TPTP Problem File: SLH0297^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Number_Theoretic_Transform/0008_Butterfly/prob_00455_023175__14144388_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1372 ( 733 unt; 101 typ; 0 def)
% Number of atoms : 3052 (1539 equ; 0 cnn)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 12247 ( 308 ~; 67 |; 198 &;10666 @)
% ( 0 <=>;1008 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Number of types : 11 ( 10 usr)
% Number of type conns : 244 ( 244 >; 0 *; 0 +; 0 <<)
% Number of symbols : 92 ( 91 usr; 24 con; 0-5 aty)
% Number of variables : 2778 ( 69 ^;2676 !; 33 ?;2778 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-18 16:39:21.914
%------------------------------------------------------------------------------
% Could-be-implicit typings (10)
thf(ty_n_t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
list_F4626807571770296779ring_a: $tType ).
thf(ty_n_t__Finite____Field__Omod____ring_Itf__a_J,type,
finite_mod_ring_a: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
set_num: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (91)
thf(sy_c_Butterfly_Obutterfly_OFNTT_001tf__a,type,
fNTT_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).
thf(sy_c_Butterfly_Obutterfly_ONTT__gen_001tf__a,type,
nTT_gen_a: nat > finite_mod_ring_a > nat > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).
thf(sy_c_Butterfly_Obutterfly_Ontt__gen_001tf__a,type,
ntt_gen_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > nat > nat > finite_mod_ring_a ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Finite____Field__Omod____ring_Itf__a_J,type,
minus_3609261664126569004ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Oone__class_Oone_001t__Finite____Field__Omod____ring_Itf__a_J,type,
one_on2109788427901206336ring_a: finite_mod_ring_a ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Finite____Field__Omod____ring_Itf__a_J,type,
plus_p6165643967897163644ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Finite____Field__Omod____ring_Itf__a_J,type,
times_5121417576591743744ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Finite____Field__Omod____ring_Itf__a_J,type,
uminus3100561713750211260ring_a: finite_mod_ring_a > finite_mod_ring_a ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Finite____Field__Omod____ring_Itf__a_J,type,
zero_z7902377541816115708ring_a: finite_mod_ring_a ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Finite____Field__Omod____ring_Itf__a_J,type,
groups7393019125535064413ring_a: ( int > finite_mod_ring_a ) > set_int > finite_mod_ring_a ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Finite____Field__Omod____ring_Itf__a_J,type,
groups3558780024651037881ring_a: ( nat > finite_mod_ring_a ) > set_nat > finite_mod_ring_a ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Int__Oint,type,
groups3539618377306564664at_int: ( nat > int ) > set_nat > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Real__Oreal,type,
groups6591440286371151544t_real: ( nat > real ) > set_nat > real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Finite____Field__Omod____ring_Itf__a_J,type,
groups465414945397457501ring_a: ( real > finite_mod_ring_a ) > set_real > finite_mod_ring_a ).
thf(sy_c_List_Onth_001t__Finite____Field__Omod____ring_Itf__a_J,type,
nth_Fi694352073394265932ring_a: list_F4626807571770296779ring_a > nat > finite_mod_ring_a ).
thf(sy_c_NTT_Ontt_ONTT_001tf__a,type,
nTT_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).
thf(sy_c_NTT_Ontt_Ontt_001tf__a,type,
ntt_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > nat > finite_mod_ring_a ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
size_s7115545719440041015ring_a: list_F4626807571770296779ring_a > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__Num__Onum,type,
size_size_num: num > nat ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Finite____Field__Omod____ring_Itf__a_J,type,
numera7938180240421336042ring_a: num > finite_mod_ring_a ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
ord_less_eq_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_eq_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Num__Onum_J,type,
ord_less_eq_set_num: set_num > set_num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_eq_set_real: set_real > set_real > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Finite____Field__Omod____ring_Itf__a_J,type,
power_6826135765519566523ring_a: finite_mod_ring_a > nat > finite_mod_ring_a ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Finite____Field__Omod____ring_Itf__a_J,type,
divide972148758386938611ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
dvd_dvd_int: int > int > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
set_or4662586982721622107an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
set_or4665077453230672383an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Num__Onum,type,
set_or1222409239386451017an_num: num > num > set_num ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Real__Oreal,type,
set_or66887138388493659n_real: real > real > set_real ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Num__Onum,type,
member_num: num > set_num > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v_N,type,
n: nat ).
thf(sy_v__092_060omega_062,type,
omega: finite_mod_ring_a ).
thf(sy_v_fntt1____,type,
fntt1: list_F4626807571770296779ring_a ).
thf(sy_v_fntt2____,type,
fntt2: list_F4626807571770296779ring_a ).
thf(sy_v_i____,type,
i: nat ).
thf(sy_v_k,type,
k: nat ).
thf(sy_v_l1____,type,
l1: nat ).
thf(sy_v_l2____,type,
l2: nat ).
thf(sy_v_la____,type,
la: nat ).
thf(sy_v_llen____,type,
llen: nat ).
thf(sy_v_n,type,
n2: nat ).
thf(sy_v_numbers1____,type,
numbers1: list_F4626807571770296779ring_a ).
thf(sy_v_numbers2____,type,
numbers2: list_F4626807571770296779ring_a ).
thf(sy_v_numbersa____,type,
numbersa: list_F4626807571770296779ring_a ).
thf(sy_v_sum2____,type,
sum2: list_F4626807571770296779ring_a ).
% Relevant facts (1270)
thf(fact_0_llen__def,axiom,
( llen
= ( size_s7115545719440041015ring_a @ numbersa ) ) ).
% llen_def
thf(fact_1_exp__rule,axiom,
! [C: finite_mod_ring_a,D: finite_mod_ring_a,E: nat] :
( ( power_6826135765519566523ring_a @ ( times_5121417576591743744ring_a @ C @ D ) @ E )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ C @ E ) @ ( power_6826135765519566523ring_a @ D @ E ) ) ) ).
% exp_rule
thf(fact_2_numbers1__even,axiom,
( ( size_s7115545719440041015ring_a @ numbers1 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).
% numbers1_even
thf(fact_3_sum__swap,axiom,
! [F: nat > nat > finite_mod_ring_a,Y: nat,X: nat] :
( ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( groups3558780024651037881ring_a @ ( F @ I ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] :
( groups3558780024651037881ring_a
@ ^ [I: nat] : ( F @ I @ J )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) ) ) ).
% sum_swap
thf(fact_4_sum__index__shift,axiom,
! [F: nat > finite_mod_ring_a,C: nat,A: nat,B: nat] :
( ( groups3558780024651037881ring_a
@ ^ [L: nat] : ( F @ ( plus_plus_nat @ L @ C ) )
@ ( set_or4665077453230672383an_nat @ A @ B ) )
= ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ) ).
% sum_index_shift
thf(fact_5_sum__in,axiom,
! [F: nat > finite_mod_ring_a,Y: finite_mod_ring_a,X: nat] :
( ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( times_5121417576591743744ring_a @ ( F @ I ) @ Y )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
= ( times_5121417576591743744ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) @ Y ) ) ).
% sum_in
thf(fact_6_calculation,axiom,
( ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l1 ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ i ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l1 ) ) ) ).
% calculation
thf(fact_7__C005_C,axiom,
( ( nth_Fi694352073394265932ring_a @ fntt1 @ i )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers1 @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) @ i ) @ J ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l1 ) ) ) ).
% "005"
thf(fact_8__C006_C,axiom,
( ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers1 @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) @ i ) @ J ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l1 ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l1 ) ) ) ).
% "006"
thf(fact_9_fntt1__length,axiom,
( ( size_s7115545719440041015ring_a @ fntt1 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).
% fntt1_length
thf(fact_10_that,axiom,
ord_less_nat @ i @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ).
% that
thf(fact_11_n__two__pot,axiom,
( n2
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ n ) ) ).
% n_two_pot
thf(fact_12_local_Ontt__def,axiom,
! [Numbers: list_F4626807571770296779ring_a,I2: nat] :
( ( ntt_a @ n2 @ omega @ Numbers @ I2 )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ Numbers @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ I2 @ J ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n2 ) ) ) ).
% local.ntt_def
thf(fact_13_Suc_Oprems_I1_J,axiom,
( ( size_s7115545719440041015ring_a @ numbersa )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ la ) ) ) ).
% Suc.prems(1)
thf(fact_14_numbers1__fntt,axiom,
( fntt1
= ( nTT_gen_a @ n2 @ omega @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ numbers1 ) ) ).
% numbers1_fntt
thf(fact_15_sum__power2__eq__zero__iff,axiom,
! [X: int,Y: int] :
( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_16_sum__power2__eq__zero__iff,axiom,
! [X: real,Y: real] :
( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_17_ntt__gen__def,axiom,
! [Numbers: list_F4626807571770296779ring_a,Degr: nat,I2: nat] :
( ( ntt_gen_a @ n2 @ omega @ Numbers @ Degr @ I2 )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ Numbers @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ Degr ) @ I2 ) @ J ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( size_s7115545719440041015ring_a @ Numbers ) ) ) ) ).
% ntt_gen_def
thf(fact_18_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= M ) ).
% add_self_div_2
thf(fact_19_zero__eq__power2,axiom,
! [A: finite_mod_ring_a] :
( ( ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_z7902377541816115708ring_a )
= ( A = zero_z7902377541816115708ring_a ) ) ).
% zero_eq_power2
thf(fact_20_zero__eq__power2,axiom,
! [A: nat] :
( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% zero_eq_power2
thf(fact_21_zero__eq__power2,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% zero_eq_power2
thf(fact_22_zero__eq__power2,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% zero_eq_power2
thf(fact_23_div__mult__self1,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( B != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ ( times_5121417576591743744ring_a @ C @ B ) ) @ B )
= ( plus_p6165643967897163644ring_a @ C @ ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_24_div__mult__self1,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_25_div__mult__self1,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ C @ B ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self1
thf(fact_26_div__mult__self2,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( B != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ ( times_5121417576591743744ring_a @ B @ C ) ) @ B )
= ( plus_p6165643967897163644ring_a @ C @ ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_27_div__mult__self2,axiom,
! [B: nat,A: nat,C: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_28_div__mult__self2,axiom,
! [B: int,A: int,C: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ ( times_times_int @ B @ C ) ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self2
thf(fact_29_div__mult__self3,axiom,
! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( B != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ C @ B ) @ A ) @ B )
= ( plus_p6165643967897163644ring_a @ C @ ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_30_div__mult__self3,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_31_div__mult__self3,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ C @ B ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self3
thf(fact_32_div__mult__self4,axiom,
! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( B != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ B @ C ) @ A ) @ B )
= ( plus_p6165643967897163644ring_a @ C @ ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_33_div__mult__self4,axiom,
! [B: nat,C: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
= ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_34_div__mult__self4,axiom,
! [B: int,C: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ ( times_times_int @ B @ C ) @ A ) @ B )
= ( plus_plus_int @ C @ ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_self4
thf(fact_35_divide__eq__eq__numeral1_I1_J,axiom,
! [B: finite_mod_ring_a,W: num,A: finite_mod_ring_a] :
( ( ( divide972148758386938611ring_a @ B @ ( numera7938180240421336042ring_a @ W ) )
= A )
= ( ( ( ( numera7938180240421336042ring_a @ W )
!= zero_z7902377541816115708ring_a )
=> ( B
= ( times_5121417576591743744ring_a @ A @ ( numera7938180240421336042ring_a @ W ) ) ) )
& ( ( ( numera7938180240421336042ring_a @ W )
= zero_z7902377541816115708ring_a )
=> ( A = zero_z7902377541816115708ring_a ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_36_divide__eq__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) )
= A )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(1)
thf(fact_37_eq__divide__eq__numeral1_I1_J,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,W: num] :
( ( A
= ( divide972148758386938611ring_a @ B @ ( numera7938180240421336042ring_a @ W ) ) )
= ( ( ( ( numera7938180240421336042ring_a @ W )
!= zero_z7902377541816115708ring_a )
=> ( ( times_5121417576591743744ring_a @ A @ ( numera7938180240421336042ring_a @ W ) )
= B ) )
& ( ( ( numera7938180240421336042ring_a @ W )
= zero_z7902377541816115708ring_a )
=> ( A = zero_z7902377541816115708ring_a ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_38_eq__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ( ( ( numeral_numeral_real @ W )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( numeral_numeral_real @ W ) )
= B ) )
& ( ( ( numeral_numeral_real @ W )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(1)
thf(fact_39_l1__def,axiom,
( l1
= ( size_s7115545719440041015ring_a @ numbers1 ) ) ).
% l1_def
thf(fact_40_sum__eq,axiom,
! [X: nat,F: nat > finite_mod_ring_a,G: nat > finite_mod_ring_a] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ X )
=> ( ( F @ I3 )
= ( G @ I3 ) ) )
=> ( ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
= ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) ) ) ).
% sum_eq
thf(fact_41_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_42_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_43_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_44_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_45_sum__split,axiom,
! [R1: nat,R2: nat,F: nat > finite_mod_ring_a] :
( ( ord_less_nat @ R1 @ R2 )
=> ( ( plus_p6165643967897163644ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ R1 ) ) @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ R1 @ R2 ) ) )
= ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ R2 ) ) ) ) ).
% sum_split
thf(fact_46_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_47_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_48_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_49_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ W ) @ Z ) )
= ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_50_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_51_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_52_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_53_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ M ) @ ( numera7938180240421336042ring_a @ N ) )
= ( numera7938180240421336042ring_a @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_54_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_55_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_56_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_57_add__numeral__left,axiom,
! [V: num,W: num,Z: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ V ) @ ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ W ) @ Z ) )
= ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_58_add__numeral__left,axiom,
! [V: num,W: num,Z: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_59_add__numeral__left,axiom,
! [V: num,W: num,Z: int] :
( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_60_add__numeral__left,axiom,
! [V: num,W: num,Z: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_61_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ M ) @ ( numera7938180240421336042ring_a @ N ) )
= ( numera7938180240421336042ring_a @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_62_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_63_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_64_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_65_num__double,axiom,
! [N: num] :
( ( times_times_num @ ( bit0 @ one ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_66_power__mult__numeral,axiom,
! [A: finite_mod_ring_a,M: num,N: num] :
( ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_67_power__mult__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_68_power__mult__numeral,axiom,
! [A: int,M: num,N: num] :
( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_69_power__mult__numeral,axiom,
! [A: real,M: num,N: num] :
( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_70_sum__squares__eq__zero__iff,axiom,
! [X: int,Y: int] :
( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_71_sum__squares__eq__zero__iff,axiom,
! [X: real,Y: real] :
( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_72_div__mult__mult1__if,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( C = zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
= zero_z7902377541816115708ring_a ) )
& ( ( C != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
= ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_73_div__mult__mult1__if,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( C = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= zero_zero_nat ) )
& ( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_74_div__mult__mult1__if,axiom,
! [C: int,A: int,B: int] :
( ( ( C = zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= zero_zero_int ) )
& ( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ) ).
% div_mult_mult1_if
thf(fact_75_div__mult__mult2,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ B @ C ) )
= ( divide972148758386938611ring_a @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_76_div__mult__mult2,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_77_div__mult__mult2,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult2
thf(fact_78_div__mult__mult1,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
= ( divide972148758386938611ring_a @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_79_div__mult__mult1,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
= ( divide_divide_nat @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_80_div__mult__mult1,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( divide_divide_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( divide_divide_int @ A @ B ) ) ) ).
% div_mult_mult1
thf(fact_81_distrib__right__numeral,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,V: num] :
( ( times_5121417576591743744ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ ( numera7938180240421336042ring_a @ V ) )
= ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ ( numera7938180240421336042ring_a @ V ) ) @ ( times_5121417576591743744ring_a @ B @ ( numera7938180240421336042ring_a @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_82_distrib__right__numeral,axiom,
! [A: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_83_distrib__right__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_84_distrib__right__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_85_distrib__left__numeral,axiom,
! [V: num,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ ( plus_p6165643967897163644ring_a @ B @ C ) )
= ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ B ) @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_86_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_87_distrib__left__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_88_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_89_power__0__Suc,axiom,
! [N: nat] :
( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ ( suc @ N ) )
= zero_z7902377541816115708ring_a ) ).
% power_0_Suc
thf(fact_90_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_91_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
= zero_zero_int ) ).
% power_0_Suc
thf(fact_92_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
= zero_zero_real ) ).
% power_0_Suc
thf(fact_93_power__zero__numeral,axiom,
! [K: num] :
( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ ( numeral_numeral_nat @ K ) )
= zero_z7902377541816115708ring_a ) ).
% power_zero_numeral
thf(fact_94_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
= zero_zero_nat ) ).
% power_zero_numeral
thf(fact_95_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
= zero_zero_int ) ).
% power_zero_numeral
thf(fact_96_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
= zero_zero_real ) ).
% power_zero_numeral
thf(fact_97_power__add__numeral2,axiom,
! [A: finite_mod_ring_a,M: num,N: num,B: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_98_power__add__numeral2,axiom,
! [A: nat,M: num,N: num,B: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_99_power__add__numeral2,axiom,
! [A: int,M: num,N: num,B: int] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_100_power__add__numeral2,axiom,
! [A: real,M: num,N: num,B: real] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_101_power__add__numeral,axiom,
! [A: finite_mod_ring_a,M: num,N: num] :
( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_102_power__add__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_103_power__add__numeral,axiom,
! [A: int,M: num,N: num] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_104_power__add__numeral,axiom,
! [A: real,M: num,N: num] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_105_power__Suc0__right,axiom,
! [A: finite_mod_ring_a] :
( ( power_6826135765519566523ring_a @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_106_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_107_power__Suc0__right,axiom,
! [A: int] :
( ( power_power_int @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_108_power__Suc0__right,axiom,
! [A: real] :
( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_109_Suc__numeral,axiom,
! [N: num] :
( ( suc @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% Suc_numeral
thf(fact_110_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M: nat] :
( ( ( power_power_nat @ X @ M )
= ( suc @ zero_zero_nat ) )
= ( ( M = zero_zero_nat )
| ( X
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_111_power__Suc__0,axiom,
! [N: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_112_div__by__Suc__0,axiom,
! [M: nat] :
( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
= M ) ).
% div_by_Suc_0
thf(fact_113_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_114_div__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( divide_divide_nat @ M @ N )
= zero_zero_nat ) ) ).
% div_less
thf(fact_115_less__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% less_divide_eq_numeral1(1)
thf(fact_116_divide__less__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_less_eq_numeral1(1)
thf(fact_117_power__eq__0__iff,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( ( power_6826135765519566523ring_a @ A @ N )
= zero_z7902377541816115708ring_a )
= ( ( A = zero_z7902377541816115708ring_a )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_118_power__eq__0__iff,axiom,
! [A: nat,N: nat] :
( ( ( power_power_nat @ A @ N )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_119_power__eq__0__iff,axiom,
! [A: int,N: nat] :
( ( ( power_power_int @ A @ N )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_120_power__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( power_power_real @ A @ N )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_121_div__mult__self1__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
= M ) ) ).
% div_mult_self1_is_m
thf(fact_122_div__mult__self__is__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
= M ) ) ).
% div_mult_self_is_m
thf(fact_123_fntt1__by__index,axiom,
! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) )
=> ( ( nth_Fi694352073394265932ring_a @ fntt1 @ I2 )
= ( ntt_gen_a @ n2 @ omega @ numbers1 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ I2 ) ) ) ).
% fntt1_by_index
thf(fact_124_add__2__eq__Suc_H,axiom,
! [N: nat] :
( ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc'
thf(fact_125_add__2__eq__Suc,axiom,
! [N: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= ( suc @ ( suc @ N ) ) ) ).
% add_2_eq_Suc
thf(fact_126_div2__Suc__Suc,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( suc @ ( suc @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div2_Suc_Suc
thf(fact_127_zero__less__power2,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_int ) ) ).
% zero_less_power2
thf(fact_128_zero__less__power2,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_real ) ) ).
