TPTP Problem File: SLH0283^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : FSM_Tests/0036_FSM/prob_05855_227535__19415676_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1410 ( 502 unt; 132 typ; 0 def)
% Number of atoms : 3815 (1121 equ; 0 cnn)
% Maximal formula atoms : 12 ( 2 avg)
% Number of connectives : 11326 ( 448 ~; 59 |; 226 &;8696 @)
% ( 0 <=>;1897 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 7 avg)
% Number of types : 12 ( 11 usr)
% Number of type conns : 544 ( 544 >; 0 *; 0 +; 0 <<)
% Number of symbols : 124 ( 121 usr; 24 con; 0-4 aty)
% Number of variables : 3525 ( 239 ^;3188 !; 98 ?;3525 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 11:27:49.438
%------------------------------------------------------------------------------
% Could-be-implicit typings (11)
thf(ty_n_t__Set__Oset_It__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J_J,type,
set_se3924713247505902254od_b_c: $tType ).
thf(ty_n_t__FSM__Ofsm_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_Mtf__b_Mtf__c_J,type,
fsm_li6801133765522507155_c_b_c: $tType ).
thf(ty_n_t__List__Olist_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
list_l8907847357763382004od_b_c: $tType ).
thf(ty_n_t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
set_li6436108459499378894od_b_c: $tType ).
thf(ty_n_t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
list_P903359562653991662od_b_c: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
set_set_a: $tType ).
thf(ty_n_t__FSM__Ofsm_Itf__a_Mtf__b_Mtf__c_J,type,
fsm_a_b_c: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_Itf__a_J,type,
set_a: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_tf__a,type,
a: $tType ).
% Explicit typings (121)
thf(sy_c_FSM_OLS_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
lS_lis2930931384350476499_c_b_c: fsm_li6801133765522507155_c_b_c > list_P903359562653991662od_b_c > set_li6436108459499378894od_b_c ).
thf(sy_c_FSM_OLS_001tf__a_001tf__b_001tf__c,type,
lS_a_b_c: fsm_a_b_c > a > set_li6436108459499378894od_b_c ).
thf(sy_c_FSM_OLS__acyclic_001tf__a_001tf__b_001tf__c,type,
lS_acyclic_a_b_c: fsm_a_b_c > a > set_li6436108459499378894od_b_c ).
thf(sy_c_FSM_Oacyclic_001tf__a_001tf__b_001tf__c,type,
acyclic_a_b_c: fsm_a_b_c > $o ).
thf(sy_c_FSM_Oafter_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
after_4052058690717316294_c_b_c: fsm_li6801133765522507155_c_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c ).
thf(sy_c_FSM_Oafter_001tf__a_001tf__b_001tf__c,type,
after_a_b_c: fsm_a_b_c > a > list_P903359562653991662od_b_c > a ).
thf(sy_c_FSM_Odistinguishes_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
distin2804555989863659119_c_b_c: fsm_li6801133765522507155_c_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o ).
thf(sy_c_FSM_Odistinguishes_001tf__a_001tf__b_001tf__c,type,
distinguishes_a_b_c: fsm_a_b_c > a > a > list_P903359562653991662od_b_c > $o ).
thf(sy_c_FSM_Oinitial_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
initia3567573336347591134_c_b_c: fsm_li6801133765522507155_c_b_c > list_P903359562653991662od_b_c ).
thf(sy_c_FSM_Oinitial_001tf__a_001tf__b_001tf__c,type,
initial_a_b_c: fsm_a_b_c > a ).
thf(sy_c_FSM_Ois__in__language_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
is_in_7104650932667917939_c_b_c: fsm_li6801133765522507155_c_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o ).
thf(sy_c_FSM_Ois__in__language_001tf__a_001tf__b_001tf__c,type,
is_in_language_a_b_c: fsm_a_b_c > a > list_P903359562653991662od_b_c > $o ).
thf(sy_c_FSM_Omaximal__prefix__in__language_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
maxima8146652644187019584_c_b_c: fsm_li6801133765522507155_c_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c ).
thf(sy_c_FSM_Omaximal__prefix__in__language_001tf__a_001tf__b_001tf__c,type,
maxima1559550560783484624_a_b_c: fsm_a_b_c > a > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c ).
thf(sy_c_FSM_Ominimal_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
minima1987601567150520449_c_b_c: fsm_li6801133765522507155_c_b_c > $o ).
thf(sy_c_FSM_Ominimal_001tf__a_001tf__b_001tf__c,type,
minimal_a_b_c: fsm_a_b_c > $o ).
thf(sy_c_FSM_Ominimally__distinguishes_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
minima9089413714839006869_c_b_c: fsm_li6801133765522507155_c_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o ).
thf(sy_c_FSM_Ominimally__distinguishes_001tf__a_001tf__b_001tf__c,type,
minima243535863231358885_a_b_c: fsm_a_b_c > a > a > list_P903359562653991662od_b_c > $o ).
thf(sy_c_FSM_Oobservable_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
observ6293852833591064631_c_b_c: fsm_li6801133765522507155_c_b_c > $o ).
thf(sy_c_FSM_Oobservable_001tf__a_001tf__b_001tf__c,type,
observable_a_b_c: fsm_a_b_c > $o ).
thf(sy_c_FSM_Oreachable__states_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
reacha8116992257183400179_c_b_c: fsm_li6801133765522507155_c_b_c > set_li6436108459499378894od_b_c ).
thf(sy_c_FSM_Oreachable__states_001tf__a_001tf__b_001tf__c,type,
reacha1620305530751930115_a_b_c: fsm_a_b_c > set_a ).
thf(sy_c_FSM_Orestrict__to__reachable__states_001tf__a_001tf__b_001tf__c,type,
restri9132545300209641082_a_b_c: fsm_a_b_c > fsm_a_b_c ).
thf(sy_c_FSM_Ostates_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001tf__b_001tf__c,type,
states7681702920031268536_c_b_c: fsm_li6801133765522507155_c_b_c > set_li6436108459499378894od_b_c ).
thf(sy_c_FSM_Ostates_001tf__a_001tf__b_001tf__c,type,
states_a_b_c: fsm_a_b_c > set_a ).
thf(sy_c_Finite__Set_Ocard_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
finite5583770498833199894od_b_c: set_li6436108459499378894od_b_c > nat ).
thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
finite_card_nat: set_nat > nat ).
thf(sy_c_Finite__Set_Ocard_001tf__a,type,
finite_card_a: set_a > nat ).
thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
finite3074115686814133143od_b_c: set_li6436108459499378894od_b_c > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
finite_finite_nat: set_nat > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
finite1374199133651033463od_b_c: set_se3924713247505902254od_b_c > $o ).
thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_Itf__a_J,type,
finite_finite_set_a: set_set_a > $o ).
thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
finite_finite_a: set_a > $o ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
inf_inf_nat: nat > nat > nat ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
inf_in4978071631833541052od_b_c: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Nat__Onat_J,type,
inf_inf_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
inf_inf_set_a: set_a > set_a > set_a ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
sup_sup_nat: nat > nat > nat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
sup_su3823046536922626210od_b_c: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
sup_sup_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
sup_sup_set_set_a: set_set_a > set_set_a > set_set_a ).
thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
sup_sup_set_a: set_a > set_a > set_a ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_001t__Nat__Onat,type,
lattic9077399895930519397_c_nat: ( list_P903359562653991662od_b_c > nat ) > set_li6436108459499378894od_b_c > list_P903359562653991662od_b_c ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Nat__Onat,type,
lattic7446932960582359483at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001tf__a_001t__Nat__Onat,type,
lattic6340287419671400565_a_nat: ( a > nat ) > set_a > a ).
thf(sy_c_Lattices__Big_Osemilattice__order__set_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
lattic2195833625579453896od_b_c: ( list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c ) > ( list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o ) > ( list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o ) > $o ).
thf(sy_c_Lattices__Big_Osemilattice__order__set_001t__Nat__Onat,type,
lattic6009151579333465974et_nat: ( nat > nat > nat ) > ( nat > nat > $o ) > ( nat > nat > $o ) > $o ).
thf(sy_c_Lattices__Big_Osemilattice__order__set_001t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
lattic2204479054038723496od_b_c: ( set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c ) > ( set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c > $o ) > ( set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c > $o ) > $o ).
thf(sy_c_Lattices__Big_Osemilattice__order__set_001t__Set__Oset_Itf__a_J,type,
lattic8986249270076014136_set_a: ( set_a > set_a > set_a ) > ( set_a > set_a > $o ) > ( set_a > set_a > $o ) > $o ).
thf(sy_c_Lattices__Big_Osemilattice__order__set_001tf__a,type,
lattic5078705180708912344_set_a: ( a > a > a ) > ( a > a > $o ) > ( a > a > $o ) > $o ).
thf(sy_c_Lattices__Big_Osemilattice__set_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
lattic4067905262246253180od_b_c: ( list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c ) > $o ).
thf(sy_c_Lattices__Big_Osemilattice__set_001t__Nat__Onat,type,
lattic1029310888574255042et_nat: ( nat > nat > nat ) > $o ).
thf(sy_c_Lattices__Big_Osemilattice__set_001t__Set__Oset_Itf__a_J,type,
lattic1258622339881844972_set_a: ( set_a > set_a > set_a ) > $o ).
thf(sy_c_Lattices__Big_Osemilattice__set_001tf__a,type,
lattic5961991414251573132_set_a: ( a > a > a ) > $o ).
thf(sy_c_Lattices__Big_Osemilattice__set_OF_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
lattic2734920875441048264od_b_c: ( list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c ) > set_li6436108459499378894od_b_c > list_P903359562653991662od_b_c ).
thf(sy_c_Lattices__Big_Osemilattice__set_OF_001t__Nat__Onat,type,
lattic7742739596368939638_F_nat: ( nat > nat > nat ) > set_nat > nat ).
thf(sy_c_Lattices__Big_Osemilattice__set_OF_001t__Set__Oset_Itf__a_J,type,
lattic2714821017709792056_set_a: ( set_a > set_a > set_a ) > set_set_a > set_a ).
thf(sy_c_Lattices__Big_Osemilattice__set_OF_001tf__a,type,
lattic5116578512385870296ce_F_a: ( a > a > a ) > set_a > a ).
thf(sy_c_Lattices__Big_Osemilattice__sup__class_OSup__fin_001t__Nat__Onat,type,
lattic1093996805478795353in_nat: set_nat > nat ).
thf(sy_c_Lattices__Big_Osemilattice__sup__class_OSup__fin_001t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
lattic8058834985641542149od_b_c: set_se3924713247505902254od_b_c > set_li6436108459499378894od_b_c ).
thf(sy_c_Lattices__Big_Osemilattice__sup__class_OSup__fin_001t__Set__Oset_Itf__a_J,type,
lattic2918178356826803221_set_a: set_set_a > set_a ).
thf(sy_c_List_Oappend_001t__Product____Type__Oprod_Itf__b_Mtf__c_J,type,
append2547753245680614915od_b_c: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c ).
thf(sy_c_List_Ogen__length_001t__Product____Type__Oprod_Itf__b_Mtf__c_J,type,
gen_le7668512674959329659od_b_c: nat > list_P903359562653991662od_b_c > nat ).
thf(sy_c_List_Olist_ONil_001t__Product____Type__Oprod_Itf__b_Mtf__c_J,type,
nil_Product_prod_b_c: list_P903359562653991662od_b_c ).
thf(sy_c_List_Olist_Oset_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
set_li4480668622519654659od_b_c: list_l8907847357763382004od_b_c > set_li6436108459499378894od_b_c ).
