_nat_nat > ( nat > nat ) > nat > nat ).

thf(sy_c_FuncSet_Orestrict_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    restrict_nat_nat_nat: ( ( nat > nat ) > nat ) > set_nat_nat > ( nat > nat ) > nat ).

thf(sy_c_FuncSet_Orestrict_001t__Nat__Onat_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    restrict_nat_nat_nat2: ( nat > nat > nat ) > set_nat > nat > nat > nat ).

thf(sy_c_FuncSet_Orestrict_001t__Nat__Onat_001t__Nat__Onat,type,
    restrict_nat_nat: ( nat > nat ) > set_nat > nat > nat ).

thf(sy_c_FuncSet_Orestrict_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    restrict_nat_set_nat: ( nat > set_nat ) > set_nat > nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J,type,
    minus_7158188067284919257_nat_o: ( ( ( nat > nat ) > nat > nat ) > $o ) > ( ( ( nat > nat ) > nat > nat ) > $o ) > ( ( nat > nat ) > nat > nat ) > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_M_Eo_J,type,
    minus_2851842960567056136_nat_o: ( ( ( nat > nat ) > nat ) > $o ) > ( ( ( nat > nat ) > nat ) > $o ) > ( ( nat > nat ) > nat ) > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J,type,
    minus_7240682219522218504_nat_o: ( ( nat > nat > nat ) > $o ) > ( ( nat > nat > nat ) > $o ) > ( nat > nat > nat ) > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    minus_167519014754328503_nat_o: ( ( nat > nat ) > $o ) > ( ( nat > nat ) > $o ) > ( nat > nat ) > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Nat__Onat_M_Eo_J,type,
    minus_minus_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    minus_4646100876039749548at_nat: set_nat_nat_nat_nat3 > set_nat_nat_nat_nat3 > set_nat_nat_nat_nat3 ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J,type,
    minus_1221035652888719293at_nat: set_nat_nat_nat2 > set_nat_nat_nat2 > set_nat_nat_nat2 ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    minus_7721066311745899709at_nat: set_nat_nat_nat > set_nat_nat_nat > set_nat_nat_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    minus_8121590178497047118at_nat: set_nat_nat > set_nat_nat > set_nat_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    minus_2163939370556025621et_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_HOL_Oundefined_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    undefi5080129371236079925at_nat: ( nat > nat ) > nat > nat ).

thf(sy_c_HOL_Oundefined_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    undefi5238134777187360710at_nat: ( nat > nat ) > nat ).

thf(sy_c_HOL_Oundefined_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    undefi6347502541616610502at_nat: nat > nat > nat ).

thf(sy_c_HOL_Oundefined_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    undefined_nat_nat: nat > nat ).

thf(sy_c_HOL_Oundefined_001t__Nat__Onat,type,
    undefined_nat: nat ).

thf(sy_c_Hales__Jewett_Oclasses,type,
    hales_classes: nat > nat > nat > set_nat_nat ).

thf(sy_c_Hales__Jewett_Ocube,type,
    hales_cube: nat > nat > set_nat_nat ).

thf(sy_c_Hales__Jewett_Ohj,type,
    hales_hj: nat > nat > $o ).

thf(sy_c_Hales__Jewett_Ois__line,type,
    hales_is_line: ( nat > nat > nat ) > nat > nat > $o ).

thf(sy_c_Hales__Jewett_Ois__subspace,type,
    hales_is_subspace: ( ( nat > nat ) > nat > nat ) > nat > nat > nat > $o ).

thf(sy_c_Hales__Jewett_Ojoin_001t__Nat__Onat,type,
    hales_join_nat: ( nat > nat ) > ( nat > nat ) > nat > nat > nat > nat ).

thf(sy_c_Hales__Jewett_Olayered__subspace_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    hales_4783935871306402712at_nat: ( ( nat > nat ) > nat > nat ) > nat > nat > nat > ( nat > nat ) > ( ( nat > nat ) > nat > nat ) > $o ).

thf(sy_c_Hales__Jewett_Olayered__subspace_001t__Nat__Onat,type,
    hales_4261547300027266985ce_nat: ( ( nat > nat ) > nat > nat ) > nat > nat > nat > nat > ( ( nat > nat ) > nat ) > $o ).

thf(sy_c_Hales__Jewett_Olhj,type,
    hales_lhj: nat > nat > nat > $o ).

thf(sy_c_Hales__Jewett_Oset__incr,type,
    hales_set_incr: nat > set_nat > set_nat ).

thf(sy_c_If_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    if_nat_nat: $o > ( nat > nat ) > ( nat > nat ) > nat > nat ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Set__Oset_It__Nat__Onat_J,type,
    if_set_nat: $o > set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    inf_inf_set_nat_nat: set_nat_nat > set_nat_nat > set_nat_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Nat__Onat_J,type,
    inf_inf_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    inf_in710756014367367485at_nat: set_set_nat_nat > set_set_nat_nat > set_set_nat_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    inf_inf_set_set_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    sup_sup_set_nat_nat: set_nat_nat > set_nat_nat > set_nat_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    sup_sup_set_set_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    bot_bo3618716324728726597at_nat: set_na8175506400003264433at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Nat__Onat_J_J,type,
    bot_bo3386126977483763158at_nat: set_na7938001796681673538at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    bot_bo4291610329234208214at_nat: set_na8843485148432118594at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J,type,
    bot_bo4508028030728203495at_nat: set_nat_nat_nat_nat5 ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    bot_bo4227112084914574038at_nat: set_na8778986904112484418at_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Nat__Onat_J_J,type,
    bot_bo3013702615682746855at_nat: set_nat_nat_nat_nat4 ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    bot_bo3919185967433191911at_nat: set_nat_nat_nat_nat3 ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J,type,
    bot_bo945813143650711160at_nat: set_nat_nat_nat2 ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    bot_bo7445843802507891576at_nat: set_nat_nat_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    bot_bot_set_nat_nat: set_nat_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    bot_bo7376149671870096959at_nat: set_set_nat_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    bot_bot_set_set_nat: set_set_nat ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J,type,
    ord_le4961065272816086430_nat_o: ( ( ( nat > nat ) > nat > nat ) > $o ) > ( ( ( nat > nat ) > nat > nat ) > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_M_Eo_J,type,
    ord_le8812218136411540557_nat_o: ( ( ( nat > nat ) > nat ) > $o ) > ( ( ( nat > nat ) > nat ) > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J,type,
    ord_le3977685358511927117_nat_o: ( ( nat > nat > nat ) > $o ) > ( ( nat > nat > nat ) > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le4629963735342356977at_nat: ( ( nat > nat ) > nat > nat ) > ( ( nat > nat ) > nat > nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    ord_less_nat_nat_o: ( ( nat > nat ) > $o ) > ( ( nat > nat ) > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    ord_less_nat_nat_nat: ( ( nat > nat ) > nat ) > ( ( nat > nat ) > nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_less_nat_nat_nat2: ( nat > nat > nat ) > ( nat > nat > nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Nat__Onat_M_Eo_J,type,
    ord_less_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    ord_less_nat_nat: ( nat > nat ) > ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    ord_le6177938698872215975at_nat: set_nat_nat_nat_nat3 > set_nat_nat_nat_nat3 > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J,type,
    ord_le371403230139555384at_nat: set_nat_nat_nat2 > set_nat_nat_nat2 > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    ord_le6871433888996735800at_nat: set_nat_nat_nat > set_nat_nat_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_less_set_nat_nat: set_nat_nat > set_nat_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J,type,
    ord_le5430825838364970130_nat_o: ( ( ( nat > nat ) > nat > nat ) > $o ) > ( ( ( nat > nat ) > nat > nat ) > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_M_Eo_J,type,
    ord_le996020443555834177_nat_o: ( ( ( nat > nat ) > nat ) > $o ) > ( ( ( nat > nat ) > nat ) > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J,type,
    ord_le5384859702510996545_nat_o: ( ( nat > nat > nat ) > $o ) > ( ( nat > nat > nat ) > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le747776305331315197at_nat: ( ( nat > nat ) > nat > nat ) > ( ( nat > nat ) > nat > nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    ord_le7366121074344172400_nat_o: ( ( nat > nat ) > $o ) > ( ( nat > nat ) > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    ord_le2017632242545079438at_nat: ( ( nat > nat ) > nat ) > ( ( nat > nat ) > nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le3127000006974329230at_nat: ( nat > nat > nat ) > ( nat > nat > nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_Eo_J,type,
    ord_less_eq_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    ord_less_eq_nat_nat: ( nat > nat ) > ( nat > nat ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    ord_le9041126503034175505at_nat: set_na8175506400003264433at_nat > set_na8175506400003264433at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    ord_le3190276326201062306at_nat: set_na8843485148432118594at_nat > set_na8843485148432118594at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    ord_le3125778081881428130at_nat: set_na8778986904112484418at_nat > set_na8778986904112484418at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    ord_le5260717879541182899at_nat: set_nat_nat_nat_nat3 > set_nat_nat_nat_nat3 > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J,type,
    ord_le5934964663421696068at_nat: set_nat_nat_nat2 > set_nat_nat_nat2 > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    ord_le3211623285424100676at_nat: set_nat_nat_nat > set_nat_nat_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le9059583361652607317at_nat: set_nat_nat > set_nat_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    ord_le4954213926817602059at_nat: set_set_nat_nat > set_set_nat_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le6893508408891458716et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Set_OCollect_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    collec3567154360959927026at_nat: ( ( ( nat > nat ) > nat > nat ) > $o ) > set_nat_nat_nat_nat3 ).

thf(sy_c_Set_OCollect_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    collect_nat_nat_nat: ( ( ( nat > nat ) > nat ) > $o ) > set_nat_nat_nat2 ).

thf(sy_c_Set_OCollect_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    collect_nat_nat_nat2: ( ( nat > nat > nat ) > $o ) > set_nat_nat_nat ).

thf(sy_c_Set_OCollect_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    collect_nat_nat: ( ( nat > nat ) > $o ) > set_nat_nat ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    collect_set_nat_nat: ( set_nat_nat > $o ) > set_set_nat_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_Oimage_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Nat__Onat,type,
    image_8194121248528334964at_nat: ( ( ( nat > nat ) > nat > nat ) > nat ) > set_nat_nat_nat_nat3 > set_nat ).

thf(sy_c_Set_Oimage_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_6952571752803954585at_nat: ( ( ( nat > nat ) > nat > nat ) > set_nat_nat ) > set_nat_nat_nat_nat3 > set_set_nat_nat ).

thf(sy_c_Set_Oimage_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_1946857609996606506et_nat: ( ( ( nat > nat ) > nat > nat ) > set_nat ) > set_nat_nat_nat_nat3 > set_set_nat ).

thf(sy_c_Set_Oimage_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    image_7809927846809980933at_nat: ( ( ( nat > nat ) > nat ) > nat ) > set_nat_nat_nat2 > set_nat ).

thf(sy_c_Set_Oimage_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_2070201431993601450at_nat: ( ( ( nat > nat ) > nat ) > set_nat_nat ) > set_nat_nat_nat2 > set_set_nat_nat ).

thf(sy_c_Set_Oimage_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_7565631143590340539et_nat: ( ( ( nat > nat ) > nat ) > set_nat ) > set_nat_nat_nat2 > set_set_nat ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Nat__Onat,type,
    image_913610194320715013at_nat: ( ( nat > nat > nat ) > nat ) > set_nat_nat_nat > set_nat ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_7416711816588782250at_nat: ( ( nat > nat > nat ) > set_nat_nat ) > set_nat_nat_nat > set_set_nat_nat ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_6782468043973903547et_nat: ( ( nat > nat > nat ) > set_nat ) > set_nat_nat_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_6605983383471867107at_nat: ( ( nat > nat ) > ( nat > nat ) > nat > nat ) > set_nat_nat > set_nat_nat_nat_nat3 ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    image_1991755285388994676at_nat: ( ( nat > nat ) > ( nat > nat ) > nat ) > set_nat_nat > set_nat_nat_nat2 ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_3101123049818244468at_nat: ( ( nat > nat ) > nat > nat > nat ) > set_nat_nat > set_nat_nat_nat ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    image_3205354838064109189at_nat: ( ( nat > nat ) > nat > nat ) > set_nat_nat > set_nat_nat ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001t__Nat__Onat,type,
    image_nat_nat_nat: ( ( nat > nat ) > nat ) > set_nat_nat > set_nat ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    image_470123710477037866at_nat: ( ( nat > nat ) > set_nat_nat_nat ) > set_nat_nat > set_set_nat_nat_nat ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_6905811865970898491at_nat: ( ( nat > nat ) > set_nat_nat ) > set_nat_nat > set_set_nat_nat ).

thf(sy_c_Set_Oimage_001_062_It__Nat__Onat_Mt__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_7432509271690132940et_nat: ( ( nat > nat ) > set_nat ) > set_nat_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_6393715451659844596at_nat: ( nat > ( nat > nat ) > nat > nat ) > set_nat > set_nat_nat_nat_nat3 ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    image_5809701139083627781at_nat: ( nat > ( nat > nat ) > nat ) > set_nat > set_nat_nat_nat2 ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_6919068903512877573at_nat: ( nat > nat > nat > nat ) > set_nat > set_nat_nat_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001_062_It__Nat__Onat_M_Eo_J,type,
    image_nat_nat_o: ( nat > nat > $o ) > set_nat > set_nat_o ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    image_nat_nat_nat2: ( nat > nat > nat ) > set_nat > set_nat_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    image_3332361743537024938at_nat: ( nat > set_nat_nat_nat_nat3 ) > set_nat > set_se3022870823424313865at_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J,type,
    image_8854229838293529787at_nat: ( nat > set_nat_nat_nat2 ) > set_nat > set_set_nat_nat_nat2 ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    image_6130888460295934395at_nat: ( nat > set_nat_nat_nat ) > set_nat > set_set_nat_nat_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_7301343469591561292at_nat: ( nat > set_nat_nat ) > set_nat > set_set_nat_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Nat__Onat_J,type,
    image_nat_set_nat: ( nat > set_nat ) > set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    image_2194112158459175443et_nat: ( nat > set_set_nat ) > set_nat > set_set_set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J,type,
    image_4040409651686222360_nat_o: ( set_nat_nat_nat_nat3 > ( ( nat > nat ) > nat > nat ) > $o ) > set_se3022870823424313865at_nat > set_na2445831480116662482_nat_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J_001_Eo,type,
    image_7580978635682194622_nat_o: ( set_nat_nat_nat_nat3 > $o ) > set_se3022870823424313865at_nat > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_M_Eo_J,type,
    image_6357918107393578614_nat_o: ( set_nat_nat_nat2 > ( ( nat > nat ) > nat ) > $o ) > set_set_nat_nat_nat2 > set_nat_nat_nat_o2 ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J_001_Eo,type,
    image_8774134582277556973_nat_o: ( set_nat_nat_nat2 > $o ) > set_set_nat_nat_nat2 > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J_001_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_M_Eo_J,type,
    image_2840114971476761718_nat_o: ( set_nat_nat_nat > ( nat > nat > nat ) > $o ) > set_set_nat_nat_nat > set_nat_nat_nat_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J_001_Eo,type,
    image_5198217506544545261_nat_o: ( set_nat_nat_nat > $o ) > set_set_nat_nat_nat > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_Eo_J,type,
    image_1242417779249009364_nat_o: ( set_nat_nat > ( nat > nat ) > $o ) > set_set_nat_nat > set_nat_nat_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001_Eo,type,
    image_set_nat_nat_o: ( set_nat_nat > $o ) > set_set_nat_nat > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_3832368097948589297at_nat: ( set_nat_nat > set_nat_nat ) > set_set_nat_nat > set_set_nat_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001_062_It__Nat__Onat_M_Eo_J,type,
    image_set_nat_nat_o2: ( set_nat > nat > $o ) > set_set_nat > set_nat_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    image_8569768528772619084at_nat: ( set_nat > nat > nat ) > set_set_nat > set_nat_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001_Eo,type,
    image_set_nat_o: ( set_nat > $o ) > set_set_nat > set_o ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Nat__Onat,type,
    image_set_nat_nat: ( set_nat > nat ) > set_set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    image_7054278410236665602at_nat: ( set_nat > set_nat_nat ) > set_set_nat > set_set_nat_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_7916887816326733075et_nat: ( set_nat > set_nat ) > set_set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    image_6725021117256019401et_nat: ( set_nat > set_set_nat ) > set_set_nat > set_set_set_nat ).

thf(sy_c_Set_Oinsert_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    insert_nat_nat: ( nat > nat ) > set_nat_nat > set_nat_nat ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
    set_or4665077453230672383an_nat: nat > nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_or3591701359631937174at_nat: ( ( nat > nat ) > nat > nat ) > set_nat_nat_nat_nat3 ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    set_or5033131092550408871at_nat: ( ( nat > nat ) > nat ) > set_nat_nat_nat2 ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_or6142498856979658663at_nat: ( nat > nat > nat ) > set_nat_nat_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    set_or9140604705432621368at_nat: ( nat > nat ) > set_nat_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Nat__Onat,type,
    set_ord_atMost_nat: nat > set_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_or250740698829186286at_nat: set_nat_nat > set_set_nat_nat ).

thf(sy_c_Set__Interval_Oord__class_OatMost_001t__Set__Oset_It__Nat__Onat_J,type,
    set_or4236626031148496127et_nat: set_nat > set_set_nat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_or7562748684798938298at_nat: ( ( nat > nat ) > nat > nat ) > set_nat_nat_nat_nat3 ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    set_or2699333443382148811at_nat: ( ( nat > nat ) > nat ) > set_nat_nat_nat2 ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_or3808701207811398603at_nat: ( nat > nat > nat ) > set_nat_nat_nat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    set_or1140352010380016476at_nat: ( nat > nat ) > set_nat_nat ).

thf(sy_c_Set__Interval_Oord__class_OlessThan_001t__Nat__Onat,type,
    set_ord_lessThan_nat: nat > set_nat ).

thf(sy_c_fChoice_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    fChoic52552927678224201at_nat: ( ( ( nat > nat ) > nat > nat ) > $o ) > ( nat > nat ) > nat > nat ).

thf(sy_c_fChoice_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    fChoice_nat_nat_nat: ( ( ( nat > nat ) > nat ) > $o ) > ( nat > nat ) > nat ).

thf(sy_c_fChoice_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    fChoice_nat_nat_nat2: ( ( nat > nat > nat ) > $o ) > nat > nat > nat ).

thf(sy_c_fChoice_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    fChoice_nat_nat: ( ( nat > nat ) > $o ) > nat > nat ).

thf(sy_c_fChoice_001t__Nat__Onat,type,
    fChoice_nat: ( nat > $o ) > nat ).

thf(sy_c_member_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Nat__Onat_J,type,
    member8855473571630667299at_nat: ( ( ( nat > nat ) > nat > nat ) > nat ) > set_na7938001796681673538at_nat > $o ).

thf(sy_c_member_001_062_I_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    member2991261302380110260at_nat: ( ( ( nat > nat ) > nat ) > nat ) > set_nat_nat_nat_nat5 > $o ).

thf(sy_c_member_001_062_I_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_Mt__Nat__Onat_J,type,
    member5318315686745620148at_nat: ( ( nat > nat > nat ) > nat ) > set_nat_nat_nat_nat4 > $o ).

thf(sy_c_member_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    member1679187572556404771at_nat: ( ( nat > nat ) > nat > nat > nat ) > set_na3764207730537033026at_nat > $o ).

thf(sy_c_member_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    member952132173341509300at_nat: ( ( nat > nat ) > nat > nat ) > set_nat_nat_nat_nat3 > $o ).

thf(sy_c_member_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J,type,
    member_nat_nat_nat: ( ( nat > nat ) > nat ) > set_nat_nat_nat2 > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_M_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    member8743709692935548195at_nat: ( nat > ( nat > nat ) > nat > nat ) > set_na6857298508006588994at_nat > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_M_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_J,type,
    member2740455936716430260at_nat: ( nat > ( nat > nat ) > nat ) > set_nat_nat_nat_nat2 > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_M_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    member17114558718834868at_nat: ( nat > nat > nat > nat ) > set_nat_nat_nat_nat > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    member_nat_nat_nat2: ( nat > nat > nat ) > set_nat_nat_nat > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_Mt__Nat__Onat_J,type,
    member_nat_nat: ( nat > nat ) > set_nat_nat > $o ).

thf(sy_c_member_001_062_It__Nat__Onat_Mt__Set__Oset_It__Nat__Onat_J_J,type,
    member_nat_set_nat: ( nat > set_nat ) > set_nat_set_nat > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_I_062_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    member_set_nat_nat: set_nat_nat > set_set_nat_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_v_B____,type,
    b: nat > set_nat ).

thf(sy_v_L_H____,type,
    l: nat > nat > nat ).

thf(sy_v_L____,type,
    l2: nat > nat > nat ).

thf(sy_v_N_H____,type,
    n: nat ).

thf(sy_v_N____,type,
    n2: nat ).

thf(sy_v_S1____,type,
    s1: ( nat > nat ) > nat > nat ).

thf(sy_v__092_060chi_062____,type,
    chi: ( nat > nat ) > nat ).

thf(sy_v_f____,type,
    f: nat > nat ).

thf(sy_v_j____,type,
    j: nat ).

thf(sy_v_r,type,
    r: nat ).

thf(sy_v_t,type,
    t: nat ).

thf(sy_v_x____,type,
    x: nat ).

thf(sy_v_y____,type,
    y: nat ).

% Relevant facts (1266)
thf(fact_0_assms_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ t ).

% assms(1)
thf(fact_1__092_060open_062_092_060And_062i_O_Ai_A_060_At_A_092_060Longrightarrow_062_A_092_060exists_062_By_O_Ay_A_092_060in_062_Acube_A1_At_A_092_060and_062_Ay_A0_A_061_Ai_092_060close_062,axiom,
    ! [I: nat] :
      ( ( ord_less_nat @ I @ t )
     => ? [X: nat > nat] :
          ( ( member_nat_nat @ X @ ( hales_cube @ one_one_nat @ t ) )
          & ( ( X @ zero_zero_nat )
            = I )
          & ! [Y: nat > nat] :
              ( ( ( member_nat_nat @ Y @ ( hales_cube @ one_one_nat @ t ) )
                & ( ( Y @ zero_zero_nat )
                  = I ) )
             => ( Y = X ) ) ) ) ).

% \<open>\<And>i. i < t \<Longrightarrow> \<exists>!y. y \<in> cube 1 t \<and> y 0 = i\<close>
thf(fact_2__092_060open_062_092_060And_062y_O_Ay_A_092_060in_062_Acube_A1_At_A_092_060Longrightarrow_062_A_092_060exists_062_Bi_O_Ai_A_060_At_A_092_060and_062_Ay_A0_A_061_Ai_092_060close_062,axiom,
    ! [Y2: nat > nat] :
      ( ( member_nat_nat @ Y2 @ ( hales_cube @ one_one_nat @ t ) )
     => ( ( ord_less_nat @ ( Y2 @ zero_zero_nat ) @ t )
        & ! [Y: nat] :
            ( ( ( ord_less_nat @ Y @ t )
              & ( ( Y2 @ zero_zero_nat )
                = Y ) )
           => ( Y
              = ( Y2 @ zero_zero_nat ) ) ) ) ) ).

% \<open>\<And>y. y \<in> cube 1 t \<Longrightarrow> \<exists>!i. i < t \<and> y 0 = i\<close>
thf(fact_3__092_060open_062_092_060And_062x_Ai_O_A_092_060lbrakk_062x_A_060_At_059_Ai_A_060_At_092_060rbrakk_062_A_092_060Longrightarrow_062_AL_Ai_Aj_A_061_AL_Ax_Aj_092_060close_062,axiom,
    ! [X2: nat,I: nat] :
      ( ( ord_less_nat @ X2 @ t )
     => ( ( ord_less_nat @ I @ t )
       => ( ( l2 @ I @ j )
          = ( l2 @ X2 @ j ) ) ) ) ).

% \<open>\<And>x i. \<lbrakk>x < t; i < t\<rbrakk> \<Longrightarrow> L i j = L x j\<close>
thf(fact_4__092_060open_062_092_060And_062i_O_Ai_A_060_At_A_092_060Longrightarrow_062_AL_Ai_Aj_A_061_Af_Aj_092_060close_062,axiom,
    ! [I: nat] :
      ( ( ord_less_nat @ I @ t )
     => ( ( l2 @ I @ j )
        = ( f @ j ) ) ) ).

% \<open>\<And>i. i < t \<Longrightarrow> L i j = f j\<close>
thf(fact_5_that_I2_J,axiom,
    ord_less_nat @ y @ t ).

% that(2)
thf(fact_6_that_I1_J,axiom,
    ord_less_nat @ x @ t ).

% that(1)
thf(fact_7__092_060open_062_092_060And_062x_O_Ax_A_060_At_A_092_060Longrightarrow_062_AL_H_Ax_Aj_A_061_AL_Ax_Aj_092_060close_062,axiom,
    ! [X2: nat] :
      ( ( ord_less_nat @ X2 @ t )
     => ( ( l @ X2 @ j )
        = ( l2 @ X2 @ j ) ) ) ).

% \<open>\<And>x. x < t \<Longrightarrow> L' x j = L x j\<close>
thf(fact_8_assms_I2_J,axiom,
    ! [R: nat] : ( hales_hj @ R @ t ) ).

% assms(2)
thf(fact_9__C1_C,axiom,
    member_nat @ j @ ( b @ one_one_nat ) ).

% "1"
thf(fact_10__092_060open_062j_A_060_AN_H_092_060close_062,axiom,
    ord_less_nat @ j @ n ).

% \<open>j < N'\<close>
thf(fact_11__092_060open_062_092_060And_062thesis_O_A_092_060lbrakk_062j_A_092_060in_062_AB_A1_A_092_060Longrightarrow_062_Athesis_059_Aj_A_092_060in_062_AB_A0_A_092_060Longrightarrow_062_Athesis_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ( ~ ( member_nat @ j @ ( b @ one_one_nat ) )
   => ( member_nat @ j @ ( b @ zero_zero_nat ) ) ) ).

% \<open>\<And>thesis. \<lbrakk>j \<in> B 1 \<Longrightarrow> thesis; j \<in> B 0 \<Longrightarrow> thesis\<rbrakk> \<Longrightarrow> thesis\<close>
thf(fact_12_A2,axiom,
    ? [J: nat] :
      ( ( ord_less_nat @ J @ n )
      & ! [S: nat] :
          ( ( ord_less_nat @ S @ ( plus_plus_nat @ t @ one_one_nat ) )
         => ( ( l @ S @ J )
            = S ) ) ) ).

% A2
thf(fact_13__092_060open_062_092_060And_062y_O_Ay_A_092_060in_062_Acube_A1_At_A_092_060Longrightarrow_062_A_I_092_060lambda_062y_092_060in_062cube_A1_At_O_AL_A_Iy_A0_J_J_Ay_Aj_A_061_Af_Aj_092_060close_062,axiom,
    ! [Y2: nat > nat] :
      ( ( member_nat_nat @ Y2 @ ( hales_cube @ one_one_nat @ t ) )
     => ( ( restri4446420529079022766at_nat
          @ ^ [Y3: nat > nat] : ( l2 @ ( Y3 @ zero_zero_nat ) )
          @ ( hales_cube @ one_one_nat @ t )
          @ Y2
          @ j )
        = ( f @ j ) ) ) ).

% \<open>\<And>y. y \<in> cube 1 t \<Longrightarrow> (\<lambda>y\<in>cube 1 t. L (y 0)) y j = f j\<close>
thf(fact_14_S1__def,axiom,
    ( s1
    = ( restri4446420529079022766at_nat
      @ ^ [Y3: nat > nat] : ( l @ ( Y3 @ zero_zero_nat ) )
      @ ( hales_cube @ one_one_nat @ ( plus_plus_nat @ t @ one_one_nat ) ) ) ) ).

% S1_def
thf(fact_15_cube__props_I1_J,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ? [X: nat > nat] :
          ( ( member_nat_nat @ X @ ( hales_cube @ one_one_nat @ T ) )
          & ( ( X @ zero_zero_nat )
            = S2 ) ) ) ).

% cube_props(1)
thf(fact_16__092_060open_062is__subspace_A_I_092_060lambda_062y_092_060in_062cube_A1_At_O_AL_A_Iy_A0_J_J_A1_AN_H_At_092_060close_062,axiom,
    ( hales_is_subspace
    @ ( restri4446420529079022766at_nat
      @ ^ [Y3: nat > nat] : ( l2 @ ( Y3 @ zero_zero_nat ) )
      @ ( hales_cube @ one_one_nat @ t ) )
    @ one_one_nat
    @ n
    @ t ) ).

% \<open>is_subspace (\<lambda>y\<in>cube 1 t. L (y 0)) 1 N' t\<close>
thf(fact_17_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_18_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_19_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_20_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_21_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_22_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_23_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_24_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_25_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_26_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_27_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_28_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_29_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_30_zero__eq__add__iff__both__eq__0,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X2 @ Y2 ) )
      = ( ( X2 = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_31_add__eq__0__iff__both__eq__0,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( plus_plus_nat @ X2 @ Y2 )
        = zero_zero_nat )
      = ( ( X2 = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_32_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_33_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_34_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_35_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_36_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_37_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_38_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_39_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_40_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_41_mem__Collect__eq,axiom,
    ! [A: nat > nat > nat,P: ( nat > nat > nat ) > $o] :
      ( ( member_nat_nat_nat2 @ A @ ( collect_nat_nat_nat2 @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_42_mem__Collect__eq,axiom,
    ! [A: ( nat > nat ) > nat,P: ( ( nat > nat ) > nat ) > $o] :
      ( ( member_nat_nat_nat @ A @ ( collect_nat_nat_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_43_mem__Collect__eq,axiom,
    ! [A: ( nat > nat ) > nat > nat,P: ( ( nat > nat ) > nat > nat ) > $o] :
      ( ( member952132173341509300at_nat @ A @ ( collec3567154360959927026at_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_44_mem__Collect__eq,axiom,
    ! [A: nat > nat,P: ( nat > nat ) > $o] :
      ( ( member_nat_nat @ A @ ( collect_nat_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_45_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X3: nat] : ( member_nat @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_46_Collect__mem__eq,axiom,
    ! [A2: set_nat_nat_nat] :
      ( ( collect_nat_nat_nat2
        @ ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_47_Collect__mem__eq,axiom,
    ! [A2: set_nat_nat_nat2] :
      ( ( collect_nat_nat_nat
        @ ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_48_Collect__mem__eq,axiom,
    ! [A2: set_nat_nat_nat_nat3] :
      ( ( collec3567154360959927026at_nat
        @ ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_49_Collect__mem__eq,axiom,
    ! [A2: set_nat_nat] :
      ( ( collect_nat_nat
        @ ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_50_Collect__cong,axiom,
    ! [P: ( nat > nat ) > $o,Q: ( nat > nat ) > $o] :
      ( ! [X: nat > nat] :
          ( ( P @ X )
          = ( Q @ X ) )
     => ( ( collect_nat_nat @ P )
        = ( collect_nat_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_51_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_52_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_53_zero__reorient,axiom,
    ! [X2: nat] :
      ( ( zero_zero_nat = X2 )
      = ( X2 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_54_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_55_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_56_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_57_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).

% add.commute
thf(fact_58_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_59_group__cancel_Oadd2,axiom,
    ! [B3: nat,K: nat,B: nat,A: nat] :
      ( ( B3
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B3 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_60_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_61_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( I = J2 )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_62_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_63_one__reorient,axiom,
    ! [X2: nat] :
      ( ( one_one_nat = X2 )
      = ( X2 = one_one_nat ) ) ).

% one_reorient
thf(fact_64_linorder__neqE__nat,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE_nat
thf(fact_65_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ~ ( P @ N2 )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
              & ~ ( P @ M2 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_66_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N2 )
             => ( P @ M2 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_67_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_68_less__not__refl3,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( S2 != T ) ) ).

% less_not_refl3
thf(fact_69_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_70_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_71_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_72_dim0__subspace__ex,axiom,
    ! [T: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ T )
     => ? [S3: ( nat > nat ) > nat > nat] : ( hales_is_subspace @ S3 @ zero_zero_nat @ N @ T ) ) ).

% dim0_subspace_ex
thf(fact_73_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_74_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_75_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_76_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_77_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_78_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_79_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_80_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_81_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_82_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_83_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_84_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J2 )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_85_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( I = J2 )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_86_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J2 )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_87_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N2 )
           => ( ~ ( P @ N2 )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N2 )
                  & ~ ( P @ M2 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_88_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_89_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_90_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_91_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_92_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_93_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_94_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_95_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_96_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_97_trans__less__add2,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J2 ) ) ) ).

% trans_less_add2
thf(fact_98_trans__less__add1,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J2 @ M ) ) ) ).

% trans_less_add1
thf(fact_99_add__less__mono1,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ K ) ) ) ).

% add_less_mono1
thf(fact_100_not__add__less2,axiom,
    ! [J2: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J2 @ I ) @ I ) ).

% not_add_less2
thf(fact_101_not__add__less1,axiom,
    ! [I: nat,J2: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J2 ) @ I ) ).

% not_add_less1
thf(fact_102_add__less__mono,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ) ).

% add_less_mono
thf(fact_103_add__lessD1,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J2 ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_104_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_105_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C2 ) )
           => ( C2 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_106_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_107_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_108_less__imp__add__positive,axiom,
    ! [I: nat,J2: nat] :
      ( ( ord_less_nat @ I @ J2 )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I @ K2 )
            = J2 ) ) ) ).

% less_imp_add_positive
thf(fact_109_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_110_join__cubes,axiom,
    ! [F: nat > nat,N: nat,T: nat,G: nat > nat,M: nat] :
      ( ( member_nat_nat @ F @ ( hales_cube @ N @ ( plus_plus_nat @ T @ one_one_nat ) ) )
     => ( ( member_nat_nat @ G @ ( hales_cube @ M @ ( plus_plus_nat @ T @ one_one_nat ) ) )
       => ( member_nat_nat @ ( hales_join_nat @ F @ G @ N @ M ) @ ( hales_cube @ ( plus_plus_nat @ N @ M ) @ ( plus_plus_nat @ T @ one_one_nat ) ) ) ) ) ).

% join_cubes
thf(fact_111_line__is__dim1__subspace__t__ge__1,axiom,
    ! [N: nat,T: nat,L2: nat > nat > nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ one_one_nat @ T )
       => ( ( hales_is_line @ L2 @ N @ T )
         => ( hales_is_subspace
            @ ( restri4446420529079022766at_nat
              @ ^ [Y3: nat > nat] : ( L2 @ ( Y3 @ zero_zero_nat ) )
              @ ( hales_cube @ one_one_nat @ T ) )
            @ one_one_nat
            @ N
            @ T ) ) ) ) ).

% line_is_dim1_subspace_t_ge_1
thf(fact_112_line__is__dim1__subspace__t__1,axiom,
    ! [N: nat,L2: nat > nat > nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( hales_is_line @ L2 @ N @ one_one_nat )
       => ( hales_is_subspace
          @ ( restri4446420529079022766at_nat
            @ ^ [Y3: nat > nat] : ( L2 @ ( Y3 @ zero_zero_nat ) )
            @ ( hales_cube @ one_one_nat @ one_one_nat ) )
          @ one_one_nat
          @ N
          @ one_one_nat ) ) ) ).

% line_is_dim1_subspace_t_1
thf(fact_113_line__is__dim1__subspace,axiom,
    ! [N: nat,T: nat,L2: nat > nat > nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ T )
       => ( ( hales_is_line @ L2 @ N @ T )
         => ( hales_is_subspace
            @ ( restri4446420529079022766at_nat
              @ ^ [Y3: nat > nat] : ( L2 @ ( Y3 @ zero_zero_nat ) )
              @ ( hales_cube @ one_one_nat @ T ) )
            @ one_one_nat
            @ N
            @ T ) ) ) ) ).

% line_is_dim1_subspace
thf(fact_114_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_115_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_116_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_117_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_118_line__points__in__cube,axiom,
    ! [L2: nat > nat > nat,N: nat,T: nat,S2: nat] :
      ( ( hales_is_line @ L2 @ N @ T )
     => ( ( ord_less_nat @ S2 @ T )
       => ( member_nat_nat @ ( L2 @ S2 ) @ ( hales_cube @ N @ T ) ) ) ) ).

% line_points_in_cube
thf(fact_119_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_120_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_121_asm_I1_J,axiom,
    ord_less_eq_nat @ n2 @ n ).

% asm(1)
thf(fact_122_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( P @ A4 @ B4 )
          = ( P @ B4 @ A4 ) )
     => ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
       => ( ! [A4: nat,B4: nat] :
              ( ( P @ A4 @ B4 )
             => ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_123_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_124_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_125_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_126_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_127_A1,axiom,
    ( member_nat_nat_nat2 @ l
    @ ( piE_nat_nat_nat2 @ ( set_ord_lessThan_nat @ ( plus_plus_nat @ t @ one_one_nat ) )
      @ ^ [I2: nat] : ( hales_cube @ n @ ( plus_plus_nat @ t @ one_one_nat ) ) ) ) ).

% A1
thf(fact_128_L_H__def,axiom,
    ( l
    = ( fun_upd_nat_nat_nat2 @ l2 @ t
      @ ^ [J3: nat] : ( if_nat @ ( member_nat @ J3 @ ( b @ one_one_nat ) ) @ ( l2 @ ( minus_minus_nat @ t @ one_one_nat ) @ J3 ) @ ( if_nat @ ( member_nat @ J3 @ ( b @ zero_zero_nat ) ) @ t @ undefined_nat ) ) ) ) ).

% L'_def
thf(fact_129_lessThan__eq__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( set_ord_lessThan_nat @ X2 )
        = ( set_ord_lessThan_nat @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% lessThan_eq_iff
thf(fact_130_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_131_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_132_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_133_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_134_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_135_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_136_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_137_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_138_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_139_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_140_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_141_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_142_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_143_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_144_lessThan__subset__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_lessThan_nat @ X2 ) @ ( set_ord_lessThan_nat @ Y2 ) )
      = ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% lessThan_subset_iff
thf(fact_145_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_146_lessThan__iff,axiom,
    ! [I: nat > nat,K: nat > nat] :
      ( ( member_nat_nat @ I @ ( set_or1140352010380016476at_nat @ K ) )
      = ( ord_less_nat_nat @ I @ K ) ) ).

% lessThan_iff
thf(fact_147_lessThan__iff,axiom,
    ! [I: nat > nat > nat,K: nat > nat > nat] :
      ( ( member_nat_nat_nat2 @ I @ ( set_or3808701207811398603at_nat @ K ) )
      = ( ord_less_nat_nat_nat2 @ I @ K ) ) ).

% lessThan_iff
thf(fact_148_lessThan__iff,axiom,
    ! [I: ( nat > nat ) > nat,K: ( nat > nat ) > nat] :
      ( ( member_nat_nat_nat @ I @ ( set_or2699333443382148811at_nat @ K ) )
      = ( ord_less_nat_nat_nat @ I @ K ) ) ).

% lessThan_iff
thf(fact_149_lessThan__iff,axiom,
    ! [I: ( nat > nat ) > nat > nat,K: ( nat > nat ) > nat > nat] :
      ( ( member952132173341509300at_nat @ I @ ( set_or7562748684798938298at_nat @ K ) )
      = ( ord_le4629963735342356977at_nat @ I @ K ) ) ).

% lessThan_iff
thf(fact_150_lessThan__iff,axiom,
    ! [I: nat,K: nat] :
      ( ( member_nat @ I @ ( set_ord_lessThan_nat @ K ) )
      = ( ord_less_nat @ I @ K ) ) ).

% lessThan_iff
thf(fact_151_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_152_diff__diff__left,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J2 ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J2 @ K ) ) ) ).

% diff_diff_left
thf(fact_153_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_154_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_155_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_156_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_157_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_158_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_159_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_160_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_161_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_162_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_163_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J2 @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J2 ) ) ) ).

% Nat.diff_diff_right
thf(fact_164_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_165_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J2 @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J2 ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_166_add__le__imp__le__diff,axiom,
    ! [I: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_167_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K: nat,N: nat,J2: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J2 @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J2 @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J2 ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_168_bounded__Max__nat,axiom,
    ! [P: nat > $o,X2: nat,M3: nat] :
      ( ( P @ X2 )
     => ( ! [X: nat] :
            ( ( P @ X )
           => ( ord_less_eq_nat @ X @ M3 ) )
       => ~ ! [M4: nat] :
              ( ( P @ M4 )
             => ~ ! [X4: nat] :
                    ( ( P @ X4 )
                   => ( ord_less_eq_nat @ X4 @ M4 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_169_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_170_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_171_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_172_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_173_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_174_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_175_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_176_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_177_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_178_diff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% diff_add
thf(fact_179_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_180_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_181_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( ( minus_minus_nat @ J2 @ I )
          = K )
        = ( J2
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_182_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_183_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J2 ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J2 @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_184_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J2 @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J2 ) ) ) ).

% Nat.le_diff_conv2
thf(fact_185_le__diff__conv,axiom,
    ! [J2: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J2 @ K ) @ I )
      = ( ord_less_eq_nat @ J2 @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_186_fun__ex,axiom,
    ! [A: nat,A2: set_nat,B: nat,B3: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( member_nat @ B @ B3 )
       => ? [X: nat > nat] :
            ( ( member_nat_nat @ X
              @ ( piE_nat_nat @ A2
                @ ^ [I2: nat] : B3 ) )
            & ( ( X @ A )
              = B ) ) ) ) ).

% fun_ex
thf(fact_187_fun__ex,axiom,
    ! [A: nat,A2: set_nat,B: nat > nat,B3: set_nat_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( member_nat_nat @ B @ B3 )
       => ? [X: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X
              @ ( piE_nat_nat_nat2 @ A2
                @ ^ [I2: nat] : B3 ) )
            & ( ( X @ A )
              = B ) ) ) ) ).

% fun_ex
thf(fact_188_fun__ex,axiom,
    ! [A: nat > nat,A2: set_nat_nat,B: nat,B3: set_nat] :
      ( ( member_nat_nat @ A @ A2 )
     => ( ( member_nat @ B @ B3 )
       => ? [X: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X
              @ ( piE_nat_nat_nat @ A2
                @ ^ [I2: nat > nat] : B3 ) )
            & ( ( X @ A )
              = B ) ) ) ) ).

% fun_ex
thf(fact_189_fun__ex,axiom,
    ! [A: nat,A2: set_nat,B: nat > nat > nat,B3: set_nat_nat_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( member_nat_nat_nat2 @ B @ B3 )
       => ? [X: nat > nat > nat > nat] :
            ( ( member17114558718834868at_nat @ X
              @ ( piE_nat_nat_nat_nat5 @ A2
                @ ^ [I2: nat] : B3 ) )
            & ( ( X @ A )
              = B ) ) ) ) ).

% fun_ex
thf(fact_190_fun__ex,axiom,
    ! [A: nat,A2: set_nat,B: ( nat > nat ) > nat,B3: set_nat_nat_nat2] :
      ( ( member_nat @ A @ A2 )
     => ( ( member_nat_nat_nat @ B @ B3 )
       => ? [X: nat > ( nat > nat ) > nat] :
            ( ( member2740455936716430260at_nat @ X
              @ ( piE_nat_nat_nat_nat4 @ A2
                @ ^ [I2: nat] : B3 ) )
            & ( ( X @ A )
              = B ) ) ) ) ).

% fun_ex
thf(fact_191_fun__ex,axiom,
    ! [A: nat > nat > nat,A2: set_nat_nat_nat,B: nat,B3: set_nat] :
      ( ( member_nat_nat_nat2 @ A @ A2 )
     => ( ( member_nat @ B @ B3 )
       => ? [X: ( nat > nat > nat ) > nat] :
            ( ( member5318315686745620148at_nat @ X
              @ ( piE_nat_nat_nat_nat2 @ A2
                @ ^ [I2: nat > nat > nat] : B3 ) )
            & ( ( X @ A )
              = B ) ) ) ) ).

% fun_ex
thf(fact_192_fun__ex,axiom,
    ! [A: ( nat > nat ) > nat,A2: set_nat_nat_nat2,B: nat,B3: set_nat] :
      ( ( member_nat_nat_nat @ A @ A2 )
     => ( ( member_nat @ B @ B3 )
       => ? [X: ( ( nat > nat ) > nat ) > nat] :
            ( ( member2991261302380110260at_nat @ X
              @ ( piE_nat_nat_nat_nat @ A2
                @ ^ [I2: ( nat > nat ) > nat] : B3 ) )
            & ( ( X @ A )
              = B ) ) ) ) ).

% fun_ex
thf(fact_193_fun__ex,axiom,
    ! [A: nat > nat,A2: set_nat_nat,B: nat > nat,B3: set_nat_nat] :
      ( ( member_nat_nat @ A @ A2 )
     => ( ( member_nat_nat @ B @ B3 )
       => ? [X: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ X
              @ ( piE_nat_nat_nat_nat3 @ A2
                @ ^ [I2: nat > nat] : B3 ) )
            & ( ( X @ A )
              = B ) ) ) ) ).

% fun_ex
thf(fact_194_fun__ex,axiom,
    ! [A: nat,A2: set_nat,B: ( nat > nat ) > nat > nat,B3: set_nat_nat_nat_nat3] :
      ( ( member_nat @ A @ A2 )
     => ( ( member952132173341509300at_nat @ B @ B3 )
       => ? [X: nat > ( nat > nat ) > nat > nat] :
            ( ( member8743709692935548195at_nat @ X
              @ ( piE_na2748089427378204713at_nat @ A2
                @ ^ [I2: nat] : B3 ) )
            & ( ( X @ A )
              = B ) ) ) ) ).

% fun_ex
thf(fact_195_fun__ex,axiom,
    ! [A: nat > nat,A2: set_nat_nat,B: nat > nat > nat,B3: set_nat_nat_nat] :
      ( ( member_nat_nat @ A @ A2 )
     => ( ( member_nat_nat_nat2 @ B @ B3 )
       => ? [X: ( nat > nat ) > nat > nat > nat] :
            ( ( member1679187572556404771at_nat @ X
              @ ( piE_na8678869062391380393at_nat @ A2
                @ ^ [I2: nat > nat] : B3 ) )
            & ( ( X @ A )
              = B ) ) ) ) ).

% fun_ex
thf(fact_196_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_197_verit__comp__simplify1_I3_J,axiom,
    ! [B5: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B5 @ A5 ) )
      = ( ord_less_nat @ A5 @ B5 ) ) ).

% verit_comp_simplify1(3)
thf(fact_198_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_199_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_200_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_nat_nat] : ( ord_le9059583361652607317at_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_201_diff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_202_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_203_le__trans,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( ord_less_eq_nat @ J2 @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_204_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_205_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_206_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_207_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_208_diff__commute,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J2 ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J2 ) ) ).

% diff_commute
thf(fact_209_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_210_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_211_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_212_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_213_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_214_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_215_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ? [X: nat] :
            ( ( P @ X )
            & ! [Y: nat] :
                ( ( P @ Y )
               => ( ord_less_eq_nat @ Y @ X ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_216_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_217_less__diff__conv2,axiom,
    ! [K: nat,J2: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J2 )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J2 @ K ) @ I )
        = ( ord_less_nat @ J2 @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_218_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_219_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_220_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_221_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_222_zero__le,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).

% zero_le
thf(fact_223_less__imp__diff__less,axiom,
    ! [J2: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J2 @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J2 @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_224_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_225_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_226_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_227_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_228_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_229_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_230_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_231_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
        ? [C3: nat] :
          ( B2
          = ( plus_plus_nat @ A3 @ C3 ) ) ) ) ).

% le_iff_add
thf(fact_232_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_233_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( B
           != ( plus_plus_nat @ A @ C2 ) ) ) ).

% less_eqE
thf(fact_234_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_235_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_236_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J2 )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_237_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( I = J2 )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_238_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J2 )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_239_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_240_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_241_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_242_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_243_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J2: nat] :
      ( ! [I3: nat,J: nat] :
          ( ( ord_less_nat @ I3 @ J )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J ) ) )
     => ( ( ord_less_eq_nat @ I @ J2 )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J2 ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_244_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_245_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_246_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N3: nat] :
          ( ( ord_less_nat @ M5 @ N3 )
          | ( M5 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_247_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_248_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M5: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M5 @ N3 )
          & ( M5 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_249_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M5: nat,N3: nat] :
        ? [K3: nat] :
          ( N3
          = ( plus_plus_nat @ M5 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_250_trans__le__add2,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J2 ) ) ) ).

% trans_le_add2
thf(fact_251_trans__le__add1,axiom,
    ! [I: nat,J2: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J2 @ M ) ) ) ).

% trans_le_add1
thf(fact_252_add__le__mono1,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ K ) ) ) ).

% add_le_mono1
thf(fact_253_add__le__mono,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ) ).

% add_le_mono
thf(fact_254_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N2: nat] :
          ( L
          = ( plus_plus_nat @ K @ N2 ) ) ) ).

% le_Suc_ex
thf(fact_255_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_256_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_257_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_258_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_259_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_260_lessThan__strict__subset__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_set_nat @ ( set_ord_lessThan_nat @ M ) @ ( set_ord_lessThan_nat @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% lessThan_strict_subset_iff
thf(fact_261_lessThan__def,axiom,
    ( set_or1140352010380016476at_nat
    = ( ^ [U: nat > nat] :
          ( collect_nat_nat
          @ ^ [X3: nat > nat] : ( ord_less_nat_nat @ X3 @ U ) ) ) ) ).

% lessThan_def
thf(fact_262_lessThan__def,axiom,
    ( set_ord_lessThan_nat
    = ( ^ [U: nat] :
          ( collect_nat
          @ ^ [X3: nat] : ( ord_less_nat @ X3 @ U ) ) ) ) ).

% lessThan_def
thf(fact_263_is__line__def,axiom,
    ( hales_is_line
    = ( ^ [L3: nat > nat > nat,N3: nat,T2: nat] :
          ( ( member_nat_nat_nat2 @ L3
            @ ( piE_nat_nat_nat2 @ ( set_ord_lessThan_nat @ T2 )
              @ ^ [I2: nat] : ( hales_cube @ N3 @ T2 ) ) )
          & ! [J3: nat] :
              ( ( ord_less_nat @ J3 @ N3 )
             => ( ! [X3: nat] :
                    ( ( ord_less_nat @ X3 @ T2 )
                   => ! [Y3: nat] :
                        ( ( ord_less_nat @ Y3 @ T2 )
                       => ( ( L3 @ X3 @ J3 )
                          = ( L3 @ Y3 @ J3 ) ) ) )
                | ! [S4: nat] :
                    ( ( ord_less_nat @ S4 @ T2 )
                   => ( ( L3 @ S4 @ J3 )
                      = S4 ) ) ) )
          & ? [J3: nat] :
              ( ( ord_less_nat @ J3 @ N3 )
              & ! [S4: nat] :
                  ( ( ord_less_nat @ S4 @ T2 )
                 => ( ( L3 @ S4 @ J3 )
                    = S4 ) ) ) ) ) ) ).

% is_line_def
thf(fact_264_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_265_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_266_add__nonpos__eq__0__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y2 @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X2 @ Y2 )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_267_add__nonneg__eq__0__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( plus_plus_nat @ X2 @ Y2 )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_268_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_269_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_270_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_271_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_272_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_273_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_274_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_275_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_276_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_277_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_278_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_279_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_280_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J2 )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_281_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J2: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J2 )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J2 @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_282_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_283_less__diff__conv,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J2 @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J2 ) ) ).

% less_diff_conv
thf(fact_284_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_285_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M4: nat,N2: nat] :
          ( ( ord_less_nat @ M4 @ N2 )
         => ( ord_less_nat @ ( F @ M4 ) @ ( F @ N2 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_286_line__points__in__cube__unfolded,axiom,
    ! [L2: nat > nat > nat,N: nat,T: nat,S2: nat,J2: nat] :
      ( ( hales_is_line @ L2 @ N @ T )
     => ( ( ord_less_nat @ S2 @ T )
       => ( ( ord_less_nat @ J2 @ N )
         => ( member_nat @ ( L2 @ S2 @ J2 ) @ ( set_ord_lessThan_nat @ T ) ) ) ) ) ).

