TPTP Problem File: SLH0295^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : LP_Duality/0001_LP_Duality/prob_00132_005357__28763898_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1443 ( 549 unt; 174 typ;   0 def)
%            Number of atoms       : 3615 (1061 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 11930 ( 245   ~; 118   |; 166   &;9785   @)
%                                         (   0 <=>;1616  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   26 (   7 avg)
%            Number of types       :   20 (  19 usr)
%            Number of type conns  :  373 ( 373   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  156 ( 155 usr;  23 con; 0-4 aty)
%            Number of variables   : 3563 ( 180   ^;3330   !;  53   ?;3563   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 13:56:48.880
%------------------------------------------------------------------------------
% Could-be-implicit typings (19)
thf(ty_n_t__Set__Oset_It__Matrix__Ovec_It__Matrix__Ovec_Itf__a_J_J_J,type,
    set_vec_vec_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Matrix__Ovec_Itf__a_J_J_J,type,
    set_set_vec_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Matrix__Omat_Itf__a_J_J_J,type,
    set_set_mat_a: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Ovec_It__Nat__Onat_J_J,type,
    set_vec_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    set_mat_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Matrix__Ovec_It__Matrix__Ovec_Itf__a_J_J,type,
    vec_vec_a: $tType ).

thf(ty_n_t__Matrix__Ovec_It__Matrix__Omat_Itf__a_J_J,type,
    vec_mat_a: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    set_vec_a: $tType ).

thf(ty_n_t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    set_mat_a: $tType ).

thf(ty_n_t__Matrix__Ovec_It__Nat__Onat_J,type,
    vec_nat: $tType ).

thf(ty_n_t__Matrix__Omat_It__Nat__Onat_J,type,
    mat_nat: $tType ).

thf(ty_n_t__Polynomial__Opoly_Itf__a_J,type,
    poly_a: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Matrix__Ovec_Itf__a_J,type,
    vec_a: $tType ).

thf(ty_n_t__Matrix__Omat_Itf__a_J,type,
    mat_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (155)
thf(sy_c_Column__Operations_Oswap__col__to__front_001tf__a,type,
    column2924081423933032910ront_a: mat_a > nat > mat_a ).

thf(sy_c_Column__Operations_Oswap__row__to__front_001tf__a,type,
    column973622294476583016ront_a: mat_a > nat > mat_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Matrix__Ovec_It__Nat__Onat_J,type,
    minus_minus_vec_nat: vec_nat > vec_nat > vec_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Matrix__Ovec_Itf__a_J,type,
    minus_minus_vec_a: vec_a > vec_a > vec_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001tf__a,type,
    minus_minus_a: a > a > a ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001tf__a,type,
    one_one_a: a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Omat_It__Nat__Onat_J,type,
    plus_plus_mat_nat: mat_nat > mat_nat > mat_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Omat_Itf__a_J,type,
    plus_plus_mat_a: mat_a > mat_a > mat_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Ovec_It__Matrix__Ovec_Itf__a_J_J,type,
    plus_plus_vec_vec_a: vec_vec_a > vec_vec_a > vec_vec_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Ovec_It__Nat__Onat_J,type,
    plus_plus_vec_nat: vec_nat > vec_nat > vec_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Matrix__Ovec_Itf__a_J,type,
    plus_plus_vec_a: vec_a > vec_a > vec_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    plus_p2215855510709889632at_nat: set_mat_nat > set_mat_nat > set_mat_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    plus_plus_set_mat_a: set_mat_a > set_mat_a > set_mat_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Ovec_It__Matrix__Ovec_Itf__a_J_J_J,type,
    plus_p8188967515152927083_vec_a: set_vec_vec_a > set_vec_vec_a > set_vec_vec_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Ovec_It__Nat__Onat_J_J,type,
    plus_p1963516127331757268ec_nat: set_vec_nat > set_vec_nat > set_vec_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    plus_plus_set_vec_a: set_vec_a > set_vec_a > set_vec_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Nat__Onat_J,type,
    plus_plus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Set__Oset_It__Matrix__Omat_Itf__a_J_J_J,type,
    plus_p8188135320652551888_mat_a: set_set_mat_a > set_set_mat_a > set_set_mat_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Set__Oset_It__Matrix__Ovec_Itf__a_J_J_J,type,
    plus_p5225466182533350236_vec_a: set_set_vec_a > set_set_vec_a > set_set_vec_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    plus_p4817606893110106565et_nat: set_set_nat > set_set_nat > set_set_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_Itf__a_J,type,
    plus_plus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001tf__a,type,
    plus_plus_a: a > a > a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Matrix__Omat_Itf__a_J,type,
    times_times_mat_a: mat_a > mat_a > mat_a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    times_1230744552615602198_mat_a: set_mat_a > set_mat_a > set_mat_a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Nat__Onat_J,type,
    times_times_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001tf__a,type,
    times_times_a: a > a > a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Matrix__Omat_Itf__a_J,type,
    uminus_uminus_mat_a: mat_a > mat_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Matrix__Ovec_It__Matrix__Omat_Itf__a_J_J,type,
    uminus6789456888195538751_mat_a: vec_mat_a > vec_mat_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Matrix__Ovec_It__Matrix__Ovec_Itf__a_J_J,type,
    uminus8262787361227035083_vec_a: vec_vec_a > vec_vec_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Matrix__Ovec_Itf__a_J,type,
    uminus_uminus_vec_a: vec_a > vec_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    uminus1296375033039821146_mat_a: set_mat_a > set_mat_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    uminus2769705506071317478_vec_a: set_vec_a > set_vec_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001tf__a,type,
    uminus_uminus_a: a > a ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001tf__a,type,
    zero_zero_a: a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Matrix__Omat_It__Nat__Onat_J_J,type,
    sup_sup_set_mat_nat: set_mat_nat > set_mat_nat > set_mat_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    sup_sup_set_mat_a: set_mat_a > set_mat_a > set_mat_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Matrix__Ovec_It__Matrix__Ovec_Itf__a_J_J_J,type,
    sup_su4324207151431933192_vec_a: set_vec_vec_a > set_vec_vec_a > set_vec_vec_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Matrix__Ovec_It__Nat__Onat_J_J,type,
    sup_sup_set_vec_nat: set_vec_nat > set_vec_nat > set_vec_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    sup_sup_set_vec_a: set_vec_a > set_vec_a > set_vec_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
    sup_sup_set_a: set_a > set_a > set_a ).

thf(sy_c_Matrix_Oappend__rows_001tf__a,type,
    append_rows_a: mat_a > mat_a > mat_a ).

thf(sy_c_Matrix_Oappend__vec_001t__Matrix__Omat_Itf__a_J,type,
    append_vec_mat_a: vec_mat_a > vec_mat_a > vec_mat_a ).

thf(sy_c_Matrix_Oappend__vec_001t__Matrix__Ovec_Itf__a_J,type,
    append_vec_vec_a: vec_vec_a > vec_vec_a > vec_vec_a ).

thf(sy_c_Matrix_Oappend__vec_001t__Nat__Onat,type,
    append_vec_nat: vec_nat > vec_nat > vec_nat ).

thf(sy_c_Matrix_Oappend__vec_001tf__a,type,
    append_vec_a: vec_a > vec_a > vec_a ).

thf(sy_c_Matrix_Ocarrier__mat_001t__Nat__Onat,type,
    carrier_mat_nat: nat > nat > set_mat_nat ).

thf(sy_c_Matrix_Ocarrier__mat_001tf__a,type,
    carrier_mat_a: nat > nat > set_mat_a ).

thf(sy_c_Matrix_Ocarrier__vec_001t__Matrix__Ovec_Itf__a_J,type,
    carrier_vec_vec_a: nat > set_vec_vec_a ).

thf(sy_c_Matrix_Ocarrier__vec_001t__Nat__Onat,type,
    carrier_vec_nat: nat > set_vec_nat ).

thf(sy_c_Matrix_Ocarrier__vec_001tf__a,type,
    carrier_vec_a: nat > set_vec_a ).

thf(sy_c_Matrix_Ocomponent__mult_001t__Nat__Onat,type,
    component_mult_nat: vec_nat > vec_nat > vec_nat ).

thf(sy_c_Matrix_Ocomponent__mult_001tf__a,type,
    component_mult_a: vec_a > vec_a > vec_a ).

thf(sy_c_Matrix_Odim__vec_001t__Matrix__Omat_Itf__a_J,type,
    dim_vec_mat_a: vec_mat_a > nat ).

thf(sy_c_Matrix_Odim__vec_001t__Matrix__Ovec_Itf__a_J,type,
    dim_vec_vec_a: vec_vec_a > nat ).

thf(sy_c_Matrix_Odim__vec_001t__Nat__Onat,type,
    dim_vec_nat: vec_nat > nat ).

thf(sy_c_Matrix_Odim__vec_001tf__a,type,
    dim_vec_a: vec_a > nat ).

thf(sy_c_Matrix_Ofour__block__mat_001tf__a,type,
    four_block_mat_a: mat_a > mat_a > mat_a > mat_a > mat_a ).

thf(sy_c_Matrix_Omat__of__row_001tf__a,type,
    mat_of_row_a: vec_a > mat_a ).

thf(sy_c_Matrix_Omult__mat__vec_001t__Nat__Onat,type,
    mult_mat_vec_nat: mat_nat > vec_nat > vec_nat ).

thf(sy_c_Matrix_Omult__mat__vec_001tf__a,type,
    mult_mat_vec_a: mat_a > vec_a > vec_a ).

thf(sy_c_Matrix_Oone__mat_001tf__a,type,
    one_mat_a: nat > mat_a ).

thf(sy_c_Matrix_Orow_001tf__a,type,
    row_a: mat_a > nat > vec_a ).

thf(sy_c_Matrix_Oscalar__prod_001t__Nat__Onat,type,
    scalar_prod_nat: vec_nat > vec_nat > nat ).

thf(sy_c_Matrix_Oscalar__prod_001tf__a,type,
    scalar_prod_a: vec_a > vec_a > a ).

thf(sy_c_Matrix_Otranspose__mat_001t__Nat__Onat,type,
    transpose_mat_nat: mat_nat > mat_nat ).

thf(sy_c_Matrix_Otranspose__mat_001tf__a,type,
    transpose_mat_a: mat_a > mat_a ).

thf(sy_c_Matrix_Oupdate__vec_001tf__a,type,
    update_vec_a: vec_a > nat > a > vec_a ).

thf(sy_c_Matrix_OvCons_001t__Nat__Onat,type,
    vCons_nat: nat > vec_nat > vec_nat ).

thf(sy_c_Matrix_OvCons_001tf__a,type,
    vCons_a: a > vec_a > vec_a ).

thf(sy_c_Matrix_Ovec__first_001t__Matrix__Ovec_Itf__a_J,type,
    vec_first_vec_a: vec_vec_a > nat > vec_vec_a ).

thf(sy_c_Matrix_Ovec__first_001t__Nat__Onat,type,
    vec_first_nat: vec_nat > nat > vec_nat ).

thf(sy_c_Matrix_Ovec__first_001tf__a,type,
    vec_first_a: vec_a > nat > vec_a ).

thf(sy_c_Matrix_Ovec__index_001t__Matrix__Omat_Itf__a_J,type,
    vec_index_mat_a: vec_mat_a > nat > mat_a ).

thf(sy_c_Matrix_Ovec__index_001t__Matrix__Ovec_Itf__a_J,type,
    vec_index_vec_a: vec_vec_a > nat > vec_a ).

thf(sy_c_Matrix_Ovec__index_001t__Nat__Onat,type,
    vec_index_nat: vec_nat > nat > nat ).

thf(sy_c_Matrix_Ovec__index_001tf__a,type,
    vec_index_a: vec_a > nat > a ).

thf(sy_c_Matrix_Ovec__last_001t__Matrix__Ovec_Itf__a_J,type,
    vec_last_vec_a: vec_vec_a > nat > vec_vec_a ).

thf(sy_c_Matrix_Ovec__last_001t__Nat__Onat,type,
    vec_last_nat: vec_nat > nat > vec_nat ).

thf(sy_c_Matrix_Ovec__last_001tf__a,type,
    vec_last_a: vec_a > nat > vec_a ).

thf(sy_c_Matrix_Ovec__set_001t__Matrix__Omat_Itf__a_J,type,
    vec_set_mat_a: vec_mat_a > set_mat_a ).

thf(sy_c_Matrix_Ovec__set_001t__Matrix__Ovec_Itf__a_J,type,
    vec_set_vec_a: vec_vec_a > set_vec_a ).

thf(sy_c_Matrix_Ovec__set_001t__Nat__Onat,type,
    vec_set_nat: vec_nat > set_nat ).

thf(sy_c_Matrix_Ovec__set_001tf__a,type,
    vec_set_a: vec_a > set_a ).

thf(sy_c_Matrix_Ozero__mat_001tf__a,type,
    zero_mat_a: nat > nat > mat_a ).

thf(sy_c_Matrix_Ozero__vec_001t__Nat__Onat,type,
    zero_vec_nat: nat > vec_nat ).

thf(sy_c_Matrix_Ozero__vec_001tf__a,type,
    zero_vec_a: nat > vec_a ).

thf(sy_c_Matrix__Kernel_Omat__kernel_001tf__a,type,
    matrix_mat_kernel_a: mat_a > set_vec_a ).

thf(sy_c_Matrix__Kernel_Ovardim_Ounpadl_001t__Nat__Onat,type,
    matrix_unpadl_nat: nat > vec_nat > vec_nat ).

thf(sy_c_Matrix__Kernel_Ovardim_Ounpadl_001tf__a,type,
    matrix_unpadl_a: nat > vec_a > vec_a ).

thf(sy_c_Matrix__Kernel_Ovardim_Ounpadr_001t__Nat__Onat,type,
    matrix_unpadr_nat: nat > vec_nat > vec_nat ).

thf(sy_c_Matrix__Kernel_Ovardim_Ounpadr_001tf__a,type,
    matrix_unpadr_a: nat > vec_a > vec_a ).

thf(sy_c_Missing__Matrix_Oappend__cols_001tf__a,type,
    missin386308114684349109cols_a: mat_a > mat_a > mat_a ).

thf(sy_c_Missing__Matrix_Omat__of__col_001tf__a,type,
    missing_mat_of_col_a: vec_a > mat_a ).

thf(sy_c_Missing__Matrix_Ovec__of__scal_001tf__a,type,
    missin5951511974119752530scal_a: a > vec_a ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Norms_Olinf__norm__vec_001tf__a,type,
    linf_norm_vec_a: vec_a > a ).

thf(sy_c_Norms_Onorm1_001tf__a,type,
    norm1_a: poly_a > a ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Matrix__Ovec_Itf__a_J,type,
    ord_less_vec_a: vec_a > vec_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    ord_less_set_mat_a: set_mat_a > set_mat_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    ord_less_set_vec_a: set_vec_a > set_vec_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001tf__a,type,
    ord_less_a: a > a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Matrix__Ovec_It__Matrix__Ovec_Itf__a_J_J,type,
    ord_le4012615358376148468_vec_a: vec_vec_a > vec_vec_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Matrix__Ovec_It__Nat__Onat_J,type,
    ord_less_eq_vec_nat: vec_nat > vec_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Matrix__Ovec_Itf__a_J,type,
    ord_less_eq_vec_a: vec_a > vec_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    ord_le3318621148231462513_mat_a: set_mat_a > set_mat_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    ord_le4791951621262958845_vec_a: set_vec_a > set_vec_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001tf__a,type,
    ord_less_eq_a: a > a > $o ).

thf(sy_c_Schur__Decomposition_Ovec__inv_001tf__a,type,
    schur_vec_inv_a: vec_a > vec_a ).

thf(sy_c_Set_OCollect_001t__Matrix__Omat_It__Nat__Onat_J,type,
    collect_mat_nat: ( mat_nat > $o ) > set_mat_nat ).

thf(sy_c_Set_OCollect_001t__Matrix__Omat_Itf__a_J,type,
    collect_mat_a: ( mat_a > $o ) > set_mat_a ).

thf(sy_c_Set_OCollect_001t__Matrix__Ovec_It__Matrix__Ovec_Itf__a_J_J,type,
    collect_vec_vec_a: ( vec_vec_a > $o ) > set_vec_vec_a ).

thf(sy_c_Set_OCollect_001t__Matrix__Ovec_It__Nat__Onat_J,type,
    collect_vec_nat: ( vec_nat > $o ) > set_vec_nat ).

thf(sy_c_Set_OCollect_001t__Matrix__Ovec_Itf__a_J,type,
    collect_vec_a: ( vec_a > $o ) > set_vec_a ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_member_001t__Matrix__Omat_It__Nat__Onat_J,type,
    member_mat_nat: mat_nat > set_mat_nat > $o ).

thf(sy_c_member_001t__Matrix__Omat_Itf__a_J,type,
    member_mat_a: mat_a > set_mat_a > $o ).

thf(sy_c_member_001t__Matrix__Ovec_It__Matrix__Ovec_Itf__a_J_J,type,
    member_vec_vec_a: vec_vec_a > set_vec_vec_a > $o ).

thf(sy_c_member_001t__Matrix__Ovec_It__Nat__Onat_J,type,
    member_vec_nat: vec_nat > set_vec_nat > $o ).

thf(sy_c_member_001t__Matrix__Ovec_Itf__a_J,type,
    member_vec_a: vec_a > set_vec_a > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Matrix__Omat_Itf__a_J_J,type,
    member_set_mat_a: set_mat_a > set_set_mat_a > $o ).

thf(sy_c_member_001t__Set__Oset_It__Matrix__Ovec_Itf__a_J_J,type,
    member_set_vec_a: set_vec_a > set_set_vec_a > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_A,type,
    a2: mat_a ).

thf(sy_v_L____,type,
    l: vec_a ).

thf(sy_v_M____,type,
    m: mat_a ).

thf(sy_v_M__last____,type,
    m_last: mat_a ).

thf(sy_v_M__low____,type,
    m_low: mat_a ).

thf(sy_v_M__up____,type,
    m_up: mat_a ).

thf(sy_v_b,type,
    b: vec_a ).

thf(sy_v_bc____,type,
    bc: vec_a ).

thf(sy_v_c,type,
    c: vec_a ).

thf(sy_v_nc,type,
    nc: nat ).

thf(sy_v_nr,type,
    nr: nat ).

thf(sy_v_t____,type,
    t: vec_a ).

thf(sy_v_u1____,type,
    u1: vec_a ).

thf(sy_v_u2____,type,
    u2: vec_a ).

thf(sy_v_u3____,type,
    u3: vec_a ).

thf(sy_v_u____,type,
    u: vec_a ).

thf(sy_v_ulv____,type,
    ulv: vec_a ).

thf(sy_v_v____,type,
    v: vec_a ).

thf(sy_v_w____,type,
    w: vec_a ).

% Relevant facts (1268)
thf(fact_0_L__def,axiom,
    ( l
    = ( vec_last_a @ u2 @ one_one_nat ) ) ).

% L_def
thf(fact_1_u1id,axiom,
    ( u1
    = ( append_vec_a @ u2 @ u3 ) ) ).

% u1id
thf(fact_2_u__def,axiom,
    ( u
    = ( vec_first_a @ u2 @ nr ) ) ).

% u_def
thf(fact_3_u3id,axiom,
    ( u3
    = ( append_vec_a @ v @ w ) ) ).

% u3id
thf(fact_4_ulvid,axiom,
    ( ulv
    = ( append_vec_a @ u1 @ t ) ) ).

% ulvid
thf(fact_5_append__vec__vCons,axiom,
    ! [A: nat,V: vec_nat,W: vec_nat] :
      ( ( append_vec_nat @ ( vCons_nat @ A @ V ) @ W )
      = ( vCons_nat @ A @ ( append_vec_nat @ V @ W ) ) ) ).

% append_vec_vCons
thf(fact_6_append__vec__vCons,axiom,
    ! [A: a,V: vec_a,W: vec_a] :
      ( ( append_vec_a @ ( vCons_a @ A @ V ) @ W )
      = ( vCons_a @ A @ ( append_vec_a @ V @ W ) ) ) ).

% append_vec_vCons
thf(fact_7_append__vec__eq,axiom,
    ! [V: vec_nat,N: nat,V2: vec_nat,W: vec_nat,W2: vec_nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V2 @ ( carrier_vec_nat @ N ) )
       => ( ( ( append_vec_nat @ V @ W )
            = ( append_vec_nat @ V2 @ W2 ) )
          = ( ( V = V2 )
            & ( W = W2 ) ) ) ) ) ).

% append_vec_eq
thf(fact_8_append__vec__eq,axiom,
    ! [V: vec_vec_a,N: nat,V2: vec_vec_a,W: vec_vec_a,W2: vec_vec_a] :
      ( ( member_vec_vec_a @ V @ ( carrier_vec_vec_a @ N ) )
     => ( ( member_vec_vec_a @ V2 @ ( carrier_vec_vec_a @ N ) )
       => ( ( ( append_vec_vec_a @ V @ W )
            = ( append_vec_vec_a @ V2 @ W2 ) )
          = ( ( V = V2 )
            & ( W = W2 ) ) ) ) ) ).

% append_vec_eq
thf(fact_9_append__vec__eq,axiom,
    ! [V: vec_a,N: nat,V2: vec_a,W: vec_a,W2: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V2 @ ( carrier_vec_a @ N ) )
       => ( ( ( append_vec_a @ V @ W )
            = ( append_vec_a @ V2 @ W2 ) )
          = ( ( V = V2 )
            & ( W = W2 ) ) ) ) ) ).

% append_vec_eq
thf(fact_10_u2,axiom,
    member_vec_a @ u2 @ ( carrier_vec_a @ ( plus_plus_nat @ nr @ one_one_nat ) ) ).

% u2
thf(fact_11_u2__def,axiom,
    ( u2
    = ( vec_first_a @ u1 @ ( plus_plus_nat @ nr @ one_one_nat ) ) ) ).

% u2_def
thf(fact_12_vardim_Ounpadl__padl,axiom,
    ! [M: nat,V: vec_nat] :
      ( ( matrix_unpadl_nat @ M @ ( append_vec_nat @ ( zero_vec_nat @ M ) @ V ) )
      = V ) ).

% vardim.unpadl_padl
thf(fact_13_vardim_Ounpadl__padl,axiom,
    ! [M: nat,V: vec_a] :
      ( ( matrix_unpadl_a @ M @ ( append_vec_a @ ( zero_vec_a @ M ) @ V ) )
      = V ) ).

% vardim.unpadl_padl
thf(fact_14_vardim_Ounpadr__padr,axiom,
    ! [M: nat,V: vec_nat] :
      ( ( matrix_unpadr_nat @ M @ ( append_vec_nat @ V @ ( zero_vec_nat @ M ) ) )
      = V ) ).

% vardim.unpadr_padr
thf(fact_15_vardim_Ounpadr__padr,axiom,
    ! [M: nat,V: vec_a] :
      ( ( matrix_unpadr_a @ M @ ( append_vec_a @ V @ ( zero_vec_a @ M ) ) )
      = V ) ).

% vardim.unpadr_padr
thf(fact_16_vec__set__append__vec,axiom,
    ! [V: vec_nat,W: vec_nat] :
      ( ( vec_set_nat @ ( append_vec_nat @ V @ W ) )
      = ( sup_sup_set_nat @ ( vec_set_nat @ V ) @ ( vec_set_nat @ W ) ) ) ).

% vec_set_append_vec
thf(fact_17_vec__set__append__vec,axiom,
    ! [V: vec_mat_a,W: vec_mat_a] :
      ( ( vec_set_mat_a @ ( append_vec_mat_a @ V @ W ) )
      = ( sup_sup_set_mat_a @ ( vec_set_mat_a @ V ) @ ( vec_set_mat_a @ W ) ) ) ).

% vec_set_append_vec
thf(fact_18_vec__set__append__vec,axiom,
    ! [V: vec_vec_a,W: vec_vec_a] :
      ( ( vec_set_vec_a @ ( append_vec_vec_a @ V @ W ) )
      = ( sup_sup_set_vec_a @ ( vec_set_vec_a @ V ) @ ( vec_set_vec_a @ W ) ) ) ).

% vec_set_append_vec
thf(fact_19_vec__set__append__vec,axiom,
    ! [V: vec_a,W: vec_a] :
      ( ( vec_set_a @ ( append_vec_a @ V @ W ) )
      = ( sup_sup_set_a @ ( vec_set_a @ V ) @ ( vec_set_a @ W ) ) ) ).

% vec_set_append_vec
thf(fact_20_b,axiom,
    member_vec_a @ b @ ( carrier_vec_a @ nr ) ).

% b
thf(fact_21_vCons__eq__vCons,axiom,
    ! [A: nat,V: vec_nat,B: nat,W: vec_nat] :
      ( ( ( vCons_nat @ A @ V )
        = ( vCons_nat @ B @ W ) )
      = ( ( A = B )
        & ( V = W ) ) ) ).

% vCons_eq_vCons
thf(fact_22_vCons__eq__vCons,axiom,
    ! [A: a,V: vec_a,B: a,W: vec_a] :
      ( ( ( vCons_a @ A @ V )
        = ( vCons_a @ B @ W ) )
      = ( ( A = B )
        & ( V = W ) ) ) ).

% vCons_eq_vCons
thf(fact_23_t,axiom,
    member_vec_a @ t @ ( carrier_vec_a @ nr ) ).

% t
thf(fact_24_t__def,axiom,
    ( t
    = ( vec_last_a @ ulv @ nr ) ) ).

% t_def
thf(fact_25_append__carrier__vec,axiom,
    ! [V: vec_nat,N1: nat,W: vec_nat,N2: nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N1 ) )
     => ( ( member_vec_nat @ W @ ( carrier_vec_nat @ N2 ) )
       => ( member_vec_nat @ ( append_vec_nat @ V @ W ) @ ( carrier_vec_nat @ ( plus_plus_nat @ N1 @ N2 ) ) ) ) ) ).

% append_carrier_vec
thf(fact_26_append__carrier__vec,axiom,
    ! [V: vec_vec_a,N1: nat,W: vec_vec_a,N2: nat] :
      ( ( member_vec_vec_a @ V @ ( carrier_vec_vec_a @ N1 ) )
     => ( ( member_vec_vec_a @ W @ ( carrier_vec_vec_a @ N2 ) )
       => ( member_vec_vec_a @ ( append_vec_vec_a @ V @ W ) @ ( carrier_vec_vec_a @ ( plus_plus_nat @ N1 @ N2 ) ) ) ) ) ).

% append_carrier_vec
thf(fact_27_append__carrier__vec,axiom,
    ! [V: vec_a,N1: nat,W: vec_a,N2: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N1 ) )
     => ( ( member_vec_a @ W @ ( carrier_vec_a @ N2 ) )
       => ( member_vec_a @ ( append_vec_a @ V @ W ) @ ( carrier_vec_a @ ( plus_plus_nat @ N1 @ N2 ) ) ) ) ) ).

% append_carrier_vec
thf(fact_28_vec__first__last__append,axiom,
    ! [V: vec_nat,N: nat,M: nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( append_vec_nat @ ( vec_first_nat @ V @ N ) @ ( vec_last_nat @ V @ M ) )
        = V ) ) ).

% vec_first_last_append
thf(fact_29_vec__first__last__append,axiom,
    ! [V: vec_vec_a,N: nat,M: nat] :
      ( ( member_vec_vec_a @ V @ ( carrier_vec_vec_a @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( append_vec_vec_a @ ( vec_first_vec_a @ V @ N ) @ ( vec_last_vec_a @ V @ M ) )
        = V ) ) ).

% vec_first_last_append
thf(fact_30_vec__first__last__append,axiom,
    ! [V: vec_a,N: nat,M: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( append_vec_a @ ( vec_first_a @ V @ N ) @ ( vec_last_a @ V @ M ) )
        = V ) ) ).

% vec_first_last_append
thf(fact_31_vardim_Opadr__padl__eq,axiom,
    ! [V: vec_nat,N: nat,M: nat,U: vec_nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( ( append_vec_nat @ V @ ( zero_vec_nat @ M ) )
          = ( append_vec_nat @ ( zero_vec_nat @ N ) @ U ) )
        = ( ( V
            = ( zero_vec_nat @ N ) )
          & ( U
            = ( zero_vec_nat @ M ) ) ) ) ) ).

% vardim.padr_padl_eq
thf(fact_32_vardim_Opadr__padl__eq,axiom,
    ! [V: vec_a,N: nat,M: nat,U: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( ( append_vec_a @ V @ ( zero_vec_a @ M ) )
          = ( append_vec_a @ ( zero_vec_a @ N ) @ U ) )
        = ( ( V
            = ( zero_vec_a @ N ) )
          & ( U
            = ( zero_vec_a @ M ) ) ) ) ) ).

% vardim.padr_padl_eq
thf(fact_33_all__vec__append,axiom,
    ! [N: nat,M: nat,P: vec_nat > $o] :
      ( ( ! [X: vec_nat] :
            ( ( member_vec_nat @ X @ ( carrier_vec_nat @ ( plus_plus_nat @ N @ M ) ) )
           => ( P @ X ) ) )
      = ( ! [X: vec_nat] :
            ( ( member_vec_nat @ X @ ( carrier_vec_nat @ N ) )
           => ! [Y: vec_nat] :
                ( ( member_vec_nat @ Y @ ( carrier_vec_nat @ M ) )
               => ( P @ ( append_vec_nat @ X @ Y ) ) ) ) ) ) ).

% all_vec_append
thf(fact_34_all__vec__append,axiom,
    ! [N: nat,M: nat,P: vec_vec_a > $o] :
      ( ( ! [X: vec_vec_a] :
            ( ( member_vec_vec_a @ X @ ( carrier_vec_vec_a @ ( plus_plus_nat @ N @ M ) ) )
           => ( P @ X ) ) )
      = ( ! [X: vec_vec_a] :
            ( ( member_vec_vec_a @ X @ ( carrier_vec_vec_a @ N ) )
           => ! [Y: vec_vec_a] :
                ( ( member_vec_vec_a @ Y @ ( carrier_vec_vec_a @ M ) )
               => ( P @ ( append_vec_vec_a @ X @ Y ) ) ) ) ) ) ).

% all_vec_append
thf(fact_35_all__vec__append,axiom,
    ! [N: nat,M: nat,P: vec_a > $o] :
      ( ( ! [X: vec_a] :
            ( ( member_vec_a @ X @ ( carrier_vec_a @ ( plus_plus_nat @ N @ M ) ) )
           => ( P @ X ) ) )
      = ( ! [X: vec_a] :
            ( ( member_vec_a @ X @ ( carrier_vec_a @ N ) )
           => ! [Y: vec_a] :
                ( ( member_vec_a @ Y @ ( carrier_vec_a @ M ) )
               => ( P @ ( append_vec_a @ X @ Y ) ) ) ) ) ) ).

% all_vec_append
thf(fact_36_vec__last__carrier,axiom,
    ! [V: vec_nat,N: nat] : ( member_vec_nat @ ( vec_last_nat @ V @ N ) @ ( carrier_vec_nat @ N ) ) ).

% vec_last_carrier
thf(fact_37_vec__last__carrier,axiom,
    ! [V: vec_vec_a,N: nat] : ( member_vec_vec_a @ ( vec_last_vec_a @ V @ N ) @ ( carrier_vec_vec_a @ N ) ) ).

% vec_last_carrier
thf(fact_38_vec__last__carrier,axiom,
    ! [V: vec_a,N: nat] : ( member_vec_a @ ( vec_last_a @ V @ N ) @ ( carrier_vec_a @ N ) ) ).

% vec_last_carrier
thf(fact_39_zero__carrier__vec,axiom,
    ! [N: nat] : ( member_vec_nat @ ( zero_vec_nat @ N ) @ ( carrier_vec_nat @ N ) ) ).

% zero_carrier_vec
thf(fact_40_zero__carrier__vec,axiom,
    ! [N: nat] : ( member_vec_a @ ( zero_vec_a @ N ) @ ( carrier_vec_a @ N ) ) ).

% zero_carrier_vec
thf(fact_41_vec__first__carrier,axiom,
    ! [V: vec_nat,N: nat] : ( member_vec_nat @ ( vec_first_nat @ V @ N ) @ ( carrier_vec_nat @ N ) ) ).

% vec_first_carrier
thf(fact_42_vec__first__carrier,axiom,
    ! [V: vec_vec_a,N: nat] : ( member_vec_vec_a @ ( vec_first_vec_a @ V @ N ) @ ( carrier_vec_vec_a @ N ) ) ).