thf(sy_c_List_Oremdups__adj_001t__Product____Type__Oprod_Itf__b_Mtf__c_J,type,
remdup2090892755044397220od_b_c: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
size_s3392097710323735898od_b_c: list_P903359562653991662od_b_c > nat ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_M_Eo_J,type,
bot_bo5496101219168594979_b_c_o: list_P903359562653991662od_b_c > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
bot_bot_a_o: a > $o ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
bot_bot_nat: nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
bot_bo4166481423041325370od_b_c: set_li6436108459499378894od_b_c ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
bot_bot_set_nat: set_nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J_J,type,
bot_bo2794119844231891738od_b_c: set_se3924713247505902254od_b_c ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
bot_bot_set_set_a: set_set_a ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
bot_bot_set_a: set_a ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
ord_le5653067673530651002od_b_c: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__a_J,type,
ord_less_set_a: set_a > set_a > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
ord_le282488521294790766od_b_c: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J_J,type,
ord_le6656836712342966862od_b_c: set_se3924713247505902254od_b_c > set_se3924713247505902254od_b_c > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
ord_le3724670747650509150_set_a: set_set_a > set_set_a > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
ord_less_eq_set_a: set_a > set_a > $o ).
thf(sy_c_Set_OCollect_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
collec2280997390073109977od_b_c: ( list_P903359562653991662od_b_c > $o ) > set_li6436108459499378894od_b_c ).
thf(sy_c_Set_OCollect_001tf__a,type,
collect_a: ( a > $o ) > set_a ).
thf(sy_c_Set_Odisjnt_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
disjnt5456880891938978613od_b_c: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c > $o ).
thf(sy_c_Set_Odisjnt_001t__Nat__Onat,type,
disjnt_nat: set_nat > set_nat > $o ).
thf(sy_c_Set_Odisjnt_001tf__a,type,
disjnt_a: set_a > set_a > $o ).
thf(sy_c_Set_Oinsert_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
insert6227932334100060350od_b_c: list_P903359562653991662od_b_c > set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c ).
thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
insert_nat: nat > set_nat > set_nat ).
thf(sy_c_Set_Oinsert_001t__Set__Oset_Itf__a_J,type,
insert_set_a: set_a > set_set_a > set_set_a ).
thf(sy_c_Set_Oinsert_001tf__a,type,
insert_a: a > set_a > set_a ).
thf(sy_c_Set_Ois__empty_001tf__a,type,
is_empty_a: set_a > $o ).
thf(sy_c_Sublist_Oprefixes_001t__Product____Type__Oprod_Itf__b_Mtf__c_J,type,
prefix1131979855692807669od_b_c: list_P903359562653991662od_b_c > list_l8907847357763382004od_b_c ).
thf(sy_c_member_001t__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J,type,
member6330420149250801815od_b_c: list_P903359562653991662od_b_c > set_li6436108459499378894od_b_c > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_Itf__b_Mtf__c_J_J_J,type,
member6985331446368301687od_b_c: set_li6436108459499378894od_b_c > set_se3924713247505902254od_b_c > $o ).
thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
member_set_a: set_a > set_set_a > $o ).
thf(sy_c_member_001tf__a,type,
member_a: a > set_a > $o ).
thf(sy_v_M,type,
m: fsm_a_b_c ).
thf(sy_v_S,type,
s: set_a ).
thf(sy_v_S1____,type,
s1: set_a ).
thf(sy_v_S2____,type,
s2: set_a ).
thf(sy_v_Sa____,type,
sa: set_a ).
thf(sy_v_W____,type,
w: set_a > set_a > set_li6436108459499378894od_b_c ).
thf(sy_v_k_H____,type,
k: nat ).
thf(sy_v_k____,type,
k2: nat ).
thf(sy_v_ka____,type,
ka: nat ).
thf(sy_v_q1,type,
q1: a ).
thf(sy_v_q2,type,
q2: a ).
thf(sy_v_w,type,
w2: list_P903359562653991662od_b_c ).
thf(sy_v_w_H____,type,
w3: list_P903359562653991662od_b_c ).
thf(sy_v_wk____,type,
wk: list_P903359562653991662od_b_c ).
thf(sy_v_wk__suffix____,type,
wk_suffix: list_P903359562653991662od_b_c ).
% Relevant facts (1274)
thf(fact_0_assms_I2_J,axiom,
minimal_a_b_c @ m ).
% assms(2)
thf(fact_1__092_060open_062after_AM_Aq1_Aw_H_A_092_060in_062_AS_092_060close_062,axiom,
member_a @ ( after_a_b_c @ m @ q1 @ w3 ) @ sa ).
% \<open>after M q1 w' \<in> S\<close>
thf(fact_2__092_060open_062after_AM_Aq2_Aw_H_A_092_060in_062_AS_092_060close_062,axiom,
member_a @ ( after_a_b_c @ m @ q2 @ w3 ) @ sa ).
% \<open>after M q2 w' \<in> S\<close>
thf(fact_3__092_060open_062_Iafter_AM_Aq1_Aw_H_A_092_060in_062_AS1_J_A_092_060noteq_062_A_Iafter_AM_Aq2_Aw_H_A_092_060in_062_AS1_J_092_060close_062,axiom,
( ( member_a @ ( after_a_b_c @ m @ q1 @ w3 ) @ s1 )
!= ( member_a @ ( after_a_b_c @ m @ q2 @ w3 ) @ s1 ) ) ).
% \<open>(after M q1 w' \<in> S1) \<noteq> (after M q2 w' \<in> S1)\<close>
thf(fact_4__C_K_C,axiom,
member6330420149250801815od_b_c @ w3 @ ( w @ sa @ sa ) ).
% "*"
thf(fact_5__092_060open_062w_H_A_092_060noteq_062_Awk_092_060close_062,axiom,
w3 != wk ).
% \<open>w' \<noteq> wk\<close>
thf(fact_6_assms_I1_J,axiom,
observable_a_b_c @ m ).
% assms(1)
thf(fact_7_assms_I4_J,axiom,
member_a @ q2 @ ( states_a_b_c @ m ) ).
% assms(4)
thf(fact_8_assms_I3_J,axiom,
member_a @ q1 @ ( states_a_b_c @ m ) ).
% assms(3)
thf(fact_9__092_060open_062w_H_A_092_060in_062_ALS_AM_Aq1_092_060close_062,axiom,
member6330420149250801815od_b_c @ w3 @ ( lS_a_b_c @ m @ q1 ) ).
% \<open>w' \<in> LS M q1\<close>
thf(fact_10__092_060open_062w_H_A_092_060in_062_ALS_AM_Aq2_092_060close_062,axiom,
member6330420149250801815od_b_c @ w3 @ ( lS_a_b_c @ m @ q2 ) ).
% \<open>w' \<in> LS M q2\<close>
thf(fact_11_assms_I5_J,axiom,
minima243535863231358885_a_b_c @ m @ q1 @ q2 @ w2 ).
% assms(5)
thf(fact_12__092_060open_062after_AM_Aq1_Awk_A_092_060in_062_AS_092_060close_062,axiom,
member_a @ ( after_a_b_c @ m @ q1 @ wk ) @ sa ).
% \<open>after M q1 wk \<in> S\<close>
thf(fact_13__092_060open_062after_AM_Aq2_Awk_A_092_060in_062_AS_092_060close_062,axiom,
member_a @ ( after_a_b_c @ m @ q2 @ wk ) @ sa ).
% \<open>after M q2 wk \<in> S\<close>
thf(fact_14__092_060open_062S2_A_092_060noteq_062_A_123_125_092_060close_062,axiom,
s2 != bot_bot_set_a ).
% \<open>S2 \<noteq> {}\<close>
thf(fact_15__092_060open_062S1_A_092_060noteq_062_A_123_125_092_060close_062,axiom,
s1 != bot_bot_set_a ).
% \<open>S1 \<noteq> {}\<close>
thf(fact_16__092_060open_062S_A_061_AS1_A_092_060union_062_AS2_092_060close_062,axiom,
( sa
= ( sup_sup_set_a @ s1 @ s2 ) ) ).
% \<open>S = S1 \<union> S2\<close>
thf(fact_17__092_060open_062w_H_A_092_060noteq_062_Aw_092_060close_062,axiom,
w3 != w2 ).
% \<open>w' \<noteq> w\<close>
thf(fact_18__092_060open_062minimally__distinguishes_AM_A_Iafter_AM_Aq1_Awk_J_A_Iafter_AM_Aq2_Awk_J_Awk__suffix_092_060close_062,axiom,
minima243535863231358885_a_b_c @ m @ ( after_a_b_c @ m @ q1 @ wk ) @ ( after_a_b_c @ m @ q2 @ wk ) @ wk_suffix ).
% \<open>minimally_distinguishes M (after M q1 wk) (after M q2 wk) wk_suffix\<close>
thf(fact_19__092_060open_062distinguishes_AM_A_Iafter_AM_Aq1_Awk_J_A_Iafter_AM_Aq2_Awk_J_Awk__suffix_092_060close_062,axiom,
distinguishes_a_b_c @ m @ ( after_a_b_c @ m @ q1 @ wk ) @ ( after_a_b_c @ m @ q2 @ wk ) @ wk_suffix ).
% \<open>distinguishes M (after M q1 wk) (after M q2 wk) wk_suffix\<close>
thf(fact_20__092_060open_062distinguishes_AM_A_Iafter_AM_Aq1_A_091_093_J_A_Iafter_AM_Aq2_A_091_093_J_Aw_092_060close_062,axiom,
distinguishes_a_b_c @ m @ ( after_a_b_c @ m @ q1 @ nil_Product_prod_b_c ) @ ( after_a_b_c @ m @ q2 @ nil_Product_prod_b_c ) @ w2 ).
% \<open>distinguishes M (after M q1 []) (after M q2 []) w\<close>
thf(fact_21__092_060open_062wk__suffix_A_092_060noteq_062_A_091_093_092_060close_062,axiom,
wk_suffix != nil_Product_prod_b_c ).
% \<open>wk_suffix \<noteq> []\<close>
thf(fact_22__092_060open_062wk_A_092_060noteq_062_Aw_092_060close_062,axiom,
wk != w2 ).
% \<open>wk \<noteq> w\<close>
thf(fact_23__092_060open_062_Iwk__suffix_A_092_060in_062_ALS_AM_A_Iafter_AM_Aq1_Awk_J_J_A_061_A_Iwk__suffix_A_092_060notin_062_ALS_AM_A_Iafter_AM_Aq2_Awk_J_J_092_060close_062,axiom,
( ( member6330420149250801815od_b_c @ wk_suffix @ ( lS_a_b_c @ m @ ( after_a_b_c @ m @ q1 @ wk ) ) )
= ( ~ ( member6330420149250801815od_b_c @ wk_suffix @ ( lS_a_b_c @ m @ ( after_a_b_c @ m @ q2 @ wk ) ) ) ) ) ).
% \<open>(wk_suffix \<in> LS M (after M q1 wk)) = (wk_suffix \<notin> LS M (after M q2 wk))\<close>
thf(fact_24_less_Oprems_I2_J,axiom,
ord_less_eq_set_a @ sa @ ( states_a_b_c @ m ) ).
% less.prems(2)
thf(fact_25__092_060open_062w_A_061_Awk_A_064_Awk__suffix_092_060close_062,axiom,
( w2
= ( append2547753245680614915od_b_c @ wk @ wk_suffix ) ) ).