% line_points_in_cube_unfolded
thf(fact_287_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_288_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_289_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_290_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_291_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_292_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_293_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D2: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D2 ) )
                & ~ ( P @ D2 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_294_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D2: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D2 ) )
           => ( P @ D2 ) ) ) ) ).

% nat_diff_split
thf(fact_295_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_296_restrict__apply,axiom,
    ( restri2154675885335628590at_nat
    = ( ^ [F2: ( nat > nat > nat ) > nat,A6: set_nat_nat_nat,X3: nat > nat > nat] : ( if_nat @ ( member_nat_nat_nat2 @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat ) ) ) ).

% restrict_apply
thf(fact_297_restrict__apply,axiom,
    ( restri9050993537824894510at_nat
    = ( ^ [F2: ( ( nat > nat ) > nat ) > nat,A6: set_nat_nat_nat2,X3: ( nat > nat ) > nat] : ( if_nat @ ( member_nat_nat_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat ) ) ) ).

% restrict_apply
thf(fact_298_restrict__apply,axiom,
    ( restri2990705262542023965at_nat
    = ( ^ [F2: ( ( nat > nat ) > nat > nat ) > nat,A6: set_nat_nat_nat_nat3,X3: ( nat > nat ) > nat > nat] : ( if_nat @ ( member952132173341509300at_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat ) ) ) ).

% restrict_apply
thf(fact_299_restrict__apply,axiom,
    ( restri4446420529079022766at_nat
    = ( ^ [F2: ( nat > nat ) > nat > nat,A6: set_nat_nat,X3: nat > nat] : ( if_nat_nat @ ( member_nat_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat_nat ) ) ) ).

% restrict_apply
thf(fact_300_restrict__apply,axiom,
    ( restrict_nat_nat
    = ( ^ [F2: nat > nat,A6: set_nat,X3: nat] : ( if_nat @ ( member_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat ) ) ) ).

% restrict_apply
thf(fact_301_restrict__apply,axiom,
    ( restrict_nat_nat_nat
    = ( ^ [F2: ( nat > nat ) > nat,A6: set_nat_nat,X3: nat > nat] : ( if_nat @ ( member_nat_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat ) ) ) ).

% restrict_apply
thf(fact_302_restrict__apply,axiom,
    ( restrict_nat_nat_nat2
    = ( ^ [F2: nat > nat > nat,A6: set_nat,X3: nat] : ( if_nat_nat @ ( member_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat_nat ) ) ) ).

% restrict_apply
thf(fact_303_PiE__I,axiom,
    ! [A2: set_nat,F: nat > nat,B3: nat > set_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member_nat @ ( F @ X ) @ ( B3 @ X ) ) )
     => ( ! [X: nat] :
            ( ~ ( member_nat @ X @ A2 )
           => ( ( F @ X )
              = undefined_nat ) )
       => ( member_nat_nat @ F @ ( piE_nat_nat @ A2 @ B3 ) ) ) ) ).

% PiE_I
thf(fact_304_PiE__I,axiom,
    ! [A2: set_nat,F: nat > nat > nat,B3: nat > set_nat_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member_nat_nat @ ( F @ X ) @ ( B3 @ X ) ) )
     => ( ! [X: nat] :
            ( ~ ( member_nat @ X @ A2 )
           => ( ( F @ X )
              = undefined_nat_nat ) )
       => ( member_nat_nat_nat2 @ F @ ( piE_nat_nat_nat2 @ A2 @ B3 ) ) ) ) ).

% PiE_I
thf(fact_305_PiE__I,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > nat,B3: ( nat > nat ) > set_nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( member_nat @ ( F @ X ) @ ( B3 @ X ) ) )
     => ( ! [X: nat > nat] :
            ( ~ ( member_nat_nat @ X @ A2 )
           => ( ( F @ X )
              = undefined_nat ) )
       => ( member_nat_nat_nat @ F @ ( piE_nat_nat_nat @ A2 @ B3 ) ) ) ) ).

% PiE_I
thf(fact_306_PiE__I,axiom,
    ! [A2: set_nat,F: nat > nat > nat > nat,B3: nat > set_nat_nat_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member_nat_nat_nat2 @ ( F @ X ) @ ( B3 @ X ) ) )
     => ( ! [X: nat] :
            ( ~ ( member_nat @ X @ A2 )
           => ( ( F @ X )
              = undefi6347502541616610502at_nat ) )
       => ( member17114558718834868at_nat @ F @ ( piE_nat_nat_nat_nat5 @ A2 @ B3 ) ) ) ) ).

% PiE_I
thf(fact_307_PiE__I,axiom,
    ! [A2: set_nat,F: nat > ( nat > nat ) > nat,B3: nat > set_nat_nat_nat2] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member_nat_nat_nat @ ( F @ X ) @ ( B3 @ X ) ) )
     => ( ! [X: nat] :
            ( ~ ( member_nat @ X @ A2 )
           => ( ( F @ X )
              = undefi5238134777187360710at_nat ) )
       => ( member2740455936716430260at_nat @ F @ ( piE_nat_nat_nat_nat4 @ A2 @ B3 ) ) ) ) ).

% PiE_I
thf(fact_308_PiE__I,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > nat > nat,B3: ( nat > nat ) > set_nat_nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( member_nat_nat @ ( F @ X ) @ ( B3 @ X ) ) )
     => ( ! [X: nat > nat] :
            ( ~ ( member_nat_nat @ X @ A2 )
           => ( ( F @ X )
              = undefined_nat_nat ) )
       => ( member952132173341509300at_nat @ F @ ( piE_nat_nat_nat_nat3 @ A2 @ B3 ) ) ) ) ).

% PiE_I
thf(fact_309_PiE__I,axiom,
    ! [A2: set_nat_nat_nat,F: ( nat > nat > nat ) > nat,B3: ( nat > nat > nat ) > set_nat] :
      ( ! [X: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ X @ A2 )
         => ( member_nat @ ( F @ X ) @ ( B3 @ X ) ) )
     => ( ! [X: nat > nat > nat] :
            ( ~ ( member_nat_nat_nat2 @ X @ A2 )
           => ( ( F @ X )
              = undefined_nat ) )
       => ( member5318315686745620148at_nat @ F @ ( piE_nat_nat_nat_nat2 @ A2 @ B3 ) ) ) ) ).

% PiE_I
thf(fact_310_PiE__I,axiom,
    ! [A2: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > nat,B3: ( ( nat > nat ) > nat ) > set_nat] :
      ( ! [X: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ X @ A2 )
         => ( member_nat @ ( F @ X ) @ ( B3 @ X ) ) )
     => ( ! [X: ( nat > nat ) > nat] :
            ( ~ ( member_nat_nat_nat @ X @ A2 )
           => ( ( F @ X )
              = undefined_nat ) )
       => ( member2991261302380110260at_nat @ F @ ( piE_nat_nat_nat_nat @ A2 @ B3 ) ) ) ) ).

% PiE_I
thf(fact_311_PiE__I,axiom,
    ! [A2: set_nat,F: nat > ( nat > nat ) > nat > nat,B3: nat > set_nat_nat_nat_nat3] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member952132173341509300at_nat @ ( F @ X ) @ ( B3 @ X ) ) )
     => ( ! [X: nat] :
            ( ~ ( member_nat @ X @ A2 )
           => ( ( F @ X )
              = undefi5080129371236079925at_nat ) )
       => ( member8743709692935548195at_nat @ F @ ( piE_na2748089427378204713at_nat @ A2 @ B3 ) ) ) ) ).

% PiE_I
thf(fact_312_PiE__I,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > nat > nat > nat,B3: ( nat > nat ) > set_nat_nat_nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( member_nat_nat_nat2 @ ( F @ X ) @ ( B3 @ X ) ) )
     => ( ! [X: nat > nat] :
            ( ~ ( member_nat_nat @ X @ A2 )
           => ( ( F @ X )
              = undefi6347502541616610502at_nat ) )
       => ( member1679187572556404771at_nat @ F @ ( piE_na8678869062391380393at_nat @ A2 @ B3 ) ) ) ) ).

% PiE_I
thf(fact_313_PiE__restrict,axiom,
    ! [F: ( nat > nat ) > nat > nat,A2: set_nat_nat,B3: ( nat > nat ) > set_nat_nat] :
      ( ( member952132173341509300at_nat @ F @ ( piE_nat_nat_nat_nat3 @ A2 @ B3 ) )
     => ( ( restri4446420529079022766at_nat @ F @ A2 )
        = F ) ) ).

% PiE_restrict
thf(fact_314_PiE__restrict,axiom,
    ! [F: nat > nat,A2: set_nat,B3: nat > set_nat] :
      ( ( member_nat_nat @ F @ ( piE_nat_nat @ A2 @ B3 ) )
     => ( ( restrict_nat_nat @ F @ A2 )
        = F ) ) ).

% PiE_restrict
thf(fact_315_PiE__restrict,axiom,
    ! [F: ( nat > nat ) > nat,A2: set_nat_nat,B3: ( nat > nat ) > set_nat] :
      ( ( member_nat_nat_nat @ F @ ( piE_nat_nat_nat @ A2 @ B3 ) )
     => ( ( restrict_nat_nat_nat @ F @ A2 )
        = F ) ) ).

% PiE_restrict
thf(fact_316_PiE__restrict,axiom,
    ! [F: nat > nat > nat,A2: set_nat,B3: nat > set_nat_nat] :
      ( ( member_nat_nat_nat2 @ F @ ( piE_nat_nat_nat2 @ A2 @ B3 ) )
     => ( ( restrict_nat_nat_nat2 @ F @ A2 )
        = F ) ) ).

% PiE_restrict
thf(fact_317_restrict__fupd,axiom,
    ! [I: nat > nat,I5: set_nat_nat,F: ( nat > nat ) > nat > nat,X2: nat > nat] :
      ( ~ ( member_nat_nat @ I @ I5 )
     => ( ( restri4446420529079022766at_nat @ ( fun_up6644623172326239997at_nat @ F @ I @ X2 ) @ I5 )
        = ( restri4446420529079022766at_nat @ F @ I5 ) ) ) ).

% restrict_fupd
thf(fact_318_restrict__fupd,axiom,
    ! [I: nat,I5: set_nat,F: nat > nat,X2: nat] :
      ( ~ ( member_nat @ I @ I5 )
     => ( ( restrict_nat_nat @ ( fun_upd_nat_nat @ F @ I @ X2 ) @ I5 )
        = ( restrict_nat_nat @ F @ I5 ) ) ) ).

% restrict_fupd
thf(fact_319_restrict__fupd,axiom,
    ! [I: nat > nat,I5: set_nat_nat,F: ( nat > nat ) > nat,X2: nat] :
      ( ~ ( member_nat_nat @ I @ I5 )
     => ( ( restrict_nat_nat_nat @ ( fun_upd_nat_nat_nat @ F @ I @ X2 ) @ I5 )
        = ( restrict_nat_nat_nat @ F @ I5 ) ) ) ).

% restrict_fupd
thf(fact_320_restrict__fupd,axiom,
    ! [I: nat,I5: set_nat,F: nat > nat > nat,X2: nat > nat] :
      ( ~ ( member_nat @ I @ I5 )
     => ( ( restrict_nat_nat_nat2 @ ( fun_upd_nat_nat_nat2 @ F @ I @ X2 ) @ I5 )
        = ( restrict_nat_nat_nat2 @ F @ I5 ) ) ) ).

% restrict_fupd
thf(fact_321_fun__upd__apply,axiom,
    ( fun_upd_nat_nat_nat2
    = ( ^ [F2: nat > nat > nat,X3: nat,Y3: nat > nat,Z: nat] : ( if_nat_nat @ ( Z = X3 ) @ Y3 @ ( F2 @ Z ) ) ) ) ).

% fun_upd_apply
thf(fact_322_fun__upd__triv,axiom,
    ! [F: nat > nat > nat,X2: nat] :
      ( ( fun_upd_nat_nat_nat2 @ F @ X2 @ ( F @ X2 ) )
      = F ) ).

% fun_upd_triv
thf(fact_323_fun__upd__upd,axiom,
    ! [F: nat > nat > nat,X2: nat,Y2: nat > nat,Z2: nat > nat] :
      ( ( fun_upd_nat_nat_nat2 @ ( fun_upd_nat_nat_nat2 @ F @ X2 @ Y2 ) @ X2 @ Z2 )
      = ( fun_upd_nat_nat_nat2 @ F @ X2 @ Z2 ) ) ).

% fun_upd_upd
thf(fact_324_PiE__mono,axiom,
    ! [A2: set_nat_nat,B3: ( nat > nat ) > set_nat,C4: ( nat > nat ) > set_nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ ( B3 @ X ) @ ( C4 @ X ) ) )
     => ( ord_le5934964663421696068at_nat @ ( piE_nat_nat_nat @ A2 @ B3 ) @ ( piE_nat_nat_nat @ A2 @ C4 ) ) ) ).

% PiE_mono
thf(fact_325_PiE__mono,axiom,
    ! [A2: set_nat,B3: nat > set_nat,C4: nat > set_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ ( B3 @ X ) @ ( C4 @ X ) ) )
     => ( ord_le9059583361652607317at_nat @ ( piE_nat_nat @ A2 @ B3 ) @ ( piE_nat_nat @ A2 @ C4 ) ) ) ).

% PiE_mono
thf(fact_326_PiE__mono,axiom,
    ! [A2: set_nat_nat_nat,B3: ( nat > nat > nat ) > set_nat_nat,C4: ( nat > nat > nat ) > set_nat_nat] :
      ( ! [X: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( B3 @ X ) @ ( C4 @ X ) ) )
     => ( ord_le3125778081881428130at_nat @ ( piE_na7122919648973241129at_nat @ A2 @ B3 ) @ ( piE_na7122919648973241129at_nat @ A2 @ C4 ) ) ) ).

% PiE_mono
thf(fact_327_PiE__mono,axiom,
    ! [A2: set_nat_nat_nat2,B3: ( ( nat > nat ) > nat ) > set_nat_nat,C4: ( ( nat > nat ) > nat ) > set_nat_nat] :
      ( ! [X: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( B3 @ X ) @ ( C4 @ X ) ) )
     => ( ord_le3190276326201062306at_nat @ ( piE_na6840239867990089257at_nat @ A2 @ B3 ) @ ( piE_na6840239867990089257at_nat @ A2 @ C4 ) ) ) ).

% PiE_mono
thf(fact_328_PiE__mono,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: ( ( nat > nat ) > nat > nat ) > set_nat_nat,C4: ( ( nat > nat ) > nat > nat ) > set_nat_nat] :
      ( ! [X: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( B3 @ X ) @ ( C4 @ X ) ) )
     => ( ord_le9041126503034175505at_nat @ ( piE_na6564615839001774232at_nat @ A2 @ B3 ) @ ( piE_na6564615839001774232at_nat @ A2 @ C4 ) ) ) ).

% PiE_mono
thf(fact_329_PiE__mono,axiom,
    ! [A2: set_nat,B3: nat > set_nat_nat,C4: nat > set_nat_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( B3 @ X ) @ ( C4 @ X ) ) )
     => ( ord_le3211623285424100676at_nat @ ( piE_nat_nat_nat2 @ A2 @ B3 ) @ ( piE_nat_nat_nat2 @ A2 @ C4 ) ) ) ).

% PiE_mono
thf(fact_330_PiE__mono,axiom,
    ! [A2: set_nat_nat,B3: ( nat > nat ) > set_nat_nat,C4: ( nat > nat ) > set_nat_nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( B3 @ X ) @ ( C4 @ X ) ) )
     => ( ord_le5260717879541182899at_nat @ ( piE_nat_nat_nat_nat3 @ A2 @ B3 ) @ ( piE_nat_nat_nat_nat3 @ A2 @ C4 ) ) ) ).

% PiE_mono
thf(fact_331_cube__def,axiom,
    ( hales_cube
    = ( ^ [N3: nat,T2: nat] :
          ( piE_nat_nat @ ( set_ord_lessThan_nat @ N3 )
          @ ^ [I2: nat] : ( set_ord_lessThan_nat @ T2 ) ) ) ) ).

% cube_def
thf(fact_332_cube__subset,axiom,
    ! [N: nat,T: nat] : ( ord_le9059583361652607317at_nat @ ( hales_cube @ N @ T ) @ ( hales_cube @ N @ ( plus_plus_nat @ T @ one_one_nat ) ) ) ).

% cube_subset
thf(fact_333_cube__restrict,axiom,
    ! [J2: nat,N: nat,Y2: nat > nat,T: nat] :
      ( ( ord_less_nat @ J2 @ N )
     => ( ( member_nat_nat @ Y2 @ ( hales_cube @ N @ T ) )
       => ( member_nat_nat @ ( restrict_nat_nat @ Y2 @ ( set_ord_lessThan_nat @ J2 ) ) @ ( hales_cube @ J2 @ T ) ) ) ) ).

% cube_restrict
thf(fact_334_fun__upd__def,axiom,
    ( fun_upd_nat_nat_nat2
    = ( ^ [F2: nat > nat > nat,A3: nat,B2: nat > nat,X3: nat] : ( if_nat_nat @ ( X3 = A3 ) @ B2 @ ( F2 @ X3 ) ) ) ) ).

% fun_upd_def
thf(fact_335_fun__upd__eqD,axiom,
    ! [F: nat > nat > nat,X2: nat,Y2: nat > nat,G: nat > nat > nat,Z2: nat > nat] :
      ( ( ( fun_upd_nat_nat_nat2 @ F @ X2 @ Y2 )
        = ( fun_upd_nat_nat_nat2 @ G @ X2 @ Z2 ) )
     => ( Y2 = Z2 ) ) ).

% fun_upd_eqD
thf(fact_336_PiE__ext,axiom,
    ! [X2: nat > nat > nat,K: set_nat,S2: nat > set_nat_nat,Y2: nat > nat > nat] :
      ( ( member_nat_nat_nat2 @ X2 @ ( piE_nat_nat_nat2 @ K @ S2 ) )
     => ( ( member_nat_nat_nat2 @ Y2 @ ( piE_nat_nat_nat2 @ K @ S2 ) )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ K )
             => ( ( X2 @ I3 )
                = ( Y2 @ I3 ) ) )
         => ( X2 = Y2 ) ) ) ) ).

% PiE_ext
thf(fact_337_PiE__ext,axiom,
    ! [X2: nat > nat,K: set_nat,S2: nat > set_nat,Y2: nat > nat] :
      ( ( member_nat_nat @ X2 @ ( piE_nat_nat @ K @ S2 ) )
     => ( ( member_nat_nat @ Y2 @ ( piE_nat_nat @ K @ S2 ) )
       => ( ! [I3: nat] :
              ( ( member_nat @ I3 @ K )
             => ( ( X2 @ I3 )
                = ( Y2 @ I3 ) ) )
         => ( X2 = Y2 ) ) ) ) ).

% PiE_ext
thf(fact_338_PiE__ext,axiom,
    ! [X2: ( nat > nat ) > nat,K: set_nat_nat,S2: ( nat > nat ) > set_nat,Y2: ( nat > nat ) > nat] :
      ( ( member_nat_nat_nat @ X2 @ ( piE_nat_nat_nat @ K @ S2 ) )
     => ( ( member_nat_nat_nat @ Y2 @ ( piE_nat_nat_nat @ K @ S2 ) )
       => ( ! [I3: nat > nat] :
              ( ( member_nat_nat @ I3 @ K )
             => ( ( X2 @ I3 )
                = ( Y2 @ I3 ) ) )
         => ( X2 = Y2 ) ) ) ) ).

% PiE_ext
thf(fact_339_PiE__ext,axiom,
    ! [X2: ( nat > nat ) > nat > nat,K: set_nat_nat,S2: ( nat > nat ) > set_nat_nat,Y2: ( nat > nat ) > nat > nat] :
      ( ( member952132173341509300at_nat @ X2 @ ( piE_nat_nat_nat_nat3 @ K @ S2 ) )
     => ( ( member952132173341509300at_nat @ Y2 @ ( piE_nat_nat_nat_nat3 @ K @ S2 ) )
       => ( ! [I3: nat > nat] :
              ( ( member_nat_nat @ I3 @ K )
             => ( ( X2 @ I3 )
                = ( Y2 @ I3 ) ) )
         => ( X2 = Y2 ) ) ) ) ).

% PiE_ext
thf(fact_340_PiE__mem,axiom,
    ! [F: nat > nat,S5: set_nat,T3: nat > set_nat,X2: nat] :
      ( ( member_nat_nat @ F @ ( piE_nat_nat @ S5 @ T3 ) )
     => ( ( member_nat @ X2 @ S5 )
       => ( member_nat @ ( F @ X2 ) @ ( T3 @ X2 ) ) ) ) ).

% PiE_mem
thf(fact_341_PiE__mem,axiom,
    ! [F: nat > nat > nat,S5: set_nat,T3: nat > set_nat_nat,X2: nat] :
      ( ( member_nat_nat_nat2 @ F @ ( piE_nat_nat_nat2 @ S5 @ T3 ) )
     => ( ( member_nat @ X2 @ S5 )
       => ( member_nat_nat @ ( F @ X2 ) @ ( T3 @ X2 ) ) ) ) ).

% PiE_mem
thf(fact_342_PiE__mem,axiom,
    ! [F: ( nat > nat ) > nat,S5: set_nat_nat,T3: ( nat > nat ) > set_nat,X2: nat > nat] :
      ( ( member_nat_nat_nat @ F @ ( piE_nat_nat_nat @ S5 @ T3 ) )
     => ( ( member_nat_nat @ X2 @ S5 )
       => ( member_nat @ ( F @ X2 ) @ ( T3 @ X2 ) ) ) ) ).

% PiE_mem
thf(fact_343_PiE__mem,axiom,
    ! [F: nat > nat > nat > nat,S5: set_nat,T3: nat > set_nat_nat_nat,X2: nat] :
      ( ( member17114558718834868at_nat @ F @ ( piE_nat_nat_nat_nat5 @ S5 @ T3 ) )
     => ( ( member_nat @ X2 @ S5 )
       => ( member_nat_nat_nat2 @ ( F @ X2 ) @ ( T3 @ X2 ) ) ) ) ).

% PiE_mem
thf(fact_344_PiE__mem,axiom,
    ! [F: nat > ( nat > nat ) > nat,S5: set_nat,T3: nat > set_nat_nat_nat2,X2: nat] :
      ( ( member2740455936716430260at_nat @ F @ ( piE_nat_nat_nat_nat4 @ S5 @ T3 ) )
     => ( ( member_nat @ X2 @ S5 )
       => ( member_nat_nat_nat @ ( F @ X2 ) @ ( T3 @ X2 ) ) ) ) ).

% PiE_mem
thf(fact_345_PiE__mem,axiom,
    ! [F: ( nat > nat > nat ) > nat,S5: set_nat_nat_nat,T3: ( nat > nat > nat ) > set_nat,X2: nat > nat > nat] :
      ( ( member5318315686745620148at_nat @ F @ ( piE_nat_nat_nat_nat2 @ S5 @ T3 ) )
     => ( ( member_nat_nat_nat2 @ X2 @ S5 )
       => ( member_nat @ ( F @ X2 ) @ ( T3 @ X2 ) ) ) ) ).

% PiE_mem
thf(fact_346_PiE__mem,axiom,
    ! [F: ( ( nat > nat ) > nat ) > nat,S5: set_nat_nat_nat2,T3: ( ( nat > nat ) > nat ) > set_nat,X2: ( nat > nat ) > nat] :
      ( ( member2991261302380110260at_nat @ F @ ( piE_nat_nat_nat_nat @ S5 @ T3 ) )
     => ( ( member_nat_nat_nat @ X2 @ S5 )
       => ( member_nat @ ( F @ X2 ) @ ( T3 @ X2 ) ) ) ) ).

% PiE_mem
thf(fact_347_PiE__mem,axiom,
    ! [F: ( nat > nat ) > nat > nat,S5: set_nat_nat,T3: ( nat > nat ) > set_nat_nat,X2: nat > nat] :
      ( ( member952132173341509300at_nat @ F @ ( piE_nat_nat_nat_nat3 @ S5 @ T3 ) )
     => ( ( member_nat_nat @ X2 @ S5 )
       => ( member_nat_nat @ ( F @ X2 ) @ ( T3 @ X2 ) ) ) ) ).

% PiE_mem
thf(fact_348_PiE__mem,axiom,
    ! [F: nat > ( nat > nat ) > nat > nat,S5: set_nat,T3: nat > set_nat_nat_nat_nat3,X2: nat] :
      ( ( member8743709692935548195at_nat @ F @ ( piE_na2748089427378204713at_nat @ S5 @ T3 ) )
     => ( ( member_nat @ X2 @ S5 )
       => ( member952132173341509300at_nat @ ( F @ X2 ) @ ( T3 @ X2 ) ) ) ) ).

% PiE_mem
thf(fact_349_PiE__mem,axiom,
    ! [F: ( nat > nat ) > nat > nat > nat,S5: set_nat_nat,T3: ( nat > nat ) > set_nat_nat_nat,X2: nat > nat] :
      ( ( member1679187572556404771at_nat @ F @ ( piE_na8678869062391380393at_nat @ S5 @ T3 ) )
     => ( ( member_nat_nat @ X2 @ S5 )
       => ( member_nat_nat_nat2 @ ( F @ X2 ) @ ( T3 @ X2 ) ) ) ) ).

% PiE_mem
thf(fact_350_fun__upd__idem,axiom,
    ! [F: nat > nat > nat,X2: nat,Y2: nat > nat] :
      ( ( ( F @ X2 )
        = Y2 )
     => ( ( fun_upd_nat_nat_nat2 @ F @ X2 @ Y2 )
        = F ) ) ).

% fun_upd_idem
thf(fact_351_fun__upd__same,axiom,
    ! [F: nat > nat > nat,X2: nat,Y2: nat > nat] :
      ( ( fun_upd_nat_nat_nat2 @ F @ X2 @ Y2 @ X2 )
      = Y2 ) ).

% fun_upd_same
thf(fact_352_PiE__cong,axiom,
    ! [I5: set_nat,A2: nat > set_nat_nat,B3: nat > set_nat_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ( A2 @ I3 )
            = ( B3 @ I3 ) ) )
     => ( ( piE_nat_nat_nat2 @ I5 @ A2 )
        = ( piE_nat_nat_nat2 @ I5 @ B3 ) ) ) ).

% PiE_cong
thf(fact_353_PiE__cong,axiom,
    ! [I5: set_nat,A2: nat > set_nat,B3: nat > set_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ( A2 @ I3 )
            = ( B3 @ I3 ) ) )
     => ( ( piE_nat_nat @ I5 @ A2 )
        = ( piE_nat_nat @ I5 @ B3 ) ) ) ).

% PiE_cong
thf(fact_354_PiE__cong,axiom,
    ! [I5: set_nat_nat,A2: ( nat > nat ) > set_nat,B3: ( nat > nat ) > set_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ I5 )
         => ( ( A2 @ I3 )
            = ( B3 @ I3 ) ) )
     => ( ( piE_nat_nat_nat @ I5 @ A2 )
        = ( piE_nat_nat_nat @ I5 @ B3 ) ) ) ).

% PiE_cong
thf(fact_355_PiE__cong,axiom,
    ! [I5: set_nat_nat,A2: ( nat > nat ) > set_nat_nat,B3: ( nat > nat ) > set_nat_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ I5 )
         => ( ( A2 @ I3 )
            = ( B3 @ I3 ) ) )
     => ( ( piE_nat_nat_nat_nat3 @ I5 @ A2 )
        = ( piE_nat_nat_nat_nat3 @ I5 @ B3 ) ) ) ).

% PiE_cong
thf(fact_356_fun__upd__other,axiom,
    ! [Z2: nat,X2: nat,F: nat > nat > nat,Y2: nat > nat] :
      ( ( Z2 != X2 )
     => ( ( fun_upd_nat_nat_nat2 @ F @ X2 @ Y2 @ Z2 )
        = ( F @ Z2 ) ) ) ).

% fun_upd_other
thf(fact_357_fun__upd__twist,axiom,
    ! [A: nat,C: nat,M: nat > nat > nat,B: nat > nat,D: nat > nat] :
      ( ( A != C )
     => ( ( fun_upd_nat_nat_nat2 @ ( fun_upd_nat_nat_nat2 @ M @ A @ B ) @ C @ D )
        = ( fun_upd_nat_nat_nat2 @ ( fun_upd_nat_nat_nat2 @ M @ C @ D ) @ A @ B ) ) ) ).

% fun_upd_twist
thf(fact_358_fun__upd__idem__iff,axiom,
    ! [F: nat > nat > nat,X2: nat,Y2: nat > nat] :
      ( ( ( fun_upd_nat_nat_nat2 @ F @ X2 @ Y2 )
        = F )
      = ( ( F @ X2 )
        = Y2 ) ) ).

% fun_upd_idem_iff
thf(fact_359_split__cube_I2_J,axiom,
    ! [X2: nat > nat,K: nat,T: nat] :
      ( ( member_nat_nat @ X2 @ ( hales_cube @ ( plus_plus_nat @ K @ one_one_nat ) @ T ) )
     => ( member_nat_nat
        @ ( restrict_nat_nat
          @ ^ [Y3: nat] : ( X2 @ ( plus_plus_nat @ Y3 @ one_one_nat ) )
          @ ( set_ord_lessThan_nat @ K ) )
        @ ( hales_cube @ K @ T ) ) ) ).

% split_cube(2)
thf(fact_360_split__cube_I1_J,axiom,
    ! [X2: nat > nat,K: nat,T: nat] :
      ( ( member_nat_nat @ X2 @ ( hales_cube @ ( plus_plus_nat @ K @ one_one_nat ) @ T ) )
     => ( member_nat_nat @ ( restrict_nat_nat @ X2 @ ( set_ord_lessThan_nat @ one_one_nat ) ) @ ( hales_cube @ one_one_nat @ T ) ) ) ).

% split_cube(1)
thf(fact_361_restrict__ext,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > nat > nat,G: ( nat > nat ) > nat > nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( ( F @ X )
            = ( G @ X ) ) )
     => ( ( restri4446420529079022766at_nat @ F @ A2 )
        = ( restri4446420529079022766at_nat @ G @ A2 ) ) ) ).

% restrict_ext
thf(fact_362_restrict__ext,axiom,
    ! [A2: set_nat,F: nat > nat,G: nat > nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( ( F @ X )
            = ( G @ X ) ) )
     => ( ( restrict_nat_nat @ F @ A2 )
        = ( restrict_nat_nat @ G @ A2 ) ) ) ).

% restrict_ext
thf(fact_363_restrict__ext,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > nat,G: ( nat > nat ) > nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( ( F @ X )
            = ( G @ X ) ) )
     => ( ( restrict_nat_nat_nat @ F @ A2 )
        = ( restrict_nat_nat_nat @ G @ A2 ) ) ) ).

% restrict_ext
thf(fact_364_restrict__ext,axiom,
    ! [A2: set_nat,F: nat > nat > nat,G: nat > nat > nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( ( F @ X )
            = ( G @ X ) ) )
     => ( ( restrict_nat_nat_nat2 @ F @ A2 )
        = ( restrict_nat_nat_nat2 @ G @ A2 ) ) ) ).

% restrict_ext
thf(fact_365_restrict__apply_H,axiom,
    ! [X2: nat > nat,A2: set_nat_nat,F: ( nat > nat ) > nat > nat] :
      ( ( member_nat_nat @ X2 @ A2 )
     => ( ( restri4446420529079022766at_nat @ F @ A2 @ X2 )
        = ( F @ X2 ) ) ) ).

% restrict_apply'
thf(fact_366_restrict__apply_H,axiom,
    ! [X2: nat,A2: set_nat,F: nat > nat] :
      ( ( member_nat @ X2 @ A2 )
     => ( ( restrict_nat_nat @ F @ A2 @ X2 )
        = ( F @ X2 ) ) ) ).

% restrict_apply'
thf(fact_367_restrict__apply_H,axiom,
    ! [X2: nat > nat,A2: set_nat_nat,F: ( nat > nat ) > nat] :
      ( ( member_nat_nat @ X2 @ A2 )
     => ( ( restrict_nat_nat_nat @ F @ A2 @ X2 )
        = ( F @ X2 ) ) ) ).

% restrict_apply'
thf(fact_368_restrict__apply_H,axiom,
    ! [X2: nat,A2: set_nat,F: nat > nat > nat] :
      ( ( member_nat @ X2 @ A2 )
     => ( ( restrict_nat_nat_nat2 @ F @ A2 @ X2 )
        = ( F @ X2 ) ) ) ).

% restrict_apply'
thf(fact_369_restrict__PiE__iff,axiom,
    ! [F: ( nat > nat ) > nat > nat,I5: set_nat_nat,X5: ( nat > nat ) > set_nat_nat] :
      ( ( member952132173341509300at_nat @ ( restri4446420529079022766at_nat @ F @ I5 ) @ ( piE_nat_nat_nat_nat3 @ I5 @ X5 ) )
      = ( ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
           => ( member_nat_nat @ ( F @ X3 ) @ ( X5 @ X3 ) ) ) ) ) ).

% restrict_PiE_iff
thf(fact_370_restrict__PiE__iff,axiom,
    ! [F: nat > nat,I5: set_nat,X5: nat > set_nat] :
      ( ( member_nat_nat @ ( restrict_nat_nat @ F @ I5 ) @ ( piE_nat_nat @ I5 @ X5 ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ( member_nat @ ( F @ X3 ) @ ( X5 @ X3 ) ) ) ) ) ).

% restrict_PiE_iff
thf(fact_371_restrict__PiE__iff,axiom,
    ! [F: ( nat > nat ) > nat,I5: set_nat_nat,X5: ( nat > nat ) > set_nat] :
      ( ( member_nat_nat_nat @ ( restrict_nat_nat_nat @ F @ I5 ) @ ( piE_nat_nat_nat @ I5 @ X5 ) )
      = ( ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
           => ( member_nat @ ( F @ X3 ) @ ( X5 @ X3 ) ) ) ) ) ).

% restrict_PiE_iff
thf(fact_372_restrict__PiE__iff,axiom,
    ! [F: nat > nat > nat,I5: set_nat,X5: nat > set_nat_nat] :
      ( ( member_nat_nat_nat2 @ ( restrict_nat_nat_nat2 @ F @ I5 ) @ ( piE_nat_nat_nat2 @ I5 @ X5 ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ( member_nat_nat @ ( F @ X3 ) @ ( X5 @ X3 ) ) ) ) ) ).

% restrict_PiE_iff
thf(fact_373_PiE__E,axiom,
    ! [F: nat > nat,A2: set_nat,B3: nat > set_nat,X2: nat] :
      ( ( member_nat_nat @ F @ ( piE_nat_nat @ A2 @ B3 ) )
     => ( ( ( member_nat @ X2 @ A2 )
         => ~ ( member_nat @ ( F @ X2 ) @ ( B3 @ X2 ) ) )
       => ~ ( ~ ( member_nat @ X2 @ A2 )
           => ( ( F @ X2 )
             != undefined_nat ) ) ) ) ).

% PiE_E
thf(fact_374_PiE__E,axiom,
    ! [F: nat > nat > nat,A2: set_nat,B3: nat > set_nat_nat,X2: nat] :
      ( ( member_nat_nat_nat2 @ F @ ( piE_nat_nat_nat2 @ A2 @ B3 ) )
     => ( ( ( member_nat @ X2 @ A2 )
         => ~ ( member_nat_nat @ ( F @ X2 ) @ ( B3 @ X2 ) ) )
       => ~ ( ~ ( member_nat @ X2 @ A2 )
           => ( ( F @ X2 )
             != undefined_nat_nat ) ) ) ) ).

% PiE_E
thf(fact_375_PiE__E,axiom,
    ! [F: ( nat > nat ) > nat,A2: set_nat_nat,B3: ( nat > nat ) > set_nat,X2: nat > nat] :
      ( ( member_nat_nat_nat @ F @ ( piE_nat_nat_nat @ A2 @ B3 ) )
     => ( ( ( member_nat_nat @ X2 @ A2 )
         => ~ ( member_nat @ ( F @ X2 ) @ ( B3 @ X2 ) ) )
       => ~ ( ~ ( member_nat_nat @ X2 @ A2 )
           => ( ( F @ X2 )
             != undefined_nat ) ) ) ) ).

% PiE_E
thf(fact_376_PiE__E,axiom,
    ! [F: nat > nat > nat > nat,A2: set_nat,B3: nat > set_nat_nat_nat,X2: nat] :
      ( ( member17114558718834868at_nat @ F @ ( piE_nat_nat_nat_nat5 @ A2 @ B3 ) )
     => ( ( ( member_nat @ X2 @ A2 )
         => ~ ( member_nat_nat_nat2 @ ( F @ X2 ) @ ( B3 @ X2 ) ) )
       => ~ ( ~ ( member_nat @ X2 @ A2 )
           => ( ( F @ X2 )
             != undefi6347502541616610502at_nat ) ) ) ) ).

% PiE_E
thf(fact_377_PiE__E,axiom,
    ! [F: nat > ( nat > nat ) > nat,A2: set_nat,B3: nat > set_nat_nat_nat2,X2: nat] :
      ( ( member2740455936716430260at_nat @ F @ ( piE_nat_nat_nat_nat4 @ A2 @ B3 ) )
     => ( ( ( member_nat @ X2 @ A2 )
         => ~ ( member_nat_nat_nat @ ( F @ X2 ) @ ( B3 @ X2 ) ) )
       => ~ ( ~ ( member_nat @ X2 @ A2 )
           => ( ( F @ X2 )
             != undefi5238134777187360710at_nat ) ) ) ) ).

% PiE_E
thf(fact_378_PiE__E,axiom,
    ! [F: ( nat > nat ) > nat > nat,A2: set_nat_nat,B3: ( nat > nat ) > set_nat_nat,X2: nat > nat] :
      ( ( member952132173341509300at_nat @ F @ ( piE_nat_nat_nat_nat3 @ A2 @ B3 ) )
     => ( ( ( member_nat_nat @ X2 @ A2 )
         => ~ ( member_nat_nat @ ( F @ X2 ) @ ( B3 @ X2 ) ) )
       => ~ ( ~ ( member_nat_nat @ X2 @ A2 )
           => ( ( F @ X2 )
             != undefined_nat_nat ) ) ) ) ).

% PiE_E
thf(fact_379_PiE__E,axiom,
    ! [F: ( nat > nat > nat ) > nat,A2: set_nat_nat_nat,B3: ( nat > nat > nat ) > set_nat,X2: nat > nat > nat] :
      ( ( member5318315686745620148at_nat @ F @ ( piE_nat_nat_nat_nat2 @ A2 @ B3 ) )
     => ( ( ( member_nat_nat_nat2 @ X2 @ A2 )
         => ~ ( member_nat @ ( F @ X2 ) @ ( B3 @ X2 ) ) )
       => ~ ( ~ ( member_nat_nat_nat2 @ X2 @ A2 )
           => ( ( F @ X2 )
             != undefined_nat ) ) ) ) ).

% PiE_E
thf(fact_380_PiE__E,axiom,
    ! [F: ( ( nat > nat ) > nat ) > nat,A2: set_nat_nat_nat2,B3: ( ( nat > nat ) > nat ) > set_nat,X2: ( nat > nat ) > nat] :
      ( ( member2991261302380110260at_nat @ F @ ( piE_nat_nat_nat_nat @ A2 @ B3 ) )
     => ( ( ( member_nat_nat_nat @ X2 @ A2 )
         => ~ ( member_nat @ ( F @ X2 ) @ ( B3 @ X2 ) ) )
       => ~ ( ~ ( member_nat_nat_nat @ X2 @ A2 )
           => ( ( F @ X2 )
             != undefined_nat ) ) ) ) ).

% PiE_E
thf(fact_381_PiE__E,axiom,
    ! [F: nat > ( nat > nat ) > nat > nat,A2: set_nat,B3: nat > set_nat_nat_nat_nat3,X2: nat] :
      ( ( member8743709692935548195at_nat @ F @ ( piE_na2748089427378204713at_nat @ A2 @ B3 ) )
     => ( ( ( member_nat @ X2 @ A2 )
         => ~ ( member952132173341509300at_nat @ ( F @ X2 ) @ ( B3 @ X2 ) ) )
       => ~ ( ~ ( member_nat @ X2 @ A2 )
           => ( ( F @ X2 )
             != undefi5080129371236079925at_nat ) ) ) ) ).

% PiE_E
thf(fact_382_PiE__E,axiom,
    ! [F: ( nat > nat ) > nat > nat > nat,A2: set_nat_nat,B3: ( nat > nat ) > set_nat_nat_nat,X2: nat > nat] :
      ( ( member1679187572556404771at_nat @ F @ ( piE_na8678869062391380393at_nat @ A2 @ B3 ) )
     => ( ( ( member_nat_nat @ X2 @ A2 )
         => ~ ( member_nat_nat_nat2 @ ( F @ X2 ) @ ( B3 @ X2 ) ) )
       => ~ ( ~ ( member_nat_nat @ X2 @ A2 )
           => ( ( F @ X2 )
             != undefi6347502541616610502at_nat ) ) ) ) ).

% PiE_E
thf(fact_383_PiE__arb,axiom,
    ! [F: nat > nat > nat,S5: set_nat,T3: nat > set_nat_nat,X2: nat] :
      ( ( member_nat_nat_nat2 @ F @ ( piE_nat_nat_nat2 @ S5 @ T3 ) )
     => ( ~ ( member_nat @ X2 @ S5 )
       => ( ( F @ X2 )
          = undefined_nat_nat ) ) ) ).

% PiE_arb
thf(fact_384_PiE__arb,axiom,
    ! [F: ( nat > nat ) > nat > nat,S5: set_nat_nat,T3: ( nat > nat ) > set_nat_nat,X2: nat > nat] :
      ( ( member952132173341509300at_nat @ F @ ( piE_nat_nat_nat_nat3 @ S5 @ T3 ) )
     => ( ~ ( member_nat_nat @ X2 @ S5 )
       => ( ( F @ X2 )
          = undefined_nat_nat ) ) ) ).

% PiE_arb
thf(fact_385_PiE__arb,axiom,
    ! [F: ( nat > nat > nat ) > nat,S5: set_nat_nat_nat,T3: ( nat > nat > nat ) > set_nat,X2: nat > nat > nat] :
      ( ( member5318315686745620148at_nat @ F @ ( piE_nat_nat_nat_nat2 @ S5 @ T3 ) )
     => ( ~ ( member_nat_nat_nat2 @ X2 @ S5 )
       => ( ( F @ X2 )
          = undefined_nat ) ) ) ).

% PiE_arb
thf(fact_386_PiE__arb,axiom,
    ! [F: ( ( nat > nat ) > nat ) > nat,S5: set_nat_nat_nat2,T3: ( ( nat > nat ) > nat ) > set_nat,X2: ( nat > nat ) > nat] :
      ( ( member2991261302380110260at_nat @ F @ ( piE_nat_nat_nat_nat @ S5 @ T3 ) )
     => ( ~ ( member_nat_nat_nat @ X2 @ S5 )
       => ( ( F @ X2 )
          = undefined_nat ) ) ) ).

% PiE_arb
thf(fact_387_PiE__arb,axiom,
    ! [F: ( ( nat > nat ) > nat > nat ) > nat,S5: set_nat_nat_nat_nat3,T3: ( ( nat > nat ) > nat > nat ) > set_nat,X2: ( nat > nat ) > nat > nat] :
      ( ( member8855473571630667299at_nat @ F @ ( piE_na4548495224246695081at_nat @ S5 @ T3 ) )
     => ( ~ ( member952132173341509300at_nat @ X2 @ S5 )
       => ( ( F @ X2 )
          = undefined_nat ) ) ) ).

% PiE_arb
thf(fact_388_PiE__arb,axiom,
    ! [F: nat > nat,S5: set_nat,T3: nat > set_nat,X2: nat] :
      ( ( member_nat_nat @ F @ ( piE_nat_nat @ S5 @ T3 ) )
     => ( ~ ( member_nat @ X2 @ S5 )
       => ( ( F @ X2 )
          = undefined_nat ) ) ) ).

% PiE_arb
thf(fact_389_PiE__arb,axiom,
    ! [F: ( nat > nat ) > nat,S5: set_nat_nat,T3: ( nat > nat ) > set_nat,X2: nat > nat] :
      ( ( member_nat_nat_nat @ F @ ( piE_nat_nat_nat @ S5 @ T3 ) )
     => ( ~ ( member_nat_nat @ X2 @ S5 )
       => ( ( F @ X2 )
          = undefined_nat ) ) ) ).

% PiE_arb
thf(fact_390_restrict__def,axiom,
    ( restri2154675885335628590at_nat
    = ( ^ [F2: ( nat > nat > nat ) > nat,A6: set_nat_nat_nat,X3: nat > nat > nat] : ( if_nat @ ( member_nat_nat_nat2 @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat ) ) ) ).

% restrict_def
thf(fact_391_restrict__def,axiom,
    ( restri9050993537824894510at_nat
    = ( ^ [F2: ( ( nat > nat ) > nat ) > nat,A6: set_nat_nat_nat2,X3: ( nat > nat ) > nat] : ( if_nat @ ( member_nat_nat_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat ) ) ) ).

% restrict_def
thf(fact_392_restrict__def,axiom,
    ( restri2990705262542023965at_nat
    = ( ^ [F2: ( ( nat > nat ) > nat > nat ) > nat,A6: set_nat_nat_nat_nat3,X3: ( nat > nat ) > nat > nat] : ( if_nat @ ( member952132173341509300at_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat ) ) ) ).

% restrict_def
thf(fact_393_restrict__def,axiom,
    ( restri4446420529079022766at_nat
    = ( ^ [F2: ( nat > nat ) > nat > nat,A6: set_nat_nat,X3: nat > nat] : ( if_nat_nat @ ( member_nat_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat_nat ) ) ) ).

% restrict_def
thf(fact_394_restrict__def,axiom,
    ( restrict_nat_nat
    = ( ^ [F2: nat > nat,A6: set_nat,X3: nat] : ( if_nat @ ( member_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat ) ) ) ).

% restrict_def
thf(fact_395_restrict__def,axiom,
    ( restrict_nat_nat_nat
    = ( ^ [F2: ( nat > nat ) > nat,A6: set_nat_nat,X3: nat > nat] : ( if_nat @ ( member_nat_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat ) ) ) ).

% restrict_def
thf(fact_396_restrict__def,axiom,
    ( restrict_nat_nat_nat2
    = ( ^ [F2: nat > nat > nat,A6: set_nat,X3: nat] : ( if_nat_nat @ ( member_nat @ X3 @ A6 ) @ ( F2 @ X3 ) @ undefined_nat_nat ) ) ) ).

% restrict_def
thf(fact_397_asm_I2_J,axiom,
    ( member_nat_nat_nat @ chi
    @ ( piE_nat_nat_nat @ ( hales_cube @ n @ ( plus_plus_nat @ t @ one_one_nat ) )
      @ ^ [I2: nat > nat] : ( set_ord_lessThan_nat @ r ) ) ) ).

% asm(2)
thf(fact_398_psubsetI,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ( A2 != B3 )
       => ( ord_less_set_nat_nat @ A2 @ B3 ) ) ) ).

% psubsetI
thf(fact_399_N__def,axiom,
    ( ( ord_less_nat @ zero_zero_nat @ n2 )
    & ! [N4: nat] :
        ( ( ord_less_eq_nat @ n2 @ N4 )
       => ! [Chi: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ Chi
              @ ( piE_nat_nat_nat @ ( hales_cube @ N4 @ t )
                @ ^ [I2: nat > nat] : ( set_ord_lessThan_nat @ r ) ) )
           => ? [L4: nat > nat > nat,C2: nat] :
                ( ( ord_less_nat @ C2 @ r )
                & ( hales_is_line @ L4 @ N4 @ t )
                & ! [X4: nat > nat] :
                    ( ( member_nat_nat @ X4 @ ( image_nat_nat_nat2 @ L4 @ ( set_ord_lessThan_nat @ t ) ) )
                   => ( ( Chi @ X4 )
                      = C2 ) ) ) ) ) ) ).

% N_def
thf(fact_400_lhj__def,axiom,
    ( hales_lhj
    = ( ^ [R2: nat,T2: nat,K3: nat] :
        ? [N5: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N5 )
          & ! [N6: nat] :
              ( ( ord_less_eq_nat @ N5 @ N6 )
             => ! [Chi2: ( nat > nat ) > nat] :
                  ( ( member_nat_nat_nat @ Chi2
                    @ ( piE_nat_nat_nat @ ( hales_cube @ N6 @ ( plus_plus_nat @ T2 @ one_one_nat ) )
                      @ ^ [I2: nat > nat] : ( set_ord_lessThan_nat @ R2 ) ) )
                 => ? [S6: ( nat > nat ) > nat > nat] : ( hales_4261547300027266985ce_nat @ S6 @ K3 @ N6 @ T2 @ R2 @ Chi2 ) ) ) ) ) ) ).

% lhj_def
thf(fact_401_dim0__layered__subspace__ex,axiom,
    ! [Chi3: ( nat > nat ) > nat,N: nat,T: nat,R3: nat] :
      ( ( member_nat_nat_nat @ Chi3
        @ ( piE_nat_nat_nat @ ( hales_cube @ N @ ( plus_plus_nat @ T @ one_one_nat ) )
          @ ^ [I2: nat > nat] : ( set_ord_lessThan_nat @ R3 ) ) )
     => ? [S3: ( nat > nat ) > nat > nat] : ( hales_4261547300027266985ce_nat @ S3 @ zero_zero_nat @ N @ T @ R3 @ Chi3 ) ) ).

% dim0_layered_subspace_ex
thf(fact_402_hj__def,axiom,
    ( hales_hj
    = ( ^ [R2: nat,T2: nat] :
        ? [N5: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ N5 )
          & ! [N6: nat] :
              ( ( ord_less_eq_nat @ N5 @ N6 )
             => ! [Chi2: ( nat > nat ) > nat] :
                  ( ( member_nat_nat_nat @ Chi2
                    @ ( piE_nat_nat_nat @ ( hales_cube @ N6 @ T2 )
                      @ ^ [I2: nat > nat] : ( set_ord_lessThan_nat @ R2 ) ) )
                 => ? [L3: nat > nat > nat,C3: nat] :
                      ( ( ord_less_nat @ C3 @ R2 )
                      & ( hales_is_line @ L3 @ N6 @ T2 )
                      & ! [X3: nat > nat] :
                          ( ( member_nat_nat @ X3 @ ( image_nat_nat_nat2 @ L3 @ ( set_ord_lessThan_nat @ T2 ) ) )
                         => ( ( Chi2 @ X3 )
                            = C3 ) ) ) ) ) ) ) ) ).

% hj_def
thf(fact_403_subsetI,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member_nat @ X @ B3 ) )
     => ( ord_less_eq_set_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_404_subsetI,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat_nat_nat] :
      ( ! [X: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ X @ A2 )
         => ( member_nat_nat_nat2 @ X @ B3 ) )
     => ( ord_le3211623285424100676at_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_405_subsetI,axiom,
    ! [A2: set_nat_nat_nat2,B3: set_nat_nat_nat2] :
      ( ! [X: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ X @ A2 )
         => ( member_nat_nat_nat @ X @ B3 ) )
     => ( ord_le5934964663421696068at_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_406_subsetI,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3] :
      ( ! [X: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ X @ A2 )
         => ( member952132173341509300at_nat @ X @ B3 ) )
     => ( ord_le5260717879541182899at_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_407_subsetI,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( member_nat_nat @ X @ B3 ) )
     => ( ord_le9059583361652607317at_nat @ A2 @ B3 ) ) ).

% subsetI
thf(fact_408_subset__antisym,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ( ord_le9059583361652607317at_nat @ B3 @ A2 )
       => ( A2 = B3 ) ) ) ).

% subset_antisym
thf(fact_409_image__ident,axiom,
    ! [Y5: set_nat_nat] :
      ( ( image_3205354838064109189at_nat
        @ ^ [X3: nat > nat] : X3
        @ Y5 )
      = Y5 ) ).