% zero_less_power2
thf(fact_129_Suc_Oprems_I2_J,axiom,
ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ la ) ) @ n2 ).
% Suc.prems(2)
thf(fact_130_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_131_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_132_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_133_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_134_power__gt__expt,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).
% power_gt_expt
thf(fact_135_butterfly_Ontt__gen_Ocong,axiom,
ntt_gen_a = ntt_gen_a ).
% butterfly.ntt_gen.cong
thf(fact_136_butterfly_ONTT__gen_Ocong,axiom,
nTT_gen_a = nTT_gen_a ).
% butterfly.NTT_gen.cong
thf(fact_137_Suc__nat__number__of__add,axiom,
! [V: num,N: nat] :
( ( suc @ ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ one ) ) @ N ) ) ).
% Suc_nat_number_of_add
thf(fact_138_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_less_zero
thf(fact_139_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_less_zero
thf(fact_140_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_less_zero
thf(fact_141_zero__less__numeral,axiom,
! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_less_numeral
thf(fact_142_zero__less__numeral,axiom,
! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_less_numeral
thf(fact_143_zero__less__numeral,axiom,
! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_less_numeral
thf(fact_144_zero__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_145_zero__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_less_power
thf(fact_146_zero__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_less_power
thf(fact_147_power__Suc2,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( power_6826135765519566523ring_a @ A @ ( suc @ N ) )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_148_power__Suc2,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_149_power__Suc2,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_150_power__Suc2,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_151_power__Suc,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( power_6826135765519566523ring_a @ A @ ( suc @ N ) )
= ( times_5121417576591743744ring_a @ A @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ).
% power_Suc
thf(fact_152_power__Suc,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_Suc
thf(fact_153_power__Suc,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_Suc
thf(fact_154_power__Suc,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_Suc
thf(fact_155_nat__power__less__imp__less,axiom,
! [I2: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I2 )
=> ( ( ord_less_nat @ ( power_power_nat @ I2 @ M ) @ ( power_power_nat @ I2 @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_156_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N: nat] :
( ( ( divide_divide_nat @ M @ N )
= zero_zero_nat )
= ( ( ord_less_nat @ M @ N )
| ( N = zero_zero_nat ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_157_less__mult__imp__div__less,axiom,
! [M: nat,I2: nat,N: nat] :
( ( ord_less_nat @ M @ ( times_times_nat @ I2 @ N ) )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I2 ) ) ).
% less_mult_imp_div_less
thf(fact_158_less__2__cases__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases_iff
thf(fact_159_less__2__cases,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( ( N = zero_zero_nat )
| ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% less_2_cases
thf(fact_160_Suc__n__div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% Suc_n_div_2_gt_zero
thf(fact_161_div__2__gt__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% div_2_gt_zero
thf(fact_162_sum__squares__gt__zero__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) )
= ( ( X != zero_zero_int )
| ( Y != zero_zero_int ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_163_sum__squares__gt__zero__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) )
= ( ( X != zero_zero_real )
| ( Y != zero_zero_real ) ) ) ).
% sum_squares_gt_zero_iff
thf(fact_164_numeral__1__eq__Suc__0,axiom,
( ( numeral_numeral_nat @ one )
= ( suc @ zero_zero_nat ) ) ).
% numeral_1_eq_Suc_0
thf(fact_165_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ N )
= zero_z7902377541816115708ring_a ) ) ).
% zero_power
thf(fact_166_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_167_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ).
% zero_power
thf(fact_168_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ).
% zero_power
thf(fact_169_div__less__iff__less__mult,axiom,
! [Q: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q )
=> ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q ) @ N )
= ( ord_less_nat @ M @ ( times_times_nat @ N @ Q ) ) ) ) ).
% div_less_iff_less_mult
thf(fact_170_odd__power__less__zero,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_int ) ) ).
% odd_power_less_zero
thf(fact_171_odd__power__less__zero,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) @ zero_zero_real ) ) ).
% odd_power_less_zero
thf(fact_172_less__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq_numeral(1)
thf(fact_173_divide__less__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).
% divide_less_eq_numeral(1)
thf(fact_174_numeral__2__eq__2,axiom,
( ( numeral_numeral_nat @ ( bit0 @ one ) )
= ( suc @ ( suc @ zero_zero_nat ) ) ) ).
% numeral_2_eq_2
thf(fact_175_less__exp,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% less_exp
thf(fact_176_dividend__less__times__div,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) ) ) ) ).
% dividend_less_times_div
thf(fact_177_dividend__less__div__times,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ M @ ( plus_plus_nat @ N @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) ) ) ) ).
% dividend_less_div_times
thf(fact_178_split__div,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( P @ zero_zero_nat ) )
& ( ( N != zero_zero_nat )
=> ! [I: nat,J: nat] :
( ( ( ord_less_nat @ J @ N )
& ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I ) @ J ) ) )
=> ( P @ I ) ) ) ) ) ).
% split_div
thf(fact_179_is__num__normalize_I1_J,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
= ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_180_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_181_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_182_half__gt__zero__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% half_gt_zero_iff
thf(fact_183_half__gt__zero,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_184_power2__less__0,axiom,
! [A: int] :
~ ( ord_less_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int ) ).
% power2_less_0
thf(fact_185_power2__less__0,axiom,
! [A: real] :
~ ( ord_less_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real ) ).
% power2_less_0
thf(fact_186_sum__power2__gt__zero__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X != zero_zero_int )
| ( Y != zero_zero_int ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_187_sum__power2__gt__zero__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
= ( ( X != zero_zero_real )
| ( Y != zero_zero_real ) ) ) ).
% sum_power2_gt_zero_iff
thf(fact_188_not__sum__power2__lt__zero,axiom,
! [X: int,Y: int] :
~ ( ord_less_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int ) ).
% not_sum_power2_lt_zero
thf(fact_189_not__sum__power2__lt__zero,axiom,
! [X: real,Y: real] :
~ ( ord_less_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real ) ).
% not_sum_power2_lt_zero
thf(fact_190_power__odd__eq,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( power_6826135765519566523ring_a @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_5121417576591743744ring_a @ A @ ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_191_power__odd__eq,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_nat @ A @ ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_192_power__odd__eq,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_int @ A @ ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_193_power__odd__eq,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) )
= ( times_times_real @ A @ ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% power_odd_eq
thf(fact_194_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_nat
!= ( numeral_numeral_nat @ N ) ) ).
% zero_neq_numeral
thf(fact_195_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( numeral_numeral_int @ N ) ) ).
% zero_neq_numeral
thf(fact_196_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( numeral_numeral_real @ N ) ) ).
% zero_neq_numeral
thf(fact_197_power__not__zero,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( A != zero_z7902377541816115708ring_a )
=> ( ( power_6826135765519566523ring_a @ A @ N )
!= zero_z7902377541816115708ring_a ) ) ).
% power_not_zero
thf(fact_198_power__not__zero,axiom,
! [A: nat,N: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_199_power__not__zero,axiom,
! [A: int,N: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_200_power__not__zero,axiom,
! [A: real,N: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_201_power__commuting__commutes,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a,N: nat] :
( ( ( times_5121417576591743744ring_a @ X @ Y )
= ( times_5121417576591743744ring_a @ Y @ X ) )
=> ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ X @ N ) @ Y )
= ( times_5121417576591743744ring_a @ Y @ ( power_6826135765519566523ring_a @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_202_power__commuting__commutes,axiom,
! [X: nat,Y: nat,N: nat] :
( ( ( times_times_nat @ X @ Y )
= ( times_times_nat @ Y @ X ) )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y )
= ( times_times_nat @ Y @ ( power_power_nat @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_203_power__commuting__commutes,axiom,
! [X: int,Y: int,N: nat] :
( ( ( times_times_int @ X @ Y )
= ( times_times_int @ Y @ X ) )
=> ( ( times_times_int @ ( power_power_int @ X @ N ) @ Y )
= ( times_times_int @ Y @ ( power_power_int @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_204_power__commuting__commutes,axiom,
! [X: real,Y: real,N: nat] :
( ( ( times_times_real @ X @ Y )
= ( times_times_real @ Y @ X ) )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ Y )
= ( times_times_real @ Y @ ( power_power_real @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_205_power__mult__distrib,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,N: nat] :
( ( power_6826135765519566523ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ N )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ ( power_6826135765519566523ring_a @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_206_power__mult__distrib,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_207_power__mult__distrib,axiom,
! [A: int,B: int,N: nat] :
( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
= ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_208_power__mult__distrib,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
= ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_209_power__commutes,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ A )
= ( times_5121417576591743744ring_a @ A @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ).
% power_commutes
thf(fact_210_power__commutes,axiom,
! [A: nat,N: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_commutes
thf(fact_211_power__commutes,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_commutes
thf(fact_212_power__commutes,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_commutes
thf(fact_213_power__divide,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,N: nat] :
( ( power_6826135765519566523ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ N )
= ( divide972148758386938611ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ ( power_6826135765519566523ring_a @ B @ N ) ) ) ).
% power_divide
thf(fact_214_power__divide,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( divide_divide_real @ A @ B ) @ N )
= ( divide_divide_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_divide
thf(fact_215_power__mult,axiom,
! [A: finite_mod_ring_a,M: nat,N: nat] :
( ( power_6826135765519566523ring_a @ A @ ( times_times_nat @ M @ N ) )
= ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_216_power__mult,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_217_power__mult,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_218_power__mult,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_219_div__mult2__eq,axiom,
! [M: nat,N: nat,Q: nat] :
( ( divide_divide_nat @ M @ ( times_times_nat @ N @ Q ) )
= ( divide_divide_nat @ ( divide_divide_nat @ M @ N ) @ Q ) ) ).
% div_mult2_eq
thf(fact_220_mult__numeral__1__right,axiom,
! [A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ A @ ( numera7938180240421336042ring_a @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_221_mult__numeral__1__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ ( numeral_numeral_nat @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_222_mult__numeral__1__right,axiom,
! [A: int] :
( ( times_times_int @ A @ ( numeral_numeral_int @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_223_mult__numeral__1__right,axiom,
! [A: real] :
( ( times_times_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% mult_numeral_1_right
thf(fact_224_mult__numeral__1,axiom,
! [A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_225_mult__numeral__1,axiom,
! [A: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_226_mult__numeral__1,axiom,
! [A: int] :
( ( times_times_int @ ( numeral_numeral_int @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_227_mult__numeral__1,axiom,
! [A: real] :
( ( times_times_real @ ( numeral_numeral_real @ one ) @ A )
= A ) ).
% mult_numeral_1
thf(fact_228_numeral__Bit0,axiom,
! [N: num] :
( ( numera7938180240421336042ring_a @ ( bit0 @ N ) )
= ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ N ) @ ( numera7938180240421336042ring_a @ N ) ) ) ).
% numeral_Bit0
thf(fact_229_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_Bit0
thf(fact_230_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit0 @ N ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_Bit0
thf(fact_231_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_Bit0
thf(fact_232_divide__numeral__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_233_power__add,axiom,
! [A: finite_mod_ring_a,M: nat,N: nat] :
( ( power_6826135765519566523ring_a @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ M ) @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ).
% power_add
thf(fact_234_power__add,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) ) ) ).
% power_add
thf(fact_235_power__add,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) ) ) ).
% power_add
thf(fact_236_power__add,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( plus_plus_nat @ M @ N ) )
= ( times_times_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) ) ) ).
% power_add
thf(fact_237_numeral__code_I2_J,axiom,
! [N: num] :
( ( numera7938180240421336042ring_a @ ( bit0 @ N ) )
= ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ N ) @ ( numera7938180240421336042ring_a @ N ) ) ) ).
% numeral_code(2)
thf(fact_238_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_code(2)
thf(fact_239_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit0 @ N ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_code(2)
thf(fact_240_numeral__code_I2_J,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_code(2)
thf(fact_241_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( ( numera7938180240421336042ring_a @ W )
= ( divide972148758386938611ring_a @ B @ C ) )
= ( ( ( C != zero_z7902377541816115708ring_a )
=> ( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ W ) @ C )
= B ) )
& ( ( C = zero_z7902377541816115708ring_a )
=> ( ( numera7938180240421336042ring_a @ W )
= zero_z7902377541816115708ring_a ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_242_eq__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ( numeral_numeral_real @ W )
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ ( numeral_numeral_real @ W ) @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral(1)
thf(fact_243_divide__eq__eq__numeral_I1_J,axiom,
! [B: finite_mod_ring_a,C: finite_mod_ring_a,W: num] :
( ( ( divide972148758386938611ring_a @ B @ C )
= ( numera7938180240421336042ring_a @ W ) )
= ( ( ( C != zero_z7902377541816115708ring_a )
=> ( B
= ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ W ) @ C ) ) )
& ( ( C = zero_z7902377541816115708ring_a )
=> ( ( numera7938180240421336042ring_a @ W )
= zero_z7902377541816115708ring_a ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_244_divide__eq__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ( divide_divide_real @ B @ C )
= ( numeral_numeral_real @ W ) )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ( C = zero_zero_real )
=> ( ( numeral_numeral_real @ W )
= zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral(1)
thf(fact_245_power__numeral__even,axiom,
! [Z: finite_mod_ring_a,W: num] :
( ( power_6826135765519566523ring_a @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_6826135765519566523ring_a @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_246_power__numeral__even,axiom,
! [Z: nat,W: num] :
( ( power_power_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_nat @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_nat @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_247_power__numeral__even,axiom,
! [Z: int,W: num] :
( ( power_power_int @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_int @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_int @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_248_power__numeral__even,axiom,
! [Z: real,W: num] :
( ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit0 @ W ) ) )
= ( times_times_real @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ W ) ) ) ) ).
% power_numeral_even
thf(fact_249_left__add__twice,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ A @ B ) )
= ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_250_left__add__twice,axiom,
! [A: nat,B: nat] :
( ( plus_plus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_251_left__add__twice,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_252_left__add__twice,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ A ) @ B ) ) ).
% left_add_twice
thf(fact_253_mult__2__right,axiom,
! [Z: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ Z @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) )
= ( plus_p6165643967897163644ring_a @ Z @ Z ) ) ).
% mult_2_right
thf(fact_254_mult__2__right,axiom,
! [Z: nat] :
( ( times_times_nat @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2_right
thf(fact_255_mult__2__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2_right
thf(fact_256_mult__2__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( numeral_numeral_real @ ( bit0 @ one ) ) )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2_right
thf(fact_257_mult__2,axiom,
! [Z: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) @ Z )
= ( plus_p6165643967897163644ring_a @ Z @ Z ) ) ).
% mult_2
thf(fact_258_mult__2,axiom,
! [Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_nat @ Z @ Z ) ) ).
% mult_2
thf(fact_259_mult__2,axiom,
! [Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_int @ Z @ Z ) ) ).
% mult_2
thf(fact_260_mult__2,axiom,
! [Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ Z )
= ( plus_plus_real @ Z @ Z ) ) ).
% mult_2
thf(fact_261_zero__power2,axiom,
( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_z7902377541816115708ring_a ) ).
% zero_power2
thf(fact_262_zero__power2,axiom,
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% zero_power2
thf(fact_263_zero__power2,axiom,
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% zero_power2
thf(fact_264_zero__power2,axiom,
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real ) ).
% zero_power2
thf(fact_265_power2__eq__square,axiom,
! [A: finite_mod_ring_a] :
( ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_5121417576591743744ring_a @ A @ A ) ) ).
% power2_eq_square
thf(fact_266_power2__eq__square,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_nat @ A @ A ) ) ).
% power2_eq_square
thf(fact_267_power2__eq__square,axiom,
! [A: int] :
( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_int @ A @ A ) ) ).
% power2_eq_square
thf(fact_268_power2__eq__square,axiom,
! [A: real] :
( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ A @ A ) ) ).
% power2_eq_square
thf(fact_269_power4__eq__xxxx,axiom,
! [X: finite_mod_ring_a] :
( ( power_6826135765519566523ring_a @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_270_power4__eq__xxxx,axiom,
! [X: nat] :
( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_nat @ ( times_times_nat @ ( times_times_nat @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_271_power4__eq__xxxx,axiom,
! [X: int] :
( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_int @ ( times_times_int @ ( times_times_int @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_272_power4__eq__xxxx,axiom,
! [X: real] :
( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( times_times_real @ ( times_times_real @ ( times_times_real @ X @ X ) @ X ) @ X ) ) ).
% power4_eq_xxxx
thf(fact_273_power__even__eq,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( power_6826135765519566523ring_a @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_274_power__even__eq,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_275_power__even__eq,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_int @ ( power_power_int @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_276_power__even__eq,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ ( power_power_real @ A @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power_even_eq
thf(fact_277_power2__sum,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
( ( power_6826135765519566523ring_a @ ( plus_p6165643967897163644ring_a @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_p6165643967897163644ring_a @ ( plus_p6165643967897163644ring_a @ ( power_6826135765519566523ring_a @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_6826135765519566523ring_a @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_278_power2__sum,axiom,
! [X: nat,Y: nat] :
( ( power_power_nat @ ( plus_plus_nat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_279_power2__sum,axiom,
! [X: int,Y: int] :
( ( power_power_int @ ( plus_plus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_280_power2__sum,axiom,
! [X: real,Y: real] :
( ( power_power_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_281__C01_C,axiom,
( ( size_s7115545719440041015ring_a @ sum2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).
% "01"
thf(fact_282_NTT__gen__NTT__full__length,axiom,
! [Numbers: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ Numbers )
= n2 )
=> ( ( nTT_gen_a @ n2 @ omega @ n2 @ Numbers )
= ( nTT_a @ n2 @ omega @ Numbers ) ) ) ).
% NTT_gen_NTT_full_length
thf(fact_283_length__NTT,axiom,
! [Numbers: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ Numbers )
= n2 )
=> ( ( size_s7115545719440041015ring_a @ ( nTT_a @ n2 @ omega @ Numbers ) )
= n2 ) ) ).
% length_NTT
thf(fact_284_k__bound,axiom,
ord_less_nat @ zero_zero_nat @ k ).
% k_bound
thf(fact_285_sum_Oop__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > nat] :
( ( ( ord_less_nat @ N @ M )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) ) )
= zero_zero_nat ) )
& ( ~ ( ord_less_nat @ N @ M )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ M @ N ) ) @ ( G @ N ) ) ) ) ) ).
% sum.op_ivl_Suc
thf(fact_286_sum_Oop__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > int] :
( ( ( ord_less_nat @ N @ M )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) ) )
= zero_zero_int ) )
& ( ~ ( ord_less_nat @ N @ M )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ M @ N ) ) @ ( G @ N ) ) ) ) ) ).
% sum.op_ivl_Suc
thf(fact_287_sum_Oop__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > real] :
( ( ( ord_less_nat @ N @ M )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) ) )
= zero_zero_real ) )
& ( ~ ( ord_less_nat @ N @ M )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ M @ N ) ) @ ( G @ N ) ) ) ) ) ).
% sum.op_ivl_Suc
thf(fact_288_sum_Oop__ivl__Suc,axiom,
! [N: nat,M: nat,G: nat > finite_mod_ring_a] :
( ( ( ord_less_nat @ N @ M )
=> ( ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) ) )
= zero_z7902377541816115708ring_a ) )
& ( ~ ( ord_less_nat @ N @ M )
=> ( ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ M @ ( suc @ N ) ) )
= ( plus_p6165643967897163644ring_a @ ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ M @ N ) ) @ ( G @ N ) ) ) ) ) ).
% sum.op_ivl_Suc
thf(fact_289_Suc__0__div__numeral_I2_J,axiom,
! [N: num] :
( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ ( bit0 @ N ) ) )
= zero_zero_nat ) ).
% Suc_0_div_numeral(2)
thf(fact_290_numbers2__even,axiom,
( ( size_s7115545719440041015ring_a @ numbers2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).
% numbers2_even
thf(fact_291_fntt1__def,axiom,
( fntt1
= ( fNTT_a @ n2 @ omega @ numbers1 ) ) ).