% \<open>w = wk @ wk_suffix\<close>
thf(fact_26_minimal_Oelims_I3_J,axiom,
! [X: fsm_a_b_c] :
( ~ ( minimal_a_b_c @ X )
=> ~ ! [X2: a] :
( ( member_a @ X2 @ ( states_a_b_c @ X ) )
=> ! [Xa: a] :
( ( member_a @ Xa @ ( states_a_b_c @ X ) )
=> ( ( X2 != Xa )
=> ( ( lS_a_b_c @ X @ X2 )
!= ( lS_a_b_c @ X @ Xa ) ) ) ) ) ) ).
% minimal.elims(3)
thf(fact_27_minimal_Oelims_I2_J,axiom,
! [X: fsm_a_b_c] :
( ( minimal_a_b_c @ X )
=> ! [X3: a] :
( ( member_a @ X3 @ ( states_a_b_c @ X ) )
=> ! [Xa2: a] :
( ( member_a @ Xa2 @ ( states_a_b_c @ X ) )
=> ( ( X3 != Xa2 )
=> ( ( lS_a_b_c @ X @ X3 )
!= ( lS_a_b_c @ X @ Xa2 ) ) ) ) ) ) ).
% minimal.elims(2)
thf(fact_28_minimal_Oelims_I1_J,axiom,
! [X: fsm_a_b_c,Y: $o] :
( ( ( minimal_a_b_c @ X )
= Y )
=> ( Y
= ( ! [X4: a] :
( ( member_a @ X4 @ ( states_a_b_c @ X ) )
=> ! [Y2: a] :
( ( member_a @ Y2 @ ( states_a_b_c @ X ) )
=> ( ( X4 != Y2 )
=> ( ( lS_a_b_c @ X @ X4 )
!= ( lS_a_b_c @ X @ Y2 ) ) ) ) ) ) ) ) ).
% minimal.elims(1)
thf(fact_29_minimal_Osimps,axiom,
( minimal_a_b_c
= ( ^ [M: fsm_a_b_c] :
! [X4: a] :
( ( member_a @ X4 @ ( states_a_b_c @ M ) )
=> ! [Y2: a] :
( ( member_a @ Y2 @ ( states_a_b_c @ M ) )
=> ( ( X4 != Y2 )
=> ( ( lS_a_b_c @ M @ X4 )
!= ( lS_a_b_c @ M @ Y2 ) ) ) ) ) ) ) ).
% minimal.simps
thf(fact_30_after__is__state,axiom,
! [M2: fsm_li6801133765522507155_c_b_c,Io: list_P903359562653991662od_b_c,Q: list_P903359562653991662od_b_c] :
( ( observ6293852833591064631_c_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Io @ ( lS_lis2930931384350476499_c_b_c @ M2 @ Q ) )
=> ( member6330420149250801815od_b_c @ ( after_4052058690717316294_c_b_c @ M2 @ Q @ Io ) @ ( states7681702920031268536_c_b_c @ M2 ) ) ) ) ).
% after_is_state
thf(fact_31_after__is__state,axiom,
! [M2: fsm_a_b_c,Io: list_P903359562653991662od_b_c,Q: a] :
( ( observable_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Io @ ( lS_a_b_c @ M2 @ Q ) )
=> ( member_a @ ( after_a_b_c @ M2 @ Q @ Io ) @ ( states_a_b_c @ M2 ) ) ) ) ).
% after_is_state
thf(fact_32_minimal__alt__def,axiom,
( minimal_a_b_c
= ( ^ [M: fsm_a_b_c] :
! [Q2: a,Q3: a] :
( ( member_a @ Q2 @ ( states_a_b_c @ M ) )
=> ( ( member_a @ Q3 @ ( states_a_b_c @ M ) )
=> ( ( ( lS_a_b_c @ M @ Q2 )
= ( lS_a_b_c @ M @ Q3 ) )
=> ( Q2 = Q3 ) ) ) ) ) ) ).
% minimal_alt_def
thf(fact_33_minimally__distinguishes__ex,axiom,
! [Q1: a,M2: fsm_a_b_c,Q22: a] :
( ( member_a @ Q1 @ ( states_a_b_c @ M2 ) )
=> ( ( member_a @ Q22 @ ( states_a_b_c @ M2 ) )
=> ( ( ( lS_a_b_c @ M2 @ Q1 )
!= ( lS_a_b_c @ M2 @ Q22 ) )
=> ~ ! [V: list_P903359562653991662od_b_c] :
~ ( minima243535863231358885_a_b_c @ M2 @ Q1 @ Q22 @ V ) ) ) ) ).
% minimally_distinguishes_ex
thf(fact_34_after_Osimps_I1_J,axiom,
! [M2: fsm_a_b_c,Q: a] :
( ( after_a_b_c @ M2 @ Q @ nil_Product_prod_b_c )
= Q ) ).
% after.simps(1)
thf(fact_35_assms_I6_J,axiom,
ord_less_eq_set_a @ s @ ( states_a_b_c @ m ) ).
% assms(6)
thf(fact_36_Un__empty,axiom,
! [A: set_a,B: set_a] :
( ( ( sup_sup_set_a @ A @ B )
= bot_bot_set_a )
= ( ( A = bot_bot_set_a )
& ( B = bot_bot_set_a ) ) ) ).
% Un_empty
thf(fact_37_sup__bot__left,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ bot_bot_set_a @ X )
= X ) ).
% sup_bot_left
thf(fact_38_sup__bot__right,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ X @ bot_bot_set_a )
= X ) ).
% sup_bot_right
thf(fact_39_bot__eq__sup__iff,axiom,
! [X: set_a,Y: set_a] :
( ( bot_bot_set_a
= ( sup_sup_set_a @ X @ Y ) )
= ( ( X = bot_bot_set_a )
& ( Y = bot_bot_set_a ) ) ) ).
% bot_eq_sup_iff
thf(fact_40_sup__eq__bot__iff,axiom,
! [X: set_a,Y: set_a] :
( ( ( sup_sup_set_a @ X @ Y )
= bot_bot_set_a )
= ( ( X = bot_bot_set_a )
& ( Y = bot_bot_set_a ) ) ) ).
% sup_eq_bot_iff
thf(fact_41_sup__bot_Oeq__neutr__iff,axiom,
! [A2: set_a,B2: set_a] :
( ( ( sup_sup_set_a @ A2 @ B2 )
= bot_bot_set_a )
= ( ( A2 = bot_bot_set_a )
& ( B2 = bot_bot_set_a ) ) ) ).
% sup_bot.eq_neutr_iff
thf(fact_42_sup__bot_Oleft__neutral,axiom,
! [A2: set_a] :
( ( sup_sup_set_a @ bot_bot_set_a @ A2 )
= A2 ) ).
% sup_bot.left_neutral
thf(fact_43_sup__bot_Oneutr__eq__iff,axiom,
! [A2: set_a,B2: set_a] :
( ( bot_bot_set_a
= ( sup_sup_set_a @ A2 @ B2 ) )
= ( ( A2 = bot_bot_set_a )
& ( B2 = bot_bot_set_a ) ) ) ).
% sup_bot.neutr_eq_iff
thf(fact_44_sup__bot_Oright__neutral,axiom,
! [A2: set_a] :
( ( sup_sup_set_a @ A2 @ bot_bot_set_a )
= A2 ) ).
% sup_bot.right_neutral
thf(fact_45__092_060open_062S1_A_092_060inter_062_AS2_A_061_A_123_125_092_060close_062,axiom,
( ( inf_inf_set_a @ s1 @ s2 )
= bot_bot_set_a ) ).
% \<open>S1 \<inter> S2 = {}\<close>
thf(fact_46_mem__Collect__eq,axiom,
! [A2: a,P: a > $o] :
( ( member_a @ A2 @ ( collect_a @ P ) )
= ( P @ A2 ) ) ).
% mem_Collect_eq
thf(fact_47_mem__Collect__eq,axiom,
! [A2: list_P903359562653991662od_b_c,P: list_P903359562653991662od_b_c > $o] :
( ( member6330420149250801815od_b_c @ A2 @ ( collec2280997390073109977od_b_c @ P ) )
= ( P @ A2 ) ) ).
% mem_Collect_eq
thf(fact_48_Collect__mem__eq,axiom,
! [A: set_a] :
( ( collect_a
@ ^ [X4: a] : ( member_a @ X4 @ A ) )
= A ) ).
% Collect_mem_eq
thf(fact_49_Collect__mem__eq,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ( collec2280997390073109977od_b_c
@ ^ [X4: list_P903359562653991662od_b_c] : ( member6330420149250801815od_b_c @ X4 @ A ) )
= A ) ).
% Collect_mem_eq
thf(fact_50_empty__Collect__eq,axiom,
! [P: a > $o] :
( ( bot_bot_set_a
= ( collect_a @ P ) )
= ( ! [X4: a] :
~ ( P @ X4 ) ) ) ).
% empty_Collect_eq
thf(fact_51_Collect__empty__eq,axiom,
! [P: a > $o] :
( ( ( collect_a @ P )
= bot_bot_set_a )
= ( ! [X4: a] :
~ ( P @ X4 ) ) ) ).
% Collect_empty_eq
thf(fact_52_all__not__in__conv,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ( ! [X4: list_P903359562653991662od_b_c] :
~ ( member6330420149250801815od_b_c @ X4 @ A ) )
= ( A = bot_bo4166481423041325370od_b_c ) ) ).
% all_not_in_conv
thf(fact_53_all__not__in__conv,axiom,
! [A: set_a] :
( ( ! [X4: a] :
~ ( member_a @ X4 @ A ) )
= ( A = bot_bot_set_a ) ) ).
% all_not_in_conv
thf(fact_54_empty__iff,axiom,
! [C: list_P903359562653991662od_b_c] :
~ ( member6330420149250801815od_b_c @ C @ bot_bo4166481423041325370od_b_c ) ).
% empty_iff
thf(fact_55_empty__iff,axiom,
! [C: a] :
~ ( member_a @ C @ bot_bot_set_a ) ).
% empty_iff
thf(fact_56_subset__antisym,axiom,
! [A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( ord_less_eq_set_a @ B @ A )
=> ( A = B ) ) ) ).
% subset_antisym
thf(fact_57_subset__antisym,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( ord_le282488521294790766od_b_c @ B @ A )
=> ( A = B ) ) ) ).
% subset_antisym
thf(fact_58_subsetI,axiom,
! [A: set_a,B: set_a] :
( ! [X2: a] :
( ( member_a @ X2 @ A )
=> ( member_a @ X2 @ B ) )
=> ( ord_less_eq_set_a @ A @ B ) ) ).
% subsetI
thf(fact_59_subsetI,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ! [X2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X2 @ A )
=> ( member6330420149250801815od_b_c @ X2 @ B ) )
=> ( ord_le282488521294790766od_b_c @ A @ B ) ) ).
% subsetI
thf(fact_60_inf__right__idem,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y )
= ( inf_inf_set_a @ X @ Y ) ) ).
% inf_right_idem
thf(fact_61_inf_Oright__idem,axiom,
! [A2: set_a,B2: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ B2 )
= ( inf_inf_set_a @ A2 @ B2 ) ) ).
% inf.right_idem
thf(fact_62_inf__left__idem,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
= ( inf_inf_set_a @ X @ Y ) ) ).
% inf_left_idem
thf(fact_63_inf_Oleft__idem,axiom,
! [A2: set_a,B2: set_a] :
( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ A2 @ B2 ) )
= ( inf_inf_set_a @ A2 @ B2 ) ) ).
% inf.left_idem
thf(fact_64_inf__idem,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ X )
= X ) ).