% vec_first_carrier
thf(fact_43_vec__first__carrier,axiom,
    ! [V: vec_a,N: nat] : ( member_vec_a @ ( vec_first_a @ V @ N ) @ ( carrier_vec_a @ N ) ) ).

% vec_first_carrier
thf(fact_44_exists__vec__append,axiom,
    ! [N: nat,M: nat,P: vec_nat > $o] :
      ( ( ? [X: vec_nat] :
            ( ( member_vec_nat @ X @ ( carrier_vec_nat @ ( plus_plus_nat @ N @ M ) ) )
            & ( P @ X ) ) )
      = ( ? [X: vec_nat] :
            ( ( member_vec_nat @ X @ ( carrier_vec_nat @ N ) )
            & ? [Y: vec_nat] :
                ( ( member_vec_nat @ Y @ ( carrier_vec_nat @ M ) )
                & ( P @ ( append_vec_nat @ X @ Y ) ) ) ) ) ) ).

% exists_vec_append
thf(fact_45_exists__vec__append,axiom,
    ! [N: nat,M: nat,P: vec_vec_a > $o] :
      ( ( ? [X: vec_vec_a] :
            ( ( member_vec_vec_a @ X @ ( carrier_vec_vec_a @ ( plus_plus_nat @ N @ M ) ) )
            & ( P @ X ) ) )
      = ( ? [X: vec_vec_a] :
            ( ( member_vec_vec_a @ X @ ( carrier_vec_vec_a @ N ) )
            & ? [Y: vec_vec_a] :
                ( ( member_vec_vec_a @ Y @ ( carrier_vec_vec_a @ M ) )
                & ( P @ ( append_vec_vec_a @ X @ Y ) ) ) ) ) ) ).

% exists_vec_append
thf(fact_46_exists__vec__append,axiom,
    ! [N: nat,M: nat,P: vec_a > $o] :
      ( ( ? [X: vec_a] :
            ( ( member_vec_a @ X @ ( carrier_vec_a @ ( plus_plus_nat @ N @ M ) ) )
            & ( P @ X ) ) )
      = ( ? [X: vec_a] :
            ( ( member_vec_a @ X @ ( carrier_vec_a @ N ) )
            & ? [Y: vec_a] :
                ( ( member_vec_a @ Y @ ( carrier_vec_a @ M ) )
                & ( P @ ( append_vec_a @ X @ Y ) ) ) ) ) ) ).

% exists_vec_append
thf(fact_47_vec__first__append,axiom,
    ! [V: vec_nat,N: nat,W: vec_nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( vec_first_nat @ ( append_vec_nat @ V @ W ) @ N )
        = V ) ) ).

% vec_first_append
thf(fact_48_vec__first__append,axiom,
    ! [V: vec_vec_a,N: nat,W: vec_vec_a] :
      ( ( member_vec_vec_a @ V @ ( carrier_vec_vec_a @ N ) )
     => ( ( vec_first_vec_a @ ( append_vec_vec_a @ V @ W ) @ N )
        = V ) ) ).

% vec_first_append
thf(fact_49_vec__first__append,axiom,
    ! [V: vec_a,N: nat,W: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( vec_first_a @ ( append_vec_a @ V @ W ) @ N )
        = V ) ) ).

% vec_first_append
thf(fact_50_u1__def,axiom,
    ( u1
    = ( vec_first_a @ ulv @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) ) ) ).

% u1_def
thf(fact_51_u1,axiom,
    member_vec_a @ u1 @ ( carrier_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) ) ).

% u1
thf(fact_52_u3__def,axiom,
    ( u3
    = ( vec_last_a @ u1 @ ( plus_plus_nat @ nc @ nc ) ) ) ).

% u3_def
thf(fact_53_ulv,axiom,
    member_vec_a @ ulv @ ( carrier_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) ) ).

% ulv
thf(fact_54_v__def,axiom,
    ( v
    = ( vec_first_a @ u3 @ nc ) ) ).

% v_def
thf(fact_55_w__def,axiom,
    ( w
    = ( vec_last_a @ u3 @ nc ) ) ).

% w_def
thf(fact_56_UnCI,axiom,
    ! [C: nat,B2: set_nat,A2: set_nat] :
      ( ( ~ ( member_nat @ C @ B2 )
       => ( member_nat @ C @ A2 ) )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_57_UnCI,axiom,
    ! [C: mat_nat,B2: set_mat_nat,A2: set_mat_nat] :
      ( ( ~ ( member_mat_nat @ C @ B2 )
       => ( member_mat_nat @ C @ A2 ) )
     => ( member_mat_nat @ C @ ( sup_sup_set_mat_nat @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_58_UnCI,axiom,
    ! [C: vec_nat,B2: set_vec_nat,A2: set_vec_nat] :
      ( ( ~ ( member_vec_nat @ C @ B2 )
       => ( member_vec_nat @ C @ A2 ) )
     => ( member_vec_nat @ C @ ( sup_sup_set_vec_nat @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_59_UnCI,axiom,
    ! [C: vec_vec_a,B2: set_vec_vec_a,A2: set_vec_vec_a] :
      ( ( ~ ( member_vec_vec_a @ C @ B2 )
       => ( member_vec_vec_a @ C @ A2 ) )
     => ( member_vec_vec_a @ C @ ( sup_su4324207151431933192_vec_a @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_60_UnCI,axiom,
    ! [C: a,B2: set_a,A2: set_a] :
      ( ( ~ ( member_a @ C @ B2 )
       => ( member_a @ C @ A2 ) )
     => ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_61_UnCI,axiom,
    ! [C: vec_a,B2: set_vec_a,A2: set_vec_a] :
      ( ( ~ ( member_vec_a @ C @ B2 )
       => ( member_vec_a @ C @ A2 ) )
     => ( member_vec_a @ C @ ( sup_sup_set_vec_a @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_62_UnCI,axiom,
    ! [C: mat_a,B2: set_mat_a,A2: set_mat_a] :
      ( ( ~ ( member_mat_a @ C @ B2 )
       => ( member_mat_a @ C @ A2 ) )
     => ( member_mat_a @ C @ ( sup_sup_set_mat_a @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_63_Un__iff,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) )
      = ( ( member_nat @ C @ A2 )
        | ( member_nat @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_64_Un__iff,axiom,
    ! [C: mat_nat,A2: set_mat_nat,B2: set_mat_nat] :
      ( ( member_mat_nat @ C @ ( sup_sup_set_mat_nat @ A2 @ B2 ) )
      = ( ( member_mat_nat @ C @ A2 )
        | ( member_mat_nat @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_65_Un__iff,axiom,
    ! [C: vec_nat,A2: set_vec_nat,B2: set_vec_nat] :
      ( ( member_vec_nat @ C @ ( sup_sup_set_vec_nat @ A2 @ B2 ) )
      = ( ( member_vec_nat @ C @ A2 )
        | ( member_vec_nat @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_66_Un__iff,axiom,
    ! [C: vec_vec_a,A2: set_vec_vec_a,B2: set_vec_vec_a] :
      ( ( member_vec_vec_a @ C @ ( sup_su4324207151431933192_vec_a @ A2 @ B2 ) )
      = ( ( member_vec_vec_a @ C @ A2 )
        | ( member_vec_vec_a @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_67_Un__iff,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) )
      = ( ( member_a @ C @ A2 )
        | ( member_a @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_68_Un__iff,axiom,
    ! [C: vec_a,A2: set_vec_a,B2: set_vec_a] :
      ( ( member_vec_a @ C @ ( sup_sup_set_vec_a @ A2 @ B2 ) )
      = ( ( member_vec_a @ C @ A2 )
        | ( member_vec_a @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_69_Un__iff,axiom,
    ! [C: mat_a,A2: set_mat_a,B2: set_mat_a] :
      ( ( member_mat_a @ C @ ( sup_sup_set_mat_a @ A2 @ B2 ) )
      = ( ( member_mat_a @ C @ A2 )
        | ( member_mat_a @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_70_sup_Oidem,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ A @ A )
      = A ) ).

% sup.idem
thf(fact_71_sup_Oidem,axiom,
    ! [A: set_mat_a] :
      ( ( sup_sup_set_mat_a @ A @ A )
      = A ) ).

% sup.idem
thf(fact_72_sup_Oidem,axiom,
    ! [A: set_vec_a] :
      ( ( sup_sup_set_vec_a @ A @ A )
      = A ) ).

% sup.idem
thf(fact_73_sup_Oidem,axiom,
    ! [A: nat] :
      ( ( sup_sup_nat @ A @ A )
      = A ) ).

% sup.idem
thf(fact_74_sup__idem,axiom,
    ! [X2: set_a] :
      ( ( sup_sup_set_a @ X2 @ X2 )
      = X2 ) ).

% sup_idem
thf(fact_75_sup__idem,axiom,
    ! [X2: set_mat_a] :
      ( ( sup_sup_set_mat_a @ X2 @ X2 )
      = X2 ) ).

% sup_idem
thf(fact_76_sup__idem,axiom,
    ! [X2: set_vec_a] :
      ( ( sup_sup_set_vec_a @ X2 @ X2 )
      = X2 ) ).

% sup_idem
thf(fact_77_sup__idem,axiom,
    ! [X2: nat] :
      ( ( sup_sup_nat @ X2 @ X2 )
      = X2 ) ).

% sup_idem
thf(fact_78_sup_Oleft__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( sup_sup_set_a @ A @ ( sup_sup_set_a @ A @ B ) )
      = ( sup_sup_set_a @ A @ B ) ) ).

% sup.left_idem
thf(fact_79_sup_Oleft__idem,axiom,
    ! [A: set_mat_a,B: set_mat_a] :
      ( ( sup_sup_set_mat_a @ A @ ( sup_sup_set_mat_a @ A @ B ) )
      = ( sup_sup_set_mat_a @ A @ B ) ) ).

% sup.left_idem
thf(fact_80_sup_Oleft__idem,axiom,
    ! [A: set_vec_a,B: set_vec_a] :
      ( ( sup_sup_set_vec_a @ A @ ( sup_sup_set_vec_a @ A @ B ) )
      = ( sup_sup_set_vec_a @ A @ B ) ) ).

% sup.left_idem
thf(fact_81_sup_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( sup_sup_nat @ A @ ( sup_sup_nat @ A @ B ) )
      = ( sup_sup_nat @ A @ B ) ) ).

% sup.left_idem
thf(fact_82_sup__left__idem,axiom,
    ! [X2: set_a,Y2: set_a] :
      ( ( sup_sup_set_a @ X2 @ ( sup_sup_set_a @ X2 @ Y2 ) )
      = ( sup_sup_set_a @ X2 @ Y2 ) ) ).

% sup_left_idem
thf(fact_83_sup__left__idem,axiom,
    ! [X2: set_mat_a,Y2: set_mat_a] :
      ( ( sup_sup_set_mat_a @ X2 @ ( sup_sup_set_mat_a @ X2 @ Y2 ) )
      = ( sup_sup_set_mat_a @ X2 @ Y2 ) ) ).

% sup_left_idem
thf(fact_84_sup__left__idem,axiom,
    ! [X2: set_vec_a,Y2: set_vec_a] :
      ( ( sup_sup_set_vec_a @ X2 @ ( sup_sup_set_vec_a @ X2 @ Y2 ) )
      = ( sup_sup_set_vec_a @ X2 @ Y2 ) ) ).

% sup_left_idem
thf(fact_85_sup__left__idem,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( sup_sup_nat @ X2 @ ( sup_sup_nat @ X2 @ Y2 ) )
      = ( sup_sup_nat @ X2 @ Y2 ) ) ).

% sup_left_idem
thf(fact_86_c,axiom,
    member_vec_a @ c @ ( carrier_vec_a @ nc ) ).

% c
thf(fact_87_sup_Oright__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B ) @ B )
      = ( sup_sup_set_a @ A @ B ) ) ).

% sup.right_idem
thf(fact_88_sup_Oright__idem,axiom,
    ! [A: set_mat_a,B: set_mat_a] :
      ( ( sup_sup_set_mat_a @ ( sup_sup_set_mat_a @ A @ B ) @ B )
      = ( sup_sup_set_mat_a @ A @ B ) ) ).

% sup.right_idem
thf(fact_89_sup_Oright__idem,axiom,
    ! [A: set_vec_a,B: set_vec_a] :
      ( ( sup_sup_set_vec_a @ ( sup_sup_set_vec_a @ A @ B ) @ B )
      = ( sup_sup_set_vec_a @ A @ B ) ) ).

% sup.right_idem
thf(fact_90_sup_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( sup_sup_nat @ ( sup_sup_nat @ A @ B ) @ B )
      = ( sup_sup_nat @ A @ B ) ) ).

% sup.right_idem
thf(fact_91_w,axiom,
    member_vec_a @ w @ ( carrier_vec_a @ nc ) ).

% w
thf(fact_92_v,axiom,
    member_vec_a @ v @ ( carrier_vec_a @ nc ) ).

% v
thf(fact_93_u3,axiom,
    member_vec_a @ u3 @ ( carrier_vec_a @ ( plus_plus_nat @ nc @ nc ) ) ).

% u3
thf(fact_94_bc,axiom,
    member_vec_a @ bc @ ( carrier_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) ) ).

% bc
thf(fact_95_ulv0,axiom,
    ord_less_eq_vec_a @ ( zero_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) ) @ ulv ).

% ulv0
thf(fact_96_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_97_mem__Collect__eq,axiom,
    ! [A: mat_nat,P: mat_nat > $o] :
      ( ( member_mat_nat @ A @ ( collect_mat_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_98_mem__Collect__eq,axiom,
    ! [A: vec_nat,P: vec_nat > $o] :
      ( ( member_vec_nat @ A @ ( collect_vec_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_99_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_100_mem__Collect__eq,axiom,
    ! [A: vec_vec_a,P: vec_vec_a > $o] :
      ( ( member_vec_vec_a @ A @ ( collect_vec_vec_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_101_mem__Collect__eq,axiom,
    ! [A: vec_a,P: vec_a > $o] :
      ( ( member_vec_a @ A @ ( collect_vec_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_102_mem__Collect__eq,axiom,
    ! [A: mat_a,P: mat_a > $o] :
      ( ( member_mat_a @ A @ ( collect_mat_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_103_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X: nat] : ( member_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_104_Collect__mem__eq,axiom,
    ! [A2: set_mat_nat] :
      ( ( collect_mat_nat
        @ ^ [X: mat_nat] : ( member_mat_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_105_Collect__mem__eq,axiom,
    ! [A2: set_vec_nat] :
      ( ( collect_vec_nat
        @ ^ [X: vec_nat] : ( member_vec_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_106_Collect__mem__eq,axiom,
    ! [A2: set_a] :
      ( ( collect_a
        @ ^ [X: a] : ( member_a @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_107_Collect__mem__eq,axiom,
    ! [A2: set_vec_vec_a] :
      ( ( collect_vec_vec_a
        @ ^ [X: vec_vec_a] : ( member_vec_vec_a @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_108_Collect__mem__eq,axiom,
    ! [A2: set_vec_a] :
      ( ( collect_vec_a
        @ ^ [X: vec_a] : ( member_vec_a @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_109_Collect__mem__eq,axiom,
    ! [A2: set_mat_a] :
      ( ( collect_mat_a
        @ ^ [X: mat_a] : ( member_mat_a @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_110_Collect__cong,axiom,
    ! [P: mat_a > $o,Q: mat_a > $o] :
      ( ! [X3: mat_a] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_mat_a @ P )
        = ( collect_mat_a @ Q ) ) ) ).

% Collect_cong
thf(fact_111_Collect__cong,axiom,
    ! [P: vec_a > $o,Q: vec_a > $o] :
      ( ! [X3: vec_a] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_vec_a @ P )
        = ( collect_vec_a @ Q ) ) ) ).

% Collect_cong
thf(fact_112_sup__left__commute,axiom,
    ! [X2: set_a,Y2: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X2 @ ( sup_sup_set_a @ Y2 @ Z ) )
      = ( sup_sup_set_a @ Y2 @ ( sup_sup_set_a @ X2 @ Z ) ) ) ).

% sup_left_commute
thf(fact_113_sup__left__commute,axiom,
    ! [X2: set_mat_a,Y2: set_mat_a,Z: set_mat_a] :
      ( ( sup_sup_set_mat_a @ X2 @ ( sup_sup_set_mat_a @ Y2 @ Z ) )
      = ( sup_sup_set_mat_a @ Y2 @ ( sup_sup_set_mat_a @ X2 @ Z ) ) ) ).

% sup_left_commute
thf(fact_114_sup__left__commute,axiom,
    ! [X2: set_vec_a,Y2: set_vec_a,Z: set_vec_a] :
      ( ( sup_sup_set_vec_a @ X2 @ ( sup_sup_set_vec_a @ Y2 @ Z ) )
      = ( sup_sup_set_vec_a @ Y2 @ ( sup_sup_set_vec_a @ X2 @ Z ) ) ) ).

% sup_left_commute
thf(fact_115_sup__left__commute,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( sup_sup_nat @ X2 @ ( sup_sup_nat @ Y2 @ Z ) )
      = ( sup_sup_nat @ Y2 @ ( sup_sup_nat @ X2 @ Z ) ) ) ).

% sup_left_commute
thf(fact_116_sup_Oleft__commute,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( sup_sup_set_a @ B @ ( sup_sup_set_a @ A @ C ) )
      = ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_117_sup_Oleft__commute,axiom,
    ! [B: set_mat_a,A: set_mat_a,C: set_mat_a] :
      ( ( sup_sup_set_mat_a @ B @ ( sup_sup_set_mat_a @ A @ C ) )
      = ( sup_sup_set_mat_a @ A @ ( sup_sup_set_mat_a @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_118_sup_Oleft__commute,axiom,
    ! [B: set_vec_a,A: set_vec_a,C: set_vec_a] :
      ( ( sup_sup_set_vec_a @ B @ ( sup_sup_set_vec_a @ A @ C ) )
      = ( sup_sup_set_vec_a @ A @ ( sup_sup_set_vec_a @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_119_sup_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( sup_sup_nat @ B @ ( sup_sup_nat @ A @ C ) )
      = ( sup_sup_nat @ A @ ( sup_sup_nat @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_120_sup__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [X: set_a,Y: set_a] : ( sup_sup_set_a @ Y @ X ) ) ) ).

% sup_commute
thf(fact_121_sup__commute,axiom,
    ( sup_sup_set_mat_a
    = ( ^ [X: set_mat_a,Y: set_mat_a] : ( sup_sup_set_mat_a @ Y @ X ) ) ) ).

% sup_commute
thf(fact_122_sup__commute,axiom,
    ( sup_sup_set_vec_a
    = ( ^ [X: set_vec_a,Y: set_vec_a] : ( sup_sup_set_vec_a @ Y @ X ) ) ) ).

% sup_commute
thf(fact_123_sup__commute,axiom,
    ( sup_sup_nat
    = ( ^ [X: nat,Y: nat] : ( sup_sup_nat @ Y @ X ) ) ) ).

% sup_commute
thf(fact_124_sup_Ocommute,axiom,
    ( sup_sup_set_a
    = ( ^ [A3: set_a,B3: set_a] : ( sup_sup_set_a @ B3 @ A3 ) ) ) ).

% sup.commute
thf(fact_125_sup_Ocommute,axiom,
    ( sup_sup_set_mat_a
    = ( ^ [A3: set_mat_a,B3: set_mat_a] : ( sup_sup_set_mat_a @ B3 @ A3 ) ) ) ).

% sup.commute
thf(fact_126_sup_Ocommute,axiom,
    ( sup_sup_set_vec_a
    = ( ^ [A3: set_vec_a,B3: set_vec_a] : ( sup_sup_set_vec_a @ B3 @ A3 ) ) ) ).

% sup.commute
thf(fact_127_sup_Ocommute,axiom,
    ( sup_sup_nat
    = ( ^ [A3: nat,B3: nat] : ( sup_sup_nat @ B3 @ A3 ) ) ) ).

% sup.commute
thf(fact_128_sup__assoc,axiom,
    ! [X2: set_a,Y2: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X2 @ Y2 ) @ Z )
      = ( sup_sup_set_a @ X2 @ ( sup_sup_set_a @ Y2 @ Z ) ) ) ).

% sup_assoc
thf(fact_129_sup__assoc,axiom,
    ! [X2: set_mat_a,Y2: set_mat_a,Z: set_mat_a] :
      ( ( sup_sup_set_mat_a @ ( sup_sup_set_mat_a @ X2 @ Y2 ) @ Z )
      = ( sup_sup_set_mat_a @ X2 @ ( sup_sup_set_mat_a @ Y2 @ Z ) ) ) ).

% sup_assoc
thf(fact_130_sup__assoc,axiom,
    ! [X2: set_vec_a,Y2: set_vec_a,Z: set_vec_a] :
      ( ( sup_sup_set_vec_a @ ( sup_sup_set_vec_a @ X2 @ Y2 ) @ Z )
      = ( sup_sup_set_vec_a @ X2 @ ( sup_sup_set_vec_a @ Y2 @ Z ) ) ) ).

% sup_assoc
thf(fact_131_sup__assoc,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( sup_sup_nat @ ( sup_sup_nat @ X2 @ Y2 ) @ Z )
      = ( sup_sup_nat @ X2 @ ( sup_sup_nat @ Y2 @ Z ) ) ) ).

% sup_assoc
thf(fact_132_sup_Oassoc,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B ) @ C )
      = ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B @ C ) ) ) ).

% sup.assoc
thf(fact_133_sup_Oassoc,axiom,
    ! [A: set_mat_a,B: set_mat_a,C: set_mat_a] :
      ( ( sup_sup_set_mat_a @ ( sup_sup_set_mat_a @ A @ B ) @ C )
      = ( sup_sup_set_mat_a @ A @ ( sup_sup_set_mat_a @ B @ C ) ) ) ).

% sup.assoc
thf(fact_134_sup_Oassoc,axiom,
    ! [A: set_vec_a,B: set_vec_a,C: set_vec_a] :
      ( ( sup_sup_set_vec_a @ ( sup_sup_set_vec_a @ A @ B ) @ C )
      = ( sup_sup_set_vec_a @ A @ ( sup_sup_set_vec_a @ B @ C ) ) ) ).

% sup.assoc
thf(fact_135_sup_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( sup_sup_nat @ ( sup_sup_nat @ A @ B ) @ C )
      = ( sup_sup_nat @ A @ ( sup_sup_nat @ B @ C ) ) ) ).

% sup.assoc
thf(fact_136_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_a
    = ( ^ [X: set_a,Y: set_a] : ( sup_sup_set_a @ Y @ X ) ) ) ).

% inf_sup_aci(5)
thf(fact_137_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_mat_a
    = ( ^ [X: set_mat_a,Y: set_mat_a] : ( sup_sup_set_mat_a @ Y @ X ) ) ) ).

% inf_sup_aci(5)
thf(fact_138_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_vec_a
    = ( ^ [X: set_vec_a,Y: set_vec_a] : ( sup_sup_set_vec_a @ Y @ X ) ) ) ).

% inf_sup_aci(5)
thf(fact_139_inf__sup__aci_I5_J,axiom,
    ( sup_sup_nat
    = ( ^ [X: nat,Y: nat] : ( sup_sup_nat @ Y @ X ) ) ) ).

% inf_sup_aci(5)
thf(fact_140_inf__sup__aci_I6_J,axiom,
    ! [X2: set_a,Y2: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X2 @ Y2 ) @ Z )
      = ( sup_sup_set_a @ X2 @ ( sup_sup_set_a @ Y2 @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_141_inf__sup__aci_I6_J,axiom,
    ! [X2: set_mat_a,Y2: set_mat_a,Z: set_mat_a] :
      ( ( sup_sup_set_mat_a @ ( sup_sup_set_mat_a @ X2 @ Y2 ) @ Z )
      = ( sup_sup_set_mat_a @ X2 @ ( sup_sup_set_mat_a @ Y2 @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_142_inf__sup__aci_I6_J,axiom,
    ! [X2: set_vec_a,Y2: set_vec_a,Z: set_vec_a] :
      ( ( sup_sup_set_vec_a @ ( sup_sup_set_vec_a @ X2 @ Y2 ) @ Z )
      = ( sup_sup_set_vec_a @ X2 @ ( sup_sup_set_vec_a @ Y2 @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_143_inf__sup__aci_I6_J,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( sup_sup_nat @ ( sup_sup_nat @ X2 @ Y2 ) @ Z )
      = ( sup_sup_nat @ X2 @ ( sup_sup_nat @ Y2 @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_144_inf__sup__aci_I7_J,axiom,
    ! [X2: set_a,Y2: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X2 @ ( sup_sup_set_a @ Y2 @ Z ) )
      = ( sup_sup_set_a @ Y2 @ ( sup_sup_set_a @ X2 @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_145_inf__sup__aci_I7_J,axiom,
    ! [X2: set_mat_a,Y2: set_mat_a,Z: set_mat_a] :
      ( ( sup_sup_set_mat_a @ X2 @ ( sup_sup_set_mat_a @ Y2 @ Z ) )
      = ( sup_sup_set_mat_a @ Y2 @ ( sup_sup_set_mat_a @ X2 @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_146_inf__sup__aci_I7_J,axiom,
    ! [X2: set_vec_a,Y2: set_vec_a,Z: set_vec_a] :
      ( ( sup_sup_set_vec_a @ X2 @ ( sup_sup_set_vec_a @ Y2 @ Z ) )
      = ( sup_sup_set_vec_a @ Y2 @ ( sup_sup_set_vec_a @ X2 @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_147_inf__sup__aci_I7_J,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( sup_sup_nat @ X2 @ ( sup_sup_nat @ Y2 @ Z ) )
      = ( sup_sup_nat @ Y2 @ ( sup_sup_nat @ X2 @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_148_inf__sup__aci_I8_J,axiom,
    ! [X2: set_a,Y2: set_a] :
      ( ( sup_sup_set_a @ X2 @ ( sup_sup_set_a @ X2 @ Y2 ) )
      = ( sup_sup_set_a @ X2 @ Y2 ) ) ).

% inf_sup_aci(8)
thf(fact_149_inf__sup__aci_I8_J,axiom,
    ! [X2: set_mat_a,Y2: set_mat_a] :
      ( ( sup_sup_set_mat_a @ X2 @ ( sup_sup_set_mat_a @ X2 @ Y2 ) )
      = ( sup_sup_set_mat_a @ X2 @ Y2 ) ) ).

% inf_sup_aci(8)
thf(fact_150_inf__sup__aci_I8_J,axiom,
    ! [X2: set_vec_a,Y2: set_vec_a] :
      ( ( sup_sup_set_vec_a @ X2 @ ( sup_sup_set_vec_a @ X2 @ Y2 ) )
      = ( sup_sup_set_vec_a @ X2 @ Y2 ) ) ).

% inf_sup_aci(8)
thf(fact_151_inf__sup__aci_I8_J,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( sup_sup_nat @ X2 @ ( sup_sup_nat @ X2 @ Y2 ) )
      = ( sup_sup_nat @ X2 @ Y2 ) ) ).

% inf_sup_aci(8)
thf(fact_152_Un__left__commute,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) )
      = ( sup_sup_set_a @ B2 @ ( sup_sup_set_a @ A2 @ C2 ) ) ) ).

% Un_left_commute
thf(fact_153_Un__left__commute,axiom,
    ! [A2: set_mat_a,B2: set_mat_a,C2: set_mat_a] :
      ( ( sup_sup_set_mat_a @ A2 @ ( sup_sup_set_mat_a @ B2 @ C2 ) )
      = ( sup_sup_set_mat_a @ B2 @ ( sup_sup_set_mat_a @ A2 @ C2 ) ) ) ).

% Un_left_commute
thf(fact_154_Un__left__commute,axiom,
    ! [A2: set_vec_a,B2: set_vec_a,C2: set_vec_a] :
      ( ( sup_sup_set_vec_a @ A2 @ ( sup_sup_set_vec_a @ B2 @ C2 ) )
      = ( sup_sup_set_vec_a @ B2 @ ( sup_sup_set_vec_a @ A2 @ C2 ) ) ) ).

% Un_left_commute
thf(fact_155_Un__left__absorb,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B2 ) )
      = ( sup_sup_set_a @ A2 @ B2 ) ) ).

% Un_left_absorb
thf(fact_156_Un__left__absorb,axiom,
    ! [A2: set_mat_a,B2: set_mat_a] :
      ( ( sup_sup_set_mat_a @ A2 @ ( sup_sup_set_mat_a @ A2 @ B2 ) )
      = ( sup_sup_set_mat_a @ A2 @ B2 ) ) ).

% Un_left_absorb
thf(fact_157_Un__left__absorb,axiom,
    ! [A2: set_vec_a,B2: set_vec_a] :
      ( ( sup_sup_set_vec_a @ A2 @ ( sup_sup_set_vec_a @ A2 @ B2 ) )
      = ( sup_sup_set_vec_a @ A2 @ B2 ) ) ).

% Un_left_absorb
thf(fact_158_Un__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [A4: set_a,B4: set_a] : ( sup_sup_set_a @ B4 @ A4 ) ) ) ).

% Un_commute
thf(fact_159_Un__commute,axiom,
    ( sup_sup_set_mat_a
    = ( ^ [A4: set_mat_a,B4: set_mat_a] : ( sup_sup_set_mat_a @ B4 @ A4 ) ) ) ).

% Un_commute
thf(fact_160_Un__commute,axiom,
    ( sup_sup_set_vec_a
    = ( ^ [A4: set_vec_a,B4: set_vec_a] : ( sup_sup_set_vec_a @ B4 @ A4 ) ) ) ).

% Un_commute
thf(fact_161_Un__absorb,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ A2 )
      = A2 ) ).

% Un_absorb
thf(fact_162_Un__absorb,axiom,
    ! [A2: set_mat_a] :
      ( ( sup_sup_set_mat_a @ A2 @ A2 )
      = A2 ) ).

% Un_absorb
thf(fact_163_Un__absorb,axiom,
    ! [A2: set_vec_a] :
      ( ( sup_sup_set_vec_a @ A2 @ A2 )
      = A2 ) ).

% Un_absorb
thf(fact_164_Un__assoc,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C2 )
      = ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% Un_assoc
thf(fact_165_Un__assoc,axiom,
    ! [A2: set_mat_a,B2: set_mat_a,C2: set_mat_a] :
      ( ( sup_sup_set_mat_a @ ( sup_sup_set_mat_a @ A2 @ B2 ) @ C2 )
      = ( sup_sup_set_mat_a @ A2 @ ( sup_sup_set_mat_a @ B2 @ C2 ) ) ) ).

% Un_assoc
thf(fact_166_Un__assoc,axiom,
    ! [A2: set_vec_a,B2: set_vec_a,C2: set_vec_a] :
      ( ( sup_sup_set_vec_a @ ( sup_sup_set_vec_a @ A2 @ B2 ) @ C2 )
      = ( sup_sup_set_vec_a @ A2 @ ( sup_sup_set_vec_a @ B2 @ C2 ) ) ) ).

% Un_assoc
thf(fact_167_ball__Un,axiom,
    ! [A2: set_a,B2: set_a,P: a > $o] :
      ( ( ! [X: a] :
            ( ( member_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) )
           => ( P @ X ) ) )
      = ( ! [X: a] :
            ( ( member_a @ X @ A2 )
           => ( P @ X ) )
        & ! [X: a] :
            ( ( member_a @ X @ B2 )
           => ( P @ X ) ) ) ) ).

% ball_Un
thf(fact_168_ball__Un,axiom,
    ! [A2: set_mat_a,B2: set_mat_a,P: mat_a > $o] :
      ( ( ! [X: mat_a] :
            ( ( member_mat_a @ X @ ( sup_sup_set_mat_a @ A2 @ B2 ) )
           => ( P @ X ) ) )
      = ( ! [X: mat_a] :
            ( ( member_mat_a @ X @ A2 )
           => ( P @ X ) )
        & ! [X: mat_a] :
            ( ( member_mat_a @ X @ B2 )
           => ( P @ X ) ) ) ) ).

% ball_Un
thf(fact_169_ball__Un,axiom,
    ! [A2: set_vec_a,B2: set_vec_a,P: vec_a > $o] :
      ( ( ! [X: vec_a] :
            ( ( member_vec_a @ X @ ( sup_sup_set_vec_a @ A2 @ B2 ) )
           => ( P @ X ) ) )
      = ( ! [X: vec_a] :
            ( ( member_vec_a @ X @ A2 )
           => ( P @ X ) )
        & ! [X: vec_a] :
            ( ( member_vec_a @ X @ B2 )
           => ( P @ X ) ) ) ) ).