% image_ident
thf(fact_410_image__ident,axiom,
    ! [Y5: set_nat] :
      ( ( image_nat_nat
        @ ^ [X3: nat] : X3
        @ Y5 )
      = Y5 ) ).

% image_ident
thf(fact_411_L__def,axiom,
    ( ( hales_is_line @ l2 @ n @ t )
    & ? [C2: nat] :
        ( ( ord_less_nat @ C2 @ r )
        & ! [X4: nat > nat] :
            ( ( member_nat_nat @ X4 @ ( image_nat_nat_nat2 @ l2 @ ( set_ord_lessThan_nat @ t ) ) )
           => ( ( restrict_nat_nat_nat @ chi @ ( hales_cube @ n @ t ) @ X4 )
              = C2 ) ) ) ) ).

% L_def
thf(fact_412_image__restrict__eq,axiom,
    ! [F: nat > set_nat,A2: set_nat] :
      ( ( image_nat_set_nat @ ( restrict_nat_set_nat @ F @ A2 ) @ A2 )
      = ( image_nat_set_nat @ F @ A2 ) ) ).

% image_restrict_eq
thf(fact_413_image__restrict__eq,axiom,
    ! [F: ( nat > nat ) > nat > nat,A2: set_nat_nat] :
      ( ( image_3205354838064109189at_nat @ ( restri4446420529079022766at_nat @ F @ A2 ) @ A2 )
      = ( image_3205354838064109189at_nat @ F @ A2 ) ) ).

% image_restrict_eq
thf(fact_414_image__restrict__eq,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( image_nat_nat @ ( restrict_nat_nat @ F @ A2 ) @ A2 )
      = ( image_nat_nat @ F @ A2 ) ) ).

% image_restrict_eq
thf(fact_415_image__restrict__eq,axiom,
    ! [F: ( nat > nat ) > nat,A2: set_nat_nat] :
      ( ( image_nat_nat_nat @ ( restrict_nat_nat_nat @ F @ A2 ) @ A2 )
      = ( image_nat_nat_nat @ F @ A2 ) ) ).

% image_restrict_eq
thf(fact_416_image__restrict__eq,axiom,
    ! [F: nat > nat > nat,A2: set_nat] :
      ( ( image_nat_nat_nat2 @ ( restrict_nat_nat_nat2 @ F @ A2 ) @ A2 )
      = ( image_nat_nat_nat2 @ F @ A2 ) ) ).

% image_restrict_eq
thf(fact_417_image__add__0,axiom,
    ! [S5: set_nat] :
      ( ( image_nat_nat @ ( plus_plus_nat @ zero_zero_nat ) @ S5 )
      = S5 ) ).

% image_add_0
thf(fact_418__092_060open_062restrict_A_092_060chi_062_A_Icube_AN_H_At_J_A_092_060in_062_Acube_AN_H_At_A_092_060rightarrow_062_092_060_094sub_062E_A_123_O_O_060r_125_092_060close_062,axiom,
    ( member_nat_nat_nat @ ( restrict_nat_nat_nat @ chi @ ( hales_cube @ n @ t ) )
    @ ( piE_nat_nat_nat @ ( hales_cube @ n @ t )
      @ ^ [I2: nat > nat] : ( set_ord_lessThan_nat @ r ) ) ) ).

% \<open>restrict \<chi> (cube N' t) \<in> cube N' t \<rightarrow>\<^sub>E {..<r}\<close>
thf(fact_419__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062N_O_A0_A_060_AN_A_092_060and_062_A_I_092_060forall_062N_H_092_060ge_062N_O_A_092_060forall_062_092_060chi_062_O_A_092_060chi_062_A_092_060in_062_Acube_AN_H_At_A_092_060rightarrow_062_092_060_094sub_062E_A_123_O_O_060r_125_A_092_060longrightarrow_062_A_I_092_060exists_062L_Ac_O_Ac_A_060_Ar_A_092_060and_062_Ais__line_AL_AN_H_At_A_092_060and_062_A_I_092_060forall_062y_092_060in_062L_A_096_A_123_O_O_060t_125_O_A_092_060chi_062_Ay_A_061_Ac_J_J_J_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [N7: nat] :
        ~ ( ( ord_less_nat @ zero_zero_nat @ N7 )
          & ! [N4: nat] :
              ( ( ord_less_eq_nat @ N7 @ N4 )
             => ! [Chi: ( nat > nat ) > nat] :
                  ( ( member_nat_nat_nat @ Chi
                    @ ( piE_nat_nat_nat @ ( hales_cube @ N4 @ t )
                      @ ^ [I2: nat > nat] : ( set_ord_lessThan_nat @ r ) ) )
                 => ? [L4: nat > nat > nat,C2: nat] :
                      ( ( ord_less_nat @ C2 @ r )
                      & ( hales_is_line @ L4 @ N4 @ t )
                      & ! [X4: nat > nat] :
                          ( ( member_nat_nat @ X4 @ ( image_nat_nat_nat2 @ L4 @ ( set_ord_lessThan_nat @ t ) ) )
                         => ( ( Chi @ X4 )
                            = C2 ) ) ) ) ) ) ).

% \<open>\<And>thesis. (\<And>N. 0 < N \<and> (\<forall>N'\<ge>N. \<forall>\<chi>. \<chi> \<in> cube N' t \<rightarrow>\<^sub>E {..<r} \<longrightarrow> (\<exists>L c. c < r \<and> is_line L N' t \<and> (\<forall>y\<in>L ` {..<t}. \<chi> y = c))) \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_420_N_H__props,axiom,
    ( ( ord_less_nat @ zero_zero_nat @ n )
    & ! [Chi: ( nat > nat ) > nat] :
        ( ( member_nat_nat_nat @ Chi
          @ ( piE_nat_nat_nat @ ( hales_cube @ n @ t )
            @ ^ [I2: nat > nat] : ( set_ord_lessThan_nat @ r ) ) )
       => ? [L4: nat > nat > nat,C2: nat] :
            ( ( ord_less_nat @ C2 @ r )
            & ( hales_is_line @ L4 @ n @ t )
            & ! [X4: nat > nat] :
                ( ( member_nat_nat @ X4 @ ( image_nat_nat_nat2 @ L4 @ ( set_ord_lessThan_nat @ t ) ) )
               => ( ( Chi @ X4 )
                  = C2 ) ) ) ) ) ).

% N'_props
thf(fact_421__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062L_O_Ais__line_AL_AN_H_At_A_092_060and_062_A_I_092_060exists_062c_060r_O_A_092_060forall_062y_092_060in_062L_A_096_A_123_O_O_060t_125_O_Arestrict_A_092_060chi_062_A_Icube_AN_H_At_J_Ay_A_061_Ac_J_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [L4: nat > nat > nat] :
        ~ ( ( hales_is_line @ L4 @ n @ t )
          & ? [C2: nat] :
              ( ( ord_less_nat @ C2 @ r )
              & ! [X4: nat > nat] :
                  ( ( member_nat_nat @ X4 @ ( image_nat_nat_nat2 @ L4 @ ( set_ord_lessThan_nat @ t ) ) )
                 => ( ( restrict_nat_nat_nat @ chi @ ( hales_cube @ n @ t ) @ X4 )
                    = C2 ) ) ) ) ).

% \<open>\<And>thesis. (\<And>L. is_line L N' t \<and> (\<exists>c<r. \<forall>y\<in>L ` {..<t}. restrict \<chi> (cube N' t) y = c) \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_422_image__diff__subset,axiom,
    ! [F: nat > set_nat,A2: set_nat,B3: set_nat] : ( ord_le6893508408891458716et_nat @ ( minus_2163939370556025621et_nat @ ( image_nat_set_nat @ F @ A2 ) @ ( image_nat_set_nat @ F @ B3 ) ) @ ( image_nat_set_nat @ F @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ).

% image_diff_subset
thf(fact_423_image__diff__subset,axiom,
    ! [F: nat > nat,A2: set_nat,B3: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B3 ) ) @ ( image_nat_nat @ F @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ).

% image_diff_subset
thf(fact_424_image__diff__subset,axiom,
    ! [F: nat > nat > nat,A2: set_nat,B3: set_nat] : ( ord_le9059583361652607317at_nat @ ( minus_8121590178497047118at_nat @ ( image_nat_nat_nat2 @ F @ A2 ) @ ( image_nat_nat_nat2 @ F @ B3 ) ) @ ( image_nat_nat_nat2 @ F @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ).

% image_diff_subset
thf(fact_425_image__diff__subset,axiom,
    ! [F: ( nat > nat ) > nat > nat,A2: set_nat_nat,B3: set_nat_nat] : ( ord_le9059583361652607317at_nat @ ( minus_8121590178497047118at_nat @ ( image_3205354838064109189at_nat @ F @ A2 ) @ ( image_3205354838064109189at_nat @ F @ B3 ) ) @ ( image_3205354838064109189at_nat @ F @ ( minus_8121590178497047118at_nat @ A2 @ B3 ) ) ) ).

% image_diff_subset
thf(fact_426_subset__image__iff,axiom,
    ! [B3: set_set_nat,F: nat > set_nat,A2: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ B3 @ ( image_nat_set_nat @ F @ A2 ) )
      = ( ? [AA: set_nat] :
            ( ( ord_less_eq_set_nat @ AA @ A2 )
            & ( B3
              = ( image_nat_set_nat @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_427_subset__image__iff,axiom,
    ! [B3: set_nat,F: nat > nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B3 @ ( image_nat_nat @ F @ A2 ) )
      = ( ? [AA: set_nat] :
            ( ( ord_less_eq_set_nat @ AA @ A2 )
            & ( B3
              = ( image_nat_nat @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_428_subset__image__iff,axiom,
    ! [B3: set_nat_nat,F: nat > nat > nat,A2: set_nat] :
      ( ( ord_le9059583361652607317at_nat @ B3 @ ( image_nat_nat_nat2 @ F @ A2 ) )
      = ( ? [AA: set_nat] :
            ( ( ord_less_eq_set_nat @ AA @ A2 )
            & ( B3
              = ( image_nat_nat_nat2 @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_429_subset__image__iff,axiom,
    ! [B3: set_nat_nat,F: ( nat > nat ) > nat > nat,A2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ B3 @ ( image_3205354838064109189at_nat @ F @ A2 ) )
      = ( ? [AA: set_nat_nat] :
            ( ( ord_le9059583361652607317at_nat @ AA @ A2 )
            & ( B3
              = ( image_3205354838064109189at_nat @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_430_image__subset__iff,axiom,
    ! [F: nat > set_nat,A2: set_nat,B3: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( image_nat_set_nat @ F @ A2 ) @ B3 )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( member_set_nat @ ( F @ X3 ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_431_image__subset__iff,axiom,
    ! [F: nat > nat,A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B3 )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( member_nat @ ( F @ X3 ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_432_image__subset__iff,axiom,
    ! [F: nat > nat > nat,A2: set_nat,B3: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ ( image_nat_nat_nat2 @ F @ A2 ) @ B3 )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( member_nat_nat @ ( F @ X3 ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_433_image__subset__iff,axiom,
    ! [F: ( nat > nat ) > nat > nat,A2: set_nat_nat,B3: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ ( image_3205354838064109189at_nat @ F @ A2 ) @ B3 )
      = ( ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ A2 )
           => ( member_nat_nat @ ( F @ X3 ) @ B3 ) ) ) ) ).

% image_subset_iff
thf(fact_434_subset__imageE,axiom,
    ! [B3: set_set_nat,F: nat > set_nat,A2: set_nat] :
      ( ( ord_le6893508408891458716et_nat @ B3 @ ( image_nat_set_nat @ F @ A2 ) )
     => ~ ! [C5: set_nat] :
            ( ( ord_less_eq_set_nat @ C5 @ A2 )
           => ( B3
             != ( image_nat_set_nat @ F @ C5 ) ) ) ) ).

% subset_imageE
thf(fact_435_subset__imageE,axiom,
    ! [B3: set_nat,F: nat > nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B3 @ ( image_nat_nat @ F @ A2 ) )
     => ~ ! [C5: set_nat] :
            ( ( ord_less_eq_set_nat @ C5 @ A2 )
           => ( B3
             != ( image_nat_nat @ F @ C5 ) ) ) ) ).

% subset_imageE
thf(fact_436_subset__imageE,axiom,
    ! [B3: set_nat_nat,F: nat > nat > nat,A2: set_nat] :
      ( ( ord_le9059583361652607317at_nat @ B3 @ ( image_nat_nat_nat2 @ F @ A2 ) )
     => ~ ! [C5: set_nat] :
            ( ( ord_less_eq_set_nat @ C5 @ A2 )
           => ( B3
             != ( image_nat_nat_nat2 @ F @ C5 ) ) ) ) ).

% subset_imageE
thf(fact_437_subset__imageE,axiom,
    ! [B3: set_nat_nat,F: ( nat > nat ) > nat > nat,A2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ B3 @ ( image_3205354838064109189at_nat @ F @ A2 ) )
     => ~ ! [C5: set_nat_nat] :
            ( ( ord_le9059583361652607317at_nat @ C5 @ A2 )
           => ( B3
             != ( image_3205354838064109189at_nat @ F @ C5 ) ) ) ) ).

% subset_imageE
thf(fact_438_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > nat,B3: set_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member_nat @ ( F @ X ) @ B3 ) )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_439_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > set_nat,B3: set_set_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member_set_nat @ ( F @ X ) @ B3 ) )
     => ( ord_le6893508408891458716et_nat @ ( image_nat_set_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_440_image__subsetI,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > nat,B3: set_nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( member_nat @ ( F @ X ) @ B3 ) )
     => ( ord_less_eq_set_nat @ ( image_nat_nat_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_441_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > nat > nat,B3: set_nat_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member_nat_nat @ ( F @ X ) @ B3 ) )
     => ( ord_le9059583361652607317at_nat @ ( image_nat_nat_nat2 @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_442_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > nat > nat > nat,B3: set_nat_nat_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member_nat_nat_nat2 @ ( F @ X ) @ B3 ) )
     => ( ord_le3211623285424100676at_nat @ ( image_6919068903512877573at_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_443_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > ( nat > nat ) > nat,B3: set_nat_nat_nat2] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member_nat_nat_nat @ ( F @ X ) @ B3 ) )
     => ( ord_le5934964663421696068at_nat @ ( image_5809701139083627781at_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_444_image__subsetI,axiom,
    ! [A2: set_nat_nat_nat,F: ( nat > nat > nat ) > nat,B3: set_nat] :
      ( ! [X: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ X @ A2 )
         => ( member_nat @ ( F @ X ) @ B3 ) )
     => ( ord_less_eq_set_nat @ ( image_913610194320715013at_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_445_image__subsetI,axiom,
    ! [A2: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > nat,B3: set_nat] :
      ( ! [X: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ X @ A2 )
         => ( member_nat @ ( F @ X ) @ B3 ) )
     => ( ord_less_eq_set_nat @ ( image_7809927846809980933at_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_446_image__subsetI,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > nat > nat,B3: set_nat_nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( member_nat_nat @ ( F @ X ) @ B3 ) )
     => ( ord_le9059583361652607317at_nat @ ( image_3205354838064109189at_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_447_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > ( nat > nat ) > nat > nat,B3: set_nat_nat_nat_nat3] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( member952132173341509300at_nat @ ( F @ X ) @ B3 ) )
     => ( ord_le5260717879541182899at_nat @ ( image_6393715451659844596at_nat @ F @ A2 ) @ B3 ) ) ).

% image_subsetI
thf(fact_448_image__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ord_le6893508408891458716et_nat @ ( image_nat_set_nat @ F @ A2 ) @ ( image_nat_set_nat @ F @ B3 ) ) ) ).

% image_mono
thf(fact_449_image__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B3 ) ) ) ).

% image_mono
thf(fact_450_image__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > nat > nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ord_le9059583361652607317at_nat @ ( image_nat_nat_nat2 @ F @ A2 ) @ ( image_nat_nat_nat2 @ F @ B3 ) ) ) ).

% image_mono
thf(fact_451_image__mono,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,F: ( nat > nat ) > nat > nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ord_le9059583361652607317at_nat @ ( image_3205354838064109189at_nat @ F @ A2 ) @ ( image_3205354838064109189at_nat @ F @ B3 ) ) ) ).

% image_mono
thf(fact_452_Compr__image__eq,axiom,
    ! [F: nat > nat,A2: set_nat,P: nat > $o] :
      ( ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ ( image_nat_nat @ F @ A2 ) )
            & ( P @ X3 ) ) )
      = ( image_nat_nat @ F
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_453_Compr__image__eq,axiom,
    ! [F: nat > set_nat,A2: set_nat,P: set_nat > $o] :
      ( ( collect_set_nat
        @ ^ [X3: set_nat] :
            ( ( member_set_nat @ X3 @ ( image_nat_set_nat @ F @ A2 ) )
            & ( P @ X3 ) ) )
      = ( image_nat_set_nat @ F
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_454_Compr__image__eq,axiom,
    ! [F: ( nat > nat ) > nat,A2: set_nat_nat,P: nat > $o] :
      ( ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ ( image_nat_nat_nat @ F @ A2 ) )
            & ( P @ X3 ) ) )
      = ( image_nat_nat_nat @ F
        @ ( collect_nat_nat
          @ ^ [X3: nat > nat] :
              ( ( member_nat_nat @ X3 @ A2 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_455_Compr__image__eq,axiom,
    ! [F: nat > nat > nat,A2: set_nat,P: ( nat > nat ) > $o] :
      ( ( collect_nat_nat
        @ ^ [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ ( image_nat_nat_nat2 @ F @ A2 ) )
            & ( P @ X3 ) ) )
      = ( image_nat_nat_nat2 @ F
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_456_Compr__image__eq,axiom,
    ! [F: ( nat > nat > nat ) > nat,A2: set_nat_nat_nat,P: nat > $o] :
      ( ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ ( image_913610194320715013at_nat @ F @ A2 ) )
            & ( P @ X3 ) ) )
      = ( image_913610194320715013at_nat @ F
        @ ( collect_nat_nat_nat2
          @ ^ [X3: nat > nat > nat] :
              ( ( member_nat_nat_nat2 @ X3 @ A2 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_457_Compr__image__eq,axiom,
    ! [F: ( ( nat > nat ) > nat ) > nat,A2: set_nat_nat_nat2,P: nat > $o] :
      ( ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ ( image_7809927846809980933at_nat @ F @ A2 ) )
            & ( P @ X3 ) ) )
      = ( image_7809927846809980933at_nat @ F
        @ ( collect_nat_nat_nat
          @ ^ [X3: ( nat > nat ) > nat] :
              ( ( member_nat_nat_nat @ X3 @ A2 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_458_Compr__image__eq,axiom,
    ! [F: nat > nat > nat > nat,A2: set_nat,P: ( nat > nat > nat ) > $o] :
      ( ( collect_nat_nat_nat2
        @ ^ [X3: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X3 @ ( image_6919068903512877573at_nat @ F @ A2 ) )
            & ( P @ X3 ) ) )
      = ( image_6919068903512877573at_nat @ F
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_459_Compr__image__eq,axiom,
    ! [F: nat > ( nat > nat ) > nat,A2: set_nat,P: ( ( nat > nat ) > nat ) > $o] :
      ( ( collect_nat_nat_nat
        @ ^ [X3: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X3 @ ( image_5809701139083627781at_nat @ F @ A2 ) )
            & ( P @ X3 ) ) )
      = ( image_5809701139083627781at_nat @ F
        @ ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_460_Compr__image__eq,axiom,
    ! [F: ( nat > nat ) > nat > nat,A2: set_nat_nat,P: ( nat > nat ) > $o] :
      ( ( collect_nat_nat
        @ ^ [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ ( image_3205354838064109189at_nat @ F @ A2 ) )
            & ( P @ X3 ) ) )
      = ( image_3205354838064109189at_nat @ F
        @ ( collect_nat_nat
          @ ^ [X3: nat > nat] :
              ( ( member_nat_nat @ X3 @ A2 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_461_Compr__image__eq,axiom,
    ! [F: ( ( nat > nat ) > nat > nat ) > nat,A2: set_nat_nat_nat_nat3,P: nat > $o] :
      ( ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ ( image_8194121248528334964at_nat @ F @ A2 ) )
            & ( P @ X3 ) ) )
      = ( image_8194121248528334964at_nat @ F
        @ ( collec3567154360959927026at_nat
          @ ^ [X3: ( nat > nat ) > nat > nat] :
              ( ( member952132173341509300at_nat @ X3 @ A2 )
              & ( P @ ( F @ X3 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_462_image__image,axiom,
    ! [F: nat > nat,G: nat > nat,A2: set_nat] :
      ( ( image_nat_nat @ F @ ( image_nat_nat @ G @ A2 ) )
      = ( image_nat_nat
        @ ^ [X3: nat] : ( F @ ( G @ X3 ) )
        @ A2 ) ) ).

% image_image
thf(fact_463_image__image,axiom,
    ! [F: set_nat > nat,G: nat > set_nat,A2: set_nat] :
      ( ( image_set_nat_nat @ F @ ( image_nat_set_nat @ G @ A2 ) )
      = ( image_nat_nat
        @ ^ [X3: nat] : ( F @ ( G @ X3 ) )
        @ A2 ) ) ).

% image_image
thf(fact_464_image__image,axiom,
    ! [F: nat > set_nat,G: nat > nat,A2: set_nat] :
      ( ( image_nat_set_nat @ F @ ( image_nat_nat @ G @ A2 ) )
      = ( image_nat_set_nat
        @ ^ [X3: nat] : ( F @ ( G @ X3 ) )
        @ A2 ) ) ).

% image_image
thf(fact_465_image__image,axiom,
    ! [F: ( nat > nat ) > nat,G: nat > nat > nat,A2: set_nat] :
      ( ( image_nat_nat_nat @ F @ ( image_nat_nat_nat2 @ G @ A2 ) )
      = ( image_nat_nat
        @ ^ [X3: nat] : ( F @ ( G @ X3 ) )
        @ A2 ) ) ).

% image_image
thf(fact_466_image__image,axiom,
    ! [F: set_nat > set_nat,G: nat > set_nat,A2: set_nat] :
      ( ( image_7916887816326733075et_nat @ F @ ( image_nat_set_nat @ G @ A2 ) )
      = ( image_nat_set_nat
        @ ^ [X3: nat] : ( F @ ( G @ X3 ) )
        @ A2 ) ) ).

% image_image
thf(fact_467_image__image,axiom,
    ! [F: nat > nat > nat,G: nat > nat,A2: set_nat] :
      ( ( image_nat_nat_nat2 @ F @ ( image_nat_nat @ G @ A2 ) )
      = ( image_nat_nat_nat2
        @ ^ [X3: nat] : ( F @ ( G @ X3 ) )
        @ A2 ) ) ).

% image_image
thf(fact_468_image__image,axiom,
    ! [F: ( nat > nat ) > set_nat,G: nat > nat > nat,A2: set_nat] :
      ( ( image_7432509271690132940et_nat @ F @ ( image_nat_nat_nat2 @ G @ A2 ) )
      = ( image_nat_set_nat
        @ ^ [X3: nat] : ( F @ ( G @ X3 ) )
        @ A2 ) ) ).

% image_image
thf(fact_469_image__image,axiom,
    ! [F: set_nat > nat > nat,G: nat > set_nat,A2: set_nat] :
      ( ( image_8569768528772619084at_nat @ F @ ( image_nat_set_nat @ G @ A2 ) )
      = ( image_nat_nat_nat2
        @ ^ [X3: nat] : ( F @ ( G @ X3 ) )
        @ A2 ) ) ).

% image_image
thf(fact_470_image__image,axiom,
    ! [F: nat > nat > nat,G: ( nat > nat ) > nat,A2: set_nat_nat] :
      ( ( image_nat_nat_nat2 @ F @ ( image_nat_nat_nat @ G @ A2 ) )
      = ( image_3205354838064109189at_nat
        @ ^ [X3: nat > nat] : ( F @ ( G @ X3 ) )
        @ A2 ) ) ).

% image_image
thf(fact_471_image__image,axiom,
    ! [F: ( nat > nat ) > nat > nat,G: nat > nat > nat,A2: set_nat] :
      ( ( image_3205354838064109189at_nat @ F @ ( image_nat_nat_nat2 @ G @ A2 ) )
      = ( image_nat_nat_nat2
        @ ^ [X3: nat] : ( F @ ( G @ X3 ) )
        @ A2 ) ) ).

% image_image
thf(fact_472_imageE,axiom,
    ! [B: nat,F: nat > nat,A2: set_nat] :
      ( ( member_nat @ B @ ( image_nat_nat @ F @ A2 ) )
     => ~ ! [X: nat] :
            ( ( B
              = ( F @ X ) )
           => ~ ( member_nat @ X @ A2 ) ) ) ).

% imageE
thf(fact_473_imageE,axiom,
    ! [B: set_nat,F: nat > set_nat,A2: set_nat] :
      ( ( member_set_nat @ B @ ( image_nat_set_nat @ F @ A2 ) )
     => ~ ! [X: nat] :
            ( ( B
              = ( F @ X ) )
           => ~ ( member_nat @ X @ A2 ) ) ) ).

% imageE
thf(fact_474_imageE,axiom,
    ! [B: nat,F: ( nat > nat ) > nat,A2: set_nat_nat] :
      ( ( member_nat @ B @ ( image_nat_nat_nat @ F @ A2 ) )
     => ~ ! [X: nat > nat] :
            ( ( B
              = ( F @ X ) )
           => ~ ( member_nat_nat @ X @ A2 ) ) ) ).

% imageE
thf(fact_475_imageE,axiom,
    ! [B: nat > nat,F: nat > nat > nat,A2: set_nat] :
      ( ( member_nat_nat @ B @ ( image_nat_nat_nat2 @ F @ A2 ) )
     => ~ ! [X: nat] :
            ( ( B
              = ( F @ X ) )
           => ~ ( member_nat @ X @ A2 ) ) ) ).

% imageE
thf(fact_476_imageE,axiom,
    ! [B: nat,F: ( nat > nat > nat ) > nat,A2: set_nat_nat_nat] :
      ( ( member_nat @ B @ ( image_913610194320715013at_nat @ F @ A2 ) )
     => ~ ! [X: nat > nat > nat] :
            ( ( B
              = ( F @ X ) )
           => ~ ( member_nat_nat_nat2 @ X @ A2 ) ) ) ).

% imageE
thf(fact_477_imageE,axiom,
    ! [B: nat,F: ( ( nat > nat ) > nat ) > nat,A2: set_nat_nat_nat2] :
      ( ( member_nat @ B @ ( image_7809927846809980933at_nat @ F @ A2 ) )
     => ~ ! [X: ( nat > nat ) > nat] :
            ( ( B
              = ( F @ X ) )
           => ~ ( member_nat_nat_nat @ X @ A2 ) ) ) ).

% imageE
thf(fact_478_imageE,axiom,
    ! [B: nat > nat,F: ( nat > nat ) > nat > nat,A2: set_nat_nat] :
      ( ( member_nat_nat @ B @ ( image_3205354838064109189at_nat @ F @ A2 ) )
     => ~ ! [X: nat > nat] :
            ( ( B
              = ( F @ X ) )
           => ~ ( member_nat_nat @ X @ A2 ) ) ) ).

% imageE
thf(fact_479_imageE,axiom,
    ! [B: nat > nat > nat,F: nat > nat > nat > nat,A2: set_nat] :
      ( ( member_nat_nat_nat2 @ B @ ( image_6919068903512877573at_nat @ F @ A2 ) )
     => ~ ! [X: nat] :
            ( ( B
              = ( F @ X ) )
           => ~ ( member_nat @ X @ A2 ) ) ) ).

% imageE
thf(fact_480_imageE,axiom,
    ! [B: ( nat > nat ) > nat,F: nat > ( nat > nat ) > nat,A2: set_nat] :
      ( ( member_nat_nat_nat @ B @ ( image_5809701139083627781at_nat @ F @ A2 ) )
     => ~ ! [X: nat] :
            ( ( B
              = ( F @ X ) )
           => ~ ( member_nat @ X @ A2 ) ) ) ).

% imageE
thf(fact_481_imageE,axiom,
    ! [B: nat,F: ( ( nat > nat ) > nat > nat ) > nat,A2: set_nat_nat_nat_nat3] :
      ( ( member_nat @ B @ ( image_8194121248528334964at_nat @ F @ A2 ) )
     => ~ ! [X: ( nat > nat ) > nat > nat] :
            ( ( B
              = ( F @ X ) )
           => ~ ( member952132173341509300at_nat @ X @ A2 ) ) ) ).

% imageE
thf(fact_482_PiE__uniqueness,axiom,
    ! [F: nat > set_nat,A2: set_nat,B3: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ ( image_nat_set_nat @ F @ A2 ) @ B3 )
     => ? [X: nat > set_nat] :
          ( ( member_nat_set_nat @ X
            @ ( piE_nat_set_nat @ A2
              @ ^ [I2: nat] : B3 ) )
          & ! [Xa: nat] :
              ( ( member_nat @ Xa @ A2 )
             => ( ( X @ Xa )
                = ( F @ Xa ) ) )
          & ! [Y: nat > set_nat] :
              ( ( ( member_nat_set_nat @ Y
                  @ ( piE_nat_set_nat @ A2
                    @ ^ [I2: nat] : B3 ) )
                & ! [Xa2: nat] :
                    ( ( member_nat @ Xa2 @ A2 )
                   => ( ( Y @ Xa2 )
                      = ( F @ Xa2 ) ) ) )
             => ( Y = X ) ) ) ) ).

% PiE_uniqueness
thf(fact_483_PiE__uniqueness,axiom,
    ! [F: nat > nat,A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B3 )
     => ? [X: nat > nat] :
          ( ( member_nat_nat @ X
            @ ( piE_nat_nat @ A2
              @ ^ [I2: nat] : B3 ) )
          & ! [Xa: nat] :
              ( ( member_nat @ Xa @ A2 )
             => ( ( X @ Xa )
                = ( F @ Xa ) ) )
          & ! [Y: nat > nat] :
              ( ( ( member_nat_nat @ Y
                  @ ( piE_nat_nat @ A2
                    @ ^ [I2: nat] : B3 ) )
                & ! [Xa2: nat] :
                    ( ( member_nat @ Xa2 @ A2 )
                   => ( ( Y @ Xa2 )
                      = ( F @ Xa2 ) ) ) )
             => ( Y = X ) ) ) ) ).

% PiE_uniqueness
thf(fact_484_PiE__uniqueness,axiom,
    ! [F: ( nat > nat ) > nat,A2: set_nat_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( image_nat_nat_nat @ F @ A2 ) @ B3 )
     => ? [X: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ X
            @ ( piE_nat_nat_nat @ A2
              @ ^ [I2: nat > nat] : B3 ) )
          & ! [Xa: nat > nat] :
              ( ( member_nat_nat @ Xa @ A2 )
             => ( ( X @ Xa )
                = ( F @ Xa ) ) )
          & ! [Y: ( nat > nat ) > nat] :
              ( ( ( member_nat_nat_nat @ Y
                  @ ( piE_nat_nat_nat @ A2
                    @ ^ [I2: nat > nat] : B3 ) )
                & ! [Xa2: nat > nat] :
                    ( ( member_nat_nat @ Xa2 @ A2 )
                   => ( ( Y @ Xa2 )
                      = ( F @ Xa2 ) ) ) )
             => ( Y = X ) ) ) ) ).

% PiE_uniqueness
thf(fact_485_PiE__uniqueness,axiom,
    ! [F: nat > nat > nat,A2: set_nat,B3: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ ( image_nat_nat_nat2 @ F @ A2 ) @ B3 )
     => ? [X: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ X
            @ ( piE_nat_nat_nat2 @ A2
              @ ^ [I2: nat] : B3 ) )
          & ! [Xa: nat] :
              ( ( member_nat @ Xa @ A2 )
             => ( ( X @ Xa )
                = ( F @ Xa ) ) )
          & ! [Y: nat > nat > nat] :
              ( ( ( member_nat_nat_nat2 @ Y
                  @ ( piE_nat_nat_nat2 @ A2
                    @ ^ [I2: nat] : B3 ) )
                & ! [Xa2: nat] :
                    ( ( member_nat @ Xa2 @ A2 )
                   => ( ( Y @ Xa2 )
                      = ( F @ Xa2 ) ) ) )
             => ( Y = X ) ) ) ) ).

% PiE_uniqueness
thf(fact_486_PiE__uniqueness,axiom,
    ! [F: ( nat > nat ) > nat > nat,A2: set_nat_nat,B3: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ ( image_3205354838064109189at_nat @ F @ A2 ) @ B3 )
     => ? [X: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ X
            @ ( piE_nat_nat_nat_nat3 @ A2
              @ ^ [I2: nat > nat] : B3 ) )
          & ! [Xa: nat > nat] :
              ( ( member_nat_nat @ Xa @ A2 )
             => ( ( X @ Xa )
                = ( F @ Xa ) ) )
          & ! [Y: ( nat > nat ) > nat > nat] :
              ( ( ( member952132173341509300at_nat @ Y
                  @ ( piE_nat_nat_nat_nat3 @ A2
                    @ ^ [I2: nat > nat] : B3 ) )
                & ! [Xa2: nat > nat] :
                    ( ( member_nat_nat @ Xa2 @ A2 )
                   => ( ( Y @ Xa2 )
                      = ( F @ Xa2 ) ) ) )
             => ( Y = X ) ) ) ) ).

% PiE_uniqueness
thf(fact_487_in__mono,axiom,
    ! [A2: set_nat,B3: set_nat,X2: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( member_nat @ X2 @ A2 )
       => ( member_nat @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_488_in__mono,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat_nat_nat,X2: nat > nat > nat] :
      ( ( ord_le3211623285424100676at_nat @ A2 @ B3 )
     => ( ( member_nat_nat_nat2 @ X2 @ A2 )
       => ( member_nat_nat_nat2 @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_489_in__mono,axiom,
    ! [A2: set_nat_nat_nat2,B3: set_nat_nat_nat2,X2: ( nat > nat ) > nat] :
      ( ( ord_le5934964663421696068at_nat @ A2 @ B3 )
     => ( ( member_nat_nat_nat @ X2 @ A2 )
       => ( member_nat_nat_nat @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_490_in__mono,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3,X2: ( nat > nat ) > nat > nat] :
      ( ( ord_le5260717879541182899at_nat @ A2 @ B3 )
     => ( ( member952132173341509300at_nat @ X2 @ A2 )
       => ( member952132173341509300at_nat @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_491_in__mono,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,X2: nat > nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ( member_nat_nat @ X2 @ A2 )
       => ( member_nat_nat @ X2 @ B3 ) ) ) ).

% in_mono
thf(fact_492_subsetD,axiom,
    ! [A2: set_nat,B3: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B3 ) ) ) ).

% subsetD
thf(fact_493_subsetD,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat_nat_nat,C: nat > nat > nat] :
      ( ( ord_le3211623285424100676at_nat @ A2 @ B3 )
     => ( ( member_nat_nat_nat2 @ C @ A2 )
       => ( member_nat_nat_nat2 @ C @ B3 ) ) ) ).

% subsetD
thf(fact_494_subsetD,axiom,
    ! [A2: set_nat_nat_nat2,B3: set_nat_nat_nat2,C: ( nat > nat ) > nat] :
      ( ( ord_le5934964663421696068at_nat @ A2 @ B3 )
     => ( ( member_nat_nat_nat @ C @ A2 )
       => ( member_nat_nat_nat @ C @ B3 ) ) ) ).

% subsetD
thf(fact_495_subsetD,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3,C: ( nat > nat ) > nat > nat] :
      ( ( ord_le5260717879541182899at_nat @ A2 @ B3 )
     => ( ( member952132173341509300at_nat @ C @ A2 )
       => ( member952132173341509300at_nat @ C @ B3 ) ) ) ).

% subsetD
thf(fact_496_subsetD,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,C: nat > nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ( member_nat_nat @ C @ A2 )
       => ( member_nat_nat @ C @ B3 ) ) ) ).

% subsetD
thf(fact_497_Diff__mono,axiom,
    ! [A2: set_nat_nat,C4: set_nat_nat,D3: set_nat_nat,B3: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ C4 )
     => ( ( ord_le9059583361652607317at_nat @ D3 @ B3 )
       => ( ord_le9059583361652607317at_nat @ ( minus_8121590178497047118at_nat @ A2 @ B3 ) @ ( minus_8121590178497047118at_nat @ C4 @ D3 ) ) ) ) ).

% Diff_mono
thf(fact_498_equalityE,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ( A2 = B3 )
     => ~ ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
         => ~ ( ord_le9059583361652607317at_nat @ B3 @ A2 ) ) ) ).

% equalityE
thf(fact_499_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ A6 )
         => ( member_nat @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_500_subset__eq,axiom,
    ( ord_le3211623285424100676at_nat
    = ( ^ [A6: set_nat_nat_nat,B6: set_nat_nat_nat] :
        ! [X3: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ X3 @ A6 )
         => ( member_nat_nat_nat2 @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_501_subset__eq,axiom,
    ( ord_le5934964663421696068at_nat
    = ( ^ [A6: set_nat_nat_nat2,B6: set_nat_nat_nat2] :
        ! [X3: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ X3 @ A6 )
         => ( member_nat_nat_nat @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_502_subset__eq,axiom,
    ( ord_le5260717879541182899at_nat
    = ( ^ [A6: set_nat_nat_nat_nat3,B6: set_nat_nat_nat_nat3] :
        ! [X3: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ X3 @ A6 )
         => ( member952132173341509300at_nat @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_503_subset__eq,axiom,
    ( ord_le9059583361652607317at_nat
    = ( ^ [A6: set_nat_nat,B6: set_nat_nat] :
        ! [X3: nat > nat] :
          ( ( member_nat_nat @ X3 @ A6 )
         => ( member_nat_nat @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_504_equalityD1,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ( A2 = B3 )
     => ( ord_le9059583361652607317at_nat @ A2 @ B3 ) ) ).

% equalityD1
thf(fact_505_equalityD2,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ( A2 = B3 )
     => ( ord_le9059583361652607317at_nat @ B3 @ A2 ) ) ).

% equalityD2
thf(fact_506_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
        ! [T2: nat] :
          ( ( member_nat @ T2 @ A6 )
         => ( member_nat @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_507_subset__iff,axiom,
    ( ord_le3211623285424100676at_nat
    = ( ^ [A6: set_nat_nat_nat,B6: set_nat_nat_nat] :
        ! [T2: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ T2 @ A6 )
         => ( member_nat_nat_nat2 @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_508_subset__iff,axiom,
    ( ord_le5934964663421696068at_nat
    = ( ^ [A6: set_nat_nat_nat2,B6: set_nat_nat_nat2] :
        ! [T2: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ T2 @ A6 )
         => ( member_nat_nat_nat @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_509_subset__iff,axiom,
    ( ord_le5260717879541182899at_nat
    = ( ^ [A6: set_nat_nat_nat_nat3,B6: set_nat_nat_nat_nat3] :
        ! [T2: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ T2 @ A6 )
         => ( member952132173341509300at_nat @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_510_subset__iff,axiom,
    ( ord_le9059583361652607317at_nat
    = ( ^ [A6: set_nat_nat,B6: set_nat_nat] :
        ! [T2: nat > nat] :
          ( ( member_nat_nat @ T2 @ A6 )
         => ( member_nat_nat @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_511_Diff__subset,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] : ( ord_le9059583361652607317at_nat @ ( minus_8121590178497047118at_nat @ A2 @ B3 ) @ A2 ) ).

% Diff_subset
thf(fact_512_double__diff,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,C4: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ( ord_le9059583361652607317at_nat @ B3 @ C4 )
       => ( ( minus_8121590178497047118at_nat @ B3 @ ( minus_8121590178497047118at_nat @ C4 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_513_subset__refl,axiom,
    ! [A2: set_nat_nat] : ( ord_le9059583361652607317at_nat @ A2 @ A2 ) ).

% subset_refl
thf(fact_514_Collect__mono,axiom,
    ! [P: ( nat > nat ) > $o,Q: ( nat > nat ) > $o] :
      ( ! [X: nat > nat] :
          ( ( P @ X )
         => ( Q @ X ) )
     => ( ord_le9059583361652607317at_nat @ ( collect_nat_nat @ P ) @ ( collect_nat_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_515_subset__trans,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,C4: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ( ord_le9059583361652607317at_nat @ B3 @ C4 )
       => ( ord_le9059583361652607317at_nat @ A2 @ C4 ) ) ) ).

% subset_trans
thf(fact_516_set__eq__subset,axiom,
    ( ( ^ [Y6: set_nat_nat,Z3: set_nat_nat] : ( Y6 = Z3 ) )
    = ( ^ [A6: set_nat_nat,B6: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ A6 @ B6 )
          & ( ord_le9059583361652607317at_nat @ B6 @ A6 ) ) ) ) ).

% set_eq_subset
thf(fact_517_Collect__mono__iff,axiom,
    ! [P: ( nat > nat ) > $o,Q: ( nat > nat ) > $o] :
      ( ( ord_le9059583361652607317at_nat @ ( collect_nat_nat @ P ) @ ( collect_nat_nat @ Q ) )
      = ( ! [X3: nat > nat] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_518_psubsetD,axiom,
    ! [A2: set_nat,B3: set_nat,C: nat] :
      ( ( ord_less_set_nat @ A2 @ B3 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B3 ) ) ) ).

% psubsetD
thf(fact_519_psubsetD,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,C: nat > nat] :
      ( ( ord_less_set_nat_nat @ A2 @ B3 )
     => ( ( member_nat_nat @ C @ A2 )
       => ( member_nat_nat @ C @ B3 ) ) ) ).

% psubsetD
thf(fact_520_psubsetD,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat_nat_nat,C: nat > nat > nat] :
      ( ( ord_le6871433888996735800at_nat @ A2 @ B3 )
     => ( ( member_nat_nat_nat2 @ C @ A2 )
       => ( member_nat_nat_nat2 @ C @ B3 ) ) ) ).

% psubsetD
thf(fact_521_psubsetD,axiom,
    ! [A2: set_nat_nat_nat2,B3: set_nat_nat_nat2,C: ( nat > nat ) > nat] :
      ( ( ord_le371403230139555384at_nat @ A2 @ B3 )
     => ( ( member_nat_nat_nat @ C @ A2 )
       => ( member_nat_nat_nat @ C @ B3 ) ) ) ).

% psubsetD
thf(fact_522_psubsetD,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3,C: ( nat > nat ) > nat > nat] :
      ( ( ord_le6177938698872215975at_nat @ A2 @ B3 )
     => ( ( member952132173341509300at_nat @ C @ A2 )
       => ( member952132173341509300at_nat @ C @ B3 ) ) ) ).

% psubsetD
thf(fact_523_psubset__imp__ex__mem,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B3 )
     => ? [B4: nat] : ( member_nat @ B4 @ ( minus_minus_set_nat @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_524_psubset__imp__ex__mem,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ A2 @ B3 )
     => ? [B4: nat > nat] : ( member_nat_nat @ B4 @ ( minus_8121590178497047118at_nat @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_525_psubset__imp__ex__mem,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat_nat_nat] :
      ( ( ord_le6871433888996735800at_nat @ A2 @ B3 )
     => ? [B4: nat > nat > nat] : ( member_nat_nat_nat2 @ B4 @ ( minus_7721066311745899709at_nat @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_526_psubset__imp__ex__mem,axiom,
    ! [A2: set_nat_nat_nat2,B3: set_nat_nat_nat2] :
      ( ( ord_le371403230139555384at_nat @ A2 @ B3 )
     => ? [B4: ( nat > nat ) > nat] : ( member_nat_nat_nat @ B4 @ ( minus_1221035652888719293at_nat @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_527_psubset__imp__ex__mem,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3] :
      ( ( ord_le6177938698872215975at_nat @ A2 @ B3 )
     => ? [B4: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ B4 @ ( minus_4646100876039749548at_nat @ B3 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_528_less__eq__set__def,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( ord_less_eq_nat_o
          @ ^ [X3: nat] : ( member_nat @ X3 @ A6 )
          @ ^ [X3: nat] : ( member_nat @ X3 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_529_less__eq__set__def,axiom,
    ( ord_le3211623285424100676at_nat
    = ( ^ [A6: set_nat_nat_nat,B6: set_nat_nat_nat] :
          ( ord_le5384859702510996545_nat_o
          @ ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ A6 )
          @ ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_530_less__eq__set__def,axiom,
    ( ord_le5934964663421696068at_nat
    = ( ^ [A6: set_nat_nat_nat2,B6: set_nat_nat_nat2] :
          ( ord_le996020443555834177_nat_o
          @ ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ A6 )
          @ ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_531_less__eq__set__def,axiom,
    ( ord_le5260717879541182899at_nat
    = ( ^ [A6: set_nat_nat_nat_nat3,B6: set_nat_nat_nat_nat3] :
          ( ord_le5430825838364970130_nat_o
          @ ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ A6 )
          @ ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_532_less__eq__set__def,axiom,
    ( ord_le9059583361652607317at_nat
    = ( ^ [A6: set_nat_nat,B6: set_nat_nat] :
          ( ord_le7366121074344172400_nat_o
          @ ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ A6 )
          @ ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_533_Collect__subset,axiom,
    ! [A2: set_nat,P: nat > $o] :
      ( ord_less_eq_set_nat
      @ ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_534_Collect__subset,axiom,
    ! [A2: set_nat_nat_nat,P: ( nat > nat > nat ) > $o] :
      ( ord_le3211623285424100676at_nat
      @ ( collect_nat_nat_nat2
        @ ^ [X3: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_535_Collect__subset,axiom,
    ! [A2: set_nat_nat_nat2,P: ( ( nat > nat ) > nat ) > $o] :
      ( ord_le5934964663421696068at_nat
      @ ( collect_nat_nat_nat
        @ ^ [X3: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_536_Collect__subset,axiom,
    ! [A2: set_nat_nat_nat_nat3,P: ( ( nat > nat ) > nat > nat ) > $o] :
      ( ord_le5260717879541182899at_nat
      @ ( collec3567154360959927026at_nat
        @ ^ [X3: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_537_Collect__subset,axiom,
    ! [A2: set_nat_nat,P: ( nat > nat ) > $o] :
      ( ord_le9059583361652607317at_nat
      @ ( collect_nat_nat
        @ ^ [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ A2 )
            & ( P @ X3 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_538_less__set__def,axiom,
    ( ord_less_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( ord_less_nat_o
          @ ^ [X3: nat] : ( member_nat @ X3 @ A6 )
          @ ^ [X3: nat] : ( member_nat @ X3 @ B6 ) ) ) ) ).

% less_set_def
thf(fact_539_less__set__def,axiom,
    ( ord_less_set_nat_nat
    = ( ^ [A6: set_nat_nat,B6: set_nat_nat] :
          ( ord_less_nat_nat_o
          @ ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ A6 )
          @ ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ B6 ) ) ) ) ).

% less_set_def
thf(fact_540_less__set__def,axiom,
    ( ord_le6871433888996735800at_nat
    = ( ^ [A6: set_nat_nat_nat,B6: set_nat_nat_nat] :
          ( ord_le3977685358511927117_nat_o
          @ ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ A6 )
          @ ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ B6 ) ) ) ) ).

% less_set_def
thf(fact_541_less__set__def,axiom,
    ( ord_le371403230139555384at_nat
    = ( ^ [A6: set_nat_nat_nat2,B6: set_nat_nat_nat2] :
          ( ord_le8812218136411540557_nat_o
          @ ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ A6 )
          @ ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ B6 ) ) ) ) ).

% less_set_def
thf(fact_542_less__set__def,axiom,
    ( ord_le6177938698872215975at_nat
    = ( ^ [A6: set_nat_nat_nat_nat3,B6: set_nat_nat_nat_nat3] :
          ( ord_le4961065272816086430_nat_o
          @ ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ A6 )
          @ ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ B6 ) ) ) ) ).

% less_set_def
thf(fact_543_psubsetE,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ A2 @ B3 )
     => ~ ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
         => ( ord_le9059583361652607317at_nat @ B3 @ A2 ) ) ) ).

% psubsetE
thf(fact_544_psubset__eq,axiom,
    ( ord_less_set_nat_nat
    = ( ^ [A6: set_nat_nat,B6: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ A6 @ B6 )
          & ( A6 != B6 ) ) ) ) ).

% psubset_eq
thf(fact_545_psubset__imp__subset,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ A2 @ B3 )
     => ( ord_le9059583361652607317at_nat @ A2 @ B3 ) ) ).

% psubset_imp_subset
thf(fact_546_psubset__subset__trans,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,C4: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ A2 @ B3 )
     => ( ( ord_le9059583361652607317at_nat @ B3 @ C4 )
       => ( ord_less_set_nat_nat @ A2 @ C4 ) ) ) ).

% psubset_subset_trans
thf(fact_547_subset__not__subset__eq,axiom,
    ( ord_less_set_nat_nat
    = ( ^ [A6: set_nat_nat,B6: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ A6 @ B6 )
          & ~ ( ord_le9059583361652607317at_nat @ B6 @ A6 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_548_subset__psubset__trans,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,C4: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ( ord_less_set_nat_nat @ B3 @ C4 )
       => ( ord_less_set_nat_nat @ A2 @ C4 ) ) ) ).

% subset_psubset_trans
thf(fact_549_subset__iff__psubset__eq,axiom,
    ( ord_le9059583361652607317at_nat
    = ( ^ [A6: set_nat_nat,B6: set_nat_nat] :
          ( ( ord_less_set_nat_nat @ A6 @ B6 )
          | ( A6 = B6 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_550_classes__subset__cube,axiom,
    ! [N: nat,T: nat,I: nat] : ( ord_le9059583361652607317at_nat @ ( hales_classes @ N @ T @ I ) @ ( hales_cube @ N @ ( plus_plus_nat @ T @ one_one_nat ) ) ) ).

% classes_subset_cube
thf(fact_551_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_552_dual__order_Orefl,axiom,
    ! [A: set_nat_nat] : ( ord_le9059583361652607317at_nat @ A @ A ) ).

% dual_order.refl
thf(fact_553_order__refl,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).

% order_refl
thf(fact_554_order__refl,axiom,
    ! [X2: set_nat_nat] : ( ord_le9059583361652607317at_nat @ X2 @ X2 ) ).

% order_refl
thf(fact_555_image__Collect__subsetI,axiom,
    ! [P: nat > $o,F: nat > set_nat,B3: set_set_nat] :
      ( ! [X: nat] :
          ( ( P @ X )
         => ( member_set_nat @ ( F @ X ) @ B3 ) )
     => ( ord_le6893508408891458716et_nat @ ( image_nat_set_nat @ F @ ( collect_nat @ P ) ) @ B3 ) ) ).

% image_Collect_subsetI
thf(fact_556_image__Collect__subsetI,axiom,
    ! [P: nat > $o,F: nat > nat,B3: set_nat] :
      ( ! [X: nat] :
          ( ( P @ X )
         => ( member_nat @ ( F @ X ) @ B3 ) )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ ( collect_nat @ P ) ) @ B3 ) ) ).

% image_Collect_subsetI
thf(fact_557_image__Collect__subsetI,axiom,
    ! [P: ( nat > nat ) > $o,F: ( nat > nat ) > nat,B3: set_nat] :
      ( ! [X: nat > nat] :
          ( ( P @ X )
         => ( member_nat @ ( F @ X ) @ B3 ) )
     => ( ord_less_eq_set_nat @ ( image_nat_nat_nat @ F @ ( collect_nat_nat @ P ) ) @ B3 ) ) ).

% image_Collect_subsetI
thf(fact_558_image__Collect__subsetI,axiom,
    ! [P: ( nat > nat ) > $o,F: ( nat > nat ) > nat > nat > nat,B3: set_nat_nat_nat] :
      ( ! [X: nat > nat] :
          ( ( P @ X )
         => ( member_nat_nat_nat2 @ ( F @ X ) @ B3 ) )
     => ( ord_le3211623285424100676at_nat @ ( image_3101123049818244468at_nat @ F @ ( collect_nat_nat @ P ) ) @ B3 ) ) ).