% inf_idem
thf(fact_65_inf_Oidem,axiom,
! [A2: set_a] :
( ( inf_inf_set_a @ A2 @ A2 )
= A2 ) ).
% inf.idem
thf(fact_66_sup_Oright__idem,axiom,
! [A2: set_a,B2: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ B2 )
= ( sup_sup_set_a @ A2 @ B2 ) ) ).
% sup.right_idem
thf(fact_67_sup__left__idem,axiom,
! [X: set_a,Y: set_a] :
( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
= ( sup_sup_set_a @ X @ Y ) ) ).
% sup_left_idem
thf(fact_68_sup_Oleft__idem,axiom,
! [A2: set_a,B2: set_a] :
( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B2 ) )
= ( sup_sup_set_a @ A2 @ B2 ) ) ).
% sup.left_idem
thf(fact_69_sup__idem,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ X @ X )
= X ) ).
% sup_idem
thf(fact_70_sup_Oidem,axiom,
! [A2: set_a] :
( ( sup_sup_set_a @ A2 @ A2 )
= A2 ) ).
% sup.idem
thf(fact_71_Int__iff,axiom,
! [C: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ C @ ( inf_in4978071631833541052od_b_c @ A @ B ) )
= ( ( member6330420149250801815od_b_c @ C @ A )
& ( member6330420149250801815od_b_c @ C @ B ) ) ) ).
% Int_iff
thf(fact_72_Int__iff,axiom,
! [C: a,A: set_a,B: set_a] :
( ( member_a @ C @ ( inf_inf_set_a @ A @ B ) )
= ( ( member_a @ C @ A )
& ( member_a @ C @ B ) ) ) ).
% Int_iff
thf(fact_73_IntI,axiom,
! [C: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ C @ A )
=> ( ( member6330420149250801815od_b_c @ C @ B )
=> ( member6330420149250801815od_b_c @ C @ ( inf_in4978071631833541052od_b_c @ A @ B ) ) ) ) ).
% IntI
thf(fact_74_IntI,axiom,
! [C: a,A: set_a,B: set_a] :
( ( member_a @ C @ A )
=> ( ( member_a @ C @ B )
=> ( member_a @ C @ ( inf_inf_set_a @ A @ B ) ) ) ) ).
% IntI
thf(fact_75_Un__iff,axiom,
! [C: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ C @ ( sup_su3823046536922626210od_b_c @ A @ B ) )
= ( ( member6330420149250801815od_b_c @ C @ A )
| ( member6330420149250801815od_b_c @ C @ B ) ) ) ).
% Un_iff
thf(fact_76_Un__iff,axiom,
! [C: a,A: set_a,B: set_a] :
( ( member_a @ C @ ( sup_sup_set_a @ A @ B ) )
= ( ( member_a @ C @ A )
| ( member_a @ C @ B ) ) ) ).
% Un_iff
thf(fact_77_UnCI,axiom,
! [C: list_P903359562653991662od_b_c,B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] :
( ( ~ ( member6330420149250801815od_b_c @ C @ B )
=> ( member6330420149250801815od_b_c @ C @ A ) )
=> ( member6330420149250801815od_b_c @ C @ ( sup_su3823046536922626210od_b_c @ A @ B ) ) ) ).
% UnCI
thf(fact_78_UnCI,axiom,
! [C: a,B: set_a,A: set_a] :
( ( ~ ( member_a @ C @ B )
=> ( member_a @ C @ A ) )
=> ( member_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).
% UnCI
thf(fact_79__092_060open_062S1_A_092_060subseteq_062_AFSM_Ostates_AM_092_060close_062,axiom,
ord_less_eq_set_a @ s1 @ ( states_a_b_c @ m ) ).
% \<open>S1 \<subseteq> FSM.states M\<close>
thf(fact_80__092_060open_062S2_A_092_060subseteq_062_AFSM_Ostates_AM_092_060close_062,axiom,
ord_less_eq_set_a @ s2 @ ( states_a_b_c @ m ) ).
% \<open>S2 \<subseteq> FSM.states M\<close>
thf(fact_81__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062wk__suffix_O_A_092_060lbrakk_062w_A_061_Awk_A_064_Awk__suffix_059_Awk__suffix_A_092_060noteq_062_A_091_093_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
~ ! [Wk_suffix: list_P903359562653991662od_b_c] :
( ( w2
= ( append2547753245680614915od_b_c @ wk @ Wk_suffix ) )
=> ( Wk_suffix = nil_Product_prod_b_c ) ) ).
% \<open>\<And>thesis. (\<And>wk_suffix. \<lbrakk>w = wk @ wk_suffix; wk_suffix \<noteq> []\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_82_inf_Obounded__iff,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C ) )
= ( ( ord_less_eq_set_a @ A2 @ B2 )
& ( ord_less_eq_set_a @ A2 @ C ) ) ) ).
% inf.bounded_iff
thf(fact_83_inf_Obounded__iff,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ ( inf_inf_nat @ B2 @ C ) )
= ( ( ord_less_eq_nat @ A2 @ B2 )
& ( ord_less_eq_nat @ A2 @ C ) ) ) ).
% inf.bounded_iff
thf(fact_84_inf_Obounded__iff,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ ( inf_in4978071631833541052od_b_c @ B2 @ C ) )
= ( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
& ( ord_le282488521294790766od_b_c @ A2 @ C ) ) ) ).
% inf.bounded_iff
thf(fact_85_le__inf__iff,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( ( ord_less_eq_set_a @ X @ Y )
& ( ord_less_eq_set_a @ X @ Z ) ) ) ).
% le_inf_iff
thf(fact_86_le__inf__iff,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) )
= ( ( ord_less_eq_nat @ X @ Y )
& ( ord_less_eq_nat @ X @ Z ) ) ) ).
% le_inf_iff
thf(fact_87_le__inf__iff,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c,Z: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ ( inf_in4978071631833541052od_b_c @ Y @ Z ) )
= ( ( ord_le282488521294790766od_b_c @ X @ Y )
& ( ord_le282488521294790766od_b_c @ X @ Z ) ) ) ).
% le_inf_iff
thf(fact_88_sup_Obounded__iff,axiom,
! [B2: set_a,C: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B2 @ C ) @ A2 )
= ( ( ord_less_eq_set_a @ B2 @ A2 )
& ( ord_less_eq_set_a @ C @ A2 ) ) ) ).
% sup.bounded_iff
thf(fact_89_sup_Obounded__iff,axiom,
! [B2: nat,C: nat,A2: nat] :
( ( ord_less_eq_nat @ ( sup_sup_nat @ B2 @ C ) @ A2 )
= ( ( ord_less_eq_nat @ B2 @ A2 )
& ( ord_less_eq_nat @ C @ A2 ) ) ) ).
% sup.bounded_iff
thf(fact_90_sup_Obounded__iff,axiom,
! [B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ B2 @ C ) @ A2 )
= ( ( ord_le282488521294790766od_b_c @ B2 @ A2 )
& ( ord_le282488521294790766od_b_c @ C @ A2 ) ) ) ).
% sup.bounded_iff
thf(fact_91_le__sup__iff,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
= ( ( ord_less_eq_set_a @ X @ Z )
& ( ord_less_eq_set_a @ Y @ Z ) ) ) ).
% le_sup_iff
thf(fact_92_le__sup__iff,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ ( sup_sup_nat @ X @ Y ) @ Z )
= ( ( ord_less_eq_nat @ X @ Z )
& ( ord_less_eq_nat @ Y @ Z ) ) ) ).
% le_sup_iff
thf(fact_93_le__sup__iff,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c,Z: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ X @ Y ) @ Z )
= ( ( ord_le282488521294790766od_b_c @ X @ Z )
& ( ord_le282488521294790766od_b_c @ Y @ Z ) ) ) ).
% le_sup_iff
thf(fact_94_inf__bot__right,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ bot_bot_set_a )
= bot_bot_set_a ) ).
% inf_bot_right
thf(fact_95_inf__bot__left,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ bot_bot_set_a @ X )
= bot_bot_set_a ) ).
% inf_bot_left
thf(fact_96_empty__subsetI,axiom,
! [A: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A ) ).
% empty_subsetI
thf(fact_97_empty__subsetI,axiom,
! [A: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ bot_bo4166481423041325370od_b_c @ A ) ).
% empty_subsetI
thf(fact_98_subset__empty,axiom,
! [A: set_a] :
( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
= ( A = bot_bot_set_a ) ) ).
% subset_empty
thf(fact_99_subset__empty,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ bot_bo4166481423041325370od_b_c )
= ( A = bot_bo4166481423041325370od_b_c ) ) ).
% subset_empty
thf(fact_100_sup__inf__absorb,axiom,
! [X: set_a,Y: set_a] :
( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
= X ) ).
% sup_inf_absorb
thf(fact_101_inf__sup__absorb,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
= X ) ).
% inf_sup_absorb
thf(fact_102_Int__subset__iff,axiom,
! [C2: set_a,A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ C2 @ ( inf_inf_set_a @ A @ B ) )
= ( ( ord_less_eq_set_a @ C2 @ A )
& ( ord_less_eq_set_a @ C2 @ B ) ) ) ).
% Int_subset_iff
thf(fact_103_Int__subset__iff,axiom,
! [C2: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ C2 @ ( inf_in4978071631833541052od_b_c @ A @ B ) )
= ( ( ord_le282488521294790766od_b_c @ C2 @ A )
& ( ord_le282488521294790766od_b_c @ C2 @ B ) ) ) ).
% Int_subset_iff
thf(fact_104_Un__subset__iff,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B ) @ C2 )
= ( ( ord_less_eq_set_a @ A @ C2 )
& ( ord_less_eq_set_a @ B @ C2 ) ) ) ).
% Un_subset_iff
thf(fact_105_Un__subset__iff,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,C2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ A @ B ) @ C2 )
= ( ( ord_le282488521294790766od_b_c @ A @ C2 )
& ( ord_le282488521294790766od_b_c @ B @ C2 ) ) ) ).
% Un_subset_iff
thf(fact_106_Un__Int__eq_I1_J,axiom,
! [S: set_a,T: set_a] :
( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T ) @ S )
= S ) ).
% Un_Int_eq(1)
thf(fact_107_Un__Int__eq_I2_J,axiom,
! [S: set_a,T: set_a] :
( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T ) @ T )
= T ) ).
% Un_Int_eq(2)
thf(fact_108_Un__Int__eq_I3_J,axiom,
! [S: set_a,T: set_a] :
( ( inf_inf_set_a @ S @ ( sup_sup_set_a @ S @ T ) )
= S ) ).
% Un_Int_eq(3)
thf(fact_109_Un__Int__eq_I4_J,axiom,
! [T: set_a,S: set_a] :
( ( inf_inf_set_a @ T @ ( sup_sup_set_a @ S @ T ) )
= T ) ).
% Un_Int_eq(4)
thf(fact_110_Int__Un__eq_I1_J,axiom,
! [S: set_a,T: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T ) @ S )
= S ) ).
% Int_Un_eq(1)
thf(fact_111_Int__Un__eq_I2_J,axiom,
! [S: set_a,T: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T ) @ T )
= T ) ).
% Int_Un_eq(2)
thf(fact_112_Int__Un__eq_I3_J,axiom,
! [S: set_a,T: set_a] :
( ( sup_sup_set_a @ S @ ( inf_inf_set_a @ S @ T ) )
= S ) ).
% Int_Un_eq(3)
thf(fact_113_Int__Un__eq_I4_J,axiom,
! [T: set_a,S: set_a] :
( ( sup_sup_set_a @ T @ ( inf_inf_set_a @ S @ T ) )
= T ) ).