% fntt1_def
thf(fact_292_sum__splice__other__way__round,axiom,
! [F: nat > nat,I2: nat] :
( ( plus_plus_nat
@ ( groups3542108847815614940at_nat
@ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) )
@ ( groups3542108847815614940at_nat
@ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) ) )
= ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) ) ) ) ).
% sum_splice_other_way_round
thf(fact_293_sum__splice__other__way__round,axiom,
! [F: nat > int,I2: nat] :
( ( plus_plus_int
@ ( groups3539618377306564664at_int
@ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) )
@ ( groups3539618377306564664at_int
@ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) ) )
= ( groups3539618377306564664at_int @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) ) ) ) ).
% sum_splice_other_way_round
thf(fact_294_sum__splice__other__way__round,axiom,
! [F: nat > real,I2: nat] :
( ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) )
@ ( groups6591440286371151544t_real
@ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) ) )
= ( groups6591440286371151544t_real @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) ) ) ) ).
% sum_splice_other_way_round
thf(fact_295_sum__splice__other__way__round,axiom,
! [F: nat > finite_mod_ring_a,I2: nat] :
( ( plus_p6165643967897163644ring_a
@ ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) )
@ ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ I2 ) ) )
= ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) ) ) ) ).
% sum_splice_other_way_round
thf(fact_296_sum__splice,axiom,
! [F: nat > nat,Nn: nat] :
( ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Nn ) ) )
= ( plus_plus_nat
@ ( groups3542108847815614940at_nat
@ ^ [I: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) )
@ ( groups3542108847815614940at_nat
@ ^ [I: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) ) ) ) ).
% sum_splice
thf(fact_297_sum__splice,axiom,
! [F: nat > int,Nn: nat] :
( ( groups3539618377306564664at_int @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Nn ) ) )
= ( plus_plus_int
@ ( groups3539618377306564664at_int
@ ^ [I: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) )
@ ( groups3539618377306564664at_int
@ ^ [I: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) ) ) ) ).
% sum_splice
thf(fact_298_sum__splice,axiom,
! [F: nat > real,Nn: nat] :
( ( groups6591440286371151544t_real @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Nn ) ) )
= ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [I: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) )
@ ( groups6591440286371151544t_real
@ ^ [I: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) ) ) ) ).
% sum_splice
thf(fact_299_sum__splice,axiom,
! [F: nat > finite_mod_ring_a,Nn: nat] :
( ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Nn ) ) )
= ( plus_p6165643967897163644ring_a
@ ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) )
@ ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Nn ) ) ) ) ).
% sum_splice
thf(fact_300_two__powrs__div,axiom,
! [J2: nat,I2: nat] :
( ( ord_less_nat @ J2 @ I2 )
=> ( ( times_times_nat @ ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ J2 ) ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ I2 ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J2 ) ) ) ) ).
% two_powrs_div
thf(fact_301_n__lst2,axiom,
ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ n2 ).
% n_lst2
thf(fact_302_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_303_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_304_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_305_power__one,axiom,
! [N: nat] :
( ( power_6826135765519566523ring_a @ one_on2109788427901206336ring_a @ N )
= one_on2109788427901206336ring_a ) ).
% power_one
thf(fact_306_power__one,axiom,
! [N: nat] :
( ( power_power_nat @ one_one_nat @ N )
= one_one_nat ) ).
% power_one
thf(fact_307_power__one,axiom,
! [N: nat] :
( ( power_power_int @ one_one_int @ N )
= one_one_int ) ).
% power_one
thf(fact_308_power__one,axiom,
! [N: nat] :
( ( power_power_real @ one_one_real @ N )
= one_one_real ) ).
% power_one
thf(fact_309_ivl__subset,axiom,
! [I2: int,J2: int,M: int,N: int] :
( ( ord_less_eq_set_int @ ( set_or4662586982721622107an_int @ I2 @ J2 ) @ ( set_or4662586982721622107an_int @ M @ N ) )
= ( ( ord_less_eq_int @ J2 @ I2 )
| ( ( ord_less_eq_int @ M @ I2 )
& ( ord_less_eq_int @ J2 @ N ) ) ) ) ).
% ivl_subset
thf(fact_310_ivl__subset,axiom,
! [I2: num,J2: num,M: num,N: num] :
( ( ord_less_eq_set_num @ ( set_or1222409239386451017an_num @ I2 @ J2 ) @ ( set_or1222409239386451017an_num @ M @ N ) )
= ( ( ord_less_eq_num @ J2 @ I2 )
| ( ( ord_less_eq_num @ M @ I2 )
& ( ord_less_eq_num @ J2 @ N ) ) ) ) ).
% ivl_subset
thf(fact_311_ivl__subset,axiom,
! [I2: real,J2: real,M: real,N: real] :
( ( ord_less_eq_set_real @ ( set_or66887138388493659n_real @ I2 @ J2 ) @ ( set_or66887138388493659n_real @ M @ N ) )
= ( ( ord_less_eq_real @ J2 @ I2 )
| ( ( ord_less_eq_real @ M @ I2 )
& ( ord_less_eq_real @ J2 @ N ) ) ) ) ).
% ivl_subset
thf(fact_312_ivl__subset,axiom,
! [I2: nat,J2: nat,M: nat,N: nat] :
( ( ord_less_eq_set_nat @ ( set_or4665077453230672383an_nat @ I2 @ J2 ) @ ( set_or4665077453230672383an_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ J2 @ I2 )
| ( ( ord_less_eq_nat @ M @ I2 )
& ( ord_less_eq_nat @ J2 @ N ) ) ) ) ).
% ivl_subset
thf(fact_313_power__one__right,axiom,
! [A: finite_mod_ring_a] :
( ( power_6826135765519566523ring_a @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_314_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_315_power__one__right,axiom,
! [A: int] :
( ( power_power_int @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_316_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_317_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_318_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_int @ N )
= one_one_int )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_319_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_320_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_321_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_int
= ( numeral_numeral_int @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_322_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_323_power__inject__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M )
= ( power_power_nat @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_324_power__inject__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M )
= ( power_power_int @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_325_power__inject__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M )
= ( power_power_real @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_326_atLeastLessThan__iff,axiom,
! [I2: int,L2: int,U: int] :
( ( member_int @ I2 @ ( set_or4662586982721622107an_int @ L2 @ U ) )
= ( ( ord_less_eq_int @ L2 @ I2 )
& ( ord_less_int @ I2 @ U ) ) ) ).
% atLeastLessThan_iff
thf(fact_327_atLeastLessThan__iff,axiom,
! [I2: num,L2: num,U: num] :
( ( member_num @ I2 @ ( set_or1222409239386451017an_num @ L2 @ U ) )
= ( ( ord_less_eq_num @ L2 @ I2 )
& ( ord_less_num @ I2 @ U ) ) ) ).
% atLeastLessThan_iff
thf(fact_328_atLeastLessThan__iff,axiom,
! [I2: real,L2: real,U: real] :
( ( member_real @ I2 @ ( set_or66887138388493659n_real @ L2 @ U ) )
= ( ( ord_less_eq_real @ L2 @ I2 )
& ( ord_less_real @ I2 @ U ) ) ) ).
% atLeastLessThan_iff
thf(fact_329_atLeastLessThan__iff,axiom,
! [I2: nat,L2: nat,U: nat] :
( ( member_nat @ I2 @ ( set_or4665077453230672383an_nat @ L2 @ U ) )
= ( ( ord_less_eq_nat @ L2 @ I2 )
& ( ord_less_nat @ I2 @ U ) ) ) ).
% atLeastLessThan_iff
thf(fact_330_Suc_OIH,axiom,
! [Numbers: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ Numbers )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ n2 )
=> ( ( fNTT_a @ n2 @ omega @ Numbers )
= ( nTT_gen_a @ n2 @ omega @ ( size_s7115545719440041015ring_a @ Numbers ) @ Numbers ) ) ) ) ).
% Suc.IH
thf(fact_331_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_332_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_333_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_334_divide__le__eq__numeral1_I1_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) ) ) ).
% divide_le_eq_numeral1(1)
thf(fact_335_le__divide__eq__numeral1_I1_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( numeral_numeral_real @ W ) ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( numeral_numeral_real @ W ) ) @ B ) ) ).
% le_divide_eq_numeral1(1)
thf(fact_336_power__strict__increasing__iff,axiom,
! [B: nat,X: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_337_power__strict__increasing__iff,axiom,
! [B: int,X: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_338_power__strict__increasing__iff,axiom,
! [B: real,X: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_339_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% half_negative_int_iff
thf(fact_340_power__strict__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_341_power__strict__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_342_power__strict__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_343_one__add__one,axiom,
( ( plus_p6165643967897163644ring_a @ one_on2109788427901206336ring_a @ one_on2109788427901206336ring_a )
= ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_344_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_345_one__add__one,axiom,
( ( plus_plus_int @ one_one_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_346_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_347_power__mono__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_348_power__mono__iff,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_349_power__mono__iff,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_350_power__increasing__iff,axiom,
! [B: nat,X: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_351_power__increasing__iff,axiom,
! [B: int,X: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_352_power__increasing__iff,axiom,
! [B: real,X: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_353_Suc__1,axiom,
( ( suc @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% Suc_1
thf(fact_354_numeral__plus__one,axiom,
! [N: num] :
( ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ N ) @ one_on2109788427901206336ring_a )
= ( numera7938180240421336042ring_a @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_355_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_356_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_357_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_358_one__plus__numeral,axiom,
! [N: num] :
( ( plus_p6165643967897163644ring_a @ one_on2109788427901206336ring_a @ ( numera7938180240421336042ring_a @ N ) )
= ( numera7938180240421336042ring_a @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_359_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_360_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_361_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_362_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_363_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_364_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_365_power__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_366_power__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_367_power__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_368_one__div__two__eq__zero,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% one_div_two_eq_zero
thf(fact_369_one__div__two__eq__zero,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% one_div_two_eq_zero
thf(fact_370_power2__less__eq__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% power2_less_eq_zero_iff
thf(fact_371_power2__less__eq__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% power2_less_eq_zero_iff
thf(fact_372_power2__eq__iff__nonneg,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_373_power2__eq__iff__nonneg,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_374_power2__eq__iff__nonneg,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_375_Suc__0__div__numeral_I1_J,axiom,
( ( divide_divide_nat @ ( suc @ zero_zero_nat ) @ ( numeral_numeral_nat @ one ) )
= one_one_nat ) ).
% Suc_0_div_numeral(1)
thf(fact_376_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_377_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_378_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_379_power__increasing,axiom,
! [N: nat,N2: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N2 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% power_increasing
thf(fact_380_power__increasing,axiom,
! [N: nat,N2: nat,A: int] :
( ( ord_less_eq_nat @ N @ N2 )
=> ( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N2 ) ) ) ) ).
% power_increasing
thf(fact_381_power__increasing,axiom,
! [N: nat,N2: nat,A: real] :
( ( ord_less_eq_nat @ N @ N2 )
=> ( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N2 ) ) ) ) ).
% power_increasing
thf(fact_382_div__neg__pos__less0,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_neg_pos_less0
thf(fact_383_neg__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_384_pos__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_385_butterfly_OFNTT_Ocong,axiom,
fNTT_a = fNTT_a ).
% butterfly.FNTT.cong
thf(fact_386_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M2: nat] :
( ( P @ X )
=> ( ! [X2: nat] :
( ( P @ X2 )
=> ( ord_less_eq_nat @ X2 @ M2 ) )
=> ~ ! [M3: nat] :
( ( P @ M3 )
=> ~ ! [X3: nat] :
( ( P @ X3 )
=> ( ord_less_eq_nat @ X3 @ M3 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_387_atLeastLessThan__subset__iff,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_set_int @ ( set_or4662586982721622107an_int @ A @ B ) @ ( set_or4662586982721622107an_int @ C @ D ) )
=> ( ( ord_less_eq_int @ B @ A )
| ( ( ord_less_eq_int @ C @ A )
& ( ord_less_eq_int @ B @ D ) ) ) ) ).
% atLeastLessThan_subset_iff
thf(fact_388_atLeastLessThan__subset__iff,axiom,
! [A: num,B: num,C: num,D: num] :
( ( ord_less_eq_set_num @ ( set_or1222409239386451017an_num @ A @ B ) @ ( set_or1222409239386451017an_num @ C @ D ) )
=> ( ( ord_less_eq_num @ B @ A )
| ( ( ord_less_eq_num @ C @ A )
& ( ord_less_eq_num @ B @ D ) ) ) ) ).
% atLeastLessThan_subset_iff
thf(fact_389_atLeastLessThan__subset__iff,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_set_real @ ( set_or66887138388493659n_real @ A @ B ) @ ( set_or66887138388493659n_real @ C @ D ) )
=> ( ( ord_less_eq_real @ B @ A )
| ( ( ord_less_eq_real @ C @ A )
& ( ord_less_eq_real @ B @ D ) ) ) ) ).
% atLeastLessThan_subset_iff
thf(fact_390_atLeastLessThan__subset__iff,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_set_nat @ ( set_or4665077453230672383an_nat @ A @ B ) @ ( set_or4665077453230672383an_nat @ C @ D ) )
=> ( ( ord_less_eq_nat @ B @ A )
| ( ( ord_less_eq_nat @ C @ A )
& ( ord_less_eq_nat @ B @ D ) ) ) ) ).
% atLeastLessThan_subset_iff
thf(fact_391_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).
% one_le_numeral
thf(fact_392_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).
% one_le_numeral
thf(fact_393_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).
% one_le_numeral
thf(fact_394_one__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).
% one_le_power
thf(fact_395_one__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).
% one_le_power
thf(fact_396_one__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% one_le_power
thf(fact_397_power__decreasing,axiom,
! [N: nat,N2: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_398_power__decreasing,axiom,
! [N: nat,N2: nat,A: int] :
( ( ord_less_eq_nat @ N @ N2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_399_power__decreasing,axiom,
! [N: nat,N2: nat,A: real] :
( ( ord_less_eq_nat @ N @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_400_power__le__imp__le__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_401_power__le__imp__le__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_402_power__le__imp__le__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_403_power__le__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).
% power_le_one
thf(fact_404_power__le__one,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).
% power_le_one
thf(fact_405_power__le__one,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).
% power_le_one
thf(fact_406_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_407_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_408_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_409_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_410_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_411_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_412_div__le__mono,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).
% div_le_mono
thf(fact_413_div__le__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).
% div_le_dividend
thf(fact_414_power__Suc__le__self,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_415_power__Suc__le__self,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_416_power__Suc__le__self,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_417_self__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_418_self__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_419_self__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_420_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_le_numeral
thf(fact_421_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_le_numeral
thf(fact_422_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_le_numeral
thf(fact_423_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_le_zero
thf(fact_424_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_le_zero
thf(fact_425_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_le_zero
thf(fact_426_power__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).
% power_mono
thf(fact_427_power__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono
thf(fact_428_power__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono
thf(fact_429_zero__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_le_power
thf(fact_430_zero__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_le_power
thf(fact_431_zero__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_le_power
thf(fact_432_sum_Oivl__cong,axiom,
! [A: nat,C: nat,B: nat,D: nat,G: nat > finite_mod_ring_a,H: nat > finite_mod_ring_a] :
( ( A = C )
=> ( ( B = D )
=> ( ! [X2: nat] :
( ( ord_less_eq_nat @ C @ X2 )
=> ( ( ord_less_nat @ X2 @ D )
=> ( ( G @ X2 )
= ( H @ X2 ) ) ) )
=> ( ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ A @ B ) )
= ( groups3558780024651037881ring_a @ H @ ( set_or4665077453230672383an_nat @ C @ D ) ) ) ) ) ) ).
% sum.ivl_cong
thf(fact_433_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_434_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_435_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_436_sum_OatLeastLessThan__concat,axiom,
! [M: nat,N: nat,P2: nat,G: nat > nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ P2 )
=> ( ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ M @ N ) ) @ ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ N @ P2 ) ) )
= ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ M @ P2 ) ) ) ) ) ).
% sum.atLeastLessThan_concat
thf(fact_437_sum_OatLeastLessThan__concat,axiom,
! [M: nat,N: nat,P2: nat,G: nat > int] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ P2 )
=> ( ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ M @ N ) ) @ ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ N @ P2 ) ) )
= ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ M @ P2 ) ) ) ) ) ).
% sum.atLeastLessThan_concat
thf(fact_438_sum_OatLeastLessThan__concat,axiom,
! [M: nat,N: nat,P2: nat,G: nat > real] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ P2 )
=> ( ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ M @ N ) ) @ ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ N @ P2 ) ) )
= ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ M @ P2 ) ) ) ) ) ).
% sum.atLeastLessThan_concat
thf(fact_439_sum_OatLeastLessThan__concat,axiom,
! [M: nat,N: nat,P2: nat,G: nat > finite_mod_ring_a] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ P2 )
=> ( ( plus_p6165643967897163644ring_a @ ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ M @ N ) ) @ ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ N @ P2 ) ) )
= ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ M @ P2 ) ) ) ) ) ).
% sum.atLeastLessThan_concat
thf(fact_440_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).
% not_numeral_less_one
thf(fact_441_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).
% not_numeral_less_one
thf(fact_442_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).
% not_numeral_less_one
thf(fact_443_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_p6165643967897163644ring_a @ one_on2109788427901206336ring_a @ ( numera7938180240421336042ring_a @ X ) )
= ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ X ) @ one_on2109788427901206336ring_a ) ) ).
% one_plus_numeral_commute
thf(fact_444_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).
% one_plus_numeral_commute
thf(fact_445_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
= ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).
% one_plus_numeral_commute
thf(fact_446_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).
% one_plus_numeral_commute
thf(fact_447_numeral__One,axiom,
( ( numera7938180240421336042ring_a @ one )
= one_on2109788427901206336ring_a ) ).
% numeral_One
thf(fact_448_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_449_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_450_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_451_left__right__inverse__power,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a,N: nat] :
( ( ( times_5121417576591743744ring_a @ X @ Y )
= one_on2109788427901206336ring_a )
=> ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ X @ N ) @ ( power_6826135765519566523ring_a @ Y @ N ) )
= one_on2109788427901206336ring_a ) ) ).
% left_right_inverse_power
thf(fact_452_left__right__inverse__power,axiom,
! [X: nat,Y: nat,N: nat] :
( ( ( times_times_nat @ X @ Y )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_453_left__right__inverse__power,axiom,
! [X: int,Y: int,N: nat] :
( ( ( times_times_int @ X @ Y )
= one_one_int )
=> ( ( times_times_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ N ) )
= one_one_int ) ) ).
% left_right_inverse_power
thf(fact_454_left__right__inverse__power,axiom,
! [X: real,Y: real,N: nat] :
( ( ( times_times_real @ X @ Y )
= one_one_real )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ N ) )
= one_one_real ) ) ).
% left_right_inverse_power
thf(fact_455_power__0,axiom,
! [A: finite_mod_ring_a] :
( ( power_6826135765519566523ring_a @ A @ zero_zero_nat )
= one_on2109788427901206336ring_a ) ).
% power_0
thf(fact_456_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_457_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_458_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_459_power__one__over,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( power_6826135765519566523ring_a @ ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ A ) @ N )
= ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ).
% power_one_over
thf(fact_460_power__one__over,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( divide_divide_real @ one_one_real @ A ) @ N )
= ( divide_divide_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% power_one_over
thf(fact_461_Suc__div__le__mono,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).
% Suc_div_le_mono
thf(fact_462_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_463_div__times__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).
% div_times_less_eq_dividend
thf(fact_464_times__div__less__eq__dividend,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).
% times_div_less_eq_dividend
thf(fact_465_sum_OatLeastLessThan__Suc,axiom,
! [A: nat,B: nat,G: nat > nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ A @ ( suc @ B ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ A @ B ) ) @ ( G @ B ) ) ) ) ).
% sum.atLeastLessThan_Suc
thf(fact_466_sum_OatLeastLessThan__Suc,axiom,
! [A: nat,B: nat,G: nat > int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ A @ ( suc @ B ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ A @ B ) ) @ ( G @ B ) ) ) ) ).