% image_Collect_subsetI
thf(fact_559_image__Collect__subsetI,axiom,
    ! [P: ( nat > nat ) > $o,F: ( nat > nat ) > ( nat > nat ) > nat,B3: set_nat_nat_nat2] :
      ( ! [X: nat > nat] :
          ( ( P @ X )
         => ( member_nat_nat_nat @ ( F @ X ) @ B3 ) )
     => ( ord_le5934964663421696068at_nat @ ( image_1991755285388994676at_nat @ F @ ( collect_nat_nat @ P ) ) @ B3 ) ) ).

% image_Collect_subsetI
thf(fact_560_image__Collect__subsetI,axiom,
    ! [P: ( nat > nat ) > $o,F: ( nat > nat ) > ( nat > nat ) > nat > nat,B3: set_nat_nat_nat_nat3] :
      ( ! [X: nat > nat] :
          ( ( P @ X )
         => ( member952132173341509300at_nat @ ( F @ X ) @ B3 ) )
     => ( ord_le5260717879541182899at_nat @ ( image_6605983383471867107at_nat @ F @ ( collect_nat_nat @ P ) ) @ B3 ) ) ).

% image_Collect_subsetI
thf(fact_561_image__Collect__subsetI,axiom,
    ! [P: nat > $o,F: nat > nat > nat,B3: set_nat_nat] :
      ( ! [X: nat] :
          ( ( P @ X )
         => ( member_nat_nat @ ( F @ X ) @ B3 ) )
     => ( ord_le9059583361652607317at_nat @ ( image_nat_nat_nat2 @ F @ ( collect_nat @ P ) ) @ B3 ) ) ).

% image_Collect_subsetI
thf(fact_562_image__Collect__subsetI,axiom,
    ! [P: ( nat > nat ) > $o,F: ( nat > nat ) > nat > nat,B3: set_nat_nat] :
      ( ! [X: nat > nat] :
          ( ( P @ X )
         => ( member_nat_nat @ ( F @ X ) @ B3 ) )
     => ( ord_le9059583361652607317at_nat @ ( image_3205354838064109189at_nat @ F @ ( collect_nat_nat @ P ) ) @ B3 ) ) ).

% image_Collect_subsetI
thf(fact_563_Diff__iff,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
      = ( ( member_nat @ C @ A2 )
        & ~ ( member_nat @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_564_Diff__iff,axiom,
    ! [C: nat > nat,A2: set_nat_nat,B3: set_nat_nat] :
      ( ( member_nat_nat @ C @ ( minus_8121590178497047118at_nat @ A2 @ B3 ) )
      = ( ( member_nat_nat @ C @ A2 )
        & ~ ( member_nat_nat @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_565_Diff__iff,axiom,
    ! [C: nat > nat > nat,A2: set_nat_nat_nat,B3: set_nat_nat_nat] :
      ( ( member_nat_nat_nat2 @ C @ ( minus_7721066311745899709at_nat @ A2 @ B3 ) )
      = ( ( member_nat_nat_nat2 @ C @ A2 )
        & ~ ( member_nat_nat_nat2 @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_566_Diff__iff,axiom,
    ! [C: ( nat > nat ) > nat,A2: set_nat_nat_nat2,B3: set_nat_nat_nat2] :
      ( ( member_nat_nat_nat @ C @ ( minus_1221035652888719293at_nat @ A2 @ B3 ) )
      = ( ( member_nat_nat_nat @ C @ A2 )
        & ~ ( member_nat_nat_nat @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_567_Diff__iff,axiom,
    ! [C: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3] :
      ( ( member952132173341509300at_nat @ C @ ( minus_4646100876039749548at_nat @ A2 @ B3 ) )
      = ( ( member952132173341509300at_nat @ C @ A2 )
        & ~ ( member952132173341509300at_nat @ C @ B3 ) ) ) ).

% Diff_iff
thf(fact_568_DiffI,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( ~ ( member_nat @ C @ B3 )
       => ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_569_DiffI,axiom,
    ! [C: nat > nat,A2: set_nat_nat,B3: set_nat_nat] :
      ( ( member_nat_nat @ C @ A2 )
     => ( ~ ( member_nat_nat @ C @ B3 )
       => ( member_nat_nat @ C @ ( minus_8121590178497047118at_nat @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_570_DiffI,axiom,
    ! [C: nat > nat > nat,A2: set_nat_nat_nat,B3: set_nat_nat_nat] :
      ( ( member_nat_nat_nat2 @ C @ A2 )
     => ( ~ ( member_nat_nat_nat2 @ C @ B3 )
       => ( member_nat_nat_nat2 @ C @ ( minus_7721066311745899709at_nat @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_571_DiffI,axiom,
    ! [C: ( nat > nat ) > nat,A2: set_nat_nat_nat2,B3: set_nat_nat_nat2] :
      ( ( member_nat_nat_nat @ C @ A2 )
     => ( ~ ( member_nat_nat_nat @ C @ B3 )
       => ( member_nat_nat_nat @ C @ ( minus_1221035652888719293at_nat @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_572_DiffI,axiom,
    ! [C: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3] :
      ( ( member952132173341509300at_nat @ C @ A2 )
     => ( ~ ( member952132173341509300at_nat @ C @ B3 )
       => ( member952132173341509300at_nat @ C @ ( minus_4646100876039749548at_nat @ A2 @ B3 ) ) ) ) ).

% DiffI
thf(fact_573_set__diff__eq,axiom,
    ( minus_minus_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( collect_nat
          @ ^ [X3: nat] :
              ( ( member_nat @ X3 @ A6 )
              & ~ ( member_nat @ X3 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_574_set__diff__eq,axiom,
    ( minus_7721066311745899709at_nat
    = ( ^ [A6: set_nat_nat_nat,B6: set_nat_nat_nat] :
          ( collect_nat_nat_nat2
          @ ^ [X3: nat > nat > nat] :
              ( ( member_nat_nat_nat2 @ X3 @ A6 )
              & ~ ( member_nat_nat_nat2 @ X3 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_575_set__diff__eq,axiom,
    ( minus_1221035652888719293at_nat
    = ( ^ [A6: set_nat_nat_nat2,B6: set_nat_nat_nat2] :
          ( collect_nat_nat_nat
          @ ^ [X3: ( nat > nat ) > nat] :
              ( ( member_nat_nat_nat @ X3 @ A6 )
              & ~ ( member_nat_nat_nat @ X3 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_576_set__diff__eq,axiom,
    ( minus_4646100876039749548at_nat
    = ( ^ [A6: set_nat_nat_nat_nat3,B6: set_nat_nat_nat_nat3] :
          ( collec3567154360959927026at_nat
          @ ^ [X3: ( nat > nat ) > nat > nat] :
              ( ( member952132173341509300at_nat @ X3 @ A6 )
              & ~ ( member952132173341509300at_nat @ X3 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_577_set__diff__eq,axiom,
    ( minus_8121590178497047118at_nat
    = ( ^ [A6: set_nat_nat,B6: set_nat_nat] :
          ( collect_nat_nat
          @ ^ [X3: nat > nat] :
              ( ( member_nat_nat @ X3 @ A6 )
              & ~ ( member_nat_nat @ X3 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_578_minus__set__def,axiom,
    ( minus_minus_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( collect_nat
          @ ( minus_minus_nat_o
            @ ^ [X3: nat] : ( member_nat @ X3 @ A6 )
            @ ^ [X3: nat] : ( member_nat @ X3 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_579_minus__set__def,axiom,
    ( minus_7721066311745899709at_nat
    = ( ^ [A6: set_nat_nat_nat,B6: set_nat_nat_nat] :
          ( collect_nat_nat_nat2
          @ ( minus_7240682219522218504_nat_o
            @ ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ A6 )
            @ ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_580_minus__set__def,axiom,
    ( minus_1221035652888719293at_nat
    = ( ^ [A6: set_nat_nat_nat2,B6: set_nat_nat_nat2] :
          ( collect_nat_nat_nat
          @ ( minus_2851842960567056136_nat_o
            @ ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ A6 )
            @ ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_581_minus__set__def,axiom,
    ( minus_4646100876039749548at_nat
    = ( ^ [A6: set_nat_nat_nat_nat3,B6: set_nat_nat_nat_nat3] :
          ( collec3567154360959927026at_nat
          @ ( minus_7158188067284919257_nat_o
            @ ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ A6 )
            @ ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_582_minus__set__def,axiom,
    ( minus_8121590178497047118at_nat
    = ( ^ [A6: set_nat_nat,B6: set_nat_nat] :
          ( collect_nat_nat
          @ ( minus_167519014754328503_nat_o
            @ ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ A6 )
            @ ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_583_DiffD2,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
     => ~ ( member_nat @ C @ B3 ) ) ).

% DiffD2
thf(fact_584_DiffD2,axiom,
    ! [C: nat > nat,A2: set_nat_nat,B3: set_nat_nat] :
      ( ( member_nat_nat @ C @ ( minus_8121590178497047118at_nat @ A2 @ B3 ) )
     => ~ ( member_nat_nat @ C @ B3 ) ) ).

% DiffD2
thf(fact_585_DiffD2,axiom,
    ! [C: nat > nat > nat,A2: set_nat_nat_nat,B3: set_nat_nat_nat] :
      ( ( member_nat_nat_nat2 @ C @ ( minus_7721066311745899709at_nat @ A2 @ B3 ) )
     => ~ ( member_nat_nat_nat2 @ C @ B3 ) ) ).

% DiffD2
thf(fact_586_DiffD2,axiom,
    ! [C: ( nat > nat ) > nat,A2: set_nat_nat_nat2,B3: set_nat_nat_nat2] :
      ( ( member_nat_nat_nat @ C @ ( minus_1221035652888719293at_nat @ A2 @ B3 ) )
     => ~ ( member_nat_nat_nat @ C @ B3 ) ) ).

% DiffD2
thf(fact_587_DiffD2,axiom,
    ! [C: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3] :
      ( ( member952132173341509300at_nat @ C @ ( minus_4646100876039749548at_nat @ A2 @ B3 ) )
     => ~ ( member952132173341509300at_nat @ C @ B3 ) ) ).

% DiffD2
thf(fact_588_DiffD1,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
     => ( member_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_589_DiffD1,axiom,
    ! [C: nat > nat,A2: set_nat_nat,B3: set_nat_nat] :
      ( ( member_nat_nat @ C @ ( minus_8121590178497047118at_nat @ A2 @ B3 ) )
     => ( member_nat_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_590_DiffD1,axiom,
    ! [C: nat > nat > nat,A2: set_nat_nat_nat,B3: set_nat_nat_nat] :
      ( ( member_nat_nat_nat2 @ C @ ( minus_7721066311745899709at_nat @ A2 @ B3 ) )
     => ( member_nat_nat_nat2 @ C @ A2 ) ) ).

% DiffD1
thf(fact_591_DiffD1,axiom,
    ! [C: ( nat > nat ) > nat,A2: set_nat_nat_nat2,B3: set_nat_nat_nat2] :
      ( ( member_nat_nat_nat @ C @ ( minus_1221035652888719293at_nat @ A2 @ B3 ) )
     => ( member_nat_nat_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_592_DiffD1,axiom,
    ! [C: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3] :
      ( ( member952132173341509300at_nat @ C @ ( minus_4646100876039749548at_nat @ A2 @ B3 ) )
     => ( member952132173341509300at_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_593_DiffE,axiom,
    ! [C: nat,A2: set_nat,B3: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B3 ) )
     => ~ ( ( member_nat @ C @ A2 )
         => ( member_nat @ C @ B3 ) ) ) ).

% DiffE
thf(fact_594_DiffE,axiom,
    ! [C: nat > nat,A2: set_nat_nat,B3: set_nat_nat] :
      ( ( member_nat_nat @ C @ ( minus_8121590178497047118at_nat @ A2 @ B3 ) )
     => ~ ( ( member_nat_nat @ C @ A2 )
         => ( member_nat_nat @ C @ B3 ) ) ) ).

% DiffE
thf(fact_595_DiffE,axiom,
    ! [C: nat > nat > nat,A2: set_nat_nat_nat,B3: set_nat_nat_nat] :
      ( ( member_nat_nat_nat2 @ C @ ( minus_7721066311745899709at_nat @ A2 @ B3 ) )
     => ~ ( ( member_nat_nat_nat2 @ C @ A2 )
         => ( member_nat_nat_nat2 @ C @ B3 ) ) ) ).

% DiffE
thf(fact_596_DiffE,axiom,
    ! [C: ( nat > nat ) > nat,A2: set_nat_nat_nat2,B3: set_nat_nat_nat2] :
      ( ( member_nat_nat_nat @ C @ ( minus_1221035652888719293at_nat @ A2 @ B3 ) )
     => ~ ( ( member_nat_nat_nat @ C @ A2 )
         => ( member_nat_nat_nat @ C @ B3 ) ) ) ).

% DiffE
thf(fact_597_DiffE,axiom,
    ! [C: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3] :
      ( ( member952132173341509300at_nat @ C @ ( minus_4646100876039749548at_nat @ A2 @ B3 ) )
     => ~ ( ( member952132173341509300at_nat @ C @ A2 )
         => ( member952132173341509300at_nat @ C @ B3 ) ) ) ).

% DiffE
thf(fact_598_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_599_le__cases3,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ( ord_less_eq_nat @ X2 @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z2 ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X2 )
         => ~ ( ord_less_eq_nat @ X2 @ Z2 ) )
       => ( ( ( ord_less_eq_nat @ X2 @ Z2 )
           => ~ ( ord_less_eq_nat @ Z2 @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z2 @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z2 )
               => ~ ( ord_less_eq_nat @ Z2 @ X2 ) )
             => ~ ( ( ord_less_eq_nat @ Z2 @ X2 )
                 => ~ ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_600_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: nat,Z3: nat] : ( Y6 = Z3 ) )
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_601_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: set_nat_nat,Z3: set_nat_nat] : ( Y6 = Z3 ) )
    = ( ^ [X3: set_nat_nat,Y3: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ X3 @ Y3 )
          & ( ord_le9059583361652607317at_nat @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_602_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_603_ord__eq__le__trans,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( A = B )
     => ( ( ord_le9059583361652607317at_nat @ B @ C )
       => ( ord_le9059583361652607317at_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_604_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_605_ord__le__eq__trans,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( B = C )
       => ( ord_le9059583361652607317at_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_606_order__antisym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_607_order__antisym,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ X2 @ Y2 )
     => ( ( ord_le9059583361652607317at_nat @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_608_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_609_order_Otrans,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( ord_le9059583361652607317at_nat @ B @ C )
       => ( ord_le9059583361652607317at_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_610_order__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z2 )
       => ( ord_less_eq_nat @ X2 @ Z2 ) ) ) ).

% order_trans
thf(fact_611_order__trans,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat,Z2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ X2 @ Y2 )
     => ( ( ord_le9059583361652607317at_nat @ Y2 @ Z2 )
       => ( ord_le9059583361652607317at_nat @ X2 @ Z2 ) ) ) ).

% order_trans
thf(fact_612_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: nat,B4: nat] :
            ( ( P @ B4 @ A4 )
           => ( P @ A4 @ B4 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_613_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: nat,Z3: nat] : ( Y6 = Z3 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_614_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: set_nat_nat,Z3: set_nat_nat] : ( Y6 = Z3 ) )
    = ( ^ [A3: set_nat_nat,B2: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ B2 @ A3 )
          & ( ord_le9059583361652607317at_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_615_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_616_dual__order_Oantisym,axiom,
    ! [B: set_nat_nat,A: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ B @ A )
     => ( ( ord_le9059583361652607317at_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_617_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_618_dual__order_Otrans,axiom,
    ! [B: set_nat_nat,A: set_nat_nat,C: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ B @ A )
     => ( ( ord_le9059583361652607317at_nat @ C @ B )
       => ( ord_le9059583361652607317at_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_619_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_620_antisym,axiom,
    ! [A: set_nat_nat,B: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( ord_le9059583361652607317at_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_621_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: nat,Z3: nat] : ( Y6 = Z3 ) )
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_622_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: set_nat_nat,Z3: set_nat_nat] : ( Y6 = Z3 ) )
    = ( ^ [A3: set_nat_nat,B2: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ A3 @ B2 )
          & ( ord_le9059583361652607317at_nat @ B2 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_623_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_624_order__subst1,axiom,
    ! [A: nat,F: set_nat_nat > nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_le9059583361652607317at_nat @ B @ C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_625_order__subst1,axiom,
    ! [A: set_nat_nat,F: nat > set_nat_nat,B: nat,C: nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le9059583361652607317at_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_626_order__subst1,axiom,
    ! [A: set_nat_nat,F: set_nat_nat > set_nat_nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ ( F @ B ) )
     => ( ( ord_le9059583361652607317at_nat @ B @ C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le9059583361652607317at_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_627_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_628_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_nat_nat,C: set_nat_nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_le9059583361652607317at_nat @ ( F @ B ) @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le9059583361652607317at_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_629_order__subst2,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,F: set_nat_nat > nat,C: nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_630_order__subst2,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,F: set_nat_nat > set_nat_nat,C: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( ord_le9059583361652607317at_nat @ ( F @ B ) @ C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le9059583361652607317at_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_631_order__eq__refl,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_632_order__eq__refl,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat] :
      ( ( X2 = Y2 )
     => ( ord_le9059583361652607317at_nat @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_633_linorder__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_linear
thf(fact_634_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_635_ord__eq__le__subst,axiom,
    ! [A: set_nat_nat,F: nat > set_nat_nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le9059583361652607317at_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_636_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_nat_nat > nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le9059583361652607317at_nat @ B @ C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_637_ord__eq__le__subst,axiom,
    ! [A: set_nat_nat,F: set_nat_nat > set_nat_nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le9059583361652607317at_nat @ B @ C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le9059583361652607317at_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_638_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_639_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_nat_nat,C: set_nat_nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le9059583361652607317at_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_640_ord__le__eq__subst,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,F: set_nat_nat > nat,C: nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_641_ord__le__eq__subst,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,F: set_nat_nat > set_nat_nat,C: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_le9059583361652607317at_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_642_linorder__le__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_le_cases
thf(fact_643_order__antisym__conv,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_644_order__antisym__conv,axiom,
    ! [Y2: set_nat_nat,X2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ Y2 @ X2 )
     => ( ( ord_le9059583361652607317at_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_645_gt__ex,axiom,
    ! [X2: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X2 @ X_1 ) ).

% gt_ex
thf(fact_646_less__imp__neq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_647_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_648_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_649_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_650_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X: nat] :
          ( ! [Y: nat] :
              ( ( ord_less_nat @ Y @ X )
             => ( P @ Y ) )
         => ( P @ X ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_651_antisym__conv3,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_nat @ Y2 @ X2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_652_linorder__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_653_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_654_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_655_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X6: nat] : ( P2 @ X6 ) )
    = ( ^ [P3: nat > $o] :
        ? [N3: nat] :
          ( ( P3 @ N3 )
          & ! [M5: nat] :
              ( ( ord_less_nat @ M5 @ N3 )
             => ~ ( P3 @ M5 ) ) ) ) ) ).

% exists_least_iff
thf(fact_656_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( ord_less_nat @ A4 @ B4 )
         => ( P @ A4 @ B4 ) )
     => ( ! [A4: nat] : ( P @ A4 @ A4 )
       => ( ! [A4: nat,B4: nat] :
              ( ( P @ B4 @ A4 )
             => ( P @ A4 @ B4 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_657_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_658_not__less__iff__gr__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ( ord_less_nat @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_659_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_660_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_661_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_662_linorder__neqE,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_663_order__less__asym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_664_linorder__neq__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
      = ( ( ord_less_nat @ X2 @ Y2 )
        | ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_665_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_666_order__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X2 @ Z2 ) ) ) ).

% order_less_trans
thf(fact_667_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_668_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_669_order__less__irrefl,axiom,
    ! [X2: nat] :
      ~ ( ord_less_nat @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_670_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_671_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_672_order__less__not__sym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_673_order__less__imp__triv,axiom,
    ! [X2: nat,Y2: nat,P: $o] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_674_linorder__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_675_order__less__imp__not__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_676_order__less__imp__not__eq2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_677_order__less__imp__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_678_subspace__elems__embed,axiom,
    ! [S5: ( nat > nat ) > nat > nat,K: nat,N: nat,T: nat] :
      ( ( hales_is_subspace @ S5 @ K @ N @ T )
     => ( ord_le9059583361652607317at_nat @ ( image_3205354838064109189at_nat @ S5 @ ( hales_cube @ K @ T ) ) @ ( hales_cube @ N @ T ) ) ) ).

% subspace_elems_embed
thf(fact_679_prop__restrict,axiom,
    ! [X2: nat,Z4: set_nat,X5: set_nat,P: nat > $o] :
      ( ( member_nat @ X2 @ Z4 )
     => ( ( ord_less_eq_set_nat @ Z4
          @ ( collect_nat
            @ ^ [X3: nat] :
                ( ( member_nat @ X3 @ X5 )
                & ( P @ X3 ) ) ) )
       => ( P @ X2 ) ) ) ).

% prop_restrict
thf(fact_680_prop__restrict,axiom,
    ! [X2: nat > nat > nat,Z4: set_nat_nat_nat,X5: set_nat_nat_nat,P: ( nat > nat > nat ) > $o] :
      ( ( member_nat_nat_nat2 @ X2 @ Z4 )
     => ( ( ord_le3211623285424100676at_nat @ Z4
          @ ( collect_nat_nat_nat2
            @ ^ [X3: nat > nat > nat] :
                ( ( member_nat_nat_nat2 @ X3 @ X5 )
                & ( P @ X3 ) ) ) )
       => ( P @ X2 ) ) ) ).

% prop_restrict
thf(fact_681_prop__restrict,axiom,
    ! [X2: ( nat > nat ) > nat,Z4: set_nat_nat_nat2,X5: set_nat_nat_nat2,P: ( ( nat > nat ) > nat ) > $o] :
      ( ( member_nat_nat_nat @ X2 @ Z4 )
     => ( ( ord_le5934964663421696068at_nat @ Z4
          @ ( collect_nat_nat_nat
            @ ^ [X3: ( nat > nat ) > nat] :
                ( ( member_nat_nat_nat @ X3 @ X5 )
                & ( P @ X3 ) ) ) )
       => ( P @ X2 ) ) ) ).

% prop_restrict
thf(fact_682_prop__restrict,axiom,
    ! [X2: ( nat > nat ) > nat > nat,Z4: set_nat_nat_nat_nat3,X5: set_nat_nat_nat_nat3,P: ( ( nat > nat ) > nat > nat ) > $o] :
      ( ( member952132173341509300at_nat @ X2 @ Z4 )
     => ( ( ord_le5260717879541182899at_nat @ Z4
          @ ( collec3567154360959927026at_nat
            @ ^ [X3: ( nat > nat ) > nat > nat] :
                ( ( member952132173341509300at_nat @ X3 @ X5 )
                & ( P @ X3 ) ) ) )
       => ( P @ X2 ) ) ) ).

% prop_restrict
thf(fact_683_prop__restrict,axiom,
    ! [X2: nat > nat,Z4: set_nat_nat,X5: set_nat_nat,P: ( nat > nat ) > $o] :
      ( ( member_nat_nat @ X2 @ Z4 )
     => ( ( ord_le9059583361652607317at_nat @ Z4
          @ ( collect_nat_nat
            @ ^ [X3: nat > nat] :
                ( ( member_nat_nat @ X3 @ X5 )
                & ( P @ X3 ) ) ) )
       => ( P @ X2 ) ) ) ).

% prop_restrict
thf(fact_684_Collect__restrict,axiom,
    ! [X5: set_nat,P: nat > $o] :
      ( ord_less_eq_set_nat
      @ ( collect_nat
        @ ^ [X3: nat] :
            ( ( member_nat @ X3 @ X5 )
            & ( P @ X3 ) ) )
      @ X5 ) ).

% Collect_restrict
thf(fact_685_Collect__restrict,axiom,
    ! [X5: set_nat_nat_nat,P: ( nat > nat > nat ) > $o] :
      ( ord_le3211623285424100676at_nat
      @ ( collect_nat_nat_nat2
        @ ^ [X3: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X3 @ X5 )
            & ( P @ X3 ) ) )
      @ X5 ) ).

% Collect_restrict
thf(fact_686_Collect__restrict,axiom,
    ! [X5: set_nat_nat_nat2,P: ( ( nat > nat ) > nat ) > $o] :
      ( ord_le5934964663421696068at_nat
      @ ( collect_nat_nat_nat
        @ ^ [X3: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X3 @ X5 )
            & ( P @ X3 ) ) )
      @ X5 ) ).

% Collect_restrict
thf(fact_687_Collect__restrict,axiom,
    ! [X5: set_nat_nat_nat_nat3,P: ( ( nat > nat ) > nat > nat ) > $o] :
      ( ord_le5260717879541182899at_nat
      @ ( collec3567154360959927026at_nat
        @ ^ [X3: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ X3 @ X5 )
            & ( P @ X3 ) ) )
      @ X5 ) ).

% Collect_restrict
thf(fact_688_Collect__restrict,axiom,
    ! [X5: set_nat_nat,P: ( nat > nat ) > $o] :
      ( ord_le9059583361652607317at_nat
      @ ( collect_nat_nat
        @ ^ [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ X5 )
            & ( P @ X3 ) ) )
      @ X5 ) ).

% Collect_restrict
thf(fact_689_order__le__imp__less__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_690_order__le__imp__less__or__eq,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ X2 @ Y2 )
     => ( ( ord_less_set_nat_nat @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_691_linorder__le__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_692_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_693_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_nat_nat,C: set_nat_nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_le9059583361652607317at_nat @ ( F @ B ) @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_set_nat_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_nat_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_694_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_695_order__less__le__subst1,axiom,
    ! [A: set_nat_nat,F: nat > set_nat_nat,B: nat,C: nat] :
      ( ( ord_less_set_nat_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_nat_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_696_order__less__le__subst1,axiom,
    ! [A: nat,F: set_nat_nat > nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_le9059583361652607317at_nat @ B @ C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_697_order__less__le__subst1,axiom,
    ! [A: set_nat_nat,F: set_nat_nat > set_nat_nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ A @ ( F @ B ) )
     => ( ( ord_le9059583361652607317at_nat @ B @ C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_nat_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_698_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_699_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_nat_nat,C: set_nat_nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_set_nat_nat @ ( F @ B ) @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_nat_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_700_order__le__less__subst2,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,F: set_nat_nat > nat,C: nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_701_order__le__less__subst2,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,F: set_nat_nat > set_nat_nat,C: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( ord_less_set_nat_nat @ ( F @ B ) @ C )
       => ( ! [X: set_nat_nat,Y4: set_nat_nat] :
              ( ( ord_le9059583361652607317at_nat @ X @ Y4 )
             => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_nat_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_702_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_703_order__le__less__subst1,axiom,
    ! [A: set_nat_nat,F: nat > set_nat_nat,B: nat,C: nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X: nat,Y4: nat] :
              ( ( ord_less_nat @ X @ Y4 )
             => ( ord_less_set_nat_nat @ ( F @ X ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_nat_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_704_order__less__le__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X2 @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_705_order__less__le__trans,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat,Z2: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ X2 @ Y2 )
     => ( ( ord_le9059583361652607317at_nat @ Y2 @ Z2 )
       => ( ord_less_set_nat_nat @ X2 @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_706_order__le__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X2 @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_707_order__le__less__trans,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat,Z2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ X2 @ Y2 )
     => ( ( ord_less_set_nat_nat @ Y2 @ Z2 )
       => ( ord_less_set_nat_nat @ X2 @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_708_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_709_order__neq__le__trans,axiom,
    ! [A: set_nat_nat,B: set_nat_nat] :
      ( ( A != B )
     => ( ( ord_le9059583361652607317at_nat @ A @ B )
       => ( ord_less_set_nat_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_710_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_711_order__le__neq__trans,axiom,
    ! [A: set_nat_nat,B: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_nat_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_712_order__less__imp__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_713_order__less__imp__le,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ X2 @ Y2 )
     => ( ord_le9059583361652607317at_nat @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_714_linorder__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_715_linorder__not__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_eq_nat @ X2 @ Y2 ) )
      = ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_716_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_717_order__less__le,axiom,
    ( ord_less_set_nat_nat
    = ( ^ [X3: set_nat_nat,Y3: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_718_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_nat @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_719_order__le__less,axiom,
    ( ord_le9059583361652607317at_nat
    = ( ^ [X3: set_nat_nat,Y3: set_nat_nat] :
          ( ( ord_less_set_nat_nat @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_720_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_721_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_nat_nat,A: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ B @ A )
     => ( ord_le9059583361652607317at_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_722_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_723_order_Ostrict__implies__order,axiom,
    ! [A: set_nat_nat,B: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ A @ B )
     => ( ord_le9059583361652607317at_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_724_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_725_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_nat_nat
    = ( ^ [B2: set_nat_nat,A3: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ B2 @ A3 )
          & ~ ( ord_le9059583361652607317at_nat @ A3 @ B2 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_726_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_727_dual__order_Ostrict__trans2,axiom,
    ! [B: set_nat_nat,A: set_nat_nat,C: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ B @ A )
     => ( ( ord_le9059583361652607317at_nat @ C @ B )
       => ( ord_less_set_nat_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_728_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_729_dual__order_Ostrict__trans1,axiom,
    ! [B: set_nat_nat,A: set_nat_nat,C: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ B @ A )
     => ( ( ord_less_set_nat_nat @ C @ B )
       => ( ord_less_set_nat_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_730_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_731_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_nat_nat
    = ( ^ [B2: set_nat_nat,A3: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ B2 @ A3 )
          & ( A3 != B2 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_732_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( ord_less_nat @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_733_dual__order_Oorder__iff__strict,axiom,
    ( ord_le9059583361652607317at_nat
    = ( ^ [B2: set_nat_nat,A3: set_nat_nat] :
          ( ( ord_less_set_nat_nat @ B2 @ A3 )
          | ( A3 = B2 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_734_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ~ ( ord_less_eq_nat @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_735_order_Ostrict__iff__not,axiom,
    ( ord_less_set_nat_nat
    = ( ^ [A3: set_nat_nat,B2: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ A3 @ B2 )
          & ~ ( ord_le9059583361652607317at_nat @ B2 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_736_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_737_order_Ostrict__trans2,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( ord_less_set_nat_nat @ A @ B )
     => ( ( ord_le9059583361652607317at_nat @ B @ C )
       => ( ord_less_set_nat_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_738_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_739_order_Ostrict__trans1,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ B )
     => ( ( ord_less_set_nat_nat @ B @ C )
       => ( ord_less_set_nat_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_740_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_741_order_Ostrict__iff__order,axiom,
    ( ord_less_set_nat_nat
    = ( ^ [A3: set_nat_nat,B2: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ A3 @ B2 )
          & ( A3 != B2 ) ) ) ) ).

% order.strict_iff_order
thf(fact_742_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( ord_less_nat @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_743_order_Oorder__iff__strict,axiom,
    ( ord_le9059583361652607317at_nat
    = ( ^ [A3: set_nat_nat,B2: set_nat_nat] :
          ( ( ord_less_set_nat_nat @ A3 @ B2 )
          | ( A3 = B2 ) ) ) ) ).

% order.order_iff_strict
thf(fact_744_not__le__imp__less,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ord_less_nat @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_745_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ~ ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_746_less__le__not__le,axiom,
    ( ord_less_set_nat_nat
    = ( ^ [X3: set_nat_nat,Y3: set_nat_nat] :
          ( ( ord_le9059583361652607317at_nat @ X3 @ Y3 )
          & ~ ( ord_le9059583361652607317at_nat @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_747_antisym__conv2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_748_antisym__conv2,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ X2 @ Y2 )
     => ( ( ~ ( ord_less_set_nat_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_749_antisym__conv1,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_750_antisym__conv1,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat] :
      ( ~ ( ord_less_set_nat_nat @ X2 @ Y2 )
     => ( ( ord_le9059583361652607317at_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_751_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_752_nless__le,axiom,
    ! [A: set_nat_nat,B: set_nat_nat] :
      ( ( ~ ( ord_less_set_nat_nat @ A @ B ) )
      = ( ~ ( ord_le9059583361652607317at_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_753_leI,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% leI
thf(fact_754_leD,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ~ ( ord_less_nat @ X2 @ Y2 ) ) ).

% leD
thf(fact_755_leD,axiom,
    ! [Y2: set_nat_nat,X2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ Y2 @ X2 )
     => ~ ( ord_less_set_nat_nat @ X2 @ Y2 ) ) ).

% leD
thf(fact_756_layered__subspace__def,axiom,
    ( hales_4783935871306402712at_nat
    = ( ^ [S6: ( nat > nat ) > nat > nat,K3: nat,N3: nat,T2: nat,R2: nat > nat,Chi2: ( nat > nat ) > nat > nat] :
          ( ( hales_is_subspace @ S6 @ K3 @ N3 @ ( plus_plus_nat @ T2 @ one_one_nat ) )
          & ! [X3: nat] :
              ( ( member_nat @ X3 @ ( set_ord_atMost_nat @ K3 ) )
             => ? [C3: nat > nat] :
                  ( ( ord_less_nat_nat @ C3 @ R2 )
                  & ! [Y3: nat > nat] :
                      ( ( member_nat_nat @ Y3 @ ( hales_classes @ K3 @ T2 @ X3 ) )
                     => ( ( Chi2 @ ( S6 @ Y3 ) )
                        = C3 ) ) ) )
          & ( member952132173341509300at_nat @ Chi2
            @ ( piE_nat_nat_nat_nat3 @ ( hales_cube @ N3 @ ( plus_plus_nat @ T2 @ one_one_nat ) )
              @ ^ [I2: nat > nat] : ( set_or1140352010380016476at_nat @ R2 ) ) ) ) ) ) ).

% layered_subspace_def
thf(fact_757_layered__subspace__def,axiom,
    ( hales_4261547300027266985ce_nat
    = ( ^ [S6: ( nat > nat ) > nat > nat,K3: nat,N3: nat,T2: nat,R2: nat,Chi2: ( nat > nat ) > nat] :
          ( ( hales_is_subspace @ S6 @ K3 @ N3 @ ( plus_plus_nat @ T2 @ one_one_nat ) )
          & ! [X3: nat] :
              ( ( member_nat @ X3 @ ( set_ord_atMost_nat @ K3 ) )
             => ? [C3: nat] :
                  ( ( ord_less_nat @ C3 @ R2 )
                  & ! [Y3: nat > nat] :
                      ( ( member_nat_nat @ Y3 @ ( hales_classes @ K3 @ T2 @ X3 ) )
                     => ( ( Chi2 @ ( S6 @ Y3 ) )
                        = C3 ) ) ) )
          & ( member_nat_nat_nat @ Chi2
            @ ( piE_nat_nat_nat @ ( hales_cube @ N3 @ ( plus_plus_nat @ T2 @ one_one_nat ) )
              @ ^ [I2: nat > nat] : ( set_ord_lessThan_nat @ R2 ) ) ) ) ) ) ).

% layered_subspace_def
thf(fact_758_pred__subset__eq,axiom,
    ! [R4: set_nat,S5: set_nat] :
      ( ( ord_less_eq_nat_o
        @ ^ [X3: nat] : ( member_nat @ X3 @ R4 )
        @ ^ [X3: nat] : ( member_nat @ X3 @ S5 ) )
      = ( ord_less_eq_set_nat @ R4 @ S5 ) ) ).

% pred_subset_eq
thf(fact_759_pred__subset__eq,axiom,
    ! [R4: set_nat_nat_nat,S5: set_nat_nat_nat] :
      ( ( ord_le5384859702510996545_nat_o
        @ ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ R4 )
        @ ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ S5 ) )
      = ( ord_le3211623285424100676at_nat @ R4 @ S5 ) ) ).

% pred_subset_eq
thf(fact_760_pred__subset__eq,axiom,
    ! [R4: set_nat_nat_nat2,S5: set_nat_nat_nat2] :
      ( ( ord_le996020443555834177_nat_o
        @ ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ R4 )
        @ ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ S5 ) )
      = ( ord_le5934964663421696068at_nat @ R4 @ S5 ) ) ).

% pred_subset_eq
thf(fact_761_pred__subset__eq,axiom,
    ! [R4: set_nat_nat_nat_nat3,S5: set_nat_nat_nat_nat3] :
      ( ( ord_le5430825838364970130_nat_o
        @ ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ R4 )
        @ ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ S5 ) )
      = ( ord_le5260717879541182899at_nat @ R4 @ S5 ) ) ).

% pred_subset_eq
thf(fact_762_pred__subset__eq,axiom,
    ! [R4: set_nat_nat,S5: set_nat_nat] :
      ( ( ord_le7366121074344172400_nat_o
        @ ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ R4 )
        @ ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ S5 ) )
      = ( ord_le9059583361652607317at_nat @ R4 @ S5 ) ) ).

% pred_subset_eq
thf(fact_763_dim1__subspace__is__line,axiom,
    ! [T: nat,S5: ( nat > nat ) > nat > nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ T )
     => ( ( hales_is_subspace @ S5 @ one_one_nat @ N @ T )
       => ( hales_is_line
          @ ( restrict_nat_nat_nat2
            @ ^ [S4: nat] :
                ( S5
                @ ( fChoice_nat_nat
                  @ ^ [P4: nat > nat] :
                      ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ T ) )
                      & ( ( P4 @ zero_zero_nat )
                        = S4 ) ) ) )
            @ ( set_ord_lessThan_nat @ T ) )
          @ N
          @ T ) ) ) ).

% dim1_subspace_is_line
thf(fact_764_dim1__layered__subspace__as__line,axiom,
    ! [T: nat,S5: ( nat > nat ) > nat > nat,N: nat,R3: nat,Chi3: ( nat > nat ) > nat] :
      ( ( ord_less_nat @ zero_zero_nat @ T )
     => ( ( hales_4261547300027266985ce_nat @ S5 @ one_one_nat @ N @ T @ R3 @ Chi3 )
       => ? [C1: nat,C22: nat] :
            ( ( ord_less_nat @ C1 @ R3 )
            & ( ord_less_nat @ C22 @ R3 )
            & ! [S: nat] :
                ( ( ord_less_nat @ S @ T )
               => ( ( Chi3
                    @ ( S5
                      @ ( fChoice_nat_nat
                        @ ^ [P4: nat > nat] :
                            ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ ( plus_plus_nat @ T @ one_one_nat ) ) )
                            & ( ( P4 @ zero_zero_nat )
                              = S ) ) ) ) )
                  = C1 ) )
            & ( ( Chi3
                @ ( S5
                  @ ( fChoice_nat_nat
                    @ ^ [P4: nat > nat] :
                        ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ ( plus_plus_nat @ T @ one_one_nat ) ) )
                        & ( ( P4 @ zero_zero_nat )
                          = T ) ) ) ) )
              = C22 ) ) ) ) ).

% dim1_layered_subspace_as_line
thf(fact_765_dim1__layered__subspace__mono__line,axiom,
    ! [T: nat,S5: ( nat > nat ) > nat > nat,N: nat,R3: nat,Chi3: ( nat > nat ) > nat] :
      ( ( ord_less_nat @ zero_zero_nat @ T )
     => ( ( hales_4261547300027266985ce_nat @ S5 @ one_one_nat @ N @ T @ R3 @ Chi3 )
       => ! [S: nat] :
            ( ( ord_less_nat @ S @ T )
           => ! [L5: nat] :
                ( ( ord_less_nat @ L5 @ T )
               => ( ( ( Chi3
                      @ ( S5
                        @ ( fChoice_nat_nat
                          @ ^ [P4: nat > nat] :
                              ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ ( plus_plus_nat @ T @ one_one_nat ) ) )
                              & ( ( P4 @ zero_zero_nat )
                                = S ) ) ) ) )
                    = ( Chi3
                      @ ( S5
                        @ ( fChoice_nat_nat
                          @ ^ [P4: nat > nat] :
                              ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ ( plus_plus_nat @ T @ one_one_nat ) ) )
                              & ( ( P4 @ zero_zero_nat )
                                = L5 ) ) ) ) ) )
                  & ( ord_less_nat
                    @ ( Chi3
                      @ ( S5
                        @ ( fChoice_nat_nat
                          @ ^ [P4: nat > nat] :
                              ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ ( plus_plus_nat @ T @ one_one_nat ) ) )
                              & ( ( P4 @ zero_zero_nat )
                                = S ) ) ) ) )
                    @ R3 ) ) ) ) ) ) ).

% dim1_layered_subspace_mono_line
thf(fact_766_atMost__eq__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( set_ord_atMost_nat @ X2 )
        = ( set_ord_atMost_nat @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% atMost_eq_iff
thf(fact_767_atMost__iff,axiom,
    ! [I: nat > nat,K: nat > nat] :
      ( ( member_nat_nat @ I @ ( set_or9140604705432621368at_nat @ K ) )
      = ( ord_less_eq_nat_nat @ I @ K ) ) ).

% atMost_iff
thf(fact_768_atMost__iff,axiom,
    ! [I: nat > nat > nat,K: nat > nat > nat] :
      ( ( member_nat_nat_nat2 @ I @ ( set_or6142498856979658663at_nat @ K ) )
      = ( ord_le3127000006974329230at_nat @ I @ K ) ) ).

% atMost_iff
thf(fact_769_atMost__iff,axiom,
    ! [I: ( nat > nat ) > nat,K: ( nat > nat ) > nat] :
      ( ( member_nat_nat_nat @ I @ ( set_or5033131092550408871at_nat @ K ) )
      = ( ord_le2017632242545079438at_nat @ I @ K ) ) ).

% atMost_iff
thf(fact_770_atMost__iff,axiom,
    ! [I: ( nat > nat ) > nat > nat,K: ( nat > nat ) > nat > nat] :
      ( ( member952132173341509300at_nat @ I @ ( set_or3591701359631937174at_nat @ K ) )
      = ( ord_le747776305331315197at_nat @ I @ K ) ) ).

% atMost_iff
thf(fact_771_atMost__iff,axiom,
    ! [I: set_nat_nat,K: set_nat_nat] :
      ( ( member_set_nat_nat @ I @ ( set_or250740698829186286at_nat @ K ) )
      = ( ord_le9059583361652607317at_nat @ I @ K ) ) ).

% atMost_iff
thf(fact_772_atMost__iff,axiom,
    ! [I: nat,K: nat] :
      ( ( member_nat @ I @ ( set_ord_atMost_nat @ K ) )
      = ( ord_less_eq_nat @ I @ K ) ) ).

% atMost_iff
thf(fact_773_atMost__subset__iff,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat] :
      ( ( ord_le4954213926817602059at_nat @ ( set_or250740698829186286at_nat @ X2 ) @ ( set_or250740698829186286at_nat @ Y2 ) )
      = ( ord_le9059583361652607317at_nat @ X2 @ Y2 ) ) ).

% atMost_subset_iff
thf(fact_774_atMost__subset__iff,axiom,
    ! [X2: nat > nat,Y2: nat > nat] :
      ( ( ord_le9059583361652607317at_nat @ ( set_or9140604705432621368at_nat @ X2 ) @ ( set_or9140604705432621368at_nat @ Y2 ) )
      = ( ord_less_eq_nat_nat @ X2 @ Y2 ) ) ).

% atMost_subset_iff
thf(fact_775_atMost__subset__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ X2 ) @ ( set_ord_atMost_nat @ Y2 ) )
      = ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% atMost_subset_iff
thf(fact_776_verit__sko__forall__indirect2,axiom,
    ! [X2: nat > nat,P: ( nat > nat ) > $o,P5: ( nat > nat ) > $o] :
      ( ( X2
        = ( fChoice_nat_nat
          @ ^ [X3: nat > nat] :
              ~ ( P @ X3 ) ) )
     => ( ! [X: nat > nat] :
            ( ( P @ X )
            = ( P5 @ X ) )
       => ( ( ! [X7: nat > nat] : ( P5 @ X7 ) )
          = ( P @ X2 ) ) ) ) ).

% verit_sko_forall_indirect2
thf(fact_777_verit__sko__forall__indirect,axiom,
    ! [X2: nat > nat,P: ( nat > nat ) > $o] :
      ( ( X2
        = ( fChoice_nat_nat
          @ ^ [X3: nat > nat] :
              ~ ( P @ X3 ) ) )
     => ( ( ! [X7: nat > nat] : ( P @ X7 ) )
        = ( P @ X2 ) ) ) ).

% verit_sko_forall_indirect
thf(fact_778_verit__sko__ex__indirect2,axiom,
    ! [X2: nat > nat,P: ( nat > nat ) > $o,P5: ( nat > nat ) > $o] :
      ( ( X2
        = ( fChoice_nat_nat @ P ) )
     => ( ! [X: nat > nat] :
            ( ( P @ X )
            = ( P5 @ X ) )
       => ( ( ? [X7: nat > nat] : ( P5 @ X7 ) )
          = ( P @ X2 ) ) ) ) ).

% verit_sko_ex_indirect2
thf(fact_779_verit__sko__ex__indirect,axiom,
    ! [X2: nat > nat,P: ( nat > nat ) > $o] :
      ( ( X2
        = ( fChoice_nat_nat @ P ) )
     => ( ( ? [X7: nat > nat] : ( P @ X7 ) )
        = ( P @ X2 ) ) ) ).

% verit_sko_ex_indirect
thf(fact_780_verit__sko__forall_H_H,axiom,
    ! [B3: nat > nat,A2: nat > nat,P: ( nat > nat ) > $o] :
      ( ( B3 = A2 )
     => ( ( ( fChoice_nat_nat @ P )
          = A2 )
        = ( ( fChoice_nat_nat @ P )
          = B3 ) ) ) ).

% verit_sko_forall''
thf(fact_781_verit__sko__forall_H,axiom,
    ! [P: ( nat > nat ) > $o,A2: $o] :
      ( ( ( P
          @ ( fChoice_nat_nat
            @ ^ [X3: nat > nat] :
                ~ ( P @ X3 ) ) )
        = A2 )
     => ( ( ! [X7: nat > nat] : ( P @ X7 ) )
        = A2 ) ) ).

% verit_sko_forall'
thf(fact_782_verit__sko__forall,axiom,
    ( ( ^ [P2: ( nat > nat ) > $o] :
        ! [X6: nat > nat] : ( P2 @ X6 ) )
    = ( ^ [P3: ( nat > nat ) > $o] :
          ( P3
          @ ( fChoice_nat_nat
            @ ^ [X3: nat > nat] :
                ~ ( P3 @ X3 ) ) ) ) ) ).

% verit_sko_forall
thf(fact_783_verit__sko__ex_H,axiom,
    ! [P: ( nat > nat ) > $o,A2: $o] :
      ( ( ( P @ ( fChoice_nat_nat @ P ) )
        = A2 )
     => ( ( ? [X7: nat > nat] : ( P @ X7 ) )
        = A2 ) ) ).

% verit_sko_ex'
thf(fact_784_atMost__def,axiom,
    ( set_or9140604705432621368at_nat
    = ( ^ [U: nat > nat] :
          ( collect_nat_nat
          @ ^ [X3: nat > nat] : ( ord_less_eq_nat_nat @ X3 @ U ) ) ) ) ).

% atMost_def
thf(fact_785_atMost__def,axiom,
    ( set_or250740698829186286at_nat
    = ( ^ [U: set_nat_nat] :
          ( collect_set_nat_nat
          @ ^ [X3: set_nat_nat] : ( ord_le9059583361652607317at_nat @ X3 @ U ) ) ) ) ).

% atMost_def
thf(fact_786_atMost__def,axiom,
    ( set_ord_atMost_nat
    = ( ^ [U: nat] :
          ( collect_nat
          @ ^ [X3: nat] : ( ord_less_eq_nat @ X3 @ U ) ) ) ) ).

% atMost_def
thf(fact_787_layered__eq__classes,axiom,
    ! [S5: ( nat > nat ) > nat > nat,K: nat,N: nat,T: nat,R3: nat,Chi3: ( nat > nat ) > nat] :
      ( ( hales_4261547300027266985ce_nat @ S5 @ K @ N @ T @ R3 @ Chi3 )
     => ! [X4: nat] :
          ( ( member_nat @ X4 @ ( set_ord_atMost_nat @ K ) )
         => ! [Xa: nat > nat] :
              ( ( member_nat_nat @ Xa @ ( hales_classes @ K @ T @ X4 ) )
             => ! [Xb: nat > nat] :
                  ( ( member_nat_nat @ Xb @ ( hales_classes @ K @ T @ X4 ) )
                 => ( ( Chi3 @ ( S5 @ Xa ) )
                    = ( Chi3 @ ( S5 @ Xb ) ) ) ) ) ) ) ).

% layered_eq_classes
thf(fact_788_Iic__subset__Iio__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_set_nat @ ( set_ord_atMost_nat @ A ) @ ( set_ord_lessThan_nat @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% Iic_subset_Iio_iff
thf(fact_789_cube__props_I2_J,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( ( fChoice_nat_nat
          @ ^ [P4: nat > nat] :
              ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ T ) )
              & ( ( P4 @ zero_zero_nat )
                = S2 ) )
          @ zero_zero_nat )
        = S2 ) ) ).

% cube_props(2)
thf(fact_790_cube__props_I4_J,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( member_nat_nat
        @ ( fChoice_nat_nat
          @ ^ [P4: nat > nat] :
              ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ T ) )
              & ( ( P4 @ zero_zero_nat )
                = S2 ) ) )
        @ ( hales_cube @ one_one_nat @ T ) ) ) ).

% cube_props(4)
thf(fact_791_cube__props_I3_J,axiom,
    ! [S2: nat,T: nat,S5: ( nat > nat ) > nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( ( restrict_nat_nat
          @ ^ [S4: nat] :
              ( S5
              @ ( fChoice_nat_nat
                @ ^ [P4: nat > nat] :
                    ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ T ) )
                    & ( ( P4 @ zero_zero_nat )
                      = S4 ) ) ) )
          @ ( set_ord_lessThan_nat @ T )
          @ S2 )
        = ( restrict_nat_nat
          @ ^ [S4: nat] :
              ( S5
              @ ( fChoice_nat_nat
                @ ^ [P4: nat > nat] :
                    ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ T ) )
                    & ( ( P4 @ zero_zero_nat )
                      = S4 ) ) ) )
          @ ( set_ord_lessThan_nat @ T )
          @ ( fChoice_nat_nat
            @ ^ [P4: nat > nat] :
                ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ T ) )
                & ( ( P4 @ zero_zero_nat )
                  = S2 ) )
            @ zero_zero_nat ) ) ) ) ).

% cube_props(3)
thf(fact_792_cube__props_I3_J,axiom,
    ! [S2: nat,T: nat,S5: ( nat > nat ) > nat > nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( ( restrict_nat_nat_nat2
          @ ^ [S4: nat] :
              ( S5
              @ ( fChoice_nat_nat
                @ ^ [P4: nat > nat] :
                    ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ T ) )
                    & ( ( P4 @ zero_zero_nat )
                      = S4 ) ) ) )
          @ ( set_ord_lessThan_nat @ T )
          @ S2 )
        = ( restrict_nat_nat_nat2
          @ ^ [S4: nat] :
              ( S5
              @ ( fChoice_nat_nat
                @ ^ [P4: nat > nat] :
                    ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ T ) )
                    & ( ( P4 @ zero_zero_nat )
                      = S4 ) ) ) )
          @ ( set_ord_lessThan_nat @ T )
          @ ( fChoice_nat_nat
            @ ^ [P4: nat > nat] :
                ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ T ) )
                & ( ( P4 @ zero_zero_nat )
                  = S2 ) )
            @ zero_zero_nat ) ) ) ) ).

% cube_props(3)
thf(fact_793_some__sym__eq__trivial,axiom,
    ! [X2: nat > nat] :
      ( ( fChoice_nat_nat
        @ ( ^ [Y6: nat > nat,Z3: nat > nat] : ( Y6 = Z3 )
          @ X2 ) )
      = X2 ) ).

% some_sym_eq_trivial
thf(fact_794_some__eq__trivial,axiom,
    ! [X2: nat > nat] :
      ( ( fChoice_nat_nat
        @ ^ [Y3: nat > nat] : ( Y3 = X2 ) )
      = X2 ) ).