% Int_Un_eq(4)
thf(fact_114_distrib__inf__le,axiom,
! [X: set_a,Y: set_a,Z: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) @ ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).
% distrib_inf_le
thf(fact_115_distrib__inf__le,axiom,
! [X: nat,Y: nat,Z: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ ( inf_inf_nat @ X @ Y ) @ ( inf_inf_nat @ X @ Z ) ) @ ( inf_inf_nat @ X @ ( sup_sup_nat @ Y @ Z ) ) ) ).
% distrib_inf_le
thf(fact_116_distrib__inf__le,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c,Z: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ ( inf_in4978071631833541052od_b_c @ X @ Y ) @ ( inf_in4978071631833541052od_b_c @ X @ Z ) ) @ ( inf_in4978071631833541052od_b_c @ X @ ( sup_su3823046536922626210od_b_c @ Y @ Z ) ) ) ).
% distrib_inf_le
thf(fact_117_distrib__sup__le,axiom,
! [X: set_a,Y: set_a,Z: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) @ ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).
% distrib_sup_le
thf(fact_118_distrib__sup__le,axiom,
! [X: nat,Y: nat,Z: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ X @ ( inf_inf_nat @ Y @ Z ) ) @ ( inf_inf_nat @ ( sup_sup_nat @ X @ Y ) @ ( sup_sup_nat @ X @ Z ) ) ) ).
% distrib_sup_le
thf(fact_119_distrib__sup__le,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c,Z: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ X @ ( inf_in4978071631833541052od_b_c @ Y @ Z ) ) @ ( inf_in4978071631833541052od_b_c @ ( sup_su3823046536922626210od_b_c @ X @ Y ) @ ( sup_su3823046536922626210od_b_c @ X @ Z ) ) ) ).
% distrib_sup_le
thf(fact_120_Un__Int__assoc__eq,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( ( sup_sup_set_a @ ( inf_inf_set_a @ A @ B ) @ C2 )
= ( inf_inf_set_a @ A @ ( sup_sup_set_a @ B @ C2 ) ) )
= ( ord_less_eq_set_a @ C2 @ A ) ) ).
% Un_Int_assoc_eq
thf(fact_121_Un__Int__assoc__eq,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,C2: set_li6436108459499378894od_b_c] :
( ( ( sup_su3823046536922626210od_b_c @ ( inf_in4978071631833541052od_b_c @ A @ B ) @ C2 )
= ( inf_in4978071631833541052od_b_c @ A @ ( sup_su3823046536922626210od_b_c @ B @ C2 ) ) )
= ( ord_le282488521294790766od_b_c @ C2 @ A ) ) ).
% Un_Int_assoc_eq
thf(fact_122_Int__left__commute,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B @ C2 ) )
= ( inf_inf_set_a @ B @ ( inf_inf_set_a @ A @ C2 ) ) ) ).
% Int_left_commute
thf(fact_123_Int__Collect__mono,axiom,
! [A: set_a,B: set_a,P: a > $o,Q4: a > $o] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ! [X2: a] :
( ( member_a @ X2 @ A )
=> ( ( P @ X2 )
=> ( Q4 @ X2 ) ) )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B @ ( collect_a @ Q4 ) ) ) ) ) ).
% Int_Collect_mono
thf(fact_124_Int__Collect__mono,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,P: list_P903359562653991662od_b_c > $o,Q4: list_P903359562653991662od_b_c > $o] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ! [X2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X2 @ A )
=> ( ( P @ X2 )
=> ( Q4 @ X2 ) ) )
=> ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A @ ( collec2280997390073109977od_b_c @ P ) ) @ ( inf_in4978071631833541052od_b_c @ B @ ( collec2280997390073109977od_b_c @ Q4 ) ) ) ) ) ).
% Int_Collect_mono
thf(fact_125_Collect__mono__iff,axiom,
! [P: a > $o,Q4: a > $o] :
( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q4 ) )
= ( ! [X4: a] :
( ( P @ X4 )
=> ( Q4 @ X4 ) ) ) ) ).
% Collect_mono_iff
thf(fact_126_Collect__mono__iff,axiom,
! [P: list_P903359562653991662od_b_c > $o,Q4: list_P903359562653991662od_b_c > $o] :
( ( ord_le282488521294790766od_b_c @ ( collec2280997390073109977od_b_c @ P ) @ ( collec2280997390073109977od_b_c @ Q4 ) )
= ( ! [X4: list_P903359562653991662od_b_c] :
( ( P @ X4 )
=> ( Q4 @ X4 ) ) ) ) ).
% Collect_mono_iff
thf(fact_127_Int__left__absorb,axiom,
! [A: set_a,B: set_a] :
( ( inf_inf_set_a @ A @ ( inf_inf_set_a @ A @ B ) )
= ( inf_inf_set_a @ A @ B ) ) ).
% Int_left_absorb
thf(fact_128_set__eq__subset,axiom,
( ( ^ [Y3: set_a,Z2: set_a] : ( Y3 = Z2 ) )
= ( ^ [A3: set_a,B3: set_a] :
( ( ord_less_eq_set_a @ A3 @ B3 )
& ( ord_less_eq_set_a @ B3 @ A3 ) ) ) ) ).
% set_eq_subset
thf(fact_129_set__eq__subset,axiom,
( ( ^ [Y3: set_li6436108459499378894od_b_c,Z2: set_li6436108459499378894od_b_c] : ( Y3 = Z2 ) )
= ( ^ [A3: set_li6436108459499378894od_b_c,B3: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A3 @ B3 )
& ( ord_le282488521294790766od_b_c @ B3 @ A3 ) ) ) ) ).
% set_eq_subset
thf(fact_130_subset__trans,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( ord_less_eq_set_a @ B @ C2 )
=> ( ord_less_eq_set_a @ A @ C2 ) ) ) ).
% subset_trans
thf(fact_131_subset__trans,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,C2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( ord_le282488521294790766od_b_c @ B @ C2 )
=> ( ord_le282488521294790766od_b_c @ A @ C2 ) ) ) ).
% subset_trans
thf(fact_132_Int__greatest,axiom,
! [C2: set_a,A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ C2 @ A )
=> ( ( ord_less_eq_set_a @ C2 @ B )
=> ( ord_less_eq_set_a @ C2 @ ( inf_inf_set_a @ A @ B ) ) ) ) ).
% Int_greatest
thf(fact_133_Int__greatest,axiom,
! [C2: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ C2 @ A )
=> ( ( ord_le282488521294790766od_b_c @ C2 @ B )
=> ( ord_le282488521294790766od_b_c @ C2 @ ( inf_in4978071631833541052od_b_c @ A @ B ) ) ) ) ).
% Int_greatest
thf(fact_134_Collect__mono,axiom,
! [P: a > $o,Q4: a > $o] :
( ! [X2: a] :
( ( P @ X2 )
=> ( Q4 @ X2 ) )
=> ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q4 ) ) ) ).
% Collect_mono
thf(fact_135_Collect__mono,axiom,
! [P: list_P903359562653991662od_b_c > $o,Q4: list_P903359562653991662od_b_c > $o] :
( ! [X2: list_P903359562653991662od_b_c] :
( ( P @ X2 )
=> ( Q4 @ X2 ) )
=> ( ord_le282488521294790766od_b_c @ ( collec2280997390073109977od_b_c @ P ) @ ( collec2280997390073109977od_b_c @ Q4 ) ) ) ).
% Collect_mono
thf(fact_136_subset__refl,axiom,
! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).
% subset_refl
thf(fact_137_subset__refl,axiom,
! [A: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ A @ A ) ).
% subset_refl
thf(fact_138_Int__commute,axiom,
( inf_inf_set_a
= ( ^ [A3: set_a,B3: set_a] : ( inf_inf_set_a @ B3 @ A3 ) ) ) ).
% Int_commute
thf(fact_139_Int__absorb2,axiom,
! [A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( inf_inf_set_a @ A @ B )
= A ) ) ).
% Int_absorb2
thf(fact_140_Int__absorb2,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( inf_in4978071631833541052od_b_c @ A @ B )
= A ) ) ).
% Int_absorb2
thf(fact_141_Int__absorb1,axiom,
! [B: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B @ A )
=> ( ( inf_inf_set_a @ A @ B )
= B ) ) ).
% Int_absorb1
thf(fact_142_Int__absorb1,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B @ A )
=> ( ( inf_in4978071631833541052od_b_c @ A @ B )
= B ) ) ).
% Int_absorb1
thf(fact_143_subset__iff,axiom,
( ord_less_eq_set_a
= ( ^ [A3: set_a,B3: set_a] :
! [T2: a] :
( ( member_a @ T2 @ A3 )
=> ( member_a @ T2 @ B3 ) ) ) ) ).
% subset_iff
thf(fact_144_subset__iff,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [A3: set_li6436108459499378894od_b_c,B3: set_li6436108459499378894od_b_c] :
! [T2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ T2 @ A3 )
=> ( member6330420149250801815od_b_c @ T2 @ B3 ) ) ) ) ).
% subset_iff
thf(fact_145_equalityD2,axiom,
! [A: set_a,B: set_a] :
( ( A = B )
=> ( ord_less_eq_set_a @ B @ A ) ) ).
% equalityD2
thf(fact_146_equalityD2,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( A = B )
=> ( ord_le282488521294790766od_b_c @ B @ A ) ) ).
% equalityD2
thf(fact_147_equalityD1,axiom,
! [A: set_a,B: set_a] :
( ( A = B )
=> ( ord_less_eq_set_a @ A @ B ) ) ).
% equalityD1
thf(fact_148_equalityD1,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( A = B )
=> ( ord_le282488521294790766od_b_c @ A @ B ) ) ).
% equalityD1
thf(fact_149_Int__lower2,axiom,
! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ B ) ).
% Int_lower2
thf(fact_150_Int__lower2,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A @ B ) @ B ) ).
% Int_lower2
thf(fact_151_Int__lower1,axiom,
! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ A ) ).
% Int_lower1
thf(fact_152_Int__lower1,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A @ B ) @ A ) ).
% Int_lower1
thf(fact_153_Int__absorb,axiom,
! [A: set_a] :
( ( inf_inf_set_a @ A @ A )
= A ) ).
% Int_absorb
thf(fact_154_subset__eq,axiom,
( ord_less_eq_set_a
= ( ^ [A3: set_a,B3: set_a] :
! [X4: a] :
( ( member_a @ X4 @ A3 )
=> ( member_a @ X4 @ B3 ) ) ) ) ).
% subset_eq
thf(fact_155_subset__eq,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [A3: set_li6436108459499378894od_b_c,B3: set_li6436108459499378894od_b_c] :
! [X4: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X4 @ A3 )
=> ( member6330420149250801815od_b_c @ X4 @ B3 ) ) ) ) ).
% subset_eq
thf(fact_156_equalityE,axiom,
! [A: set_a,B: set_a] :
( ( A = B )
=> ~ ( ( ord_less_eq_set_a @ A @ B )
=> ~ ( ord_less_eq_set_a @ B @ A ) ) ) ).
% equalityE
thf(fact_157_equalityE,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( A = B )
=> ~ ( ( ord_le282488521294790766od_b_c @ A @ B )
=> ~ ( ord_le282488521294790766od_b_c @ B @ A ) ) ) ).
% equalityE
thf(fact_158_Int__assoc,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B ) @ C2 )
= ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B @ C2 ) ) ) ).
% Int_assoc
thf(fact_159_Int__mono,axiom,
! [A: set_a,C2: set_a,B: set_a,D: set_a] :
( ( ord_less_eq_set_a @ A @ C2 )
=> ( ( ord_less_eq_set_a @ B @ D )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ ( inf_inf_set_a @ C2 @ D ) ) ) ) ).