% ball_Un
thf(fact_170_bex__Un,axiom,
    ! [A2: set_a,B2: set_a,P: a > $o] :
      ( ( ? [X: a] :
            ( ( member_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) )
            & ( P @ X ) ) )
      = ( ? [X: a] :
            ( ( member_a @ X @ A2 )
            & ( P @ X ) )
        | ? [X: a] :
            ( ( member_a @ X @ B2 )
            & ( P @ X ) ) ) ) ).

% bex_Un
thf(fact_171_bex__Un,axiom,
    ! [A2: set_mat_a,B2: set_mat_a,P: mat_a > $o] :
      ( ( ? [X: mat_a] :
            ( ( member_mat_a @ X @ ( sup_sup_set_mat_a @ A2 @ B2 ) )
            & ( P @ X ) ) )
      = ( ? [X: mat_a] :
            ( ( member_mat_a @ X @ A2 )
            & ( P @ X ) )
        | ? [X: mat_a] :
            ( ( member_mat_a @ X @ B2 )
            & ( P @ X ) ) ) ) ).

% bex_Un
thf(fact_172_bex__Un,axiom,
    ! [A2: set_vec_a,B2: set_vec_a,P: vec_a > $o] :
      ( ( ? [X: vec_a] :
            ( ( member_vec_a @ X @ ( sup_sup_set_vec_a @ A2 @ B2 ) )
            & ( P @ X ) ) )
      = ( ? [X: vec_a] :
            ( ( member_vec_a @ X @ A2 )
            & ( P @ X ) )
        | ? [X: vec_a] :
            ( ( member_vec_a @ X @ B2 )
            & ( P @ X ) ) ) ) ).

% bex_Un
thf(fact_173_UnI2,axiom,
    ! [C: nat,B2: set_nat,A2: set_nat] :
      ( ( member_nat @ C @ B2 )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_174_UnI2,axiom,
    ! [C: mat_nat,B2: set_mat_nat,A2: set_mat_nat] :
      ( ( member_mat_nat @ C @ B2 )
     => ( member_mat_nat @ C @ ( sup_sup_set_mat_nat @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_175_UnI2,axiom,
    ! [C: vec_nat,B2: set_vec_nat,A2: set_vec_nat] :
      ( ( member_vec_nat @ C @ B2 )
     => ( member_vec_nat @ C @ ( sup_sup_set_vec_nat @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_176_UnI2,axiom,
    ! [C: vec_vec_a,B2: set_vec_vec_a,A2: set_vec_vec_a] :
      ( ( member_vec_vec_a @ C @ B2 )
     => ( member_vec_vec_a @ C @ ( sup_su4324207151431933192_vec_a @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_177_UnI2,axiom,
    ! [C: a,B2: set_a,A2: set_a] :
      ( ( member_a @ C @ B2 )
     => ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_178_UnI2,axiom,
    ! [C: vec_a,B2: set_vec_a,A2: set_vec_a] :
      ( ( member_vec_a @ C @ B2 )
     => ( member_vec_a @ C @ ( sup_sup_set_vec_a @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_179_UnI2,axiom,
    ! [C: mat_a,B2: set_mat_a,A2: set_mat_a] :
      ( ( member_mat_a @ C @ B2 )
     => ( member_mat_a @ C @ ( sup_sup_set_mat_a @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_180_UnI1,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_181_UnI1,axiom,
    ! [C: mat_nat,A2: set_mat_nat,B2: set_mat_nat] :
      ( ( member_mat_nat @ C @ A2 )
     => ( member_mat_nat @ C @ ( sup_sup_set_mat_nat @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_182_UnI1,axiom,
    ! [C: vec_nat,A2: set_vec_nat,B2: set_vec_nat] :
      ( ( member_vec_nat @ C @ A2 )
     => ( member_vec_nat @ C @ ( sup_sup_set_vec_nat @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_183_UnI1,axiom,
    ! [C: vec_vec_a,A2: set_vec_vec_a,B2: set_vec_vec_a] :
      ( ( member_vec_vec_a @ C @ A2 )
     => ( member_vec_vec_a @ C @ ( sup_su4324207151431933192_vec_a @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_184_UnI1,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ A2 )
     => ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_185_UnI1,axiom,
    ! [C: vec_a,A2: set_vec_a,B2: set_vec_a] :
      ( ( member_vec_a @ C @ A2 )
     => ( member_vec_a @ C @ ( sup_sup_set_vec_a @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_186_UnI1,axiom,
    ! [C: mat_a,A2: set_mat_a,B2: set_mat_a] :
      ( ( member_mat_a @ C @ A2 )
     => ( member_mat_a @ C @ ( sup_sup_set_mat_a @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_187_UnE,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) )
     => ( ~ ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B2 ) ) ) ).

% UnE
thf(fact_188_UnE,axiom,
    ! [C: mat_nat,A2: set_mat_nat,B2: set_mat_nat] :
      ( ( member_mat_nat @ C @ ( sup_sup_set_mat_nat @ A2 @ B2 ) )
     => ( ~ ( member_mat_nat @ C @ A2 )
       => ( member_mat_nat @ C @ B2 ) ) ) ).

% UnE
thf(fact_189_UnE,axiom,
    ! [C: vec_nat,A2: set_vec_nat,B2: set_vec_nat] :
      ( ( member_vec_nat @ C @ ( sup_sup_set_vec_nat @ A2 @ B2 ) )
     => ( ~ ( member_vec_nat @ C @ A2 )
       => ( member_vec_nat @ C @ B2 ) ) ) ).

% UnE
thf(fact_190_UnE,axiom,
    ! [C: vec_vec_a,A2: set_vec_vec_a,B2: set_vec_vec_a] :
      ( ( member_vec_vec_a @ C @ ( sup_su4324207151431933192_vec_a @ A2 @ B2 ) )
     => ( ~ ( member_vec_vec_a @ C @ A2 )
       => ( member_vec_vec_a @ C @ B2 ) ) ) ).

% UnE
thf(fact_191_UnE,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) )
     => ( ~ ( member_a @ C @ A2 )
       => ( member_a @ C @ B2 ) ) ) ).

% UnE
thf(fact_192_UnE,axiom,
    ! [C: vec_a,A2: set_vec_a,B2: set_vec_a] :
      ( ( member_vec_a @ C @ ( sup_sup_set_vec_a @ A2 @ B2 ) )
     => ( ~ ( member_vec_a @ C @ A2 )
       => ( member_vec_a @ C @ B2 ) ) ) ).

% UnE
thf(fact_193_UnE,axiom,
    ! [C: mat_a,A2: set_mat_a,B2: set_mat_a] :
      ( ( member_mat_a @ C @ ( sup_sup_set_mat_a @ A2 @ B2 ) )
     => ( ~ ( member_mat_a @ C @ A2 )
       => ( member_mat_a @ C @ B2 ) ) ) ).

% UnE
thf(fact_194_set__plus__intro,axiom,
    ! [A: mat_nat,C2: set_mat_nat,B: mat_nat,D: set_mat_nat] :
      ( ( member_mat_nat @ A @ C2 )
     => ( ( member_mat_nat @ B @ D )
       => ( member_mat_nat @ ( plus_plus_mat_nat @ A @ B ) @ ( plus_p2215855510709889632at_nat @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_195_set__plus__intro,axiom,
    ! [A: vec_nat,C2: set_vec_nat,B: vec_nat,D: set_vec_nat] :
      ( ( member_vec_nat @ A @ C2 )
     => ( ( member_vec_nat @ B @ D )
       => ( member_vec_nat @ ( plus_plus_vec_nat @ A @ B ) @ ( plus_p1963516127331757268ec_nat @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_196_set__plus__intro,axiom,
    ! [A: vec_vec_a,C2: set_vec_vec_a,B: vec_vec_a,D: set_vec_vec_a] :
      ( ( member_vec_vec_a @ A @ C2 )
     => ( ( member_vec_vec_a @ B @ D )
       => ( member_vec_vec_a @ ( plus_plus_vec_vec_a @ A @ B ) @ ( plus_p8188967515152927083_vec_a @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_197_set__plus__intro,axiom,
    ! [A: set_vec_a,C2: set_set_vec_a,B: set_vec_a,D: set_set_vec_a] :
      ( ( member_set_vec_a @ A @ C2 )
     => ( ( member_set_vec_a @ B @ D )
       => ( member_set_vec_a @ ( plus_plus_set_vec_a @ A @ B ) @ ( plus_p5225466182533350236_vec_a @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_198_set__plus__intro,axiom,
    ! [A: set_mat_a,C2: set_set_mat_a,B: set_mat_a,D: set_set_mat_a] :
      ( ( member_set_mat_a @ A @ C2 )
     => ( ( member_set_mat_a @ B @ D )
       => ( member_set_mat_a @ ( plus_plus_set_mat_a @ A @ B ) @ ( plus_p8188135320652551888_mat_a @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_199_set__plus__intro,axiom,
    ! [A: set_nat,C2: set_set_nat,B: set_nat,D: set_set_nat] :
      ( ( member_set_nat @ A @ C2 )
     => ( ( member_set_nat @ B @ D )
       => ( member_set_nat @ ( plus_plus_set_nat @ A @ B ) @ ( plus_p4817606893110106565et_nat @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_200_set__plus__intro,axiom,
    ! [A: a,C2: set_a,B: a,D: set_a] :
      ( ( member_a @ A @ C2 )
     => ( ( member_a @ B @ D )
       => ( member_a @ ( plus_plus_a @ A @ B ) @ ( plus_plus_set_a @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_201_set__plus__intro,axiom,
    ! [A: vec_a,C2: set_vec_a,B: vec_a,D: set_vec_a] :
      ( ( member_vec_a @ A @ C2 )
     => ( ( member_vec_a @ B @ D )
       => ( member_vec_a @ ( plus_plus_vec_a @ A @ B ) @ ( plus_plus_set_vec_a @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_202_set__plus__intro,axiom,
    ! [A: mat_a,C2: set_mat_a,B: mat_a,D: set_mat_a] :
      ( ( member_mat_a @ A @ C2 )
     => ( ( member_mat_a @ B @ D )
       => ( member_mat_a @ ( plus_plus_mat_a @ A @ B ) @ ( plus_plus_set_mat_a @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_203_set__plus__intro,axiom,
    ! [A: nat,C2: set_nat,B: nat,D: set_nat] :
      ( ( member_nat @ A @ C2 )
     => ( ( member_nat @ B @ D )
       => ( member_nat @ ( plus_plus_nat @ A @ B ) @ ( plus_plus_set_nat @ C2 @ D ) ) ) ) ).

% set_plus_intro
thf(fact_204_add__right__cancel,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ( plus_plus_a @ B @ A )
        = ( plus_plus_a @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_205_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_206_add__left__cancel,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( plus_plus_a @ A @ B )
        = ( plus_plus_a @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_207_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_208_A,axiom,
    member_mat_a @ a2 @ ( carrier_mat_a @ nr @ nc ) ).

% A
thf(fact_209_M__up,axiom,
    member_mat_a @ m_up @ ( carrier_mat_a @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nr ) ) ).

% M_up
thf(fact_210_M,axiom,
    member_mat_a @ m @ ( carrier_mat_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) @ ( plus_plus_nat @ nc @ nr ) ) ).

% M
thf(fact_211_M__low,axiom,
    member_mat_a @ m_low @ ( carrier_mat_a @ ( plus_plus_nat @ nc @ nc ) @ ( plus_plus_nat @ nc @ nr ) ) ).

% M_low
thf(fact_212_M__last,axiom,
    member_mat_a @ m_last @ ( carrier_mat_a @ nr @ ( plus_plus_nat @ nc @ nr ) ) ).

% M_last
thf(fact_213_bc__def,axiom,
    ( bc
    = ( append_vec_a @ ( append_vec_a @ ( append_vec_a @ b @ ( zero_vec_a @ one_one_nat ) ) @ ( append_vec_a @ c @ ( uminus_uminus_vec_a @ c ) ) ) @ ( zero_vec_a @ nr ) ) ) ).

% bc_def
thf(fact_214_Mulv,axiom,
    ( ( mult_mat_vec_a @ ( transpose_mat_a @ m ) @ ulv )
    = ( zero_vec_a @ ( plus_plus_nat @ nc @ nr ) ) ) ).

% Mulv
thf(fact_215_add_Oinverse__inverse,axiom,
    ! [A: a] :
      ( ( uminus_uminus_a @ ( uminus_uminus_a @ A ) )
      = A ) ).

% add.inverse_inverse
thf(fact_216_neg__equal__iff__equal,axiom,
    ! [A: a,B: a] :
      ( ( ( uminus_uminus_a @ A )
        = ( uminus_uminus_a @ B ) )
      = ( A = B ) ) ).

% neg_equal_iff_equal
thf(fact_217_assoc__add__mat,axiom,
    ! [A2: mat_nat,Nr: nat,Nc: nat,B2: mat_nat,C2: mat_nat] :
      ( ( member_mat_nat @ A2 @ ( carrier_mat_nat @ Nr @ Nc ) )
     => ( ( member_mat_nat @ B2 @ ( carrier_mat_nat @ Nr @ Nc ) )
       => ( ( member_mat_nat @ C2 @ ( carrier_mat_nat @ Nr @ Nc ) )
         => ( ( plus_plus_mat_nat @ ( plus_plus_mat_nat @ A2 @ B2 ) @ C2 )
            = ( plus_plus_mat_nat @ A2 @ ( plus_plus_mat_nat @ B2 @ C2 ) ) ) ) ) ) ).

% assoc_add_mat
thf(fact_218_assoc__add__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B2: mat_a,C2: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ Nr @ Nc ) )
         => ( ( plus_plus_mat_a @ ( plus_plus_mat_a @ A2 @ B2 ) @ C2 )
            = ( plus_plus_mat_a @ A2 @ ( plus_plus_mat_a @ B2 @ C2 ) ) ) ) ) ) ).

% assoc_add_mat
thf(fact_219_assoc__add__vec,axiom,
    ! [V_1: vec_nat,N: nat,V_2: vec_nat,V_3: vec_nat] :
      ( ( member_vec_nat @ V_1 @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V_2 @ ( carrier_vec_nat @ N ) )
       => ( ( member_vec_nat @ V_3 @ ( carrier_vec_nat @ N ) )
         => ( ( plus_plus_vec_nat @ ( plus_plus_vec_nat @ V_1 @ V_2 ) @ V_3 )
            = ( plus_plus_vec_nat @ V_1 @ ( plus_plus_vec_nat @ V_2 @ V_3 ) ) ) ) ) ) ).

% assoc_add_vec
thf(fact_220_assoc__add__vec,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a,V_3: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ V_3 @ ( carrier_vec_a @ N ) )
         => ( ( plus_plus_vec_a @ ( plus_plus_vec_a @ V_1 @ V_2 ) @ V_3 )
            = ( plus_plus_vec_a @ V_1 @ ( plus_plus_vec_a @ V_2 @ V_3 ) ) ) ) ) ) ).

% assoc_add_vec
thf(fact_221_Matrix_Otranspose__transpose,axiom,
    ! [A2: mat_nat] :
      ( ( transpose_mat_nat @ ( transpose_mat_nat @ A2 ) )
      = A2 ) ).

% Matrix.transpose_transpose
thf(fact_222_Matrix_Otranspose__transpose,axiom,
    ! [A2: mat_a] :
      ( ( transpose_mat_a @ ( transpose_mat_a @ A2 ) )
      = A2 ) ).

% Matrix.transpose_transpose
thf(fact_223_transpose__mat__eq,axiom,
    ! [A2: mat_nat,B2: mat_nat] :
      ( ( ( transpose_mat_nat @ A2 )
        = ( transpose_mat_nat @ B2 ) )
      = ( A2 = B2 ) ) ).

% transpose_mat_eq
thf(fact_224_transpose__mat__eq,axiom,
    ! [A2: mat_a,B2: mat_a] :
      ( ( ( transpose_mat_a @ A2 )
        = ( transpose_mat_a @ B2 ) )
      = ( A2 = B2 ) ) ).

% transpose_mat_eq
thf(fact_225_uminus__uminus__vec,axiom,
    ! [V: vec_a] :
      ( ( uminus_uminus_vec_a @ ( uminus_uminus_vec_a @ V ) )
      = V ) ).

% uminus_uminus_vec
thf(fact_226_uminus__eq__vec,axiom,
    ! [V: vec_a,W: vec_a] :
      ( ( ( uminus_uminus_vec_a @ V )
        = ( uminus_uminus_vec_a @ W ) )
      = ( V = W ) ) ).

% uminus_eq_vec
thf(fact_227_primal,axiom,
    ? [X3: vec_a] :
      ( ( member_vec_a @ X3 @ ( carrier_vec_a @ nc ) )
      & ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ a2 @ X3 ) @ b ) ) ).

% primal
thf(fact_228_dual,axiom,
    ? [Y3: vec_a] :
      ( ( ord_less_eq_vec_a @ ( zero_vec_a @ nr ) @ Y3 )
      & ( ( mult_mat_vec_a @ ( transpose_mat_a @ a2 ) @ Y3 )
        = c ) ) ).

% dual
thf(fact_229_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_230_add__le__cancel__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
      = ( ord_less_eq_a @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_231_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_232_add__le__cancel__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
      = ( ord_less_eq_a @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_233_neg__le__iff__le,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ ( uminus_uminus_a @ B ) @ ( uminus_uminus_a @ A ) )
      = ( ord_less_eq_a @ A @ B ) ) ).

% neg_le_iff_le
thf(fact_234_add__minus__cancel,axiom,
    ! [A: a,B: a] :
      ( ( plus_plus_a @ A @ ( plus_plus_a @ ( uminus_uminus_a @ A ) @ B ) )
      = B ) ).

% add_minus_cancel
thf(fact_235_minus__add__cancel,axiom,
    ! [A: a,B: a] :
      ( ( plus_plus_a @ ( uminus_uminus_a @ A ) @ ( plus_plus_a @ A @ B ) )
      = B ) ).

% minus_add_cancel
thf(fact_236_minus__add__distrib,axiom,
    ! [A: a,B: a] :
      ( ( uminus_uminus_a @ ( plus_plus_a @ A @ B ) )
      = ( plus_plus_a @ ( uminus_uminus_a @ A ) @ ( uminus_uminus_a @ B ) ) ) ).

% minus_add_distrib
thf(fact_237_le__sup__iff,axiom,
    ! [X2: set_a,Y2: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ X2 @ Y2 ) @ Z )
      = ( ( ord_less_eq_set_a @ X2 @ Z )
        & ( ord_less_eq_set_a @ Y2 @ Z ) ) ) ).

% le_sup_iff
thf(fact_238_le__sup__iff,axiom,
    ! [X2: set_vec_a,Y2: set_vec_a,Z: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ ( sup_sup_set_vec_a @ X2 @ Y2 ) @ Z )
      = ( ( ord_le4791951621262958845_vec_a @ X2 @ Z )
        & ( ord_le4791951621262958845_vec_a @ Y2 @ Z ) ) ) ).

% le_sup_iff
thf(fact_239_le__sup__iff,axiom,
    ! [X2: set_mat_a,Y2: set_mat_a,Z: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ ( sup_sup_set_mat_a @ X2 @ Y2 ) @ Z )
      = ( ( ord_le3318621148231462513_mat_a @ X2 @ Z )
        & ( ord_le3318621148231462513_mat_a @ Y2 @ Z ) ) ) ).

% le_sup_iff
thf(fact_240_le__sup__iff,axiom,
    ! [X2: set_nat,Y2: set_nat,Z: set_nat] :
      ( ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ X2 @ Y2 ) @ Z )
      = ( ( ord_less_eq_set_nat @ X2 @ Z )
        & ( ord_less_eq_set_nat @ Y2 @ Z ) ) ) ).

% le_sup_iff
thf(fact_241_le__sup__iff,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ X2 @ Y2 ) @ Z )
      = ( ( ord_less_eq_nat @ X2 @ Z )
        & ( ord_less_eq_nat @ Y2 @ Z ) ) ) ).

% le_sup_iff
thf(fact_242_sup_Obounded__iff,axiom,
    ! [B: set_vec_a,C: set_vec_a,A: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ ( sup_sup_set_vec_a @ B @ C ) @ A )
      = ( ( ord_le4791951621262958845_vec_a @ B @ A )
        & ( ord_le4791951621262958845_vec_a @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_243_sup_Obounded__iff,axiom,
    ! [B: set_mat_a,C: set_mat_a,A: set_mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ ( sup_sup_set_mat_a @ B @ C ) @ A )
      = ( ( ord_le3318621148231462513_mat_a @ B @ A )
        & ( ord_le3318621148231462513_mat_a @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_244_sup_Obounded__iff,axiom,
    ! [B: set_nat,C: set_nat,A: set_nat] :
      ( ( ord_less_eq_set_nat @ ( sup_sup_set_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_set_nat @ B @ A )
        & ( ord_less_eq_set_nat @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_245_sup_Obounded__iff,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( ord_less_eq_nat @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_246_left__zero__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( plus_plus_vec_a @ ( zero_vec_a @ N ) @ V )
        = V ) ) ).

% left_zero_vec
thf(fact_247_right__zero__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( plus_plus_vec_a @ V @ ( zero_vec_a @ N ) )
        = V ) ) ).

% right_zero_vec
thf(fact_248_transpose__carrier__mat,axiom,
    ! [A2: mat_a,Nc: nat,Nr: nat] :
      ( ( member_mat_a @ ( transpose_mat_a @ A2 ) @ ( carrier_mat_a @ Nc @ Nr ) )
      = ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% transpose_carrier_mat
thf(fact_249_uminus__carrier__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ ( uminus_uminus_vec_a @ V ) @ ( carrier_vec_a @ N ) )
      = ( member_vec_a @ V @ ( carrier_vec_a @ N ) ) ) ).

% uminus_carrier_vec
thf(fact_250_uminus__zero__vec,axiom,
    ! [N: nat] :
      ( ( uminus_uminus_vec_a @ ( zero_vec_a @ N ) )
      = ( zero_vec_a @ N ) ) ).

% uminus_zero_vec
thf(fact_251_uminus__l__inv__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( plus_plus_vec_a @ ( uminus_uminus_vec_a @ V ) @ V )
        = ( zero_vec_a @ N ) ) ) ).

% uminus_l_inv_vec
thf(fact_252_uminus__r__inv__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( plus_plus_vec_a @ V @ ( uminus_uminus_vec_a @ V ) )
        = ( zero_vec_a @ N ) ) ) ).

% uminus_r_inv_vec
thf(fact_253_le__minus__iff,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ ( uminus_uminus_a @ B ) )
      = ( ord_less_eq_a @ B @ ( uminus_uminus_a @ A ) ) ) ).

% le_minus_iff
thf(fact_254_minus__le__iff,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ ( uminus_uminus_a @ A ) @ B )
      = ( ord_less_eq_a @ ( uminus_uminus_a @ B ) @ A ) ) ).

% minus_le_iff
thf(fact_255_le__imp__neg__le,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ord_less_eq_a @ ( uminus_uminus_a @ B ) @ ( uminus_uminus_a @ A ) ) ) ).

% le_imp_neg_le
thf(fact_256_mult__add__distrib__mat__vec,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,V_1: vec_a,V_2: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ Nc ) )
       => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ Nc ) )
         => ( ( mult_mat_vec_a @ A2 @ ( plus_plus_vec_a @ V_1 @ V_2 ) )
            = ( plus_plus_vec_a @ ( mult_mat_vec_a @ A2 @ V_1 ) @ ( mult_mat_vec_a @ A2 @ V_2 ) ) ) ) ) ) ).

% mult_add_distrib_mat_vec
thf(fact_257_add__mult__distrib__mat__vec,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B2: mat_a,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
         => ( ( mult_mat_vec_a @ ( plus_plus_mat_a @ A2 @ B2 ) @ V )
            = ( plus_plus_vec_a @ ( mult_mat_vec_a @ A2 @ V ) @ ( mult_mat_vec_a @ B2 @ V ) ) ) ) ) ) ).

% add_mult_distrib_mat_vec
thf(fact_258_add__carrier__mat,axiom,
    ! [B2: mat_a,Nr: nat,Nc: nat,A2: mat_a] :
      ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( member_mat_a @ ( plus_plus_mat_a @ A2 @ B2 ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% add_carrier_mat
thf(fact_259_transpose__add,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B2: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( transpose_mat_a @ ( plus_plus_mat_a @ A2 @ B2 ) )
          = ( plus_plus_mat_a @ ( transpose_mat_a @ A2 ) @ ( transpose_mat_a @ B2 ) ) ) ) ) ).

% transpose_add
thf(fact_260_comm__add__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B2: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( plus_plus_mat_a @ A2 @ B2 )
          = ( plus_plus_mat_a @ B2 @ A2 ) ) ) ) ).

% comm_add_mat
thf(fact_261_mult__mat__vec__carrier,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
       => ( member_vec_a @ ( mult_mat_vec_a @ A2 @ V ) @ ( carrier_vec_a @ Nr ) ) ) ) ).

% mult_mat_vec_carrier
thf(fact_262_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_263_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( ord_less_eq_a @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_264_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_265_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( I = J )
        & ( ord_less_eq_a @ K @ L ) )
     => ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_266_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_267_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( ord_less_eq_a @ I @ J )
        & ( ord_less_eq_a @ K @ L ) )
     => ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_268_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_mono
thf(fact_269_add__mono,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D2 )
       => ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ D2 ) ) ) ) ).

% add_mono
thf(fact_270_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_271_add__left__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) ) ) ).

% add_left_mono
thf(fact_272_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_273_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_274_add__right__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) ) ) ).

% add_right_mono
thf(fact_275_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
        ? [C4: nat] :
          ( B3
          = ( plus_plus_nat @ A3 @ C4 ) ) ) ) ).

% le_iff_add
thf(fact_276_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_277_add__le__imp__le__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
     => ( ord_less_eq_a @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_278_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_279_add__le__imp__le__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
     => ( ord_less_eq_a @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_280_inf__sup__ord_I4_J,axiom,
    ! [Y2: nat,X2: nat] : ( ord_less_eq_nat @ Y2 @ ( sup_sup_nat @ X2 @ Y2 ) ) ).

% inf_sup_ord(4)
thf(fact_281_inf__sup__ord_I3_J,axiom,
    ! [X2: nat,Y2: nat] : ( ord_less_eq_nat @ X2 @ ( sup_sup_nat @ X2 @ Y2 ) ) ).

% inf_sup_ord(3)
thf(fact_282_le__supE,axiom,
    ! [A: nat,B: nat,X2: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B ) @ X2 )
     => ~ ( ( ord_less_eq_nat @ A @ X2 )
         => ~ ( ord_less_eq_nat @ B @ X2 ) ) ) ).

% le_supE
thf(fact_283_le__supI,axiom,
    ! [A: nat,X2: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ X2 )
     => ( ( ord_less_eq_nat @ B @ X2 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B ) @ X2 ) ) ) ).

% le_supI
thf(fact_284_sup__ge1,axiom,
    ! [X2: nat,Y2: nat] : ( ord_less_eq_nat @ X2 @ ( sup_sup_nat @ X2 @ Y2 ) ) ).

% sup_ge1
thf(fact_285_sup__ge2,axiom,
    ! [Y2: nat,X2: nat] : ( ord_less_eq_nat @ Y2 @ ( sup_sup_nat @ X2 @ Y2 ) ) ).

% sup_ge2
thf(fact_286_le__supI1,axiom,
    ! [X2: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X2 @ A )
     => ( ord_less_eq_nat @ X2 @ ( sup_sup_nat @ A @ B ) ) ) ).

% le_supI1
thf(fact_287_le__supI2,axiom,
    ! [X2: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ X2 @ B )
     => ( ord_less_eq_nat @ X2 @ ( sup_sup_nat @ A @ B ) ) ) ).

% le_supI2
thf(fact_288_sup_Omono,axiom,
    ! [C: nat,A: nat,D2: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ( ord_less_eq_nat @ D2 @ B )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ C @ D2 ) @ ( sup_sup_nat @ A @ B ) ) ) ) ).

% sup.mono
thf(fact_289_sup__mono,axiom,
    ! [A: nat,C: nat,B: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ D2 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B ) @ ( sup_sup_nat @ C @ D2 ) ) ) ) ).

% sup_mono
thf(fact_290_sup__least,axiom,
    ! [Y2: nat,X2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( ord_less_eq_nat @ Z @ X2 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ Y2 @ Z ) @ X2 ) ) ) ).

% sup_least
thf(fact_291_le__iff__sup,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( sup_sup_nat @ X @ Y )
          = Y ) ) ) ).

% le_iff_sup
thf(fact_292_sup_OorderE,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( A
        = ( sup_sup_nat @ A @ B ) ) ) ).

% sup.orderE
thf(fact_293_sup_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( sup_sup_nat @ A @ B ) )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% sup.orderI
thf(fact_294_sup__unique,axiom,
    ! [F: nat > nat > nat,X2: nat,Y2: nat] :
      ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ X3 @ ( F @ X3 @ Y3 ) )
     => ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ Y3 @ ( F @ X3 @ Y3 ) )
       => ( ! [X3: nat,Y3: nat,Z2: nat] :
              ( ( ord_less_eq_nat @ Y3 @ X3 )
             => ( ( ord_less_eq_nat @ Z2 @ X3 )
               => ( ord_less_eq_nat @ ( F @ Y3 @ Z2 ) @ X3 ) ) )
         => ( ( sup_sup_nat @ X2 @ Y2 )
            = ( F @ X2 @ Y2 ) ) ) ) ) ).

% sup_unique
thf(fact_295_sup_Oabsorb1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( sup_sup_nat @ A @ B )
        = A ) ) ).

% sup.absorb1
thf(fact_296_sup_Oabsorb2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( sup_sup_nat @ A @ B )
        = B ) ) ).

% sup.absorb2
thf(fact_297_sup__absorb1,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( sup_sup_nat @ X2 @ Y2 )
        = X2 ) ) ).

% sup_absorb1
thf(fact_298_sup__absorb2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( sup_sup_nat @ X2 @ Y2 )
        = Y2 ) ) ).

% sup_absorb2
thf(fact_299_sup_OboundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_nat @ B @ A )
         => ~ ( ord_less_eq_nat @ C @ A ) ) ) ).

% sup.boundedE
thf(fact_300_sup_OboundedI,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A ) ) ) ).

% sup.boundedI
thf(fact_301_sup_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( A3
          = ( sup_sup_nat @ A3 @ B3 ) ) ) ) ).

% sup.order_iff
thf(fact_302_sup_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( sup_sup_nat @ A @ B ) ) ).

% sup.cobounded1
thf(fact_303_sup_Ocobounded2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( sup_sup_nat @ A @ B ) ) ).

% sup.cobounded2
thf(fact_304_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( sup_sup_nat @ A3 @ B3 )
          = A3 ) ) ) ).

% sup.absorb_iff1
thf(fact_305_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( sup_sup_nat @ A3 @ B3 )
          = B3 ) ) ) ).

% sup.absorb_iff2
thf(fact_306_sup_OcoboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.coboundedI1
thf(fact_307_sup_OcoboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ B )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.coboundedI2
thf(fact_308_comm__add__vec,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( plus_plus_vec_a @ V_1 @ V_2 )
          = ( plus_plus_vec_a @ V_2 @ V_1 ) ) ) ) ).

% comm_add_vec
thf(fact_309_add__carrier__vec,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( member_vec_a @ ( plus_plus_vec_a @ V_1 @ V_2 ) @ ( carrier_vec_a @ N ) ) ) ) ).

% add_carrier_vec
thf(fact_310_uminus__zero__vec__eq,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( ( uminus_uminus_vec_a @ V )
          = ( zero_vec_a @ N ) )
        = ( V
          = ( zero_vec_a @ N ) ) ) ) ).

% uminus_zero_vec_eq
thf(fact_311_add__inv__exists__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ? [X3: vec_a] :
          ( ( member_vec_a @ X3 @ ( carrier_vec_a @ N ) )
          & ( ( plus_plus_vec_a @ X3 @ V )
            = ( zero_vec_a @ N ) )
          & ( ( plus_plus_vec_a @ V @ X3 )
            = ( zero_vec_a @ N ) ) ) ) ).

% add_inv_exists_vec
thf(fact_312_append__vec__add,axiom,
    ! [V: vec_a,N: nat,V2: vec_a,W: vec_a,M: nat,W2: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V2 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ W @ ( carrier_vec_a @ M ) )
         => ( ( member_vec_a @ W2 @ ( carrier_vec_a @ M ) )
           => ( ( plus_plus_vec_a @ ( append_vec_a @ V @ W ) @ ( append_vec_a @ V2 @ W2 ) )
              = ( append_vec_a @ ( plus_plus_vec_a @ V @ V2 ) @ ( plus_plus_vec_a @ W @ W2 ) ) ) ) ) ) ) ).