% some_eq_trivial
thf(fact_795_some__equality,axiom,
    ! [P: ( nat > nat ) > $o,A: nat > nat] :
      ( ( P @ A )
     => ( ! [X: nat > nat] :
            ( ( P @ X )
           => ( X = A ) )
       => ( ( fChoice_nat_nat @ P )
          = A ) ) ) ).

% some_equality
thf(fact_796_Bf__defs,axiom,
    ( ( disjoi6798895846410478970at_nat @ b @ ( set_ord_atMost_nat @ one_one_nat ) )
    & ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ b @ ( set_ord_atMost_nat @ one_one_nat ) ) )
      = ( set_ord_lessThan_nat @ n ) )
    & ~ ( member_set_nat @ bot_bot_set_nat @ ( image_nat_set_nat @ b @ ( set_ord_lessThan_nat @ one_one_nat ) ) )
    & ( member_nat_nat @ f
      @ ( piE_nat_nat @ ( b @ one_one_nat )
        @ ^ [I2: nat] : ( set_ord_lessThan_nat @ t ) ) )
    & ( member952132173341509300at_nat
      @ ( restri4446420529079022766at_nat
        @ ^ [Y3: nat > nat] : ( l2 @ ( Y3 @ zero_zero_nat ) )
        @ ( hales_cube @ one_one_nat @ t ) )
      @ ( piE_nat_nat_nat_nat3 @ ( hales_cube @ one_one_nat @ t )
        @ ^ [I2: nat > nat] : ( hales_cube @ n @ t ) ) )
    & ! [X4: nat > nat] :
        ( ( member_nat_nat @ X4 @ ( hales_cube @ one_one_nat @ t ) )
       => ( ! [Xa: nat] :
              ( ( member_nat @ Xa @ ( b @ one_one_nat ) )
             => ( ( restri4446420529079022766at_nat
                  @ ^ [Y3: nat > nat] : ( l2 @ ( Y3 @ zero_zero_nat ) )
                  @ ( hales_cube @ one_one_nat @ t )
                  @ X4
                  @ Xa )
                = ( f @ Xa ) ) )
          & ! [J4: nat] :
              ( ( ord_less_nat @ J4 @ one_one_nat )
             => ! [Xa: nat] :
                  ( ( member_nat @ Xa @ ( b @ J4 ) )
                 => ( ( restri4446420529079022766at_nat
                      @ ^ [Y3: nat > nat] : ( l2 @ ( Y3 @ zero_zero_nat ) )
                      @ ( hales_cube @ one_one_nat @ t )
                      @ X4
                      @ Xa )
                    = ( X4 @ J4 ) ) ) ) ) ) ) ).

% Bf_defs
thf(fact_797_subset__empty,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat )
      = ( A2 = bot_bot_set_nat ) ) ).

% subset_empty
thf(fact_798_subset__empty,axiom,
    ! [A2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ bot_bot_set_nat_nat )
      = ( A2 = bot_bot_set_nat_nat ) ) ).

% subset_empty
thf(fact_799_empty__subsetI,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A2 ) ).

% empty_subsetI
thf(fact_800_empty__subsetI,axiom,
    ! [A2: set_nat_nat] : ( ord_le9059583361652607317at_nat @ bot_bot_set_nat_nat @ A2 ) ).

% empty_subsetI
thf(fact_801_Diff__cancel,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ A2 )
      = bot_bot_set_nat ) ).

% Diff_cancel
thf(fact_802_Diff__cancel,axiom,
    ! [A2: set_nat_nat] :
      ( ( minus_8121590178497047118at_nat @ A2 @ A2 )
      = bot_bot_set_nat_nat ) ).

% Diff_cancel
thf(fact_803_empty__Diff,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ bot_bot_set_nat @ A2 )
      = bot_bot_set_nat ) ).

% empty_Diff
thf(fact_804_empty__Diff,axiom,
    ! [A2: set_nat_nat] :
      ( ( minus_8121590178497047118at_nat @ bot_bot_set_nat_nat @ A2 )
      = bot_bot_set_nat_nat ) ).

% empty_Diff
thf(fact_805_Diff__empty,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ bot_bot_set_nat )
      = A2 ) ).

% Diff_empty
thf(fact_806_Diff__empty,axiom,
    ! [A2: set_nat_nat] :
      ( ( minus_8121590178497047118at_nat @ A2 @ bot_bot_set_nat_nat )
      = A2 ) ).

% Diff_empty
thf(fact_807_Sup__atMost,axiom,
    ! [Y2: set_nat] :
      ( ( comple7399068483239264473et_nat @ ( set_or4236626031148496127et_nat @ Y2 ) )
      = Y2 ) ).

% Sup_atMost
thf(fact_808_PiE__empty__range,axiom,
    ! [I: nat > nat > nat,I5: set_nat_nat_nat,F3: ( nat > nat > nat ) > set_nat] :
      ( ( member_nat_nat_nat2 @ I @ I5 )
     => ( ( ( F3 @ I )
          = bot_bot_set_nat )
       => ( ( piE_nat_nat_nat_nat2 @ I5 @ F3 )
          = bot_bo3013702615682746855at_nat ) ) ) ).

% PiE_empty_range
thf(fact_809_PiE__empty__range,axiom,
    ! [I: ( nat > nat ) > nat,I5: set_nat_nat_nat2,F3: ( ( nat > nat ) > nat ) > set_nat] :
      ( ( member_nat_nat_nat @ I @ I5 )
     => ( ( ( F3 @ I )
          = bot_bot_set_nat )
       => ( ( piE_nat_nat_nat_nat @ I5 @ F3 )
          = bot_bo4508028030728203495at_nat ) ) ) ).

% PiE_empty_range
thf(fact_810_PiE__empty__range,axiom,
    ! [I: ( nat > nat ) > nat > nat,I5: set_nat_nat_nat_nat3,F3: ( ( nat > nat ) > nat > nat ) > set_nat] :
      ( ( member952132173341509300at_nat @ I @ I5 )
     => ( ( ( F3 @ I )
          = bot_bot_set_nat )
       => ( ( piE_na4548495224246695081at_nat @ I5 @ F3 )
          = bot_bo3386126977483763158at_nat ) ) ) ).

% PiE_empty_range
thf(fact_811_PiE__empty__range,axiom,
    ! [I: nat > nat,I5: set_nat_nat,F3: ( nat > nat ) > set_nat] :
      ( ( member_nat_nat @ I @ I5 )
     => ( ( ( F3 @ I )
          = bot_bot_set_nat )
       => ( ( piE_nat_nat_nat @ I5 @ F3 )
          = bot_bo945813143650711160at_nat ) ) ) ).

% PiE_empty_range
thf(fact_812_PiE__empty__range,axiom,
    ! [I: nat,I5: set_nat,F3: nat > set_nat] :
      ( ( member_nat @ I @ I5 )
     => ( ( ( F3 @ I )
          = bot_bot_set_nat )
       => ( ( piE_nat_nat @ I5 @ F3 )
          = bot_bot_set_nat_nat ) ) ) ).

% PiE_empty_range
thf(fact_813_PiE__empty__range,axiom,
    ! [I: nat > nat > nat,I5: set_nat_nat_nat,F3: ( nat > nat > nat ) > set_nat_nat] :
      ( ( member_nat_nat_nat2 @ I @ I5 )
     => ( ( ( F3 @ I )
          = bot_bot_set_nat_nat )
       => ( ( piE_na7122919648973241129at_nat @ I5 @ F3 )
          = bot_bo4227112084914574038at_nat ) ) ) ).

% PiE_empty_range
thf(fact_814_PiE__empty__range,axiom,
    ! [I: ( nat > nat ) > nat,I5: set_nat_nat_nat2,F3: ( ( nat > nat ) > nat ) > set_nat_nat] :
      ( ( member_nat_nat_nat @ I @ I5 )
     => ( ( ( F3 @ I )
          = bot_bot_set_nat_nat )
       => ( ( piE_na6840239867990089257at_nat @ I5 @ F3 )
          = bot_bo4291610329234208214at_nat ) ) ) ).

% PiE_empty_range
thf(fact_815_PiE__empty__range,axiom,
    ! [I: ( nat > nat ) > nat > nat,I5: set_nat_nat_nat_nat3,F3: ( ( nat > nat ) > nat > nat ) > set_nat_nat] :
      ( ( member952132173341509300at_nat @ I @ I5 )
     => ( ( ( F3 @ I )
          = bot_bot_set_nat_nat )
       => ( ( piE_na6564615839001774232at_nat @ I5 @ F3 )
          = bot_bo3618716324728726597at_nat ) ) ) ).

% PiE_empty_range
thf(fact_816_PiE__empty__range,axiom,
    ! [I: nat,I5: set_nat,F3: nat > set_nat_nat] :
      ( ( member_nat @ I @ I5 )
     => ( ( ( F3 @ I )
          = bot_bot_set_nat_nat )
       => ( ( piE_nat_nat_nat2 @ I5 @ F3 )
          = bot_bo7445843802507891576at_nat ) ) ) ).

% PiE_empty_range
thf(fact_817_PiE__empty__range,axiom,
    ! [I: nat > nat,I5: set_nat_nat,F3: ( nat > nat ) > set_nat_nat] :
      ( ( member_nat_nat @ I @ I5 )
     => ( ( ( F3 @ I )
          = bot_bot_set_nat_nat )
       => ( ( piE_nat_nat_nat_nat3 @ I5 @ F3 )
          = bot_bo3919185967433191911at_nat ) ) ) ).

% PiE_empty_range
thf(fact_818_Diff__eq__empty__iff,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( ( minus_minus_set_nat @ A2 @ B3 )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ A2 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_819_Diff__eq__empty__iff,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ( ( minus_8121590178497047118at_nat @ A2 @ B3 )
        = bot_bot_set_nat_nat )
      = ( ord_le9059583361652607317at_nat @ A2 @ B3 ) ) ).

% Diff_eq_empty_iff
thf(fact_820_lessThan__0,axiom,
    ( ( set_ord_lessThan_nat @ zero_zero_nat )
    = bot_bot_set_nat ) ).

% lessThan_0
thf(fact_821_bot_Oextremum__uniqueI,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
     => ( A = bot_bot_set_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_822_bot_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
     => ( A = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_823_bot_Oextremum__uniqueI,axiom,
    ! [A: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ bot_bot_set_nat_nat )
     => ( A = bot_bot_set_nat_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_824_bot_Oextremum__unique,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
      = ( A = bot_bot_set_nat ) ) ).

% bot.extremum_unique
thf(fact_825_bot_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
      = ( A = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_826_bot_Oextremum__unique,axiom,
    ! [A: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ bot_bot_set_nat_nat )
      = ( A = bot_bot_set_nat_nat ) ) ).

% bot.extremum_unique
thf(fact_827_bot_Oextremum,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A ) ).

% bot.extremum
thf(fact_828_bot_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).

% bot.extremum
thf(fact_829_bot_Oextremum,axiom,
    ! [A: set_nat_nat] : ( ord_le9059583361652607317at_nat @ bot_bot_set_nat_nat @ A ) ).

% bot.extremum
thf(fact_830_bot_Oextremum__strict,axiom,
    ! [A: set_nat] :
      ~ ( ord_less_set_nat @ A @ bot_bot_set_nat ) ).

% bot.extremum_strict
thf(fact_831_bot_Oextremum__strict,axiom,
    ! [A: set_nat_nat] :
      ~ ( ord_less_set_nat_nat @ A @ bot_bot_set_nat_nat ) ).

% bot.extremum_strict
thf(fact_832_bot_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ bot_bot_nat ) ).

% bot.extremum_strict
thf(fact_833_bot_Onot__eq__extremum,axiom,
    ! [A: set_nat] :
      ( ( A != bot_bot_set_nat )
      = ( ord_less_set_nat @ bot_bot_set_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_834_bot_Onot__eq__extremum,axiom,
    ! [A: set_nat_nat] :
      ( ( A != bot_bot_set_nat_nat )
      = ( ord_less_set_nat_nat @ bot_bot_set_nat_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_835_bot_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != bot_bot_nat )
      = ( ord_less_nat @ bot_bot_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_836_not__empty__eq__Iic__eq__empty,axiom,
    ! [H: nat > nat] :
      ( bot_bot_set_nat_nat
     != ( set_or9140604705432621368at_nat @ H ) ) ).

% not_empty_eq_Iic_eq_empty
thf(fact_837_not__empty__eq__Iic__eq__empty,axiom,
    ! [H: nat] :
      ( bot_bot_set_nat
     != ( set_ord_atMost_nat @ H ) ) ).

% not_empty_eq_Iic_eq_empty
thf(fact_838_some__in__eq,axiom,
    ! [A2: set_nat_nat_nat] :
      ( ( member_nat_nat_nat2
        @ ( fChoice_nat_nat_nat2
          @ ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ A2 ) )
        @ A2 )
      = ( A2 != bot_bo7445843802507891576at_nat ) ) ).

% some_in_eq
thf(fact_839_some__in__eq,axiom,
    ! [A2: set_nat_nat_nat2] :
      ( ( member_nat_nat_nat
        @ ( fChoice_nat_nat_nat
          @ ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ A2 ) )
        @ A2 )
      = ( A2 != bot_bo945813143650711160at_nat ) ) ).

% some_in_eq
thf(fact_840_some__in__eq,axiom,
    ! [A2: set_nat_nat_nat_nat3] :
      ( ( member952132173341509300at_nat
        @ ( fChoic52552927678224201at_nat
          @ ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ A2 ) )
        @ A2 )
      = ( A2 != bot_bo3919185967433191911at_nat ) ) ).

% some_in_eq
thf(fact_841_some__in__eq,axiom,
    ! [A2: set_nat] :
      ( ( member_nat
        @ ( fChoice_nat
          @ ^ [X3: nat] : ( member_nat @ X3 @ A2 ) )
        @ A2 )
      = ( A2 != bot_bot_set_nat ) ) ).

% some_in_eq
thf(fact_842_some__in__eq,axiom,
    ! [A2: set_nat_nat] :
      ( ( member_nat_nat
        @ ( fChoice_nat_nat
          @ ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ A2 ) )
        @ A2 )
      = ( A2 != bot_bot_set_nat_nat ) ) ).

% some_in_eq
thf(fact_843_PiE__eq__empty__iff,axiom,
    ! [I5: set_nat_nat,F3: ( nat > nat ) > set_nat] :
      ( ( ( piE_nat_nat_nat @ I5 @ F3 )
        = bot_bo945813143650711160at_nat )
      = ( ? [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
            & ( ( F3 @ X3 )
              = bot_bot_set_nat ) ) ) ) ).

% PiE_eq_empty_iff
thf(fact_844_PiE__eq__empty__iff,axiom,
    ! [I5: set_nat,F3: nat > set_nat_nat] :
      ( ( ( piE_nat_nat_nat2 @ I5 @ F3 )
        = bot_bo7445843802507891576at_nat )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
            & ( ( F3 @ X3 )
              = bot_bot_set_nat_nat ) ) ) ) ).

% PiE_eq_empty_iff
thf(fact_845_PiE__eq__empty__iff,axiom,
    ! [I5: set_nat_nat,F3: ( nat > nat ) > set_nat_nat] :
      ( ( ( piE_nat_nat_nat_nat3 @ I5 @ F3 )
        = bot_bo3919185967433191911at_nat )
      = ( ? [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
            & ( ( F3 @ X3 )
              = bot_bot_set_nat_nat ) ) ) ) ).

% PiE_eq_empty_iff
thf(fact_846_PiE__eq__empty__iff,axiom,
    ! [I5: set_nat,F3: nat > set_nat] :
      ( ( ( piE_nat_nat @ I5 @ F3 )
        = bot_bot_set_nat_nat )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
            & ( ( F3 @ X3 )
              = bot_bot_set_nat ) ) ) ) ).

% PiE_eq_empty_iff
thf(fact_847_subset__emptyI,axiom,
    ! [A2: set_nat_nat_nat] :
      ( ! [X: nat > nat > nat] :
          ~ ( member_nat_nat_nat2 @ X @ A2 )
     => ( ord_le3211623285424100676at_nat @ A2 @ bot_bo7445843802507891576at_nat ) ) ).

% subset_emptyI
thf(fact_848_subset__emptyI,axiom,
    ! [A2: set_nat_nat_nat2] :
      ( ! [X: ( nat > nat ) > nat] :
          ~ ( member_nat_nat_nat @ X @ A2 )
     => ( ord_le5934964663421696068at_nat @ A2 @ bot_bo945813143650711160at_nat ) ) ).

% subset_emptyI
thf(fact_849_subset__emptyI,axiom,
    ! [A2: set_nat_nat_nat_nat3] :
      ( ! [X: ( nat > nat ) > nat > nat] :
          ~ ( member952132173341509300at_nat @ X @ A2 )
     => ( ord_le5260717879541182899at_nat @ A2 @ bot_bo3919185967433191911at_nat ) ) ).

% subset_emptyI
thf(fact_850_subset__emptyI,axiom,
    ! [A2: set_nat] :
      ( ! [X: nat] :
          ~ ( member_nat @ X @ A2 )
     => ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat ) ) ).

% subset_emptyI
thf(fact_851_subset__emptyI,axiom,
    ! [A2: set_nat_nat] :
      ( ! [X: nat > nat] :
          ~ ( member_nat_nat @ X @ A2 )
     => ( ord_le9059583361652607317at_nat @ A2 @ bot_bot_set_nat_nat ) ) ).

% subset_emptyI
thf(fact_852_not__psubset__empty,axiom,
    ! [A2: set_nat] :
      ~ ( ord_less_set_nat @ A2 @ bot_bot_set_nat ) ).

% not_psubset_empty
thf(fact_853_not__psubset__empty,axiom,
    ! [A2: set_nat_nat] :
      ~ ( ord_less_set_nat_nat @ A2 @ bot_bot_set_nat_nat ) ).

% not_psubset_empty
thf(fact_854_PiE__eq__iff__not__empty,axiom,
    ! [I5: set_nat_nat_nat,F3: ( nat > nat > nat ) > set_nat,F4: ( nat > nat > nat ) > set_nat] :
      ( ! [I3: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat ) )
     => ( ! [I3: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat ) )
       => ( ( ( piE_nat_nat_nat_nat2 @ I5 @ F3 )
            = ( piE_nat_nat_nat_nat2 @ I5 @ F4 ) )
          = ( ! [X3: nat > nat > nat] :
                ( ( member_nat_nat_nat2 @ X3 @ I5 )
               => ( ( F3 @ X3 )
                  = ( F4 @ X3 ) ) ) ) ) ) ) ).

% PiE_eq_iff_not_empty
thf(fact_855_PiE__eq__iff__not__empty,axiom,
    ! [I5: set_nat_nat_nat2,F3: ( ( nat > nat ) > nat ) > set_nat,F4: ( ( nat > nat ) > nat ) > set_nat] :
      ( ! [I3: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat ) )
     => ( ! [I3: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat ) )
       => ( ( ( piE_nat_nat_nat_nat @ I5 @ F3 )
            = ( piE_nat_nat_nat_nat @ I5 @ F4 ) )
          = ( ! [X3: ( nat > nat ) > nat] :
                ( ( member_nat_nat_nat @ X3 @ I5 )
               => ( ( F3 @ X3 )
                  = ( F4 @ X3 ) ) ) ) ) ) ) ).

% PiE_eq_iff_not_empty
thf(fact_856_PiE__eq__iff__not__empty,axiom,
    ! [I5: set_nat_nat_nat_nat3,F3: ( ( nat > nat ) > nat > nat ) > set_nat,F4: ( ( nat > nat ) > nat > nat ) > set_nat] :
      ( ! [I3: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat ) )
     => ( ! [I3: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat ) )
       => ( ( ( piE_na4548495224246695081at_nat @ I5 @ F3 )
            = ( piE_na4548495224246695081at_nat @ I5 @ F4 ) )
          = ( ! [X3: ( nat > nat ) > nat > nat] :
                ( ( member952132173341509300at_nat @ X3 @ I5 )
               => ( ( F3 @ X3 )
                  = ( F4 @ X3 ) ) ) ) ) ) ) ).

% PiE_eq_iff_not_empty
thf(fact_857_PiE__eq__iff__not__empty,axiom,
    ! [I5: set_nat,F3: nat > set_nat,F4: nat > set_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat ) )
       => ( ( ( piE_nat_nat @ I5 @ F3 )
            = ( piE_nat_nat @ I5 @ F4 ) )
          = ( ! [X3: nat] :
                ( ( member_nat @ X3 @ I5 )
               => ( ( F3 @ X3 )
                  = ( F4 @ X3 ) ) ) ) ) ) ) ).

% PiE_eq_iff_not_empty
thf(fact_858_PiE__eq__iff__not__empty,axiom,
    ! [I5: set_nat_nat,F3: ( nat > nat ) > set_nat,F4: ( nat > nat ) > set_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat ) )
     => ( ! [I3: nat > nat] :
            ( ( member_nat_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat ) )
       => ( ( ( piE_nat_nat_nat @ I5 @ F3 )
            = ( piE_nat_nat_nat @ I5 @ F4 ) )
          = ( ! [X3: nat > nat] :
                ( ( member_nat_nat @ X3 @ I5 )
               => ( ( F3 @ X3 )
                  = ( F4 @ X3 ) ) ) ) ) ) ) ).

% PiE_eq_iff_not_empty
thf(fact_859_PiE__eq__iff__not__empty,axiom,
    ! [I5: set_nat_nat_nat,F3: ( nat > nat > nat ) > set_nat_nat,F4: ( nat > nat > nat ) > set_nat_nat] :
      ( ! [I3: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat_nat ) )
     => ( ! [I3: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat_nat ) )
       => ( ( ( piE_na7122919648973241129at_nat @ I5 @ F3 )
            = ( piE_na7122919648973241129at_nat @ I5 @ F4 ) )
          = ( ! [X3: nat > nat > nat] :
                ( ( member_nat_nat_nat2 @ X3 @ I5 )
               => ( ( F3 @ X3 )
                  = ( F4 @ X3 ) ) ) ) ) ) ) ).

% PiE_eq_iff_not_empty
thf(fact_860_PiE__eq__iff__not__empty,axiom,
    ! [I5: set_nat_nat_nat2,F3: ( ( nat > nat ) > nat ) > set_nat_nat,F4: ( ( nat > nat ) > nat ) > set_nat_nat] :
      ( ! [I3: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat_nat ) )
     => ( ! [I3: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat_nat ) )
       => ( ( ( piE_na6840239867990089257at_nat @ I5 @ F3 )
            = ( piE_na6840239867990089257at_nat @ I5 @ F4 ) )
          = ( ! [X3: ( nat > nat ) > nat] :
                ( ( member_nat_nat_nat @ X3 @ I5 )
               => ( ( F3 @ X3 )
                  = ( F4 @ X3 ) ) ) ) ) ) ) ).

% PiE_eq_iff_not_empty
thf(fact_861_PiE__eq__iff__not__empty,axiom,
    ! [I5: set_nat_nat_nat_nat3,F3: ( ( nat > nat ) > nat > nat ) > set_nat_nat,F4: ( ( nat > nat ) > nat > nat ) > set_nat_nat] :
      ( ! [I3: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat_nat ) )
     => ( ! [I3: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat_nat ) )
       => ( ( ( piE_na6564615839001774232at_nat @ I5 @ F3 )
            = ( piE_na6564615839001774232at_nat @ I5 @ F4 ) )
          = ( ! [X3: ( nat > nat ) > nat > nat] :
                ( ( member952132173341509300at_nat @ X3 @ I5 )
               => ( ( F3 @ X3 )
                  = ( F4 @ X3 ) ) ) ) ) ) ) ).

% PiE_eq_iff_not_empty
thf(fact_862_PiE__eq__iff__not__empty,axiom,
    ! [I5: set_nat,F3: nat > set_nat_nat,F4: nat > set_nat_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat_nat ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat_nat ) )
       => ( ( ( piE_nat_nat_nat2 @ I5 @ F3 )
            = ( piE_nat_nat_nat2 @ I5 @ F4 ) )
          = ( ! [X3: nat] :
                ( ( member_nat @ X3 @ I5 )
               => ( ( F3 @ X3 )
                  = ( F4 @ X3 ) ) ) ) ) ) ) ).

% PiE_eq_iff_not_empty
thf(fact_863_PiE__eq__iff__not__empty,axiom,
    ! [I5: set_nat_nat,F3: ( nat > nat ) > set_nat_nat,F4: ( nat > nat ) > set_nat_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat_nat ) )
     => ( ! [I3: nat > nat] :
            ( ( member_nat_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat_nat ) )
       => ( ( ( piE_nat_nat_nat_nat3 @ I5 @ F3 )
            = ( piE_nat_nat_nat_nat3 @ I5 @ F4 ) )
          = ( ! [X3: nat > nat] :
                ( ( member_nat_nat @ X3 @ I5 )
               => ( ( F3 @ X3 )
                  = ( F4 @ X3 ) ) ) ) ) ) ) ).

% PiE_eq_iff_not_empty
thf(fact_864_PiE__eq__iff,axiom,
    ! [I5: set_nat,F3: nat > set_nat,F4: nat > set_nat] :
      ( ( ( piE_nat_nat @ I5 @ F3 )
        = ( piE_nat_nat @ I5 @ F4 ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ( ( F3 @ X3 )
              = ( F4 @ X3 ) ) )
        | ( ? [X3: nat] :
              ( ( member_nat @ X3 @ I5 )
              & ( ( F3 @ X3 )
                = bot_bot_set_nat ) )
          & ? [X3: nat] :
              ( ( member_nat @ X3 @ I5 )
              & ( ( F4 @ X3 )
                = bot_bot_set_nat ) ) ) ) ) ).

% PiE_eq_iff
thf(fact_865_PiE__eq__iff,axiom,
    ! [I5: set_nat_nat,F3: ( nat > nat ) > set_nat,F4: ( nat > nat ) > set_nat] :
      ( ( ( piE_nat_nat_nat @ I5 @ F3 )
        = ( piE_nat_nat_nat @ I5 @ F4 ) )
      = ( ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
           => ( ( F3 @ X3 )
              = ( F4 @ X3 ) ) )
        | ( ? [X3: nat > nat] :
              ( ( member_nat_nat @ X3 @ I5 )
              & ( ( F3 @ X3 )
                = bot_bot_set_nat ) )
          & ? [X3: nat > nat] :
              ( ( member_nat_nat @ X3 @ I5 )
              & ( ( F4 @ X3 )
                = bot_bot_set_nat ) ) ) ) ) ).

% PiE_eq_iff
thf(fact_866_PiE__eq__iff,axiom,
    ! [I5: set_nat,F3: nat > set_nat_nat,F4: nat > set_nat_nat] :
      ( ( ( piE_nat_nat_nat2 @ I5 @ F3 )
        = ( piE_nat_nat_nat2 @ I5 @ F4 ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ( ( F3 @ X3 )
              = ( F4 @ X3 ) ) )
        | ( ? [X3: nat] :
              ( ( member_nat @ X3 @ I5 )
              & ( ( F3 @ X3 )
                = bot_bot_set_nat_nat ) )
          & ? [X3: nat] :
              ( ( member_nat @ X3 @ I5 )
              & ( ( F4 @ X3 )
                = bot_bot_set_nat_nat ) ) ) ) ) ).

% PiE_eq_iff
thf(fact_867_PiE__eq__iff,axiom,
    ! [I5: set_nat_nat,F3: ( nat > nat ) > set_nat_nat,F4: ( nat > nat ) > set_nat_nat] :
      ( ( ( piE_nat_nat_nat_nat3 @ I5 @ F3 )
        = ( piE_nat_nat_nat_nat3 @ I5 @ F4 ) )
      = ( ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
           => ( ( F3 @ X3 )
              = ( F4 @ X3 ) ) )
        | ( ? [X3: nat > nat] :
              ( ( member_nat_nat @ X3 @ I5 )
              & ( ( F3 @ X3 )
                = bot_bot_set_nat_nat ) )
          & ? [X3: nat > nat] :
              ( ( member_nat_nat @ X3 @ I5 )
              & ( ( F4 @ X3 )
                = bot_bot_set_nat_nat ) ) ) ) ) ).

% PiE_eq_iff
thf(fact_868_empty__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat
      @ ^ [X3: nat] : $false ) ) ).

% empty_def
thf(fact_869_empty__def,axiom,
    ( bot_bot_set_nat_nat
    = ( collect_nat_nat
      @ ^ [X3: nat > nat] : $false ) ) ).

% empty_def
thf(fact_870_Iio__eq__empty__iff,axiom,
    ! [N: nat] :
      ( ( ( set_ord_lessThan_nat @ N )
        = bot_bot_set_nat )
      = ( N = bot_bot_nat ) ) ).

% Iio_eq_empty_iff
thf(fact_871_lessThan__empty__iff,axiom,
    ! [N: nat] :
      ( ( ( set_ord_lessThan_nat @ N )
        = bot_bot_set_nat )
      = ( N = zero_zero_nat ) ) ).

% lessThan_empty_iff
thf(fact_872_PiE__eq__subset,axiom,
    ! [I5: set_nat_nat_nat,F3: ( nat > nat > nat ) > set_nat,F4: ( nat > nat > nat ) > set_nat,I: nat > nat > nat] :
      ( ! [I3: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat ) )
     => ( ! [I3: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat ) )
       => ( ( ( piE_nat_nat_nat_nat2 @ I5 @ F3 )
            = ( piE_nat_nat_nat_nat2 @ I5 @ F4 ) )
         => ( ( member_nat_nat_nat2 @ I @ I5 )
           => ( ord_less_eq_set_nat @ ( F3 @ I ) @ ( F4 @ I ) ) ) ) ) ) ).

% PiE_eq_subset
thf(fact_873_PiE__eq__subset,axiom,
    ! [I5: set_nat_nat_nat2,F3: ( ( nat > nat ) > nat ) > set_nat,F4: ( ( nat > nat ) > nat ) > set_nat,I: ( nat > nat ) > nat] :
      ( ! [I3: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat ) )
     => ( ! [I3: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat ) )
       => ( ( ( piE_nat_nat_nat_nat @ I5 @ F3 )
            = ( piE_nat_nat_nat_nat @ I5 @ F4 ) )
         => ( ( member_nat_nat_nat @ I @ I5 )
           => ( ord_less_eq_set_nat @ ( F3 @ I ) @ ( F4 @ I ) ) ) ) ) ) ).

% PiE_eq_subset
thf(fact_874_PiE__eq__subset,axiom,
    ! [I5: set_nat_nat_nat_nat3,F3: ( ( nat > nat ) > nat > nat ) > set_nat,F4: ( ( nat > nat ) > nat > nat ) > set_nat,I: ( nat > nat ) > nat > nat] :
      ( ! [I3: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat ) )
     => ( ! [I3: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat ) )
       => ( ( ( piE_na4548495224246695081at_nat @ I5 @ F3 )
            = ( piE_na4548495224246695081at_nat @ I5 @ F4 ) )
         => ( ( member952132173341509300at_nat @ I @ I5 )
           => ( ord_less_eq_set_nat @ ( F3 @ I ) @ ( F4 @ I ) ) ) ) ) ) ).

% PiE_eq_subset
thf(fact_875_PiE__eq__subset,axiom,
    ! [I5: set_nat,F3: nat > set_nat,F4: nat > set_nat,I: nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat ) )
       => ( ( ( piE_nat_nat @ I5 @ F3 )
            = ( piE_nat_nat @ I5 @ F4 ) )
         => ( ( member_nat @ I @ I5 )
           => ( ord_less_eq_set_nat @ ( F3 @ I ) @ ( F4 @ I ) ) ) ) ) ) ).

% PiE_eq_subset
thf(fact_876_PiE__eq__subset,axiom,
    ! [I5: set_nat_nat,F3: ( nat > nat ) > set_nat,F4: ( nat > nat ) > set_nat,I: nat > nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat ) )
     => ( ! [I3: nat > nat] :
            ( ( member_nat_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat ) )
       => ( ( ( piE_nat_nat_nat @ I5 @ F3 )
            = ( piE_nat_nat_nat @ I5 @ F4 ) )
         => ( ( member_nat_nat @ I @ I5 )
           => ( ord_less_eq_set_nat @ ( F3 @ I ) @ ( F4 @ I ) ) ) ) ) ) ).

% PiE_eq_subset
thf(fact_877_PiE__eq__subset,axiom,
    ! [I5: set_nat_nat_nat,F3: ( nat > nat > nat ) > set_nat_nat,F4: ( nat > nat > nat ) > set_nat_nat,I: nat > nat > nat] :
      ( ! [I3: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat_nat ) )
     => ( ! [I3: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat_nat ) )
       => ( ( ( piE_na7122919648973241129at_nat @ I5 @ F3 )
            = ( piE_na7122919648973241129at_nat @ I5 @ F4 ) )
         => ( ( member_nat_nat_nat2 @ I @ I5 )
           => ( ord_le9059583361652607317at_nat @ ( F3 @ I ) @ ( F4 @ I ) ) ) ) ) ) ).

% PiE_eq_subset
thf(fact_878_PiE__eq__subset,axiom,
    ! [I5: set_nat_nat_nat2,F3: ( ( nat > nat ) > nat ) > set_nat_nat,F4: ( ( nat > nat ) > nat ) > set_nat_nat,I: ( nat > nat ) > nat] :
      ( ! [I3: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat_nat ) )
     => ( ! [I3: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat_nat ) )
       => ( ( ( piE_na6840239867990089257at_nat @ I5 @ F3 )
            = ( piE_na6840239867990089257at_nat @ I5 @ F4 ) )
         => ( ( member_nat_nat_nat @ I @ I5 )
           => ( ord_le9059583361652607317at_nat @ ( F3 @ I ) @ ( F4 @ I ) ) ) ) ) ) ).

% PiE_eq_subset
thf(fact_879_PiE__eq__subset,axiom,
    ! [I5: set_nat_nat_nat_nat3,F3: ( ( nat > nat ) > nat > nat ) > set_nat_nat,F4: ( ( nat > nat ) > nat > nat ) > set_nat_nat,I: ( nat > nat ) > nat > nat] :
      ( ! [I3: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat_nat ) )
     => ( ! [I3: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat_nat ) )
       => ( ( ( piE_na6564615839001774232at_nat @ I5 @ F3 )
            = ( piE_na6564615839001774232at_nat @ I5 @ F4 ) )
         => ( ( member952132173341509300at_nat @ I @ I5 )
           => ( ord_le9059583361652607317at_nat @ ( F3 @ I ) @ ( F4 @ I ) ) ) ) ) ) ).

% PiE_eq_subset
thf(fact_880_PiE__eq__subset,axiom,
    ! [I5: set_nat,F3: nat > set_nat_nat,F4: nat > set_nat_nat,I: nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat_nat ) )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat_nat ) )
       => ( ( ( piE_nat_nat_nat2 @ I5 @ F3 )
            = ( piE_nat_nat_nat2 @ I5 @ F4 ) )
         => ( ( member_nat @ I @ I5 )
           => ( ord_le9059583361652607317at_nat @ ( F3 @ I ) @ ( F4 @ I ) ) ) ) ) ) ).

% PiE_eq_subset
thf(fact_881_PiE__eq__subset,axiom,
    ! [I5: set_nat_nat,F3: ( nat > nat ) > set_nat_nat,F4: ( nat > nat ) > set_nat_nat,I: nat > nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ I5 )
         => ( ( F3 @ I3 )
           != bot_bot_set_nat_nat ) )
     => ( ! [I3: nat > nat] :
            ( ( member_nat_nat @ I3 @ I5 )
           => ( ( F4 @ I3 )
             != bot_bot_set_nat_nat ) )
       => ( ( ( piE_nat_nat_nat_nat3 @ I5 @ F3 )
            = ( piE_nat_nat_nat_nat3 @ I5 @ F4 ) )
         => ( ( member_nat_nat @ I @ I5 )
           => ( ord_le9059583361652607317at_nat @ ( F3 @ I ) @ ( F4 @ I ) ) ) ) ) ) ).

% PiE_eq_subset
thf(fact_882_is__subspace__def,axiom,
    ( hales_is_subspace
    = ( ^ [S6: ( nat > nat ) > nat > nat,K3: nat,N3: nat,T2: nat] :
        ? [B6: nat > set_nat] :
          ( ( disjoi6798895846410478970at_nat @ B6 @ ( set_ord_atMost_nat @ K3 ) )
          & ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B6 @ ( set_ord_atMost_nat @ K3 ) ) )
            = ( set_ord_lessThan_nat @ N3 ) )
          & ~ ( member_set_nat @ bot_bot_set_nat @ ( image_nat_set_nat @ B6 @ ( set_ord_lessThan_nat @ K3 ) ) )
          & ? [F2: nat > nat] :
              ( ( member_nat_nat @ F2
                @ ( piE_nat_nat @ ( B6 @ K3 )
                  @ ^ [I2: nat] : ( set_ord_lessThan_nat @ T2 ) ) )
              & ( member952132173341509300at_nat @ S6
                @ ( piE_nat_nat_nat_nat3 @ ( hales_cube @ K3 @ T2 )
                  @ ^ [I2: nat > nat] : ( hales_cube @ N3 @ T2 ) ) )
              & ! [X3: nat > nat] :
                  ( ( member_nat_nat @ X3 @ ( hales_cube @ K3 @ T2 ) )
                 => ( ! [Y3: nat] :
                        ( ( member_nat @ Y3 @ ( B6 @ K3 ) )
                       => ( ( S6 @ X3 @ Y3 )
                          = ( F2 @ Y3 ) ) )
                    & ! [J3: nat] :
                        ( ( ord_less_nat @ J3 @ K3 )
                       => ! [Y3: nat] :
                            ( ( member_nat @ Y3 @ ( B6 @ J3 ) )
                           => ( ( S6 @ X3 @ Y3 )
                              = ( X3 @ J3 ) ) ) ) ) ) ) ) ) ) ).

% is_subspace_def
thf(fact_883_dim1__subspace__elims_I3_J,axiom,
    ! [B3: nat > set_nat,N: nat,F: nat > nat,T: nat,S5: ( nat > nat ) > nat > nat] :
      ( ( disjoi6798895846410478970at_nat @ B3 @ ( set_ord_atMost_nat @ one_one_nat ) )
     => ( ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ ( set_ord_atMost_nat @ one_one_nat ) ) )
          = ( set_ord_lessThan_nat @ N ) )
       => ( ~ ( member_set_nat @ bot_bot_set_nat @ ( image_nat_set_nat @ B3 @ ( set_ord_lessThan_nat @ one_one_nat ) ) )
         => ( ( member_nat_nat @ F
              @ ( piE_nat_nat @ ( B3 @ one_one_nat )
                @ ^ [I2: nat] : ( set_ord_lessThan_nat @ T ) ) )
           => ( ( member952132173341509300at_nat @ S5
                @ ( piE_nat_nat_nat_nat3 @ ( hales_cube @ one_one_nat @ T )
                  @ ^ [I2: nat > nat] : ( hales_cube @ N @ T ) ) )
             => ( ! [X: nat > nat] :
                    ( ( member_nat_nat @ X @ ( hales_cube @ one_one_nat @ T ) )
                   => ( ! [Xa2: nat] :
                          ( ( member_nat @ Xa2 @ ( B3 @ one_one_nat ) )
                         => ( ( S5 @ X @ Xa2 )
                            = ( F @ Xa2 ) ) )
                      & ! [J: nat] :
                          ( ( ord_less_nat @ J @ one_one_nat )
                         => ! [Xa2: nat] :
                              ( ( member_nat @ Xa2 @ ( B3 @ J ) )
                             => ( ( S5 @ X @ Xa2 )
                                = ( X @ J ) ) ) ) ) )
               => ! [X4: nat > nat] :
                    ( ( member_nat_nat @ X4 @ ( hales_cube @ one_one_nat @ T ) )
                   => ( ! [Xa: nat] :
                          ( ( member_nat @ Xa @ ( B3 @ one_one_nat ) )
                         => ( ( S5 @ X4 @ Xa )
                            = ( F @ Xa ) ) )
                      & ! [Xa: nat] :
                          ( ( member_nat @ Xa @ ( B3 @ zero_zero_nat ) )
                         => ( ( S5 @ X4 @ Xa )
                            = ( X4 @ zero_zero_nat ) ) ) ) ) ) ) ) ) ) ) ).

% dim1_subspace_elims(3)
thf(fact_884_dim1__subspace__elims_I4_J,axiom,
    ! [B3: nat > set_nat,N: nat,F: nat > nat,T: nat,S5: ( nat > nat ) > nat > nat] :
      ( ( disjoi6798895846410478970at_nat @ B3 @ ( set_ord_atMost_nat @ one_one_nat ) )
     => ( ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ ( set_ord_atMost_nat @ one_one_nat ) ) )
          = ( set_ord_lessThan_nat @ N ) )
       => ( ~ ( member_set_nat @ bot_bot_set_nat @ ( image_nat_set_nat @ B3 @ ( set_ord_lessThan_nat @ one_one_nat ) ) )
         => ( ( member_nat_nat @ F
              @ ( piE_nat_nat @ ( B3 @ one_one_nat )
                @ ^ [I2: nat] : ( set_ord_lessThan_nat @ T ) ) )
           => ( ( member952132173341509300at_nat @ S5
                @ ( piE_nat_nat_nat_nat3 @ ( hales_cube @ one_one_nat @ T )
                  @ ^ [I2: nat > nat] : ( hales_cube @ N @ T ) ) )
             => ( ! [X: nat > nat] :
                    ( ( member_nat_nat @ X @ ( hales_cube @ one_one_nat @ T ) )
                   => ( ! [Xa2: nat] :
                          ( ( member_nat @ Xa2 @ ( B3 @ one_one_nat ) )
                         => ( ( S5 @ X @ Xa2 )
                            = ( F @ Xa2 ) ) )
                      & ! [J: nat] :
                          ( ( ord_less_nat @ J @ one_one_nat )
                         => ! [Xa2: nat] :
                              ( ( member_nat @ Xa2 @ ( B3 @ J ) )
                             => ( ( S5 @ X @ Xa2 )
                                = ( X @ J ) ) ) ) ) )
               => ( ( B3 @ zero_zero_nat )
                 != bot_bot_set_nat ) ) ) ) ) ) ) ).

% dim1_subspace_elims(4)
thf(fact_885_someI2,axiom,
    ! [P: ( nat > nat ) > $o,A: nat > nat,Q: ( nat > nat ) > $o] :
      ( ( P @ A )
     => ( ! [X: nat > nat] :
            ( ( P @ X )
           => ( Q @ X ) )
       => ( Q @ ( fChoice_nat_nat @ P ) ) ) ) ).

% someI2
thf(fact_886_someI__ex,axiom,
    ! [P: ( nat > nat ) > $o] :
      ( ? [X_12: nat > nat] : ( P @ X_12 )
     => ( P @ ( fChoice_nat_nat @ P ) ) ) ).

% someI_ex
thf(fact_887_someI2__ex,axiom,
    ! [P: ( nat > nat ) > $o,Q: ( nat > nat ) > $o] :
      ( ? [X_12: nat > nat] : ( P @ X_12 )
     => ( ! [X: nat > nat] :
            ( ( P @ X )
           => ( Q @ X ) )
       => ( Q @ ( fChoice_nat_nat @ P ) ) ) ) ).

% someI2_ex
thf(fact_888_someI2__bex,axiom,
    ! [A2: set_nat,P: nat > $o,Q: nat > $o] :
      ( ? [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
          & ( P @ X4 ) )
     => ( ! [X: nat] :
            ( ( ( member_nat @ X @ A2 )
              & ( P @ X ) )
           => ( Q @ X ) )
       => ( Q
          @ ( fChoice_nat
            @ ^ [X3: nat] :
                ( ( member_nat @ X3 @ A2 )
                & ( P @ X3 ) ) ) ) ) ) ).

% someI2_bex
thf(fact_889_someI2__bex,axiom,
    ! [A2: set_nat_nat_nat,P: ( nat > nat > nat ) > $o,Q: ( nat > nat > nat ) > $o] :
      ( ? [X4: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ X4 @ A2 )
          & ( P @ X4 ) )
     => ( ! [X: nat > nat > nat] :
            ( ( ( member_nat_nat_nat2 @ X @ A2 )
              & ( P @ X ) )
           => ( Q @ X ) )
       => ( Q
          @ ( fChoice_nat_nat_nat2
            @ ^ [X3: nat > nat > nat] :
                ( ( member_nat_nat_nat2 @ X3 @ A2 )
                & ( P @ X3 ) ) ) ) ) ) ).

% someI2_bex
thf(fact_890_someI2__bex,axiom,
    ! [A2: set_nat_nat_nat2,P: ( ( nat > nat ) > nat ) > $o,Q: ( ( nat > nat ) > nat ) > $o] :
      ( ? [X4: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ X4 @ A2 )
          & ( P @ X4 ) )
     => ( ! [X: ( nat > nat ) > nat] :
            ( ( ( member_nat_nat_nat @ X @ A2 )
              & ( P @ X ) )
           => ( Q @ X ) )
       => ( Q
          @ ( fChoice_nat_nat_nat
            @ ^ [X3: ( nat > nat ) > nat] :
                ( ( member_nat_nat_nat @ X3 @ A2 )
                & ( P @ X3 ) ) ) ) ) ) ).

% someI2_bex
thf(fact_891_someI2__bex,axiom,
    ! [A2: set_nat_nat_nat_nat3,P: ( ( nat > nat ) > nat > nat ) > $o,Q: ( ( nat > nat ) > nat > nat ) > $o] :
      ( ? [X4: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ X4 @ A2 )
          & ( P @ X4 ) )
     => ( ! [X: ( nat > nat ) > nat > nat] :
            ( ( ( member952132173341509300at_nat @ X @ A2 )
              & ( P @ X ) )
           => ( Q @ X ) )
       => ( Q
          @ ( fChoic52552927678224201at_nat
            @ ^ [X3: ( nat > nat ) > nat > nat] :
                ( ( member952132173341509300at_nat @ X3 @ A2 )
                & ( P @ X3 ) ) ) ) ) ) ).

% someI2_bex
thf(fact_892_someI2__bex,axiom,
    ! [A2: set_nat_nat,P: ( nat > nat ) > $o,Q: ( nat > nat ) > $o] :
      ( ? [X4: nat > nat] :
          ( ( member_nat_nat @ X4 @ A2 )
          & ( P @ X4 ) )
     => ( ! [X: nat > nat] :
            ( ( ( member_nat_nat @ X @ A2 )
              & ( P @ X ) )
           => ( Q @ X ) )
       => ( Q
          @ ( fChoice_nat_nat
            @ ^ [X3: nat > nat] :
                ( ( member_nat_nat @ X3 @ A2 )
                & ( P @ X3 ) ) ) ) ) ) ).

% someI2_bex
thf(fact_893_some__eq__ex,axiom,
    ! [P: ( nat > nat ) > $o] :
      ( ( P @ ( fChoice_nat_nat @ P ) )
      = ( ? [X7: nat > nat] : ( P @ X7 ) ) ) ).

% some_eq_ex
thf(fact_894_some1__equality,axiom,
    ! [P: ( nat > nat ) > $o,A: nat > nat] :
      ( ? [X4: nat > nat] :
          ( ( P @ X4 )
          & ! [Y4: nat > nat] :
              ( ( P @ Y4 )
             => ( Y4 = X4 ) ) )
     => ( ( P @ A )
       => ( ( fChoice_nat_nat @ P )
          = A ) ) ) ).

% some1_equality
thf(fact_895_SUP__apply,axiom,
    ! [F: nat > nat > nat,A2: set_nat,X2: nat] :
      ( ( comple2450677804321093138at_nat @ ( image_nat_nat_nat2 @ F @ A2 ) @ X2 )
      = ( complete_Sup_Sup_nat
        @ ( image_nat_nat
          @ ^ [Y3: nat] : ( F @ Y3 @ X2 )
          @ A2 ) ) ) ).

% SUP_apply
thf(fact_896_SUP__apply,axiom,
    ! [F: ( nat > nat ) > nat > nat,A2: set_nat_nat,X2: nat] :
      ( ( comple2450677804321093138at_nat @ ( image_3205354838064109189at_nat @ F @ A2 ) @ X2 )
      = ( complete_Sup_Sup_nat
        @ ( image_nat_nat_nat
          @ ^ [Y3: nat > nat] : ( F @ Y3 @ X2 )
          @ A2 ) ) ) ).

% SUP_apply
thf(fact_897_UN__constant,axiom,
    ! [A2: set_nat,C: set_nat_nat] :
      ( ( ( A2 = bot_bot_set_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_7301343469591561292at_nat
              @ ^ [Y3: nat] : C
              @ A2 ) )
          = bot_bot_set_nat_nat ) )
      & ( ( A2 != bot_bot_set_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_7301343469591561292at_nat
              @ ^ [Y3: nat] : C
              @ A2 ) )
          = C ) ) ) ).

% UN_constant
thf(fact_898_UN__constant,axiom,
    ! [A2: set_nat_nat,C: set_nat_nat] :
      ( ( ( A2 = bot_bot_set_nat_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_6905811865970898491at_nat
              @ ^ [Y3: nat > nat] : C
              @ A2 ) )
          = bot_bot_set_nat_nat ) )
      & ( ( A2 != bot_bot_set_nat_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_6905811865970898491at_nat
              @ ^ [Y3: nat > nat] : C
              @ A2 ) )
          = C ) ) ) ).

% UN_constant
thf(fact_899_UN__constant,axiom,
    ! [A2: set_nat,C: set_nat] :
      ( ( ( A2 = bot_bot_set_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_nat_set_nat
              @ ^ [Y3: nat] : C
              @ A2 ) )
          = bot_bot_set_nat ) )
      & ( ( A2 != bot_bot_set_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_nat_set_nat
              @ ^ [Y3: nat] : C
              @ A2 ) )
          = C ) ) ) ).

% UN_constant
thf(fact_900_UN__constant,axiom,
    ! [A2: set_nat_nat,C: set_nat] :
      ( ( ( A2 = bot_bot_set_nat_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_7432509271690132940et_nat
              @ ^ [Y3: nat > nat] : C
              @ A2 ) )
          = bot_bot_set_nat ) )
      & ( ( A2 != bot_bot_set_nat_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_7432509271690132940et_nat
              @ ^ [Y3: nat > nat] : C
              @ A2 ) )
          = C ) ) ) ).

% UN_constant
thf(fact_901_cSUP__const,axiom,
    ! [A2: set_nat,C: set_nat] :
      ( ( A2 != bot_bot_set_nat )
     => ( ( comple7399068483239264473et_nat
          @ ( image_nat_set_nat
            @ ^ [X3: nat] : C
            @ A2 ) )
        = C ) ) ).

% cSUP_const
thf(fact_902_cSUP__const,axiom,
    ! [A2: set_nat_nat,C: set_nat] :
      ( ( A2 != bot_bot_set_nat_nat )
     => ( ( comple7399068483239264473et_nat
          @ ( image_7432509271690132940et_nat
            @ ^ [X3: nat > nat] : C
            @ A2 ) )
        = C ) ) ).

% cSUP_const
thf(fact_903_cSUP__const,axiom,
    ! [A2: set_nat,C: nat] :
      ( ( A2 != bot_bot_set_nat )
     => ( ( complete_Sup_Sup_nat
          @ ( image_nat_nat
            @ ^ [X3: nat] : C
            @ A2 ) )
        = C ) ) ).

% cSUP_const
thf(fact_904_cSUP__const,axiom,
    ! [A2: set_nat_nat,C: nat] :
      ( ( A2 != bot_bot_set_nat_nat )
     => ( ( complete_Sup_Sup_nat
          @ ( image_nat_nat_nat
            @ ^ [X3: nat > nat] : C
            @ A2 ) )
        = C ) ) ).

% cSUP_const
thf(fact_905_SUP__const,axiom,
    ! [A2: set_nat,F: set_nat] :
      ( ( A2 != bot_bot_set_nat )
     => ( ( comple7399068483239264473et_nat
          @ ( image_nat_set_nat
            @ ^ [I2: nat] : F
            @ A2 ) )
        = F ) ) ).