% Int_mono
thf(fact_160_Int__mono,axiom,
! [A: set_li6436108459499378894od_b_c,C2: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,D: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ C2 )
=> ( ( ord_le282488521294790766od_b_c @ B @ D )
=> ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A @ B ) @ ( inf_in4978071631833541052od_b_c @ C2 @ D ) ) ) ) ).
% Int_mono
thf(fact_161_subsetD,axiom,
! [A: set_a,B: set_a,C: a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( member_a @ C @ A )
=> ( member_a @ C @ B ) ) ) ).
% subsetD
thf(fact_162_subsetD,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,C: list_P903359562653991662od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( member6330420149250801815od_b_c @ C @ A )
=> ( member6330420149250801815od_b_c @ C @ B ) ) ) ).
% subsetD
thf(fact_163_in__mono,axiom,
! [A: set_a,B: set_a,X: a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( member_a @ X @ A )
=> ( member_a @ X @ B ) ) ) ).
% in_mono
thf(fact_164_in__mono,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( member6330420149250801815od_b_c @ X @ A )
=> ( member6330420149250801815od_b_c @ X @ B ) ) ) ).
% in_mono
thf(fact_165_IntD2,axiom,
! [C: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ C @ ( inf_in4978071631833541052od_b_c @ A @ B ) )
=> ( member6330420149250801815od_b_c @ C @ B ) ) ).
% IntD2
thf(fact_166_IntD2,axiom,
! [C: a,A: set_a,B: set_a] :
( ( member_a @ C @ ( inf_inf_set_a @ A @ B ) )
=> ( member_a @ C @ B ) ) ).
% IntD2
thf(fact_167_IntD1,axiom,
! [C: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ C @ ( inf_in4978071631833541052od_b_c @ A @ B ) )
=> ( member6330420149250801815od_b_c @ C @ A ) ) ).
% IntD1
thf(fact_168_IntD1,axiom,
! [C: a,A: set_a,B: set_a] :
( ( member_a @ C @ ( inf_inf_set_a @ A @ B ) )
=> ( member_a @ C @ A ) ) ).
% IntD1
thf(fact_169_IntE,axiom,
! [C: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ C @ ( inf_in4978071631833541052od_b_c @ A @ B ) )
=> ~ ( ( member6330420149250801815od_b_c @ C @ A )
=> ~ ( member6330420149250801815od_b_c @ C @ B ) ) ) ).
% IntE
thf(fact_170_IntE,axiom,
! [C: a,A: set_a,B: set_a] :
( ( member_a @ C @ ( inf_inf_set_a @ A @ B ) )
=> ~ ( ( member_a @ C @ A )
=> ~ ( member_a @ C @ B ) ) ) ).
% IntE
thf(fact_171_inf__left__commute,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z ) ) ) ).
% inf_left_commute
thf(fact_172_inf_Oleft__commute,axiom,
! [B2: set_a,A2: set_a,C: set_a] :
( ( inf_inf_set_a @ B2 @ ( inf_inf_set_a @ A2 @ C ) )
= ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C ) ) ) ).
% inf.left_commute
thf(fact_173_inf_OcoboundedI2,axiom,
! [B2: set_a,C: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ B2 @ C )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C ) ) ).
% inf.coboundedI2
thf(fact_174_inf_OcoboundedI2,axiom,
! [B2: nat,C: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ C )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ C ) ) ).
% inf.coboundedI2
thf(fact_175_inf_OcoboundedI2,axiom,
! [B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) @ C ) ) ).
% inf.coboundedI2
thf(fact_176_inf_OcoboundedI1,axiom,
! [A2: set_a,C: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ A2 @ C )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C ) ) ).
% inf.coboundedI1
thf(fact_177_inf_OcoboundedI1,axiom,
! [A2: nat,C: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ C )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ C ) ) ).
% inf.coboundedI1
thf(fact_178_inf_OcoboundedI1,axiom,
! [A2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ C )
=> ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) @ C ) ) ).
% inf.coboundedI1
thf(fact_179_inf_Oabsorb__iff2,axiom,
( ord_less_eq_set_a
= ( ^ [B4: set_a,A4: set_a] :
( ( inf_inf_set_a @ A4 @ B4 )
= B4 ) ) ) ).
% inf.absorb_iff2
thf(fact_180_inf_Oabsorb__iff2,axiom,
( ord_less_eq_nat
= ( ^ [B4: nat,A4: nat] :
( ( inf_inf_nat @ A4 @ B4 )
= B4 ) ) ) ).
% inf.absorb_iff2
thf(fact_181_inf_Oabsorb__iff2,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [B4: set_li6436108459499378894od_b_c,A4: set_li6436108459499378894od_b_c] :
( ( inf_in4978071631833541052od_b_c @ A4 @ B4 )
= B4 ) ) ) ).
% inf.absorb_iff2
thf(fact_182_inf_Oabsorb__iff1,axiom,
( ord_less_eq_set_a
= ( ^ [A4: set_a,B4: set_a] :
( ( inf_inf_set_a @ A4 @ B4 )
= A4 ) ) ) ).
% inf.absorb_iff1
thf(fact_183_inf_Oabsorb__iff1,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B4: nat] :
( ( inf_inf_nat @ A4 @ B4 )
= A4 ) ) ) ).
% inf.absorb_iff1
thf(fact_184_inf_Oabsorb__iff1,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [A4: set_li6436108459499378894od_b_c,B4: set_li6436108459499378894od_b_c] :
( ( inf_in4978071631833541052od_b_c @ A4 @ B4 )
= A4 ) ) ) ).
% inf.absorb_iff1
thf(fact_185_inf_Ocobounded2,axiom,
! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ B2 ) ).
% inf.cobounded2
thf(fact_186_inf_Ocobounded2,axiom,
! [A2: nat,B2: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ B2 ) ).
% inf.cobounded2
thf(fact_187_inf_Ocobounded2,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) @ B2 ) ).
% inf.cobounded2
thf(fact_188_inf_Ocobounded1,axiom,
! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ A2 ) ).
% inf.cobounded1
thf(fact_189_inf_Ocobounded1,axiom,
! [A2: nat,B2: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ A2 ) ).
% inf.cobounded1
thf(fact_190_inf_Ocobounded1,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) @ A2 ) ).
% inf.cobounded1
thf(fact_191_inf_Oorder__iff,axiom,
( ord_less_eq_set_a
= ( ^ [A4: set_a,B4: set_a] :
( A4
= ( inf_inf_set_a @ A4 @ B4 ) ) ) ) ).
% inf.order_iff
thf(fact_192_inf_Oorder__iff,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B4: nat] :
( A4
= ( inf_inf_nat @ A4 @ B4 ) ) ) ) ).
% inf.order_iff
thf(fact_193_inf_Oorder__iff,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [A4: set_li6436108459499378894od_b_c,B4: set_li6436108459499378894od_b_c] :
( A4
= ( inf_in4978071631833541052od_b_c @ A4 @ B4 ) ) ) ) ).
% inf.order_iff
thf(fact_194_inf__greatest,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ X @ Z )
=> ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ) ).
% inf_greatest
thf(fact_195_inf__greatest,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ X @ Z )
=> ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) ) ) ) ).
% inf_greatest
thf(fact_196_inf__greatest,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c,Z: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ Y )
=> ( ( ord_le282488521294790766od_b_c @ X @ Z )
=> ( ord_le282488521294790766od_b_c @ X @ ( inf_in4978071631833541052od_b_c @ Y @ Z ) ) ) ) ).
% inf_greatest
thf(fact_197_inf_OboundedI,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ord_less_eq_set_a @ A2 @ C )
=> ( ord_less_eq_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C ) ) ) ) ).
% inf.boundedI
thf(fact_198_inf_OboundedI,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ A2 @ C )
=> ( ord_less_eq_nat @ A2 @ ( inf_inf_nat @ B2 @ C ) ) ) ) ).
% inf.boundedI
thf(fact_199_inf_OboundedI,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ord_le282488521294790766od_b_c @ A2 @ C )
=> ( ord_le282488521294790766od_b_c @ A2 @ ( inf_in4978071631833541052od_b_c @ B2 @ C ) ) ) ) ).
% inf.boundedI
thf(fact_200_inf_OboundedE,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C ) )
=> ~ ( ( ord_less_eq_set_a @ A2 @ B2 )
=> ~ ( ord_less_eq_set_a @ A2 @ C ) ) ) ).
% inf.boundedE
thf(fact_201_inf_OboundedE,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ ( inf_inf_nat @ B2 @ C ) )
=> ~ ( ( ord_less_eq_nat @ A2 @ B2 )
=> ~ ( ord_less_eq_nat @ A2 @ C ) ) ) ).
% inf.boundedE
thf(fact_202_inf_OboundedE,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ ( inf_in4978071631833541052od_b_c @ B2 @ C ) )
=> ~ ( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ~ ( ord_le282488521294790766od_b_c @ A2 @ C ) ) ) ).
% inf.boundedE
thf(fact_203_inf__commute,axiom,
( inf_inf_set_a
= ( ^ [X4: set_a,Y2: set_a] : ( inf_inf_set_a @ Y2 @ X4 ) ) ) ).
% inf_commute
thf(fact_204_inf__absorb2,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( inf_inf_set_a @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_205_inf__absorb2,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( inf_inf_nat @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_206_inf__absorb2,axiom,
! [Y: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ Y @ X )
=> ( ( inf_in4978071631833541052od_b_c @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_207_inf__absorb1,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( inf_inf_set_a @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_208_inf__absorb1,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( inf_inf_nat @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_209_inf__absorb1,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ Y )
=> ( ( inf_in4978071631833541052od_b_c @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_210_inf_Ocommute,axiom,
( inf_inf_set_a
= ( ^ [A4: set_a,B4: set_a] : ( inf_inf_set_a @ B4 @ A4 ) ) ) ).
% inf.commute
thf(fact_211_inf_Oabsorb2,axiom,
! [B2: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ B2 @ A2 )
=> ( ( inf_inf_set_a @ A2 @ B2 )
= B2 ) ) ).
% inf.absorb2
thf(fact_212_inf_Oabsorb2,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
=> ( ( inf_inf_nat @ A2 @ B2 )
= B2 ) ) ).
% inf.absorb2
thf(fact_213_inf_Oabsorb2,axiom,
! [B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B2 @ A2 )
=> ( ( inf_in4978071631833541052od_b_c @ A2 @ B2 )
= B2 ) ) ).
% inf.absorb2
thf(fact_214_inf_Oabsorb1,axiom,
! [A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( inf_inf_set_a @ A2 @ B2 )
= A2 ) ) ).
% inf.absorb1
thf(fact_215_inf_Oabsorb1,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( inf_inf_nat @ A2 @ B2 )
= A2 ) ) ).
% inf.absorb1
thf(fact_216_inf_Oabsorb1,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( inf_in4978071631833541052od_b_c @ A2 @ B2 )
= A2 ) ) ).
% inf.absorb1
thf(fact_217_le__iff__inf,axiom,
( ord_less_eq_set_a
= ( ^ [X4: set_a,Y2: set_a] :
( ( inf_inf_set_a @ X4 @ Y2 )
= X4 ) ) ) ).
% le_iff_inf
thf(fact_218_le__iff__inf,axiom,
( ord_less_eq_nat
= ( ^ [X4: nat,Y2: nat] :
( ( inf_inf_nat @ X4 @ Y2 )
= X4 ) ) ) ).