% append_vec_add
thf(fact_313_append__vec__le,axiom,
    ! [V: vec_a,N: nat,W: vec_a,V2: vec_a,W2: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ W @ ( carrier_vec_a @ N ) )
       => ( ( ord_less_eq_vec_a @ ( append_vec_a @ V @ V2 ) @ ( append_vec_a @ W @ W2 ) )
          = ( ( ord_less_eq_vec_a @ V @ W )
            & ( ord_less_eq_vec_a @ V2 @ W2 ) ) ) ) ) ).

% append_vec_le
thf(fact_314_one__reorient,axiom,
    ! [X2: nat] :
      ( ( one_one_nat = X2 )
      = ( X2 = one_one_nat ) ) ).

% one_reorient
thf(fact_315_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_316_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_317_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_318_group__cancel_Oadd2,axiom,
    ! [B2: nat,K: nat,B: nat,A: nat] :
      ( ( B2
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B2 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_319_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_320_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A3: nat,B3: nat] : ( plus_plus_nat @ B3 @ A3 ) ) ) ).

% add.commute
thf(fact_321_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_322_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_323_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_324_set__plus__elim,axiom,
    ! [X2: vec_a,A2: set_vec_a,B2: set_vec_a] :
      ( ( member_vec_a @ X2 @ ( plus_plus_set_vec_a @ A2 @ B2 ) )
     => ~ ! [A5: vec_a,B5: vec_a] :
            ( ( X2
              = ( plus_plus_vec_a @ A5 @ B5 ) )
           => ( ( member_vec_a @ A5 @ A2 )
             => ~ ( member_vec_a @ B5 @ B2 ) ) ) ) ).

% set_plus_elim
thf(fact_325_set__plus__elim,axiom,
    ! [X2: mat_a,A2: set_mat_a,B2: set_mat_a] :
      ( ( member_mat_a @ X2 @ ( plus_plus_set_mat_a @ A2 @ B2 ) )
     => ~ ! [A5: mat_a,B5: mat_a] :
            ( ( X2
              = ( plus_plus_mat_a @ A5 @ B5 ) )
           => ( ( member_mat_a @ A5 @ A2 )
             => ~ ( member_mat_a @ B5 @ B2 ) ) ) ) ).

% set_plus_elim
thf(fact_326_set__plus__elim,axiom,
    ! [X2: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ X2 @ ( plus_plus_set_nat @ A2 @ B2 ) )
     => ~ ! [A5: nat,B5: nat] :
            ( ( X2
              = ( plus_plus_nat @ A5 @ B5 ) )
           => ( ( member_nat @ A5 @ A2 )
             => ~ ( member_nat @ B5 @ B2 ) ) ) ) ).

% set_plus_elim
thf(fact_327_M__def,axiom,
    ( m
    = ( append_rows_a @ ( append_rows_a @ m_up @ m_low ) @ m_last ) ) ).

% M_def
thf(fact_328_le__minus__one__simps_I2_J,axiom,
    ord_less_eq_a @ ( uminus_uminus_a @ one_one_a ) @ one_one_a ).

% le_minus_one_simps(2)
thf(fact_329_le__minus__one__simps_I4_J,axiom,
    ~ ( ord_less_eq_a @ one_one_a @ ( uminus_uminus_a @ one_one_a ) ) ).

% le_minus_one_simps(4)
thf(fact_330_append__rows__le,axiom,
    ! [A2: mat_a,Nr1: nat,Nc: nat,B2: mat_a,Nr2: nat,A: vec_a,V: vec_a,B: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr2 @ Nc ) )
       => ( ( member_vec_a @ A @ ( carrier_vec_a @ Nr1 ) )
         => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
           => ( ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ ( append_rows_a @ A2 @ B2 ) @ V ) @ ( append_vec_a @ A @ B ) )
              = ( ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ A2 @ V ) @ A )
                & ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ B2 @ V ) @ B ) ) ) ) ) ) ) ).

% append_rows_le
thf(fact_331_mat__mult__append__cols,axiom,
    ! [A2: mat_a,Nr: nat,Nc1: nat,B2: mat_a,Nc2: nat,V1: vec_a,V22: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc1 ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ Nc2 ) )
       => ( ( member_vec_a @ V1 @ ( carrier_vec_a @ Nc1 ) )
         => ( ( member_vec_a @ V22 @ ( carrier_vec_a @ Nc2 ) )
           => ( ( mult_mat_vec_a @ ( missin386308114684349109cols_a @ A2 @ B2 ) @ ( append_vec_a @ V1 @ V22 ) )
              = ( plus_plus_vec_a @ ( mult_mat_vec_a @ A2 @ V1 ) @ ( mult_mat_vec_a @ B2 @ V22 ) ) ) ) ) ) ) ).

% mat_mult_append_cols
thf(fact_332_order__refl,axiom,
    ! [X2: vec_a] : ( ord_less_eq_vec_a @ X2 @ X2 ) ).

% order_refl
thf(fact_333_order__refl,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).

% order_refl
thf(fact_334_order__refl,axiom,
    ! [X2: a] : ( ord_less_eq_a @ X2 @ X2 ) ).

% order_refl
thf(fact_335_dual__order_Orefl,axiom,
    ! [A: vec_a] : ( ord_less_eq_vec_a @ A @ A ) ).

% dual_order.refl
thf(fact_336_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_337_dual__order_Orefl,axiom,
    ! [A: a] : ( ord_less_eq_a @ A @ A ) ).

% dual_order.refl
thf(fact_338_uminus__carrier__iff__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ ( uminus_uminus_mat_a @ A2 ) @ ( carrier_mat_a @ Nr @ Nc ) )
      = ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% uminus_carrier_iff_mat
thf(fact_339_vec__first__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( vec_first_a @ ( zero_vec_a @ N ) @ M )
        = ( zero_vec_a @ M ) ) ) ).

% vec_first_zero
thf(fact_340_carrier__append__rows,axiom,
    ! [A2: mat_a,Nr1: nat,Nc: nat,B2: mat_a,Nr2: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr2 @ Nc ) )
       => ( member_mat_a @ ( append_rows_a @ A2 @ B2 ) @ ( carrier_mat_a @ ( plus_plus_nat @ Nr1 @ Nr2 ) @ Nc ) ) ) ) ).

% carrier_append_rows
thf(fact_341_carrier__append__cols,axiom,
    ! [A2: mat_a,Nr: nat,Nc1: nat,B2: mat_a,Nc2: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc1 ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ Nc2 ) )
       => ( member_mat_a @ ( missin386308114684349109cols_a @ A2 @ B2 ) @ ( carrier_mat_a @ Nr @ ( plus_plus_nat @ Nc1 @ Nc2 ) ) ) ) ) ).

% carrier_append_cols
thf(fact_342_append__cols__def,axiom,
    ( missin386308114684349109cols_a
    = ( ^ [A4: mat_a,B4: mat_a] : ( transpose_mat_a @ ( append_rows_a @ ( transpose_mat_a @ A4 ) @ ( transpose_mat_a @ B4 ) ) ) ) ) ).

% append_cols_def
thf(fact_343_uminus__add__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B2: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( uminus_uminus_mat_a @ ( plus_plus_mat_a @ A2 @ B2 ) )
          = ( plus_plus_mat_a @ ( uminus_uminus_mat_a @ B2 ) @ ( uminus_uminus_mat_a @ A2 ) ) ) ) ) ).

% uminus_add_mat
thf(fact_344_uminus__carrier__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( member_mat_a @ ( uminus_uminus_mat_a @ A2 ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ).

% uminus_carrier_mat
thf(fact_345_transpose__uminus,axiom,
    ! [A2: mat_a] :
      ( ( transpose_mat_a @ ( uminus_uminus_mat_a @ A2 ) )
      = ( uminus_uminus_mat_a @ ( transpose_mat_a @ A2 ) ) ) ).

% transpose_uminus
thf(fact_346_order__antisym__conv,axiom,
    ! [Y2: vec_a,X2: vec_a] :
      ( ( ord_less_eq_vec_a @ Y2 @ X2 )
     => ( ( ord_less_eq_vec_a @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_347_order__antisym__conv,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_348_order__antisym__conv,axiom,
    ! [Y2: a,X2: a] :
      ( ( ord_less_eq_a @ Y2 @ X2 )
     => ( ( ord_less_eq_a @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_349_linorder__le__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_le_cases
thf(fact_350_linorder__le__cases,axiom,
    ! [X2: a,Y2: a] :
      ( ~ ( ord_less_eq_a @ X2 @ Y2 )
     => ( ord_less_eq_a @ Y2 @ X2 ) ) ).

% linorder_le_cases
thf(fact_351_ord__le__eq__subst,axiom,
    ! [A: vec_a,B: vec_a,F: vec_a > vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_352_ord__le__eq__subst,axiom,
    ! [A: vec_a,B: vec_a,F: vec_a > nat,C: nat] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_353_ord__le__eq__subst,axiom,
    ! [A: vec_a,B: vec_a,F: vec_a > a,C: a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_354_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > vec_a,C: vec_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_355_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_356_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > a,C: a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_357_ord__le__eq__subst,axiom,
    ! [A: a,B: a,F: a > vec_a,C: vec_a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_358_ord__le__eq__subst,axiom,
    ! [A: a,B: a,F: a > nat,C: nat] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_359_ord__le__eq__subst,axiom,
    ! [A: a,B: a,F: a > a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_360_ord__eq__le__subst,axiom,
    ! [A: vec_a,F: vec_a > vec_a,B: vec_a,C: vec_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_361_ord__eq__le__subst,axiom,
    ! [A: nat,F: vec_a > nat,B: vec_a,C: vec_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_362_ord__eq__le__subst,axiom,
    ! [A: a,F: vec_a > a,B: vec_a,C: vec_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_363_ord__eq__le__subst,axiom,
    ! [A: vec_a,F: nat > vec_a,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_364_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_365_ord__eq__le__subst,axiom,
    ! [A: a,F: nat > a,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_366_ord__eq__le__subst,axiom,
    ! [A: vec_a,F: a > vec_a,B: a,C: a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_367_ord__eq__le__subst,axiom,
    ! [A: nat,F: a > nat,B: a,C: a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_368_ord__eq__le__subst,axiom,
    ! [A: a,F: a > a,B: a,C: a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_369_linorder__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_linear
thf(fact_370_linorder__linear,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ X2 @ Y2 )
      | ( ord_less_eq_a @ Y2 @ X2 ) ) ).

% linorder_linear
thf(fact_371_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_372_verit__la__disequality,axiom,
    ! [A: a,B: a] :
      ( ( A = B )
      | ~ ( ord_less_eq_a @ A @ B )
      | ~ ( ord_less_eq_a @ B @ A ) ) ).

% verit_la_disequality
thf(fact_373_order__eq__refl,axiom,
    ! [X2: vec_a,Y2: vec_a] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_vec_a @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_374_order__eq__refl,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_375_order__eq__refl,axiom,
    ! [X2: a,Y2: a] :
      ( ( X2 = Y2 )
     => ( ord_less_eq_a @ X2 @ Y2 ) ) ).

% order_eq_refl
thf(fact_376_order__subst2,axiom,
    ! [A: vec_a,B: vec_a,F: vec_a > vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_eq_vec_a @ ( F @ B ) @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_377_order__subst2,axiom,
    ! [A: vec_a,B: vec_a,F: vec_a > nat,C: nat] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_378_order__subst2,axiom,
    ! [A: vec_a,B: vec_a,F: vec_a > a,C: a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_eq_a @ ( F @ B ) @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_379_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > vec_a,C: vec_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_vec_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_380_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_381_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > a,C: a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_382_order__subst2,axiom,
    ! [A: a,B: a,F: a > vec_a,C: vec_a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_vec_a @ ( F @ B ) @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_383_order__subst2,axiom,
    ! [A: a,B: a,F: a > nat,C: nat] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_384_order__subst2,axiom,
    ! [A: a,B: a,F: a > a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ ( F @ B ) @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_385_order__subst1,axiom,
    ! [A: vec_a,F: vec_a > vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_386_order__subst1,axiom,
    ! [A: vec_a,F: nat > vec_a,B: nat,C: nat] :
      ( ( ord_less_eq_vec_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_387_order__subst1,axiom,
    ! [A: vec_a,F: a > vec_a,B: a,C: a] :
      ( ( ord_less_eq_vec_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_vec_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_388_order__subst1,axiom,
    ! [A: nat,F: vec_a > nat,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_389_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_390_order__subst1,axiom,
    ! [A: nat,F: a > nat,B: a,C: a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_391_order__subst1,axiom,
    ! [A: a,F: vec_a > a,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_392_order__subst1,axiom,
    ! [A: a,F: nat > a,B: nat,C: nat] :
      ( ( ord_less_eq_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_393_order__subst1,axiom,
    ! [A: a,F: a > a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_394_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: vec_a,Z3: vec_a] : ( Y4 = Z3 ) )
    = ( ^ [A3: vec_a,B3: vec_a] :
          ( ( ord_less_eq_vec_a @ A3 @ B3 )
          & ( ord_less_eq_vec_a @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_395_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_396_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: a,Z3: a] : ( Y4 = Z3 ) )
    = ( ^ [A3: a,B3: a] :
          ( ( ord_less_eq_a @ A3 @ B3 )
          & ( ord_less_eq_a @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_397_antisym,axiom,
    ! [A: vec_a,B: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_eq_vec_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_398_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_399_antisym,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_400_dual__order_Otrans,axiom,
    ! [B: vec_a,A: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ B @ A )
     => ( ( ord_less_eq_vec_a @ C @ B )
       => ( ord_less_eq_vec_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_401_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_402_dual__order_Otrans,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_eq_a @ C @ B )
       => ( ord_less_eq_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_403_dual__order_Oantisym,axiom,
    ! [B: vec_a,A: vec_a] :
      ( ( ord_less_eq_vec_a @ B @ A )
     => ( ( ord_less_eq_vec_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_404_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_405_dual__order_Oantisym,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_eq_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_406_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: vec_a,Z3: vec_a] : ( Y4 = Z3 ) )
    = ( ^ [A3: vec_a,B3: vec_a] :
          ( ( ord_less_eq_vec_a @ B3 @ A3 )
          & ( ord_less_eq_vec_a @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_407_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_408_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: a,Z3: a] : ( Y4 = Z3 ) )
    = ( ^ [A3: a,B3: a] :
          ( ( ord_less_eq_a @ B3 @ A3 )
          & ( ord_less_eq_a @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_409_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B5: nat] :
          ( ( ord_less_eq_nat @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: nat,B5: nat] :
            ( ( P @ B5 @ A5 )
           => ( P @ A5 @ B5 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_410_linorder__wlog,axiom,
    ! [P: a > a > $o,A: a,B: a] :
      ( ! [A5: a,B5: a] :
          ( ( ord_less_eq_a @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: a,B5: a] :
            ( ( P @ B5 @ A5 )
           => ( P @ A5 @ B5 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_411_order__trans,axiom,
    ! [X2: vec_a,Y2: vec_a,Z: vec_a] :
      ( ( ord_less_eq_vec_a @ X2 @ Y2 )
     => ( ( ord_less_eq_vec_a @ Y2 @ Z )
       => ( ord_less_eq_vec_a @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_412_order__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z )
       => ( ord_less_eq_nat @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_413_order__trans,axiom,
    ! [X2: a,Y2: a,Z: a] :
      ( ( ord_less_eq_a @ X2 @ Y2 )
     => ( ( ord_less_eq_a @ Y2 @ Z )
       => ( ord_less_eq_a @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_414_order_Otrans,axiom,
    ! [A: vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ord_less_eq_vec_a @ A @ C ) ) ) ).

% order.trans
thf(fact_415_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_416_order_Otrans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_eq_a @ A @ C ) ) ) ).

% order.trans
thf(fact_417_order__antisym,axiom,
    ! [X2: vec_a,Y2: vec_a] :
      ( ( ord_less_eq_vec_a @ X2 @ Y2 )
     => ( ( ord_less_eq_vec_a @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_418_order__antisym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_419_order__antisym,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ X2 @ Y2 )
     => ( ( ord_less_eq_a @ Y2 @ X2 )
       => ( X2 = Y2 ) ) ) ).

% order_antisym
thf(fact_420_ord__le__eq__trans,axiom,
    ! [A: vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_vec_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_421_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_422_ord__le__eq__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_423_ord__eq__le__trans,axiom,
    ! [A: vec_a,B: vec_a,C: vec_a] :
      ( ( A = B )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ord_less_eq_vec_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_424_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_425_ord__eq__le__trans,axiom,
    ! [A: a,B: a,C: a] :
      ( ( A = B )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_eq_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_426_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: vec_a,Z3: vec_a] : ( Y4 = Z3 ) )
    = ( ^ [X: vec_a,Y: vec_a] :
          ( ( ord_less_eq_vec_a @ X @ Y )
          & ( ord_less_eq_vec_a @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_427_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z3: nat] : ( Y4 = Z3 ) )
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ( ord_less_eq_nat @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_428_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: a,Z3: a] : ( Y4 = Z3 ) )
    = ( ^ [X: a,Y: a] :
          ( ( ord_less_eq_a @ X @ Y )
          & ( ord_less_eq_a @ Y @ X ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_429_le__cases3,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X2 @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X2 )
         => ~ ( ord_less_eq_nat @ X2 @ Z ) )
       => ( ( ( ord_less_eq_nat @ X2 @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X2 )
                 => ~ ( ord_less_eq_nat @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_430_le__cases3,axiom,
    ! [X2: a,Y2: a,Z: a] :
      ( ( ( ord_less_eq_a @ X2 @ Y2 )
       => ~ ( ord_less_eq_a @ Y2 @ Z ) )
     => ( ( ( ord_less_eq_a @ Y2 @ X2 )
         => ~ ( ord_less_eq_a @ X2 @ Z ) )
       => ( ( ( ord_less_eq_a @ X2 @ Z )
           => ~ ( ord_less_eq_a @ Z @ Y2 ) )
         => ( ( ( ord_less_eq_a @ Z @ Y2 )
             => ~ ( ord_less_eq_a @ Y2 @ X2 ) )
           => ( ( ( ord_less_eq_a @ Y2 @ Z )
               => ~ ( ord_less_eq_a @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_a @ Z @ X2 )
                 => ~ ( ord_less_eq_a @ X2 @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_431_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_432_nle__le,axiom,
    ! [A: a,B: a] :
      ( ( ~ ( ord_less_eq_a @ A @ B ) )
      = ( ( ord_less_eq_a @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_433_verit__comp__simplify1_I2_J,axiom,
    ! [A: vec_a] : ( ord_less_eq_vec_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_434_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_435_verit__comp__simplify1_I2_J,axiom,
    ! [A: a] : ( ord_less_eq_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_436_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_437_le__numeral__extra_I4_J,axiom,
    ord_less_eq_a @ one_one_a @ one_one_a ).

% le_numeral_extra(4)
thf(fact_438_mat__mult__append,axiom,
    ! [A2: mat_a,Nr1: nat,Nc: nat,B2: mat_a,Nr2: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr2 @ Nc ) )
       => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
         => ( ( mult_mat_vec_a @ ( append_rows_a @ A2 @ B2 ) @ V )
            = ( append_vec_a @ ( mult_mat_vec_a @ A2 @ V ) @ ( mult_mat_vec_a @ B2 @ V ) ) ) ) ) ) ).

% mat_mult_append
thf(fact_439_sum__carrier__vec,axiom,
    ! [A2: set_vec_a,N: nat,B2: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ ( carrier_vec_a @ N ) )
     => ( ( ord_le4791951621262958845_vec_a @ B2 @ ( carrier_vec_a @ N ) )
       => ( ord_le4791951621262958845_vec_a @ ( plus_plus_set_vec_a @ A2 @ B2 ) @ ( carrier_vec_a @ N ) ) ) ) ).

% sum_carrier_vec
thf(fact_440_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_441_weak__duality__theorem,axiom,
    ! [A2: mat_nat,Nr: nat,Nc: nat,B: vec_nat,C: vec_nat,X2: vec_nat,Y2: vec_nat] :
      ( ( member_mat_nat @ A2 @ ( carrier_mat_nat @ Nr @ Nc ) )
     => ( ( member_vec_nat @ B @ ( carrier_vec_nat @ Nr ) )
       => ( ( member_vec_nat @ C @ ( carrier_vec_nat @ Nc ) )
         => ( ( member_vec_nat @ X2 @ ( carrier_vec_nat @ Nc ) )
           => ( ( ord_less_eq_vec_nat @ ( mult_mat_vec_nat @ A2 @ X2 ) @ B )
             => ( ( ord_less_eq_vec_nat @ ( zero_vec_nat @ Nr ) @ Y2 )
               => ( ( ( mult_mat_vec_nat @ ( transpose_mat_nat @ A2 ) @ Y2 )
                    = C )
                 => ( ord_less_eq_nat @ ( scalar_prod_nat @ C @ X2 ) @ ( scalar_prod_nat @ B @ Y2 ) ) ) ) ) ) ) ) ) ).

% weak_duality_theorem
thf(fact_442_weak__duality__theorem,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B: vec_a,C: vec_a,X2: vec_a,Y2: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ Nr ) )
       => ( ( member_vec_a @ C @ ( carrier_vec_a @ Nc ) )
         => ( ( member_vec_a @ X2 @ ( carrier_vec_a @ Nc ) )
           => ( ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ A2 @ X2 ) @ B )
             => ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ Y2 )
               => ( ( ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y2 )
                    = C )
                 => ( ord_less_eq_a @ ( scalar_prod_a @ C @ X2 ) @ ( scalar_prod_a @ B @ Y2 ) ) ) ) ) ) ) ) ) ).

% weak_duality_theorem
thf(fact_443_unbounded__dual__solutions,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B: vec_a,C: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ Nr ) )
       => ( ( member_vec_a @ C @ ( carrier_vec_a @ Nc ) )
         => ( ! [V3: a] :
              ? [Y5: vec_a] :
                ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ Y5 )
                & ( ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y5 )
                  = C )
                & ( ord_less_eq_a @ ( scalar_prod_a @ B @ Y5 ) @ V3 ) )
           => ~ ? [X4: vec_a] :
                  ( ( member_vec_a @ X4 @ ( carrier_vec_a @ Nc ) )
                  & ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ A2 @ X4 ) @ B ) ) ) ) ) ) ).

% unbounded_dual_solutions
thf(fact_444_unbounded__primal__solutions,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B: vec_a,C: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ Nr ) )
       => ( ( member_vec_a @ C @ ( carrier_vec_a @ Nc ) )
         => ( ! [V3: a] :
              ? [X4: vec_a] :
                ( ( member_vec_a @ X4 @ ( carrier_vec_a @ Nc ) )
                & ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ A2 @ X4 ) @ B )
                & ( ord_less_eq_a @ V3 @ ( scalar_prod_a @ C @ X4 ) ) )
           => ~ ? [Y5: vec_a] :
                  ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ Y5 )
                  & ( ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y5 )
                    = C ) ) ) ) ) ) ).

% unbounded_primal_solutions
thf(fact_445_mat__of__row__carrier_I1_J,axiom,
    ! [Y2: vec_a,N: nat] :
      ( ( member_vec_a @ Y2 @ ( carrier_vec_a @ N ) )
     => ( member_mat_a @ ( mat_of_row_a @ Y2 ) @ ( carrier_mat_a @ one_one_nat @ N ) ) ) ).

% mat_of_row_carrier(1)
thf(fact_446_M__up__def,axiom,
    ( m_up
    = ( four_block_mat_a @ a2 @ ( zero_mat_a @ nr @ nr ) @ ( mat_of_row_a @ ( uminus_uminus_vec_a @ c ) ) @ ( mat_of_row_a @ b ) ) ) ).

% M_up_def
thf(fact_447_subsetI,axiom,
    ! [A2: set_vec_a,B2: set_vec_a] :
      ( ! [X3: vec_a] :
          ( ( member_vec_a @ X3 @ A2 )
         => ( member_vec_a @ X3 @ B2 ) )
     => ( ord_le4791951621262958845_vec_a @ A2 @ B2 ) ) ).

% subsetI
thf(fact_448_subsetI,axiom,
    ! [A2: set_mat_a,B2: set_mat_a] :
      ( ! [X3: mat_a] :
          ( ( member_mat_a @ X3 @ A2 )
         => ( member_mat_a @ X3 @ B2 ) )
     => ( ord_le3318621148231462513_mat_a @ A2 @ B2 ) ) ).

% subsetI
thf(fact_449_uminus__uminus__mat,axiom,
    ! [A2: mat_a] :
      ( ( uminus_uminus_mat_a @ ( uminus_uminus_mat_a @ A2 ) )
      = A2 ) ).

% uminus_uminus_mat
thf(fact_450_uminus__eq__mat,axiom,
    ! [A2: mat_a,B2: mat_a] :
      ( ( ( uminus_uminus_mat_a @ A2 )
        = ( uminus_uminus_mat_a @ B2 ) )
      = ( A2 = B2 ) ) ).

% uminus_eq_mat
thf(fact_451_zero__transpose__mat,axiom,
    ! [N: nat,M: nat] :
      ( ( transpose_mat_a @ ( zero_mat_a @ N @ M ) )
      = ( zero_mat_a @ M @ N ) ) ).

% zero_transpose_mat
thf(fact_452_M__low__def,axiom,
    ( m_low
    = ( four_block_mat_a @ ( zero_mat_a @ nc @ nc ) @ ( transpose_mat_a @ a2 ) @ ( zero_mat_a @ nc @ nc ) @ ( uminus_uminus_mat_a @ ( transpose_mat_a @ a2 ) ) ) ) ).

% M_low_def
thf(fact_453_four__block__zero__mat,axiom,
    ! [Nr1: nat,Nc1: nat,Nc2: nat,Nr2: nat] :
      ( ( four_block_mat_a @ ( zero_mat_a @ Nr1 @ Nc1 ) @ ( zero_mat_a @ Nr1 @ Nc2 ) @ ( zero_mat_a @ Nr2 @ Nc1 ) @ ( zero_mat_a @ Nr2 @ Nc2 ) )
      = ( zero_mat_a @ ( plus_plus_nat @ Nr1 @ Nr2 ) @ ( plus_plus_nat @ Nc1 @ Nc2 ) ) ) ).

% four_block_zero_mat
thf(fact_454_right__add__zero__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( plus_plus_mat_a @ A2 @ ( zero_mat_a @ Nr @ Nc ) )
        = A2 ) ) ).

% right_add_zero_mat
thf(fact_455_left__add__zero__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( plus_plus_mat_a @ ( zero_mat_a @ Nr @ Nc ) @ A2 )
        = A2 ) ) ).

% left_add_zero_mat
thf(fact_456_zero__mat__mult__vector,axiom,
    ! [X2: vec_a,Nc: nat,Nr: nat] :
      ( ( member_vec_a @ X2 @ ( carrier_vec_a @ Nc ) )
     => ( ( mult_mat_vec_a @ ( zero_mat_a @ Nr @ Nc ) @ X2 )
        = ( zero_vec_a @ Nr ) ) ) ).

% zero_mat_mult_vector
thf(fact_457_uminus__l__inv__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( plus_plus_mat_a @ ( uminus_uminus_mat_a @ A2 ) @ A2 )
        = ( zero_mat_a @ Nr @ Nc ) ) ) ).

% uminus_l_inv_mat
thf(fact_458_subset__iff,axiom,
    ( ord_le4791951621262958845_vec_a
    = ( ^ [A4: set_vec_a,B4: set_vec_a] :
        ! [T: vec_a] :
          ( ( member_vec_a @ T @ A4 )
         => ( member_vec_a @ T @ B4 ) ) ) ) ).

% subset_iff
thf(fact_459_subset__iff,axiom,
    ( ord_le3318621148231462513_mat_a
    = ( ^ [A4: set_mat_a,B4: set_mat_a] :
        ! [T: mat_a] :
          ( ( member_mat_a @ T @ A4 )
         => ( member_mat_a @ T @ B4 ) ) ) ) ).

% subset_iff
thf(fact_460_subset__eq,axiom,
    ( ord_le4791951621262958845_vec_a
    = ( ^ [A4: set_vec_a,B4: set_vec_a] :
        ! [X: vec_a] :
          ( ( member_vec_a @ X @ A4 )
         => ( member_vec_a @ X @ B4 ) ) ) ) ).

% subset_eq
thf(fact_461_subset__eq,axiom,
    ( ord_le3318621148231462513_mat_a
    = ( ^ [A4: set_mat_a,B4: set_mat_a] :
        ! [X: mat_a] :
          ( ( member_mat_a @ X @ A4 )
         => ( member_mat_a @ X @ B4 ) ) ) ) ).

% subset_eq
thf(fact_462_subsetD,axiom,
    ! [A2: set_vec_a,B2: set_vec_a,C: vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ B2 )
     => ( ( member_vec_a @ C @ A2 )
       => ( member_vec_a @ C @ B2 ) ) ) ).

% subsetD
thf(fact_463_subsetD,axiom,
    ! [A2: set_mat_a,B2: set_mat_a,C: mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ A2 @ B2 )
     => ( ( member_mat_a @ C @ A2 )
       => ( member_mat_a @ C @ B2 ) ) ) ).

% subsetD
thf(fact_464_in__mono,axiom,
    ! [A2: set_vec_a,B2: set_vec_a,X2: vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ B2 )
     => ( ( member_vec_a @ X2 @ A2 )
       => ( member_vec_a @ X2 @ B2 ) ) ) ).

% in_mono
thf(fact_465_in__mono,axiom,
    ! [A2: set_mat_a,B2: set_mat_a,X2: mat_a] :
      ( ( ord_le3318621148231462513_mat_a @ A2 @ B2 )
     => ( ( member_mat_a @ X2 @ A2 )
       => ( member_mat_a @ X2 @ B2 ) ) ) ).

% in_mono
thf(fact_466_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_467_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_468_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_469_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_470_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_471_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_472_cong__four__block__mat,axiom,
    ! [A1: mat_a,B1: mat_a,A22: mat_a,B22: mat_a,A32: mat_a,B32: mat_a,A42: mat_a,B42: mat_a] :
      ( ( A1 = B1 )
     => ( ( A22 = B22 )
       => ( ( A32 = B32 )
         => ( ( A42 = B42 )
           => ( ( four_block_mat_a @ A1 @ A22 @ A32 @ A42 )
              = ( four_block_mat_a @ B1 @ B22 @ B32 @ B42 ) ) ) ) ) ) ).

% cong_four_block_mat
thf(fact_473_zero__carrier__mat,axiom,
    ! [Nr: nat,Nc: nat] : ( member_mat_a @ ( zero_mat_a @ Nr @ Nc ) @ ( carrier_mat_a @ Nr @ Nc ) ) ).

% zero_carrier_mat
thf(fact_474_comm__scalar__prod,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( scalar_prod_a @ V_1 @ V_2 )
          = ( scalar_prod_a @ V_2 @ V_1 ) ) ) ) ).

% comm_scalar_prod
thf(fact_475_mult__mat__vec__split,axiom,
    ! [A2: mat_a,N: nat,D: mat_a,M: nat,A: vec_a,D2: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N @ N ) )
     => ( ( member_mat_a @ D @ ( carrier_mat_a @ M @ M ) )
       => ( ( member_vec_a @ A @ ( carrier_vec_a @ N ) )
         => ( ( member_vec_a @ D2 @ ( carrier_vec_a @ M ) )
           => ( ( mult_mat_vec_a @ ( four_block_mat_a @ A2 @ ( zero_mat_a @ N @ M ) @ ( zero_mat_a @ M @ N ) @ D ) @ ( append_vec_a @ A @ D2 ) )
              = ( append_vec_a @ ( mult_mat_vec_a @ A2 @ A ) @ ( mult_mat_vec_a @ D @ D2 ) ) ) ) ) ) ) ).

% mult_mat_vec_split
thf(fact_476_four__block__carrier__mat,axiom,
    ! [A2: mat_a,Nr1: nat,Nc1: nat,D: mat_a,Nr2: nat,Nc2: nat,B2: mat_a,C2: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
     => ( ( member_mat_a @ D @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
       => ( member_mat_a @ ( four_block_mat_a @ A2 @ B2 @ C2 @ D ) @ ( carrier_mat_a @ ( plus_plus_nat @ Nr1 @ Nr2 ) @ ( plus_plus_nat @ Nc1 @ Nc2 ) ) ) ) ) ).