% SUP_const
thf(fact_906_SUP__const,axiom,
    ! [A2: set_nat_nat,F: set_nat] :
      ( ( A2 != bot_bot_set_nat_nat )
     => ( ( comple7399068483239264473et_nat
          @ ( image_7432509271690132940et_nat
            @ ^ [I2: nat > nat] : F
            @ A2 ) )
        = F ) ) ).

% SUP_const
thf(fact_907_Sup__nat__empty,axiom,
    ( ( complete_Sup_Sup_nat @ bot_bot_set_nat )
    = zero_zero_nat ) ).

% Sup_nat_empty
thf(fact_908_SUP__identity__eq,axiom,
    ! [A2: set_nat_nat] :
      ( ( comple2450677804321093138at_nat
        @ ( image_3205354838064109189at_nat
          @ ^ [X3: nat > nat] : X3
          @ A2 ) )
      = ( comple2450677804321093138at_nat @ A2 ) ) ).

% SUP_identity_eq
thf(fact_909_SUP__identity__eq,axiom,
    ! [A2: set_set_nat] :
      ( ( comple7399068483239264473et_nat
        @ ( image_7916887816326733075et_nat
          @ ^ [X3: set_nat] : X3
          @ A2 ) )
      = ( comple7399068483239264473et_nat @ A2 ) ) ).

% SUP_identity_eq
thf(fact_910_SUP__identity__eq,axiom,
    ! [A2: set_nat] :
      ( ( complete_Sup_Sup_nat
        @ ( image_nat_nat
          @ ^ [X3: nat] : X3
          @ A2 ) )
      = ( complete_Sup_Sup_nat @ A2 ) ) ).

% SUP_identity_eq
thf(fact_911_UN__I,axiom,
    ! [A: nat,A2: set_nat,B: nat,B3: nat > set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( member_nat @ B @ ( B3 @ A ) )
       => ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_I
thf(fact_912_UN__I,axiom,
    ! [A: nat,A2: set_nat,B: nat > nat,B3: nat > set_nat_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( member_nat_nat @ B @ ( B3 @ A ) )
       => ( member_nat_nat @ B @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_I
thf(fact_913_UN__I,axiom,
    ! [A: nat > nat,A2: set_nat_nat,B: nat,B3: ( nat > nat ) > set_nat] :
      ( ( member_nat_nat @ A @ A2 )
     => ( ( member_nat @ B @ ( B3 @ A ) )
       => ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_I
thf(fact_914_UN__I,axiom,
    ! [A: nat,A2: set_nat,B: nat > nat > nat,B3: nat > set_nat_nat_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( member_nat_nat_nat2 @ B @ ( B3 @ A ) )
       => ( member_nat_nat_nat2 @ B @ ( comple8167887107183641911at_nat @ ( image_6130888460295934395at_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_I
thf(fact_915_UN__I,axiom,
    ! [A: nat,A2: set_nat,B: ( nat > nat ) > nat,B3: nat > set_nat_nat_nat2] :
      ( ( member_nat @ A @ A2 )
     => ( ( member_nat_nat_nat @ B @ ( B3 @ A ) )
       => ( member_nat_nat_nat @ B @ ( comple1667856448326461495at_nat @ ( image_8854229838293529787at_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_I
thf(fact_916_UN__I,axiom,
    ! [A: nat > nat,A2: set_nat_nat,B: nat > nat,B3: ( nat > nat ) > set_nat_nat] :
      ( ( member_nat_nat @ A @ A2 )
     => ( ( member_nat_nat @ B @ ( B3 @ A ) )
       => ( member_nat_nat @ B @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_I
thf(fact_917_UN__I,axiom,
    ! [A: nat > nat > nat,A2: set_nat_nat_nat,B: nat,B3: ( nat > nat > nat ) > set_nat] :
      ( ( member_nat_nat_nat2 @ A @ A2 )
     => ( ( member_nat @ B @ ( B3 @ A ) )
       => ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_I
thf(fact_918_UN__I,axiom,
    ! [A: ( nat > nat ) > nat,A2: set_nat_nat_nat2,B: nat,B3: ( ( nat > nat ) > nat ) > set_nat] :
      ( ( member_nat_nat_nat @ A @ A2 )
     => ( ( member_nat @ B @ ( B3 @ A ) )
       => ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_I
thf(fact_919_UN__I,axiom,
    ! [A: nat,A2: set_nat,B: ( nat > nat ) > nat > nat,B3: nat > set_nat_nat_nat_nat3] :
      ( ( member_nat @ A @ A2 )
     => ( ( member952132173341509300at_nat @ B @ ( B3 @ A ) )
       => ( member952132173341509300at_nat @ B @ ( comple2605510978757769510at_nat @ ( image_3332361743537024938at_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_I
thf(fact_920_UN__I,axiom,
    ! [A: nat > nat,A2: set_nat_nat,B: nat > nat > nat,B3: ( nat > nat ) > set_nat_nat_nat] :
      ( ( member_nat_nat @ A @ A2 )
     => ( ( member_nat_nat_nat2 @ B @ ( B3 @ A ) )
       => ( member_nat_nat_nat2 @ B @ ( comple8167887107183641911at_nat @ ( image_470123710477037866at_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_I
thf(fact_921_UN__iff,axiom,
    ! [B: nat,B3: nat > set_nat,A2: set_nat] :
      ( ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ( member_nat @ B @ ( B3 @ X3 ) ) ) ) ) ).

% UN_iff
thf(fact_922_SUP__bot__conv_I2_J,axiom,
    ! [B3: nat > set_nat,A2: set_nat] :
      ( ( bot_bot_set_nat
        = ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ( B3 @ X3 )
              = bot_bot_set_nat ) ) ) ) ).

% SUP_bot_conv(2)
thf(fact_923_SUP__bot__conv_I1_J,axiom,
    ! [B3: nat > set_nat,A2: set_nat] :
      ( ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) )
        = bot_bot_set_nat )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ( B3 @ X3 )
              = bot_bot_set_nat ) ) ) ) ).

% SUP_bot_conv(1)
thf(fact_924_SUP__bot,axiom,
    ! [A2: set_nat] :
      ( ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [X3: nat] : bot_bot_set_nat
          @ A2 ) )
      = bot_bot_set_nat ) ).

% SUP_bot
thf(fact_925_Sup__set__def,axiom,
    ( comple8167887107183641911at_nat
    = ( ^ [A6: set_set_nat_nat_nat] :
          ( collect_nat_nat_nat2
          @ ^ [X3: nat > nat > nat] : ( complete_Sup_Sup_o @ ( image_5198217506544545261_nat_o @ ( member_nat_nat_nat2 @ X3 ) @ A6 ) ) ) ) ) ).

% Sup_set_def
thf(fact_926_Sup__set__def,axiom,
    ( comple1667856448326461495at_nat
    = ( ^ [A6: set_set_nat_nat_nat2] :
          ( collect_nat_nat_nat
          @ ^ [X3: ( nat > nat ) > nat] : ( complete_Sup_Sup_o @ ( image_8774134582277556973_nat_o @ ( member_nat_nat_nat @ X3 ) @ A6 ) ) ) ) ) ).

% Sup_set_def
thf(fact_927_Sup__set__def,axiom,
    ( comple2605510978757769510at_nat
    = ( ^ [A6: set_se3022870823424313865at_nat] :
          ( collec3567154360959927026at_nat
          @ ^ [X3: ( nat > nat ) > nat > nat] : ( complete_Sup_Sup_o @ ( image_7580978635682194622_nat_o @ ( member952132173341509300at_nat @ X3 ) @ A6 ) ) ) ) ) ).

% Sup_set_def
thf(fact_928_Sup__set__def,axiom,
    ( comple5448282615319421384at_nat
    = ( ^ [A6: set_set_nat_nat] :
          ( collect_nat_nat
          @ ^ [X3: nat > nat] : ( complete_Sup_Sup_o @ ( image_set_nat_nat_o @ ( member_nat_nat @ X3 ) @ A6 ) ) ) ) ) ).

% Sup_set_def
thf(fact_929_Sup__set__def,axiom,
    ( comple7399068483239264473et_nat
    = ( ^ [A6: set_set_nat] :
          ( collect_nat
          @ ^ [X3: nat] : ( complete_Sup_Sup_o @ ( image_set_nat_o @ ( member_nat @ X3 ) @ A6 ) ) ) ) ) ).

% Sup_set_def
thf(fact_930_SUP__Sup__eq,axiom,
    ! [S5: set_set_nat_nat] :
      ( ( comple8312177224774716605_nat_o
        @ ( image_1242417779249009364_nat_o
          @ ^ [I2: set_nat_nat,X3: nat > nat] : ( member_nat_nat @ X3 @ I2 )
          @ S5 ) )
      = ( ^ [X3: nat > nat] : ( member_nat_nat @ X3 @ ( comple5448282615319421384at_nat @ S5 ) ) ) ) ).

% SUP_Sup_eq
thf(fact_931_SUP__Sup__eq,axiom,
    ! [S5: set_set_nat_nat_nat] :
      ( ( comple3396693796109600270_nat_o
        @ ( image_2840114971476761718_nat_o
          @ ^ [I2: set_nat_nat_nat,X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ I2 )
          @ S5 ) )
      = ( ^ [X3: nat > nat > nat] : ( member_nat_nat_nat2 @ X3 @ ( comple8167887107183641911at_nat @ S5 ) ) ) ) ).

% SUP_Sup_eq
thf(fact_932_SUP__Sup__eq,axiom,
    ! [S5: set_set_nat_nat_nat2] :
      ( ( comple8231226574009213710_nat_o
        @ ( image_6357918107393578614_nat_o
          @ ^ [I2: set_nat_nat_nat2,X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ I2 )
          @ S5 ) )
      = ( ^ [X3: ( nat > nat ) > nat] : ( member_nat_nat_nat @ X3 @ ( comple1667856448326461495at_nat @ S5 ) ) ) ) ).

% SUP_Sup_eq
thf(fact_933_SUP__Sup__eq,axiom,
    ! [S5: set_se3022870823424313865at_nat] :
      ( ( comple2115216063353097951_nat_o
        @ ( image_4040409651686222360_nat_o
          @ ^ [I2: set_nat_nat_nat_nat3,X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ I2 )
          @ S5 ) )
      = ( ^ [X3: ( nat > nat ) > nat > nat] : ( member952132173341509300at_nat @ X3 @ ( comple2605510978757769510at_nat @ S5 ) ) ) ) ).

% SUP_Sup_eq
thf(fact_934_SUP__Sup__eq,axiom,
    ! [S5: set_set_nat] :
      ( ( comple8317665133742190828_nat_o
        @ ( image_set_nat_nat_o2
          @ ^ [I2: set_nat,X3: nat] : ( member_nat @ X3 @ I2 )
          @ S5 ) )
      = ( ^ [X3: nat] : ( member_nat @ X3 @ ( comple7399068483239264473et_nat @ S5 ) ) ) ) ).

% SUP_Sup_eq
thf(fact_935_all__PiE__elements,axiom,
    ! [I5: set_nat,S5: nat > set_nat_nat,P: nat > ( nat > nat ) > $o] :
      ( ( ! [X3: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X3 @ ( piE_nat_nat_nat2 @ I5 @ S5 ) )
           => ! [Y3: nat] :
                ( ( member_nat @ Y3 @ I5 )
               => ( P @ Y3 @ ( X3 @ Y3 ) ) ) ) )
      = ( ( ( piE_nat_nat_nat2 @ I5 @ S5 )
          = bot_bo7445843802507891576at_nat )
        | ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ! [Y3: nat > nat] :
                ( ( member_nat_nat @ Y3 @ ( S5 @ X3 ) )
               => ( P @ X3 @ Y3 ) ) ) ) ) ).

% all_PiE_elements
thf(fact_936_all__PiE__elements,axiom,
    ! [I5: set_nat_nat,S5: ( nat > nat ) > set_nat,P: ( nat > nat ) > nat > $o] :
      ( ( ! [X3: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X3 @ ( piE_nat_nat_nat @ I5 @ S5 ) )
           => ! [Y3: nat > nat] :
                ( ( member_nat_nat @ Y3 @ I5 )
               => ( P @ Y3 @ ( X3 @ Y3 ) ) ) ) )
      = ( ( ( piE_nat_nat_nat @ I5 @ S5 )
          = bot_bo945813143650711160at_nat )
        | ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
           => ! [Y3: nat] :
                ( ( member_nat @ Y3 @ ( S5 @ X3 ) )
               => ( P @ X3 @ Y3 ) ) ) ) ) ).

% all_PiE_elements
thf(fact_937_all__PiE__elements,axiom,
    ! [I5: set_nat_nat,S5: ( nat > nat ) > set_nat_nat,P: ( nat > nat ) > ( nat > nat ) > $o] :
      ( ( ! [X3: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ X3 @ ( piE_nat_nat_nat_nat3 @ I5 @ S5 ) )
           => ! [Y3: nat > nat] :
                ( ( member_nat_nat @ Y3 @ I5 )
               => ( P @ Y3 @ ( X3 @ Y3 ) ) ) ) )
      = ( ( ( piE_nat_nat_nat_nat3 @ I5 @ S5 )
          = bot_bo3919185967433191911at_nat )
        | ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
           => ! [Y3: nat > nat] :
                ( ( member_nat_nat @ Y3 @ ( S5 @ X3 ) )
               => ( P @ X3 @ Y3 ) ) ) ) ) ).

% all_PiE_elements
thf(fact_938_all__PiE__elements,axiom,
    ! [I5: set_nat,S5: nat > set_nat,P: nat > nat > $o] :
      ( ( ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ ( piE_nat_nat @ I5 @ S5 ) )
           => ! [Y3: nat] :
                ( ( member_nat @ Y3 @ I5 )
               => ( P @ Y3 @ ( X3 @ Y3 ) ) ) ) )
      = ( ( ( piE_nat_nat @ I5 @ S5 )
          = bot_bot_set_nat_nat )
        | ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ! [Y3: nat] :
                ( ( member_nat @ Y3 @ ( S5 @ X3 ) )
               => ( P @ X3 @ Y3 ) ) ) ) ) ).

% all_PiE_elements
thf(fact_939_PiE__eq,axiom,
    ! [I5: set_nat,S5: nat > set_nat_nat,T3: nat > set_nat_nat] :
      ( ( ( piE_nat_nat_nat2 @ I5 @ S5 )
        = ( piE_nat_nat_nat2 @ I5 @ T3 ) )
      = ( ( ( ( piE_nat_nat_nat2 @ I5 @ S5 )
            = bot_bo7445843802507891576at_nat )
          & ( ( piE_nat_nat_nat2 @ I5 @ T3 )
            = bot_bo7445843802507891576at_nat ) )
        | ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ( ( S5 @ X3 )
              = ( T3 @ X3 ) ) ) ) ) ).

% PiE_eq
thf(fact_940_PiE__eq,axiom,
    ! [I5: set_nat_nat,S5: ( nat > nat ) > set_nat,T3: ( nat > nat ) > set_nat] :
      ( ( ( piE_nat_nat_nat @ I5 @ S5 )
        = ( piE_nat_nat_nat @ I5 @ T3 ) )
      = ( ( ( ( piE_nat_nat_nat @ I5 @ S5 )
            = bot_bo945813143650711160at_nat )
          & ( ( piE_nat_nat_nat @ I5 @ T3 )
            = bot_bo945813143650711160at_nat ) )
        | ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
           => ( ( S5 @ X3 )
              = ( T3 @ X3 ) ) ) ) ) ).

% PiE_eq
thf(fact_941_PiE__eq,axiom,
    ! [I5: set_nat_nat,S5: ( nat > nat ) > set_nat_nat,T3: ( nat > nat ) > set_nat_nat] :
      ( ( ( piE_nat_nat_nat_nat3 @ I5 @ S5 )
        = ( piE_nat_nat_nat_nat3 @ I5 @ T3 ) )
      = ( ( ( ( piE_nat_nat_nat_nat3 @ I5 @ S5 )
            = bot_bo3919185967433191911at_nat )
          & ( ( piE_nat_nat_nat_nat3 @ I5 @ T3 )
            = bot_bo3919185967433191911at_nat ) )
        | ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
           => ( ( S5 @ X3 )
              = ( T3 @ X3 ) ) ) ) ) ).

% PiE_eq
thf(fact_942_PiE__eq,axiom,
    ! [I5: set_nat,S5: nat > set_nat,T3: nat > set_nat] :
      ( ( ( piE_nat_nat @ I5 @ S5 )
        = ( piE_nat_nat @ I5 @ T3 ) )
      = ( ( ( ( piE_nat_nat @ I5 @ S5 )
            = bot_bot_set_nat_nat )
          & ( ( piE_nat_nat @ I5 @ T3 )
            = bot_bot_set_nat_nat ) )
        | ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ( ( S5 @ X3 )
              = ( T3 @ X3 ) ) ) ) ) ).

% PiE_eq
thf(fact_943_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_944_SUP__UN__eq,axiom,
    ! [R3: nat > set_nat,S5: set_nat] :
      ( ( comple8317665133742190828_nat_o
        @ ( image_nat_nat_o
          @ ^ [I2: nat,X3: nat] : ( member_nat @ X3 @ ( R3 @ I2 ) )
          @ S5 ) )
      = ( ^ [X3: nat] : ( member_nat @ X3 @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ R3 @ S5 ) ) ) ) ) ).

% SUP_UN_eq
thf(fact_945_subset__PiE,axiom,
    ! [I5: set_nat_nat,S5: ( nat > nat ) > set_nat,T3: ( nat > nat ) > set_nat] :
      ( ( ord_le5934964663421696068at_nat @ ( piE_nat_nat_nat @ I5 @ S5 ) @ ( piE_nat_nat_nat @ I5 @ T3 ) )
      = ( ( ( piE_nat_nat_nat @ I5 @ S5 )
          = bot_bo945813143650711160at_nat )
        | ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
           => ( ord_less_eq_set_nat @ ( S5 @ X3 ) @ ( T3 @ X3 ) ) ) ) ) ).

% subset_PiE
thf(fact_946_subset__PiE,axiom,
    ! [I5: set_nat,S5: nat > set_nat_nat,T3: nat > set_nat_nat] :
      ( ( ord_le3211623285424100676at_nat @ ( piE_nat_nat_nat2 @ I5 @ S5 ) @ ( piE_nat_nat_nat2 @ I5 @ T3 ) )
      = ( ( ( piE_nat_nat_nat2 @ I5 @ S5 )
          = bot_bo7445843802507891576at_nat )
        | ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ( ord_le9059583361652607317at_nat @ ( S5 @ X3 ) @ ( T3 @ X3 ) ) ) ) ) ).

% subset_PiE
thf(fact_947_subset__PiE,axiom,
    ! [I5: set_nat_nat,S5: ( nat > nat ) > set_nat_nat,T3: ( nat > nat ) > set_nat_nat] :
      ( ( ord_le5260717879541182899at_nat @ ( piE_nat_nat_nat_nat3 @ I5 @ S5 ) @ ( piE_nat_nat_nat_nat3 @ I5 @ T3 ) )
      = ( ( ( piE_nat_nat_nat_nat3 @ I5 @ S5 )
          = bot_bo3919185967433191911at_nat )
        | ! [X3: nat > nat] :
            ( ( member_nat_nat @ X3 @ I5 )
           => ( ord_le9059583361652607317at_nat @ ( S5 @ X3 ) @ ( T3 @ X3 ) ) ) ) ) ).

% subset_PiE
thf(fact_948_subset__PiE,axiom,
    ! [I5: set_nat,S5: nat > set_nat,T3: nat > set_nat] :
      ( ( ord_le9059583361652607317at_nat @ ( piE_nat_nat @ I5 @ S5 ) @ ( piE_nat_nat @ I5 @ T3 ) )
      = ( ( ( piE_nat_nat @ I5 @ S5 )
          = bot_bot_set_nat_nat )
        | ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ( ord_less_eq_set_nat @ ( S5 @ X3 ) @ ( T3 @ X3 ) ) ) ) ) ).

% subset_PiE
thf(fact_949_Sup_OSUP__identity__eq,axiom,
    ! [Sup: set_nat_nat > nat > nat,A2: set_nat_nat] :
      ( ( Sup
        @ ( image_3205354838064109189at_nat
          @ ^ [X3: nat > nat] : X3
          @ A2 ) )
      = ( Sup @ A2 ) ) ).

% Sup.SUP_identity_eq
thf(fact_950_Sup_OSUP__identity__eq,axiom,
    ! [Sup: set_nat > nat,A2: set_nat] :
      ( ( Sup
        @ ( image_nat_nat
          @ ^ [X3: nat] : X3
          @ A2 ) )
      = ( Sup @ A2 ) ) ).

% Sup.SUP_identity_eq
thf(fact_951_Inf_OINF__identity__eq,axiom,
    ! [Inf: set_nat_nat > nat > nat,A2: set_nat_nat] :
      ( ( Inf
        @ ( image_3205354838064109189at_nat
          @ ^ [X3: nat > nat] : X3
          @ A2 ) )
      = ( Inf @ A2 ) ) ).

% Inf.INF_identity_eq
thf(fact_952_Inf_OINF__identity__eq,axiom,
    ! [Inf: set_nat > nat,A2: set_nat] :
      ( ( Inf
        @ ( image_nat_nat
          @ ^ [X3: nat] : X3
          @ A2 ) )
      = ( Inf @ A2 ) ) ).

% Inf.INF_identity_eq
thf(fact_953_complete__interval,axiom,
    ! [A: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: nat] :
              ( ( ord_less_eq_nat @ A @ C2 )
              & ( ord_less_eq_nat @ C2 @ B )
              & ! [X4: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X4 )
                    & ( ord_less_nat @ X4 @ C2 ) )
                 => ( P @ X4 ) )
              & ! [D4: nat] :
                  ( ! [X: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X )
                        & ( ord_less_nat @ X @ D4 ) )
                     => ( P @ X ) )
                 => ( ord_less_eq_nat @ D4 @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_954_Sup__eqI,axiom,
    ! [A2: set_set_nat_nat,X2: set_nat_nat] :
      ( ! [Y4: set_nat_nat] :
          ( ( member_set_nat_nat @ Y4 @ A2 )
         => ( ord_le9059583361652607317at_nat @ Y4 @ X2 ) )
     => ( ! [Y4: set_nat_nat] :
            ( ! [Z5: set_nat_nat] :
                ( ( member_set_nat_nat @ Z5 @ A2 )
               => ( ord_le9059583361652607317at_nat @ Z5 @ Y4 ) )
           => ( ord_le9059583361652607317at_nat @ X2 @ Y4 ) )
       => ( ( comple5448282615319421384at_nat @ A2 )
          = X2 ) ) ) ).

% Sup_eqI
thf(fact_955_Sup__eqI,axiom,
    ! [A2: set_set_nat,X2: set_nat] :
      ( ! [Y4: set_nat] :
          ( ( member_set_nat @ Y4 @ A2 )
         => ( ord_less_eq_set_nat @ Y4 @ X2 ) )
     => ( ! [Y4: set_nat] :
            ( ! [Z5: set_nat] :
                ( ( member_set_nat @ Z5 @ A2 )
               => ( ord_less_eq_set_nat @ Z5 @ Y4 ) )
           => ( ord_less_eq_set_nat @ X2 @ Y4 ) )
       => ( ( comple7399068483239264473et_nat @ A2 )
          = X2 ) ) ) ).

% Sup_eqI
thf(fact_956_Sup__mono,axiom,
    ! [A2: set_set_nat_nat,B3: set_set_nat_nat] :
      ( ! [A4: set_nat_nat] :
          ( ( member_set_nat_nat @ A4 @ A2 )
         => ? [X4: set_nat_nat] :
              ( ( member_set_nat_nat @ X4 @ B3 )
              & ( ord_le9059583361652607317at_nat @ A4 @ X4 ) ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ A2 ) @ ( comple5448282615319421384at_nat @ B3 ) ) ) ).

% Sup_mono
thf(fact_957_Sup__mono,axiom,
    ! [A2: set_set_nat,B3: set_set_nat] :
      ( ! [A4: set_nat] :
          ( ( member_set_nat @ A4 @ A2 )
         => ? [X4: set_nat] :
              ( ( member_set_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ A4 @ X4 ) ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ A2 ) @ ( comple7399068483239264473et_nat @ B3 ) ) ) ).

% Sup_mono
thf(fact_958_Sup__least,axiom,
    ! [A2: set_set_nat_nat,Z2: set_nat_nat] :
      ( ! [X: set_nat_nat] :
          ( ( member_set_nat_nat @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ X @ Z2 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ A2 ) @ Z2 ) ) ).

% Sup_least
thf(fact_959_Sup__least,axiom,
    ! [A2: set_set_nat,Z2: set_nat] :
      ( ! [X: set_nat] :
          ( ( member_set_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ X @ Z2 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ A2 ) @ Z2 ) ) ).

% Sup_least
thf(fact_960_Sup__upper,axiom,
    ! [X2: set_nat_nat,A2: set_set_nat_nat] :
      ( ( member_set_nat_nat @ X2 @ A2 )
     => ( ord_le9059583361652607317at_nat @ X2 @ ( comple5448282615319421384at_nat @ A2 ) ) ) ).

% Sup_upper
thf(fact_961_Sup__upper,axiom,
    ! [X2: set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ X2 @ A2 )
     => ( ord_less_eq_set_nat @ X2 @ ( comple7399068483239264473et_nat @ A2 ) ) ) ).

% Sup_upper
thf(fact_962_Sup__le__iff,axiom,
    ! [A2: set_set_nat_nat,B: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ A2 ) @ B )
      = ( ! [X3: set_nat_nat] :
            ( ( member_set_nat_nat @ X3 @ A2 )
           => ( ord_le9059583361652607317at_nat @ X3 @ B ) ) ) ) ).

% Sup_le_iff
thf(fact_963_Sup__le__iff,axiom,
    ! [A2: set_set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ A2 ) @ B )
      = ( ! [X3: set_nat] :
            ( ( member_set_nat @ X3 @ A2 )
           => ( ord_less_eq_set_nat @ X3 @ B ) ) ) ) ).

% Sup_le_iff
thf(fact_964_Sup__upper2,axiom,
    ! [U2: set_nat_nat,A2: set_set_nat_nat,V: set_nat_nat] :
      ( ( member_set_nat_nat @ U2 @ A2 )
     => ( ( ord_le9059583361652607317at_nat @ V @ U2 )
       => ( ord_le9059583361652607317at_nat @ V @ ( comple5448282615319421384at_nat @ A2 ) ) ) ) ).

% Sup_upper2
thf(fact_965_Sup__upper2,axiom,
    ! [U2: set_nat,A2: set_set_nat,V: set_nat] :
      ( ( member_set_nat @ U2 @ A2 )
     => ( ( ord_less_eq_set_nat @ V @ U2 )
       => ( ord_less_eq_set_nat @ V @ ( comple7399068483239264473et_nat @ A2 ) ) ) ) ).

% Sup_upper2
thf(fact_966_cSup__eq__maximum,axiom,
    ! [Z2: set_nat_nat,X5: set_set_nat_nat] :
      ( ( member_set_nat_nat @ Z2 @ X5 )
     => ( ! [X: set_nat_nat] :
            ( ( member_set_nat_nat @ X @ X5 )
           => ( ord_le9059583361652607317at_nat @ X @ Z2 ) )
       => ( ( comple5448282615319421384at_nat @ X5 )
          = Z2 ) ) ) ).

% cSup_eq_maximum
thf(fact_967_cSup__eq__maximum,axiom,
    ! [Z2: set_nat,X5: set_set_nat] :
      ( ( member_set_nat @ Z2 @ X5 )
     => ( ! [X: set_nat] :
            ( ( member_set_nat @ X @ X5 )
           => ( ord_less_eq_set_nat @ X @ Z2 ) )
       => ( ( comple7399068483239264473et_nat @ X5 )
          = Z2 ) ) ) ).

% cSup_eq_maximum
thf(fact_968_cSup__eq__maximum,axiom,
    ! [Z2: nat,X5: set_nat] :
      ( ( member_nat @ Z2 @ X5 )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ X5 )
           => ( ord_less_eq_nat @ X @ Z2 ) )
       => ( ( complete_Sup_Sup_nat @ X5 )
          = Z2 ) ) ) ).

% cSup_eq_maximum
thf(fact_969_Union__mono,axiom,
    ! [A2: set_set_nat_nat,B3: set_set_nat_nat] :
      ( ( ord_le4954213926817602059at_nat @ A2 @ B3 )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ A2 ) @ ( comple5448282615319421384at_nat @ B3 ) ) ) ).

% Union_mono
thf(fact_970_Union__mono,axiom,
    ! [A2: set_set_nat,B3: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ B3 )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ A2 ) @ ( comple7399068483239264473et_nat @ B3 ) ) ) ).

% Union_mono
thf(fact_971_Union__least,axiom,
    ! [A2: set_set_nat_nat,C4: set_nat_nat] :
      ( ! [X8: set_nat_nat] :
          ( ( member_set_nat_nat @ X8 @ A2 )
         => ( ord_le9059583361652607317at_nat @ X8 @ C4 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ A2 ) @ C4 ) ) ).

% Union_least
thf(fact_972_Union__least,axiom,
    ! [A2: set_set_nat,C4: set_nat] :
      ( ! [X8: set_nat] :
          ( ( member_set_nat @ X8 @ A2 )
         => ( ord_less_eq_set_nat @ X8 @ C4 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ A2 ) @ C4 ) ) ).

% Union_least
thf(fact_973_Union__upper,axiom,
    ! [B3: set_nat_nat,A2: set_set_nat_nat] :
      ( ( member_set_nat_nat @ B3 @ A2 )
     => ( ord_le9059583361652607317at_nat @ B3 @ ( comple5448282615319421384at_nat @ A2 ) ) ) ).

% Union_upper
thf(fact_974_Union__upper,axiom,
    ! [B3: set_nat,A2: set_set_nat] :
      ( ( member_set_nat @ B3 @ A2 )
     => ( ord_less_eq_set_nat @ B3 @ ( comple7399068483239264473et_nat @ A2 ) ) ) ).

% Union_upper
thf(fact_975_Union__subsetI,axiom,
    ! [A2: set_set_nat_nat,B3: set_set_nat_nat] :
      ( ! [X: set_nat_nat] :
          ( ( member_set_nat_nat @ X @ A2 )
         => ? [Y: set_nat_nat] :
              ( ( member_set_nat_nat @ Y @ B3 )
              & ( ord_le9059583361652607317at_nat @ X @ Y ) ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ A2 ) @ ( comple5448282615319421384at_nat @ B3 ) ) ) ).

% Union_subsetI
thf(fact_976_Union__subsetI,axiom,
    ! [A2: set_set_nat,B3: set_set_nat] :
      ( ! [X: set_nat] :
          ( ( member_set_nat @ X @ A2 )
         => ? [Y: set_nat] :
              ( ( member_set_nat @ Y @ B3 )
              & ( ord_less_eq_set_nat @ X @ Y ) ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ A2 ) @ ( comple7399068483239264473et_nat @ B3 ) ) ) ).

% Union_subsetI
thf(fact_977_SUP__commute,axiom,
    ! [F: nat > nat > set_nat,B3: set_nat,A2: set_nat] :
      ( ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [I2: nat] : ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ ( F @ I2 ) @ B3 ) )
          @ A2 ) )
      = ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [J3: nat] :
              ( comple7399068483239264473et_nat
              @ ( image_nat_set_nat
                @ ^ [I2: nat] : ( F @ I2 @ J3 )
                @ A2 ) )
          @ B3 ) ) ) ).

% SUP_commute
thf(fact_978_image__Union,axiom,
    ! [F: ( nat > nat ) > nat > nat,S5: set_set_nat_nat] :
      ( ( image_3205354838064109189at_nat @ F @ ( comple5448282615319421384at_nat @ S5 ) )
      = ( comple5448282615319421384at_nat @ ( image_3832368097948589297at_nat @ ( image_3205354838064109189at_nat @ F ) @ S5 ) ) ) ).

% image_Union
thf(fact_979_image__Union,axiom,
    ! [F: nat > nat > nat,S5: set_set_nat] :
      ( ( image_nat_nat_nat2 @ F @ ( comple7399068483239264473et_nat @ S5 ) )
      = ( comple5448282615319421384at_nat @ ( image_7054278410236665602at_nat @ ( image_nat_nat_nat2 @ F ) @ S5 ) ) ) ).

% image_Union
thf(fact_980_image__Union,axiom,
    ! [F: nat > set_nat,S5: set_set_nat] :
      ( ( image_nat_set_nat @ F @ ( comple7399068483239264473et_nat @ S5 ) )
      = ( comple548664676211718543et_nat @ ( image_6725021117256019401et_nat @ ( image_nat_set_nat @ F ) @ S5 ) ) ) ).

% image_Union
thf(fact_981_image__Union,axiom,
    ! [F: nat > nat,S5: set_set_nat] :
      ( ( image_nat_nat @ F @ ( comple7399068483239264473et_nat @ S5 ) )
      = ( comple7399068483239264473et_nat @ ( image_7916887816326733075et_nat @ ( image_nat_nat @ F ) @ S5 ) ) ) ).

% image_Union
thf(fact_982_UN__extend__simps_I9_J,axiom,
    ! [C4: nat > set_nat,B3: nat > set_nat,A2: set_nat] :
      ( ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [X3: nat] : ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ C4 @ ( B3 @ X3 ) ) )
          @ A2 ) )
      = ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ C4 @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) ) ) ) ).

% UN_extend_simps(9)
thf(fact_983_UN__extend__simps_I8_J,axiom,
    ! [B3: nat > set_nat,A2: set_set_nat] :
      ( ( comple7399068483239264473et_nat
        @ ( image_7916887816326733075et_nat
          @ ^ [Y3: set_nat] : ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ Y3 ) )
          @ A2 ) )
      = ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ ( comple7399068483239264473et_nat @ A2 ) ) ) ) ).

% UN_extend_simps(8)
thf(fact_984_UN__E,axiom,
    ! [B: nat,B3: nat > set_nat,A2: set_nat] :
      ( ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) )
     => ~ ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ~ ( member_nat @ B @ ( B3 @ X ) ) ) ) ).

% UN_E
thf(fact_985_UN__E,axiom,
    ! [B: nat > nat,B3: nat > set_nat_nat,A2: set_nat] :
      ( ( member_nat_nat @ B @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ B3 @ A2 ) ) )
     => ~ ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ~ ( member_nat_nat @ B @ ( B3 @ X ) ) ) ) ).

% UN_E
thf(fact_986_UN__E,axiom,
    ! [B: nat,B3: ( nat > nat ) > set_nat,A2: set_nat_nat] :
      ( ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ B3 @ A2 ) ) )
     => ~ ! [X: nat > nat] :
            ( ( member_nat_nat @ X @ A2 )
           => ~ ( member_nat @ B @ ( B3 @ X ) ) ) ) ).

% UN_E
thf(fact_987_UN__E,axiom,
    ! [B: nat > nat,B3: ( nat > nat ) > set_nat_nat,A2: set_nat_nat] :
      ( ( member_nat_nat @ B @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ B3 @ A2 ) ) )
     => ~ ! [X: nat > nat] :
            ( ( member_nat_nat @ X @ A2 )
           => ~ ( member_nat_nat @ B @ ( B3 @ X ) ) ) ) ).

% UN_E
thf(fact_988_UN__E,axiom,
    ! [B: nat > nat > nat,B3: nat > set_nat_nat_nat,A2: set_nat] :
      ( ( member_nat_nat_nat2 @ B @ ( comple8167887107183641911at_nat @ ( image_6130888460295934395at_nat @ B3 @ A2 ) ) )
     => ~ ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ~ ( member_nat_nat_nat2 @ B @ ( B3 @ X ) ) ) ) ).

% UN_E
thf(fact_989_UN__E,axiom,
    ! [B: ( nat > nat ) > nat,B3: nat > set_nat_nat_nat2,A2: set_nat] :
      ( ( member_nat_nat_nat @ B @ ( comple1667856448326461495at_nat @ ( image_8854229838293529787at_nat @ B3 @ A2 ) ) )
     => ~ ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ~ ( member_nat_nat_nat @ B @ ( B3 @ X ) ) ) ) ).

% UN_E
thf(fact_990_UN__E,axiom,
    ! [B: nat,B3: ( nat > nat > nat ) > set_nat,A2: set_nat_nat_nat] :
      ( ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ B3 @ A2 ) ) )
     => ~ ! [X: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X @ A2 )
           => ~ ( member_nat @ B @ ( B3 @ X ) ) ) ) ).

% UN_E
thf(fact_991_UN__E,axiom,
    ! [B: nat,B3: ( ( nat > nat ) > nat ) > set_nat,A2: set_nat_nat_nat2] :
      ( ( member_nat @ B @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ B3 @ A2 ) ) )
     => ~ ! [X: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X @ A2 )
           => ~ ( member_nat @ B @ ( B3 @ X ) ) ) ) ).

% UN_E
thf(fact_992_UN__E,axiom,
    ! [B: nat > nat,B3: ( nat > nat > nat ) > set_nat_nat,A2: set_nat_nat_nat] :
      ( ( member_nat_nat @ B @ ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ B3 @ A2 ) ) )
     => ~ ! [X: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X @ A2 )
           => ~ ( member_nat_nat @ B @ ( B3 @ X ) ) ) ) ).

% UN_E
thf(fact_993_UN__E,axiom,
    ! [B: nat > nat,B3: ( ( nat > nat ) > nat ) > set_nat_nat,A2: set_nat_nat_nat2] :
      ( ( member_nat_nat @ B @ ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ B3 @ A2 ) ) )
     => ~ ! [X: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X @ A2 )
           => ~ ( member_nat_nat @ B @ ( B3 @ X ) ) ) ) ).

% UN_E
thf(fact_994_UN__UN__flatten,axiom,
    ! [C4: nat > set_nat,B3: nat > set_nat,A2: set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ C4 @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) ) )
      = ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [Y3: nat] : ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ C4 @ ( B3 @ Y3 ) ) )
          @ A2 ) ) ) ).

% UN_UN_flatten
thf(fact_995_SUP__eq,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > set_nat,G: nat > set_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ I3 ) @ ( G @ X4 ) ) ) )
     => ( ! [J: nat] :
            ( ( member_nat @ J @ B3 )
           => ? [X4: nat] :
                ( ( member_nat @ X4 @ A2 )
                & ( ord_less_eq_set_nat @ ( G @ J ) @ ( F @ X4 ) ) ) )
       => ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) )
          = ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ B3 ) ) ) ) ) ).

% SUP_eq
thf(fact_996_SUP__eq,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > set_nat_nat,G: nat > set_nat_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ ( G @ X4 ) ) ) )
     => ( ! [J: nat] :
            ( ( member_nat @ J @ B3 )
           => ? [X4: nat] :
                ( ( member_nat @ X4 @ A2 )
                & ( ord_le9059583361652607317at_nat @ ( G @ J ) @ ( F @ X4 ) ) ) )
       => ( ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ A2 ) )
          = ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ G @ B3 ) ) ) ) ) ).

% SUP_eq
thf(fact_997_SUP__eq,axiom,
    ! [A2: set_nat,B3: set_nat_nat,F: nat > set_nat,G: ( nat > nat ) > set_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ? [X4: nat > nat] :
              ( ( member_nat_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ I3 ) @ ( G @ X4 ) ) ) )
     => ( ! [J: nat > nat] :
            ( ( member_nat_nat @ J @ B3 )
           => ? [X4: nat] :
                ( ( member_nat @ X4 @ A2 )
                & ( ord_less_eq_set_nat @ ( G @ J ) @ ( F @ X4 ) ) ) )
       => ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) )
          = ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ G @ B3 ) ) ) ) ) ).

% SUP_eq
thf(fact_998_SUP__eq,axiom,
    ! [A2: set_nat_nat,B3: set_nat,F: ( nat > nat ) > set_nat,G: nat > set_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ A2 )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ I3 ) @ ( G @ X4 ) ) ) )
     => ( ! [J: nat] :
            ( ( member_nat @ J @ B3 )
           => ? [X4: nat > nat] :
                ( ( member_nat_nat @ X4 @ A2 )
                & ( ord_less_eq_set_nat @ ( G @ J ) @ ( F @ X4 ) ) ) )
       => ( ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) )
          = ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ B3 ) ) ) ) ) ).

% SUP_eq
thf(fact_999_SUP__eq,axiom,
    ! [A2: set_nat,B3: set_nat_nat,F: nat > set_nat_nat,G: ( nat > nat ) > set_nat_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ? [X4: nat > nat] :
              ( ( member_nat_nat @ X4 @ B3 )
              & ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ ( G @ X4 ) ) ) )
     => ( ! [J: nat > nat] :
            ( ( member_nat_nat @ J @ B3 )
           => ? [X4: nat] :
                ( ( member_nat @ X4 @ A2 )
                & ( ord_le9059583361652607317at_nat @ ( G @ J ) @ ( F @ X4 ) ) ) )
       => ( ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ A2 ) )
          = ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ G @ B3 ) ) ) ) ) ).

% SUP_eq
thf(fact_1000_SUP__eq,axiom,
    ! [A2: set_nat_nat,B3: set_nat,F: ( nat > nat ) > set_nat_nat,G: nat > set_nat_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ A2 )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ ( G @ X4 ) ) ) )
     => ( ! [J: nat] :
            ( ( member_nat @ J @ B3 )
           => ? [X4: nat > nat] :
                ( ( member_nat_nat @ X4 @ A2 )
                & ( ord_le9059583361652607317at_nat @ ( G @ J ) @ ( F @ X4 ) ) ) )
       => ( ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ F @ A2 ) )
          = ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ G @ B3 ) ) ) ) ) ).

% SUP_eq
thf(fact_1001_SUP__eq,axiom,
    ! [A2: set_nat,B3: set_nat_nat_nat,F: nat > set_nat,G: ( nat > nat > nat ) > set_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ? [X4: nat > nat > nat] :
              ( ( member_nat_nat_nat2 @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ I3 ) @ ( G @ X4 ) ) ) )
     => ( ! [J: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ J @ B3 )
           => ? [X4: nat] :
                ( ( member_nat @ X4 @ A2 )
                & ( ord_less_eq_set_nat @ ( G @ J ) @ ( F @ X4 ) ) ) )
       => ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) )
          = ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ G @ B3 ) ) ) ) ) ).

% SUP_eq
thf(fact_1002_SUP__eq,axiom,
    ! [A2: set_nat,B3: set_nat_nat_nat2,F: nat > set_nat,G: ( ( nat > nat ) > nat ) > set_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ? [X4: ( nat > nat ) > nat] :
              ( ( member_nat_nat_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ I3 ) @ ( G @ X4 ) ) ) )
     => ( ! [J: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ J @ B3 )
           => ? [X4: nat] :
                ( ( member_nat @ X4 @ A2 )
                & ( ord_less_eq_set_nat @ ( G @ J ) @ ( F @ X4 ) ) ) )
       => ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) )
          = ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ G @ B3 ) ) ) ) ) ).

% SUP_eq
thf(fact_1003_SUP__eq,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,F: ( nat > nat ) > set_nat,G: ( nat > nat ) > set_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ A2 )
         => ? [X4: nat > nat] :
              ( ( member_nat_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ I3 ) @ ( G @ X4 ) ) ) )
     => ( ! [J: nat > nat] :
            ( ( member_nat_nat @ J @ B3 )
           => ? [X4: nat > nat] :
                ( ( member_nat_nat @ X4 @ A2 )
                & ( ord_less_eq_set_nat @ ( G @ J ) @ ( F @ X4 ) ) ) )
       => ( ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) )
          = ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ G @ B3 ) ) ) ) ) ).

% SUP_eq
thf(fact_1004_SUP__eq,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat,F: ( nat > nat > nat ) > set_nat,G: nat > set_nat] :
      ( ! [I3: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ I3 @ A2 )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ I3 ) @ ( G @ X4 ) ) ) )
     => ( ! [J: nat] :
            ( ( member_nat @ J @ B3 )
           => ? [X4: nat > nat > nat] :
                ( ( member_nat_nat_nat2 @ X4 @ A2 )
                & ( ord_less_eq_set_nat @ ( G @ J ) @ ( F @ X4 ) ) ) )
       => ( ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ A2 ) )
          = ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ B3 ) ) ) ) ) ).

% SUP_eq
thf(fact_1005_less__eq__Sup,axiom,
    ! [A2: set_set_nat_nat,U2: set_nat_nat] :
      ( ! [V2: set_nat_nat] :
          ( ( member_set_nat_nat @ V2 @ A2 )
         => ( ord_le9059583361652607317at_nat @ U2 @ V2 ) )
     => ( ( A2 != bot_bo7376149671870096959at_nat )
       => ( ord_le9059583361652607317at_nat @ U2 @ ( comple5448282615319421384at_nat @ A2 ) ) ) ) ).

% less_eq_Sup
thf(fact_1006_less__eq__Sup,axiom,
    ! [A2: set_set_nat,U2: set_nat] :
      ( ! [V2: set_nat] :
          ( ( member_set_nat @ V2 @ A2 )
         => ( ord_less_eq_set_nat @ U2 @ V2 ) )
     => ( ( A2 != bot_bot_set_set_nat )
       => ( ord_less_eq_set_nat @ U2 @ ( comple7399068483239264473et_nat @ A2 ) ) ) ) ).

% less_eq_Sup
thf(fact_1007_cSup__least,axiom,
    ! [X5: set_set_nat_nat,Z2: set_nat_nat] :
      ( ( X5 != bot_bo7376149671870096959at_nat )
     => ( ! [X: set_nat_nat] :
            ( ( member_set_nat_nat @ X @ X5 )
           => ( ord_le9059583361652607317at_nat @ X @ Z2 ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ X5 ) @ Z2 ) ) ) ).

% cSup_least
thf(fact_1008_cSup__least,axiom,
    ! [X5: set_set_nat,Z2: set_nat] :
      ( ( X5 != bot_bot_set_set_nat )
     => ( ! [X: set_nat] :
            ( ( member_set_nat @ X @ X5 )
           => ( ord_less_eq_set_nat @ X @ Z2 ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ X5 ) @ Z2 ) ) ) ).

% cSup_least
thf(fact_1009_cSup__least,axiom,
    ! [X5: set_nat,Z2: nat] :
      ( ( X5 != bot_bot_set_nat )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ X5 )
           => ( ord_less_eq_nat @ X @ Z2 ) )
       => ( ord_less_eq_nat @ ( complete_Sup_Sup_nat @ X5 ) @ Z2 ) ) ) ).

% cSup_least
thf(fact_1010_cSup__eq__non__empty,axiom,
    ! [X5: set_set_nat_nat,A: set_nat_nat] :
      ( ( X5 != bot_bo7376149671870096959at_nat )
     => ( ! [X: set_nat_nat] :
            ( ( member_set_nat_nat @ X @ X5 )
           => ( ord_le9059583361652607317at_nat @ X @ A ) )
       => ( ! [Y4: set_nat_nat] :
              ( ! [X4: set_nat_nat] :
                  ( ( member_set_nat_nat @ X4 @ X5 )
                 => ( ord_le9059583361652607317at_nat @ X4 @ Y4 ) )
             => ( ord_le9059583361652607317at_nat @ A @ Y4 ) )
         => ( ( comple5448282615319421384at_nat @ X5 )
            = A ) ) ) ) ).

% cSup_eq_non_empty
thf(fact_1011_cSup__eq__non__empty,axiom,
    ! [X5: set_set_nat,A: set_nat] :
      ( ( X5 != bot_bot_set_set_nat )
     => ( ! [X: set_nat] :
            ( ( member_set_nat @ X @ X5 )
           => ( ord_less_eq_set_nat @ X @ A ) )
       => ( ! [Y4: set_nat] :
              ( ! [X4: set_nat] :
                  ( ( member_set_nat @ X4 @ X5 )
                 => ( ord_less_eq_set_nat @ X4 @ Y4 ) )
             => ( ord_less_eq_set_nat @ A @ Y4 ) )
         => ( ( comple7399068483239264473et_nat @ X5 )
            = A ) ) ) ) ).

% cSup_eq_non_empty
thf(fact_1012_cSup__eq__non__empty,axiom,
    ! [X5: set_nat,A: nat] :
      ( ( X5 != bot_bot_set_nat )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ X5 )
           => ( ord_less_eq_nat @ X @ A ) )
       => ( ! [Y4: nat] :
              ( ! [X4: nat] :
                  ( ( member_nat @ X4 @ X5 )
                 => ( ord_less_eq_nat @ X4 @ Y4 ) )
             => ( ord_less_eq_nat @ A @ Y4 ) )
         => ( ( complete_Sup_Sup_nat @ X5 )
            = A ) ) ) ) ).

% cSup_eq_non_empty
thf(fact_1013_less__cSupD,axiom,
    ! [X5: set_nat,Z2: nat] :
      ( ( X5 != bot_bot_set_nat )
     => ( ( ord_less_nat @ Z2 @ ( complete_Sup_Sup_nat @ X5 ) )
       => ? [X: nat] :
            ( ( member_nat @ X @ X5 )
            & ( ord_less_nat @ Z2 @ X ) ) ) ) ).

% less_cSupD
thf(fact_1014_less__cSupE,axiom,
    ! [Y2: nat,X5: set_nat] :
      ( ( ord_less_nat @ Y2 @ ( complete_Sup_Sup_nat @ X5 ) )
     => ( ( X5 != bot_bot_set_nat )
       => ~ ! [X: nat] :
              ( ( member_nat @ X @ X5 )
             => ~ ( ord_less_nat @ Y2 @ X ) ) ) ) ).

% less_cSupE
thf(fact_1015_Sup__subset__mono,axiom,
    ! [A2: set_set_nat_nat,B3: set_set_nat_nat] :
      ( ( ord_le4954213926817602059at_nat @ A2 @ B3 )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ A2 ) @ ( comple5448282615319421384at_nat @ B3 ) ) ) ).

% Sup_subset_mono
thf(fact_1016_Sup__subset__mono,axiom,
    ! [A2: set_set_nat,B3: set_set_nat] :
      ( ( ord_le6893508408891458716et_nat @ A2 @ B3 )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ A2 ) @ ( comple7399068483239264473et_nat @ B3 ) ) ) ).

% Sup_subset_mono
thf(fact_1017_SUP__upper2,axiom,
    ! [I: nat,A2: set_nat,U2: set_nat_nat,F: nat > set_nat_nat] :
      ( ( member_nat @ I @ A2 )
     => ( ( ord_le9059583361652607317at_nat @ U2 @ ( F @ I ) )
       => ( ord_le9059583361652607317at_nat @ U2 @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ A2 ) ) ) ) ) ).

% SUP_upper2
thf(fact_1018_SUP__upper2,axiom,
    ! [I: nat > nat,A2: set_nat_nat,U2: set_nat_nat,F: ( nat > nat ) > set_nat_nat] :
      ( ( member_nat_nat @ I @ A2 )
     => ( ( ord_le9059583361652607317at_nat @ U2 @ ( F @ I ) )
       => ( ord_le9059583361652607317at_nat @ U2 @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ F @ A2 ) ) ) ) ) ).

% SUP_upper2
thf(fact_1019_SUP__upper2,axiom,
    ! [I: nat > nat > nat,A2: set_nat_nat_nat,U2: set_nat_nat,F: ( nat > nat > nat ) > set_nat_nat] :
      ( ( member_nat_nat_nat2 @ I @ A2 )
     => ( ( ord_le9059583361652607317at_nat @ U2 @ ( F @ I ) )
       => ( ord_le9059583361652607317at_nat @ U2 @ ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ F @ A2 ) ) ) ) ) ).

% SUP_upper2
thf(fact_1020_SUP__upper2,axiom,
    ! [I: ( nat > nat ) > nat,A2: set_nat_nat_nat2,U2: set_nat_nat,F: ( ( nat > nat ) > nat ) > set_nat_nat] :
      ( ( member_nat_nat_nat @ I @ A2 )
     => ( ( ord_le9059583361652607317at_nat @ U2 @ ( F @ I ) )
       => ( ord_le9059583361652607317at_nat @ U2 @ ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ F @ A2 ) ) ) ) ) ).