% sum.atLeastLessThan_Suc
thf(fact_467_sum_OatLeastLessThan__Suc,axiom,
! [A: nat,B: nat,G: nat > real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ A @ ( suc @ B ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ A @ B ) ) @ ( G @ B ) ) ) ) ).
% sum.atLeastLessThan_Suc
thf(fact_468_sum_OatLeastLessThan__Suc,axiom,
! [A: nat,B: nat,G: nat > finite_mod_ring_a] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ A @ ( suc @ B ) ) )
= ( plus_p6165643967897163644ring_a @ ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ A @ B ) ) @ ( G @ B ) ) ) ) ).
% sum.atLeastLessThan_Suc
thf(fact_469_sum__squares__le__zero__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_470_sum__squares__le__zero__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_471_power__less__imp__less__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_472_power__less__imp__less__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_473_power__less__imp__less__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_474_ex__power__ivl1,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ one_one_nat @ K )
=> ? [N3: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N3 ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl1
thf(fact_475_ex__power__ivl2,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N3 ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl2
thf(fact_476_power__inject__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ ( suc @ N ) )
= ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_477_power__inject__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ ( suc @ N ) )
= ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_478_power__inject__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ ( suc @ N ) )
= ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_479_power__le__imp__le__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_480_power__le__imp__le__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_481_power__le__imp__le__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_482_div__add__self1,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( B != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ B @ A ) @ B )
= ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ one_on2109788427901206336ring_a ) ) ) ).
% div_add_self1
thf(fact_483_div__add__self1,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self1
thf(fact_484_div__add__self1,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ B @ A ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self1
thf(fact_485_div__add__self2,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( B != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ B )
= ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ one_on2109788427901206336ring_a ) ) ) ).
% div_add_self2
thf(fact_486_div__add__self2,axiom,
! [B: nat,A: nat] :
( ( B != zero_zero_nat )
=> ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).
% div_add_self2
thf(fact_487_div__add__self2,axiom,
! [B: int,A: int] :
( ( B != zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ A @ B ) @ B )
= ( plus_plus_int @ ( divide_divide_int @ A @ B ) @ one_one_int ) ) ) ).
% div_add_self2
thf(fact_488_power__gt1__lemma,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_489_power__gt1__lemma,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_490_power__gt1__lemma,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_491_power__less__power__Suc,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_492_power__less__power__Suc,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_493_power__less__power__Suc,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_494_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ N )
= one_on2109788427901206336ring_a ) )
& ( ( N != zero_zero_nat )
=> ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ N )
= zero_z7902377541816115708ring_a ) ) ) ).
% power_0_left
thf(fact_495_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_496_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_497_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_498_nat__one__le__power,axiom,
! [I2: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I2 )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I2 @ N ) ) ) ).
% nat_one_le_power
thf(fact_499_div__le__mono2,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).
% div_le_mono2
thf(fact_500_div__greater__zero__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ N @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% div_greater_zero_iff
thf(fact_501_power__gt1,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_502_power__gt1,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_503_power__gt1,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_504_power__strict__increasing,axiom,
! [N: nat,N2: nat,A: nat] :
( ( ord_less_nat @ N @ N2 )
=> ( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% power_strict_increasing
thf(fact_505_power__strict__increasing,axiom,
! [N: nat,N2: nat,A: int] :
( ( ord_less_nat @ N @ N2 )
=> ( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N2 ) ) ) ) ).
% power_strict_increasing
thf(fact_506_power__strict__increasing,axiom,
! [N: nat,N2: nat,A: real] :
( ( ord_less_nat @ N @ N2 )
=> ( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N2 ) ) ) ) ).
% power_strict_increasing
thf(fact_507_power__less__imp__less__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_508_power__less__imp__less__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_509_power__less__imp__less__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_510_div__less__dividend,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).
% div_less_dividend
thf(fact_511_div__eq__dividend__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ( divide_divide_nat @ M @ N )
= M )
= ( N = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_512_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( plus_plus_nat @ N3 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_513_power__eq__iff__eq__base,axiom,
! [N: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_514_power__eq__iff__eq__base,axiom,
! [N: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_515_power__eq__iff__eq__base,axiom,
! [N: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_516_power__eq__imp__eq__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_517_power__eq__imp__eq__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_518_power__eq__imp__eq__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_519_power__Suc__less,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_520_power__Suc__less,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_521_power__Suc__less,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_522_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).
% self_le_ge2_pow
thf(fact_523_power2__nat__le__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_eq_le
thf(fact_524_power2__nat__le__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_imp_le
thf(fact_525_power__Suc__less__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).
% power_Suc_less_one
thf(fact_526_power__Suc__less__one,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).
% power_Suc_less_one
thf(fact_527_power__Suc__less__one,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).
% power_Suc_less_one
thf(fact_528_power__strict__decreasing,axiom,
! [N: nat,N2: nat,A: nat] :
( ( ord_less_nat @ N @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_529_power__strict__decreasing,axiom,
! [N: nat,N2: nat,A: int] :
( ( ord_less_nat @ N @ N2 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_530_power__strict__decreasing,axiom,
! [N: nat,N2: nat,A: real] :
( ( ord_less_nat @ N @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_531_one__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_532_one__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_533_one__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_534_less__eq__div__iff__mult__less__eq,axiom,
! [Q: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ Q )
=> ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q ) )
= ( ord_less_eq_nat @ ( times_times_nat @ M @ Q ) @ N ) ) ) ).
% less_eq_div_iff_mult_less_eq
thf(fact_535_one__power2,axiom,
( ( power_6826135765519566523ring_a @ one_on2109788427901206336ring_a @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_on2109788427901206336ring_a ) ).
% one_power2
thf(fact_536_one__power2,axiom,
( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_power2
thf(fact_537_one__power2,axiom,
( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_power2
thf(fact_538_one__power2,axiom,
( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real ) ).
% one_power2
thf(fact_539_div__nat__eqI,axiom,
! [N: nat,Q: nat,M: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q ) @ M )
=> ( ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q ) ) )
=> ( ( divide_divide_nat @ M @ N )
= Q ) ) ) ).
% div_nat_eqI
thf(fact_540_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_541_divide__le__eq__numeral_I1_J,axiom,
! [B: real,C: real,W: num] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( numeral_numeral_real @ W ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ W ) ) ) ) ) ) ) ).
% divide_le_eq_numeral(1)
thf(fact_542_le__divide__eq__numeral_I1_J,axiom,
! [W: num,B: real,C: real] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ ( numeral_numeral_real @ W ) @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( numeral_numeral_real @ W ) @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq_numeral(1)
thf(fact_543_power__strict__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_544_power__strict__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_545_power__strict__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_546_zero__le__power2,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_547_zero__le__power2,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% zero_le_power2
thf(fact_548_power2__eq__imp__eq,axiom,
! [X: nat,Y: nat] :
( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( X = Y ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_549_power2__eq__imp__eq,axiom,
! [X: int,Y: int] :
( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( X = Y ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_550_power2__eq__imp__eq,axiom,
! [X: real,Y: real] :
( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( X = Y ) ) ) ) ).
% power2_eq_imp_eq
thf(fact_551_power2__le__imp__le,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power2_le_imp_le
thf(fact_552_power2__le__imp__le,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ord_less_eq_int @ X @ Y ) ) ) ).
% power2_le_imp_le
thf(fact_553_power2__le__imp__le,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ X @ Y ) ) ) ).
% power2_le_imp_le
thf(fact_554_split__div_H,axiom,
! [P: nat > $o,M: nat,N: nat] :
( ( P @ ( divide_divide_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
& ( P @ zero_zero_nat ) )
| ? [Q2: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ N @ Q2 ) @ M )
& ( ord_less_nat @ M @ ( times_times_nat @ N @ ( suc @ Q2 ) ) )
& ( P @ Q2 ) ) ) ) ).
% split_div'
thf(fact_555_power2__less__imp__less,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ord_less_nat @ X @ Y ) ) ) ).
% power2_less_imp_less
thf(fact_556_power2__less__imp__less,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ord_less_int @ X @ Y ) ) ) ).
% power2_less_imp_less
thf(fact_557_power2__less__imp__less,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_real @ X @ Y ) ) ) ).
% power2_less_imp_less
thf(fact_558_sum__power2__ge__zero,axiom,
! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_559_sum__power2__ge__zero,axiom,
! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_power2_ge_zero
thf(fact_560_sum__power2__le__zero__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_561_sum__power2__le__zero__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_power2_le_zero_iff
thf(fact_562_zero__le__even__power_H,axiom,
! [A: int,N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_563_zero__le__even__power_H,axiom,
! [A: real,N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% zero_le_even_power'
thf(fact_564_div__mult2__numeral__eq,axiom,
! [A: nat,K: num,L2: num] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ K ) ) @ ( numeral_numeral_nat @ L2 ) )
= ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ K @ L2 ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_565_div__mult2__numeral__eq,axiom,
! [A: int,K: num,L2: num] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( numeral_numeral_int @ K ) ) @ ( numeral_numeral_int @ L2 ) )
= ( divide_divide_int @ A @ ( numeral_numeral_int @ ( times_times_num @ K @ L2 ) ) ) ) ).
% div_mult2_numeral_eq
thf(fact_566_atLeastLessThan__inj_I2_J,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( set_or4662586982721622107an_int @ A @ B )
= ( set_or4662586982721622107an_int @ C @ D ) )
=> ( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( B = D ) ) ) ) ).
% atLeastLessThan_inj(2)
thf(fact_567_atLeastLessThan__inj_I2_J,axiom,
! [A: num,B: num,C: num,D: num] :
( ( ( set_or1222409239386451017an_num @ A @ B )
= ( set_or1222409239386451017an_num @ C @ D ) )
=> ( ( ord_less_num @ A @ B )
=> ( ( ord_less_num @ C @ D )
=> ( B = D ) ) ) ) ).
% atLeastLessThan_inj(2)
thf(fact_568_atLeastLessThan__inj_I2_J,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( set_or66887138388493659n_real @ A @ B )
= ( set_or66887138388493659n_real @ C @ D ) )
=> ( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( B = D ) ) ) ) ).
% atLeastLessThan_inj(2)
thf(fact_569_atLeastLessThan__inj_I2_J,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ( set_or4665077453230672383an_nat @ A @ B )
= ( set_or4665077453230672383an_nat @ C @ D ) )
=> ( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( B = D ) ) ) ) ).
% atLeastLessThan_inj(2)
thf(fact_570_atLeastLessThan__inj_I1_J,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( set_or4662586982721622107an_int @ A @ B )
= ( set_or4662586982721622107an_int @ C @ D ) )
=> ( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( A = C ) ) ) ) ).
% atLeastLessThan_inj(1)
thf(fact_571_atLeastLessThan__inj_I1_J,axiom,
! [A: num,B: num,C: num,D: num] :
( ( ( set_or1222409239386451017an_num @ A @ B )
= ( set_or1222409239386451017an_num @ C @ D ) )
=> ( ( ord_less_num @ A @ B )
=> ( ( ord_less_num @ C @ D )
=> ( A = C ) ) ) ) ).
% atLeastLessThan_inj(1)
thf(fact_572_atLeastLessThan__inj_I1_J,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( set_or66887138388493659n_real @ A @ B )
= ( set_or66887138388493659n_real @ C @ D ) )
=> ( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( A = C ) ) ) ) ).
% atLeastLessThan_inj(1)
thf(fact_573_atLeastLessThan__inj_I1_J,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ( set_or4665077453230672383an_nat @ A @ B )
= ( set_or4665077453230672383an_nat @ C @ D ) )
=> ( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( A = C ) ) ) ) ).
% atLeastLessThan_inj(1)
thf(fact_574_Ico__eq__Ico,axiom,
! [L2: int,H: int,L3: int,H2: int] :
( ( ( set_or4662586982721622107an_int @ L2 @ H )
= ( set_or4662586982721622107an_int @ L3 @ H2 ) )
= ( ( ( L2 = L3 )
& ( H = H2 ) )
| ( ~ ( ord_less_int @ L2 @ H )
& ~ ( ord_less_int @ L3 @ H2 ) ) ) ) ).
% Ico_eq_Ico
thf(fact_575_Ico__eq__Ico,axiom,
! [L2: num,H: num,L3: num,H2: num] :
( ( ( set_or1222409239386451017an_num @ L2 @ H )
= ( set_or1222409239386451017an_num @ L3 @ H2 ) )
= ( ( ( L2 = L3 )
& ( H = H2 ) )
| ( ~ ( ord_less_num @ L2 @ H )
& ~ ( ord_less_num @ L3 @ H2 ) ) ) ) ).
% Ico_eq_Ico
thf(fact_576_Ico__eq__Ico,axiom,
! [L2: real,H: real,L3: real,H2: real] :
( ( ( set_or66887138388493659n_real @ L2 @ H )
= ( set_or66887138388493659n_real @ L3 @ H2 ) )
= ( ( ( L2 = L3 )
& ( H = H2 ) )
| ( ~ ( ord_less_real @ L2 @ H )
& ~ ( ord_less_real @ L3 @ H2 ) ) ) ) ).
% Ico_eq_Ico
thf(fact_577_Ico__eq__Ico,axiom,
! [L2: nat,H: nat,L3: nat,H2: nat] :
( ( ( set_or4665077453230672383an_nat @ L2 @ H )
= ( set_or4665077453230672383an_nat @ L3 @ H2 ) )
= ( ( ( L2 = L3 )
& ( H = H2 ) )
| ( ~ ( ord_less_nat @ L2 @ H )
& ~ ( ord_less_nat @ L3 @ H2 ) ) ) ) ).
% Ico_eq_Ico
thf(fact_578_atLeastLessThan__eq__iff,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ( set_or4662586982721622107an_int @ A @ B )
= ( set_or4662586982721622107an_int @ C @ D ) )
= ( ( A = C )
& ( B = D ) ) ) ) ) ).
% atLeastLessThan_eq_iff
thf(fact_579_atLeastLessThan__eq__iff,axiom,
! [A: num,B: num,C: num,D: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_num @ C @ D )
=> ( ( ( set_or1222409239386451017an_num @ A @ B )
= ( set_or1222409239386451017an_num @ C @ D ) )
= ( ( A = C )
& ( B = D ) ) ) ) ) ).
% atLeastLessThan_eq_iff
thf(fact_580_atLeastLessThan__eq__iff,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ( set_or66887138388493659n_real @ A @ B )
= ( set_or66887138388493659n_real @ C @ D ) )
= ( ( A = C )
& ( B = D ) ) ) ) ) ).
% atLeastLessThan_eq_iff
thf(fact_581_atLeastLessThan__eq__iff,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ( set_or4665077453230672383an_nat @ A @ B )
= ( set_or4665077453230672383an_nat @ C @ D ) )
= ( ( A = C )
& ( B = D ) ) ) ) ) ).
% atLeastLessThan_eq_iff
thf(fact_582_odd__0__le__power__imp__0__le,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_583_odd__0__le__power__imp__0__le,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% odd_0_le_power_imp_0_le
thf(fact_584_sum_Oshift__bounds__Suc__ivl,axiom,
! [G: nat > finite_mod_ring_a,M: nat,N: nat] :
( ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ ( suc @ M ) @ ( suc @ N ) ) )
= ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( G @ ( suc @ I ) )
@ ( set_or4665077453230672383an_nat @ M @ N ) ) ) ).
% sum.shift_bounds_Suc_ivl
thf(fact_585_sum_Oshift__bounds__nat__ivl,axiom,
! [G: nat > finite_mod_ring_a,M: nat,K: nat,N: nat] :
( ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) ) )
= ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( G @ ( plus_plus_nat @ I @ K ) )
@ ( set_or4665077453230672383an_nat @ M @ N ) ) ) ).
% sum.shift_bounds_nat_ivl
thf(fact_586_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_587_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_588_sum__power__add,axiom,
! [X: int,M: nat,I4: set_nat] :
( ( groups3539618377306564664at_int
@ ^ [I: nat] : ( power_power_int @ X @ ( plus_plus_nat @ M @ I ) )
@ I4 )
= ( times_times_int @ ( power_power_int @ X @ M ) @ ( groups3539618377306564664at_int @ ( power_power_int @ X ) @ I4 ) ) ) ).
% sum_power_add
thf(fact_589_sum__power__add,axiom,
! [X: real,M: nat,I4: set_nat] :
( ( groups6591440286371151544t_real
@ ^ [I: nat] : ( power_power_real @ X @ ( plus_plus_nat @ M @ I ) )
@ I4 )
= ( times_times_real @ ( power_power_real @ X @ M ) @ ( groups6591440286371151544t_real @ ( power_power_real @ X ) @ I4 ) ) ) ).
% sum_power_add
thf(fact_590_sum__power__add,axiom,
! [X: finite_mod_ring_a,M: nat,I4: set_nat] :
( ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( power_6826135765519566523ring_a @ X @ ( plus_plus_nat @ M @ I ) )
@ I4 )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ X @ M ) @ ( groups3558780024651037881ring_a @ ( power_6826135765519566523ring_a @ X ) @ I4 ) ) ) ).
% sum_power_add
thf(fact_591_Suc__double__not__eq__double,axiom,
! [M: nat,N: nat] :
( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
!= ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% Suc_double_not_eq_double
thf(fact_592_double__not__eq__Suc__double,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% double_not_eq_Suc_double
thf(fact_593_sum__shift__lb__Suc0__0__upt,axiom,
! [F: nat > nat,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_nat )
=> ( ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0_upt
thf(fact_594_sum__shift__lb__Suc0__0__upt,axiom,
! [F: nat > int,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_int )
=> ( ( groups3539618377306564664at_int @ F @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups3539618377306564664at_int @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0_upt
thf(fact_595_sum__shift__lb__Suc0__0__upt,axiom,
! [F: nat > real,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_zero_real )
=> ( ( groups6591440286371151544t_real @ F @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups6591440286371151544t_real @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0_upt
thf(fact_596_sum__shift__lb__Suc0__0__upt,axiom,
! [F: nat > finite_mod_ring_a,K: nat] :
( ( ( F @ zero_zero_nat )
= zero_z7902377541816115708ring_a )
=> ( ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ ( suc @ zero_zero_nat ) @ K ) )
= ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ K ) ) ) ) ).
% sum_shift_lb_Suc0_0_upt
thf(fact_597_sum_OatLeast0__lessThan__Suc,axiom,
! [G: nat > nat,N: nat] :
( ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.atLeast0_lessThan_Suc
thf(fact_598_sum_OatLeast0__lessThan__Suc,axiom,
! [G: nat > int,N: nat] :
( ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_int @ ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.atLeast0_lessThan_Suc
thf(fact_599_sum_OatLeast0__lessThan__Suc,axiom,
! [G: nat > real,N: nat] :
( ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_plus_real @ ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.atLeast0_lessThan_Suc
thf(fact_600_sum_OatLeast0__lessThan__Suc,axiom,
! [G: nat > finite_mod_ring_a,N: nat] :
( ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( suc @ N ) ) )
= ( plus_p6165643967897163644ring_a @ ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( G @ N ) ) ) ).
% sum.atLeast0_lessThan_Suc
thf(fact_601_sum_OatLeast__Suc__lessThan,axiom,
! [M: nat,N: nat,G: nat > nat] :
( ( ord_less_nat @ M @ N )
=> ( ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ M @ N ) )
= ( plus_plus_nat @ ( G @ M ) @ ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_lessThan
thf(fact_602_sum_OatLeast__Suc__lessThan,axiom,
! [M: nat,N: nat,G: nat > int] :
( ( ord_less_nat @ M @ N )
=> ( ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ M @ N ) )
= ( plus_plus_int @ ( G @ M ) @ ( groups3539618377306564664at_int @ G @ ( set_or4665077453230672383an_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_lessThan
thf(fact_603_sum_OatLeast__Suc__lessThan,axiom,
! [M: nat,N: nat,G: nat > real] :
( ( ord_less_nat @ M @ N )
=> ( ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ M @ N ) )
= ( plus_plus_real @ ( G @ M ) @ ( groups6591440286371151544t_real @ G @ ( set_or4665077453230672383an_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_lessThan
thf(fact_604_sum_OatLeast__Suc__lessThan,axiom,
! [M: nat,N: nat,G: nat > finite_mod_ring_a] :
( ( ord_less_nat @ M @ N )
=> ( ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ M @ N ) )
= ( plus_p6165643967897163644ring_a @ ( G @ M ) @ ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ ( suc @ M ) @ N ) ) ) ) ) ).