% four_block_carrier_mat
thf(fact_477_add__inv__exists__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ? [X3: mat_a] :
          ( ( member_mat_a @ X3 @ ( carrier_mat_a @ Nr @ Nc ) )
          & ( ( plus_plus_mat_a @ X3 @ A2 )
            = ( zero_mat_a @ Nr @ Nc ) )
          & ( ( plus_plus_mat_a @ A2 @ X3 )
            = ( zero_mat_a @ Nr @ Nc ) ) ) ) ).

% add_inv_exists_mat
thf(fact_478_transpose__four__block__mat,axiom,
    ! [A2: mat_a,Nr1: nat,Nc1: nat,B2: mat_a,Nc2: nat,C2: mat_a,Nr2: nat,D: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr1 @ Nc2 ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ Nr2 @ Nc1 ) )
         => ( ( member_mat_a @ D @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
           => ( ( transpose_mat_a @ ( four_block_mat_a @ A2 @ B2 @ C2 @ D ) )
              = ( four_block_mat_a @ ( transpose_mat_a @ A2 ) @ ( transpose_mat_a @ C2 ) @ ( transpose_mat_a @ B2 ) @ ( transpose_mat_a @ D ) ) ) ) ) ) ) ).

% transpose_four_block_mat
thf(fact_479_mat__of__row__uminus,axiom,
    ! [V: vec_a] :
      ( ( mat_of_row_a @ ( uminus_uminus_vec_a @ V ) )
      = ( uminus_uminus_mat_a @ ( mat_of_row_a @ V ) ) ) ).

% mat_of_row_uminus
thf(fact_480_add__four__block__mat,axiom,
    ! [A1: mat_a,Nr1: nat,Nc1: nat,B1: mat_a,Nc2: nat,C1: mat_a,Nr2: nat,D1: mat_a,A22: mat_a,B22: mat_a,C22: mat_a,D22: mat_a] :
      ( ( member_mat_a @ A1 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
     => ( ( member_mat_a @ B1 @ ( carrier_mat_a @ Nr1 @ Nc2 ) )
       => ( ( member_mat_a @ C1 @ ( carrier_mat_a @ Nr2 @ Nc1 ) )
         => ( ( member_mat_a @ D1 @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
           => ( ( member_mat_a @ A22 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
             => ( ( member_mat_a @ B22 @ ( carrier_mat_a @ Nr1 @ Nc2 ) )
               => ( ( member_mat_a @ C22 @ ( carrier_mat_a @ Nr2 @ Nc1 ) )
                 => ( ( member_mat_a @ D22 @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
                   => ( ( plus_plus_mat_a @ ( four_block_mat_a @ A1 @ B1 @ C1 @ D1 ) @ ( four_block_mat_a @ A22 @ B22 @ C22 @ D22 ) )
                      = ( four_block_mat_a @ ( plus_plus_mat_a @ A1 @ A22 ) @ ( plus_plus_mat_a @ B1 @ B22 ) @ ( plus_plus_mat_a @ C1 @ C22 ) @ ( plus_plus_mat_a @ D1 @ D22 ) ) ) ) ) ) ) ) ) ) ) ).

% add_four_block_mat
thf(fact_481_add__scalar__prod__distrib,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a,V_3: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ V_3 @ ( carrier_vec_a @ N ) )
         => ( ( scalar_prod_a @ ( plus_plus_vec_a @ V_1 @ V_2 ) @ V_3 )
            = ( plus_plus_a @ ( scalar_prod_a @ V_1 @ V_3 ) @ ( scalar_prod_a @ V_2 @ V_3 ) ) ) ) ) ) ).

% add_scalar_prod_distrib
thf(fact_482_add__scalar__prod__distrib,axiom,
    ! [V_1: vec_nat,N: nat,V_2: vec_nat,V_3: vec_nat] :
      ( ( member_vec_nat @ V_1 @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V_2 @ ( carrier_vec_nat @ N ) )
       => ( ( member_vec_nat @ V_3 @ ( carrier_vec_nat @ N ) )
         => ( ( scalar_prod_nat @ ( plus_plus_vec_nat @ V_1 @ V_2 ) @ V_3 )
            = ( plus_plus_nat @ ( scalar_prod_nat @ V_1 @ V_3 ) @ ( scalar_prod_nat @ V_2 @ V_3 ) ) ) ) ) ) ).

% add_scalar_prod_distrib
thf(fact_483_scalar__prod__add__distrib,axiom,
    ! [V_1: vec_a,N: nat,V_2: vec_a,V_3: vec_a] :
      ( ( member_vec_a @ V_1 @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ V_2 @ ( carrier_vec_a @ N ) )
       => ( ( member_vec_a @ V_3 @ ( carrier_vec_a @ N ) )
         => ( ( scalar_prod_a @ V_1 @ ( plus_plus_vec_a @ V_2 @ V_3 ) )
            = ( plus_plus_a @ ( scalar_prod_a @ V_1 @ V_2 ) @ ( scalar_prod_a @ V_1 @ V_3 ) ) ) ) ) ) ).

% scalar_prod_add_distrib
thf(fact_484_scalar__prod__add__distrib,axiom,
    ! [V_1: vec_nat,N: nat,V_2: vec_nat,V_3: vec_nat] :
      ( ( member_vec_nat @ V_1 @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ V_2 @ ( carrier_vec_nat @ N ) )
       => ( ( member_vec_nat @ V_3 @ ( carrier_vec_nat @ N ) )
         => ( ( scalar_prod_nat @ V_1 @ ( plus_plus_vec_nat @ V_2 @ V_3 ) )
            = ( plus_plus_nat @ ( scalar_prod_nat @ V_1 @ V_2 ) @ ( scalar_prod_nat @ V_1 @ V_3 ) ) ) ) ) ) ).

% scalar_prod_add_distrib
thf(fact_485_scalar__prod__append,axiom,
    ! [V1: vec_a,N1: nat,V22: vec_a,N2: nat,W1: vec_a,W22: vec_a] :
      ( ( member_vec_a @ V1 @ ( carrier_vec_a @ N1 ) )
     => ( ( member_vec_a @ V22 @ ( carrier_vec_a @ N2 ) )
       => ( ( member_vec_a @ W1 @ ( carrier_vec_a @ N1 ) )
         => ( ( member_vec_a @ W22 @ ( carrier_vec_a @ N2 ) )
           => ( ( scalar_prod_a @ ( append_vec_a @ V1 @ V22 ) @ ( append_vec_a @ W1 @ W22 ) )
              = ( plus_plus_a @ ( scalar_prod_a @ V1 @ W1 ) @ ( scalar_prod_a @ V22 @ W22 ) ) ) ) ) ) ) ).

% scalar_prod_append
thf(fact_486_scalar__prod__append,axiom,
    ! [V1: vec_nat,N1: nat,V22: vec_nat,N2: nat,W1: vec_nat,W22: vec_nat] :
      ( ( member_vec_nat @ V1 @ ( carrier_vec_nat @ N1 ) )
     => ( ( member_vec_nat @ V22 @ ( carrier_vec_nat @ N2 ) )
       => ( ( member_vec_nat @ W1 @ ( carrier_vec_nat @ N1 ) )
         => ( ( member_vec_nat @ W22 @ ( carrier_vec_nat @ N2 ) )
           => ( ( scalar_prod_nat @ ( append_vec_nat @ V1 @ V22 ) @ ( append_vec_nat @ W1 @ W22 ) )
              = ( plus_plus_nat @ ( scalar_prod_nat @ V1 @ W1 ) @ ( scalar_prod_nat @ V22 @ W22 ) ) ) ) ) ) ) ).

% scalar_prod_append
thf(fact_487_uminus__scalar__prod,axiom,
    ! [V: vec_a,N: nat,W: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ W @ ( carrier_vec_a @ N ) )
       => ( ( uminus_uminus_a @ ( scalar_prod_a @ V @ W ) )
          = ( scalar_prod_a @ ( uminus_uminus_vec_a @ V ) @ W ) ) ) ) ).

% uminus_scalar_prod
thf(fact_488_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_489_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_490_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_491_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_492_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_493_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus_nat @ K @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_494_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_495_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_496_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_497_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_498_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N4: nat] :
        ? [K2: nat] :
          ( N4
          = ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_499_assoc__add__vecset,axiom,
    ! [A2: set_vec_a,N: nat,B2: set_vec_a,C2: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ ( carrier_vec_a @ N ) )
     => ( ( ord_le4791951621262958845_vec_a @ B2 @ ( carrier_vec_a @ N ) )
       => ( ( ord_le4791951621262958845_vec_a @ C2 @ ( carrier_vec_a @ N ) )
         => ( ( plus_plus_set_vec_a @ A2 @ ( plus_plus_set_vec_a @ B2 @ C2 ) )
            = ( plus_plus_set_vec_a @ ( plus_plus_set_vec_a @ A2 @ B2 ) @ C2 ) ) ) ) ) ).

% assoc_add_vecset
thf(fact_500_comm__add__vecset,axiom,
    ! [A2: set_vec_a,N: nat,B2: set_vec_a] :
      ( ( ord_le4791951621262958845_vec_a @ A2 @ ( carrier_vec_a @ N ) )
     => ( ( ord_le4791951621262958845_vec_a @ B2 @ ( carrier_vec_a @ N ) )
       => ( ( plus_plus_set_vec_a @ A2 @ B2 )
          = ( plus_plus_set_vec_a @ B2 @ A2 ) ) ) ) ).

% comm_add_vecset
thf(fact_501_transpose__vec__mult__scalar,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,X2: vec_a,Y2: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ X2 @ ( carrier_vec_a @ Nc ) )
       => ( ( member_vec_a @ Y2 @ ( carrier_vec_a @ Nr ) )
         => ( ( scalar_prod_a @ ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y2 ) @ X2 )
            = ( scalar_prod_a @ Y2 @ ( mult_mat_vec_a @ A2 @ X2 ) ) ) ) ) ) ).

% transpose_vec_mult_scalar
thf(fact_502_four__block__mat__mult__vec,axiom,
    ! [A2: mat_a,Nr1: nat,Nc1: nat,B2: mat_a,Nc2: nat,C2: mat_a,Nr2: nat,D: mat_a,A: vec_a,D2: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr1 @ Nc2 ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ Nr2 @ Nc1 ) )
         => ( ( member_mat_a @ D @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
           => ( ( member_vec_a @ A @ ( carrier_vec_a @ Nc1 ) )
             => ( ( member_vec_a @ D2 @ ( carrier_vec_a @ Nc2 ) )
               => ( ( mult_mat_vec_a @ ( four_block_mat_a @ A2 @ B2 @ C2 @ D ) @ ( append_vec_a @ A @ D2 ) )
                  = ( append_vec_a @ ( plus_plus_vec_a @ ( mult_mat_vec_a @ A2 @ A ) @ ( mult_mat_vec_a @ B2 @ D2 ) ) @ ( plus_plus_vec_a @ ( mult_mat_vec_a @ C2 @ A ) @ ( mult_mat_vec_a @ D @ D2 ) ) ) ) ) ) ) ) ) ) ).

% four_block_mat_mult_vec
thf(fact_503_M__last__def,axiom,
    ( m_last
    = ( missin386308114684349109cols_a @ ( zero_mat_a @ nr @ nc ) @ ( uminus_uminus_mat_a @ ( one_mat_a @ nr ) ) ) ) ).

% M_last_def
thf(fact_504_mat__of__row__mult__append__rows,axiom,
    ! [Y1: vec_a,Nr1: nat,Y22: vec_a,Nr2: nat,A1: mat_a,Nc: nat,A22: mat_a] :
      ( ( member_vec_a @ Y1 @ ( carrier_vec_a @ Nr1 ) )
     => ( ( member_vec_a @ Y22 @ ( carrier_vec_a @ Nr2 ) )
       => ( ( member_mat_a @ A1 @ ( carrier_mat_a @ Nr1 @ Nc ) )
         => ( ( member_mat_a @ A22 @ ( carrier_mat_a @ Nr2 @ Nc ) )
           => ( ( times_times_mat_a @ ( mat_of_row_a @ ( append_vec_a @ Y1 @ Y22 ) ) @ ( append_rows_a @ A1 @ A22 ) )
              = ( plus_plus_mat_a @ ( times_times_mat_a @ ( mat_of_row_a @ Y1 ) @ A1 ) @ ( times_times_mat_a @ ( mat_of_row_a @ Y22 ) @ A22 ) ) ) ) ) ) ) ).

% mat_of_row_mult_append_rows
thf(fact_505_gram__schmidt_OFarkas__Lemma_H,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ Nr ) )
       => ( ( ? [X: vec_a] :
                ( ( member_vec_a @ X @ ( carrier_vec_a @ Nc ) )
                & ( ord_less_eq_vec_a @ ( mult_mat_vec_a @ A2 @ X ) @ B ) ) )
          = ( ! [Y: vec_a] :
                ( ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ Y )
                  & ( ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y )
                    = ( zero_vec_a @ Nc ) ) )
               => ( ord_less_eq_a @ zero_zero_a @ ( scalar_prod_a @ Y @ B ) ) ) ) ) ) ) ).

% gram_schmidt.Farkas_Lemma'
thf(fact_506_gram__schmidt_OFarkas__Lemma,axiom,
    ! [A2: mat_a,N: nat,Nr: nat,B: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N @ Nr ) )
     => ( ( member_vec_a @ B @ ( carrier_vec_a @ N ) )
       => ( ( ? [X: vec_a] :
                ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ X )
                & ( ( mult_mat_vec_a @ A2 @ X )
                  = B ) ) )
          = ( ! [Y: vec_a] :
                ( ( member_vec_a @ Y @ ( carrier_vec_a @ N ) )
               => ( ( ord_less_eq_vec_a @ ( zero_vec_a @ Nr ) @ ( mult_mat_vec_a @ ( transpose_mat_a @ A2 ) @ Y ) )
                 => ( ord_less_eq_a @ zero_zero_a @ ( scalar_prod_a @ Y @ B ) ) ) ) ) ) ) ) ).

% gram_schmidt.Farkas_Lemma
thf(fact_507_vec__inv,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( V
         != ( zero_vec_a @ N ) )
       => ( ( scalar_prod_a @ ( schur_vec_inv_a @ V ) @ V )
          = one_one_a ) ) ) ).

% vec_inv
thf(fact_508_vardim_Okernel__padr,axiom,
    ! [A: vec_a,A2: mat_a,Nr1: nat,Nc1: nat,B2: mat_a,Nc2: nat,D: mat_a,Nr2: nat] :
      ( ( member_vec_a @ A @ ( matrix_mat_kernel_a @ A2 ) )
     => ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
       => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr1 @ Nc2 ) )
         => ( ( member_mat_a @ D @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
           => ( member_vec_a @ ( append_vec_a @ A @ ( zero_vec_a @ Nc2 ) ) @ ( matrix_mat_kernel_a @ ( four_block_mat_a @ A2 @ B2 @ ( zero_mat_a @ Nr2 @ Nc1 ) @ D ) ) ) ) ) ) ) ).

% vardim.kernel_padr
thf(fact_509_vardim_Okernel__padl,axiom,
    ! [D2: vec_a,D: mat_a,A2: mat_a,Nr1: nat,Nc1: nat,C2: mat_a,Nr2: nat,Nc2: nat] :
      ( ( member_vec_a @ D2 @ ( matrix_mat_kernel_a @ D ) )
     => ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc1 ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ Nr2 @ Nc1 ) )
         => ( ( member_mat_a @ D @ ( carrier_mat_a @ Nr2 @ Nc2 ) )
           => ( member_vec_a @ ( append_vec_a @ ( zero_vec_a @ Nc1 ) @ D2 ) @ ( matrix_mat_kernel_a @ ( four_block_mat_a @ A2 @ ( zero_mat_a @ Nr1 @ Nc2 ) @ C2 @ D ) ) ) ) ) ) ) ).

% vardim.kernel_padl
thf(fact_510_set__times__intro,axiom,
    ! [A: mat_a,C2: set_mat_a,B: mat_a,D: set_mat_a] :
      ( ( member_mat_a @ A @ C2 )
     => ( ( member_mat_a @ B @ D )
       => ( member_mat_a @ ( times_times_mat_a @ A @ B ) @ ( times_1230744552615602198_mat_a @ C2 @ D ) ) ) ) ).

% set_times_intro
thf(fact_511_set__times__intro,axiom,
    ! [A: nat,C2: set_nat,B: nat,D: set_nat] :
      ( ( member_nat @ A @ C2 )
     => ( ( member_nat @ B @ D )
       => ( member_nat @ ( times_times_nat @ A @ B ) @ ( times_times_set_nat @ C2 @ D ) ) ) ) ).

% set_times_intro
thf(fact_512_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_513_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_514_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_515_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_516_Compl__iff,axiom,
    ! [C: vec_a,A2: set_vec_a] :
      ( ( member_vec_a @ C @ ( uminus2769705506071317478_vec_a @ A2 ) )
      = ( ~ ( member_vec_a @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_517_Compl__iff,axiom,
    ! [C: mat_a,A2: set_mat_a] :
      ( ( member_mat_a @ C @ ( uminus1296375033039821146_mat_a @ A2 ) )
      = ( ~ ( member_mat_a @ C @ A2 ) ) ) ).

% Compl_iff
thf(fact_518_ComplI,axiom,
    ! [C: vec_a,A2: set_vec_a] :
      ( ~ ( member_vec_a @ C @ A2 )
     => ( member_vec_a @ C @ ( uminus2769705506071317478_vec_a @ A2 ) ) ) ).

% ComplI
thf(fact_519_ComplI,axiom,
    ! [C: mat_a,A2: set_mat_a] :
      ( ~ ( member_mat_a @ C @ A2 )
     => ( member_mat_a @ C @ ( uminus1296375033039821146_mat_a @ A2 ) ) ) ).

% ComplI
thf(fact_520_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_521_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_522_zero__eq__add__iff__both__eq__0,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X2 @ Y2 ) )
      = ( ( X2 = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_523_add__eq__0__iff__both__eq__0,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( plus_plus_nat @ X2 @ Y2 )
        = zero_zero_nat )
      = ( ( X2 = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_524_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_525_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_526_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_527_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_528_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_529_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_530_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_531_assoc__mult__mat,axiom,
    ! [A2: mat_a,N_1: nat,N_2: nat,B2: mat_a,N_3: nat,C2: mat_a,N_4: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N_1 @ N_2 ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ N_2 @ N_3 ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ N_3 @ N_4 ) )
         => ( ( times_times_mat_a @ ( times_times_mat_a @ A2 @ B2 ) @ C2 )
            = ( times_times_mat_a @ A2 @ ( times_times_mat_a @ B2 @ C2 ) ) ) ) ) ) ).

% assoc_mult_mat
thf(fact_532_transpose__one,axiom,
    ! [N: nat] :
      ( ( transpose_mat_a @ ( one_mat_a @ N ) )
      = ( one_mat_a @ N ) ) ).

% transpose_one
thf(fact_533_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_534_add__le__same__cancel1,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ B @ A ) @ B )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% add_le_same_cancel1
thf(fact_535_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_536_add__le__same__cancel2,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ B ) @ B )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% add_le_same_cancel2
thf(fact_537_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_538_le__add__same__cancel1,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ ( plus_plus_a @ A @ B ) )
      = ( ord_less_eq_a @ zero_zero_a @ B ) ) ).

% le_add_same_cancel1
thf(fact_539_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_540_le__add__same__cancel2,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ ( plus_plus_a @ B @ A ) )
      = ( ord_less_eq_a @ zero_zero_a @ B ) ) ).

% le_add_same_cancel2
thf(fact_541_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ A @ A ) @ zero_zero_a )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_542_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ ( plus_plus_a @ A @ A ) )
      = ( ord_less_eq_a @ zero_zero_a @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_543_neg__less__eq__nonneg,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ ( uminus_uminus_a @ A ) @ A )
      = ( ord_less_eq_a @ zero_zero_a @ A ) ) ).

% neg_less_eq_nonneg
thf(fact_544_less__eq__neg__nonpos,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ A @ ( uminus_uminus_a @ A ) )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% less_eq_neg_nonpos
thf(fact_545_neg__le__0__iff__le,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ ( uminus_uminus_a @ A ) @ zero_zero_a )
      = ( ord_less_eq_a @ zero_zero_a @ A ) ) ).

% neg_le_0_iff_le
thf(fact_546_neg__0__le__iff__le,axiom,
    ! [A: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ ( uminus_uminus_a @ A ) )
      = ( ord_less_eq_a @ A @ zero_zero_a ) ) ).

% neg_0_le_iff_le
thf(fact_547_one__mult__mat__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( mult_mat_vec_a @ ( one_mat_a @ N ) @ V )
        = V ) ) ).

% one_mult_mat_vec
thf(fact_548_scalar__prod__right__zero,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( scalar_prod_a @ V @ ( zero_vec_a @ N ) )
        = zero_zero_a ) ) ).

% scalar_prod_right_zero
thf(fact_549_scalar__prod__right__zero,axiom,
    ! [V: vec_nat,N: nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( scalar_prod_nat @ V @ ( zero_vec_nat @ N ) )
        = zero_zero_nat ) ) ).

% scalar_prod_right_zero
thf(fact_550_scalar__prod__left__zero,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( scalar_prod_a @ ( zero_vec_a @ N ) @ V )
        = zero_zero_a ) ) ).

% scalar_prod_left_zero
thf(fact_551_scalar__prod__left__zero,axiom,
    ! [V: vec_nat,N: nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( scalar_prod_nat @ ( zero_vec_nat @ N ) @ V )
        = zero_zero_nat ) ) ).

% scalar_prod_left_zero
thf(fact_552_assoc__mult__mat__vec,axiom,
    ! [A2: mat_a,N_1: nat,N_2: nat,B2: mat_a,N_3: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N_1 @ N_2 ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ N_2 @ N_3 ) )
       => ( ( member_vec_a @ V @ ( carrier_vec_a @ N_3 ) )
         => ( ( mult_mat_vec_a @ ( times_times_mat_a @ A2 @ B2 ) @ V )
            = ( mult_mat_vec_a @ A2 @ ( mult_mat_vec_a @ B2 @ V ) ) ) ) ) ) ).

% assoc_mult_mat_vec
thf(fact_553_scalar__prod__vCons,axiom,
    ! [A: a,V: vec_a,B: a,W: vec_a] :
      ( ( scalar_prod_a @ ( vCons_a @ A @ V ) @ ( vCons_a @ B @ W ) )
      = ( plus_plus_a @ ( times_times_a @ A @ B ) @ ( scalar_prod_a @ V @ W ) ) ) ).

% scalar_prod_vCons
thf(fact_554_scalar__prod__vCons,axiom,
    ! [A: nat,V: vec_nat,B: nat,W: vec_nat] :
      ( ( scalar_prod_nat @ ( vCons_nat @ A @ V ) @ ( vCons_nat @ B @ W ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( scalar_prod_nat @ V @ W ) ) ) ).

% scalar_prod_vCons
thf(fact_555_four__block__one__mat,axiom,
    ! [N1: nat,N2: nat] :
      ( ( four_block_mat_a @ ( one_mat_a @ N1 ) @ ( zero_mat_a @ N1 @ N2 ) @ ( zero_mat_a @ N2 @ N1 ) @ ( one_mat_a @ N2 ) )
      = ( one_mat_a @ ( plus_plus_nat @ N1 @ N2 ) ) ) ).

% four_block_one_mat
thf(fact_556_ComplD,axiom,
    ! [C: vec_a,A2: set_vec_a] :
      ( ( member_vec_a @ C @ ( uminus2769705506071317478_vec_a @ A2 ) )
     => ~ ( member_vec_a @ C @ A2 ) ) ).

% ComplD
thf(fact_557_ComplD,axiom,
    ! [C: mat_a,A2: set_mat_a] :
      ( ( member_mat_a @ C @ ( uminus1296375033039821146_mat_a @ A2 ) )
     => ~ ( member_mat_a @ C @ A2 ) ) ).

% ComplD
thf(fact_558_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_559_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_560_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A3: nat,B3: nat] : ( times_times_nat @ B3 @ A3 ) ) ) ).

% mult.commute
thf(fact_561_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_562_zero__reorient,axiom,
    ! [X2: nat] :
      ( ( zero_zero_nat = X2 )
      = ( X2 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_563_set__times__elim,axiom,
    ! [X2: mat_a,A2: set_mat_a,B2: set_mat_a] :
      ( ( member_mat_a @ X2 @ ( times_1230744552615602198_mat_a @ A2 @ B2 ) )
     => ~ ! [A5: mat_a,B5: mat_a] :
            ( ( X2
              = ( times_times_mat_a @ A5 @ B5 ) )
           => ( ( member_mat_a @ A5 @ A2 )
             => ~ ( member_mat_a @ B5 @ B2 ) ) ) ) ).

% set_times_elim
thf(fact_564_set__times__elim,axiom,
    ! [X2: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ X2 @ ( times_times_set_nat @ A2 @ B2 ) )
     => ~ ! [A5: nat,B5: nat] :
            ( ( X2
              = ( times_times_nat @ A5 @ B5 ) )
           => ( ( member_nat @ A5 @ A2 )
             => ~ ( member_nat @ B5 @ B2 ) ) ) ) ).

% set_times_elim
thf(fact_565_left__mult__one__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( times_times_mat_a @ ( one_mat_a @ Nr ) @ A2 )
        = A2 ) ) ).

% left_mult_one_mat
thf(fact_566_right__mult__one__mat,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( times_times_mat_a @ A2 @ ( one_mat_a @ Nc ) )
        = A2 ) ) ).

% right_mult_one_mat
thf(fact_567_mat__kernel__mult__eq,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B2: mat_a,C2: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ Nr ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ Nr @ Nr ) )
         => ( ( ( times_times_mat_a @ C2 @ B2 )
              = ( one_mat_a @ Nr ) )
           => ( ( matrix_mat_kernel_a @ ( times_times_mat_a @ B2 @ A2 ) )
              = ( matrix_mat_kernel_a @ A2 ) ) ) ) ) ) ).

% mat_kernel_mult_eq
thf(fact_568_mat__kernel__mult__subset,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B2: mat_a,N: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ N @ Nr ) )
       => ( ord_le4791951621262958845_vec_a @ ( matrix_mat_kernel_a @ A2 ) @ ( matrix_mat_kernel_a @ ( times_times_mat_a @ B2 @ A2 ) ) ) ) ) ).

% mat_kernel_mult_subset
thf(fact_569_one__carrier__mat,axiom,
    ! [N: nat] : ( member_mat_a @ ( one_mat_a @ N ) @ ( carrier_mat_a @ N @ N ) ) ).

% one_carrier_mat
thf(fact_570_vec__inv__closed,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( member_vec_a @ ( schur_vec_inv_a @ V ) @ ( carrier_vec_a @ N ) ) ) ).

% vec_inv_closed
thf(fact_571_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_572_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_573_mult__carrier__mat,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,B2: mat_a,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ N @ Nc ) )
       => ( member_mat_a @ ( times_times_mat_a @ A2 @ B2 ) @ ( carrier_mat_a @ Nr @ Nc ) ) ) ) ).

% mult_carrier_mat
thf(fact_574_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_575_le__numeral__extra_I3_J,axiom,
    ord_less_eq_a @ zero_zero_a @ zero_zero_a ).

% le_numeral_extra(3)
thf(fact_576_zero__le,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).

% zero_le
thf(fact_577_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_578_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_579_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_580_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_581_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_582_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_583_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_584_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_585_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_586_mat__kernelD_I1_J,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ V @ ( matrix_mat_kernel_a @ A2 ) )
       => ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) ) ) ) ).

% mat_kernelD(1)
thf(fact_587_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_588_add__decreasing,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ C @ B )
       => ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_589_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_590_add__increasing,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_eq_a @ B @ ( plus_plus_a @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_591_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_592_add__decreasing2,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ C @ zero_zero_a )
     => ( ( ord_less_eq_a @ A @ B )
       => ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_593_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_594_add__increasing2,axiom,
    ! [C: a,B: a,A: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ C )
     => ( ( ord_less_eq_a @ B @ A )
       => ( ord_less_eq_a @ B @ ( plus_plus_a @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_595_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_596_add__nonneg__nonneg,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ord_less_eq_a @ zero_zero_a @ ( plus_plus_a @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_597_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_598_add__nonpos__nonpos,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ord_less_eq_a @ ( plus_plus_a @ A @ B ) @ zero_zero_a ) ) ) ).

% add_nonpos_nonpos
thf(fact_599_add__nonneg__eq__0__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( plus_plus_nat @ X2 @ Y2 )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_600_add__nonneg__eq__0__iff,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X2 )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y2 )
       => ( ( ( plus_plus_a @ X2 @ Y2 )
            = zero_zero_a )
          = ( ( X2 = zero_zero_a )
            & ( Y2 = zero_zero_a ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_601_add__nonpos__eq__0__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y2 @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X2 @ Y2 )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_602_add__nonpos__eq__0__iff,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ X2 @ zero_zero_a )
     => ( ( ord_less_eq_a @ Y2 @ zero_zero_a )
       => ( ( ( plus_plus_a @ X2 @ Y2 )
            = zero_zero_a )
          = ( ( X2 = zero_zero_a )
            & ( Y2 = zero_zero_a ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_603_left__mult__zero__mat,axiom,
    ! [A2: mat_a,N: nat,Nc: nat,Nr: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N @ Nc ) )
     => ( ( times_times_mat_a @ ( zero_mat_a @ Nr @ N ) @ A2 )
        = ( zero_mat_a @ Nr @ Nc ) ) ) ).

% left_mult_zero_mat
thf(fact_604_right__mult__zero__mat,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( times_times_mat_a @ A2 @ ( zero_mat_a @ N @ Nc ) )
        = ( zero_mat_a @ Nr @ Nc ) ) ) ).

% right_mult_zero_mat
thf(fact_605_transpose__mult,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,B2: mat_a,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ N @ Nc ) )
       => ( ( transpose_mat_a @ ( times_times_mat_a @ A2 @ B2 ) )
          = ( times_times_mat_a @ ( transpose_mat_a @ B2 ) @ ( transpose_mat_a @ A2 ) ) ) ) ) ).

% transpose_mult
thf(fact_606_add__mult__distrib__mat,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,B2: mat_a,C2: mat_a,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ N ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ N @ Nc ) )
         => ( ( times_times_mat_a @ ( plus_plus_mat_a @ A2 @ B2 ) @ C2 )
            = ( plus_plus_mat_a @ ( times_times_mat_a @ A2 @ C2 ) @ ( times_times_mat_a @ B2 @ C2 ) ) ) ) ) ) ).

% add_mult_distrib_mat
thf(fact_607_mult__add__distrib__mat,axiom,
    ! [A2: mat_a,Nr: nat,N: nat,B2: mat_a,Nc: nat,C2: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ N ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ N @ Nc ) )
       => ( ( member_mat_a @ C2 @ ( carrier_mat_a @ N @ Nc ) )
         => ( ( times_times_mat_a @ A2 @ ( plus_plus_mat_a @ B2 @ C2 ) )
            = ( plus_plus_mat_a @ ( times_times_mat_a @ A2 @ B2 ) @ ( times_times_mat_a @ A2 @ C2 ) ) ) ) ) ) ).

% mult_add_distrib_mat
thf(fact_608_set__zero__plus2,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( member_nat @ zero_zero_nat @ A2 )
     => ( ord_less_eq_set_nat @ B2 @ ( plus_plus_set_nat @ A2 @ B2 ) ) ) ).

% set_zero_plus2
thf(fact_609_mat__kernel__carrier,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ord_le4791951621262958845_vec_a @ ( matrix_mat_kernel_a @ A2 ) @ ( carrier_vec_a @ Nc ) ) ) ).

% mat_kernel_carrier
thf(fact_610_mat__kernelD_I2_J,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ V @ ( matrix_mat_kernel_a @ A2 ) )
       => ( ( mult_mat_vec_a @ A2 @ V )
          = ( zero_vec_a @ Nr ) ) ) ) ).

% mat_kernelD(2)
thf(fact_611_le__minus__one__simps_I3_J,axiom,
    ~ ( ord_less_eq_a @ zero_zero_a @ ( uminus_uminus_a @ one_one_a ) ) ).

% le_minus_one_simps(3)
thf(fact_612_le__minus__one__simps_I1_J,axiom,
    ord_less_eq_a @ ( uminus_uminus_a @ one_one_a ) @ zero_zero_a ).