% SUP_upper2
thf(fact_1021_SUP__upper2,axiom,
    ! [I: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,U2: set_nat_nat,F: ( ( nat > nat ) > nat > nat ) > set_nat_nat] :
      ( ( member952132173341509300at_nat @ I @ A2 )
     => ( ( ord_le9059583361652607317at_nat @ U2 @ ( F @ I ) )
       => ( ord_le9059583361652607317at_nat @ U2 @ ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ F @ A2 ) ) ) ) ) ).

% SUP_upper2
thf(fact_1022_SUP__upper2,axiom,
    ! [I: nat,A2: set_nat,U2: set_nat,F: nat > set_nat] :
      ( ( member_nat @ I @ A2 )
     => ( ( ord_less_eq_set_nat @ U2 @ ( F @ I ) )
       => ( ord_less_eq_set_nat @ U2 @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) ) ) ) ) ).

% SUP_upper2
thf(fact_1023_SUP__upper2,axiom,
    ! [I: nat > nat,A2: set_nat_nat,U2: set_nat,F: ( nat > nat ) > set_nat] :
      ( ( member_nat_nat @ I @ A2 )
     => ( ( ord_less_eq_set_nat @ U2 @ ( F @ I ) )
       => ( ord_less_eq_set_nat @ U2 @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) ) ) ) ) ).

% SUP_upper2
thf(fact_1024_SUP__upper2,axiom,
    ! [I: nat > nat > nat,A2: set_nat_nat_nat,U2: set_nat,F: ( nat > nat > nat ) > set_nat] :
      ( ( member_nat_nat_nat2 @ I @ A2 )
     => ( ( ord_less_eq_set_nat @ U2 @ ( F @ I ) )
       => ( ord_less_eq_set_nat @ U2 @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ A2 ) ) ) ) ) ).

% SUP_upper2
thf(fact_1025_SUP__upper2,axiom,
    ! [I: ( nat > nat ) > nat,A2: set_nat_nat_nat2,U2: set_nat,F: ( ( nat > nat ) > nat ) > set_nat] :
      ( ( member_nat_nat_nat @ I @ A2 )
     => ( ( ord_less_eq_set_nat @ U2 @ ( F @ I ) )
       => ( ord_less_eq_set_nat @ U2 @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ F @ A2 ) ) ) ) ) ).

% SUP_upper2
thf(fact_1026_SUP__upper2,axiom,
    ! [I: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,U2: set_nat,F: ( ( nat > nat ) > nat > nat ) > set_nat] :
      ( ( member952132173341509300at_nat @ I @ A2 )
     => ( ( ord_less_eq_set_nat @ U2 @ ( F @ I ) )
       => ( ord_less_eq_set_nat @ U2 @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ F @ A2 ) ) ) ) ) ).

% SUP_upper2
thf(fact_1027_SUP__le__iff,axiom,
    ! [F: nat > set_nat,A2: set_nat,U2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) ) @ U2 )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X3 ) @ U2 ) ) ) ) ).

% SUP_le_iff
thf(fact_1028_SUP__upper,axiom,
    ! [I: nat,A2: set_nat,F: nat > set_nat_nat] :
      ( ( member_nat @ I @ A2 )
     => ( ord_le9059583361652607317at_nat @ ( F @ I ) @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ A2 ) ) ) ) ).

% SUP_upper
thf(fact_1029_SUP__upper,axiom,
    ! [I: nat > nat,A2: set_nat_nat,F: ( nat > nat ) > set_nat_nat] :
      ( ( member_nat_nat @ I @ A2 )
     => ( ord_le9059583361652607317at_nat @ ( F @ I ) @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ F @ A2 ) ) ) ) ).

% SUP_upper
thf(fact_1030_SUP__upper,axiom,
    ! [I: nat > nat > nat,A2: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat_nat] :
      ( ( member_nat_nat_nat2 @ I @ A2 )
     => ( ord_le9059583361652607317at_nat @ ( F @ I ) @ ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ F @ A2 ) ) ) ) ).

% SUP_upper
thf(fact_1031_SUP__upper,axiom,
    ! [I: ( nat > nat ) > nat,A2: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat_nat] :
      ( ( member_nat_nat_nat @ I @ A2 )
     => ( ord_le9059583361652607317at_nat @ ( F @ I ) @ ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ F @ A2 ) ) ) ) ).

% SUP_upper
thf(fact_1032_SUP__upper,axiom,
    ! [I: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,F: ( ( nat > nat ) > nat > nat ) > set_nat_nat] :
      ( ( member952132173341509300at_nat @ I @ A2 )
     => ( ord_le9059583361652607317at_nat @ ( F @ I ) @ ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ F @ A2 ) ) ) ) ).

% SUP_upper
thf(fact_1033_SUP__upper,axiom,
    ! [I: nat,A2: set_nat,F: nat > set_nat] :
      ( ( member_nat @ I @ A2 )
     => ( ord_less_eq_set_nat @ ( F @ I ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) ) ) ) ).

% SUP_upper
thf(fact_1034_SUP__upper,axiom,
    ! [I: nat > nat,A2: set_nat_nat,F: ( nat > nat ) > set_nat] :
      ( ( member_nat_nat @ I @ A2 )
     => ( ord_less_eq_set_nat @ ( F @ I ) @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) ) ) ) ).

% SUP_upper
thf(fact_1035_SUP__upper,axiom,
    ! [I: nat > nat > nat,A2: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat] :
      ( ( member_nat_nat_nat2 @ I @ A2 )
     => ( ord_less_eq_set_nat @ ( F @ I ) @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ A2 ) ) ) ) ).

% SUP_upper
thf(fact_1036_SUP__upper,axiom,
    ! [I: ( nat > nat ) > nat,A2: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat] :
      ( ( member_nat_nat_nat @ I @ A2 )
     => ( ord_less_eq_set_nat @ ( F @ I ) @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ F @ A2 ) ) ) ) ).

% SUP_upper
thf(fact_1037_SUP__upper,axiom,
    ! [I: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,F: ( ( nat > nat ) > nat > nat ) > set_nat] :
      ( ( member952132173341509300at_nat @ I @ A2 )
     => ( ord_less_eq_set_nat @ ( F @ I ) @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ F @ A2 ) ) ) ) ).

% SUP_upper
thf(fact_1038_SUP__mono_H,axiom,
    ! [F: nat > set_nat,G: nat > set_nat,A2: set_nat] :
      ( ! [X: nat] : ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ A2 ) ) ) ) ).

% SUP_mono'
thf(fact_1039_SUP__least,axiom,
    ! [A2: set_nat,F: nat > set_nat_nat,U2: set_nat_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ U2 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ A2 ) ) @ U2 ) ) ).

% SUP_least
thf(fact_1040_SUP__least,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > set_nat_nat,U2: set_nat_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ U2 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ F @ A2 ) ) @ U2 ) ) ).

% SUP_least
thf(fact_1041_SUP__least,axiom,
    ! [A2: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat_nat,U2: set_nat_nat] :
      ( ! [I3: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ I3 @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ U2 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ F @ A2 ) ) @ U2 ) ) ).

% SUP_least
thf(fact_1042_SUP__least,axiom,
    ! [A2: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat_nat,U2: set_nat_nat] :
      ( ! [I3: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ I3 @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ U2 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ F @ A2 ) ) @ U2 ) ) ).

% SUP_least
thf(fact_1043_SUP__least,axiom,
    ! [A2: set_nat_nat_nat_nat3,F: ( ( nat > nat ) > nat > nat ) > set_nat_nat,U2: set_nat_nat] :
      ( ! [I3: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ I3 @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ U2 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ F @ A2 ) ) @ U2 ) ) ).

% SUP_least
thf(fact_1044_SUP__least,axiom,
    ! [A2: set_nat,F: nat > set_nat,U2: set_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ( ord_less_eq_set_nat @ ( F @ I3 ) @ U2 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) ) @ U2 ) ) ).

% SUP_least
thf(fact_1045_SUP__least,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > set_nat,U2: set_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ A2 )
         => ( ord_less_eq_set_nat @ ( F @ I3 ) @ U2 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) ) @ U2 ) ) ).

% SUP_least
thf(fact_1046_SUP__least,axiom,
    ! [A2: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat,U2: set_nat] :
      ( ! [I3: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ I3 @ A2 )
         => ( ord_less_eq_set_nat @ ( F @ I3 ) @ U2 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ A2 ) ) @ U2 ) ) ).

% SUP_least
thf(fact_1047_SUP__least,axiom,
    ! [A2: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat,U2: set_nat] :
      ( ! [I3: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ I3 @ A2 )
         => ( ord_less_eq_set_nat @ ( F @ I3 ) @ U2 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ F @ A2 ) ) @ U2 ) ) ).

% SUP_least
thf(fact_1048_SUP__least,axiom,
    ! [A2: set_nat_nat_nat_nat3,F: ( ( nat > nat ) > nat > nat ) > set_nat,U2: set_nat] :
      ( ! [I3: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ I3 @ A2 )
         => ( ord_less_eq_set_nat @ ( F @ I3 ) @ U2 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ F @ A2 ) ) @ U2 ) ) ).

% SUP_least
thf(fact_1049_SUP__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > set_nat,G: nat > set_nat] :
      ( ! [N2: nat] :
          ( ( member_nat @ N2 @ A2 )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ N2 ) @ ( G @ X4 ) ) ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ B3 ) ) ) ) ).

% SUP_mono
thf(fact_1050_SUP__mono,axiom,
    ! [A2: set_nat_nat,B3: set_nat,F: ( nat > nat ) > set_nat,G: nat > set_nat] :
      ( ! [N2: nat > nat] :
          ( ( member_nat_nat @ N2 @ A2 )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ N2 ) @ ( G @ X4 ) ) ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ B3 ) ) ) ) ).

% SUP_mono
thf(fact_1051_SUP__mono,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat,F: ( nat > nat > nat ) > set_nat,G: nat > set_nat] :
      ( ! [N2: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ N2 @ A2 )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ N2 ) @ ( G @ X4 ) ) ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ B3 ) ) ) ) ).

% SUP_mono
thf(fact_1052_SUP__mono,axiom,
    ! [A2: set_nat_nat_nat2,B3: set_nat,F: ( ( nat > nat ) > nat ) > set_nat,G: nat > set_nat] :
      ( ! [N2: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ N2 @ A2 )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ N2 ) @ ( G @ X4 ) ) ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ B3 ) ) ) ) ).

% SUP_mono
thf(fact_1053_SUP__mono,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: set_nat,F: ( ( nat > nat ) > nat > nat ) > set_nat,G: nat > set_nat] :
      ( ! [N2: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ N2 @ A2 )
         => ? [X4: nat] :
              ( ( member_nat @ X4 @ B3 )
              & ( ord_less_eq_set_nat @ ( F @ N2 ) @ ( G @ X4 ) ) ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ B3 ) ) ) ) ).

% SUP_mono
thf(fact_1054_SUP__eqI,axiom,
    ! [A2: set_nat,F: nat > set_nat_nat,X2: set_nat_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ X2 ) )
     => ( ! [Y4: set_nat_nat] :
            ( ! [I4: nat] :
                ( ( member_nat @ I4 @ A2 )
               => ( ord_le9059583361652607317at_nat @ ( F @ I4 ) @ Y4 ) )
           => ( ord_le9059583361652607317at_nat @ X2 @ Y4 ) )
       => ( ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ A2 ) )
          = X2 ) ) ) ).

% SUP_eqI
thf(fact_1055_SUP__eqI,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > set_nat_nat,X2: set_nat_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ X2 ) )
     => ( ! [Y4: set_nat_nat] :
            ( ! [I4: nat > nat] :
                ( ( member_nat_nat @ I4 @ A2 )
               => ( ord_le9059583361652607317at_nat @ ( F @ I4 ) @ Y4 ) )
           => ( ord_le9059583361652607317at_nat @ X2 @ Y4 ) )
       => ( ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ F @ A2 ) )
          = X2 ) ) ) ).

% SUP_eqI
thf(fact_1056_SUP__eqI,axiom,
    ! [A2: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat_nat,X2: set_nat_nat] :
      ( ! [I3: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ I3 @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ X2 ) )
     => ( ! [Y4: set_nat_nat] :
            ( ! [I4: nat > nat > nat] :
                ( ( member_nat_nat_nat2 @ I4 @ A2 )
               => ( ord_le9059583361652607317at_nat @ ( F @ I4 ) @ Y4 ) )
           => ( ord_le9059583361652607317at_nat @ X2 @ Y4 ) )
       => ( ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ F @ A2 ) )
          = X2 ) ) ) ).

% SUP_eqI
thf(fact_1057_SUP__eqI,axiom,
    ! [A2: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat_nat,X2: set_nat_nat] :
      ( ! [I3: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ I3 @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ X2 ) )
     => ( ! [Y4: set_nat_nat] :
            ( ! [I4: ( nat > nat ) > nat] :
                ( ( member_nat_nat_nat @ I4 @ A2 )
               => ( ord_le9059583361652607317at_nat @ ( F @ I4 ) @ Y4 ) )
           => ( ord_le9059583361652607317at_nat @ X2 @ Y4 ) )
       => ( ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ F @ A2 ) )
          = X2 ) ) ) ).

% SUP_eqI
thf(fact_1058_SUP__eqI,axiom,
    ! [A2: set_nat_nat_nat_nat3,F: ( ( nat > nat ) > nat > nat ) > set_nat_nat,X2: set_nat_nat] :
      ( ! [I3: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ I3 @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( F @ I3 ) @ X2 ) )
     => ( ! [Y4: set_nat_nat] :
            ( ! [I4: ( nat > nat ) > nat > nat] :
                ( ( member952132173341509300at_nat @ I4 @ A2 )
               => ( ord_le9059583361652607317at_nat @ ( F @ I4 ) @ Y4 ) )
           => ( ord_le9059583361652607317at_nat @ X2 @ Y4 ) )
       => ( ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ F @ A2 ) )
          = X2 ) ) ) ).

% SUP_eqI
thf(fact_1059_SUP__eqI,axiom,
    ! [A2: set_nat,F: nat > set_nat,X2: set_nat] :
      ( ! [I3: nat] :
          ( ( member_nat @ I3 @ A2 )
         => ( ord_less_eq_set_nat @ ( F @ I3 ) @ X2 ) )
     => ( ! [Y4: set_nat] :
            ( ! [I4: nat] :
                ( ( member_nat @ I4 @ A2 )
               => ( ord_less_eq_set_nat @ ( F @ I4 ) @ Y4 ) )
           => ( ord_less_eq_set_nat @ X2 @ Y4 ) )
       => ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) )
          = X2 ) ) ) ).

% SUP_eqI
thf(fact_1060_SUP__eqI,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > set_nat,X2: set_nat] :
      ( ! [I3: nat > nat] :
          ( ( member_nat_nat @ I3 @ A2 )
         => ( ord_less_eq_set_nat @ ( F @ I3 ) @ X2 ) )
     => ( ! [Y4: set_nat] :
            ( ! [I4: nat > nat] :
                ( ( member_nat_nat @ I4 @ A2 )
               => ( ord_less_eq_set_nat @ ( F @ I4 ) @ Y4 ) )
           => ( ord_less_eq_set_nat @ X2 @ Y4 ) )
       => ( ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) )
          = X2 ) ) ) ).

% SUP_eqI
thf(fact_1061_SUP__eqI,axiom,
    ! [A2: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat,X2: set_nat] :
      ( ! [I3: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ I3 @ A2 )
         => ( ord_less_eq_set_nat @ ( F @ I3 ) @ X2 ) )
     => ( ! [Y4: set_nat] :
            ( ! [I4: nat > nat > nat] :
                ( ( member_nat_nat_nat2 @ I4 @ A2 )
               => ( ord_less_eq_set_nat @ ( F @ I4 ) @ Y4 ) )
           => ( ord_less_eq_set_nat @ X2 @ Y4 ) )
       => ( ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ A2 ) )
          = X2 ) ) ) ).

% SUP_eqI
thf(fact_1062_SUP__eqI,axiom,
    ! [A2: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat,X2: set_nat] :
      ( ! [I3: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ I3 @ A2 )
         => ( ord_less_eq_set_nat @ ( F @ I3 ) @ X2 ) )
     => ( ! [Y4: set_nat] :
            ( ! [I4: ( nat > nat ) > nat] :
                ( ( member_nat_nat_nat @ I4 @ A2 )
               => ( ord_less_eq_set_nat @ ( F @ I4 ) @ Y4 ) )
           => ( ord_less_eq_set_nat @ X2 @ Y4 ) )
       => ( ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ F @ A2 ) )
          = X2 ) ) ) ).

% SUP_eqI
thf(fact_1063_SUP__eqI,axiom,
    ! [A2: set_nat_nat_nat_nat3,F: ( ( nat > nat ) > nat > nat ) > set_nat,X2: set_nat] :
      ( ! [I3: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ I3 @ A2 )
         => ( ord_less_eq_set_nat @ ( F @ I3 ) @ X2 ) )
     => ( ! [Y4: set_nat] :
            ( ! [I4: ( nat > nat ) > nat > nat] :
                ( ( member952132173341509300at_nat @ I4 @ A2 )
               => ( ord_less_eq_set_nat @ ( F @ I4 ) @ Y4 ) )
           => ( ord_less_eq_set_nat @ X2 @ Y4 ) )
       => ( ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ F @ A2 ) )
          = X2 ) ) ) ).

% SUP_eqI
thf(fact_1064_SUP__lessD,axiom,
    ! [F: nat > set_nat,A2: set_nat,Y2: set_nat,I: nat] :
      ( ( ord_less_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) ) @ Y2 )
     => ( ( member_nat @ I @ A2 )
       => ( ord_less_set_nat @ ( F @ I ) @ Y2 ) ) ) ).

% SUP_lessD
thf(fact_1065_SUP__lessD,axiom,
    ! [F: ( nat > nat ) > set_nat,A2: set_nat_nat,Y2: set_nat,I: nat > nat] :
      ( ( ord_less_set_nat @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) ) @ Y2 )
     => ( ( member_nat_nat @ I @ A2 )
       => ( ord_less_set_nat @ ( F @ I ) @ Y2 ) ) ) ).

% SUP_lessD
thf(fact_1066_SUP__lessD,axiom,
    ! [F: ( nat > nat > nat ) > set_nat,A2: set_nat_nat_nat,Y2: set_nat,I: nat > nat > nat] :
      ( ( ord_less_set_nat @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ A2 ) ) @ Y2 )
     => ( ( member_nat_nat_nat2 @ I @ A2 )
       => ( ord_less_set_nat @ ( F @ I ) @ Y2 ) ) ) ).

% SUP_lessD
thf(fact_1067_SUP__lessD,axiom,
    ! [F: ( ( nat > nat ) > nat ) > set_nat,A2: set_nat_nat_nat2,Y2: set_nat,I: ( nat > nat ) > nat] :
      ( ( ord_less_set_nat @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ F @ A2 ) ) @ Y2 )
     => ( ( member_nat_nat_nat @ I @ A2 )
       => ( ord_less_set_nat @ ( F @ I ) @ Y2 ) ) ) ).

% SUP_lessD
thf(fact_1068_SUP__lessD,axiom,
    ! [F: ( ( nat > nat ) > nat > nat ) > set_nat,A2: set_nat_nat_nat_nat3,Y2: set_nat,I: ( nat > nat ) > nat > nat] :
      ( ( ord_less_set_nat @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ F @ A2 ) ) @ Y2 )
     => ( ( member952132173341509300at_nat @ I @ A2 )
       => ( ord_less_set_nat @ ( F @ I ) @ Y2 ) ) ) ).

% SUP_lessD
thf(fact_1069_UN__extend__simps_I10_J,axiom,
    ! [B3: ( nat > nat ) > set_nat,F: ( nat > nat ) > nat > nat,A2: set_nat_nat] :
      ( ( comple7399068483239264473et_nat
        @ ( image_7432509271690132940et_nat
          @ ^ [A3: nat > nat] : ( B3 @ ( F @ A3 ) )
          @ A2 ) )
      = ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ B3 @ ( image_3205354838064109189at_nat @ F @ A2 ) ) ) ) ).

% UN_extend_simps(10)
thf(fact_1070_UN__extend__simps_I10_J,axiom,
    ! [B3: ( nat > nat ) > set_nat,F: nat > nat > nat,A2: set_nat] :
      ( ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [A3: nat] : ( B3 @ ( F @ A3 ) )
          @ A2 ) )
      = ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ B3 @ ( image_nat_nat_nat2 @ F @ A2 ) ) ) ) ).

% UN_extend_simps(10)
thf(fact_1071_UN__extend__simps_I10_J,axiom,
    ! [B3: set_nat > set_nat,F: nat > set_nat,A2: set_nat] :
      ( ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [A3: nat] : ( B3 @ ( F @ A3 ) )
          @ A2 ) )
      = ( comple7399068483239264473et_nat @ ( image_7916887816326733075et_nat @ B3 @ ( image_nat_set_nat @ F @ A2 ) ) ) ) ).

% UN_extend_simps(10)
thf(fact_1072_UN__extend__simps_I10_J,axiom,
    ! [B3: nat > set_nat,F: nat > nat,A2: set_nat] :
      ( ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [A3: nat] : ( B3 @ ( F @ A3 ) )
          @ A2 ) )
      = ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ ( image_nat_nat @ F @ A2 ) ) ) ) ).

% UN_extend_simps(10)
thf(fact_1073_image__UN,axiom,
    ! [F: nat > nat > nat,B3: nat > set_nat,A2: set_nat] :
      ( ( image_nat_nat_nat2 @ F @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) )
      = ( comple5448282615319421384at_nat
        @ ( image_7301343469591561292at_nat
          @ ^ [X3: nat] : ( image_nat_nat_nat2 @ F @ ( B3 @ X3 ) )
          @ A2 ) ) ) ).

% image_UN
thf(fact_1074_image__UN,axiom,
    ! [F: nat > set_nat,B3: nat > set_nat,A2: set_nat] :
      ( ( image_nat_set_nat @ F @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) )
      = ( comple548664676211718543et_nat
        @ ( image_2194112158459175443et_nat
          @ ^ [X3: nat] : ( image_nat_set_nat @ F @ ( B3 @ X3 ) )
          @ A2 ) ) ) ).

% image_UN
thf(fact_1075_image__UN,axiom,
    ! [F: nat > nat,B3: nat > set_nat,A2: set_nat] :
      ( ( image_nat_nat @ F @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) )
      = ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [X3: nat] : ( image_nat_nat @ F @ ( B3 @ X3 ) )
          @ A2 ) ) ) ).

% image_UN
thf(fact_1076_UNION__empty__conv_I2_J,axiom,
    ! [B3: nat > set_nat,A2: set_nat] :
      ( ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) )
        = bot_bot_set_nat )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ( B3 @ X3 )
              = bot_bot_set_nat ) ) ) ) ).

% UNION_empty_conv(2)
thf(fact_1077_UNION__empty__conv_I1_J,axiom,
    ! [B3: nat > set_nat,A2: set_nat] :
      ( ( bot_bot_set_nat
        = ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ( B3 @ X3 )
              = bot_bot_set_nat ) ) ) ) ).

% UNION_empty_conv(1)
thf(fact_1078_UN__empty,axiom,
    ! [B3: nat > set_nat_nat] :
      ( ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ B3 @ bot_bot_set_nat ) )
      = bot_bot_set_nat_nat ) ).

% UN_empty
thf(fact_1079_UN__empty,axiom,
    ! [B3: ( nat > nat ) > set_nat_nat] :
      ( ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ B3 @ bot_bot_set_nat_nat ) )
      = bot_bot_set_nat_nat ) ).

% UN_empty
thf(fact_1080_UN__empty,axiom,
    ! [B3: nat > set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ bot_bot_set_nat ) )
      = bot_bot_set_nat ) ).

% UN_empty
thf(fact_1081_UN__empty,axiom,
    ! [B3: ( nat > nat ) > set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ B3 @ bot_bot_set_nat_nat ) )
      = bot_bot_set_nat ) ).

% UN_empty
thf(fact_1082_UN__empty2,axiom,
    ! [A2: set_nat] :
      ( ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [X3: nat] : bot_bot_set_nat
          @ A2 ) )
      = bot_bot_set_nat ) ).

% UN_empty2
thf(fact_1083_UN__subset__iff,axiom,
    ! [A2: nat > set_nat,I5: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ A2 @ I5 ) ) @ B3 )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ I5 )
           => ( ord_less_eq_set_nat @ ( A2 @ X3 ) @ B3 ) ) ) ) ).

% UN_subset_iff
thf(fact_1084_UN__upper,axiom,
    ! [A: nat,A2: set_nat,B3: nat > set_nat_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ord_le9059583361652607317at_nat @ ( B3 @ A ) @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ B3 @ A2 ) ) ) ) ).

% UN_upper
thf(fact_1085_UN__upper,axiom,
    ! [A: nat > nat,A2: set_nat_nat,B3: ( nat > nat ) > set_nat_nat] :
      ( ( member_nat_nat @ A @ A2 )
     => ( ord_le9059583361652607317at_nat @ ( B3 @ A ) @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ B3 @ A2 ) ) ) ) ).

% UN_upper
thf(fact_1086_UN__upper,axiom,
    ! [A: nat > nat > nat,A2: set_nat_nat_nat,B3: ( nat > nat > nat ) > set_nat_nat] :
      ( ( member_nat_nat_nat2 @ A @ A2 )
     => ( ord_le9059583361652607317at_nat @ ( B3 @ A ) @ ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ B3 @ A2 ) ) ) ) ).

% UN_upper
thf(fact_1087_UN__upper,axiom,
    ! [A: ( nat > nat ) > nat,A2: set_nat_nat_nat2,B3: ( ( nat > nat ) > nat ) > set_nat_nat] :
      ( ( member_nat_nat_nat @ A @ A2 )
     => ( ord_le9059583361652607317at_nat @ ( B3 @ A ) @ ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ B3 @ A2 ) ) ) ) ).

% UN_upper
thf(fact_1088_UN__upper,axiom,
    ! [A: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,B3: ( ( nat > nat ) > nat > nat ) > set_nat_nat] :
      ( ( member952132173341509300at_nat @ A @ A2 )
     => ( ord_le9059583361652607317at_nat @ ( B3 @ A ) @ ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ B3 @ A2 ) ) ) ) ).

% UN_upper
thf(fact_1089_UN__upper,axiom,
    ! [A: nat,A2: set_nat,B3: nat > set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ord_less_eq_set_nat @ ( B3 @ A ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) ) ) ).

% UN_upper
thf(fact_1090_UN__upper,axiom,
    ! [A: nat > nat,A2: set_nat_nat,B3: ( nat > nat ) > set_nat] :
      ( ( member_nat_nat @ A @ A2 )
     => ( ord_less_eq_set_nat @ ( B3 @ A ) @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ B3 @ A2 ) ) ) ) ).

% UN_upper
thf(fact_1091_UN__upper,axiom,
    ! [A: nat > nat > nat,A2: set_nat_nat_nat,B3: ( nat > nat > nat ) > set_nat] :
      ( ( member_nat_nat_nat2 @ A @ A2 )
     => ( ord_less_eq_set_nat @ ( B3 @ A ) @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ B3 @ A2 ) ) ) ) ).

% UN_upper
thf(fact_1092_UN__upper,axiom,
    ! [A: ( nat > nat ) > nat,A2: set_nat_nat_nat2,B3: ( ( nat > nat ) > nat ) > set_nat] :
      ( ( member_nat_nat_nat @ A @ A2 )
     => ( ord_less_eq_set_nat @ ( B3 @ A ) @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ B3 @ A2 ) ) ) ) ).

% UN_upper
thf(fact_1093_UN__upper,axiom,
    ! [A: ( nat > nat ) > nat > nat,A2: set_nat_nat_nat_nat3,B3: ( ( nat > nat ) > nat > nat ) > set_nat] :
      ( ( member952132173341509300at_nat @ A @ A2 )
     => ( ord_less_eq_set_nat @ ( B3 @ A ) @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ B3 @ A2 ) ) ) ) ).

% UN_upper
thf(fact_1094_UN__least,axiom,
    ! [A2: set_nat,B3: nat > set_nat_nat,C4: set_nat_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( B3 @ X ) @ C4 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ B3 @ A2 ) ) @ C4 ) ) ).

% UN_least
thf(fact_1095_UN__least,axiom,
    ! [A2: set_nat_nat,B3: ( nat > nat ) > set_nat_nat,C4: set_nat_nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( B3 @ X ) @ C4 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ B3 @ A2 ) ) @ C4 ) ) ).

% UN_least
thf(fact_1096_UN__least,axiom,
    ! [A2: set_nat_nat_nat,B3: ( nat > nat > nat ) > set_nat_nat,C4: set_nat_nat] :
      ( ! [X: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( B3 @ X ) @ C4 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ B3 @ A2 ) ) @ C4 ) ) ).

% UN_least
thf(fact_1097_UN__least,axiom,
    ! [A2: set_nat_nat_nat2,B3: ( ( nat > nat ) > nat ) > set_nat_nat,C4: set_nat_nat] :
      ( ! [X: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( B3 @ X ) @ C4 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ B3 @ A2 ) ) @ C4 ) ) ).

% UN_least
thf(fact_1098_UN__least,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: ( ( nat > nat ) > nat > nat ) > set_nat_nat,C4: set_nat_nat] :
      ( ! [X: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ X @ A2 )
         => ( ord_le9059583361652607317at_nat @ ( B3 @ X ) @ C4 ) )
     => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ B3 @ A2 ) ) @ C4 ) ) ).

% UN_least
thf(fact_1099_UN__least,axiom,
    ! [A2: set_nat,B3: nat > set_nat,C4: set_nat] :
      ( ! [X: nat] :
          ( ( member_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ ( B3 @ X ) @ C4 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ A2 ) ) @ C4 ) ) ).

% UN_least
thf(fact_1100_UN__least,axiom,
    ! [A2: set_nat_nat,B3: ( nat > nat ) > set_nat,C4: set_nat] :
      ( ! [X: nat > nat] :
          ( ( member_nat_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ ( B3 @ X ) @ C4 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ B3 @ A2 ) ) @ C4 ) ) ).

% UN_least
thf(fact_1101_UN__least,axiom,
    ! [A2: set_nat_nat_nat,B3: ( nat > nat > nat ) > set_nat,C4: set_nat] :
      ( ! [X: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ X @ A2 )
         => ( ord_less_eq_set_nat @ ( B3 @ X ) @ C4 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ B3 @ A2 ) ) @ C4 ) ) ).

% UN_least
thf(fact_1102_UN__least,axiom,
    ! [A2: set_nat_nat_nat2,B3: ( ( nat > nat ) > nat ) > set_nat,C4: set_nat] :
      ( ! [X: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ ( B3 @ X ) @ C4 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ B3 @ A2 ) ) @ C4 ) ) ).

% UN_least
thf(fact_1103_UN__least,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: ( ( nat > nat ) > nat > nat ) > set_nat,C4: set_nat] :
      ( ! [X: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ ( B3 @ X ) @ C4 ) )
     => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ B3 @ A2 ) ) @ C4 ) ) ).

% UN_least
thf(fact_1104_UN__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > set_nat_nat,G: nat > set_nat_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ A2 ) ) @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ G @ B3 ) ) ) ) ) ).

% UN_mono
thf(fact_1105_UN__mono,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat_nat,G: ( nat > nat > nat ) > set_nat_nat] :
      ( ( ord_le3211623285424100676at_nat @ A2 @ B3 )
     => ( ! [X: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ F @ A2 ) ) @ ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ G @ B3 ) ) ) ) ) ).

% UN_mono
thf(fact_1106_UN__mono,axiom,
    ! [A2: set_nat_nat_nat2,B3: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat_nat,G: ( ( nat > nat ) > nat ) > set_nat_nat] :
      ( ( ord_le5934964663421696068at_nat @ A2 @ B3 )
     => ( ! [X: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ F @ A2 ) ) @ ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ G @ B3 ) ) ) ) ) ).

% UN_mono
thf(fact_1107_UN__mono,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3,F: ( ( nat > nat ) > nat > nat ) > set_nat_nat,G: ( ( nat > nat ) > nat > nat ) > set_nat_nat] :
      ( ( ord_le5260717879541182899at_nat @ A2 @ B3 )
     => ( ! [X: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ F @ A2 ) ) @ ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ G @ B3 ) ) ) ) ) ).

% UN_mono
thf(fact_1108_UN__mono,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,F: ( nat > nat ) > set_nat_nat,G: ( nat > nat ) > set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ! [X: nat > nat] :
            ( ( member_nat_nat @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ F @ A2 ) ) @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ G @ B3 ) ) ) ) ) ).

% UN_mono
thf(fact_1109_UN__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > set_nat,G: nat > set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ B3 ) ) ) ) ) ).

% UN_mono
thf(fact_1110_UN__mono,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat,G: ( nat > nat > nat ) > set_nat] :
      ( ( ord_le3211623285424100676at_nat @ A2 @ B3 )
     => ( ! [X: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ G @ B3 ) ) ) ) ) ).

% UN_mono
thf(fact_1111_UN__mono,axiom,
    ! [A2: set_nat_nat_nat2,B3: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat,G: ( ( nat > nat ) > nat ) > set_nat] :
      ( ( ord_le5934964663421696068at_nat @ A2 @ B3 )
     => ( ! [X: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ G @ B3 ) ) ) ) ) ).

% UN_mono
thf(fact_1112_UN__mono,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3,F: ( ( nat > nat ) > nat > nat ) > set_nat,G: ( ( nat > nat ) > nat > nat ) > set_nat] :
      ( ( ord_le5260717879541182899at_nat @ A2 @ B3 )
     => ( ! [X: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ G @ B3 ) ) ) ) ) ).

% UN_mono
thf(fact_1113_UN__mono,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,F: ( nat > nat ) > set_nat,G: ( nat > nat ) > set_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ! [X: nat > nat] :
            ( ( member_nat_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ G @ B3 ) ) ) ) ) ).

% UN_mono
thf(fact_1114_UN__extend__simps_I6_J,axiom,
    ! [A2: nat > set_nat,C4: set_nat,B3: set_nat] :
      ( ( minus_minus_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ A2 @ C4 ) ) @ B3 )
      = ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [X3: nat] : ( minus_minus_set_nat @ ( A2 @ X3 ) @ B3 )
          @ C4 ) ) ) ).

% UN_extend_simps(6)
thf(fact_1115_SUP__eq__iff,axiom,
    ! [I5: set_nat_nat_nat,C: set_nat_nat,F: ( nat > nat > nat ) > set_nat_nat] :
      ( ( I5 != bot_bo7445843802507891576at_nat )
     => ( ! [I3: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ I3 @ I5 )
           => ( ord_le9059583361652607317at_nat @ C @ ( F @ I3 ) ) )
       => ( ( ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ F @ I5 ) )
            = C )
          = ( ! [X3: nat > nat > nat] :
                ( ( member_nat_nat_nat2 @ X3 @ I5 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1116_SUP__eq__iff,axiom,
    ! [I5: set_nat_nat_nat2,C: set_nat_nat,F: ( ( nat > nat ) > nat ) > set_nat_nat] :
      ( ( I5 != bot_bo945813143650711160at_nat )
     => ( ! [I3: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ I3 @ I5 )
           => ( ord_le9059583361652607317at_nat @ C @ ( F @ I3 ) ) )
       => ( ( ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ F @ I5 ) )
            = C )
          = ( ! [X3: ( nat > nat ) > nat] :
                ( ( member_nat_nat_nat @ X3 @ I5 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1117_SUP__eq__iff,axiom,
    ! [I5: set_nat_nat_nat_nat3,C: set_nat_nat,F: ( ( nat > nat ) > nat > nat ) > set_nat_nat] :
      ( ( I5 != bot_bo3919185967433191911at_nat )
     => ( ! [I3: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ I3 @ I5 )
           => ( ord_le9059583361652607317at_nat @ C @ ( F @ I3 ) ) )
       => ( ( ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ F @ I5 ) )
            = C )
          = ( ! [X3: ( nat > nat ) > nat > nat] :
                ( ( member952132173341509300at_nat @ X3 @ I5 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1118_SUP__eq__iff,axiom,
    ! [I5: set_nat,C: set_nat_nat,F: nat > set_nat_nat] :
      ( ( I5 != bot_bot_set_nat )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ord_le9059583361652607317at_nat @ C @ ( F @ I3 ) ) )
       => ( ( ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ I5 ) )
            = C )
          = ( ! [X3: nat] :
                ( ( member_nat @ X3 @ I5 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1119_SUP__eq__iff,axiom,
    ! [I5: set_nat_nat,C: set_nat_nat,F: ( nat > nat ) > set_nat_nat] :
      ( ( I5 != bot_bot_set_nat_nat )
     => ( ! [I3: nat > nat] :
            ( ( member_nat_nat @ I3 @ I5 )
           => ( ord_le9059583361652607317at_nat @ C @ ( F @ I3 ) ) )
       => ( ( ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ F @ I5 ) )
            = C )
          = ( ! [X3: nat > nat] :
                ( ( member_nat_nat @ X3 @ I5 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1120_SUP__eq__iff,axiom,
    ! [I5: set_nat_nat_nat,C: set_nat,F: ( nat > nat > nat ) > set_nat] :
      ( ( I5 != bot_bo7445843802507891576at_nat )
     => ( ! [I3: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ I3 @ I5 )
           => ( ord_less_eq_set_nat @ C @ ( F @ I3 ) ) )
       => ( ( ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ I5 ) )
            = C )
          = ( ! [X3: nat > nat > nat] :
                ( ( member_nat_nat_nat2 @ X3 @ I5 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1121_SUP__eq__iff,axiom,
    ! [I5: set_nat_nat_nat2,C: set_nat,F: ( ( nat > nat ) > nat ) > set_nat] :
      ( ( I5 != bot_bo945813143650711160at_nat )
     => ( ! [I3: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ I3 @ I5 )
           => ( ord_less_eq_set_nat @ C @ ( F @ I3 ) ) )
       => ( ( ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ F @ I5 ) )
            = C )
          = ( ! [X3: ( nat > nat ) > nat] :
                ( ( member_nat_nat_nat @ X3 @ I5 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1122_SUP__eq__iff,axiom,
    ! [I5: set_nat_nat_nat_nat3,C: set_nat,F: ( ( nat > nat ) > nat > nat ) > set_nat] :
      ( ( I5 != bot_bo3919185967433191911at_nat )
     => ( ! [I3: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ I3 @ I5 )
           => ( ord_less_eq_set_nat @ C @ ( F @ I3 ) ) )
       => ( ( ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ F @ I5 ) )
            = C )
          = ( ! [X3: ( nat > nat ) > nat > nat] :
                ( ( member952132173341509300at_nat @ X3 @ I5 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1123_SUP__eq__iff,axiom,
    ! [I5: set_nat,C: set_nat,F: nat > set_nat] :
      ( ( I5 != bot_bot_set_nat )
     => ( ! [I3: nat] :
            ( ( member_nat @ I3 @ I5 )
           => ( ord_less_eq_set_nat @ C @ ( F @ I3 ) ) )
       => ( ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ I5 ) )
            = C )
          = ( ! [X3: nat] :
                ( ( member_nat @ X3 @ I5 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1124_SUP__eq__iff,axiom,
    ! [I5: set_nat_nat,C: set_nat,F: ( nat > nat ) > set_nat] :
      ( ( I5 != bot_bot_set_nat_nat )
     => ( ! [I3: nat > nat] :
            ( ( member_nat_nat @ I3 @ I5 )
           => ( ord_less_eq_set_nat @ C @ ( F @ I3 ) ) )
       => ( ( ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ I5 ) )
            = C )
          = ( ! [X3: nat > nat] :
                ( ( member_nat_nat @ X3 @ I5 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1125_cSUP__least,axiom,
    ! [A2: set_nat,F: nat > nat,M3: nat] :
      ( ( A2 != bot_bot_set_nat )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ( ord_less_eq_nat @ ( F @ X ) @ M3 ) )
       => ( ord_less_eq_nat @ ( complete_Sup_Sup_nat @ ( image_nat_nat @ F @ A2 ) ) @ M3 ) ) ) ).

% cSUP_least
thf(fact_1126_cSUP__least,axiom,
    ! [A2: set_nat,F: nat > set_nat,M3: set_nat] :
      ( ( A2 != bot_bot_set_nat )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ M3 ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) ) @ M3 ) ) ) ).

% cSUP_least
thf(fact_1127_cSUP__least,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > nat,M3: nat] :
      ( ( A2 != bot_bot_set_nat_nat )
     => ( ! [X: nat > nat] :
            ( ( member_nat_nat @ X @ A2 )
           => ( ord_less_eq_nat @ ( F @ X ) @ M3 ) )
       => ( ord_less_eq_nat @ ( complete_Sup_Sup_nat @ ( image_nat_nat_nat @ F @ A2 ) ) @ M3 ) ) ) ).

% cSUP_least
thf(fact_1128_cSUP__least,axiom,
    ! [A2: set_nat,F: nat > set_nat_nat,M3: set_nat_nat] :
      ( ( A2 != bot_bot_set_nat )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ M3 ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ A2 ) ) @ M3 ) ) ) ).

% cSUP_least
thf(fact_1129_cSUP__least,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > set_nat,M3: set_nat] :
      ( ( A2 != bot_bot_set_nat_nat )
     => ( ! [X: nat > nat] :
            ( ( member_nat_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ M3 ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) ) @ M3 ) ) ) ).

% cSUP_least
thf(fact_1130_cSUP__least,axiom,
    ! [A2: set_nat_nat_nat,F: ( nat > nat > nat ) > nat,M3: nat] :
      ( ( A2 != bot_bo7445843802507891576at_nat )
     => ( ! [X: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X @ A2 )
           => ( ord_less_eq_nat @ ( F @ X ) @ M3 ) )
       => ( ord_less_eq_nat @ ( complete_Sup_Sup_nat @ ( image_913610194320715013at_nat @ F @ A2 ) ) @ M3 ) ) ) ).

% cSUP_least
thf(fact_1131_cSUP__least,axiom,
    ! [A2: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > nat,M3: nat] :
      ( ( A2 != bot_bo945813143650711160at_nat )
     => ( ! [X: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X @ A2 )
           => ( ord_less_eq_nat @ ( F @ X ) @ M3 ) )
       => ( ord_less_eq_nat @ ( complete_Sup_Sup_nat @ ( image_7809927846809980933at_nat @ F @ A2 ) ) @ M3 ) ) ) ).

% cSUP_least
thf(fact_1132_cSUP__least,axiom,
    ! [A2: set_nat_nat,F: ( nat > nat ) > set_nat_nat,M3: set_nat_nat] :
      ( ( A2 != bot_bot_set_nat_nat )
     => ( ! [X: nat > nat] :
            ( ( member_nat_nat @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ M3 ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ F @ A2 ) ) @ M3 ) ) ) ).

% cSUP_least
thf(fact_1133_cSUP__least,axiom,
    ! [A2: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat,M3: set_nat] :
      ( ( A2 != bot_bo7445843802507891576at_nat )
     => ( ! [X: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ M3 ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ A2 ) ) @ M3 ) ) ) ).

% cSUP_least
thf(fact_1134_cSUP__least,axiom,
    ! [A2: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat,M3: set_nat] :
      ( ( A2 != bot_bo945813143650711160at_nat )
     => ( ! [X: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ M3 ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ F @ A2 ) ) @ M3 ) ) ) ).

% cSUP_least
thf(fact_1135_SUP__subset__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > set_nat_nat,G: nat > set_nat_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ A2 ) ) @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ G @ B3 ) ) ) ) ) ).

% SUP_subset_mono
thf(fact_1136_SUP__subset__mono,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat_nat,G: ( nat > nat > nat ) > set_nat_nat] :
      ( ( ord_le3211623285424100676at_nat @ A2 @ B3 )
     => ( ! [X: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ F @ A2 ) ) @ ( comple5448282615319421384at_nat @ ( image_7416711816588782250at_nat @ G @ B3 ) ) ) ) ) ).

% SUP_subset_mono
thf(fact_1137_SUP__subset__mono,axiom,
    ! [A2: set_nat_nat_nat2,B3: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat_nat,G: ( ( nat > nat ) > nat ) > set_nat_nat] :
      ( ( ord_le5934964663421696068at_nat @ A2 @ B3 )
     => ( ! [X: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ F @ A2 ) ) @ ( comple5448282615319421384at_nat @ ( image_2070201431993601450at_nat @ G @ B3 ) ) ) ) ) ).

% SUP_subset_mono
thf(fact_1138_SUP__subset__mono,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3,F: ( ( nat > nat ) > nat > nat ) > set_nat_nat,G: ( ( nat > nat ) > nat > nat ) > set_nat_nat] :
      ( ( ord_le5260717879541182899at_nat @ A2 @ B3 )
     => ( ! [X: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ F @ A2 ) ) @ ( comple5448282615319421384at_nat @ ( image_6952571752803954585at_nat @ G @ B3 ) ) ) ) ) ).

% SUP_subset_mono
thf(fact_1139_SUP__subset__mono,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,F: ( nat > nat ) > set_nat_nat,G: ( nat > nat ) > set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ! [X: nat > nat] :
            ( ( member_nat_nat @ X @ A2 )
           => ( ord_le9059583361652607317at_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ F @ A2 ) ) @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ G @ B3 ) ) ) ) ) ).

% SUP_subset_mono
thf(fact_1140_SUP__subset__mono,axiom,
    ! [A2: set_nat,B3: set_nat,F: nat > set_nat,G: nat > set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B3 )
     => ( ! [X: nat] :
            ( ( member_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ B3 ) ) ) ) ) ).

% SUP_subset_mono
thf(fact_1141_SUP__subset__mono,axiom,
    ! [A2: set_nat_nat_nat,B3: set_nat_nat_nat,F: ( nat > nat > nat ) > set_nat,G: ( nat > nat > nat ) > set_nat] :
      ( ( ord_le3211623285424100676at_nat @ A2 @ B3 )
     => ( ! [X: nat > nat > nat] :
            ( ( member_nat_nat_nat2 @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_6782468043973903547et_nat @ G @ B3 ) ) ) ) ) ).

% SUP_subset_mono
thf(fact_1142_SUP__subset__mono,axiom,
    ! [A2: set_nat_nat_nat2,B3: set_nat_nat_nat2,F: ( ( nat > nat ) > nat ) > set_nat,G: ( ( nat > nat ) > nat ) > set_nat] :
      ( ( ord_le5934964663421696068at_nat @ A2 @ B3 )
     => ( ! [X: ( nat > nat ) > nat] :
            ( ( member_nat_nat_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_7565631143590340539et_nat @ G @ B3 ) ) ) ) ) ).

% SUP_subset_mono
thf(fact_1143_SUP__subset__mono,axiom,
    ! [A2: set_nat_nat_nat_nat3,B3: set_nat_nat_nat_nat3,F: ( ( nat > nat ) > nat > nat ) > set_nat,G: ( ( nat > nat ) > nat > nat ) > set_nat] :
      ( ( ord_le5260717879541182899at_nat @ A2 @ B3 )
     => ( ! [X: ( nat > nat ) > nat > nat] :
            ( ( member952132173341509300at_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_1946857609996606506et_nat @ G @ B3 ) ) ) ) ) ).

% SUP_subset_mono
thf(fact_1144_SUP__subset__mono,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,F: ( nat > nat ) > set_nat,G: ( nat > nat ) > set_nat] :
      ( ( ord_le9059583361652607317at_nat @ A2 @ B3 )
     => ( ! [X: nat > nat] :
            ( ( member_nat_nat @ X @ A2 )
           => ( ord_less_eq_set_nat @ ( F @ X ) @ ( G @ X ) ) )
       => ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ G @ B3 ) ) ) ) ) ).

% SUP_subset_mono
thf(fact_1145_SUP__empty,axiom,
    ! [F: nat > set_nat_nat] :
      ( ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ F @ bot_bot_set_nat ) )
      = bot_bot_set_nat_nat ) ).

% SUP_empty
thf(fact_1146_SUP__empty,axiom,
    ! [F: ( nat > nat ) > set_nat_nat] :
      ( ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ F @ bot_bot_set_nat_nat ) )
      = bot_bot_set_nat_nat ) ).

% SUP_empty
thf(fact_1147_SUP__empty,axiom,
    ! [F: nat > set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ bot_bot_set_nat ) )
      = bot_bot_set_nat ) ).

% SUP_empty
thf(fact_1148_SUP__empty,axiom,
    ! [F: ( nat > nat ) > set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ F @ bot_bot_set_nat_nat ) )
      = bot_bot_set_nat ) ).

% SUP_empty
thf(fact_1149_SUP__constant,axiom,
    ! [A2: set_nat,C: set_nat_nat] :
      ( ( ( A2 = bot_bot_set_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_7301343469591561292at_nat
              @ ^ [Y3: nat] : C
              @ A2 ) )
          = bot_bot_set_nat_nat ) )
      & ( ( A2 != bot_bot_set_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_7301343469591561292at_nat
              @ ^ [Y3: nat] : C
              @ A2 ) )
          = C ) ) ) ).

% SUP_constant
thf(fact_1150_SUP__constant,axiom,
    ! [A2: set_nat_nat,C: set_nat_nat] :
      ( ( ( A2 = bot_bot_set_nat_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_6905811865970898491at_nat
              @ ^ [Y3: nat > nat] : C
              @ A2 ) )
          = bot_bot_set_nat_nat ) )
      & ( ( A2 != bot_bot_set_nat_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_6905811865970898491at_nat
              @ ^ [Y3: nat > nat] : C
              @ A2 ) )
          = C ) ) ) ).

% SUP_constant
thf(fact_1151_SUP__constant,axiom,
    ! [A2: set_nat,C: set_nat] :
      ( ( ( A2 = bot_bot_set_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_nat_set_nat
              @ ^ [Y3: nat] : C
              @ A2 ) )
          = bot_bot_set_nat ) )
      & ( ( A2 != bot_bot_set_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_nat_set_nat
              @ ^ [Y3: nat] : C
              @ A2 ) )
          = C ) ) ) ).

% SUP_constant
thf(fact_1152_SUP__constant,axiom,
    ! [A2: set_nat_nat,C: set_nat] :
      ( ( ( A2 = bot_bot_set_nat_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_7432509271690132940et_nat
              @ ^ [Y3: nat > nat] : C
              @ A2 ) )
          = bot_bot_set_nat ) )
      & ( ( A2 != bot_bot_set_nat_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_7432509271690132940et_nat
              @ ^ [Y3: nat > nat] : C
              @ A2 ) )
          = C ) ) ) ).

% SUP_constant
thf(fact_1153_SUP__UNION,axiom,
    ! [F: nat > set_nat,G: nat > set_nat,A2: set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ G @ A2 ) ) ) )
      = ( comple7399068483239264473et_nat
        @ ( image_nat_set_nat
          @ ^ [Y3: nat] : ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ F @ ( G @ Y3 ) ) )
          @ A2 ) ) ) ).

% SUP_UNION
thf(fact_1154_dim1__subspace__elims_I2_J,axiom,
    ! [B3: nat > set_nat,N: nat,F: nat > nat,T: nat,S5: ( nat > nat ) > nat > nat] :
      ( ( disjoi6798895846410478970at_nat @ B3 @ ( set_ord_atMost_nat @ one_one_nat ) )
     => ( ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ ( set_ord_atMost_nat @ one_one_nat ) ) )
          = ( set_ord_lessThan_nat @ N ) )
       => ( ~ ( member_set_nat @ bot_bot_set_nat @ ( image_nat_set_nat @ B3 @ ( set_ord_lessThan_nat @ one_one_nat ) ) )
         => ( ( member_nat_nat @ F
              @ ( piE_nat_nat @ ( B3 @ one_one_nat )
                @ ^ [I2: nat] : ( set_ord_lessThan_nat @ T ) ) )
           => ( ( member952132173341509300at_nat @ S5
                @ ( piE_nat_nat_nat_nat3 @ ( hales_cube @ one_one_nat @ T )
                  @ ^ [I2: nat > nat] : ( hales_cube @ N @ T ) ) )
             => ( ! [X: nat > nat] :
                    ( ( member_nat_nat @ X @ ( hales_cube @ one_one_nat @ T ) )
                   => ( ! [Xa2: nat] :
                          ( ( member_nat @ Xa2 @ ( B3 @ one_one_nat ) )
                         => ( ( S5 @ X @ Xa2 )
                            = ( F @ Xa2 ) ) )
                      & ! [J: nat] :
                          ( ( ord_less_nat @ J @ one_one_nat )
                         => ! [Xa2: nat] :
                              ( ( member_nat @ Xa2 @ ( B3 @ J ) )
                             => ( ( S5 @ X @ Xa2 )
                                = ( X @ J ) ) ) ) ) )
               => ( ( inf_inf_set_nat @ ( B3 @ zero_zero_nat ) @ ( B3 @ one_one_nat ) )
                  = bot_bot_set_nat ) ) ) ) ) ) ) ).