% sum.atLeast_Suc_lessThan
thf(fact_605__C009_C,axiom,
( ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers2 @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( plus_plus_nat @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) @ i ) @ J ) @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) ) ) ).
% "009"
thf(fact_606_bits__1__div__2,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% bits_1_div_2
thf(fact_607_bits__1__div__2,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% bits_1_div_2
thf(fact_608_divide__le__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_609_divide__le__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_610_le__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_611_le__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_612_fntt2__by__index,axiom,
! [I2: nat] :
( ( ord_less_nat @ I2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) )
=> ( ( nth_Fi694352073394265932ring_a @ fntt2 @ I2 )
= ( ntt_gen_a @ n2 @ omega @ numbers2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ I2 ) ) ) ).
% fntt2_by_index
thf(fact_613_numbers2__fntt,axiom,
( fntt2
= ( nTT_gen_a @ n2 @ omega @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ numbers2 ) ) ).
% numbers2_fntt
thf(fact_614_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_615_omega__properties_I2_J,axiom,
omega != one_on2109788427901206336ring_a ).
% omega_properties(2)
thf(fact_616_omega__properties_I1_J,axiom,
( ( power_6826135765519566523ring_a @ omega @ n2 )
= one_on2109788427901206336ring_a ) ).
% omega_properties(1)
thf(fact_617_nat_Oinject,axiom,
! [X22: nat,Y2: nat] :
( ( ( suc @ X22 )
= ( suc @ Y2 ) )
= ( X22 = Y2 ) ) ).
% nat.inject
thf(fact_618_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_619_omega__properties__ex,axiom,
~ ! [Omega: finite_mod_ring_a] :
( ( ( power_6826135765519566523ring_a @ Omega @ n2 )
= one_on2109788427901206336ring_a )
=> ( ( Omega != one_on2109788427901206336ring_a )
=> ~ ! [M4: nat] :
( ( ( ( power_6826135765519566523ring_a @ Omega @ M4 )
= one_on2109788427901206336ring_a )
& ( M4 != zero_zero_nat ) )
=> ( ord_less_eq_nat @ n2 @ M4 ) ) ) ) ).
% omega_properties_ex
thf(fact_620_omega__exists,axiom,
? [Omega: finite_mod_ring_a] :
( ( ( power_6826135765519566523ring_a @ Omega @ n2 )
= one_on2109788427901206336ring_a )
& ( Omega != one_on2109788427901206336ring_a )
& ! [M4: nat] :
( ( ( ( power_6826135765519566523ring_a @ Omega @ M4 )
= one_on2109788427901206336ring_a )
& ( M4 != zero_zero_nat ) )
=> ( ord_less_eq_nat @ n2 @ M4 ) ) ) ).
% omega_exists
thf(fact_621_l2__def,axiom,
( l2
= ( size_s7115545719440041015ring_a @ numbers2 ) ) ).
% l2_def
thf(fact_622_omega__properties_I3_J,axiom,
! [M4: nat] :
( ( ( ( power_6826135765519566523ring_a @ omega @ M4 )
= one_on2109788427901206336ring_a )
& ( M4 != zero_zero_nat ) )
=> ( ord_less_eq_nat @ n2 @ M4 ) ) ).
% omega_properties(3)
thf(fact_623_division__ring__divide__zero,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% division_ring_divide_zero
thf(fact_624_bits__div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% bits_div_by_0
thf(fact_625_bits__div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% bits_div_by_0
thf(fact_626_bits__div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_div_0
thf(fact_627_bits__div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_div_0
thf(fact_628_divide__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_629_divide__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( divide_divide_real @ C @ A )
= ( divide_divide_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_630_divide__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_eq_0_iff
thf(fact_631_times__divide__eq__right,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ A @ ( divide972148758386938611ring_a @ B @ C ) )
= ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_632_times__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ B ) @ C ) ) ).
% times_divide_eq_right
thf(fact_633_divide__divide__eq__right,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( divide972148758386938611ring_a @ A @ ( divide972148758386938611ring_a @ B @ C ) )
= ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_634_divide__divide__eq__right,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ A @ ( divide_divide_real @ B @ C ) )
= ( divide_divide_real @ ( times_times_real @ A @ C ) @ B ) ) ).
% divide_divide_eq_right
thf(fact_635_divide__divide__eq__left,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( divide972148758386938611ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ C )
= ( divide972148758386938611ring_a @ A @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_636_divide__divide__eq__left,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% divide_divide_eq_left
thf(fact_637_times__divide__eq__left,axiom,
! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( divide972148758386938611ring_a @ B @ C ) @ A )
= ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_638_times__divide__eq__left,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( divide_divide_real @ B @ C ) @ A )
= ( divide_divide_real @ ( times_times_real @ B @ A ) @ C ) ) ).
% times_divide_eq_left
thf(fact_639_bits__div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% bits_div_by_1
thf(fact_640_bits__div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% bits_div_by_1
thf(fact_641_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_642_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_643_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_644_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_645_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_646_lessI,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_647_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_648_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_649_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_650_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_651_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_652_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_653_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_654_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_655_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_656_add__Suc__right,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ M @ ( suc @ N ) )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc_right
thf(fact_657_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_658_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_659_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_660_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_661_fntt2__def,axiom,
( fntt2
= ( fNTT_a @ n2 @ omega @ numbers2 ) ) ).
% fntt2_def
thf(fact_662_fntt2__length,axiom,
( ( size_s7115545719440041015ring_a @ fntt2 )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ).
% fntt2_length
thf(fact_663_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ C @ B ) )
= ( divide972148758386938611ring_a @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_664_nonzero__mult__divide__mult__cancel__right2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right2
thf(fact_665_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ B @ C ) )
= ( divide972148758386938611ring_a @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_666_nonzero__mult__divide__mult__cancel__right,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_right
thf(fact_667_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ B @ C ) )
= ( divide972148758386938611ring_a @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_668_nonzero__mult__divide__mult__cancel__left2,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ B @ C ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left2
thf(fact_669_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
= ( divide972148758386938611ring_a @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_670_nonzero__mult__divide__mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ).
% nonzero_mult_divide_mult_cancel_left
thf(fact_671_mult__divide__mult__cancel__left__if,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( C = zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
= zero_z7902377541816115708ring_a ) )
& ( ( C != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ C @ A ) @ ( times_5121417576591743744ring_a @ C @ B ) )
= ( divide972148758386938611ring_a @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_672_mult__divide__mult__cancel__left__if,axiom,
! [C: real,A: real,B: real] :
( ( ( C = zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= zero_zero_real ) )
& ( ( C != zero_zero_real )
=> ( ( divide_divide_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( divide_divide_real @ A @ B ) ) ) ) ).
% mult_divide_mult_cancel_left_if
thf(fact_673_zero__eq__1__divide__iff,axiom,
! [A: real] :
( ( zero_zero_real
= ( divide_divide_real @ one_one_real @ A ) )
= ( A = zero_zero_real ) ) ).
% zero_eq_1_divide_iff
thf(fact_674_one__divide__eq__0__iff,axiom,
! [A: real] :
( ( ( divide_divide_real @ one_one_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% one_divide_eq_0_iff
thf(fact_675_eq__divide__eq__1,axiom,
! [B: real,A: real] :
( ( one_one_real
= ( divide_divide_real @ B @ A ) )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_676_divide__eq__eq__1,axiom,
! [B: real,A: real] :
( ( ( divide_divide_real @ B @ A )
= one_one_real )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_677_divide__self__if,axiom,
! [A: finite_mod_ring_a] :
( ( ( A = zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ A @ A )
= zero_z7902377541816115708ring_a ) )
& ( ( A != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ A @ A )
= one_on2109788427901206336ring_a ) ) ) ).
% divide_self_if
thf(fact_678_divide__self__if,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= zero_zero_real ) )
& ( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ) ).
% divide_self_if
thf(fact_679_divide__self,axiom,
! [A: finite_mod_ring_a] :
( ( A != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ A @ A )
= one_on2109788427901206336ring_a ) ) ).
% divide_self
thf(fact_680_divide__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% divide_self
thf(fact_681_one__eq__divide__iff,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( one_on2109788427901206336ring_a
= ( divide972148758386938611ring_a @ A @ B ) )
= ( ( B != zero_z7902377541816115708ring_a )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_682_one__eq__divide__iff,axiom,
! [A: real,B: real] :
( ( one_one_real
= ( divide_divide_real @ A @ B ) )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_683_divide__eq__1__iff,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( divide972148758386938611ring_a @ A @ B )
= one_on2109788427901206336ring_a )
= ( ( B != zero_z7902377541816115708ring_a )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_684_divide__eq__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_685_less__Suc0,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
= ( N = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_686_zero__less__Suc,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_687_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_688_one__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M @ N ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_689_mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_690_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_691_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_692_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_693_mult__Suc__right,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ M @ ( suc @ N ) )
= ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc_right
thf(fact_694_div__pos__pos__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L2 )
=> ( ( divide_divide_int @ K @ L2 )
= zero_zero_int ) ) ) ).
% div_pos_pos_trivial
thf(fact_695_div__neg__neg__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L2 @ K )
=> ( ( divide_divide_int @ K @ L2 )
= zero_zero_int ) ) ) ).
% div_neg_neg_trivial
thf(fact_696_zero__le__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_697_divide__le__0__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% divide_le_0_1_iff
thf(fact_698_zero__less__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_699_less__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_700_less__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_701_divide__less__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_702_divide__less__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_703_divide__less__0__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% divide_less_0_1_iff
thf(fact_704_nonzero__divide__mult__cancel__right,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( B != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ B @ ( times_5121417576591743744ring_a @ A @ B ) )
= ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_705_nonzero__divide__mult__cancel__right,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( divide_divide_real @ B @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ A ) ) ) ).
% nonzero_divide_mult_cancel_right
thf(fact_706_nonzero__divide__mult__cancel__left,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( A != zero_z7902377541816115708ring_a )
=> ( ( divide972148758386938611ring_a @ A @ ( times_5121417576591743744ring_a @ A @ B ) )
= ( divide972148758386938611ring_a @ one_on2109788427901206336ring_a @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_707_nonzero__divide__mult__cancel__left,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ ( times_times_real @ A @ B ) )
= ( divide_divide_real @ one_one_real @ B ) ) ) ).
% nonzero_divide_mult_cancel_left
thf(fact_708_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_709_half__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% half_nonnegative_int_iff
thf(fact_710__C010_C,axiom,
( ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) ) ) ).
% "010"
thf(fact_711__C008_C,axiom,
( ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers2 @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( plus_plus_nat @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) @ i ) @ J ) @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) ) ) ).
% "008"
thf(fact_712_le__num__One__iff,axiom,
! [X: num] :
( ( ord_less_eq_num @ X @ one )
= ( X = one ) ) ).
% le_num_One_iff
thf(fact_713_nonneg1__imp__zdiv__pos__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_714_pos__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_715_neg__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_716_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I2: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I2 @ K ) )
= ( ord_less_eq_int @ K @ I2 ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_717_div__nonpos__pos__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonpos_pos_le0
thf(fact_718_div__nonneg__neg__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonneg_neg_le0
thf(fact_719_div__int__pos__iff,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L2 ) )
= ( ( K = zero_zero_int )
| ( L2 = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L2 ) )
| ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L2 @ zero_zero_int ) ) ) ) ).
% div_int_pos_iff
thf(fact_720_zdiv__zmult2__eq,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( divide_divide_int @ A @ ( times_times_int @ B @ C ) )
= ( divide_divide_int @ ( divide_divide_int @ A @ B ) @ C ) ) ) ).
% zdiv_zmult2_eq
thf(fact_721_zdiv__mono2__neg,axiom,
! [A: int,B2: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B2 )
=> ( ( ord_less_eq_int @ B2 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B2 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_722_zdiv__mono1__neg,axiom,
! [A: int,A2: int,B: int] :
( ( ord_less_eq_int @ A @ A2 )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_723_int__div__pos__eq,axiom,
! [A: int,B: int,Q: int,R: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R )
=> ( ( ord_less_int @ R @ B )
=> ( ( divide_divide_int @ A @ B )
= Q ) ) ) ) ).
% int_div_pos_eq
thf(fact_724_int__div__neg__eq,axiom,
! [A: int,B: int,Q: int,R: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
=> ( ( ord_less_eq_int @ R @ zero_zero_int )
=> ( ( ord_less_int @ B @ R )
=> ( ( divide_divide_int @ A @ B )
= Q ) ) ) ) ).
% int_div_neg_eq
thf(fact_725_zdiv__eq__0__iff,axiom,
! [I2: int,K: int] :
( ( ( divide_divide_int @ I2 @ K )
= zero_zero_int )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I2 )
& ( ord_less_int @ I2 @ K ) )
| ( ( ord_less_eq_int @ I2 @ zero_zero_int )
& ( ord_less_int @ K @ I2 ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_726_zdiv__mono2,axiom,
! [A: int,B2: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B2 )
=> ( ( ord_less_eq_int @ B2 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B2 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_727_zdiv__mono1,axiom,
! [A: int,A2: int,B: int] :
( ( ord_less_eq_int @ A @ A2 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A2 @ B ) ) ) ) ).
% zdiv_mono1
thf(fact_728_split__zdiv,axiom,
! [P: int > $o,N: int,K: int] :
( ( P @ ( divide_divide_int @ N @ K ) )
= ( ( ( K = zero_zero_int )
=> ( P @ zero_zero_int ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I: int,J: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J )
& ( ord_less_int @ J @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I ) @ J ) ) )
=> ( P @ I ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I: int,J: int] :
( ( ( ord_less_int @ K @ J )
& ( ord_less_eq_int @ J @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I ) @ J ) ) )
=> ( P @ I ) ) ) ) ) ).
% split_zdiv
thf(fact_729_int__div__less__self,axiom,
! [X: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).
% int_div_less_self
thf(fact_730_neg__zdiv__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( divide_divide_int @ ( plus_plus_int @ B @ one_one_int ) @ A ) ) ) ).
% neg_zdiv_mult_2
thf(fact_731_pos__zdiv__mult__2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( divide_divide_int @ ( plus_plus_int @ one_one_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
= ( divide_divide_int @ B @ A ) ) ) ).
% pos_zdiv_mult_2
thf(fact_732_not__exp__less__eq__0__int,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).
% not_exp_less_eq_0_int
thf(fact_733_linordered__field__no__lb,axiom,
! [X3: real] :
? [Y3: real] : ( ord_less_real @ Y3 @ X3 ) ).
% linordered_field_no_lb
thf(fact_734_linordered__field__no__ub,axiom,
! [X3: real] :
? [X_1: real] : ( ord_less_real @ X3 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_735_Suc__inject,axiom,
! [X: nat,Y: nat] :
( ( ( suc @ X )
= ( suc @ Y ) )
=> ( X = Y ) ) ).
% Suc_inject
thf(fact_736_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_737_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_738_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_739_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_740_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_741_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_742_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M4: nat] :
( ( ord_less_nat @ M4 @ N3 )
=> ( P @ M4 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_743_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ~ ( P @ N3 )
=> ? [M4: nat] :
( ( ord_less_nat @ M4 @ N3 )
& ~ ( P @ M4 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_744_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_745_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_746_le__trans,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( ord_less_eq_nat @ J2 @ K )
=> ( ord_less_eq_nat @ I2 @ K ) ) ) ).
% le_trans
thf(fact_747_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_748_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_749_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_750_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B ) )
=> ? [X2: nat] :
( ( P @ X2 )
& ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_751_size__neq__size__imp__neq,axiom,
! [X: list_F4626807571770296779ring_a,Y: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ X )
!= ( size_s7115545719440041015ring_a @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_752_size__neq__size__imp__neq,axiom,
! [X: num,Y: num] :
( ( ( size_size_num @ X )
!= ( size_size_num @ Y ) )
=> ( X != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_753_divide__divide__eq__left_H,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( divide972148758386938611ring_a @ ( divide972148758386938611ring_a @ A @ B ) @ C )
= ( divide972148758386938611ring_a @ A @ ( times_5121417576591743744ring_a @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_754_divide__divide__eq__left_H,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( divide_divide_real @ A @ B ) @ C )
= ( divide_divide_real @ A @ ( times_times_real @ C @ B ) ) ) ).
% divide_divide_eq_left'
thf(fact_755_divide__divide__times__eq,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a,Z: finite_mod_ring_a,W: finite_mod_ring_a] :
( ( divide972148758386938611ring_a @ ( divide972148758386938611ring_a @ X @ Y ) @ ( divide972148758386938611ring_a @ Z @ W ) )
= ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ X @ W ) @ ( times_5121417576591743744ring_a @ Y @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_756_divide__divide__times__eq,axiom,
! [X: real,Y: real,Z: real,W: real] :
( ( divide_divide_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z @ W ) )
= ( divide_divide_real @ ( times_times_real @ X @ W ) @ ( times_times_real @ Y @ Z ) ) ) ).
% divide_divide_times_eq
thf(fact_757_times__divide__times__eq,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a,Z: finite_mod_ring_a,W: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( divide972148758386938611ring_a @ X @ Y ) @ ( divide972148758386938611ring_a @ Z @ W ) )
= ( divide972148758386938611ring_a @ ( times_5121417576591743744ring_a @ X @ Z ) @ ( times_5121417576591743744ring_a @ Y @ W ) ) ) ).
% times_divide_times_eq
thf(fact_758_times__divide__times__eq,axiom,
! [X: real,Y: real,Z: real,W: real] :
( ( times_times_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ Z @ W ) )
= ( divide_divide_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ Y @ W ) ) ) ).
% times_divide_times_eq
thf(fact_759_add__divide__distrib,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
= ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ C ) @ ( divide972148758386938611ring_a @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_760_add__divide__distrib,axiom,
! [A: real,B: real,C: real] :
( ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ).
% add_divide_distrib
thf(fact_761_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% not0_implies_Suc
thf(fact_762_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_763_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_764_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_765_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_766_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X2: nat] : ( P @ X2 @ zero_zero_nat )
=> ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
=> ( ! [X2: nat,Y3: nat] :
( ( P @ X2 @ Y3 )
=> ( P @ ( suc @ X2 ) @ ( suc @ Y3 ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_767_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_768_old_Onat_Oexhaust,axiom,
! [Y: nat] :
( ( Y != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_769_nat_OdiscI,axiom,
! [Nat: nat,X22: nat] :
( ( Nat
= ( suc @ X22 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_770_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_771_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_772_nat_Odistinct_I1_J,axiom,
! [X22: nat] :
( zero_zero_nat
!= ( suc @ X22 ) ) ).
% nat.distinct(1)
thf(fact_773_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ~ ( P @ N3 )
=> ? [M4: nat] :
( ( ord_less_nat @ M4 @ N3 )
& ~ ( P @ M4 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_774_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_775_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_776_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_777_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_778_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_779_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_780_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_781_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_782_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_783_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_784_Nat_OlessE,axiom,
! [I2: nat,K: nat] :
( ( ord_less_nat @ I2 @ K )
=> ( ( K
!= ( suc @ I2 ) )
=> ~ ! [J3: nat] :
( ( ord_less_nat @ I2 @ J3 )
=> ( K
!= ( suc @ J3 ) ) ) ) ) ).
% Nat.lessE
thf(fact_785_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_786_Suc__lessE,axiom,
! [I2: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I2 ) @ K )
=> ~ ! [J3: nat] :
( ( ord_less_nat @ I2 @ J3 )
=> ( K
!= ( suc @ J3 ) ) ) ) ).