% le_iff_inf
thf(fact_219_le__iff__inf,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [X4: set_li6436108459499378894od_b_c,Y2: set_li6436108459499378894od_b_c] :
( ( inf_in4978071631833541052od_b_c @ X4 @ Y2 )
= X4 ) ) ) ).
% le_iff_inf
thf(fact_220_inf__unique,axiom,
! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
( ! [X2: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( F @ X2 @ Y4 ) @ X2 )
=> ( ! [X2: set_a,Y4: set_a] : ( ord_less_eq_set_a @ ( F @ X2 @ Y4 ) @ Y4 )
=> ( ! [X2: set_a,Y4: set_a,Z3: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ( ord_less_eq_set_a @ X2 @ Z3 )
=> ( ord_less_eq_set_a @ X2 @ ( F @ Y4 @ Z3 ) ) ) )
=> ( ( inf_inf_set_a @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_221_inf__unique,axiom,
! [F: nat > nat > nat,X: nat,Y: nat] :
( ! [X2: nat,Y4: nat] : ( ord_less_eq_nat @ ( F @ X2 @ Y4 ) @ X2 )
=> ( ! [X2: nat,Y4: nat] : ( ord_less_eq_nat @ ( F @ X2 @ Y4 ) @ Y4 )
=> ( ! [X2: nat,Y4: nat,Z3: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ( ord_less_eq_nat @ X2 @ Z3 )
=> ( ord_less_eq_nat @ X2 @ ( F @ Y4 @ Z3 ) ) ) )
=> ( ( inf_inf_nat @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_222_inf__unique,axiom,
! [F: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] :
( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( F @ X2 @ Y4 ) @ X2 )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( F @ X2 @ Y4 ) @ Y4 )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c,Z3: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ( ord_le282488521294790766od_b_c @ X2 @ Z3 )
=> ( ord_le282488521294790766od_b_c @ X2 @ ( F @ Y4 @ Z3 ) ) ) )
=> ( ( inf_in4978071631833541052od_b_c @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_223_inf_OorderI,axiom,
! [A2: set_a,B2: set_a] :
( ( A2
= ( inf_inf_set_a @ A2 @ B2 ) )
=> ( ord_less_eq_set_a @ A2 @ B2 ) ) ).
% inf.orderI
thf(fact_224_inf_OorderI,axiom,
! [A2: nat,B2: nat] :
( ( A2
= ( inf_inf_nat @ A2 @ B2 ) )
=> ( ord_less_eq_nat @ A2 @ B2 ) ) ).
% inf.orderI
thf(fact_225_inf_OorderI,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( A2
= ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) )
=> ( ord_le282488521294790766od_b_c @ A2 @ B2 ) ) ).
% inf.orderI
thf(fact_226_inf_OorderE,axiom,
! [A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( A2
= ( inf_inf_set_a @ A2 @ B2 ) ) ) ).
% inf.orderE
thf(fact_227_inf_OorderE,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( A2
= ( inf_inf_nat @ A2 @ B2 ) ) ) ).
% inf.orderE
thf(fact_228_inf_OorderE,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( A2
= ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) ) ) ).
% inf.orderE
thf(fact_229_inf__assoc,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z )
= ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ).
% inf_assoc
thf(fact_230_inf_Oassoc,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C )
= ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C ) ) ) ).
% inf.assoc
thf(fact_231_le__infI2,axiom,
! [B2: set_a,X: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ B2 @ X )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ X ) ) ).
% le_infI2
thf(fact_232_le__infI2,axiom,
! [B2: nat,X: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ X )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ X ) ) ).
% le_infI2
thf(fact_233_le__infI2,axiom,
! [B2: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B2 @ X )
=> ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) @ X ) ) ).
% le_infI2
thf(fact_234_le__infI1,axiom,
! [A2: set_a,X: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ A2 @ X )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ X ) ) ).
% le_infI1
thf(fact_235_le__infI1,axiom,
! [A2: nat,X: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ X )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ X ) ) ).
% le_infI1
thf(fact_236_le__infI1,axiom,
! [A2: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ X )
=> ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) @ X ) ) ).
% le_infI1
thf(fact_237_inf__mono,axiom,
! [A2: set_a,C: set_a,B2: set_a,D2: set_a] :
( ( ord_less_eq_set_a @ A2 @ C )
=> ( ( ord_less_eq_set_a @ B2 @ D2 )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( inf_inf_set_a @ C @ D2 ) ) ) ) ).
% inf_mono
thf(fact_238_inf__mono,axiom,
! [A2: nat,C: nat,B2: nat,D2: nat] :
( ( ord_less_eq_nat @ A2 @ C )
=> ( ( ord_less_eq_nat @ B2 @ D2 )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A2 @ B2 ) @ ( inf_inf_nat @ C @ D2 ) ) ) ) ).
% inf_mono
thf(fact_239_inf__mono,axiom,
! [A2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,D2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ C )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ D2 )
=> ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) @ ( inf_in4978071631833541052od_b_c @ C @ D2 ) ) ) ) ).
% inf_mono
thf(fact_240_le__infI,axiom,
! [X: set_a,A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ X @ A2 )
=> ( ( ord_less_eq_set_a @ X @ B2 )
=> ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).
% le_infI
thf(fact_241_le__infI,axiom,
! [X: nat,A2: nat,B2: nat] :
( ( ord_less_eq_nat @ X @ A2 )
=> ( ( ord_less_eq_nat @ X @ B2 )
=> ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A2 @ B2 ) ) ) ) ).
% le_infI
thf(fact_242_le__infI,axiom,
! [X: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ A2 )
=> ( ( ord_le282488521294790766od_b_c @ X @ B2 )
=> ( ord_le282488521294790766od_b_c @ X @ ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) ) ) ) ).
% le_infI
thf(fact_243_le__infE,axiom,
! [X: set_a,A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A2 @ B2 ) )
=> ~ ( ( ord_less_eq_set_a @ X @ A2 )
=> ~ ( ord_less_eq_set_a @ X @ B2 ) ) ) ).
% le_infE
thf(fact_244_le__infE,axiom,
! [X: nat,A2: nat,B2: nat] :
( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A2 @ B2 ) )
=> ~ ( ( ord_less_eq_nat @ X @ A2 )
=> ~ ( ord_less_eq_nat @ X @ B2 ) ) ) ).
% le_infE
thf(fact_245_le__infE,axiom,
! [X: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ ( inf_in4978071631833541052od_b_c @ A2 @ B2 ) )
=> ~ ( ( ord_le282488521294790766od_b_c @ X @ A2 )
=> ~ ( ord_le282488521294790766od_b_c @ X @ B2 ) ) ) ).
% le_infE
thf(fact_246_inf__le2,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_247_inf__le2,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_248_inf__le2,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_249_inf__le1,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_250_inf__le1,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_251_inf__le1,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_252_inf__sup__ord_I1_J,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_253_inf__sup__ord_I1_J,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_254_inf__sup__ord_I1_J,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_255_inf__sup__ord_I2_J,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_256_inf__sup__ord_I2_J,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_257_inf__sup__ord_I2_J,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ ( inf_in4978071631833541052od_b_c @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_258_inf__sup__aci_I1_J,axiom,
( inf_inf_set_a
= ( ^ [X4: set_a,Y2: set_a] : ( inf_inf_set_a @ Y2 @ X4 ) ) ) ).
% inf_sup_aci(1)
thf(fact_259_inf__sup__aci_I2_J,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z )
= ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ).
% inf_sup_aci(2)
thf(fact_260_inf__sup__aci_I3_J,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z ) ) ) ).
% inf_sup_aci(3)
thf(fact_261_inf__sup__aci_I4_J,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
= ( inf_inf_set_a @ X @ Y ) ) ).
% inf_sup_aci(4)
thf(fact_262_bot__set__def,axiom,
( bot_bot_set_a
= ( collect_a @ bot_bot_a_o ) ) ).
% bot_set_def
thf(fact_263_sup__inf__distrib2,axiom,
! [Y: set_a,Z: set_a,X: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ Z ) @ X )
= ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ X ) @ ( sup_sup_set_a @ Z @ X ) ) ) ).
% sup_inf_distrib2
thf(fact_264_sup__inf__distrib1,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).
% sup_inf_distrib1
thf(fact_265_inf__sup__distrib2,axiom,
! [Y: set_a,Z: set_a,X: set_a] :
( ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X )
= ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ X ) @ ( inf_inf_set_a @ Z @ X ) ) ) ).
% inf_sup_distrib2
thf(fact_266_inf__sup__distrib1,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
= ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ).
% inf_sup_distrib1
thf(fact_267_distrib__imp2,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ! [X2: set_a,Y4: set_a,Z3: set_a] :
( ( sup_sup_set_a @ X2 @ ( inf_inf_set_a @ Y4 @ Z3 ) )
= ( inf_inf_set_a @ ( sup_sup_set_a @ X2 @ Y4 ) @ ( sup_sup_set_a @ X2 @ Z3 ) ) )
=> ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
= ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ) ).
% distrib_imp2
thf(fact_268_distrib__imp1,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ! [X2: set_a,Y4: set_a,Z3: set_a] :
( ( inf_inf_set_a @ X2 @ ( sup_sup_set_a @ Y4 @ Z3 ) )
= ( sup_sup_set_a @ ( inf_inf_set_a @ X2 @ Y4 ) @ ( inf_inf_set_a @ X2 @ Z3 ) ) )
=> ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ) ).
% distrib_imp1
thf(fact_269_disjoint__iff__not__equal,axiom,
! [A: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A @ B )
= bot_bot_set_a )
= ( ! [X4: a] :
( ( member_a @ X4 @ A )
=> ! [Y2: a] :
( ( member_a @ Y2 @ B )
=> ( X4 != Y2 ) ) ) ) ) ).
% disjoint_iff_not_equal
thf(fact_270_Int__empty__right,axiom,
! [A: set_a] :
( ( inf_inf_set_a @ A @ bot_bot_set_a )
= bot_bot_set_a ) ).
% Int_empty_right
thf(fact_271_Int__empty__left,axiom,
! [B: set_a] :
( ( inf_inf_set_a @ bot_bot_set_a @ B )
= bot_bot_set_a ) ).
% Int_empty_left
thf(fact_272_disjoint__iff,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ( inf_in4978071631833541052od_b_c @ A @ B )
= bot_bo4166481423041325370od_b_c )
= ( ! [X4: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X4 @ A )
=> ~ ( member6330420149250801815od_b_c @ X4 @ B ) ) ) ) ).
% disjoint_iff
thf(fact_273_disjoint__iff,axiom,
! [A: set_a,B: set_a] :
( ( ( inf_inf_set_a @ A @ B )
= bot_bot_set_a )
= ( ! [X4: a] :
( ( member_a @ X4 @ A )
=> ~ ( member_a @ X4 @ B ) ) ) ) ).
% disjoint_iff
thf(fact_274_Int__emptyI,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ! [X2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X2 @ A )
=> ~ ( member6330420149250801815od_b_c @ X2 @ B ) )
=> ( ( inf_in4978071631833541052od_b_c @ A @ B )
= bot_bo4166481423041325370od_b_c ) ) ).
% Int_emptyI
thf(fact_275_Int__emptyI,axiom,
! [A: set_a,B: set_a] :
( ! [X2: a] :
( ( member_a @ X2 @ A )
=> ~ ( member_a @ X2 @ B ) )
=> ( ( inf_inf_set_a @ A @ B )
= bot_bot_set_a ) ) ).