% dim1_subspace_elims(2)
thf(fact_1155_dim1__subspace__elims_I1_J,axiom,
    ! [B3: nat > set_nat,N: nat,F: nat > nat,T: nat,S5: ( nat > nat ) > nat > nat] :
      ( ( disjoi6798895846410478970at_nat @ B3 @ ( set_ord_atMost_nat @ one_one_nat ) )
     => ( ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ ( set_ord_atMost_nat @ one_one_nat ) ) )
          = ( set_ord_lessThan_nat @ N ) )
       => ( ~ ( member_set_nat @ bot_bot_set_nat @ ( image_nat_set_nat @ B3 @ ( set_ord_lessThan_nat @ one_one_nat ) ) )
         => ( ( member_nat_nat @ F
              @ ( piE_nat_nat @ ( B3 @ one_one_nat )
                @ ^ [I2: nat] : ( set_ord_lessThan_nat @ T ) ) )
           => ( ( member952132173341509300at_nat @ S5
                @ ( piE_nat_nat_nat_nat3 @ ( hales_cube @ one_one_nat @ T )
                  @ ^ [I2: nat > nat] : ( hales_cube @ N @ T ) ) )
             => ( ! [X: nat > nat] :
                    ( ( member_nat_nat @ X @ ( hales_cube @ one_one_nat @ T ) )
                   => ( ! [Xa2: nat] :
                          ( ( member_nat @ Xa2 @ ( B3 @ one_one_nat ) )
                         => ( ( S5 @ X @ Xa2 )
                            = ( F @ Xa2 ) ) )
                      & ! [J: nat] :
                          ( ( ord_less_nat @ J @ one_one_nat )
                         => ! [Xa2: nat] :
                              ( ( member_nat @ Xa2 @ ( B3 @ J ) )
                             => ( ( S5 @ X @ Xa2 )
                                = ( X @ J ) ) ) ) ) )
               => ( ( sup_sup_set_nat @ ( B3 @ zero_zero_nat ) @ ( B3 @ one_one_nat ) )
                  = ( set_ord_lessThan_nat @ N ) ) ) ) ) ) ) ) ).

% dim1_subspace_elims(1)
thf(fact_1156_inf_Obounded__iff,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ ( inf_inf_set_nat @ B @ C ) )
      = ( ( ord_less_eq_set_nat @ A @ B )
        & ( ord_less_eq_set_nat @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_1157_inf_Obounded__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
      = ( ( ord_less_eq_nat @ A @ B )
        & ( ord_less_eq_nat @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_1158_inf_Obounded__iff,axiom,
    ! [A: set_nat_nat,B: set_nat_nat,C: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ ( inf_inf_set_nat_nat @ B @ C ) )
      = ( ( ord_le9059583361652607317at_nat @ A @ B )
        & ( ord_le9059583361652607317at_nat @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_1159_le__inf__iff,axiom,
    ! [X2: set_nat,Y2: set_nat,Z2: set_nat] :
      ( ( ord_less_eq_set_nat @ X2 @ ( inf_inf_set_nat @ Y2 @ Z2 ) )
      = ( ( ord_less_eq_set_nat @ X2 @ Y2 )
        & ( ord_less_eq_set_nat @ X2 @ Z2 ) ) ) ).

% le_inf_iff
thf(fact_1160_le__inf__iff,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X2 @ ( inf_inf_nat @ Y2 @ Z2 ) )
      = ( ( ord_less_eq_nat @ X2 @ Y2 )
        & ( ord_less_eq_nat @ X2 @ Z2 ) ) ) ).

% le_inf_iff
thf(fact_1161_le__inf__iff,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat,Z2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ X2 @ ( inf_inf_set_nat_nat @ Y2 @ Z2 ) )
      = ( ( ord_le9059583361652607317at_nat @ X2 @ Y2 )
        & ( ord_le9059583361652607317at_nat @ X2 @ Z2 ) ) ) ).

% le_inf_iff
thf(fact_1162_sup_Obounded__iff,axiom,
    ! [B: set_nat,C: set_nat,A: set_nat] :
      ( ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_set_nat @ B @ A )
        & ( ord_less_eq_set_nat @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_1163_sup_Obounded__iff,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( ord_less_eq_nat @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_1164_sup_Obounded__iff,axiom,
    ! [B: set_nat_nat,C: set_nat_nat,A: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ ( sup_sup_set_nat_nat @ B @ C ) @ A )
      = ( ( ord_le9059583361652607317at_nat @ B @ A )
        & ( ord_le9059583361652607317at_nat @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_1165_le__sup__iff,axiom,
    ! [X2: set_nat,Y2: set_nat,Z2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ X2 @ Y2 ) @ Z2 )
      = ( ( ord_less_eq_set_nat @ X2 @ Z2 )
        & ( ord_less_eq_set_nat @ Y2 @ Z2 ) ) ) ).

% le_sup_iff
thf(fact_1166_le__sup__iff,axiom,
    ! [X2: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ X2 @ Y2 ) @ Z2 )
      = ( ( ord_less_eq_nat @ X2 @ Z2 )
        & ( ord_less_eq_nat @ Y2 @ Z2 ) ) ) ).

% le_sup_iff
thf(fact_1167_le__sup__iff,axiom,
    ! [X2: set_nat_nat,Y2: set_nat_nat,Z2: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ ( sup_sup_set_nat_nat @ X2 @ Y2 ) @ Z2 )
      = ( ( ord_le9059583361652607317at_nat @ X2 @ Z2 )
        & ( ord_le9059583361652607317at_nat @ Y2 @ Z2 ) ) ) ).

% le_sup_iff
thf(fact_1168_Int__subset__iff,axiom,
    ! [C4: set_nat,A2: set_nat,B3: set_nat] :
      ( ( ord_less_eq_set_nat @ C4 @ ( inf_inf_set_nat @ A2 @ B3 ) )
      = ( ( ord_less_eq_set_nat @ C4 @ A2 )
        & ( ord_less_eq_set_nat @ C4 @ B3 ) ) ) ).

% Int_subset_iff
thf(fact_1169_Int__subset__iff,axiom,
    ! [C4: set_nat_nat,A2: set_nat_nat,B3: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ C4 @ ( inf_inf_set_nat_nat @ A2 @ B3 ) )
      = ( ( ord_le9059583361652607317at_nat @ C4 @ A2 )
        & ( ord_le9059583361652607317at_nat @ C4 @ B3 ) ) ) ).

% Int_subset_iff
thf(fact_1170_Un__subset__iff,axiom,
    ! [A2: set_nat,B3: set_nat,C4: set_nat] :
      ( ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ A2 @ B3 ) @ C4 )
      = ( ( ord_less_eq_set_nat @ A2 @ C4 )
        & ( ord_less_eq_set_nat @ B3 @ C4 ) ) ) ).

% Un_subset_iff
thf(fact_1171_Un__subset__iff,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,C4: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ ( sup_sup_set_nat_nat @ A2 @ B3 ) @ C4 )
      = ( ( ord_le9059583361652607317at_nat @ A2 @ C4 )
        & ( ord_le9059583361652607317at_nat @ B3 @ C4 ) ) ) ).

% Un_subset_iff
thf(fact_1172_Un__Diff__cancel,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( sup_sup_set_nat @ A2 @ ( minus_minus_set_nat @ B3 @ A2 ) )
      = ( sup_sup_set_nat @ A2 @ B3 ) ) ).

% Un_Diff_cancel
thf(fact_1173_Un__Diff__cancel2,axiom,
    ! [B3: set_nat,A2: set_nat] :
      ( ( sup_sup_set_nat @ ( minus_minus_set_nat @ B3 @ A2 ) @ A2 )
      = ( sup_sup_set_nat @ B3 @ A2 ) ) ).

% Un_Diff_cancel2
thf(fact_1174_FuncSet_Orestrict__restrict,axiom,
    ! [F: ( nat > nat ) > nat > nat,A2: set_nat_nat,B3: set_nat_nat] :
      ( ( restri4446420529079022766at_nat @ ( restri4446420529079022766at_nat @ F @ A2 ) @ B3 )
      = ( restri4446420529079022766at_nat @ F @ ( inf_inf_set_nat_nat @ A2 @ B3 ) ) ) ).

% FuncSet.restrict_restrict
thf(fact_1175_FuncSet_Orestrict__restrict,axiom,
    ! [F: ( nat > nat ) > nat,A2: set_nat_nat,B3: set_nat_nat] :
      ( ( restrict_nat_nat_nat @ ( restrict_nat_nat_nat @ F @ A2 ) @ B3 )
      = ( restrict_nat_nat_nat @ F @ ( inf_inf_set_nat_nat @ A2 @ B3 ) ) ) ).

% FuncSet.restrict_restrict
thf(fact_1176_FuncSet_Orestrict__restrict,axiom,
    ! [F: nat > nat,A2: set_nat,B3: set_nat] :
      ( ( restrict_nat_nat @ ( restrict_nat_nat @ F @ A2 ) @ B3 )
      = ( restrict_nat_nat @ F @ ( inf_inf_set_nat @ A2 @ B3 ) ) ) ).

% FuncSet.restrict_restrict
thf(fact_1177_FuncSet_Orestrict__restrict,axiom,
    ! [F: nat > nat > nat,A2: set_nat,B3: set_nat] :
      ( ( restrict_nat_nat_nat2 @ ( restrict_nat_nat_nat2 @ F @ A2 ) @ B3 )
      = ( restrict_nat_nat_nat2 @ F @ ( inf_inf_set_nat @ A2 @ B3 ) ) ) ).

% FuncSet.restrict_restrict
thf(fact_1178_B__props,axiom,
    ( ( ( sup_sup_set_nat @ ( b @ zero_zero_nat ) @ ( b @ one_one_nat ) )
      = ( set_ord_lessThan_nat @ n ) )
    & ( ( inf_inf_set_nat @ ( b @ zero_zero_nat ) @ ( b @ one_one_nat ) )
      = bot_bot_set_nat ) ) ).

% B_props
thf(fact_1179_Diff__disjoint,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( inf_inf_set_nat @ A2 @ ( minus_minus_set_nat @ B3 @ A2 ) )
      = bot_bot_set_nat ) ).

% Diff_disjoint
thf(fact_1180_Diff__disjoint,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat] :
      ( ( inf_inf_set_nat_nat @ A2 @ ( minus_8121590178497047118at_nat @ B3 @ A2 ) )
      = bot_bot_set_nat_nat ) ).

% Diff_disjoint
thf(fact_1181_disjoint__family__onI,axiom,
    ! [S5: set_nat_nat,A2: ( nat > nat ) > set_nat] :
      ( ! [M4: nat > nat,N2: nat > nat] :
          ( ( member_nat_nat @ M4 @ S5 )
         => ( ( member_nat_nat @ N2 @ S5 )
           => ( ( M4 != N2 )
             => ( ( inf_inf_set_nat @ ( A2 @ M4 ) @ ( A2 @ N2 ) )
                = bot_bot_set_nat ) ) ) )
     => ( disjoi831272138528337257at_nat @ A2 @ S5 ) ) ).

% disjoint_family_onI
thf(fact_1182_disjoint__family__onI,axiom,
    ! [S5: set_nat_nat_nat,A2: ( nat > nat > nat ) > set_nat] :
      ( ! [M4: nat > nat > nat,N2: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ M4 @ S5 )
         => ( ( member_nat_nat_nat2 @ N2 @ S5 )
           => ( ( M4 != N2 )
             => ( ( inf_inf_set_nat @ ( A2 @ M4 ) @ ( A2 @ N2 ) )
                = bot_bot_set_nat ) ) ) )
     => ( disjoi8792851549502830552at_nat @ A2 @ S5 ) ) ).

% disjoint_family_onI
thf(fact_1183_disjoint__family__onI,axiom,
    ! [S5: set_nat_nat_nat2,A2: ( ( nat > nat ) > nat ) > set_nat] :
      ( ! [M4: ( nat > nat ) > nat,N2: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ M4 @ S5 )
         => ( ( member_nat_nat_nat @ N2 @ S5 )
           => ( ( M4 != N2 )
             => ( ( inf_inf_set_nat @ ( A2 @ M4 ) @ ( A2 @ N2 ) )
                = bot_bot_set_nat ) ) ) )
     => ( disjoi6465797165137320664at_nat @ A2 @ S5 ) ) ).

% disjoint_family_onI
thf(fact_1184_disjoint__family__onI,axiom,
    ! [S5: set_nat_nat_nat_nat3,A2: ( ( nat > nat ) > nat > nat ) > set_nat] :
      ( ! [M4: ( nat > nat ) > nat > nat,N2: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ M4 @ S5 )
         => ( ( member952132173341509300at_nat @ N2 @ S5 )
           => ( ( M4 != N2 )
             => ( ( inf_inf_set_nat @ ( A2 @ M4 ) @ ( A2 @ N2 ) )
                = bot_bot_set_nat ) ) ) )
     => ( disjoi4499352858376688327at_nat @ A2 @ S5 ) ) ).

% disjoint_family_onI
thf(fact_1185_disjoint__family__onI,axiom,
    ! [S5: set_nat,A2: nat > set_nat_nat] :
      ( ! [M4: nat,N2: nat] :
          ( ( member_nat @ M4 @ S5 )
         => ( ( member_nat @ N2 @ S5 )
           => ( ( M4 != N2 )
             => ( ( inf_inf_set_nat_nat @ ( A2 @ M4 ) @ ( A2 @ N2 ) )
                = bot_bot_set_nat_nat ) ) ) )
     => ( disjoi8598568060105092073at_nat @ A2 @ S5 ) ) ).

% disjoint_family_onI
thf(fact_1186_disjoint__family__onI,axiom,
    ! [S5: set_nat_nat,A2: ( nat > nat ) > set_nat_nat] :
      ( ! [M4: nat > nat,N2: nat > nat] :
          ( ( member_nat_nat @ M4 @ S5 )
         => ( ( member_nat_nat @ N2 @ S5 )
           => ( ( M4 != N2 )
             => ( ( inf_inf_set_nat_nat @ ( A2 @ M4 ) @ ( A2 @ N2 ) )
                = bot_bot_set_nat_nat ) ) ) )
     => ( disjoi1861224156391448920at_nat @ A2 @ S5 ) ) ).

% disjoint_family_onI
thf(fact_1187_disjoint__family__onI,axiom,
    ! [S5: set_nat_nat_nat,A2: ( nat > nat > nat ) > set_nat_nat] :
      ( ! [M4: nat > nat > nat,N2: nat > nat > nat] :
          ( ( member_nat_nat_nat2 @ M4 @ S5 )
         => ( ( member_nat_nat_nat2 @ N2 @ S5 )
           => ( ( M4 != N2 )
             => ( ( inf_inf_set_nat_nat @ ( A2 @ M4 ) @ ( A2 @ N2 ) )
                = bot_bot_set_nat_nat ) ) ) )
     => ( disjoi7073777283103234375at_nat @ A2 @ S5 ) ) ).

% disjoint_family_onI
thf(fact_1188_disjoint__family__onI,axiom,
    ! [S5: set_nat_nat_nat2,A2: ( ( nat > nat ) > nat ) > set_nat_nat] :
      ( ! [M4: ( nat > nat ) > nat,N2: ( nat > nat ) > nat] :
          ( ( member_nat_nat_nat @ M4 @ S5 )
         => ( ( member_nat_nat_nat @ N2 @ S5 )
           => ( ( M4 != N2 )
             => ( ( inf_inf_set_nat_nat @ ( A2 @ M4 ) @ ( A2 @ N2 ) )
                = bot_bot_set_nat_nat ) ) ) )
     => ( disjoi6791097502120082503at_nat @ A2 @ S5 ) ) ).

% disjoint_family_onI
thf(fact_1189_disjoint__family__onI,axiom,
    ! [S5: set_nat_nat_nat_nat3,A2: ( ( nat > nat ) > nat > nat ) > set_nat_nat] :
      ( ! [M4: ( nat > nat ) > nat > nat,N2: ( nat > nat ) > nat > nat] :
          ( ( member952132173341509300at_nat @ M4 @ S5 )
         => ( ( member952132173341509300at_nat @ N2 @ S5 )
           => ( ( M4 != N2 )
             => ( ( inf_inf_set_nat_nat @ ( A2 @ M4 ) @ ( A2 @ N2 ) )
                = bot_bot_set_nat_nat ) ) ) )
     => ( disjoi7602357403334959542at_nat @ A2 @ S5 ) ) ).

% disjoint_family_onI
thf(fact_1190_disjoint__family__onI,axiom,
    ! [S5: set_nat,A2: nat > set_nat] :
      ( ! [M4: nat,N2: nat] :
          ( ( member_nat @ M4 @ S5 )
         => ( ( member_nat @ N2 @ S5 )
           => ( ( M4 != N2 )
             => ( ( inf_inf_set_nat @ ( A2 @ M4 ) @ ( A2 @ N2 ) )
                = bot_bot_set_nat ) ) ) )
     => ( disjoi6798895846410478970at_nat @ A2 @ S5 ) ) ).

% disjoint_family_onI
thf(fact_1191_if__image__distrib,axiom,
    ! [P: ( nat > nat ) > $o,F: ( nat > nat ) > nat > nat,G: ( nat > nat ) > nat > nat,S5: set_nat_nat] :
      ( ( image_3205354838064109189at_nat
        @ ^ [X3: nat > nat] : ( if_nat_nat @ ( P @ X3 ) @ ( F @ X3 ) @ ( G @ X3 ) )
        @ S5 )
      = ( sup_sup_set_nat_nat @ ( image_3205354838064109189at_nat @ F @ ( inf_inf_set_nat_nat @ S5 @ ( collect_nat_nat @ P ) ) )
        @ ( image_3205354838064109189at_nat @ G
          @ ( inf_inf_set_nat_nat @ S5
            @ ( collect_nat_nat
              @ ^ [X3: nat > nat] :
                  ~ ( P @ X3 ) ) ) ) ) ) ).

% if_image_distrib
thf(fact_1192_if__image__distrib,axiom,
    ! [P: nat > $o,F: nat > nat > nat,G: nat > nat > nat,S5: set_nat] :
      ( ( image_nat_nat_nat2
        @ ^ [X3: nat] : ( if_nat_nat @ ( P @ X3 ) @ ( F @ X3 ) @ ( G @ X3 ) )
        @ S5 )
      = ( sup_sup_set_nat_nat @ ( image_nat_nat_nat2 @ F @ ( inf_inf_set_nat @ S5 @ ( collect_nat @ P ) ) )
        @ ( image_nat_nat_nat2 @ G
          @ ( inf_inf_set_nat @ S5
            @ ( collect_nat
              @ ^ [X3: nat] :
                  ~ ( P @ X3 ) ) ) ) ) ) ).

% if_image_distrib
thf(fact_1193_if__image__distrib,axiom,
    ! [P: nat > $o,F: nat > set_nat,G: nat > set_nat,S5: set_nat] :
      ( ( image_nat_set_nat
        @ ^ [X3: nat] : ( if_set_nat @ ( P @ X3 ) @ ( F @ X3 ) @ ( G @ X3 ) )
        @ S5 )
      = ( sup_sup_set_set_nat @ ( image_nat_set_nat @ F @ ( inf_inf_set_nat @ S5 @ ( collect_nat @ P ) ) )
        @ ( image_nat_set_nat @ G
          @ ( inf_inf_set_nat @ S5
            @ ( collect_nat
              @ ^ [X3: nat] :
                  ~ ( P @ X3 ) ) ) ) ) ) ).

% if_image_distrib
thf(fact_1194_if__image__distrib,axiom,
    ! [P: ( nat > nat ) > $o,F: ( nat > nat ) > nat,G: ( nat > nat ) > nat,S5: set_nat_nat] :
      ( ( image_nat_nat_nat
        @ ^ [X3: nat > nat] : ( if_nat @ ( P @ X3 ) @ ( F @ X3 ) @ ( G @ X3 ) )
        @ S5 )
      = ( sup_sup_set_nat @ ( image_nat_nat_nat @ F @ ( inf_inf_set_nat_nat @ S5 @ ( collect_nat_nat @ P ) ) )
        @ ( image_nat_nat_nat @ G
          @ ( inf_inf_set_nat_nat @ S5
            @ ( collect_nat_nat
              @ ^ [X3: nat > nat] :
                  ~ ( P @ X3 ) ) ) ) ) ) ).

% if_image_distrib
thf(fact_1195_if__image__distrib,axiom,
    ! [P: nat > $o,F: nat > nat,G: nat > nat,S5: set_nat] :
      ( ( image_nat_nat
        @ ^ [X3: nat] : ( if_nat @ ( P @ X3 ) @ ( F @ X3 ) @ ( G @ X3 ) )
        @ S5 )
      = ( sup_sup_set_nat @ ( image_nat_nat @ F @ ( inf_inf_set_nat @ S5 @ ( collect_nat @ P ) ) )
        @ ( image_nat_nat @ G
          @ ( inf_inf_set_nat @ S5
            @ ( collect_nat
              @ ^ [X3: nat] :
                  ~ ( P @ X3 ) ) ) ) ) ) ).

% if_image_distrib
thf(fact_1196_UN__Un,axiom,
    ! [M3: nat > set_nat,A2: set_nat,B3: set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ M3 @ ( sup_sup_set_nat @ A2 @ B3 ) ) )
      = ( sup_sup_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ M3 @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ M3 @ B3 ) ) ) ) ).

% UN_Un
thf(fact_1197_UN__simps_I2_J,axiom,
    ! [C4: set_nat,A2: nat > set_nat_nat,B3: set_nat_nat] :
      ( ( ( C4 = bot_bot_set_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_7301343469591561292at_nat
              @ ^ [X3: nat] : ( sup_sup_set_nat_nat @ ( A2 @ X3 ) @ B3 )
              @ C4 ) )
          = bot_bot_set_nat_nat ) )
      & ( ( C4 != bot_bot_set_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_7301343469591561292at_nat
              @ ^ [X3: nat] : ( sup_sup_set_nat_nat @ ( A2 @ X3 ) @ B3 )
              @ C4 ) )
          = ( sup_sup_set_nat_nat @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ A2 @ C4 ) ) @ B3 ) ) ) ) ).

% UN_simps(2)
thf(fact_1198_UN__simps_I2_J,axiom,
    ! [C4: set_nat_nat,A2: ( nat > nat ) > set_nat_nat,B3: set_nat_nat] :
      ( ( ( C4 = bot_bot_set_nat_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_6905811865970898491at_nat
              @ ^ [X3: nat > nat] : ( sup_sup_set_nat_nat @ ( A2 @ X3 ) @ B3 )
              @ C4 ) )
          = bot_bot_set_nat_nat ) )
      & ( ( C4 != bot_bot_set_nat_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_6905811865970898491at_nat
              @ ^ [X3: nat > nat] : ( sup_sup_set_nat_nat @ ( A2 @ X3 ) @ B3 )
              @ C4 ) )
          = ( sup_sup_set_nat_nat @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ A2 @ C4 ) ) @ B3 ) ) ) ) ).

% UN_simps(2)
thf(fact_1199_UN__simps_I2_J,axiom,
    ! [C4: set_nat,A2: nat > set_nat,B3: set_nat] :
      ( ( ( C4 = bot_bot_set_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_nat_set_nat
              @ ^ [X3: nat] : ( sup_sup_set_nat @ ( A2 @ X3 ) @ B3 )
              @ C4 ) )
          = bot_bot_set_nat ) )
      & ( ( C4 != bot_bot_set_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_nat_set_nat
              @ ^ [X3: nat] : ( sup_sup_set_nat @ ( A2 @ X3 ) @ B3 )
              @ C4 ) )
          = ( sup_sup_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ A2 @ C4 ) ) @ B3 ) ) ) ) ).

% UN_simps(2)
thf(fact_1200_UN__simps_I2_J,axiom,
    ! [C4: set_nat_nat,A2: ( nat > nat ) > set_nat,B3: set_nat] :
      ( ( ( C4 = bot_bot_set_nat_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_7432509271690132940et_nat
              @ ^ [X3: nat > nat] : ( sup_sup_set_nat @ ( A2 @ X3 ) @ B3 )
              @ C4 ) )
          = bot_bot_set_nat ) )
      & ( ( C4 != bot_bot_set_nat_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_7432509271690132940et_nat
              @ ^ [X3: nat > nat] : ( sup_sup_set_nat @ ( A2 @ X3 ) @ B3 )
              @ C4 ) )
          = ( sup_sup_set_nat @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ A2 @ C4 ) ) @ B3 ) ) ) ) ).

% UN_simps(2)
thf(fact_1201_UN__simps_I3_J,axiom,
    ! [C4: set_nat,A2: set_nat_nat,B3: nat > set_nat_nat] :
      ( ( ( C4 = bot_bot_set_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_7301343469591561292at_nat
              @ ^ [X3: nat] : ( sup_sup_set_nat_nat @ A2 @ ( B3 @ X3 ) )
              @ C4 ) )
          = bot_bot_set_nat_nat ) )
      & ( ( C4 != bot_bot_set_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_7301343469591561292at_nat
              @ ^ [X3: nat] : ( sup_sup_set_nat_nat @ A2 @ ( B3 @ X3 ) )
              @ C4 ) )
          = ( sup_sup_set_nat_nat @ A2 @ ( comple5448282615319421384at_nat @ ( image_7301343469591561292at_nat @ B3 @ C4 ) ) ) ) ) ) ).

% UN_simps(3)
thf(fact_1202_UN__simps_I3_J,axiom,
    ! [C4: set_nat_nat,A2: set_nat_nat,B3: ( nat > nat ) > set_nat_nat] :
      ( ( ( C4 = bot_bot_set_nat_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_6905811865970898491at_nat
              @ ^ [X3: nat > nat] : ( sup_sup_set_nat_nat @ A2 @ ( B3 @ X3 ) )
              @ C4 ) )
          = bot_bot_set_nat_nat ) )
      & ( ( C4 != bot_bot_set_nat_nat )
       => ( ( comple5448282615319421384at_nat
            @ ( image_6905811865970898491at_nat
              @ ^ [X3: nat > nat] : ( sup_sup_set_nat_nat @ A2 @ ( B3 @ X3 ) )
              @ C4 ) )
          = ( sup_sup_set_nat_nat @ A2 @ ( comple5448282615319421384at_nat @ ( image_6905811865970898491at_nat @ B3 @ C4 ) ) ) ) ) ) ).

% UN_simps(3)
thf(fact_1203_UN__simps_I3_J,axiom,
    ! [C4: set_nat,A2: set_nat,B3: nat > set_nat] :
      ( ( ( C4 = bot_bot_set_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_nat_set_nat
              @ ^ [X3: nat] : ( sup_sup_set_nat @ A2 @ ( B3 @ X3 ) )
              @ C4 ) )
          = bot_bot_set_nat ) )
      & ( ( C4 != bot_bot_set_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_nat_set_nat
              @ ^ [X3: nat] : ( sup_sup_set_nat @ A2 @ ( B3 @ X3 ) )
              @ C4 ) )
          = ( sup_sup_set_nat @ A2 @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ B3 @ C4 ) ) ) ) ) ) ).

% UN_simps(3)
thf(fact_1204_UN__simps_I3_J,axiom,
    ! [C4: set_nat_nat,A2: set_nat,B3: ( nat > nat ) > set_nat] :
      ( ( ( C4 = bot_bot_set_nat_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_7432509271690132940et_nat
              @ ^ [X3: nat > nat] : ( sup_sup_set_nat @ A2 @ ( B3 @ X3 ) )
              @ C4 ) )
          = bot_bot_set_nat ) )
      & ( ( C4 != bot_bot_set_nat_nat )
       => ( ( comple7399068483239264473et_nat
            @ ( image_7432509271690132940et_nat
              @ ^ [X3: nat > nat] : ( sup_sup_set_nat @ A2 @ ( B3 @ X3 ) )
              @ C4 ) )
          = ( sup_sup_set_nat @ A2 @ ( comple7399068483239264473et_nat @ ( image_7432509271690132940et_nat @ B3 @ C4 ) ) ) ) ) ) ).

% UN_simps(3)
thf(fact_1205_Union__Int__subset,axiom,
    ! [A2: set_set_nat_nat,B3: set_set_nat_nat] : ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( inf_in710756014367367485at_nat @ A2 @ B3 ) ) @ ( inf_inf_set_nat_nat @ ( comple5448282615319421384at_nat @ A2 ) @ ( comple5448282615319421384at_nat @ B3 ) ) ) ).

% Union_Int_subset
thf(fact_1206_Union__Int__subset,axiom,
    ! [A2: set_set_nat,B3: set_set_nat] : ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( inf_inf_set_set_nat @ A2 @ B3 ) ) @ ( inf_inf_set_nat @ ( comple7399068483239264473et_nat @ A2 ) @ ( comple7399068483239264473et_nat @ B3 ) ) ) ).

% Union_Int_subset
thf(fact_1207_Sup__inter__less__eq,axiom,
    ! [A2: set_set_nat_nat,B3: set_set_nat_nat] : ( ord_le9059583361652607317at_nat @ ( comple5448282615319421384at_nat @ ( inf_in710756014367367485at_nat @ A2 @ B3 ) ) @ ( inf_inf_set_nat_nat @ ( comple5448282615319421384at_nat @ A2 ) @ ( comple5448282615319421384at_nat @ B3 ) ) ) ).

% Sup_inter_less_eq
thf(fact_1208_Sup__inter__less__eq,axiom,
    ! [A2: set_set_nat,B3: set_set_nat] : ( ord_less_eq_set_nat @ ( comple7399068483239264473et_nat @ ( inf_inf_set_set_nat @ A2 @ B3 ) ) @ ( inf_inf_set_nat @ ( comple7399068483239264473et_nat @ A2 ) @ ( comple7399068483239264473et_nat @ B3 ) ) ) ).

% Sup_inter_less_eq
thf(fact_1209_Int__Union2,axiom,
    ! [B3: set_set_nat,A2: set_nat] :
      ( ( inf_inf_set_nat @ ( comple7399068483239264473et_nat @ B3 ) @ A2 )
      = ( comple7399068483239264473et_nat
        @ ( image_7916887816326733075et_nat
          @ ^ [C6: set_nat] : ( inf_inf_set_nat @ C6 @ A2 )
          @ B3 ) ) ) ).

% Int_Union2
thf(fact_1210_Int__Union,axiom,
    ! [A2: set_nat,B3: set_set_nat] :
      ( ( inf_inf_set_nat @ A2 @ ( comple7399068483239264473et_nat @ B3 ) )
      = ( comple7399068483239264473et_nat @ ( image_7916887816326733075et_nat @ ( inf_inf_set_nat @ A2 ) @ B3 ) ) ) ).

% Int_Union
thf(fact_1211_SUP__union,axiom,
    ! [M3: nat > set_nat,A2: set_nat,B3: set_nat] :
      ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ M3 @ ( sup_sup_set_nat @ A2 @ B3 ) ) )
      = ( sup_sup_set_nat @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ M3 @ A2 ) ) @ ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ M3 @ B3 ) ) ) ) ).

% SUP_union
thf(fact_1212_Diff__Int__distrib2,axiom,
    ! [A2: set_nat,B3: set_nat,C4: set_nat] :
      ( ( inf_inf_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ C4 )
      = ( minus_minus_set_nat @ ( inf_inf_set_nat @ A2 @ C4 ) @ ( inf_inf_set_nat @ B3 @ C4 ) ) ) ).

% Diff_Int_distrib2
thf(fact_1213_Diff__Int__distrib,axiom,
    ! [C4: set_nat,A2: set_nat,B3: set_nat] :
      ( ( inf_inf_set_nat @ C4 @ ( minus_minus_set_nat @ A2 @ B3 ) )
      = ( minus_minus_set_nat @ ( inf_inf_set_nat @ C4 @ A2 ) @ ( inf_inf_set_nat @ C4 @ B3 ) ) ) ).

% Diff_Int_distrib
thf(fact_1214_Un__Int__assoc__eq,axiom,
    ! [A2: set_nat,B3: set_nat,C4: set_nat] :
      ( ( ( sup_sup_set_nat @ ( inf_inf_set_nat @ A2 @ B3 ) @ C4 )
        = ( inf_inf_set_nat @ A2 @ ( sup_sup_set_nat @ B3 @ C4 ) ) )
      = ( ord_less_eq_set_nat @ C4 @ A2 ) ) ).

% Un_Int_assoc_eq
thf(fact_1215_Un__Int__assoc__eq,axiom,
    ! [A2: set_nat_nat,B3: set_nat_nat,C4: set_nat_nat] :
      ( ( ( sup_sup_set_nat_nat @ ( inf_inf_set_nat_nat @ A2 @ B3 ) @ C4 )
        = ( inf_inf_set_nat_nat @ A2 @ ( sup_sup_set_nat_nat @ B3 @ C4 ) ) )
      = ( ord_le9059583361652607317at_nat @ C4 @ A2 ) ) ).

% Un_Int_assoc_eq
thf(fact_1216_Diff__Diff__Int,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ ( minus_minus_set_nat @ A2 @ B3 ) )
      = ( inf_inf_set_nat @ A2 @ B3 ) ) ).

% Diff_Diff_Int
thf(fact_1217_Un__Diff__Int,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( sup_sup_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ ( inf_inf_set_nat @ A2 @ B3 ) )
      = A2 ) ).

% Un_Diff_Int
thf(fact_1218_Int__Diff__Un,axiom,
    ! [A2: set_nat,B3: set_nat] :
      ( ( sup_sup_set_nat @ ( inf_inf_set_nat @ A2 @ B3 ) @ ( minus_minus_set_nat @ A2 @ B3 ) )
      = A2 ) ).

% Int_Diff_Un
thf(fact_1219_Diff__Int2,axiom,
    ! [A2: set_nat,C4: set_nat,B3: set_nat] :
      ( ( minus_minus_set_nat @ ( inf_inf_set_nat @ A2 @ C4 ) @ ( inf_inf_set_nat @ B3 @ C4 ) )
      = ( minus_minus_set_nat @ ( inf_inf_set_nat @ A2 @ C4 ) @ B3 ) ) ).

% Diff_Int2
thf(fact_1220_Int__Diff,axiom,
    ! [A2: set_nat,B3: set_nat,C4: set_nat] :
      ( ( minus_minus_set_nat @ ( inf_inf_set_nat @ A2 @ B3 ) @ C4 )
      = ( inf_inf_set_nat @ A2 @ ( minus_minus_set_nat @ B3 @ C4 ) ) ) ).

% Int_Diff
thf(fact_1221_Diff__Int,axiom,
    ! [A2: set_nat,B3: set_nat,C4: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ ( inf_inf_set_nat @ B3 @ C4 ) )
      = ( sup_sup_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ ( minus_minus_set_nat @ A2 @ C4 ) ) ) ).

% Diff_Int
thf(fact_1222_Un__Diff,axiom,
    ! [A2: set_nat,B3: set_nat,C4: set_nat] :
      ( ( minus_minus_set_nat @ ( sup_sup_set_nat @ A2 @ B3 ) @ C4 )
      = ( sup_sup_set_nat @ ( minus_minus_set_nat @ A2 @ C4 ) @ ( minus_minus_set_nat @ B3 @ C4 ) ) ) ).

% Un_Diff
thf(fact_1223_Diff__Un,axiom,
    ! [A2: set_nat,B3: set_nat,C4: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ ( sup_sup_set_nat @ B3 @ C4 ) )
      = ( inf_inf_set_nat @ ( minus_minus_set_nat @ A2 @ B3 ) @ ( minus_minus_set_nat @ A2 @ C4 ) ) ) ).

% Diff_Un
thf(fact_1224_sup_OcoboundedI2,axiom,
    ! [C: set_nat,B: set_nat,A: set_nat] :
      ( ( ord_less_eq_set_nat @ C @ B )
     => ( ord_less_eq_set_nat @ C @ ( sup_sup_set_nat @ A @ B ) ) ) ).

% sup.coboundedI2
thf(fact_1225_sup_OcoboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ B )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.coboundedI2
thf(fact_1226_sup_OcoboundedI2,axiom,
    ! [C: set_nat_nat,B: set_nat_nat,A: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ C @ B )
     => ( ord_le9059583361652607317at_nat @ C @ ( sup_sup_set_nat_nat @ A @ B ) ) ) ).

% sup.coboundedI2
thf(fact_1227_sup_OcoboundedI1,axiom,
    ! [C: set_nat,A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ C @ A )
     => ( ord_less_eq_set_nat @ C @ ( sup_sup_set_nat @ A @ B ) ) ) ).

% sup.coboundedI1
thf(fact_1228_sup_OcoboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.coboundedI1
thf(fact_1229_sup_OcoboundedI1,axiom,
    ! [C: set_nat_nat,A: set_nat_nat,B: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ C @ A )
     => ( ord_le9059583361652607317at_nat @ C @ ( sup_sup_set_nat_nat @ A @ B ) ) ) ).

% sup.coboundedI1
thf(fact_1230_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A3: set_nat,B2: set_nat] :
          ( ( sup_sup_set_nat @ A3 @ B2 )
          = B2 ) ) ) ).

% sup.absorb_iff2
thf(fact_1231_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B2: nat] :
          ( ( sup_sup_nat @ A3 @ B2 )
          = B2 ) ) ) ).

% sup.absorb_iff2
thf(fact_1232_sup_Oabsorb__iff2,axiom,
    ( ord_le9059583361652607317at_nat
    = ( ^ [A3: set_nat_nat,B2: set_nat_nat] :
          ( ( sup_sup_set_nat_nat @ A3 @ B2 )
          = B2 ) ) ) ).

% sup.absorb_iff2
thf(fact_1233_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [B2: set_nat,A3: set_nat] :
          ( ( sup_sup_set_nat @ A3 @ B2 )
          = A3 ) ) ) ).

% sup.absorb_iff1
thf(fact_1234_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( sup_sup_nat @ A3 @ B2 )
          = A3 ) ) ) ).

% sup.absorb_iff1
thf(fact_1235_sup_Oabsorb__iff1,axiom,
    ( ord_le9059583361652607317at_nat
    = ( ^ [B2: set_nat_nat,A3: set_nat_nat] :
          ( ( sup_sup_set_nat_nat @ A3 @ B2 )
          = A3 ) ) ) ).

% sup.absorb_iff1
thf(fact_1236_inf_OcoboundedI2,axiom,
    ! [B: set_nat,C: set_nat,A: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ C )
     => ( ord_less_eq_set_nat @ ( inf_inf_set_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_1237_inf_OcoboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ C )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_1238_inf_OcoboundedI2,axiom,
    ! [B: set_nat_nat,C: set_nat_nat,A: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ B @ C )
     => ( ord_le9059583361652607317at_nat @ ( inf_inf_set_nat_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_1239_inf_OcoboundedI1,axiom,
    ! [A: set_nat,C: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ C )
     => ( ord_less_eq_set_nat @ ( inf_inf_set_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_1240_inf_OcoboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_1241_inf_OcoboundedI1,axiom,
    ! [A: set_nat_nat,C: set_nat_nat,B: set_nat_nat] :
      ( ( ord_le9059583361652607317at_nat @ A @ C )
     => ( ord_le9059583361652607317at_nat @ ( inf_inf_set_nat_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_1242_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [B2: set_nat,A3: set_nat] :
          ( ( inf_inf_set_nat @ A3 @ B2 )
          = B2 ) ) ) ).

% inf.absorb_iff2
thf(fact_1243_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [B2: nat,A3: nat] :
          ( ( inf_inf_nat @ A3 @ B2 )
          = B2 ) ) ) ).

% inf.absorb_iff2
thf(fact_1244_inf_Oabsorb__iff2,axiom,
    ( ord_le9059583361652607317at_nat
    = ( ^ [B2: set_nat_nat,A3: set_nat_nat] :
          ( ( inf_inf_set_nat_nat @ A3 @ B2 )
          = B2 ) ) ) ).

% inf.absorb_iff2
thf(fact_1245_is__line__elim__t__1,axiom,
    ! [L2: nat > nat > nat,N: nat,T: nat] :
      ( ( hales_is_line @ L2 @ N @ T )
     => ( ( T = one_one_nat )
       => ~ ! [B_0: set_nat,B_1: set_nat] :
              ~ ( ( ( sup_sup_set_nat @ B_0 @ B_1 )
                  = ( set_ord_lessThan_nat @ N ) )
                & ( ( inf_inf_set_nat @ B_0 @ B_1 )
                  = bot_bot_set_nat )
                & ( B_0 != bot_bot_set_nat )
                & ! [X4: nat] :
                    ( ( member_nat @ X4 @ B_1 )
                   => ! [Xa: nat] :
                        ( ( ord_less_nat @ Xa @ T )
                       => ! [Y: nat] :
                            ( ( ord_less_nat @ Y @ T )
                           => ( ( L2 @ Xa @ X4 )
                              = ( L2 @ Y @ X4 ) ) ) ) )
                & ! [X4: nat] :
                    ( ( member_nat @ X4 @ B_0 )
                   => ! [S: nat] :
                        ( ( ord_less_nat @ S @ T )
                       => ( ( L2 @ S @ X4 )
                          = S ) ) ) ) ) ) ).

% is_line_elim_t_1
thf(fact_1246__092_060open_062_123_O_O1_125_A_061_A_1230_M_A1_125_092_060close_062,axiom,
    ( ( set_ord_atMost_nat @ one_one_nat )
    = ( insert_nat @ zero_zero_nat @ ( insert_nat @ one_one_nat @ bot_bot_set_nat ) ) ) ).

% \<open>{..1} = {0, 1}\<close>
thf(fact_1247_some__inv__into__2,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( ( fChoice_nat_nat
          @ ^ [P4: nat > nat] :
              ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ ( plus_plus_nat @ T @ one_one_nat ) ) )
              & ( ( P4 @ zero_zero_nat )
                = S2 ) ) )
        = ( the_in5300466440149791684at_nat @ ( hales_cube @ one_one_nat @ T )
          @ ^ [F2: nat > nat] : ( F2 @ zero_zero_nat )
          @ S2 ) ) ) ).

% some_inv_into_2
thf(fact_1248_atMost__0,axiom,
    ( ( set_ord_atMost_nat @ zero_zero_nat )
    = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) ).

% atMost_0
thf(fact_1249_inv__into__cube__props_I1_J,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( member_nat_nat
        @ ( the_in5300466440149791684at_nat @ ( hales_cube @ one_one_nat @ T )
          @ ^ [F2: nat > nat] : ( F2 @ zero_zero_nat )
          @ S2 )
        @ ( hales_cube @ one_one_nat @ T ) ) ) ).

% inv_into_cube_props(1)
thf(fact_1250_inv__into__cube__props_I2_J,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( ( the_in5300466440149791684at_nat @ ( hales_cube @ one_one_nat @ T )
          @ ^ [F2: nat > nat] : ( F2 @ zero_zero_nat )
          @ S2
          @ zero_zero_nat )
        = S2 ) ) ).

% inv_into_cube_props(2)
thf(fact_1251_some__inv__into,axiom,
    ! [S2: nat,T: nat] :
      ( ( ord_less_nat @ S2 @ T )
     => ( ( fChoice_nat_nat
          @ ^ [P4: nat > nat] :
              ( ( member_nat_nat @ P4 @ ( hales_cube @ one_one_nat @ T ) )
              & ( ( P4 @ zero_zero_nat )
                = S2 ) ) )
        = ( the_in5300466440149791684at_nat @ ( hales_cube @ one_one_nat @ T )
          @ ^ [F2: nat > nat] : ( F2 @ zero_zero_nat )
          @ S2 ) ) ) ).

% some_inv_into
thf(fact_1252_cube0__alt__def,axiom,
    ! [T: nat] :
      ( ( hales_cube @ zero_zero_nat @ T )
      = ( insert_nat_nat
        @ ^ [X3: nat] : undefined_nat
        @ bot_bot_set_nat_nat ) ) ).

% cube0_alt_def
thf(fact_1253_cube1__alt__def,axiom,
    ! [N: nat] :
      ( ( hales_cube @ N @ one_one_nat )
      = ( insert_nat_nat
        @ ( restrict_nat_nat
          @ ^ [X3: nat] : zero_zero_nat
          @ ( set_ord_lessThan_nat @ N ) )
        @ bot_bot_set_nat_nat ) ) ).

% cube1_alt_def
thf(fact_1254_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K2 @ I4 )
                 => ( P @ I4 ) )
             => ( P @ K2 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_1255_set__incr__altdef,axiom,
    ( hales_set_incr
    = ( ^ [N3: nat] : ( image_nat_nat @ ( plus_plus_nat @ N3 ) ) ) ) ).

% set_incr_altdef
thf(fact_1256_set__incr__def,axiom,
    ( hales_set_incr
    = ( ^ [N3: nat] :
          ( image_nat_nat
          @ ^ [A3: nat] : ( plus_plus_nat @ A3 @ N3 ) ) ) ) ).

% set_incr_def
thf(fact_1257_atLeastLessThan0,axiom,
    ! [M: nat] :
      ( ( set_or4665077453230672383an_nat @ M @ zero_zero_nat )
      = bot_bot_set_nat ) ).

% atLeastLessThan0
thf(fact_1258_lessThan__atLeast0,axiom,
    ( set_ord_lessThan_nat
    = ( set_or4665077453230672383an_nat @ zero_zero_nat ) ) ).

% lessThan_atLeast0
thf(fact_1259_atLeastLessThan__add__Un,axiom,
    ! [I: nat,J2: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J2 )
     => ( ( set_or4665077453230672383an_nat @ I @ ( plus_plus_nat @ J2 @ K ) )
        = ( sup_sup_set_nat @ ( set_or4665077453230672383an_nat @ I @ J2 ) @ ( set_or4665077453230672383an_nat @ J2 @ ( plus_plus_nat @ J2 @ K ) ) ) ) ) ).

% atLeastLessThan_add_Un
thf(fact_1260_image__minus__const__atLeastLessThan__nat,axiom,
    ! [C: nat,Y2: nat,X2: nat] :
      ( ( ( ord_less_nat @ C @ Y2 )
       => ( ( image_nat_nat
            @ ^ [I2: nat] : ( minus_minus_nat @ I2 @ C )
            @ ( set_or4665077453230672383an_nat @ X2 @ Y2 ) )
          = ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ X2 @ C ) @ ( minus_minus_nat @ Y2 @ C ) ) ) )
      & ( ~ ( ord_less_nat @ C @ Y2 )
       => ( ( ( ord_less_nat @ X2 @ Y2 )
           => ( ( image_nat_nat
                @ ^ [I2: nat] : ( minus_minus_nat @ I2 @ C )
                @ ( set_or4665077453230672383an_nat @ X2 @ Y2 ) )
              = ( insert_nat @ zero_zero_nat @ bot_bot_set_nat ) ) )
          & ( ~ ( ord_less_nat @ X2 @ Y2 )
           => ( ( image_nat_nat
                @ ^ [I2: nat] : ( minus_minus_nat @ I2 @ C )
                @ ( set_or4665077453230672383an_nat @ X2 @ Y2 ) )
              = bot_bot_set_nat ) ) ) ) ) ).

% image_minus_const_atLeastLessThan_nat
thf(fact_1261_all__nat__less__eq,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [M5: nat] :
            ( ( ord_less_nat @ M5 @ N )
           => ( P @ M5 ) ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
           => ( P @ X3 ) ) ) ) ).

% all_nat_less_eq
thf(fact_1262_ex__nat__less__eq,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [M5: nat] :
            ( ( ord_less_nat @ M5 @ N )
            & ( P @ M5 ) ) )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
            & ( P @ X3 ) ) ) ) ).

% ex_nat_less_eq
thf(fact_1263_classes__def,axiom,
    ( hales_classes
    = ( ^ [N3: nat,T2: nat,I2: nat] :
          ( collect_nat_nat
          @ ^ [X3: nat > nat] :
              ( ( member_nat_nat @ X3 @ ( hales_cube @ N3 @ ( plus_plus_nat @ T2 @ one_one_nat ) ) )
              & ! [Y3: nat] :
                  ( ( member_nat @ Y3 @ ( set_or4665077453230672383an_nat @ ( minus_minus_nat @ N3 @ I2 ) @ N3 ) )
                 => ( ( X3 @ Y3 )
                    = T2 ) )
              & ~ ( member_nat @ T2 @ ( image_nat_nat @ X3 @ ( set_ord_lessThan_nat @ ( minus_minus_nat @ N3 @ I2 ) ) ) ) ) ) ) ) ).

% classes_def
thf(fact_1264_UN__lessThan__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_lessThan_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_lessThan_UNIV
thf(fact_1265_UN__atMost__UNIV,axiom,
    ( ( comple7399068483239264473et_nat @ ( image_nat_set_nat @ set_ord_atMost_nat @ top_top_set_nat ) )
    = top_top_set_nat ) ).

% UN_atMost_UNIV

% Helper facts (12)
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( if_nat @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( if_nat @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_fChoice_1_1_fChoice_001t__Nat__Onat_T,axiom,
    ! [P: nat > $o] :
      ( ( P @ ( fChoice_nat @ P ) )
      = ( ? [X7: nat] : ( P @ X7 ) ) ) ).

thf(help_If_2_1_If_001t__Set__Oset_It__Nat__Onat_J_T,axiom,
    ! [X2: set_nat,Y2: set_nat] :
      ( ( if_set_nat @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__Nat__Onat_J_T,axiom,
    ! [X2: set_nat,Y2: set_nat] :
      ( ( if_set_nat @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_If_3_1_If_001_062_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001_062_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X2: nat > nat,Y2: nat > nat] :
      ( ( if_nat_nat @ $false @ X2 @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001_062_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [X2: nat > nat,Y2: nat > nat] :
      ( ( if_nat_nat @ $true @ X2 @ Y2 )
      = X2 ) ).

thf(help_fChoice_1_1_fChoice_001_062_It__Nat__Onat_Mt__Nat__Onat_J_T,axiom,
    ! [P: ( nat > nat ) > $o] :
      ( ( P @ ( fChoice_nat_nat @ P ) )
      = ( ? [X7: nat > nat] : ( P @ X7 ) ) ) ).

thf(help_fChoice_1_1_fChoice_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_Mt__Nat__Onat_J_T,axiom,
    ! [P: ( ( nat > nat ) > nat ) > $o] :
      ( ( P @ ( fChoice_nat_nat_nat @ P ) )
      = ( ? [X7: ( nat > nat ) > nat] : ( P @ X7 ) ) ) ).

thf(help_fChoice_1_1_fChoice_001_062_It__Nat__Onat_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_T,axiom,
    ! [P: ( nat > nat > nat ) > $o] :
      ( ( P @ ( fChoice_nat_nat_nat2 @ P ) )
      = ( ? [X7: nat > nat > nat] : ( P @ X7 ) ) ) ).

thf(help_fChoice_1_1_fChoice_001_062_I_062_It__Nat__Onat_Mt__Nat__Onat_J_M_062_It__Nat__Onat_Mt__Nat__Onat_J_J_T,axiom,
    ! [P: ( ( nat > nat ) > nat > nat ) > $o] :
      ( ( P @ ( fChoic52552927678224201at_nat @ P ) )
      = ( ? [X7: ( nat > nat ) > nat > nat] : ( P @ X7 ) ) ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ( ( l @ x @ j )
    = ( l @ y @ j ) ) ).

%------------------------------------------------------------------------------