% le_minus_one_simps(1)
thf(fact_613_mult__four__block__mat,axiom,
    ! [A1: mat_a,Nr1: nat,N1: nat,B1: mat_a,N2: nat,C1: mat_a,Nr2: nat,D1: mat_a,A22: mat_a,Nc1: nat,B22: mat_a,Nc2: nat,C22: mat_a,D22: mat_a] :
      ( ( member_mat_a @ A1 @ ( carrier_mat_a @ Nr1 @ N1 ) )
     => ( ( member_mat_a @ B1 @ ( carrier_mat_a @ Nr1 @ N2 ) )
       => ( ( member_mat_a @ C1 @ ( carrier_mat_a @ Nr2 @ N1 ) )
         => ( ( member_mat_a @ D1 @ ( carrier_mat_a @ Nr2 @ N2 ) )
           => ( ( member_mat_a @ A22 @ ( carrier_mat_a @ N1 @ Nc1 ) )
             => ( ( member_mat_a @ B22 @ ( carrier_mat_a @ N1 @ Nc2 ) )
               => ( ( member_mat_a @ C22 @ ( carrier_mat_a @ N2 @ Nc1 ) )
                 => ( ( member_mat_a @ D22 @ ( carrier_mat_a @ N2 @ Nc2 ) )
                   => ( ( times_times_mat_a @ ( four_block_mat_a @ A1 @ B1 @ C1 @ D1 ) @ ( four_block_mat_a @ A22 @ B22 @ C22 @ D22 ) )
                      = ( four_block_mat_a @ ( plus_plus_mat_a @ ( times_times_mat_a @ A1 @ A22 ) @ ( times_times_mat_a @ B1 @ C22 ) ) @ ( plus_plus_mat_a @ ( times_times_mat_a @ A1 @ B22 ) @ ( times_times_mat_a @ B1 @ D22 ) ) @ ( plus_plus_mat_a @ ( times_times_mat_a @ C1 @ A22 ) @ ( times_times_mat_a @ D1 @ C22 ) ) @ ( plus_plus_mat_a @ ( times_times_mat_a @ C1 @ B22 ) @ ( times_times_mat_a @ D1 @ D22 ) ) ) ) ) ) ) ) ) ) ) ) ).

% mult_four_block_mat
thf(fact_614_mat__kernelI,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
       => ( ( ( mult_mat_vec_a @ A2 @ V )
            = ( zero_vec_a @ Nr ) )
         => ( member_vec_a @ V @ ( matrix_mat_kernel_a @ A2 ) ) ) ) ) ).

% mat_kernelI
thf(fact_615_vardim_Omat__kernel__split_I1_J,axiom,
    ! [A2: mat_a,N: nat,D: mat_a,M: nat,K: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N @ N ) )
     => ( ( member_mat_a @ D @ ( carrier_mat_a @ M @ M ) )
       => ( ( member_vec_a @ K @ ( matrix_mat_kernel_a @ ( four_block_mat_a @ A2 @ ( zero_mat_a @ N @ M ) @ ( zero_mat_a @ M @ N ) @ D ) ) )
         => ( member_vec_a @ ( vec_first_a @ K @ N ) @ ( matrix_mat_kernel_a @ A2 ) ) ) ) ) ).

% vardim.mat_kernel_split(1)
thf(fact_616_vardim_Omat__kernel__split_I2_J,axiom,
    ! [A2: mat_a,N: nat,D: mat_a,M: nat,K: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N @ N ) )
     => ( ( member_mat_a @ D @ ( carrier_mat_a @ M @ M ) )
       => ( ( member_vec_a @ K @ ( matrix_mat_kernel_a @ ( four_block_mat_a @ A2 @ ( zero_mat_a @ N @ M ) @ ( zero_mat_a @ M @ N ) @ D ) ) )
         => ( member_vec_a @ ( vec_last_a @ K @ M ) @ ( matrix_mat_kernel_a @ D ) ) ) ) ) ).

% vardim.mat_kernel_split(2)
thf(fact_617_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_618_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_619_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_620_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_621_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_622_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_623_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_624_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_625_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_626_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_627_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_628_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_629_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_630_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_631_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_632_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_633_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_634_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_635_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_636_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_637_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_638_combine__common__factor,axiom,
    ! [A: nat,E: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_639_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_640_not__one__le__zero,axiom,
    ~ ( ord_less_eq_a @ one_one_a @ zero_zero_a ) ).

% not_one_le_zero
thf(fact_641_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_642_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_a @ zero_zero_a @ one_one_a ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_643_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_644_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_a @ zero_zero_a @ one_one_a ).

% zero_less_one_class.zero_le_one
thf(fact_645_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_646_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ zero_zero_a @ C )
       => ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_647_zero__le__mult__iff,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ ( times_times_a @ A @ B ) )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ A )
          & ( ord_less_eq_a @ zero_zero_a @ B ) )
        | ( ( ord_less_eq_a @ A @ zero_zero_a )
          & ( ord_less_eq_a @ B @ zero_zero_a ) ) ) ) ).

% zero_le_mult_iff
thf(fact_648_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_649_mult__nonneg__nonpos2,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ord_less_eq_a @ ( times_times_a @ B @ A ) @ zero_zero_a ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_650_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_651_mult__nonpos__nonneg,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ord_less_eq_a @ ( times_times_a @ A @ B ) @ zero_zero_a ) ) ) ).

% mult_nonpos_nonneg
thf(fact_652_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_653_mult__nonneg__nonpos,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ord_less_eq_a @ ( times_times_a @ A @ B ) @ zero_zero_a ) ) ) ).

% mult_nonneg_nonpos
thf(fact_654_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_655_mult__nonneg__nonneg,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ord_less_eq_a @ zero_zero_a @ ( times_times_a @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_656_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_657_split__mult__neg__le,axiom,
    ! [A: a,B: a] :
      ( ( ( ( ord_less_eq_a @ zero_zero_a @ A )
          & ( ord_less_eq_a @ B @ zero_zero_a ) )
        | ( ( ord_less_eq_a @ A @ zero_zero_a )
          & ( ord_less_eq_a @ zero_zero_a @ B ) ) )
     => ( ord_less_eq_a @ ( times_times_a @ A @ B ) @ zero_zero_a ) ) ).

% split_mult_neg_le
thf(fact_658_mult__le__0__iff,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ A @ B ) @ zero_zero_a )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ A )
          & ( ord_less_eq_a @ B @ zero_zero_a ) )
        | ( ( ord_less_eq_a @ A @ zero_zero_a )
          & ( ord_less_eq_a @ zero_zero_a @ B ) ) ) ) ).

% mult_le_0_iff
thf(fact_659_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_660_mult__right__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ zero_zero_a @ C )
       => ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_661_mult__right__mono__neg,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_eq_a @ C @ zero_zero_a )
       => ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) ) ) ) ).

% mult_right_mono_neg
thf(fact_662_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_663_mult__left__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ zero_zero_a @ C )
       => ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_664_mult__nonpos__nonpos,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ord_less_eq_a @ zero_zero_a @ ( times_times_a @ A @ B ) ) ) ) ).

% mult_nonpos_nonpos
thf(fact_665_mult__left__mono__neg,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_eq_a @ C @ zero_zero_a )
       => ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) ) ) ) ).

% mult_left_mono_neg
thf(fact_666_split__mult__pos__le,axiom,
    ! [A: a,B: a] :
      ( ( ( ( ord_less_eq_a @ zero_zero_a @ A )
          & ( ord_less_eq_a @ zero_zero_a @ B ) )
        | ( ( ord_less_eq_a @ A @ zero_zero_a )
          & ( ord_less_eq_a @ B @ zero_zero_a ) ) )
     => ( ord_less_eq_a @ zero_zero_a @ ( times_times_a @ A @ B ) ) ) ).

% split_mult_pos_le
thf(fact_667_zero__le__square,axiom,
    ! [A: a] : ( ord_less_eq_a @ zero_zero_a @ ( times_times_a @ A @ A ) ) ).

% zero_le_square
thf(fact_668_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_669_mult__mono_H,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D2 )
       => ( ( ord_less_eq_a @ zero_zero_a @ A )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D2 ) ) ) ) ) ) ).

% mult_mono'
thf(fact_670_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% mult_mono
thf(fact_671_mult__mono,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D2 )
       => ( ( ord_less_eq_a @ zero_zero_a @ B )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D2 ) ) ) ) ) ) ).

% mult_mono
thf(fact_672_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_673_mult__left__le,axiom,
    ! [C: a,A: a] :
      ( ( ord_less_eq_a @ C @ one_one_a )
     => ( ( ord_less_eq_a @ zero_zero_a @ A )
       => ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_674_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_675_mult__le__one,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ one_one_a )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ( ord_less_eq_a @ B @ one_one_a )
         => ( ord_less_eq_a @ ( times_times_a @ A @ B ) @ one_one_a ) ) ) ) ).

% mult_le_one
thf(fact_676_mult__right__le__one__le,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X2 )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y2 )
       => ( ( ord_less_eq_a @ Y2 @ one_one_a )
         => ( ord_less_eq_a @ ( times_times_a @ X2 @ Y2 ) @ X2 ) ) ) ) ).

% mult_right_le_one_le
thf(fact_677_mult__left__le__one__le,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X2 )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y2 )
       => ( ( ord_less_eq_a @ Y2 @ one_one_a )
         => ( ord_less_eq_a @ ( times_times_a @ Y2 @ X2 ) @ X2 ) ) ) ) ).

% mult_left_le_one_le
thf(fact_678_sum__squares__le__zero__iff,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ ( times_times_a @ X2 @ X2 ) @ ( times_times_a @ Y2 @ Y2 ) ) @ zero_zero_a )
      = ( ( X2 = zero_zero_a )
        & ( Y2 = zero_zero_a ) ) ) ).

% sum_squares_le_zero_iff
thf(fact_679_sum__squares__ge__zero,axiom,
    ! [X2: a,Y2: a] : ( ord_less_eq_a @ zero_zero_a @ ( plus_plus_a @ ( times_times_a @ X2 @ X2 ) @ ( times_times_a @ Y2 @ Y2 ) ) ) ).

% sum_squares_ge_zero
thf(fact_680_convex__bound__le,axiom,
    ! [X2: a,A: a,Y2: a,U: a,V: a] :
      ( ( ord_less_eq_a @ X2 @ A )
     => ( ( ord_less_eq_a @ Y2 @ A )
       => ( ( ord_less_eq_a @ zero_zero_a @ U )
         => ( ( ord_less_eq_a @ zero_zero_a @ V )
           => ( ( ( plus_plus_a @ U @ V )
                = one_one_a )
             => ( ord_less_eq_a @ ( plus_plus_a @ ( times_times_a @ U @ X2 ) @ ( times_times_a @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_le
thf(fact_681_mat__mult__left__right__inverse,axiom,
    ! [A2: mat_a,N: nat,B2: mat_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ N @ N ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ N @ N ) )
       => ( ( ( times_times_mat_a @ A2 @ B2 )
            = ( one_mat_a @ N ) )
         => ( ( times_times_mat_a @ B2 @ A2 )
            = ( one_mat_a @ N ) ) ) ) ) ).

% mat_mult_left_right_inverse
thf(fact_682_scalar__prod__ge__0,axiom,
    ! [X2: vec_a] : ( ord_less_eq_a @ zero_zero_a @ ( scalar_prod_a @ X2 @ X2 ) ) ).

% scalar_prod_ge_0
thf(fact_683_class__semiring_Oadd_Ofactors__equal,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( A = B )
     => ( ( C = D2 )
       => ( ( plus_plus_nat @ A @ C )
          = ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% class_semiring.add.factors_equal
thf(fact_684_add__scale__eq__noteq,axiom,
    ! [R: nat,A: nat,B: nat,C: nat,D2: nat] :
      ( ( R != zero_zero_nat )
     => ( ( ( A = B )
          & ( C != D2 ) )
       => ( ( plus_plus_nat @ A @ ( times_times_nat @ R @ C ) )
         != ( plus_plus_nat @ B @ ( times_times_nat @ R @ D2 ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_685_mult__hom_Ohom__add__eq__zero,axiom,
    ! [X2: nat,Y2: nat,C: nat] :
      ( ( ( plus_plus_nat @ X2 @ Y2 )
        = zero_zero_nat )
     => ( ( plus_plus_nat @ ( times_times_nat @ C @ X2 ) @ ( times_times_nat @ C @ Y2 ) )
        = zero_zero_nat ) ) ).

% mult_hom.hom_add_eq_zero
thf(fact_686_less__eq__fract__respect,axiom,
    ! [B: a,B6: a,D2: a,D3: a,A: a,A6: a,C: a,C5: a] :
      ( ( B != zero_zero_a )
     => ( ( B6 != zero_zero_a )
       => ( ( D2 != zero_zero_a )
         => ( ( D3 != zero_zero_a )
           => ( ( ( times_times_a @ A @ B6 )
                = ( times_times_a @ A6 @ B ) )
             => ( ( ( times_times_a @ C @ D3 )
                  = ( times_times_a @ C5 @ D2 ) )
               => ( ( ord_less_eq_a @ ( times_times_a @ ( times_times_a @ A @ D2 ) @ ( times_times_a @ B @ D2 ) ) @ ( times_times_a @ ( times_times_a @ C @ B ) @ ( times_times_a @ B @ D2 ) ) )
                  = ( ord_less_eq_a @ ( times_times_a @ ( times_times_a @ A6 @ D3 ) @ ( times_times_a @ B6 @ D3 ) ) @ ( times_times_a @ ( times_times_a @ C5 @ B6 ) @ ( times_times_a @ B6 @ D3 ) ) ) ) ) ) ) ) ) ) ).

% less_eq_fract_respect
thf(fact_687_square__lesseq__square,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X2 )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y2 )
       => ( ( ord_less_eq_a @ ( times_times_a @ X2 @ X2 ) @ ( times_times_a @ Y2 @ Y2 ) )
          = ( ord_less_eq_a @ X2 @ Y2 ) ) ) ) ).

% square_lesseq_square
thf(fact_688_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_689_mult__hom_Ohom__add,axiom,
    ! [C: nat,X2: nat,Y2: nat] :
      ( ( times_times_nat @ C @ ( plus_plus_nat @ X2 @ Y2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ C @ X2 ) @ ( times_times_nat @ C @ Y2 ) ) ) ).

% mult_hom.hom_add
thf(fact_690_crossproduct__eq,axiom,
    ! [W: nat,Y2: nat,X2: nat,Z: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y2 ) @ ( times_times_nat @ X2 @ Z ) )
        = ( plus_plus_nat @ ( times_times_nat @ W @ Z ) @ ( times_times_nat @ X2 @ Y2 ) ) )
      = ( ( W = X2 )
        | ( Y2 = Z ) ) ) ).

% crossproduct_eq
thf(fact_691_crossproduct__noteq,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ( A != B )
        & ( C != D2 ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) )
       != ( plus_plus_nat @ ( times_times_nat @ A @ D2 ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_692_norm1__ge__0,axiom,
    ! [F: poly_a] : ( ord_less_eq_a @ zero_zero_a @ ( norm1_a @ F ) ) ).

% norm1_ge_0
thf(fact_693_mult__mat__of__col,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,V: vec_a] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_vec_a @ V @ ( carrier_vec_a @ Nc ) )
       => ( ( times_times_mat_a @ A2 @ ( missing_mat_of_col_a @ V ) )
          = ( missing_mat_of_col_a @ ( mult_mat_vec_a @ A2 @ V ) ) ) ) ) ).

% mult_mat_of_col
thf(fact_694_left__add__mult__distrib,axiom,
    ! [I: nat,U: nat,J: nat,K: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).

% left_add_mult_distrib
thf(fact_695_mat__of__col__def,axiom,
    ( missing_mat_of_col_a
    = ( ^ [V4: vec_a] : ( transpose_mat_a @ ( mat_of_row_a @ V4 ) ) ) ) ).

% mat_of_col_def
thf(fact_696_Euclid__induct,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B5: nat] :
          ( ( P @ A5 @ B5 )
          = ( P @ B5 @ A5 ) )
     => ( ! [A5: nat] : ( P @ A5 @ zero_zero_nat )
       => ( ! [A5: nat,B5: nat] :
              ( ( P @ A5 @ B5 )
             => ( P @ A5 @ ( plus_plus_nat @ A5 @ B5 ) ) )
         => ( P @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_697_linf__norm__vec__eq__0,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( ( linf_norm_vec_a @ V )
          = zero_zero_a )
        = ( V
          = ( zero_vec_a @ N ) ) ) ) ).

% linf_norm_vec_eq_0
thf(fact_698_swap__col__to__front__four__block,axiom,
    ! [A1: mat_a,N1: nat,M: nat,A22: mat_a,A32: mat_a,N2: nat,A42: mat_a] :
      ( ( member_mat_a @ A1 @ ( carrier_mat_a @ N1 @ M ) )
     => ( ( member_mat_a @ A22 @ ( carrier_mat_a @ N1 @ one_one_nat ) )
       => ( ( member_mat_a @ A32 @ ( carrier_mat_a @ N2 @ M ) )
         => ( ( member_mat_a @ A42 @ ( carrier_mat_a @ N2 @ one_one_nat ) )
           => ( ( column2924081423933032910ront_a @ ( four_block_mat_a @ A1 @ A22 @ A32 @ A42 ) @ M )
              = ( four_block_mat_a @ A22 @ A1 @ A42 @ A32 ) ) ) ) ) ) ).

% swap_col_to_front_four_block
thf(fact_699_linf__norm__vec__ge__0,axiom,
    ! [V: vec_a] : ( ord_less_eq_a @ zero_zero_a @ ( linf_norm_vec_a @ V ) ) ).

% linf_norm_vec_ge_0
thf(fact_700_linf__norm__zero__vec,axiom,
    ! [N: nat] :
      ( ( linf_norm_vec_a @ ( zero_vec_a @ N ) )
      = zero_zero_a ) ).

% linf_norm_zero_vec
thf(fact_701_swap__row__to__front__four__block,axiom,
    ! [A1: mat_a,N: nat,M1: nat,A22: mat_a,M22: nat,A32: mat_a,A42: mat_a] :
      ( ( member_mat_a @ A1 @ ( carrier_mat_a @ N @ M1 ) )
     => ( ( member_mat_a @ A22 @ ( carrier_mat_a @ N @ M22 ) )
       => ( ( member_mat_a @ A32 @ ( carrier_mat_a @ one_one_nat @ M1 ) )
         => ( ( member_mat_a @ A42 @ ( carrier_mat_a @ one_one_nat @ M22 ) )
           => ( ( column973622294476583016ront_a @ ( four_block_mat_a @ A1 @ A22 @ A32 @ A42 ) @ N )
              = ( four_block_mat_a @ A32 @ A42 @ A1 @ A22 ) ) ) ) ) ) ).

% swap_row_to_front_four_block
thf(fact_702_linf__norm__vec__greater__0,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( ord_less_a @ zero_zero_a @ ( linf_norm_vec_a @ V ) )
        = ( V
         != ( zero_vec_a @ N ) ) ) ) ).

% linf_norm_vec_greater_0
thf(fact_703_mat__of__row__carrier_I2_J,axiom,
    ! [Y2: vec_a,N: nat] :
      ( ( member_vec_a @ Y2 @ ( carrier_vec_a @ N ) )
     => ( member_mat_a @ ( mat_of_row_a @ Y2 ) @ ( carrier_mat_a @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% mat_of_row_carrier(2)
thf(fact_704_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_705_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_706_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_707_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_708_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_709_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_710_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_711_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_712_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_713_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_714_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_715_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_716_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_717_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_718_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_719_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_720_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_721_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_722_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_723_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_724_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_725_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_726_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_727_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_728_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_729_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_730_nat__mult__le__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel_disj
thf(fact_731_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_732_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_733_vCons__carrier__vec,axiom,
    ! [A: a,V: vec_a,N: nat] :
      ( ( member_vec_a @ ( vCons_a @ A @ V ) @ ( carrier_vec_a @ ( suc @ N ) ) )
      = ( member_vec_a @ V @ ( carrier_vec_a @ N ) ) ) ).

% vCons_carrier_vec
thf(fact_734_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_735_ex__least__nat__less,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ! [I2: nat] :
                ( ( ord_less_eq_nat @ I2 @ K3 )
               => ~ ( P @ I2 ) )
            & ( P @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_736_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_737_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_738_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_739_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_740_old_Onat_Oexhaust,axiom,
    ! [Y2: nat] :
      ( ( Y2 != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y2
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_741_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_742_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_743_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_744_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_745_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_746_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( P @ ( suc @ N3 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_747_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X3: nat,Y3: nat] :
              ( ( P @ X3 @ Y3 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_748_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_749_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_750_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_751_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_752_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M2: nat] :
            ( N
            = ( suc @ M2 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_753_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M3: nat] :
          ( N
          = ( suc @ M3 ) ) ) ).

% gr0_implies_Suc
thf(fact_754_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_755_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M3: nat] :
          ( N
          = ( suc @ M3 ) ) ) ).

% not0_implies_Suc
thf(fact_756_infinite__descent0,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M4: nat] :
                  ( ( ord_less_nat @ M4 @ N3 )
                  & ~ ( P @ M4 ) ) ) )
       => ( P @ N ) ) ) ).

% infinite_descent0
thf(fact_757_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J2: nat] :
            ( ( M
              = ( suc @ J2 ) )
            & ( ord_less_nat @ J2 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_758_nat__induct__non__zero,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_759_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_760_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_761_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_762_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_763_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_764_verit__comp__simplify1_I3_J,axiom,
    ! [B6: nat,A6: nat] :
      ( ( ~ ( ord_less_eq_nat @ B6 @ A6 ) )
      = ( ord_less_nat @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_765_verit__comp__simplify1_I3_J,axiom,
    ! [B6: a,A6: a] :
      ( ( ~ ( ord_less_eq_a @ B6 @ A6 ) )
      = ( ord_less_a @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_766_leD,axiom,
    ! [Y2: vec_a,X2: vec_a] :
      ( ( ord_less_eq_vec_a @ Y2 @ X2 )
     => ~ ( ord_less_vec_a @ X2 @ Y2 ) ) ).

% leD
thf(fact_767_leD,axiom,
    ! [Y2: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X2 )
     => ~ ( ord_less_nat @ X2 @ Y2 ) ) ).

% leD
thf(fact_768_leD,axiom,
    ! [Y2: a,X2: a] :
      ( ( ord_less_eq_a @ Y2 @ X2 )
     => ~ ( ord_less_a @ X2 @ Y2 ) ) ).

% leD
thf(fact_769_leI,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% leI
thf(fact_770_leI,axiom,
    ! [X2: a,Y2: a] :
      ( ~ ( ord_less_a @ X2 @ Y2 )
     => ( ord_less_eq_a @ Y2 @ X2 ) ) ).

% leI
thf(fact_771_nless__le,axiom,
    ! [A: vec_a,B: vec_a] :
      ( ( ~ ( ord_less_vec_a @ A @ B ) )
      = ( ~ ( ord_less_eq_vec_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_772_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_773_nless__le,axiom,
    ! [A: a,B: a] :
      ( ( ~ ( ord_less_a @ A @ B ) )
      = ( ~ ( ord_less_eq_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_774_antisym__conv1,axiom,
    ! [X2: vec_a,Y2: vec_a] :
      ( ~ ( ord_less_vec_a @ X2 @ Y2 )
     => ( ( ord_less_eq_vec_a @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_775_antisym__conv1,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_776_antisym__conv1,axiom,
    ! [X2: a,Y2: a] :
      ( ~ ( ord_less_a @ X2 @ Y2 )
     => ( ( ord_less_eq_a @ X2 @ Y2 )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv1
thf(fact_777_antisym__conv2,axiom,
    ! [X2: vec_a,Y2: vec_a] :
      ( ( ord_less_eq_vec_a @ X2 @ Y2 )
     => ( ( ~ ( ord_less_vec_a @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_778_antisym__conv2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_779_antisym__conv2,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ X2 @ Y2 )
     => ( ( ~ ( ord_less_a @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv2
thf(fact_780_dense__ge,axiom,
    ! [Z: a,Y2: a] :
      ( ! [X3: a] :
          ( ( ord_less_a @ Z @ X3 )
         => ( ord_less_eq_a @ Y2 @ X3 ) )
     => ( ord_less_eq_a @ Y2 @ Z ) ) ).

% dense_ge
thf(fact_781_dense__le,axiom,
    ! [Y2: a,Z: a] :
      ( ! [X3: a] :
          ( ( ord_less_a @ X3 @ Y2 )
         => ( ord_less_eq_a @ X3 @ Z ) )
     => ( ord_less_eq_a @ Y2 @ Z ) ) ).

% dense_le
thf(fact_782_less__le__not__le,axiom,
    ( ord_less_vec_a
    = ( ^ [X: vec_a,Y: vec_a] :
          ( ( ord_less_eq_vec_a @ X @ Y )
          & ~ ( ord_less_eq_vec_a @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_783_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ~ ( ord_less_eq_nat @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_784_less__le__not__le,axiom,
    ( ord_less_a
    = ( ^ [X: a,Y: a] :
          ( ( ord_less_eq_a @ X @ Y )
          & ~ ( ord_less_eq_a @ Y @ X ) ) ) ) ).

% less_le_not_le
thf(fact_785_not__le__imp__less,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_eq_nat @ Y2 @ X2 )
     => ( ord_less_nat @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_786_not__le__imp__less,axiom,
    ! [Y2: a,X2: a] :
      ( ~ ( ord_less_eq_a @ Y2 @ X2 )
     => ( ord_less_a @ X2 @ Y2 ) ) ).

% not_le_imp_less
thf(fact_787_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_vec_a
    = ( ^ [A3: vec_a,B3: vec_a] :
          ( ( ord_less_vec_a @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_788_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_nat @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_789_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_a
    = ( ^ [A3: a,B3: a] :
          ( ( ord_less_a @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_790_order_Ostrict__iff__order,axiom,
    ( ord_less_vec_a
    = ( ^ [A3: vec_a,B3: vec_a] :
          ( ( ord_less_eq_vec_a @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_791_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_792_order_Ostrict__iff__order,axiom,
    ( ord_less_a
    = ( ^ [A3: a,B3: a] :
          ( ( ord_less_eq_a @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_793_order_Ostrict__trans1,axiom,
    ! [A: vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_vec_a @ B @ C )
       => ( ord_less_vec_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_794_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_795_order_Ostrict__trans1,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_a @ B @ C )
       => ( ord_less_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_796_order_Ostrict__trans2,axiom,
    ! [A: vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_vec_a @ A @ B )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ord_less_vec_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_797_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_798_order_Ostrict__trans2,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_799_order_Ostrict__iff__not,axiom,
    ( ord_less_vec_a
    = ( ^ [A3: vec_a,B3: vec_a] :
          ( ( ord_less_eq_vec_a @ A3 @ B3 )
          & ~ ( ord_less_eq_vec_a @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_800_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ~ ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_801_order_Ostrict__iff__not,axiom,
    ( ord_less_a
    = ( ^ [A3: a,B3: a] :
          ( ( ord_less_eq_a @ A3 @ B3 )
          & ~ ( ord_less_eq_a @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_802_dense__ge__bounded,axiom,
    ! [Z: a,X2: a,Y2: a] :
      ( ( ord_less_a @ Z @ X2 )
     => ( ! [W3: a] :
            ( ( ord_less_a @ Z @ W3 )
           => ( ( ord_less_a @ W3 @ X2 )
             => ( ord_less_eq_a @ Y2 @ W3 ) ) )
       => ( ord_less_eq_a @ Y2 @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_803_dense__le__bounded,axiom,
    ! [X2: a,Y2: a,Z: a] :
      ( ( ord_less_a @ X2 @ Y2 )
     => ( ! [W3: a] :
            ( ( ord_less_a @ X2 @ W3 )
           => ( ( ord_less_a @ W3 @ Y2 )
             => ( ord_less_eq_a @ W3 @ Z ) ) )
       => ( ord_less_eq_a @ Y2 @ Z ) ) ) ).

% dense_le_bounded
thf(fact_804_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_vec_a
    = ( ^ [B3: vec_a,A3: vec_a] :
          ( ( ord_less_vec_a @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_805_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_nat @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_806_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_a
    = ( ^ [B3: a,A3: a] :
          ( ( ord_less_a @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_807_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_vec_a
    = ( ^ [B3: vec_a,A3: vec_a] :
          ( ( ord_less_eq_vec_a @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_808_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_809_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_a
    = ( ^ [B3: a,A3: a] :
          ( ( ord_less_eq_a @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_810_dual__order_Ostrict__trans1,axiom,
    ! [B: vec_a,A: vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ B @ A )
     => ( ( ord_less_vec_a @ C @ B )
       => ( ord_less_vec_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_811_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_812_dual__order_Ostrict__trans1,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( ord_less_a @ C @ B )
       => ( ord_less_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_813_dual__order_Ostrict__trans2,axiom,
    ! [B: vec_a,A: vec_a,C: vec_a] :
      ( ( ord_less_vec_a @ B @ A )
     => ( ( ord_less_eq_vec_a @ C @ B )
       => ( ord_less_vec_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_814_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_815_dual__order_Ostrict__trans2,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_a @ B @ A )
     => ( ( ord_less_eq_a @ C @ B )
       => ( ord_less_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_816_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_vec_a
    = ( ^ [B3: vec_a,A3: vec_a] :
          ( ( ord_less_eq_vec_a @ B3 @ A3 )
          & ~ ( ord_less_eq_vec_a @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_817_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_818_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_a
    = ( ^ [B3: a,A3: a] :
          ( ( ord_less_eq_a @ B3 @ A3 )
          & ~ ( ord_less_eq_a @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_819_order_Ostrict__implies__order,axiom,
    ! [A: vec_a,B: vec_a] :
      ( ( ord_less_vec_a @ A @ B )
     => ( ord_less_eq_vec_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_820_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_821_order_Ostrict__implies__order,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ A @ B )
     => ( ord_less_eq_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_822_dual__order_Ostrict__implies__order,axiom,
    ! [B: vec_a,A: vec_a] :
      ( ( ord_less_vec_a @ B @ A )
     => ( ord_less_eq_vec_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_823_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_824_dual__order_Ostrict__implies__order,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_a @ B @ A )
     => ( ord_less_eq_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_825_order__le__less,axiom,
    ( ord_less_eq_vec_a
    = ( ^ [X: vec_a,Y: vec_a] :
          ( ( ord_less_vec_a @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_826_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_nat @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_827_order__le__less,axiom,
    ( ord_less_eq_a
    = ( ^ [X: a,Y: a] :
          ( ( ord_less_a @ X @ Y )
          | ( X = Y ) ) ) ) ).

% order_le_less
thf(fact_828_order__less__le,axiom,
    ( ord_less_vec_a
    = ( ^ [X: vec_a,Y: vec_a] :
          ( ( ord_less_eq_vec_a @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_829_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_830_order__less__le,axiom,
    ( ord_less_a
    = ( ^ [X: a,Y: a] :
          ( ( ord_less_eq_a @ X @ Y )
          & ( X != Y ) ) ) ) ).

% order_less_le
thf(fact_831_linorder__not__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_eq_nat @ X2 @ Y2 ) )
      = ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_832_linorder__not__le,axiom,
    ! [X2: a,Y2: a] :
      ( ( ~ ( ord_less_eq_a @ X2 @ Y2 ) )
      = ( ord_less_a @ Y2 @ X2 ) ) ).

% linorder_not_le
thf(fact_833_linorder__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ord_less_eq_nat @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_834_linorder__not__less,axiom,
    ! [X2: a,Y2: a] :
      ( ( ~ ( ord_less_a @ X2 @ Y2 ) )
      = ( ord_less_eq_a @ Y2 @ X2 ) ) ).

% linorder_not_less
thf(fact_835_order__less__imp__le,axiom,
    ! [X2: vec_a,Y2: vec_a] :
      ( ( ord_less_vec_a @ X2 @ Y2 )
     => ( ord_less_eq_vec_a @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_836_order__less__imp__le,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ord_less_eq_nat @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_837_order__less__imp__le,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_a @ X2 @ Y2 )
     => ( ord_less_eq_a @ X2 @ Y2 ) ) ).