% Suc_lessE
thf(fact_787_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_788_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_789_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_790_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I: nat] :
( ( ord_less_nat @ I @ ( suc @ N ) )
& ( P @ I ) ) )
= ( ( P @ N )
| ? [I: nat] :
( ( ord_less_nat @ I @ N )
& ( P @ I ) ) ) ) ).
% Ex_less_Suc
thf(fact_791_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_792_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_nat @ M @ N ) )
= ( ord_less_nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_793_All__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I: nat] :
( ( ord_less_nat @ I @ ( suc @ N ) )
=> ( P @ I ) ) )
= ( ( P @ N )
& ! [I: nat] :
( ( ord_less_nat @ I @ N )
=> ( P @ I ) ) ) ) ).
% All_less_Suc
thf(fact_794_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N ) @ M )
= ( ? [M5: nat] :
( ( M
= ( suc @ M5 ) )
& ( ord_less_nat @ N @ M5 ) ) ) ) ).
% Suc_less_eq2
thf(fact_795_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_796_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_797_less__trans__Suc,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ J2 @ K )
=> ( ord_less_nat @ ( suc @ I2 ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_798_less__Suc__induct,axiom,
! [I2: nat,J2: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
=> ( ! [I3: nat,J3: nat,K2: nat] :
( ( ord_less_nat @ I3 @ J3 )
=> ( ( ord_less_nat @ J3 @ K2 )
=> ( ( P @ I3 @ J3 )
=> ( ( P @ J3 @ K2 )
=> ( P @ I3 @ K2 ) ) ) ) )
=> ( P @ I2 @ J2 ) ) ) ) ).
% less_Suc_induct
thf(fact_799_strict__inc__induct,axiom,
! [I2: nat,J2: nat,P: nat > $o] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ! [I3: nat] :
( ( J2
= ( suc @ I3 ) )
=> ( P @ I3 ) )
=> ( ! [I3: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ( P @ ( suc @ I3 ) )
=> ( P @ I3 ) ) )
=> ( P @ I2 ) ) ) ) ).
% strict_inc_induct
thf(fact_800_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_801_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_leD
thf(fact_802_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_803_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_804_Suc__le__D,axiom,
! [N: nat,M6: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M6 )
=> ? [M3: nat] :
( M6
= ( suc @ M3 ) ) ) ).
% Suc_le_D
thf(fact_805_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_806_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_807_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_808_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M4: nat] :
( ( ord_less_eq_nat @ ( suc @ M4 ) @ N3 )
=> ( P @ M4 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_809_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( P @ M )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ M @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_810_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R3: nat > nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ! [X2: nat] : ( R3 @ X2 @ X2 )
=> ( ! [X2: nat,Y3: nat,Z2: nat] :
( ( R3 @ X2 @ Y3 )
=> ( ( R3 @ Y3 @ Z2 )
=> ( R3 @ X2 @ Z2 ) ) )
=> ( ! [N3: nat] : ( R3 @ N3 @ ( suc @ N3 ) )
=> ( R3 @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_811_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_812_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_813_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M7: nat,N4: nat] :
( ( ord_less_eq_nat @ M7 @ N4 )
& ( M7 != N4 ) ) ) ) ).
% nat_less_le
thf(fact_814_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_815_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M7: nat,N4: nat] :
( ( ord_less_nat @ M7 @ N4 )
| ( M7 = N4 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_816_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_817_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_818_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I2: nat,J2: nat] :
( ! [I3: nat,J3: nat] :
( ( ord_less_nat @ I3 @ J3 )
=> ( ord_less_nat @ ( F @ I3 ) @ ( F @ J3 ) ) )
=> ( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( F @ J2 ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_819_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_820_add__Suc__shift,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).
% add_Suc_shift
thf(fact_821_add__Suc,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc
thf(fact_822_nat__arith_Osuc1,axiom,
! [A3: nat,K: nat,A: nat] :
( ( A3
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A3 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_823_less__add__eq__less,axiom,
! [K: nat,L2: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L2 )
=> ( ( ( plus_plus_nat @ M @ L2 )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_824_trans__less__add2,axiom,
! [I2: nat,J2: nat,M: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ I2 @ ( plus_plus_nat @ M @ J2 ) ) ) ).
% trans_less_add2
thf(fact_825_trans__less__add1,axiom,
! [I2: nat,J2: nat,M: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ I2 @ ( plus_plus_nat @ J2 @ M ) ) ) ).
% trans_less_add1
thf(fact_826_add__less__mono1,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ K ) ) ) ).
% add_less_mono1
thf(fact_827_not__add__less2,axiom,
! [J2: nat,I2: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J2 @ I2 ) @ I2 ) ).
% not_add_less2
thf(fact_828_not__add__less1,axiom,
! [I2: nat,J2: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I2 @ J2 ) @ I2 ) ).
% not_add_less1
thf(fact_829_add__less__mono,axiom,
! [I2: nat,J2: nat,K: nat,L2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ K @ L2 )
=> ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ) ).
% add_less_mono
thf(fact_830_add__lessD1,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I2 @ J2 ) @ K )
=> ( ord_less_nat @ I2 @ K ) ) ).
% add_lessD1
thf(fact_831_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M )
= ( times_times_nat @ ( suc @ K ) @ N ) )
= ( M = N ) ) ).
% Suc_mult_cancel1
thf(fact_832_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M7: nat,N4: nat] :
? [K3: nat] :
( N4
= ( plus_plus_nat @ M7 @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_833_trans__le__add2,axiom,
! [I2: nat,J2: nat,M: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ M @ J2 ) ) ) ).
% trans_le_add2
thf(fact_834_trans__le__add1,axiom,
! [I2: nat,J2: nat,M: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ord_less_eq_nat @ I2 @ ( plus_plus_nat @ J2 @ M ) ) ) ).
% trans_le_add1
thf(fact_835_add__le__mono1,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ K ) ) ) ).
% add_le_mono1
thf(fact_836_add__le__mono,axiom,
! [I2: nat,J2: nat,K: nat,L2: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( ord_less_eq_nat @ K @ L2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ) ).
% add_le_mono
thf(fact_837_le__Suc__ex,axiom,
! [K: nat,L2: nat] :
( ( ord_less_eq_nat @ K @ L2 )
=> ? [N3: nat] :
( L2
= ( plus_plus_nat @ K @ N3 ) ) ) ).
% le_Suc_ex
thf(fact_838_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_839_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_840_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_841_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_842_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_843_mult__le__mono2,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J2 ) ) ) ).
% mult_le_mono2
thf(fact_844_mult__le__mono1,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J2 @ K ) ) ) ).
% mult_le_mono1
thf(fact_845_mult__le__mono,axiom,
! [I2: nat,J2: nat,K: nat,L2: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( ord_less_eq_nat @ K @ L2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J2 @ L2 ) ) ) ) ).
% mult_le_mono
thf(fact_846_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_847_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_848_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_849_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_850_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_851_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_852_divide__right__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_853_divide__nonpos__nonpos,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_854_divide__nonpos__nonneg,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonpos_nonneg
thf(fact_855_divide__nonneg__nonpos,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonneg_nonpos
thf(fact_856_divide__nonneg__nonneg,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_857_zero__le__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_divide_iff
thf(fact_858_divide__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_859_divide__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_860_divide__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_861_divide__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_862_zero__less__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_divide_iff
thf(fact_863_divide__less__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) )
& ( C != zero_zero_real ) ) ) ).
% divide_less_cancel
thf(fact_864_divide__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_865_divide__pos__pos,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_pos_pos
thf(fact_866_divide__pos__neg,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_pos_neg
thf(fact_867_divide__neg__pos,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_neg_pos
thf(fact_868_divide__neg__neg,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_neg_neg
thf(fact_869_nonzero__eq__divide__eq,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( A
= ( divide972148758386938611ring_a @ B @ C ) )
= ( ( times_5121417576591743744ring_a @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_870_nonzero__eq__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( times_times_real @ A @ C )
= B ) ) ) ).
% nonzero_eq_divide_eq
thf(fact_871_nonzero__divide__eq__eq,axiom,
! [C: finite_mod_ring_a,B: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( ( divide972148758386938611ring_a @ B @ C )
= A )
= ( B
= ( times_5121417576591743744ring_a @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_872_nonzero__divide__eq__eq,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( ( divide_divide_real @ B @ C )
= A )
= ( B
= ( times_times_real @ A @ C ) ) ) ) ).
% nonzero_divide_eq_eq
thf(fact_873_eq__divide__imp,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( ( times_5121417576591743744ring_a @ A @ C )
= B )
=> ( A
= ( divide972148758386938611ring_a @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_874_eq__divide__imp,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= B )
=> ( A
= ( divide_divide_real @ B @ C ) ) ) ) ).
% eq_divide_imp
thf(fact_875_divide__eq__imp,axiom,
! [C: finite_mod_ring_a,B: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( B
= ( times_5121417576591743744ring_a @ A @ C ) )
=> ( ( divide972148758386938611ring_a @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_876_divide__eq__imp,axiom,
! [C: real,B: real,A: real] :
( ( C != zero_zero_real )
=> ( ( B
= ( times_times_real @ A @ C ) )
=> ( ( divide_divide_real @ B @ C )
= A ) ) ) ).
% divide_eq_imp
thf(fact_877_eq__divide__eq,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( A
= ( divide972148758386938611ring_a @ B @ C ) )
= ( ( ( C != zero_z7902377541816115708ring_a )
=> ( ( times_5121417576591743744ring_a @ A @ C )
= B ) )
& ( ( C = zero_z7902377541816115708ring_a )
=> ( A = zero_z7902377541816115708ring_a ) ) ) ) ).
% eq_divide_eq
thf(fact_878_eq__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( A
= ( divide_divide_real @ B @ C ) )
= ( ( ( C != zero_zero_real )
=> ( ( times_times_real @ A @ C )
= B ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq
thf(fact_879_divide__eq__eq,axiom,
! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( ( divide972148758386938611ring_a @ B @ C )
= A )
= ( ( ( C != zero_z7902377541816115708ring_a )
=> ( B
= ( times_5121417576591743744ring_a @ A @ C ) ) )
& ( ( C = zero_z7902377541816115708ring_a )
=> ( A = zero_z7902377541816115708ring_a ) ) ) ) ).
% divide_eq_eq
thf(fact_880_divide__eq__eq,axiom,
! [B: real,C: real,A: real] :
( ( ( divide_divide_real @ B @ C )
= A )
= ( ( ( C != zero_zero_real )
=> ( B
= ( times_times_real @ A @ C ) ) )
& ( ( C = zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq
thf(fact_881_frac__eq__eq,axiom,
! [Y: finite_mod_ring_a,Z: finite_mod_ring_a,X: finite_mod_ring_a,W: finite_mod_ring_a] :
( ( Y != zero_z7902377541816115708ring_a )
=> ( ( Z != zero_z7902377541816115708ring_a )
=> ( ( ( divide972148758386938611ring_a @ X @ Y )
= ( divide972148758386938611ring_a @ W @ Z ) )
= ( ( times_5121417576591743744ring_a @ X @ Z )
= ( times_5121417576591743744ring_a @ W @ Y ) ) ) ) ) ).
% frac_eq_eq
thf(fact_882_frac__eq__eq,axiom,
! [Y: real,Z: real,X: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( ( divide_divide_real @ X @ Y )
= ( divide_divide_real @ W @ Z ) )
= ( ( times_times_real @ X @ Z )
= ( times_times_real @ W @ Y ) ) ) ) ) ).
% frac_eq_eq
thf(fact_883_right__inverse__eq,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( B != zero_z7902377541816115708ring_a )
=> ( ( ( divide972148758386938611ring_a @ A @ B )
= one_on2109788427901206336ring_a )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_884_right__inverse__eq,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_885_lift__Suc__mono__less,axiom,
! [F: nat > nat,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N5 )
=> ( ord_less_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_886_lift__Suc__mono__less,axiom,
! [F: nat > int,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N5 )
=> ( ord_less_int @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_887_lift__Suc__mono__less,axiom,
! [F: nat > num,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N5 )
=> ( ord_less_num @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_888_lift__Suc__mono__less,axiom,
! [F: nat > real,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ N @ N5 )
=> ( ord_less_real @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_889_lift__Suc__mono__less__iff,axiom,
! [F: nat > nat,N: nat,M: nat] :
( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_890_lift__Suc__mono__less__iff,axiom,
! [F: nat > int,N: nat,M: nat] :
( ! [N3: nat] : ( ord_less_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_891_lift__Suc__mono__less__iff,axiom,
! [F: nat > num,N: nat,M: nat] :
( ! [N3: nat] : ( ord_less_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_num @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_892_lift__Suc__mono__less__iff,axiom,
! [F: nat > real,N: nat,M: nat] :
( ! [N3: nat] : ( ord_less_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_893_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ord_less_eq_nat @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_894_lift__Suc__antimono__le,axiom,
! [F: nat > int,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ord_less_eq_int @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_895_lift__Suc__antimono__le,axiom,
! [F: nat > num,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ord_less_eq_num @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_896_lift__Suc__antimono__le,axiom,
! [F: nat > real,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ord_less_eq_real @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_897_lift__Suc__mono__le,axiom,
! [F: nat > nat,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_898_lift__Suc__mono__le,axiom,
! [F: nat > int,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ord_less_eq_int @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_899_lift__Suc__mono__le,axiom,
! [F: nat > num,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ord_less_eq_num @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_900_lift__Suc__mono__le,axiom,
! [F: nat > real,N: nat,N5: nat] :
( ! [N3: nat] : ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N5 )
=> ( ord_less_eq_real @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_901_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I: nat] :
( ( ord_less_nat @ I @ ( suc @ N ) )
& ( P @ I ) ) )
= ( ( P @ zero_zero_nat )
| ? [I: nat] :
( ( ord_less_nat @ I @ N )
& ( P @ ( suc @ I ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_902_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( ? [M7: nat] :
( N
= ( suc @ M7 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_903_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I: nat] :
( ( ord_less_nat @ I @ ( suc @ N ) )
=> ( P @ I ) ) )
= ( ( P @ zero_zero_nat )
& ! [I: nat] :
( ( ord_less_nat @ I @ N )
=> ( P @ ( suc @ I ) ) ) ) ) ).
% All_less_Suc2
thf(fact_904_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% gr0_implies_Suc
thf(fact_905_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( M = zero_zero_nat )
| ? [J: nat] :
( ( M
= ( suc @ J ) )
& ( ord_less_nat @ J @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_906_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
& ! [I5: nat] :
( ( ord_less_nat @ I5 @ K2 )
=> ~ ( P @ I5 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_907_one__is__add,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M @ N ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_908_add__is__1,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_909_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_910_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_911_dec__induct,axiom,
! [I2: nat,J2: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( P @ I2 )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ I2 @ N3 )
=> ( ( ord_less_nat @ N3 @ J2 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) ) )
=> ( P @ J2 ) ) ) ) ).
% dec_induct
thf(fact_912_inc__induct,axiom,
! [I2: nat,J2: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( P @ J2 )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ I2 @ N3 )
=> ( ( ord_less_nat @ N3 @ J2 )
=> ( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) ) ) )
=> ( P @ I2 ) ) ) ) ).
% inc_induct
thf(fact_913_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_914_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_915_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_916_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_917_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_918_less__imp__add__positive,axiom,
! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I2 @ K2 )
= J2 ) ) ) ).
% less_imp_add_positive
thf(fact_919_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_920_mult__less__mono2,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I2 ) @ ( times_times_nat @ K @ J2 ) ) ) ) ).
% mult_less_mono2
thf(fact_921_mult__less__mono1,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I2 @ K ) @ ( times_times_nat @ J2 @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_922_less__natE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ~ ! [Q3: nat] :
( N
!= ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).
% less_natE
thf(fact_923_less__add__Suc1,axiom,
! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ I2 @ M ) ) ) ).
% less_add_Suc1
thf(fact_924_less__add__Suc2,axiom,
! [I2: nat,M: nat] : ( ord_less_nat @ I2 @ ( suc @ ( plus_plus_nat @ M @ I2 ) ) ) ).
% less_add_Suc2
thf(fact_925_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M7: nat,N4: nat] :
? [K3: nat] :
( N4
= ( suc @ ( plus_plus_nat @ M7 @ K3 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_926_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ? [K2: nat] :
( N
= ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_927_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_mult_less_cancel1
thf(fact_928_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M3: nat,N3: nat] :
( ( ord_less_nat @ M3 @ N3 )
=> ( ord_less_nat @ ( F @ M3 ) @ ( F @ N3 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_929_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_mult_le_cancel1
thf(fact_930_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_931_Suc__eq__plus1,axiom,
( suc
= ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_932_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_933_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_934_mult__Suc,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc
thf(fact_935_field__le__epsilon,axiom,
! [X: real,Y: real] :
( ! [E2: real] :
( ( ord_less_real @ zero_zero_real @ E2 )
=> ( ord_less_eq_real @ X @ ( plus_plus_real @ Y @ E2 ) ) )
=> ( ord_less_eq_real @ X @ Y ) ) ).
% field_le_epsilon
thf(fact_936_divide__nonpos__pos,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonpos_pos
thf(fact_937_divide__nonpos__neg,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_nonpos_neg
thf(fact_938_divide__nonneg__pos,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_nonneg_pos
thf(fact_939_divide__nonneg__neg,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonneg_neg
thf(fact_940_divide__le__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_941_frac__less2,axiom,
! [X: real,Y: real,W: real,Z: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_real @ W @ Z )
=> ( ord_less_real @ ( divide_divide_real @ X @ Z ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).
% frac_less2
thf(fact_942_frac__less,axiom,
! [X: real,Y: real,W: real,Z: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z )
=> ( ord_less_real @ ( divide_divide_real @ X @ Z ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).
% frac_less
thf(fact_943_frac__le,axiom,
! [Y: real,X: real,W: real,Z: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Z ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).
% frac_le
thf(fact_944_divide__strict__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono_neg
thf(fact_945_divide__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_strict_left_mono
thf(fact_946_mult__imp__less__div__pos,axiom,
! [Y: real,Z: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ ( times_times_real @ Z @ Y ) @ X )
=> ( ord_less_real @ Z @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% mult_imp_less_div_pos
thf(fact_947_mult__imp__div__pos__less,axiom,
! [Y: real,X: real,Z: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X @ ( times_times_real @ Z @ Y ) )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ Z ) ) ) ).
% mult_imp_div_pos_less
thf(fact_948_pos__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_less_divide_eq
thf(fact_949_pos__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_less_eq
thf(fact_950_neg__less__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_less_divide_eq
thf(fact_951_neg__divide__less__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_less_eq
thf(fact_952_less__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% less_divide_eq
thf(fact_953_divide__less__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_less_eq
thf(fact_954_less__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_955_divide__less__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_less_eq_1
thf(fact_956_divide__add__eq__iff,axiom,
! [Z: finite_mod_ring_a,X: finite_mod_ring_a,Y: finite_mod_ring_a] :
( ( Z != zero_z7902377541816115708ring_a )
=> ( ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ X @ Z ) @ Y )
= ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ X @ ( times_5121417576591743744ring_a @ Y @ Z ) ) @ Z ) ) ) ).
% divide_add_eq_iff
thf(fact_957_divide__add__eq__iff,axiom,
! [Z: real,X: real,Y: real] :
( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Z ) @ Y )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Y @ Z ) ) @ Z ) ) ) ).
% divide_add_eq_iff
thf(fact_958_add__divide__eq__iff,axiom,
! [Z: finite_mod_ring_a,X: finite_mod_ring_a,Y: finite_mod_ring_a] :
( ( Z != zero_z7902377541816115708ring_a )
=> ( ( plus_p6165643967897163644ring_a @ X @ ( divide972148758386938611ring_a @ Y @ Z ) )
= ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ X @ Z ) @ Y ) @ Z ) ) ) ).
% add_divide_eq_iff
thf(fact_959_add__divide__eq__iff,axiom,
! [Z: real,X: real,Y: real] :
( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ X @ ( divide_divide_real @ Y @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z ) @ Y ) @ Z ) ) ) ).
% add_divide_eq_iff
thf(fact_960_add__num__frac,axiom,
! [Y: finite_mod_ring_a,Z: finite_mod_ring_a,X: finite_mod_ring_a] :
( ( Y != zero_z7902377541816115708ring_a )
=> ( ( plus_p6165643967897163644ring_a @ Z @ ( divide972148758386938611ring_a @ X @ Y ) )
= ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ X @ ( times_5121417576591743744ring_a @ Z @ Y ) ) @ Y ) ) ) ).
% add_num_frac
thf(fact_961_add__num__frac,axiom,
! [Y: real,Z: real,X: real] :
( ( Y != zero_zero_real )
=> ( ( plus_plus_real @ Z @ ( divide_divide_real @ X @ Y ) )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z @ Y ) ) @ Y ) ) ) ).
% add_num_frac
thf(fact_962_add__frac__num,axiom,
! [Y: finite_mod_ring_a,X: finite_mod_ring_a,Z: finite_mod_ring_a] :
( ( Y != zero_z7902377541816115708ring_a )
=> ( ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ X @ Y ) @ Z )
= ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ X @ ( times_5121417576591743744ring_a @ Z @ Y ) ) @ Y ) ) ) ).
% add_frac_num
thf(fact_963_add__frac__num,axiom,
! [Y: real,X: real,Z: real] :
( ( Y != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Y ) @ Z )
= ( divide_divide_real @ ( plus_plus_real @ X @ ( times_times_real @ Z @ Y ) ) @ Y ) ) ) ).
% add_frac_num
thf(fact_964_add__frac__eq,axiom,
! [Y: finite_mod_ring_a,Z: finite_mod_ring_a,X: finite_mod_ring_a,W: finite_mod_ring_a] :
( ( Y != zero_z7902377541816115708ring_a )
=> ( ( Z != zero_z7902377541816115708ring_a )
=> ( ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ X @ Y ) @ ( divide972148758386938611ring_a @ W @ Z ) )
= ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ X @ Z ) @ ( times_5121417576591743744ring_a @ W @ Y ) ) @ ( times_5121417576591743744ring_a @ Y @ Z ) ) ) ) ) ).
% add_frac_eq
thf(fact_965_add__frac__eq,axiom,
! [Y: real,Z: real,X: real,W: real] :
( ( Y != zero_zero_real )
=> ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ X @ Y ) @ ( divide_divide_real @ W @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ X @ Z ) @ ( times_times_real @ W @ Y ) ) @ ( times_times_real @ Y @ Z ) ) ) ) ) ).
% add_frac_eq
thf(fact_966_add__divide__eq__if__simps_I1_J,axiom,
! [Z: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( Z = zero_z7902377541816115708ring_a )
=> ( ( plus_p6165643967897163644ring_a @ A @ ( divide972148758386938611ring_a @ B @ Z ) )
= A ) )
& ( ( Z != zero_z7902377541816115708ring_a )
=> ( ( plus_p6165643967897163644ring_a @ A @ ( divide972148758386938611ring_a @ B @ Z ) )
= ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_967_add__divide__eq__if__simps_I1_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
= A ) )
& ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ A @ ( divide_divide_real @ B @ Z ) )
= ( divide_divide_real @ ( plus_plus_real @ ( times_times_real @ A @ Z ) @ B ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(1)
thf(fact_968_add__divide__eq__if__simps_I2_J,axiom,
! [Z: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( Z = zero_z7902377541816115708ring_a )
=> ( ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ Z ) @ B )
= B ) )
& ( ( Z != zero_z7902377541816115708ring_a )
=> ( ( plus_p6165643967897163644ring_a @ ( divide972148758386938611ring_a @ A @ Z ) @ B )
= ( divide972148758386938611ring_a @ ( plus_p6165643967897163644ring_a @ A @ ( times_5121417576591743744ring_a @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_969_add__divide__eq__if__simps_I2_J,axiom,
! [Z: real,A: real,B: real] :
( ( ( Z = zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
= B ) )
& ( ( Z != zero_zero_real )
=> ( ( plus_plus_real @ ( divide_divide_real @ A @ Z ) @ B )
= ( divide_divide_real @ ( plus_plus_real @ A @ ( times_times_real @ B @ Z ) ) @ Z ) ) ) ) ).
% add_divide_eq_if_simps(2)
thf(fact_970_less__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ A @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) ) ) ).
% less_half_sum
thf(fact_971_gt__half__sum,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( divide_divide_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ one_one_real ) ) @ B ) ) ).
% gt_half_sum
thf(fact_972_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_nat @ K2 @ N )
& ! [I5: nat] :
( ( ord_less_eq_nat @ I5 @ K2 )
=> ~ ( P @ I5 ) )
& ( P @ ( suc @ K2 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_973_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_974_n__less__n__mult__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_975_n__less__m__mult__n,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).
% n_less_m_mult_n
thf(fact_976_one__less__mult,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).
% one_less_mult
thf(fact_977_field__le__mult__one__interval,axiom,
! [X: real,Y: real] :
( ! [Z2: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_real @ Z2 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Z2 @ X ) @ Y ) ) )
=> ( ord_less_eq_real @ X @ Y ) ) ).
% field_le_mult_one_interval
thf(fact_978_divide__left__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_left_mono_neg
thf(fact_979_mult__imp__le__div__pos,axiom,
! [Y: real,Z: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ ( times_times_real @ Z @ Y ) @ X )
=> ( ord_less_eq_real @ Z @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% mult_imp_le_div_pos
thf(fact_980_mult__imp__div__pos__le,axiom,
! [Y: real,X: real,Z: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ X @ ( times_times_real @ Z @ Y ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ Z ) ) ) ).
% mult_imp_div_pos_le
thf(fact_981_pos__le__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% pos_le_divide_eq
thf(fact_982_pos__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% pos_divide_le_eq
thf(fact_983_neg__le__divide__eq,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) ) ) ).
% neg_le_divide_eq
thf(fact_984_neg__divide__le__eq,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) ) ) ).
% neg_divide_le_eq
thf(fact_985_divide__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ord_less_eq_real @ ( divide_divide_real @ C @ A ) @ ( divide_divide_real @ C @ B ) ) ) ) ) ).
% divide_left_mono
thf(fact_986_le__divide__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ A @ zero_zero_real ) ) ) ) ) ) ).
% le_divide_eq
thf(fact_987_divide__le__eq,axiom,
! [B: real,C: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ A )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ B @ ( times_times_real @ A @ C ) ) )
& ( ~ ( ord_less_real @ zero_zero_real @ C )
=> ( ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ B ) )
& ( ~ ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ A ) ) ) ) ) ) ).
% divide_le_eq
thf(fact_988_le__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_989_divide__le__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_le_eq_1
thf(fact_990_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_right
thf(fact_991_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_right
thf(fact_992_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_left
thf(fact_993_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_left
thf(fact_994_div__exp__eq,axiom,
! [A: nat,M: nat,N: nat] :
( ( divide_divide_nat @ ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_nat @ A @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% div_exp_eq
thf(fact_995_div__exp__eq,axiom,
! [A: int,M: nat,N: nat] :
( ( divide_divide_int @ ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M ) ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( divide_divide_int @ A @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% div_exp_eq
thf(fact_996_nat__bit__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( P @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
=> ( ! [N3: nat] :
( ( P @ N3 )
=> ( P @ ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_bit_induct
thf(fact_997__C012_C,axiom,
( ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( uminus3100561713750211260ring_a @ ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ i ) ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) ) ) ).
% "012"
thf(fact_998__C011_C,axiom,
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( uminus3100561713750211260ring_a @ ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ l2 ) ) ) ).
% "011"
thf(fact_999__C004_C,axiom,
( ( nth_Fi694352073394265932ring_a @ sum2 @ i )
= ( minus_3609261664126569004ring_a @ ( nth_Fi694352073394265932ring_a @ fntt1 @ i ) @ ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) ) ) ) ).
% "004"
thf(fact_1000__C003_C,axiom,
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ i ) ) )
= ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ fntt2 @ i ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ ( plus_plus_nat @ i @ ( divide_divide_nat @ llen @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ) ) ).
% "003"
thf(fact_1001_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_1002_arith__geo__mean,axiom,
! [U: real,X: real,Y: real] :
( ( ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( times_times_real @ X @ Y ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ U @ ( divide_divide_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ) ) ).
% arith_geo_mean
thf(fact_1003_sum__even__odd__split,axiom,
! [A: nat,F: nat > nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_nat
@ ( groups3542108847815614940at_nat
@ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ ( groups3542108847815614940at_nat
@ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ A ) ) ) ) ).
% sum_even_odd_split
thf(fact_1004_sum__even__odd__split,axiom,
! [A: nat,F: nat > int] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_int
@ ( groups3539618377306564664at_int
@ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ ( groups3539618377306564664at_int
@ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= ( groups3539618377306564664at_int @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ A ) ) ) ) ).
% sum_even_odd_split
thf(fact_1005_sum__even__odd__split,axiom,
! [A: nat,F: nat > real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( plus_plus_real
@ ( groups6591440286371151544t_real
@ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ ( groups6591440286371151544t_real
@ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= ( groups6591440286371151544t_real @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ A ) ) ) ) ).
% sum_even_odd_split
thf(fact_1006_sum__even__odd__split,axiom,
! [A: nat,F: nat > finite_mod_ring_a] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
=> ( ( plus_p6165643967897163644ring_a
@ ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( F @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
@ ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( F @ ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) @ one_one_nat ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( divide_divide_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) )
= ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ A ) ) ) ) ).
% sum_even_odd_split
thf(fact_1007_neg__cong,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
( ( ( uminus3100561713750211260ring_a @ X )
= ( uminus3100561713750211260ring_a @ Y ) )
=> ( X = Y ) ) ).
% neg_cong
thf(fact_1008_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_1009_sum__neg__in,axiom,
! [F: int > finite_mod_ring_a,L2: int] :
( ( uminus3100561713750211260ring_a @ ( groups7393019125535064413ring_a @ F @ ( set_or4662586982721622107an_int @ zero_zero_int @ L2 ) ) )
= ( groups7393019125535064413ring_a
@ ^ [J: int] : ( uminus3100561713750211260ring_a @ ( F @ J ) )
@ ( set_or4662586982721622107an_int @ zero_zero_int @ L2 ) ) ) ).
% sum_neg_in
thf(fact_1010_sum__neg__in,axiom,
! [F: real > finite_mod_ring_a,L2: real] :
( ( uminus3100561713750211260ring_a @ ( groups465414945397457501ring_a @ F @ ( set_or66887138388493659n_real @ zero_zero_real @ L2 ) ) )
= ( groups465414945397457501ring_a
@ ^ [J: real] : ( uminus3100561713750211260ring_a @ ( F @ J ) )
@ ( set_or66887138388493659n_real @ zero_zero_real @ L2 ) ) ) ).
% sum_neg_in
thf(fact_1011_sum__neg__in,axiom,
! [F: nat > finite_mod_ring_a,L2: nat] :
( ( uminus3100561713750211260ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ L2 ) ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( uminus3100561713750211260ring_a @ ( F @ J ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ L2 ) ) ) ).
% sum_neg_in
thf(fact_1012_sum__diff__in,axiom,
! [F: nat > finite_mod_ring_a,X: nat,G: nat > finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) @ ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) )
= ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( minus_3609261664126569004ring_a @ ( F @ I ) @ ( G @ I ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) ) ).
% sum_diff_in
thf(fact_1013_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_1014_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_1015_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_1016_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_1017_div__minus__minus,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( divide972148758386938611ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( uminus3100561713750211260ring_a @ B ) )
= ( divide972148758386938611ring_a @ A @ B ) ) ).
% div_minus_minus
thf(fact_1018_div__minus__minus,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( divide_divide_int @ A @ B ) ) ).
% div_minus_minus
thf(fact_1019_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_1020_geo__sum,axiom,
! [X: finite_mod_ring_a,R: nat] :
( ( X != one_on2109788427901206336ring_a )
=> ( ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ X ) @ ( groups3558780024651037881ring_a @ ( power_6826135765519566523ring_a @ X ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ R ) ) )
= ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ ( power_6826135765519566523ring_a @ X @ R ) ) ) ) ).
% geo_sum
thf(fact_1021_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_1022_n__min1__2,axiom,
( ( n2
= ( numeral_numeral_nat @ ( bit0 @ one ) ) )
=> ( omega
= ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ) ).
% n_min1_2
thf(fact_1023_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_1024_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times_num @ one @ N )
= N ) ).
% semiring_norm(12)
thf(fact_1025_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_1026_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_1027_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(71)
thf(fact_1028_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_1029_semiring__norm_I68_J,axiom,
! [N: num] : ( ord_less_eq_num @ one @ N ) ).
% semiring_norm(68)
thf(fact_1030_omg__n__2__min1,axiom,
( ( power_6826135765519566523ring_a @ omega @ ( divide_divide_nat @ n2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ).
% omg_n_2_min1
thf(fact_1031_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_1032_diff__numeral__special_I9_J,axiom,
( ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ one_on2109788427901206336ring_a )
= zero_z7902377541816115708ring_a ) ).
% diff_numeral_special(9)
thf(fact_1033_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_1034_left__diff__distrib__numeral,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,V: num] :
( ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ ( numera7938180240421336042ring_a @ V ) )
= ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ A @ ( numera7938180240421336042ring_a @ V ) ) @ ( times_5121417576591743744ring_a @ B @ ( numera7938180240421336042ring_a @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_1035_left__diff__distrib__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( minus_minus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_1036_left__diff__distrib__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( minus_minus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% left_diff_distrib_numeral
thf(fact_1037_right__diff__distrib__numeral,axiom,
! [V: num,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ ( minus_3609261664126569004ring_a @ B @ C ) )
= ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ B ) @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_1038_right__diff__distrib__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_1039_right__diff__distrib__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% right_diff_distrib_numeral
thf(fact_1040_mult__minus1__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1_right
thf(fact_1041_mult__minus1__right,axiom,
! [Z: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ Z @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
= ( uminus3100561713750211260ring_a @ Z ) ) ).
% mult_minus1_right
thf(fact_1042_mult__minus1__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1_right
thf(fact_1043_mult__minus1,axiom,
! [Z: real] :
( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1
thf(fact_1044_mult__minus1,axiom,
! [Z: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ Z )
= ( uminus3100561713750211260ring_a @ Z ) ) ).
% mult_minus1
thf(fact_1045_mult__minus1,axiom,
! [Z: int] :
( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1
thf(fact_1046_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_1047_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ M ) ) @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ N ) ) )
= ( uminus3100561713750211260ring_a @ ( plus_p6165643967897163644ring_a @ ( numera7938180240421336042ring_a @ M ) @ ( numera7938180240421336042ring_a @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_1048_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_1049_div__minus1__right,axiom,
! [A: finite_mod_ring_a] :
( ( divide972148758386938611ring_a @ A @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
= ( uminus3100561713750211260ring_a @ A ) ) ).
% div_minus1_right
thf(fact_1050_div__minus1__right,axiom,
! [A: int] :
( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ A ) ) ).
% div_minus1_right
thf(fact_1051_divide__minus1,axiom,
! [X: real] :
( ( divide_divide_real @ X @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ X ) ) ).
% divide_minus1
thf(fact_1052_divide__minus1,axiom,
! [X: finite_mod_ring_a] :
( ( divide972148758386938611ring_a @ X @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
= ( uminus3100561713750211260ring_a @ X ) ) ).
% divide_minus1
thf(fact_1053_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_1054_dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
= ( M
= ( suc @ zero_zero_nat ) ) ) ).
% dvd_1_iff_1
thf(fact_1055_dvd__1__left,axiom,
! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).
% dvd_1_left
thf(fact_1056_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_1057_n__min1__gr2,axiom,
( ( ord_less_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ n2 )
=> ( ( power_6826135765519566523ring_a @ omega @ ( divide_divide_nat @ n2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ) ).
% n_min1_gr2
thf(fact_1058_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_1059_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_1060_semiring__norm_I69_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).
% semiring_norm(69)
thf(fact_1061_omega__div__exp__min1,axiom,
! [L2: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ L2 ) ) @ n2 )
=> ( ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ omega @ ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ L2 ) ) ) ) @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ L2 ) )
= ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ) ).
% omega_div_exp_min1
thf(fact_1062_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= zero_zero_real ) ).
% add_neg_numeral_special(8)
thf(fact_1063_add__neg__numeral__special_I8_J,axiom,
( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ one_on2109788427901206336ring_a )
= zero_z7902377541816115708ring_a ) ).
% add_neg_numeral_special(8)
thf(fact_1064_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= zero_zero_int ) ).
% add_neg_numeral_special(8)
thf(fact_1065_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% add_neg_numeral_special(7)
thf(fact_1066_add__neg__numeral__special_I7_J,axiom,
( ( plus_p6165643967897163644ring_a @ one_on2109788427901206336ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
= zero_z7902377541816115708ring_a ) ).
% add_neg_numeral_special(7)
thf(fact_1067_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% add_neg_numeral_special(7)
thf(fact_1068_diff__numeral__special_I12_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% diff_numeral_special(12)
thf(fact_1069_diff__numeral__special_I12_J,axiom,
( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
= zero_z7902377541816115708ring_a ) ).
% diff_numeral_special(12)
thf(fact_1070_diff__numeral__special_I12_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% diff_numeral_special(12)
thf(fact_1071_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_1072_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_1073_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ one_one_real ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_1074_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ one_one_int ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_1075_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
= one_one_real ) ).
% minus_one_mult_self
thf(fact_1076_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) )
= one_on2109788427901206336ring_a ) ).
% minus_one_mult_self
thf(fact_1077_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
= one_one_int ) ).
% minus_one_mult_self
thf(fact_1078_left__minus__one__mult__self,axiom,
! [N: nat,A: real] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_1079_left__minus__one__mult__self,axiom,
! [N: nat,A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_1080_left__minus__one__mult__self,axiom,
! [N: nat,A: int] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_1081_semiring__norm_I167_J,axiom,
! [V: num,W: num,Y: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
= ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(167)
thf(fact_1082_semiring__norm_I167_J,axiom,
! [V: num,W: num,Y: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ V ) ) @ ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) @ Y ) )
= ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(167)
thf(fact_1083_semiring__norm_I167_J,axiom,
! [V: num,W: num,Y: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
= ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(167)
thf(fact_1084_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_1085_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_3609261664126569004ring_a @ ( numera7938180240421336042ring_a @ M ) @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ N ) ) )
= ( numera7938180240421336042ring_a @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_1086_diff__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( minus_minus_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% diff_numeral_simps(2)
thf(fact_1087_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_1088_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ M ) ) @ ( numera7938180240421336042ring_a @ N ) )
= ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_1089_diff__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( minus_minus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ) ).
% diff_numeral_simps(3)
thf(fact_1090_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y ) ) ).
% semiring_norm(171)
thf(fact_1091_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ V ) ) @ ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) @ Y ) )
= ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ V @ W ) ) @ Y ) ) ).
% semiring_norm(171)
thf(fact_1092_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y ) ) ).
% semiring_norm(171)
thf(fact_1093_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(170)
thf(fact_1094_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ V ) @ ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) @ Y ) )
= ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(170)
thf(fact_1095_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(170)
thf(fact_1096_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(169)
thf(fact_1097_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ V ) ) @ ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ W ) @ Y ) )
= ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(169)
thf(fact_1098_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(169)
thf(fact_1099_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_1100_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_5121417576591743744ring_a @ ( numera7938180240421336042ring_a @ M ) @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ N ) ) )
= ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_1101_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_1102_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_1103_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ M ) ) @ ( numera7938180240421336042ring_a @ N ) )
= ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_1104_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_1105_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_1106_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ M ) ) @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ N ) ) )
= ( numera7938180240421336042ring_a @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_1107_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_1108_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_1109_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_1110_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_1111_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_1112_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_1113_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_1114_divide__eq__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= A )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
!= zero_zero_real )
=> ( B
= ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_1115_divide__eq__eq__numeral1_I2_J,axiom,
! [B: finite_mod_ring_a,W: num,A: finite_mod_ring_a] :
( ( ( divide972148758386938611ring_a @ B @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) )
= A )
= ( ( ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
!= zero_z7902377541816115708ring_a )
=> ( B
= ( times_5121417576591743744ring_a @ A @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) ) ) )
& ( ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
= zero_z7902377541816115708ring_a )
=> ( A = zero_z7902377541816115708ring_a ) ) ) ) ).