% order_less_imp_le
thf(fact_838_order__le__neq__trans,axiom,
    ! [A: vec_a,B: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_vec_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_839_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_840_order__le__neq__trans,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_841_order__neq__le__trans,axiom,
    ! [A: vec_a,B: vec_a] :
      ( ( A != B )
     => ( ( ord_less_eq_vec_a @ A @ B )
       => ( ord_less_vec_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_842_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_843_order__neq__le__trans,axiom,
    ! [A: a,B: a] :
      ( ( A != B )
     => ( ( ord_less_eq_a @ A @ B )
       => ( ord_less_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_844_order__le__less__trans,axiom,
    ! [X2: vec_a,Y2: vec_a,Z: vec_a] :
      ( ( ord_less_eq_vec_a @ X2 @ Y2 )
     => ( ( ord_less_vec_a @ Y2 @ Z )
       => ( ord_less_vec_a @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_845_order__le__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_846_order__le__less__trans,axiom,
    ! [X2: a,Y2: a,Z: a] :
      ( ( ord_less_eq_a @ X2 @ Y2 )
     => ( ( ord_less_a @ Y2 @ Z )
       => ( ord_less_a @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_847_order__less__le__trans,axiom,
    ! [X2: vec_a,Y2: vec_a,Z: vec_a] :
      ( ( ord_less_vec_a @ X2 @ Y2 )
     => ( ( ord_less_eq_vec_a @ Y2 @ Z )
       => ( ord_less_vec_a @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_848_order__less__le__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_849_order__less__le__trans,axiom,
    ! [X2: a,Y2: a,Z: a] :
      ( ( ord_less_a @ X2 @ Y2 )
     => ( ( ord_less_eq_a @ Y2 @ Z )
       => ( ord_less_a @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_850_order__le__less__subst1,axiom,
    ! [A: vec_a,F: nat > vec_a,B: nat,C: nat] :
      ( ( ord_less_eq_vec_a @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_vec_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_851_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_852_order__le__less__subst1,axiom,
    ! [A: a,F: nat > a,B: nat,C: nat] :
      ( ( ord_less_eq_a @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_853_order__le__less__subst2,axiom,
    ! [A: vec_a,B: vec_a,F: vec_a > vec_a,C: vec_a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_vec_a @ ( F @ B ) @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_vec_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_854_order__le__less__subst2,axiom,
    ! [A: vec_a,B: vec_a,F: vec_a > nat,C: nat] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_855_order__le__less__subst2,axiom,
    ! [A: vec_a,B: vec_a,F: vec_a > a,C: a] :
      ( ( ord_less_eq_vec_a @ A @ B )
     => ( ( ord_less_a @ ( F @ B ) @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_856_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > vec_a,C: vec_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_vec_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_vec_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_857_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_858_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > a,C: a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_859_order__le__less__subst2,axiom,
    ! [A: a,B: a,F: a > vec_a,C: vec_a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_vec_a @ ( F @ B ) @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_vec_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_860_order__le__less__subst2,axiom,
    ! [A: a,B: a,F: a > nat,C: nat] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_861_order__le__less__subst2,axiom,
    ! [A: a,B: a,F: a > a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_a @ ( F @ B ) @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_862_order__less__le__subst1,axiom,
    ! [A: vec_a,F: vec_a > vec_a,B: vec_a,C: vec_a] :
      ( ( ord_less_vec_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_vec_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_863_order__less__le__subst1,axiom,
    ! [A: nat,F: vec_a > nat,B: vec_a,C: vec_a] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_864_order__less__le__subst1,axiom,
    ! [A: a,F: vec_a > a,B: vec_a,C: vec_a] :
      ( ( ord_less_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_vec_a @ B @ C )
       => ( ! [X3: vec_a,Y3: vec_a] :
              ( ( ord_less_eq_vec_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_865_order__less__le__subst1,axiom,
    ! [A: vec_a,F: nat > vec_a,B: nat,C: nat] :
      ( ( ord_less_vec_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_vec_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_866_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_867_order__less__le__subst1,axiom,
    ! [A: a,F: nat > a,B: nat,C: nat] :
      ( ( ord_less_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_868_order__less__le__subst1,axiom,
    ! [A: vec_a,F: a > vec_a,B: a,C: a] :
      ( ( ord_less_vec_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_vec_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_869_order__less__le__subst1,axiom,
    ! [A: nat,F: a > nat,B: a,C: a] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_870_order__less__le__subst1,axiom,
    ! [A: a,F: a > a,B: a,C: a] :
      ( ( ord_less_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ! [X3: a,Y3: a] :
              ( ( ord_less_eq_a @ X3 @ Y3 )
             => ( ord_less_eq_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_871_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > vec_a,C: vec_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_vec_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_vec_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_vec_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_872_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_873_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > a,C: a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_874_linorder__le__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_875_linorder__le__less__linear,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ X2 @ Y2 )
      | ( ord_less_a @ Y2 @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_876_order__le__imp__less__or__eq,axiom,
    ! [X2: vec_a,Y2: vec_a] :
      ( ( ord_less_eq_vec_a @ X2 @ Y2 )
     => ( ( ord_less_vec_a @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_877_order__le__imp__less__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_878_order__le__imp__less__or__eq,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ X2 @ Y2 )
     => ( ( ord_less_a @ X2 @ Y2 )
        | ( X2 = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_879_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_880_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_881_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_882_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_883_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_strict_mono
thf(fact_884_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_885_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_886_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_887_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_888_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_889_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_890_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_891_Suc__le__D,axiom,
    ! [N: nat,M5: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M5 )
     => ? [M3: nat] :
          ( M5
          = ( suc @ M3 ) ) ) ).

% Suc_le_D
thf(fact_892_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_893_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_894_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_895_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M4 ) @ N3 )
             => ( P @ M4 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_896_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_897_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R2 @ X3 @ X3 )
       => ( ! [X3: nat,Y3: nat,Z2: nat] :
              ( ( R2 @ X3 @ Y3 )
             => ( ( R2 @ Y3 @ Z2 )
               => ( R2 @ X3 @ Z2 ) ) )
         => ( ! [N3: nat] : ( R2 @ N3 @ ( suc @ N3 ) )
           => ( R2 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_898_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_899_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_900_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_901_less__supI1,axiom,
    ! [X2: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ X2 @ A )
     => ( ord_less_nat @ X2 @ ( sup_sup_nat @ A @ B ) ) ) ).

% less_supI1
thf(fact_902_less__supI2,axiom,
    ! [X2: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ X2 @ B )
     => ( ord_less_nat @ X2 @ ( sup_sup_nat @ A @ B ) ) ) ).

% less_supI2
thf(fact_903_sup_Oabsorb3,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( sup_sup_nat @ A @ B )
        = A ) ) ).

% sup.absorb3
thf(fact_904_sup_Oabsorb4,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( sup_sup_nat @ A @ B )
        = B ) ) ).

% sup.absorb4
thf(fact_905_sup_Ostrict__boundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ ( sup_sup_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_nat @ B @ A )
         => ~ ( ord_less_nat @ C @ A ) ) ) ).

% sup.strict_boundedE
thf(fact_906_sup_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( A3
            = ( sup_sup_nat @ A3 @ B3 ) )
          & ( A3 != B3 ) ) ) ) ).

% sup.strict_order_iff
thf(fact_907_sup_Ostrict__coboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ C @ A )
     => ( ord_less_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.strict_coboundedI1
thf(fact_908_sup_Ostrict__coboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ C @ B )
     => ( ord_less_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.strict_coboundedI2
thf(fact_909_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M2 @ N4 )
          & ( M2 != N4 ) ) ) ) ).

% nat_less_le
thf(fact_910_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_911_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N4: nat] :
          ( ( ord_less_nat @ M2 @ N4 )
          | ( M2 = N4 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_912_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_913_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_914_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J3: nat] :
          ( ( ord_less_nat @ I3 @ J3 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J3 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_915_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_916_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_917_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_918_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_919_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_920_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_921_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_922_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_923_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_924_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_925_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ N3 )
                 => ( P @ ( suc @ N3 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_926_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ ( suc @ N3 ) )
                 => ( P @ N3 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_927_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_928_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_929_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_930_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_931_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_932_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K3: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_933_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N4: nat] :
        ? [K2: nat] :
          ( N4
          = ( suc @ ( plus_plus_nat @ M2 @ K2 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_934_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_935_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_936_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q2: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q2 ) ) ) ) ).

% less_natE
thf(fact_937_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ N @ N5 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_938_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M: nat] :
      ( ! [N3: nat] : ( ord_less_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_939_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J3: nat] :
              ( ( ord_less_nat @ I @ J3 )
             => ( K
               != ( suc @ J3 ) ) ) ) ) ).

% Nat.lessE
thf(fact_940_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_941_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J3: nat] :
            ( ( ord_less_nat @ I @ J3 )
           => ( K
             != ( suc @ J3 ) ) ) ) ).

% Suc_lessE
thf(fact_942_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_943_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_944_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_945_Suc__inject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
     => ( X2 = Y2 ) ) ).

% Suc_inject
thf(fact_946_Ex__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
            & ( P @ I4 ) ) )
      = ( ( P @ N )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
            & ( P @ I4 ) ) ) ) ).

% Ex_less_Suc
thf(fact_947_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_948_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_949_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_950_Nat_OAll__less__Suc,axiom,
    ! [N: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N ) )
           => ( P @ I4 ) ) )
      = ( ( P @ N )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N )
           => ( P @ I4 ) ) ) ) ).

% Nat.All_less_Suc
thf(fact_951_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M6: nat] :
            ( ( M
              = ( suc @ M6 ) )
            & ( ord_less_nat @ N @ M6 ) ) ) ) ).

% Suc_less_eq2
thf(fact_952_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_953_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_954_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_955_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J3: nat,K3: nat] :
              ( ( ord_less_nat @ I3 @ J3 )
             => ( ( ord_less_nat @ J3 @ K3 )
               => ( ( P @ I3 @ J3 )
                 => ( ( P @ J3 @ K3 )
                   => ( P @ I3 @ K3 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_956_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_957_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_958_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_959_gt__ex,axiom,
    ! [X2: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X2 @ X_1 ) ).

% gt_ex
thf(fact_960_less__imp__neq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% less_imp_neq
thf(fact_961_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_962_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_963_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_964_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X3: nat] :
          ( ! [Y5: nat] :
              ( ( ord_less_nat @ Y5 @ X3 )
             => ( P @ Y5 ) )
         => ( P @ X3 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_965_antisym__conv3,axiom,
    ! [Y2: nat,X2: nat] :
      ( ~ ( ord_less_nat @ Y2 @ X2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
        = ( X2 = Y2 ) ) ) ).

% antisym_conv3
thf(fact_966_linorder__cases,axiom,
    ! [X2: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y2 )
     => ( ( X2 != Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_cases
thf(fact_967_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_968_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_969_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X5: nat] : ( P2 @ X5 ) )
    = ( ^ [P3: nat > $o] :
        ? [N4: nat] :
          ( ( P3 @ N4 )
          & ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N4 )
             => ~ ( P3 @ M2 ) ) ) ) ) ).

% exists_least_iff
thf(fact_970_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B5: nat] :
          ( ( ord_less_nat @ A5 @ B5 )
         => ( P @ A5 @ B5 ) )
     => ( ! [A5: nat] : ( P @ A5 @ A5 )
       => ( ! [A5: nat,B5: nat] :
              ( ( P @ B5 @ A5 )
             => ( P @ A5 @ B5 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_971_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_972_not__less__iff__gr__or__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y2 ) )
      = ( ( ord_less_nat @ Y2 @ X2 )
        | ( X2 = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_973_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_974_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_975_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_976_linorder__neqE,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE
thf(fact_977_order__less__asym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_asym
thf(fact_978_linorder__neq__iff,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
      = ( ( ord_less_nat @ X2 @ Y2 )
        | ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_979_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_980_order__less__trans,axiom,
    ! [X2: nat,Y2: nat,Z: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_981_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_982_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_983_order__less__irrefl,axiom,
    ! [X2: nat] :
      ~ ( ord_less_nat @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_984_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_985_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_986_order__less__not__sym,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_not_sym
thf(fact_987_order__less__imp__triv,axiom,
    ! [X2: nat,Y2: nat,P: $o] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( ( ord_less_nat @ Y2 @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_988_linorder__less__linear,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
      | ( X2 = Y2 )
      | ( ord_less_nat @ Y2 @ X2 ) ) ).

% linorder_less_linear
thf(fact_989_order__less__imp__not__eq,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( X2 != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_990_order__less__imp__not__eq2,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ( Y2 != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_991_order__less__imp__not__less,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ord_less_nat @ X2 @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_992_less__vec__def,axiom,
    ( ord_less_vec_a
    = ( ^ [V4: vec_a,W4: vec_a] :
          ( ( ord_less_eq_vec_a @ V4 @ W4 )
          & ~ ( ord_less_eq_vec_a @ W4 @ V4 ) ) ) ) ).

% less_vec_def
thf(fact_993_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_994_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_995_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_996_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_997_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_998_not__le__real,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ~ ( ord_less_eq_nat @ B @ A ) )
          = ( ord_less_nat @ A @ B ) ) ) ) ).

% not_le_real
thf(fact_999_not__le__real,axiom,
    ! [A: a,B: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ~ ( ord_less_eq_a @ B @ A ) )
          = ( ord_less_a @ A @ B ) ) ) ) ).

% not_le_real
thf(fact_1000_not__less__real,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ~ ( ord_less_nat @ B @ A ) )
          = ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% not_less_real
thf(fact_1001_not__less__real,axiom,
    ! [A: a,B: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ~ ( ord_less_a @ B @ A ) )
          = ( ord_less_eq_a @ A @ B ) ) ) ) ).

% not_less_real
thf(fact_1002_nonneg__linorder__cases,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ~ ( ord_less_nat @ A @ B )
         => ( ( A != B )
           => ( ord_less_nat @ B @ A ) ) ) ) ) ).

% nonneg_linorder_cases
thf(fact_1003_nonneg__linorder__cases,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ~ ( ord_less_a @ A @ B )
         => ( ( A != B )
           => ( ord_less_a @ B @ A ) ) ) ) ) ).

% nonneg_linorder_cases
thf(fact_1004_nonpos__linorder__cases,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ~ ( ord_less_nat @ A @ B )
         => ( ( A != B )
           => ( ord_less_nat @ B @ A ) ) ) ) ) ).

% nonpos_linorder_cases
thf(fact_1005_nonpos__linorder__cases,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ~ ( ord_less_a @ A @ B )
         => ( ( A != B )
           => ( ord_less_a @ B @ A ) ) ) ) ) ).

% nonpos_linorder_cases
thf(fact_1006_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_1007_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_1008_zero__less__one__class_Ozero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_less_one
thf(fact_1009_real__add__less__cancel__right__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
          = ( ord_less_nat @ A @ B ) ) ) ) ).

% real_add_less_cancel_right_pos
thf(fact_1010_real__add__less__cancel__left__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
          = ( ord_less_nat @ A @ B ) ) ) ) ).

% real_add_less_cancel_left_pos
thf(fact_1011_add__pos__neg__is__real,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat )
          | ( ( plus_plus_nat @ A @ B )
            = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ) ).

% add_pos_neg_is_real
thf(fact_1012_add__neg__pos__is__real,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat )
          | ( ( plus_plus_nat @ A @ B )
            = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ) ).

% add_neg_pos_is_real
thf(fact_1013_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_1014_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_1015_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C3 ) )
           => ( C3 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_1016_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_1017_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1018_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( ord_less_eq_a @ I @ J )
        & ( ord_less_a @ K @ L ) )
     => ( ord_less_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1019_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1020_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: a,J: a,K: a,L: a] :
      ( ( ( ord_less_a @ I @ J )
        & ( ord_less_eq_a @ K @ L ) )
     => ( ord_less_a @ ( plus_plus_a @ I @ K ) @ ( plus_plus_a @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1021_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_le_less_mono
thf(fact_1022_add__le__less__mono,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_a @ C @ D2 )
       => ( ord_less_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ D2 ) ) ) ) ).

% add_le_less_mono
thf(fact_1023_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_less_le_mono
thf(fact_1024_add__less__le__mono,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D2 )
       => ( ord_less_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ D2 ) ) ) ) ).

% add_less_le_mono
thf(fact_1025_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1026_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_1027_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_1028_lift__Suc__mono__le,axiom,
    ! [F: nat > vec_a,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_vec_a @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_vec_a @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1029_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1030_lift__Suc__mono__le,axiom,
    ! [F: nat > a,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_a @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_a @ ( F @ N ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1031_lift__Suc__antimono__le,axiom,
    ! [F: nat > vec_a,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_vec_a @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_vec_a @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1032_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_nat @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1033_lift__Suc__antimono__le,axiom,
    ! [F: nat > a,N: nat,N5: nat] :
      ( ! [N3: nat] : ( ord_less_eq_a @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
     => ( ( ord_less_eq_nat @ N @ N5 )
       => ( ord_less_eq_a @ ( F @ N5 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1034_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1035_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1036_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1037_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1038_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1039_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1040_ex__least__nat__le,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ N )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K3 )
               => ~ ( P @ I2 ) )
            & ( P @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1041_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_1042_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K3: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K3 )
          & ( ( plus_plus_nat @ I @ K3 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_1043_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_1044_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M3: nat,N3: nat] :
          ( ( ord_less_nat @ M3 @ N3 )
         => ( ord_less_nat @ ( F @ M3 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1045_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_1046_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_1047_real__mult__le__cancel__left__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_nat @ zero_zero_nat @ C )
         => ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% real_mult_le_cancel_left_pos
thf(fact_1048_real__mult__le__cancel__left__pos,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ord_less_a @ zero_zero_a @ C )
         => ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
            = ( ord_less_eq_a @ A @ B ) ) ) ) ) ).

% real_mult_le_cancel_left_pos
thf(fact_1049_real__mult__le__cancel__right__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_nat @ zero_zero_nat @ C )
         => ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
            = ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).

% real_mult_le_cancel_right_pos
thf(fact_1050_real__mult__le__cancel__right__pos,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ord_less_a @ zero_zero_a @ C )
         => ( ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) )
            = ( ord_less_eq_a @ A @ B ) ) ) ) ) ).

% real_mult_le_cancel_right_pos
thf(fact_1051_mult__le__cancel__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ A @ B ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ B @ A ) ) ) ) ).

% mult_le_cancel_left
thf(fact_1052_mult__le__cancel__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ A @ B ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ B @ A ) ) ) ) ).

% mult_le_cancel_right
thf(fact_1053_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_1054_mult__left__less__imp__less,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
     => ( ( ord_less_eq_a @ zero_zero_a @ C )
       => ( ord_less_a @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_1055_linordered__semiring__strict__class_Omult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_mono
thf(fact_1056_linordered__semiring__strict__class_Omult__strict__mono,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_a @ C @ D2 )
       => ( ( ord_less_a @ zero_zero_a @ B )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D2 ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_mono
thf(fact_1057_mult__less__cancel__left,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ A @ B ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ B @ A ) ) ) ) ).

% mult_less_cancel_left
thf(fact_1058_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_1059_mult__right__less__imp__less,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) )
     => ( ( ord_less_eq_a @ zero_zero_a @ C )
       => ( ord_less_a @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_1060_linordered__semiring__strict__class_Omult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_mono'
thf(fact_1061_linordered__semiring__strict__class_Omult__strict__mono_H,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_a @ C @ D2 )
       => ( ( ord_less_eq_a @ zero_zero_a @ A )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D2 ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_strict_mono'
thf(fact_1062_mult__less__cancel__right,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ A @ B ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ B @ A ) ) ) ) ).

% mult_less_cancel_right
thf(fact_1063_mult__le__cancel__left__neg,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_a @ C @ zero_zero_a )
     => ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
        = ( ord_less_eq_a @ B @ A ) ) ) ).

% mult_le_cancel_left_neg
thf(fact_1064_mult__le__cancel__left__pos,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_a @ zero_zero_a @ C )
     => ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
        = ( ord_less_eq_a @ A @ B ) ) ) ).

% mult_le_cancel_left_pos
thf(fact_1065_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_1066_mult__left__le__imp__le,axiom,
    ! [C: a,A: a,B: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ ( times_times_a @ C @ B ) )
     => ( ( ord_less_a @ zero_zero_a @ C )
       => ( ord_less_eq_a @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_1067_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_1068_mult__right__le__imp__le,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ C ) )
     => ( ( ord_less_a @ zero_zero_a @ C )
       => ( ord_less_eq_a @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_1069_linordered__semiring__strict__class_Omult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_le_less_imp_less
thf(fact_1070_linordered__semiring__strict__class_Omult__le__less__imp__less,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_a @ C @ D2 )
       => ( ( ord_less_a @ zero_zero_a @ A )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D2 ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_le_less_imp_less
thf(fact_1071_linordered__semiring__strict__class_Omult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_less_le_imp_less
thf(fact_1072_linordered__semiring__strict__class_Omult__less__le__imp__less,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D2 )
       => ( ( ord_less_eq_a @ zero_zero_a @ A )
         => ( ( ord_less_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D2 ) ) ) ) ) ) ).

% linordered_semiring_strict_class.mult_less_le_imp_less
thf(fact_1073_square__less__square,axiom,
    ! [X2: a,Y2: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ X2 )
     => ( ( ord_less_eq_a @ zero_zero_a @ Y2 )
       => ( ( ord_less_a @ ( times_times_a @ X2 @ X2 ) @ ( times_times_a @ Y2 @ Y2 ) )
          = ( ord_less_a @ X2 @ Y2 ) ) ) ) ).

% square_less_square
thf(fact_1074_real__add__le__cancel__left__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% real_add_le_cancel_left_pos
thf(fact_1075_real__add__le__cancel__left__pos,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ord_less_eq_a @ ( plus_plus_a @ C @ A ) @ ( plus_plus_a @ C @ B ) )
          = ( ord_less_eq_a @ A @ B ) ) ) ) ).

% real_add_le_cancel_left_pos
thf(fact_1076_real__add__le__cancel__right__pos,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( ord_less_nat @ A @ zero_zero_nat )
        | ( A = zero_zero_nat )
        | ( ord_less_nat @ zero_zero_nat @ A ) )
     => ( ( ( ord_less_nat @ B @ zero_zero_nat )
          | ( B = zero_zero_nat )
          | ( ord_less_nat @ zero_zero_nat @ B ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
          = ( ord_less_eq_nat @ A @ B ) ) ) ) ).

% real_add_le_cancel_right_pos
thf(fact_1077_real__add__le__cancel__right__pos,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ( ord_less_a @ A @ zero_zero_a )
        | ( A = zero_zero_a )
        | ( ord_less_a @ zero_zero_a @ A ) )
     => ( ( ( ord_less_a @ B @ zero_zero_a )
          | ( B = zero_zero_a )
          | ( ord_less_a @ zero_zero_a @ B ) )
       => ( ( ord_less_eq_a @ ( plus_plus_a @ A @ C ) @ ( plus_plus_a @ B @ C ) )
          = ( ord_less_eq_a @ A @ B ) ) ) ) ).

% real_add_le_cancel_right_pos
thf(fact_1078_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_1079_add__neg__nonpos,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ A @ zero_zero_a )
     => ( ( ord_less_eq_a @ B @ zero_zero_a )
       => ( ord_less_a @ ( plus_plus_a @ A @ B ) @ zero_zero_a ) ) ) ).

% add_neg_nonpos
thf(fact_1080_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_1081_add__nonneg__pos,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_a @ zero_zero_a @ B )
       => ( ord_less_a @ zero_zero_a @ ( plus_plus_a @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_1082_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_1083_add__nonpos__neg,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ A @ zero_zero_a )
     => ( ( ord_less_a @ B @ zero_zero_a )
       => ( ord_less_a @ ( plus_plus_a @ A @ B ) @ zero_zero_a ) ) ) ).

% add_nonpos_neg
thf(fact_1084_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_1085_add__pos__nonneg,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ zero_zero_a @ B )
       => ( ord_less_a @ zero_zero_a @ ( plus_plus_a @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_1086_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_1087_add__strict__increasing,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_a @ zero_zero_a @ A )
     => ( ( ord_less_eq_a @ B @ C )
       => ( ord_less_a @ B @ ( plus_plus_a @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_1088_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_1089_add__strict__increasing2,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ A )
     => ( ( ord_less_a @ B @ C )
       => ( ord_less_a @ B @ ( plus_plus_a @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_1090_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_1091_nat__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ K )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% nat_mult_le_cancel1
thf(fact_1092_zero__vec__Suc,axiom,
    ! [N: nat] :
      ( ( zero_vec_a @ ( suc @ N ) )
      = ( vCons_a @ zero_zero_a @ ( zero_vec_a @ N ) ) ) ).

% zero_vec_Suc
thf(fact_1093_zero__vec__Suc,axiom,
    ! [N: nat] :
      ( ( zero_vec_nat @ ( suc @ N ) )
      = ( vCons_nat @ zero_zero_nat @ ( zero_vec_nat @ N ) ) ) ).

% zero_vec_Suc
thf(fact_1094_mult__less__cancel__right2,axiom,
    ! [A: a,C: a] :
      ( ( ord_less_a @ ( times_times_a @ A @ C ) @ C )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ A @ one_one_a ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ one_one_a @ A ) ) ) ) ).

% mult_less_cancel_right2
thf(fact_1095_mult__less__cancel__right1,axiom,
    ! [C: a,B: a] :
      ( ( ord_less_a @ C @ ( times_times_a @ B @ C ) )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ one_one_a @ B ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ B @ one_one_a ) ) ) ) ).

% mult_less_cancel_right1
thf(fact_1096_mult__less__cancel__left2,axiom,
    ! [C: a,A: a] :
      ( ( ord_less_a @ ( times_times_a @ C @ A ) @ C )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ A @ one_one_a ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ one_one_a @ A ) ) ) ) ).

% mult_less_cancel_left2
thf(fact_1097_mult__less__cancel__left1,axiom,
    ! [C: a,B: a] :
      ( ( ord_less_a @ C @ ( times_times_a @ C @ B ) )
      = ( ( ( ord_less_eq_a @ zero_zero_a @ C )
         => ( ord_less_a @ one_one_a @ B ) )
        & ( ( ord_less_eq_a @ C @ zero_zero_a )
         => ( ord_less_a @ B @ one_one_a ) ) ) ) ).

% mult_less_cancel_left1
thf(fact_1098_mult__le__cancel__right2,axiom,
    ! [A: a,C: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ A @ C ) @ C )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ A @ one_one_a ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ one_one_a @ A ) ) ) ) ).

% mult_le_cancel_right2
thf(fact_1099_mult__le__cancel__right1,axiom,
    ! [C: a,B: a] :
      ( ( ord_less_eq_a @ C @ ( times_times_a @ B @ C ) )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ one_one_a @ B ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ B @ one_one_a ) ) ) ) ).

% mult_le_cancel_right1
thf(fact_1100_mult__le__cancel__left2,axiom,
    ! [C: a,A: a] :
      ( ( ord_less_eq_a @ ( times_times_a @ C @ A ) @ C )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ A @ one_one_a ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ one_one_a @ A ) ) ) ) ).

% mult_le_cancel_left2
thf(fact_1101_mult__le__cancel__left1,axiom,
    ! [C: a,B: a] :
      ( ( ord_less_eq_a @ C @ ( times_times_a @ C @ B ) )
      = ( ( ( ord_less_a @ zero_zero_a @ C )
         => ( ord_less_eq_a @ one_one_a @ B ) )
        & ( ( ord_less_a @ C @ zero_zero_a )
         => ( ord_less_eq_a @ B @ one_one_a ) ) ) ) ).

% mult_le_cancel_left1
thf(fact_1102_convex__bound__lt,axiom,
    ! [X2: a,A: a,Y2: a,U: a,V: a] :
      ( ( ord_less_a @ X2 @ A )
     => ( ( ord_less_a @ Y2 @ A )
       => ( ( ord_less_eq_a @ zero_zero_a @ U )
         => ( ( ord_less_eq_a @ zero_zero_a @ V )
           => ( ( ( plus_plus_a @ U @ V )
                = one_one_a )
             => ( ord_less_a @ ( plus_plus_a @ ( times_times_a @ U @ X2 ) @ ( times_times_a @ V @ Y2 ) ) @ A ) ) ) ) ) ) ).

% convex_bound_lt
thf(fact_1103_field__le__mult__one__interval,axiom,
    ! [X2: a,Y2: a] :
      ( ! [Z2: a] :
          ( ( ord_less_a @ zero_zero_a @ Z2 )
         => ( ( ord_less_a @ Z2 @ one_one_a )
           => ( ord_less_eq_a @ ( times_times_a @ Z2 @ X2 ) @ Y2 ) ) )
     => ( ord_less_eq_a @ X2 @ Y2 ) ) ).

% field_le_mult_one_interval
thf(fact_1104_less__1__mult_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ one_one_nat @ A )
     => ( ( ord_less_eq_nat @ one_one_nat @ B )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% less_1_mult'
thf(fact_1105_less__1__mult_H,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_a @ one_one_a @ A )
     => ( ( ord_less_eq_a @ one_one_a @ B )
       => ( ord_less_a @ one_one_a @ ( times_times_a @ A @ B ) ) ) ) ).

% less_1_mult'
thf(fact_1106_field__le__epsilon,axiom,
    ! [X2: a,Y2: a] :
      ( ! [E2: a] :
          ( ( ord_less_a @ zero_zero_a @ E2 )
         => ( ord_less_eq_a @ X2 @ ( plus_plus_a @ Y2 @ E2 ) ) )
     => ( ord_less_eq_a @ X2 @ Y2 ) ) ).

% field_le_epsilon
thf(fact_1107_ordered__semiring__strict__class_Omult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_strict_mono
thf(fact_1108_ordered__semiring__strict__class_Omult__strict__mono,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_a @ C @ D2 )
       => ( ( ord_less_a @ zero_zero_a @ B )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D2 ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_strict_mono
thf(fact_1109_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_1110_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_1111_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_1112_less__not__refl3,axiom,
    ! [S: nat,T2: nat] :
      ( ( ord_less_nat @ S @ T2 )
     => ( S != T2 ) ) ).

% less_not_refl3
thf(fact_1113_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_1114_nat__less__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_nat @ M4 @ N3 )
             => ( P @ M4 ) )
         => ( P @ N3 ) )
     => ( P @ N ) ) ).

% nat_less_induct
thf(fact_1115_infinite__descent,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M4: nat] :
              ( ( ord_less_nat @ M4 @ N3 )
              & ~ ( P @ M4 ) ) )
     => ( P @ N ) ) ).

% infinite_descent
thf(fact_1116_linorder__neqE__nat,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( X2 != Y2 )
     => ( ~ ( ord_less_nat @ X2 @ Y2 )
       => ( ord_less_nat @ Y2 @ X2 ) ) ) ).

% linorder_neqE_nat
thf(fact_1117_psubsetD,axiom,
    ! [A2: set_vec_a,B2: set_vec_a,C: vec_a] :
      ( ( ord_less_set_vec_a @ A2 @ B2 )
     => ( ( member_vec_a @ C @ A2 )
       => ( member_vec_a @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1118_psubsetD,axiom,
    ! [A2: set_mat_a,B2: set_mat_a,C: mat_a] :
      ( ( ord_less_set_mat_a @ A2 @ B2 )
     => ( ( member_mat_a @ C @ A2 )
       => ( member_mat_a @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_1119_ordered__semiring__strict__class_Omult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_less_le_imp_less
thf(fact_1120_ordered__semiring__strict__class_Omult__less__le__imp__less,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_eq_a @ C @ D2 )
       => ( ( ord_less_eq_a @ zero_zero_a @ A )
         => ( ( ord_less_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D2 ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_less_le_imp_less
thf(fact_1121_ordered__semiring__strict__class_Omult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_le_less_imp_less
thf(fact_1122_ordered__semiring__strict__class_Omult__le__less__imp__less,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_a @ C @ D2 )
       => ( ( ord_less_a @ zero_zero_a @ A )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D2 ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_le_less_imp_less
thf(fact_1123_ordered__semiring__strict__class_Omult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_strict_mono'
thf(fact_1124_ordered__semiring__strict__class_Omult__strict__mono_H,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ord_less_a @ A @ B )
     => ( ( ord_less_a @ C @ D2 )
       => ( ( ord_less_eq_a @ zero_zero_a @ A )
         => ( ( ord_less_eq_a @ zero_zero_a @ C )
           => ( ord_less_a @ ( times_times_a @ A @ C ) @ ( times_times_a @ B @ D2 ) ) ) ) ) ) ).

% ordered_semiring_strict_class.mult_strict_mono'
thf(fact_1125_mult__le__cancel__iff2,axiom,
    ! [Z: a,X2: a,Y2: a] :
      ( ( ord_less_a @ zero_zero_a @ Z )
     => ( ( ord_less_eq_a @ ( times_times_a @ Z @ X2 ) @ ( times_times_a @ Z @ Y2 ) )
        = ( ord_less_eq_a @ X2 @ Y2 ) ) ) ).

% mult_le_cancel_iff2
thf(fact_1126_mult__le__cancel__iff1,axiom,
    ! [Z: a,X2: a,Y2: a] :
      ( ( ord_less_a @ zero_zero_a @ Z )
     => ( ( ord_less_eq_a @ ( times_times_a @ X2 @ Z ) @ ( times_times_a @ Y2 @ Z ) )
        = ( ord_less_eq_a @ X2 @ Y2 ) ) ) ).