% divide_eq_eq_numeral1(2)
thf(fact_1116_eq__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( A
= ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
!= zero_zero_real )
=> ( ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) )
= B ) )
& ( ( ( uminus_uminus_real @ ( numeral_numeral_real @ W ) )
= zero_zero_real )
=> ( A = zero_zero_real ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_1117_eq__divide__eq__numeral1_I2_J,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,W: num] :
( ( A
= ( divide972148758386938611ring_a @ B @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) ) )
= ( ( ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
!= zero_z7902377541816115708ring_a )
=> ( ( times_5121417576591743744ring_a @ A @ ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) ) )
= B ) )
& ( ( ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ W ) )
= zero_z7902377541816115708ring_a )
=> ( A = zero_z7902377541816115708ring_a ) ) ) ) ).
% eq_divide_eq_numeral1(2)
thf(fact_1118_divide__le__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
= ( ord_less_eq_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).
% divide_le_eq_numeral1(2)
thf(fact_1119_le__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_eq_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ord_less_eq_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).
% le_divide_eq_numeral1(2)
thf(fact_1120_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_1121_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_1122_divide__less__eq__numeral1_I2_J,axiom,
! [B: real,W: num,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ A )
= ( ord_less_real @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) @ B ) ) ).
% divide_less_eq_numeral1(2)
thf(fact_1123_less__divide__eq__numeral1_I2_J,axiom,
! [A: real,B: real,W: num] :
( ( ord_less_real @ A @ ( divide_divide_real @ B @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) )
= ( ord_less_real @ B @ ( times_times_real @ A @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ) ).
% less_divide_eq_numeral1(2)
thf(fact_1124_even__mult__iff,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( times_times_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_1125_even__mult__iff,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( times_times_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
| ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_mult_iff
thf(fact_1126_odd__add,axiom,
! [A: nat,B: nat] :
( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_1127_odd__add,axiom,
! [A: int,B: int] :
( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) ) )
= ( ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A ) )
!= ( ~ ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ) ).
% odd_add
thf(fact_1128_even__add,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_1129_even__add,axiom,
! [A: int,B: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ A @ B ) )
= ( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ A )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ B ) ) ) ).
% even_add
thf(fact_1130_power2__minus,axiom,
! [A: real] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_1131_power2__minus,axiom,
! [A: finite_mod_ring_a] :
( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_6826135765519566523ring_a @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_1132_power2__minus,axiom,
! [A: int] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_1133_even__Suc,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% even_Suc
thf(fact_1134_even__Suc__Suc__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% even_Suc_Suc_iff
thf(fact_1135_add__neg__numeral__special_I9_J,axiom,
( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
= ( uminus3100561713750211260ring_a @ ( numera7938180240421336042ring_a @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_1136_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_1137_odd__Suc__div__two,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( suc @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% odd_Suc_div_two
thf(fact_1138_even__Suc__div__two,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( divide_divide_nat @ ( suc @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% even_Suc_div_two
thf(fact_1139_dvd__antisym,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ N )
=> ( ( dvd_dvd_nat @ N @ M )
=> ( M = N ) ) ) ).
% dvd_antisym
thf(fact_1140_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel1
thf(fact_1141_nat__dvd__not__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_1142_dvd__imp__le,axiom,
! [K: nat,N: nat] :
( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ) ).
% dvd_imp_le
thf(fact_1143_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_mult_cancel
thf(fact_1144_realpow__pos__nth2,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ? [R4: real] :
( ( ord_less_real @ zero_zero_real @ R4 )
& ( ( power_power_real @ R4 @ ( suc @ N ) )
= A ) ) ) ).
% realpow_pos_nth2
thf(fact_1145_num_Osize_I4_J,axiom,
( ( size_size_num @ one )
= zero_zero_nat ) ).
% num.size(4)
thf(fact_1146_dvd__mult__cancel1,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel1
thf(fact_1147_dvd__mult__cancel2,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel2
thf(fact_1148_power__dvd__imp__le,axiom,
! [I2: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ I2 @ M ) @ ( power_power_nat @ I2 @ N ) )
=> ( ( ord_less_nat @ one_one_nat @ I2 )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_dvd_imp_le
thf(fact_1149_odd__pos,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% odd_pos
thf(fact_1150_dvd__power__iff__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% dvd_power_iff_le
thf(fact_1151_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
& ( ( power_power_real @ X2 @ N )
= A )
& ! [Y4: real] :
( ( ( ord_less_real @ zero_zero_real @ Y4 )
& ( ( power_power_real @ Y4 @ N )
= A ) )
=> ( Y4 = X2 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1152_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R4: real] :
( ( ord_less_real @ zero_zero_real @ R4 )
& ( ( power_power_real @ R4 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_1153_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_1154_left__add__mult__distrib,axiom,
! [I2: nat,U: nat,J2: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I2 @ J2 ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_1155_num_Osize_I5_J,axiom,
! [X22: num] :
( ( size_size_num @ ( bit0 @ X22 ) )
= ( plus_plus_nat @ ( size_size_num @ X22 ) @ ( suc @ zero_zero_nat ) ) ) ).
% num.size(5)
thf(fact_1156_four__x__squared,axiom,
! [X: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% four_x_squared
thf(fact_1157_L2__set__mult__ineq__lemma,axiom,
! [A: real,C: real,B: real,D: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% L2_set_mult_ineq_lemma
thf(fact_1158_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_1159_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_1160_nat__mult__div__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( K = zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= zero_zero_nat ) )
& ( ( K != zero_zero_nat )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ) ).
% nat_mult_div_cancel_disj
thf(fact_1161_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_1162_nat__mult__div__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( divide_divide_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( divide_divide_nat @ M @ N ) ) ) ).
% nat_mult_div_cancel1
thf(fact_1163_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_1164_zle__add1__eq__le,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% zle_add1_eq_le
thf(fact_1165_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_1166_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_1167_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_1168_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_1169_diff__diff__cancel,axiom,
! [I2: nat,N: nat] :
( ( ord_less_eq_nat @ I2 @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I2 ) )
= I2 ) ) ).
% diff_diff_cancel
thf(fact_1170_diff__diff__left,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I2 @ J2 ) @ K )
= ( minus_minus_nat @ I2 @ ( plus_plus_nat @ J2 @ K ) ) ) ).
% diff_diff_left
thf(fact_1171_real__divide__square__eq,axiom,
! [R: real,A: real] :
( ( divide_divide_real @ ( times_times_real @ R @ A ) @ ( times_times_real @ R @ R ) )
= ( divide_divide_real @ A @ R ) ) ).
% real_divide_square_eq
thf(fact_1172_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_1173_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_1174_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_1175_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
= N ) ).
% diff_Suc_1
thf(fact_1176_Nat_Odiff__diff__right,axiom,
! [K: nat,J2: nat,I2: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( minus_minus_nat @ I2 @ ( minus_minus_nat @ J2 @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ J2 ) ) ) ).
% Nat.diff_diff_right
thf(fact_1177_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J2: nat,I2: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K ) @ I2 )
= ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I2 ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1178_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J2: nat,I2: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J2 @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J2 ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1179_div__exp__sub,axiom,
! [L2: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ L2 ) @ n2 )
=> ( ( divide_divide_nat @ n2 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ L2 ) )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ n @ L2 ) ) ) ) ).
% div_exp_sub
thf(fact_1180_Suc__pred,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% Suc_pred
thf(fact_1181_diff__Suc__diff__eq1,axiom,
! [K: nat,J2: nat,I2: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( minus_minus_nat @ I2 @ ( suc @ ( minus_minus_nat @ J2 @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I2 @ K ) @ ( suc @ J2 ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_1182_diff__Suc__diff__eq2,axiom,
! [K: nat,J2: nat,I2: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J2 @ K ) ) @ I2 )
= ( minus_minus_nat @ ( suc @ J2 ) @ ( plus_plus_nat @ K @ I2 ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_1183_not__real__square__gt__zero,axiom,
! [X: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
= ( X = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_1184_zle__diff1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ W @ ( minus_minus_int @ Z @ one_one_int ) )
= ( ord_less_int @ W @ Z ) ) ).
% zle_diff1_eq
thf(fact_1185_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
= N ) ) ).
% Suc_diff_1
thf(fact_1186_odd__Suc__minus__one,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% odd_Suc_minus_one
thf(fact_1187_even__diff__nat,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( minus_minus_nat @ M @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) ) ) ) ).
% even_diff_nat
thf(fact_1188_odd__two__times__div__two__nat,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( divide_divide_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( minus_minus_nat @ N @ one_one_nat ) ) ) ).
% odd_two_times_div_two_nat
thf(fact_1189_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( ( M = one_one_int )
& ( N = one_one_int ) )
| ( ( M
= ( uminus_uminus_int @ one_one_int ) )
& ( N
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_1190_int__less__induct,axiom,
! [I2: int,K: int,P: int > $o] :
( ( ord_less_int @ I2 @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I3: int] :
( ( ord_less_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I2 ) ) ) ) ).
% int_less_induct
thf(fact_1191_zdvd__mult__cancel,axiom,
! [K: int,M: int,N: int] :
( ( dvd_dvd_int @ ( times_times_int @ K @ M ) @ ( times_times_int @ K @ N ) )
=> ( ( K != zero_zero_int )
=> ( dvd_dvd_int @ M @ N ) ) ) ).
% zdvd_mult_cancel
thf(fact_1192_zdvd__antisym__nonneg,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( dvd_dvd_int @ M @ N )
=> ( ( dvd_dvd_int @ N @ M )
=> ( M = N ) ) ) ) ) ).
% zdvd_antisym_nonneg
thf(fact_1193_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
=> ( ( M = one_one_int )
| ( M
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_1194_int__le__induct,axiom,
! [I2: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I2 ) ) ) ) ).
% int_le_induct
thf(fact_1195_dvd__diff__nat,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ M )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% dvd_diff_nat
thf(fact_1196_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_1197_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_1198_minus__int__code_I2_J,axiom,
! [L2: int] :
( ( minus_minus_int @ zero_zero_int @ L2 )
= ( uminus_uminus_int @ L2 ) ) ).
% minus_int_code(2)
thf(fact_1199_zdvd__reduce,axiom,
! [K: int,N: int,M: int] :
( ( dvd_dvd_int @ K @ ( plus_plus_int @ N @ ( times_times_int @ K @ M ) ) )
= ( dvd_dvd_int @ K @ N ) ) ).
% zdvd_reduce
thf(fact_1200_zdvd__period,axiom,
! [A: int,D: int,X: int,T: int,C: int] :
( ( dvd_dvd_int @ A @ D )
=> ( ( dvd_dvd_int @ A @ ( plus_plus_int @ X @ T ) )
= ( dvd_dvd_int @ A @ ( plus_plus_int @ ( plus_plus_int @ X @ ( times_times_int @ C @ D ) ) @ T ) ) ) ) ).
% zdvd_period
thf(fact_1201_bezout1__nat,axiom,
! [A: nat,B: nat] :
? [D2: nat,X2: nat,Y3: nat] :
( ( dvd_dvd_nat @ D2 @ A )
& ( dvd_dvd_nat @ D2 @ B )
& ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X2 ) @ ( times_times_nat @ B @ Y3 ) )
= D2 )
| ( ( minus_minus_nat @ ( times_times_nat @ B @ X2 ) @ ( times_times_nat @ A @ Y3 ) )
= D2 ) ) ) ).
% bezout1_nat
thf(fact_1202_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(3)
thf(fact_1203_int__distrib_I4_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_1204_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_1205_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_1206_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I2: nat] :
( ( P @ K )
=> ( ! [N3: nat] :
( ( P @ ( suc @ N3 ) )
=> ( P @ N3 ) )
=> ( P @ ( minus_minus_nat @ K @ I2 ) ) ) ) ).
% zero_induct_lemma
thf(fact_1207_diff__less__mono2,axiom,
! [M: nat,N: nat,L2: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L2 )
=> ( ord_less_nat @ ( minus_minus_nat @ L2 @ N ) @ ( minus_minus_nat @ L2 @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_1208_less__imp__diff__less,axiom,
! [J2: nat,K: nat,N: nat] :
( ( ord_less_nat @ J2 @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J2 @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_1209_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_1210_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_1211_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_1212_diff__le__mono,axiom,
! [M: nat,N: nat,L2: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L2 ) @ ( minus_minus_nat @ N @ L2 ) ) ) ).
% diff_le_mono
thf(fact_1213_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_1214_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_1215_diff__le__mono2,axiom,
! [M: nat,N: nat,L2: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L2 @ N ) @ ( minus_minus_nat @ L2 @ M ) ) ) ).
% diff_le_mono2
thf(fact_1216_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_1217_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
thf(fact_1218_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_cancel2
thf(fact_1219_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% Nat.diff_cancel
thf(fact_1220_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_1221_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_1222_zdvd__not__zless,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_int @ M @ N )
=> ~ ( dvd_dvd_int @ N @ M ) ) ) ).
% zdvd_not_zless
thf(fact_1223_even__diff__iff,axiom,
! [K: int,L2: int] :
( ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( minus_minus_int @ K @ L2 ) )
= ( dvd_dvd_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_int @ K @ L2 ) ) ) ).
% even_diff_iff
thf(fact_1224_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_1225_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
= ( minus_minus_nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_1226_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_1227_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_1228_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_1229_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_1230_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_1231_zdvd__imp__le,axiom,
! [Z: int,N: int] :
( ( dvd_dvd_int @ Z @ N )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int @ Z @ N ) ) ) ).
% zdvd_imp_le
thf(fact_1232_less__diff__conv,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_nat @ I2 @ ( minus_minus_nat @ J2 @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I2 @ K ) @ J2 ) ) ).
% less_diff_conv
thf(fact_1233_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_1234_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_1235_Nat_Ole__imp__diff__is__add,axiom,
! [I2: nat,J2: nat,K: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( ( minus_minus_nat @ J2 @ I2 )
= K )
= ( J2
= ( plus_plus_nat @ K @ I2 ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_1236_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J2: nat,I2: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I2 ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K ) @ I2 ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_1237_Nat_Odiff__add__assoc,axiom,
! [K: nat,J2: nat,I2: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I2 @ J2 ) @ K )
= ( plus_plus_nat @ I2 @ ( minus_minus_nat @ J2 @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_1238_Nat_Ole__diff__conv2,axiom,
! [K: nat,J2: nat,I2: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( ord_less_eq_nat @ I2 @ ( minus_minus_nat @ J2 @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I2 @ K ) @ J2 ) ) ) ).
% Nat.le_diff_conv2
thf(fact_1239_le__diff__conv,axiom,
! [J2: nat,K: nat,I2: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J2 @ K ) @ I2 )
= ( ord_less_eq_nat @ J2 @ ( plus_plus_nat @ I2 @ K ) ) ) ).
% le_diff_conv
thf(fact_1240_int__induct,axiom,
! [P: int > $o,K: int,I2: int] :
( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I2 ) ) ) ) ).
% int_induct
thf(fact_1241_dvd__minus__self,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) )
= ( ( ord_less_nat @ N @ M )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_minus_self
thf(fact_1242_dvd__diffD,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
=> ( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ K @ M ) ) ) ) ).
% dvd_diffD
thf(fact_1243_dvd__diffD1,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
=> ( ( dvd_dvd_nat @ K @ M )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( dvd_dvd_nat @ K @ N ) ) ) ) ).
% dvd_diffD1
thf(fact_1244_less__eq__dvd__minus,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( dvd_dvd_nat @ M @ N )
= ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).
% less_eq_dvd_minus
thf(fact_1245_diff__Suc__less,axiom,
! [N: nat,I2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I2 ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_1246_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D3: nat] :
( ( A
= ( plus_plus_nat @ B @ D3 ) )
& ~ ( P @ D3 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_1247_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D3: nat] :
( ( A
= ( plus_plus_nat @ B @ D3 ) )
=> ( P @ D3 ) ) ) ) ).
% nat_diff_split
thf(fact_1248_less__diff__conv2,axiom,
! [K: nat,J2: nat,I2: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J2 @ K ) @ I2 )
= ( ord_less_nat @ J2 @ ( plus_plus_nat @ I2 @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_1249_nat__diff__add__eq2,axiom,
! [I2: nat,J2: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I2 ) @ U ) @ N ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_1250_nat__diff__add__eq1,axiom,
! [J2: nat,I2: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J2 @ I2 )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J2 ) @ U ) @ M ) @ N ) ) ) ).
% nat_diff_add_eq1
thf(fact_1251_nat__le__add__iff2,axiom,
! [I2: nat,J2: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I2 ) @ U ) @ N ) ) ) ) ).
% nat_le_add_iff2
thf(fact_1252_nat__le__add__iff1,axiom,
! [J2: nat,I2: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J2 @ I2 )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J2 ) @ U ) @ M ) @ N ) ) ) ).
% nat_le_add_iff1
thf(fact_1253_nat__eq__add__iff2,axiom,
! [I2: nat,J2: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( M
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I2 ) @ U ) @ N ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_1254_nat__eq__add__iff1,axiom,
! [J2: nat,I2: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J2 @ I2 )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I2 @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I2 @ J2 ) @ U ) @ M )
= N ) ) ) ).
% nat_eq_add_iff1
thf(fact_1255_gcd__nat_Oasym,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ~ ( ( dvd_dvd_nat @ B @ A )
& ( B != A ) ) ) ).
% gcd_nat.asym
thf(fact_1256_gcd__nat_Orefl,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).
% gcd_nat.refl
thf(fact_1257_gcd__nat_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ) ).
% gcd_nat.trans
thf(fact_1258_gcd__nat_Oeq__iff,axiom,
( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
= ( ^ [A4: nat,B3: nat] :
( ( dvd_dvd_nat @ A4 @ B3 )
& ( dvd_dvd_nat @ B3 @ A4 ) ) ) ) ).
% gcd_nat.eq_iff
thf(fact_1259_gcd__nat_Oirrefl,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ A @ A )
& ( A != A ) ) ).
% gcd_nat.irrefl
thf(fact_1260_gcd__nat_Oantisym,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( A = B ) ) ) ).
% gcd_nat.antisym
thf(fact_1261_gcd__nat_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans
thf(fact_1262_gcd__nat_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans1
thf(fact_1263_gcd__nat_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans2
thf(fact_1264_gcd__nat_Ostrict__iff__not,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( dvd_dvd_nat @ A @ B )
& ~ ( dvd_dvd_nat @ B @ A ) ) ) ).
% gcd_nat.strict_iff_not
thf(fact_1265_gcd__nat_Oorder__iff__strict,axiom,
( dvd_dvd_nat
= ( ^ [A4: nat,B3: nat] :
( ( ( dvd_dvd_nat @ A4 @ B3 )
& ( A4 != B3 ) )
| ( A4 = B3 ) ) ) ) ).
% gcd_nat.order_iff_strict
thf(fact_1266_gcd__nat_Ostrict__iff__order,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) ) ) ).
% gcd_nat.strict_iff_order
thf(fact_1267_gcd__nat_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( dvd_dvd_nat @ A @ B ) ) ).
% gcd_nat.strict_implies_order
thf(fact_1268_gcd__nat_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( A != B ) ) ).
% gcd_nat.strict_implies_not_eq
thf(fact_1269_gcd__nat_Onot__eq__order__implies__strict,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) ) ) ) ).
% gcd_nat.not_eq_order_implies_strict
% Conjectures (1)
thf(conj_0,conjecture,
( ( nth_Fi694352073394265932ring_a @ fntt1 @ i )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbersa @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ ( times_times_nat @ ( divide_divide_nat @ n2 @ llen ) @ ( plus_plus_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) @ i ) ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ J ) ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ la ) ) ) ) ).
%------------------------------------------------------------------------------