% mult_le_cancel_iff1
thf(fact_1127_bounded__Max__nat,axiom,
    ! [P: nat > $o,X2: nat,M7: nat] :
      ( ( P @ X2 )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M7 ) )
       => ~ ! [M3: nat] :
              ( ( P @ M3 )
             => ~ ! [X4: nat] :
                    ( ( P @ X4 )
                   => ( ord_less_eq_nat @ X4 @ M3 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_1128_for__all__Suc,axiom,
    ! [P: nat > $o,I: nat] :
      ( ( P @ I )
     => ( ( ! [J2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ I ) @ J2 )
             => ( P @ J2 ) ) )
        = ( ! [J2: nat] :
              ( ( ord_less_eq_nat @ I @ J2 )
             => ( P @ J2 ) ) ) ) ) ).

% for_all_Suc
thf(fact_1129_inf__pigeonhole__principle,axiom,
    ! [N: nat,F: nat > nat > $o] :
      ( ! [K3: nat] :
        ? [I2: nat] :
          ( ( ord_less_nat @ I2 @ N )
          & ( F @ K3 @ I2 ) )
     => ? [I3: nat] :
          ( ( ord_less_nat @ I3 @ N )
          & ! [K4: nat] :
            ? [K5: nat] :
              ( ( ord_less_eq_nat @ K4 @ K5 )
              & ( F @ K5 @ I3 ) ) ) ) ).

% inf_pigeonhole_principle
thf(fact_1130_nat__descend__induct,axiom,
    ! [N: nat,P: nat > $o,M: nat] :
      ( ! [K3: nat] :
          ( ( ord_less_nat @ N @ K3 )
         => ( P @ K3 ) )
     => ( ! [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
           => ( ! [I2: nat] :
                  ( ( ord_less_nat @ K3 @ I2 )
                 => ( P @ I2 ) )
             => ( P @ K3 ) ) )
       => ( P @ M ) ) ) ).

% nat_descend_induct
thf(fact_1131__092_060open_062dim__vec_A_I0_092_060_094sub_062v_A_Inr_A_L_A1_A_L_A_Inc_A_L_Anc_J_A_L_Anr_J_J_A_061_Adim__vec_Aulv_A_092_060and_062_A_I_092_060forall_062i_060dim__vec_Aulv_O_A0_092_060_094sub_062v_A_Inr_A_L_A1_A_L_A_Inc_A_L_Anc_J_A_L_Anr_J_A_E_Ai_A_092_060le_062_Aulv_A_E_Ai_J_092_060close_062,axiom,
    ( ( ( dim_vec_a @ ( zero_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) ) )
      = ( dim_vec_a @ ulv ) )
    & ! [I2: nat] :
        ( ( ord_less_nat @ I2 @ ( dim_vec_a @ ulv ) )
       => ( ord_less_eq_a @ ( vec_index_a @ ( zero_vec_a @ ( plus_plus_nat @ ( plus_plus_nat @ ( plus_plus_nat @ nr @ one_one_nat ) @ ( plus_plus_nat @ nc @ nc ) ) @ nr ) ) @ I2 ) @ ( vec_index_a @ ulv @ I2 ) ) ) ) ).

% \<open>dim_vec (0\<^sub>v (nr + 1 + (nc + nc) + nr)) = dim_vec ulv \<and> (\<forall>i<dim_vec ulv. 0\<^sub>v (nr + 1 + (nc + nc) + nr) $ i \<le> ulv $ i)\<close>
thf(fact_1132_carrier__vecD,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( dim_vec_a @ V )
        = N ) ) ).

% carrier_vecD
thf(fact_1133_index__zero__vec_I2_J,axiom,
    ! [N: nat] :
      ( ( dim_vec_a @ ( zero_vec_a @ N ) )
      = N ) ).

% index_zero_vec(2)
thf(fact_1134_index__add__vec_I2_J,axiom,
    ! [V_1: vec_a,V_2: vec_a] :
      ( ( dim_vec_a @ ( plus_plus_vec_a @ V_1 @ V_2 ) )
      = ( dim_vec_a @ V_2 ) ) ).

% index_add_vec(2)
thf(fact_1135_index__uminus__vec_I2_J,axiom,
    ! [V: vec_a] :
      ( ( dim_vec_a @ ( uminus_uminus_vec_a @ V ) )
      = ( dim_vec_a @ V ) ) ).

% index_uminus_vec(2)
thf(fact_1136_dim__vec__first,axiom,
    ! [V: vec_a,N: nat] :
      ( ( dim_vec_a @ ( vec_first_a @ V @ N ) )
      = N ) ).

% dim_vec_first
thf(fact_1137_dim__vec__last,axiom,
    ! [V: vec_a,N: nat] :
      ( ( dim_vec_a @ ( vec_last_a @ V @ N ) )
      = N ) ).

% dim_vec_last
thf(fact_1138_vec__of__dim__0,axiom,
    ! [V: vec_a] :
      ( ( ( dim_vec_a @ V )
        = zero_zero_nat )
      = ( V
        = ( zero_vec_a @ zero_zero_nat ) ) ) ).

% vec_of_dim_0
thf(fact_1139_eq__vecI,axiom,
    ! [W: vec_a,V: vec_a] :
      ( ! [I3: nat] :
          ( ( ord_less_nat @ I3 @ ( dim_vec_a @ W ) )
         => ( ( vec_index_a @ V @ I3 )
            = ( vec_index_a @ W @ I3 ) ) )
     => ( ( ( dim_vec_a @ V )
          = ( dim_vec_a @ W ) )
       => ( V = W ) ) ) ).

% eq_vecI
thf(fact_1140_index__append__vec_I2_J,axiom,
    ! [V: vec_a,W: vec_a] :
      ( ( dim_vec_a @ ( append_vec_a @ V @ W ) )
      = ( plus_plus_nat @ ( dim_vec_a @ V ) @ ( dim_vec_a @ W ) ) ) ).

% index_append_vec(2)
thf(fact_1141_vec__index__vCons__0,axiom,
    ! [A: a,V: vec_a] :
      ( ( vec_index_a @ ( vCons_a @ A @ V ) @ zero_zero_nat )
      = A ) ).

% vec_index_vCons_0
thf(fact_1142_dim__vec__vCons,axiom,
    ! [A: a,V: vec_a] :
      ( ( dim_vec_a @ ( vCons_a @ A @ V ) )
      = ( suc @ ( dim_vec_a @ V ) ) ) ).

% dim_vec_vCons
thf(fact_1143_vec__index__vCons__Suc,axiom,
    ! [A: a,V: vec_a,N: nat] :
      ( ( vec_index_a @ ( vCons_a @ A @ V ) @ ( suc @ N ) )
      = ( vec_index_a @ V @ N ) ) ).

% vec_index_vCons_Suc
thf(fact_1144_index__zero__vec_I1_J,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_nat @ I @ N )
     => ( ( vec_index_a @ ( zero_vec_a @ N ) @ I )
        = zero_zero_a ) ) ).

% index_zero_vec(1)
thf(fact_1145_index__zero__vec_I1_J,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_nat @ I @ N )
     => ( ( vec_index_nat @ ( zero_vec_nat @ N ) @ I )
        = zero_zero_nat ) ) ).

% index_zero_vec(1)
thf(fact_1146_scalar__prod__uminus__right,axiom,
    ! [V: vec_a,W: vec_a] :
      ( ( ( dim_vec_a @ V )
        = ( dim_vec_a @ W ) )
     => ( ( scalar_prod_a @ V @ ( uminus_uminus_vec_a @ W ) )
        = ( uminus_uminus_a @ ( scalar_prod_a @ V @ W ) ) ) ) ).

% scalar_prod_uminus_right
thf(fact_1147_scalar__prod__uminus__left,axiom,
    ! [V: vec_a,W: vec_a] :
      ( ( ( dim_vec_a @ V )
        = ( dim_vec_a @ W ) )
     => ( ( scalar_prod_a @ ( uminus_uminus_vec_a @ V ) @ W )
        = ( uminus_uminus_a @ ( scalar_prod_a @ V @ W ) ) ) ) ).

% scalar_prod_uminus_left
thf(fact_1148_index__add__vec_I1_J,axiom,
    ! [I: nat,V_2: vec_a,V_1: vec_a] :
      ( ( ord_less_nat @ I @ ( dim_vec_a @ V_2 ) )
     => ( ( vec_index_a @ ( plus_plus_vec_a @ V_1 @ V_2 ) @ I )
        = ( plus_plus_a @ ( vec_index_a @ V_1 @ I ) @ ( vec_index_a @ V_2 @ I ) ) ) ) ).

% index_add_vec(1)
thf(fact_1149_index__add__vec_I1_J,axiom,
    ! [I: nat,V_2: vec_nat,V_1: vec_nat] :
      ( ( ord_less_nat @ I @ ( dim_vec_nat @ V_2 ) )
     => ( ( vec_index_nat @ ( plus_plus_vec_nat @ V_1 @ V_2 ) @ I )
        = ( plus_plus_nat @ ( vec_index_nat @ V_1 @ I ) @ ( vec_index_nat @ V_2 @ I ) ) ) ) ).

% index_add_vec(1)
thf(fact_1150_index__uminus__vec_I1_J,axiom,
    ! [I: nat,V: vec_vec_a] :
      ( ( ord_less_nat @ I @ ( dim_vec_vec_a @ V ) )
     => ( ( vec_index_vec_a @ ( uminus8262787361227035083_vec_a @ V ) @ I )
        = ( uminus_uminus_vec_a @ ( vec_index_vec_a @ V @ I ) ) ) ) ).

% index_uminus_vec(1)
thf(fact_1151_index__uminus__vec_I1_J,axiom,
    ! [I: nat,V: vec_mat_a] :
      ( ( ord_less_nat @ I @ ( dim_vec_mat_a @ V ) )
     => ( ( vec_index_mat_a @ ( uminus6789456888195538751_mat_a @ V ) @ I )
        = ( uminus_uminus_mat_a @ ( vec_index_mat_a @ V @ I ) ) ) ) ).

% index_uminus_vec(1)
thf(fact_1152_index__uminus__vec_I1_J,axiom,
    ! [I: nat,V: vec_a] :
      ( ( ord_less_nat @ I @ ( dim_vec_a @ V ) )
     => ( ( vec_index_a @ ( uminus_uminus_vec_a @ V ) @ I )
        = ( uminus_uminus_a @ ( vec_index_a @ V @ I ) ) ) ) ).

% index_uminus_vec(1)
thf(fact_1153_carrier__vec__dim__vec,axiom,
    ! [V: vec_a] : ( member_vec_a @ V @ ( carrier_vec_a @ ( dim_vec_a @ V ) ) ) ).

% carrier_vec_dim_vec
thf(fact_1154_carrier__dim__vec,axiom,
    ! [V: vec_a,N: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
      = ( ( dim_vec_a @ V )
        = N ) ) ).

% carrier_dim_vec
thf(fact_1155_carrier__vecI,axiom,
    ! [V: vec_a,N: nat] :
      ( ( ( dim_vec_a @ V )
        = N )
     => ( member_vec_a @ V @ ( carrier_vec_a @ N ) ) ) ).

% carrier_vecI
thf(fact_1156_vec__add__mono,axiom,
    ! [B: vec_a,D2: vec_a,A: vec_a,C: vec_a] :
      ( ( ( dim_vec_a @ B )
        = ( dim_vec_a @ D2 ) )
     => ( ( ord_less_eq_vec_a @ A @ B )
       => ( ( ord_less_eq_vec_a @ C @ D2 )
         => ( ord_less_eq_vec_a @ ( plus_plus_vec_a @ A @ C ) @ ( plus_plus_vec_a @ B @ D2 ) ) ) ) ) ).

% vec_add_mono
thf(fact_1157_vec__eq__iff,axiom,
    ( ( ^ [Y4: vec_a,Z3: vec_a] : ( Y4 = Z3 ) )
    = ( ^ [X: vec_a,Y: vec_a] :
          ( ( ( dim_vec_a @ X )
            = ( dim_vec_a @ Y ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( dim_vec_a @ Y ) )
             => ( ( vec_index_a @ X @ I4 )
                = ( vec_index_a @ Y @ I4 ) ) ) ) ) ) ).

% vec_eq_iff
thf(fact_1158_vec__setI,axiom,
    ! [V: vec_vec_a,I: nat,A: vec_a] :
      ( ( ( vec_index_vec_a @ V @ I )
        = A )
     => ( ( ord_less_nat @ I @ ( dim_vec_vec_a @ V ) )
       => ( member_vec_a @ A @ ( vec_set_vec_a @ V ) ) ) ) ).

% vec_setI
thf(fact_1159_vec__setI,axiom,
    ! [V: vec_mat_a,I: nat,A: mat_a] :
      ( ( ( vec_index_mat_a @ V @ I )
        = A )
     => ( ( ord_less_nat @ I @ ( dim_vec_mat_a @ V ) )
       => ( member_mat_a @ A @ ( vec_set_mat_a @ V ) ) ) ) ).

% vec_setI
thf(fact_1160_vec__setI,axiom,
    ! [V: vec_a,I: nat,A: a] :
      ( ( ( vec_index_a @ V @ I )
        = A )
     => ( ( ord_less_nat @ I @ ( dim_vec_a @ V ) )
       => ( member_a @ A @ ( vec_set_a @ V ) ) ) ) ).

% vec_setI
thf(fact_1161_vec__setE,axiom,
    ! [A: vec_a,V: vec_vec_a] :
      ( ( member_vec_a @ A @ ( vec_set_vec_a @ V ) )
     => ~ ! [I3: nat] :
            ( ( ( vec_index_vec_a @ V @ I3 )
              = A )
           => ~ ( ord_less_nat @ I3 @ ( dim_vec_vec_a @ V ) ) ) ) ).

% vec_setE
thf(fact_1162_vec__setE,axiom,
    ! [A: mat_a,V: vec_mat_a] :
      ( ( member_mat_a @ A @ ( vec_set_mat_a @ V ) )
     => ~ ! [I3: nat] :
            ( ( ( vec_index_mat_a @ V @ I3 )
              = A )
           => ~ ( ord_less_nat @ I3 @ ( dim_vec_mat_a @ V ) ) ) ) ).

% vec_setE
thf(fact_1163_vec__setE,axiom,
    ! [A: a,V: vec_a] :
      ( ( member_a @ A @ ( vec_set_a @ V ) )
     => ~ ! [I3: nat] :
            ( ( ( vec_index_a @ V @ I3 )
              = A )
           => ~ ( ord_less_nat @ I3 @ ( dim_vec_a @ V ) ) ) ) ).

% vec_setE
thf(fact_1164_less__eq__vec__def,axiom,
    ( ord_le4012615358376148468_vec_a
    = ( ^ [V4: vec_vec_a,W4: vec_vec_a] :
          ( ( ( dim_vec_vec_a @ V4 )
            = ( dim_vec_vec_a @ W4 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( dim_vec_vec_a @ W4 ) )
             => ( ord_less_eq_vec_a @ ( vec_index_vec_a @ V4 @ I4 ) @ ( vec_index_vec_a @ W4 @ I4 ) ) ) ) ) ) ).

% less_eq_vec_def
thf(fact_1165_less__eq__vec__def,axiom,
    ( ord_less_eq_vec_nat
    = ( ^ [V4: vec_nat,W4: vec_nat] :
          ( ( ( dim_vec_nat @ V4 )
            = ( dim_vec_nat @ W4 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( dim_vec_nat @ W4 ) )
             => ( ord_less_eq_nat @ ( vec_index_nat @ V4 @ I4 ) @ ( vec_index_nat @ W4 @ I4 ) ) ) ) ) ) ).

% less_eq_vec_def
thf(fact_1166_less__eq__vec__def,axiom,
    ( ord_less_eq_vec_a
    = ( ^ [V4: vec_a,W4: vec_a] :
          ( ( ( dim_vec_a @ V4 )
            = ( dim_vec_a @ W4 ) )
          & ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ ( dim_vec_a @ W4 ) )
             => ( ord_less_eq_a @ ( vec_index_a @ V4 @ I4 ) @ ( vec_index_a @ W4 @ I4 ) ) ) ) ) ) ).

% less_eq_vec_def
thf(fact_1167_vec__first__index,axiom,
    ! [N: nat,V: vec_a,I: nat] :
      ( ( ord_less_eq_nat @ N @ ( dim_vec_a @ V ) )
     => ( ( ord_less_nat @ I @ N )
       => ( ( vec_index_a @ ( vec_first_a @ V @ N ) @ I )
          = ( vec_index_a @ V @ I ) ) ) ) ).

% vec_first_index
thf(fact_1168_vec__first__add,axiom,
    ! [N: nat,X2: vec_a,Y2: vec_a] :
      ( ( ord_less_eq_nat @ N @ ( dim_vec_a @ X2 ) )
     => ( ( ord_less_eq_nat @ N @ ( dim_vec_a @ Y2 ) )
       => ( ( vec_first_a @ ( plus_plus_vec_a @ X2 @ Y2 ) @ N )
          = ( plus_plus_vec_a @ ( vec_first_a @ X2 @ N ) @ ( vec_first_a @ Y2 @ N ) ) ) ) ) ).

% vec_first_add
thf(fact_1169_mat__of__col__dim_I3_J,axiom,
    ! [V: vec_a] : ( member_mat_a @ ( missing_mat_of_col_a @ V ) @ ( carrier_mat_a @ ( dim_vec_a @ V ) @ one_one_nat ) ) ).

% mat_of_col_dim(3)
thf(fact_1170_lesseq__vecI,axiom,
    ! [V: vec_vec_a,N: nat,W: vec_vec_a] :
      ( ( member_vec_vec_a @ V @ ( carrier_vec_vec_a @ N ) )
     => ( ( member_vec_vec_a @ W @ ( carrier_vec_vec_a @ N ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ N )
             => ( ord_less_eq_vec_a @ ( vec_index_vec_a @ V @ I3 ) @ ( vec_index_vec_a @ W @ I3 ) ) )
         => ( ord_le4012615358376148468_vec_a @ V @ W ) ) ) ) ).

% lesseq_vecI
thf(fact_1171_lesseq__vecI,axiom,
    ! [V: vec_nat,N: nat,W: vec_nat] :
      ( ( member_vec_nat @ V @ ( carrier_vec_nat @ N ) )
     => ( ( member_vec_nat @ W @ ( carrier_vec_nat @ N ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ N )
             => ( ord_less_eq_nat @ ( vec_index_nat @ V @ I3 ) @ ( vec_index_nat @ W @ I3 ) ) )
         => ( ord_less_eq_vec_nat @ V @ W ) ) ) ) ).

% lesseq_vecI
thf(fact_1172_lesseq__vecI,axiom,
    ! [V: vec_a,N: nat,W: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ N ) )
     => ( ( member_vec_a @ W @ ( carrier_vec_a @ N ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ N )
             => ( ord_less_eq_a @ ( vec_index_a @ V @ I3 ) @ ( vec_index_a @ W @ I3 ) ) )
         => ( ord_less_eq_vec_a @ V @ W ) ) ) ) ).

% lesseq_vecI
thf(fact_1173_lesseq__vecD,axiom,
    ! [W: vec_vec_a,N: nat,V: vec_vec_a,I: nat] :
      ( ( member_vec_vec_a @ W @ ( carrier_vec_vec_a @ N ) )
     => ( ( ord_le4012615358376148468_vec_a @ V @ W )
       => ( ( ord_less_nat @ I @ N )
         => ( ord_less_eq_vec_a @ ( vec_index_vec_a @ V @ I ) @ ( vec_index_vec_a @ W @ I ) ) ) ) ) ).

% lesseq_vecD
thf(fact_1174_lesseq__vecD,axiom,
    ! [W: vec_nat,N: nat,V: vec_nat,I: nat] :
      ( ( member_vec_nat @ W @ ( carrier_vec_nat @ N ) )
     => ( ( ord_less_eq_vec_nat @ V @ W )
       => ( ( ord_less_nat @ I @ N )
         => ( ord_less_eq_nat @ ( vec_index_nat @ V @ I ) @ ( vec_index_nat @ W @ I ) ) ) ) ) ).

% lesseq_vecD
thf(fact_1175_lesseq__vecD,axiom,
    ! [W: vec_a,N: nat,V: vec_a,I: nat] :
      ( ( member_vec_a @ W @ ( carrier_vec_a @ N ) )
     => ( ( ord_less_eq_vec_a @ V @ W )
       => ( ( ord_less_nat @ I @ N )
         => ( ord_less_eq_a @ ( vec_index_a @ V @ I ) @ ( vec_index_a @ W @ I ) ) ) ) ) ).

% lesseq_vecD
thf(fact_1176_vec__last__index,axiom,
    ! [V: vec_a,N: nat,M: nat,I: nat] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ ( plus_plus_nat @ N @ M ) ) )
     => ( ( ord_less_nat @ I @ M )
       => ( ( vec_index_a @ ( vec_last_a @ V @ M ) @ I )
          = ( vec_index_a @ V @ ( plus_plus_nat @ N @ I ) ) ) ) ) ).

% vec_last_index
thf(fact_1177_index__update__vec1,axiom,
    ! [I: nat,V: vec_a,A: a] :
      ( ( ord_less_nat @ I @ ( dim_vec_a @ V ) )
     => ( ( vec_index_a @ ( update_vec_a @ V @ I @ A ) @ I )
        = A ) ) ).

% index_update_vec1
thf(fact_1178_index__component__mult,axiom,
    ! [I: nat,V: vec_a,W: vec_a] :
      ( ( ord_less_nat @ I @ ( dim_vec_a @ V ) )
     => ( ( ord_less_nat @ I @ ( dim_vec_a @ W ) )
       => ( ( vec_index_a @ ( component_mult_a @ V @ W ) @ I )
          = ( times_times_a @ ( vec_index_a @ V @ I ) @ ( vec_index_a @ W @ I ) ) ) ) ) ).

% index_component_mult
thf(fact_1179_index__component__mult,axiom,
    ! [I: nat,V: vec_nat,W: vec_nat] :
      ( ( ord_less_nat @ I @ ( dim_vec_nat @ V ) )
     => ( ( ord_less_nat @ I @ ( dim_vec_nat @ W ) )
       => ( ( vec_index_nat @ ( component_mult_nat @ V @ W ) @ I )
          = ( times_times_nat @ ( vec_index_nat @ V @ I ) @ ( vec_index_nat @ W @ I ) ) ) ) ) ).

% index_component_mult
thf(fact_1180_dim__update__vec,axiom,
    ! [V: vec_a,I: nat,A: a] :
      ( ( dim_vec_a @ ( update_vec_a @ V @ I @ A ) )
      = ( dim_vec_a @ V ) ) ).

% dim_update_vec
thf(fact_1181_index__update__vec2,axiom,
    ! [I5: nat,I: nat,V: vec_a,A: a] :
      ( ( I5 != I )
     => ( ( vec_index_a @ ( update_vec_a @ V @ I @ A ) @ I5 )
        = ( vec_index_a @ V @ I5 ) ) ) ).

% index_update_vec2
thf(fact_1182_vec__of__scal__dim__1,axiom,
    ! [V: vec_a] :
      ( ( member_vec_a @ V @ ( carrier_vec_a @ one_one_nat ) )
      = ( V
        = ( missin5951511974119752530scal_a @ ( vec_index_a @ V @ zero_zero_nat ) ) ) ) ).

% vec_of_scal_dim_1
thf(fact_1183_vec__of__scal__dim_I1_J,axiom,
    ! [X2: a] :
      ( ( dim_vec_a @ ( missin5951511974119752530scal_a @ X2 ) )
      = one_one_nat ) ).

% vec_of_scal_dim(1)
thf(fact_1184_index__vec__of__scal,axiom,
    ! [X2: a] :
      ( ( vec_index_a @ ( missin5951511974119752530scal_a @ X2 ) @ zero_zero_nat )
      = X2 ) ).

% index_vec_of_scal
thf(fact_1185_vec__of__scal__dim_I2_J,axiom,
    ! [X2: a] : ( member_vec_a @ ( missin5951511974119752530scal_a @ X2 ) @ ( carrier_vec_a @ one_one_nat ) ) ).

% vec_of_scal_dim(2)
thf(fact_1186_row__mat__of__col,axiom,
    ! [I: nat,V: vec_a] :
      ( ( ord_less_nat @ I @ ( dim_vec_a @ V ) )
     => ( ( row_a @ ( missing_mat_of_col_a @ V ) @ I )
        = ( missin5951511974119752530scal_a @ ( vec_index_a @ V @ I ) ) ) ) ).

% row_mat_of_col
thf(fact_1187_index__append__vec_I1_J,axiom,
    ! [I: nat,V: vec_a,W: vec_a] :
      ( ( ord_less_nat @ I @ ( plus_plus_nat @ ( dim_vec_a @ V ) @ ( dim_vec_a @ W ) ) )
     => ( ( ( ord_less_nat @ I @ ( dim_vec_a @ V ) )
         => ( ( vec_index_a @ ( append_vec_a @ V @ W ) @ I )
            = ( vec_index_a @ V @ I ) ) )
        & ( ~ ( ord_less_nat @ I @ ( dim_vec_a @ V ) )
         => ( ( vec_index_a @ ( append_vec_a @ V @ W ) @ I )
            = ( vec_index_a @ W @ ( minus_minus_nat @ I @ ( dim_vec_a @ V ) ) ) ) ) ) ) ).

% index_append_vec(1)
thf(fact_1188_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1189_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_1190_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_1191_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_1192_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_1193_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_1194_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_1195_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_1196_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_1197_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_1198_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_1199_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_1200_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_1201_diff__ge__0__iff__ge,axiom,
    ! [A: a,B: a] :
      ( ( ord_less_eq_a @ zero_zero_a @ ( minus_minus_a @ A @ B ) )
      = ( ord_less_eq_a @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_1202_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_1203_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1204_le__add__diff__inverse,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( plus_plus_a @ B @ ( minus_minus_a @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1205_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1206_le__add__diff__inverse2,axiom,
    ! [B: a,A: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ( plus_plus_a @ ( minus_minus_a @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1207_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
      = ( ord_less_nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_1208_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_1209_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1210_diff__Suc__1,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
      = N ) ).

% diff_Suc_1
thf(fact_1211_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_1212_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_1213_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_1214_row__mat__of__row,axiom,
    ! [Y2: vec_a] :
      ( ( row_a @ ( mat_of_row_a @ Y2 ) @ zero_zero_nat )
      = Y2 ) ).

% row_mat_of_row
thf(fact_1215_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_1216_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1217_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1218_index__minus__vec_I1_J,axiom,
    ! [I: nat,V_2: vec_a,V_1: vec_a] :
      ( ( ord_less_nat @ I @ ( dim_vec_a @ V_2 ) )
     => ( ( vec_index_a @ ( minus_minus_vec_a @ V_1 @ V_2 ) @ I )
        = ( minus_minus_a @ ( vec_index_a @ V_1 @ I ) @ ( vec_index_a @ V_2 @ I ) ) ) ) ).

% index_minus_vec(1)
thf(fact_1219_index__minus__vec_I1_J,axiom,
    ! [I: nat,V_2: vec_nat,V_1: vec_nat] :
      ( ( ord_less_nat @ I @ ( dim_vec_nat @ V_2 ) )
     => ( ( vec_index_nat @ ( minus_minus_vec_nat @ V_1 @ V_2 ) @ I )
        = ( minus_minus_nat @ ( vec_index_nat @ V_1 @ I ) @ ( vec_index_nat @ V_2 @ I ) ) ) ) ).

% index_minus_vec(1)
thf(fact_1220_row__zero,axiom,
    ! [I: nat,Nr: nat,Nc: nat] :
      ( ( ord_less_nat @ I @ Nr )
     => ( ( row_a @ ( zero_mat_a @ Nr @ Nc ) @ I )
        = ( zero_vec_a @ Nc ) ) ) ).

% row_zero
thf(fact_1221_Suc__diff__1,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
        = N ) ) ).

% Suc_diff_1
thf(fact_1222_row__add_I1_J,axiom,
    ! [A2: mat_a,Nr: nat,Nc: nat,B2: mat_a,I: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr @ Nc ) )
       => ( ( ord_less_nat @ I @ Nr )
         => ( ( row_a @ ( plus_plus_mat_a @ A2 @ B2 ) @ I )
            = ( plus_plus_vec_a @ ( row_a @ A2 @ I ) @ ( row_a @ B2 @ I ) ) ) ) ) ) ).

% row_add(1)
thf(fact_1223_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_1224_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_1225_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_1226_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_1227_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_1228_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_1229_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_1230_diff__eq__diff__less__eq,axiom,
    ! [A: a,B: a,C: a,D2: a] :
      ( ( ( minus_minus_a @ A @ B )
        = ( minus_minus_a @ C @ D2 ) )
     => ( ( ord_less_eq_a @ A @ B )
        = ( ord_less_eq_a @ C @ D2 ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_1231_diff__right__mono,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ord_less_eq_a @ ( minus_minus_a @ A @ C ) @ ( minus_minus_a @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_1232_diff__left__mono,axiom,
    ! [B: a,A: a,C: a] :
      ( ( ord_less_eq_a @ B @ A )
     => ( ord_less_eq_a @ ( minus_minus_a @ C @ A ) @ ( minus_minus_a @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_1233_diff__mono,axiom,
    ! [A: a,B: a,D2: a,C: a] :
      ( ( ord_less_eq_a @ A @ B )
     => ( ( ord_less_eq_a @ D2 @ C )
       => ( ord_less_eq_a @ ( minus_minus_a @ A @ C ) @ ( minus_minus_a @ B @ D2 ) ) ) ) ).

% diff_mono
thf(fact_1234_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_1235_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_1236_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_1237_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_1238_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1239_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1240_append__rows__nth_I2_J,axiom,
    ! [A2: mat_a,Nr1: nat,Nc: nat,B2: mat_a,Nr2: nat,I: nat] :
      ( ( member_mat_a @ A2 @ ( carrier_mat_a @ Nr1 @ Nc ) )
     => ( ( member_mat_a @ B2 @ ( carrier_mat_a @ Nr2 @ Nc ) )
       => ( ( ord_less_eq_nat @ Nr1 @ I )
         => ( ( ord_less_nat @ I @ ( plus_plus_nat @ Nr1 @ Nr2 ) )
           => ( ( row_a @ ( append_rows_a @ A2 @ B2 ) @ I )
              = ( row_a @ B2 @ ( minus_minus_nat @ I @ Nr1 ) ) ) ) ) ) ) ).

% append_rows_nth(2)
thf(fact_1241_diff__le__eq,axiom,
    ! [A: a,B: a,C: a] :
      ( ( ord_less_eq_a @ ( minus_minus_a @ A @ B ) @ C )
      = ( ord_less_eq_a @ A @ ( plus_plus_a @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_1242_le__diff__eq,axiom,
    ! [A: a,C: a,B: a] :
      ( ( ord_less_eq_a @ A @ ( minus_minus_a @ C @ B ) )
      = ( ord_less_eq_a @ ( plus_plus_a @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_1243_ordered__cancel__comm__monoid__diff__class_Odiff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add
thf(fact_1244_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_1245_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_1246_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_1247_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_1248_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_1249_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_1250_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_1251_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_1252_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_1253_add__le__imp__le__diff,axiom,
    ! [I: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_1254_add__le__imp__le__diff,axiom,
    ! [I: a,K: a,N: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ N )
     => ( ord_less_eq_a @ I @ ( minus_minus_a @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_1255_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_1256_add__le__add__imp__diff__le,axiom,
    ! [I: a,K: a,N: a,J: a] :
      ( ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ N )
     => ( ( ord_less_eq_a @ N @ ( plus_plus_a @ J @ K ) )
       => ( ( ord_less_eq_a @ ( plus_plus_a @ I @ K ) @ N )
         => ( ( ord_less_eq_a @ N @ ( plus_plus_a @ J @ K ) )
           => ( ord_less_eq_a @ ( minus_minus_a @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_1257_le__iff__diff__le__0,axiom,
    ( ord_less_eq_a
    = ( ^ [A3: a,B3: a] : ( ord_less_eq_a @ ( minus_minus_a @ A3 @ B3 ) @ zero_zero_a ) ) ) ).

% le_iff_diff_le_0
thf(fact_1258_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1259_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1260_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_1261_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less_nat @ M @ N )
     => ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_1262_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_1263_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
        = ( minus_minus_nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_1264_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_1265_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ord_less_nat @ M @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_1266_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_1267_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse

% Conjectures (1)
thf(conj_0,conjecture,
    ( u2
    = ( append_vec_a @ u @ l ) ) ).

%------------------------------------------------------------------------------