% Int_emptyI
thf(fact_276_Un__Int__distrib2,axiom,
! [B: set_a,C2: set_a,A: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ B @ C2 ) @ A )
= ( inf_inf_set_a @ ( sup_sup_set_a @ B @ A ) @ ( sup_sup_set_a @ C2 @ A ) ) ) ).
% Un_Int_distrib2
thf(fact_277_Int__Un__distrib2,axiom,
! [B: set_a,C2: set_a,A: set_a] :
( ( inf_inf_set_a @ ( sup_sup_set_a @ B @ C2 ) @ A )
= ( sup_sup_set_a @ ( inf_inf_set_a @ B @ A ) @ ( inf_inf_set_a @ C2 @ A ) ) ) ).
% Int_Un_distrib2
thf(fact_278_Un__Int__distrib,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( sup_sup_set_a @ A @ ( inf_inf_set_a @ B @ C2 ) )
= ( inf_inf_set_a @ ( sup_sup_set_a @ A @ B ) @ ( sup_sup_set_a @ A @ C2 ) ) ) ).
% Un_Int_distrib
thf(fact_279_Int__Un__distrib,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( inf_inf_set_a @ A @ ( sup_sup_set_a @ B @ C2 ) )
= ( sup_sup_set_a @ ( inf_inf_set_a @ A @ B ) @ ( inf_inf_set_a @ A @ C2 ) ) ) ).
% Int_Un_distrib
thf(fact_280_Un__Int__crazy,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ A @ B ) @ ( inf_inf_set_a @ B @ C2 ) ) @ ( inf_inf_set_a @ C2 @ A ) )
= ( inf_inf_set_a @ ( inf_inf_set_a @ ( sup_sup_set_a @ A @ B ) @ ( sup_sup_set_a @ B @ C2 ) ) @ ( sup_sup_set_a @ C2 @ A ) ) ) ).
% Un_Int_crazy
thf(fact_281_sup_OcoboundedI2,axiom,
! [C: set_a,B2: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ C @ B2 )
=> ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).
% sup.coboundedI2
thf(fact_282_sup_OcoboundedI2,axiom,
! [C: nat,B2: nat,A2: nat] :
( ( ord_less_eq_nat @ C @ B2 )
=> ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).
% sup.coboundedI2
thf(fact_283_sup_OcoboundedI2,axiom,
! [C: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ C @ B2 )
=> ( ord_le282488521294790766od_b_c @ C @ ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) ) ) ).
% sup.coboundedI2
thf(fact_284_sup_OcoboundedI1,axiom,
! [C: set_a,A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ C @ A2 )
=> ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).
% sup.coboundedI1
thf(fact_285_sup_OcoboundedI1,axiom,
! [C: nat,A2: nat,B2: nat] :
( ( ord_less_eq_nat @ C @ A2 )
=> ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).
% sup.coboundedI1
thf(fact_286_sup_OcoboundedI1,axiom,
! [C: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ C @ A2 )
=> ( ord_le282488521294790766od_b_c @ C @ ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) ) ) ).
% sup.coboundedI1
thf(fact_287_sup_Oabsorb__iff2,axiom,
( ord_less_eq_set_a
= ( ^ [A4: set_a,B4: set_a] :
( ( sup_sup_set_a @ A4 @ B4 )
= B4 ) ) ) ).
% sup.absorb_iff2
thf(fact_288_sup_Oabsorb__iff2,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B4: nat] :
( ( sup_sup_nat @ A4 @ B4 )
= B4 ) ) ) ).
% sup.absorb_iff2
thf(fact_289_sup_Oabsorb__iff2,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [A4: set_li6436108459499378894od_b_c,B4: set_li6436108459499378894od_b_c] :
( ( sup_su3823046536922626210od_b_c @ A4 @ B4 )
= B4 ) ) ) ).
% sup.absorb_iff2
thf(fact_290_sup_Oabsorb__iff1,axiom,
( ord_less_eq_set_a
= ( ^ [B4: set_a,A4: set_a] :
( ( sup_sup_set_a @ A4 @ B4 )
= A4 ) ) ) ).
% sup.absorb_iff1
thf(fact_291_sup_Oabsorb__iff1,axiom,
( ord_less_eq_nat
= ( ^ [B4: nat,A4: nat] :
( ( sup_sup_nat @ A4 @ B4 )
= A4 ) ) ) ).
% sup.absorb_iff1
thf(fact_292_sup_Oabsorb__iff1,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [B4: set_li6436108459499378894od_b_c,A4: set_li6436108459499378894od_b_c] :
( ( sup_su3823046536922626210od_b_c @ A4 @ B4 )
= A4 ) ) ) ).
% sup.absorb_iff1
thf(fact_293_sup_Ocobounded2,axiom,
! [B2: set_a,A2: set_a] : ( ord_less_eq_set_a @ B2 @ ( sup_sup_set_a @ A2 @ B2 ) ) ).
% sup.cobounded2
thf(fact_294_sup_Ocobounded2,axiom,
! [B2: nat,A2: nat] : ( ord_less_eq_nat @ B2 @ ( sup_sup_nat @ A2 @ B2 ) ) ).
% sup.cobounded2
thf(fact_295_sup_Ocobounded2,axiom,
! [B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ B2 @ ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) ) ).
% sup.cobounded2
thf(fact_296_sup_Ocobounded1,axiom,
! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B2 ) ) ).
% sup.cobounded1
thf(fact_297_sup_Ocobounded1,axiom,
! [A2: nat,B2: nat] : ( ord_less_eq_nat @ A2 @ ( sup_sup_nat @ A2 @ B2 ) ) ).
% sup.cobounded1
thf(fact_298_sup_Ocobounded1,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ A2 @ ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) ) ).
% sup.cobounded1
thf(fact_299_sup_Oorder__iff,axiom,
( ord_less_eq_set_a
= ( ^ [B4: set_a,A4: set_a] :
( A4
= ( sup_sup_set_a @ A4 @ B4 ) ) ) ) ).
% sup.order_iff
thf(fact_300_sup_Oorder__iff,axiom,
( ord_less_eq_nat
= ( ^ [B4: nat,A4: nat] :
( A4
= ( sup_sup_nat @ A4 @ B4 ) ) ) ) ).
% sup.order_iff
thf(fact_301_sup_Oorder__iff,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [B4: set_li6436108459499378894od_b_c,A4: set_li6436108459499378894od_b_c] :
( A4
= ( sup_su3823046536922626210od_b_c @ A4 @ B4 ) ) ) ) ).
% sup.order_iff
thf(fact_302_sup_OboundedI,axiom,
! [B2: set_a,A2: set_a,C: set_a] :
( ( ord_less_eq_set_a @ B2 @ A2 )
=> ( ( ord_less_eq_set_a @ C @ A2 )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ B2 @ C ) @ A2 ) ) ) ).
% sup.boundedI
thf(fact_303_sup_OboundedI,axiom,
! [B2: nat,A2: nat,C: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
=> ( ( ord_less_eq_nat @ C @ A2 )
=> ( ord_less_eq_nat @ ( sup_sup_nat @ B2 @ C ) @ A2 ) ) ) ).
% sup.boundedI
thf(fact_304_sup_OboundedI,axiom,
! [B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B2 @ A2 )
=> ( ( ord_le282488521294790766od_b_c @ C @ A2 )
=> ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ B2 @ C ) @ A2 ) ) ) ).
% sup.boundedI
thf(fact_305_sup_OboundedE,axiom,
! [B2: set_a,C: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B2 @ C ) @ A2 )
=> ~ ( ( ord_less_eq_set_a @ B2 @ A2 )
=> ~ ( ord_less_eq_set_a @ C @ A2 ) ) ) ).
% sup.boundedE
thf(fact_306_sup_OboundedE,axiom,
! [B2: nat,C: nat,A2: nat] :
( ( ord_less_eq_nat @ ( sup_sup_nat @ B2 @ C ) @ A2 )
=> ~ ( ( ord_less_eq_nat @ B2 @ A2 )
=> ~ ( ord_less_eq_nat @ C @ A2 ) ) ) ).
% sup.boundedE
thf(fact_307_sup_OboundedE,axiom,
! [B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ B2 @ C ) @ A2 )
=> ~ ( ( ord_le282488521294790766od_b_c @ B2 @ A2 )
=> ~ ( ord_le282488521294790766od_b_c @ C @ A2 ) ) ) ).
% sup.boundedE
thf(fact_308_sup__absorb2,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( sup_sup_set_a @ X @ Y )
= Y ) ) ).
% sup_absorb2
thf(fact_309_sup__absorb2,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( sup_sup_nat @ X @ Y )
= Y ) ) ).
% sup_absorb2
thf(fact_310_sup__absorb2,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ Y )
=> ( ( sup_su3823046536922626210od_b_c @ X @ Y )
= Y ) ) ).
% sup_absorb2
thf(fact_311_sup__absorb1,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( sup_sup_set_a @ X @ Y )
= X ) ) ).
% sup_absorb1
thf(fact_312_sup__absorb1,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( sup_sup_nat @ X @ Y )
= X ) ) ).
% sup_absorb1
thf(fact_313_sup__absorb1,axiom,
! [Y: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ Y @ X )
=> ( ( sup_su3823046536922626210od_b_c @ X @ Y )
= X ) ) ).
% sup_absorb1
thf(fact_314_sup_Oabsorb2,axiom,
! [A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( sup_sup_set_a @ A2 @ B2 )
= B2 ) ) ).
% sup.absorb2
thf(fact_315_sup_Oabsorb2,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( sup_sup_nat @ A2 @ B2 )
= B2 ) ) ).
% sup.absorb2
thf(fact_316_sup_Oabsorb2,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( sup_su3823046536922626210od_b_c @ A2 @ B2 )
= B2 ) ) ).
% sup.absorb2
thf(fact_317_sup_Oabsorb1,axiom,
! [B2: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ B2 @ A2 )
=> ( ( sup_sup_set_a @ A2 @ B2 )
= A2 ) ) ).
% sup.absorb1
thf(fact_318_sup_Oabsorb1,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
=> ( ( sup_sup_nat @ A2 @ B2 )
= A2 ) ) ).
% sup.absorb1
thf(fact_319_sup_Oabsorb1,axiom,
! [B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B2 @ A2 )
=> ( ( sup_su3823046536922626210od_b_c @ A2 @ B2 )
= A2 ) ) ).
% sup.absorb1
thf(fact_320_sup__unique,axiom,
! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
( ! [X2: set_a,Y4: set_a] : ( ord_less_eq_set_a @ X2 @ ( F @ X2 @ Y4 ) )
=> ( ! [X2: set_a,Y4: set_a] : ( ord_less_eq_set_a @ Y4 @ ( F @ X2 @ Y4 ) )
=> ( ! [X2: set_a,Y4: set_a,Z3: set_a] :
( ( ord_less_eq_set_a @ Y4 @ X2 )
=> ( ( ord_less_eq_set_a @ Z3 @ X2 )
=> ( ord_less_eq_set_a @ ( F @ Y4 @ Z3 ) @ X2 ) ) )
=> ( ( sup_sup_set_a @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% sup_unique
thf(fact_321_sup__unique,axiom,
! [F: nat > nat > nat,X: nat,Y: nat] :
( ! [X2: nat,Y4: nat] : ( ord_less_eq_nat @ X2 @ ( F @ X2 @ Y4 ) )
=> ( ! [X2: nat,Y4: nat] : ( ord_less_eq_nat @ Y4 @ ( F @ X2 @ Y4 ) )
=> ( ! [X2: nat,Y4: nat,Z3: nat] :
( ( ord_less_eq_nat @ Y4 @ X2 )
=> ( ( ord_less_eq_nat @ Z3 @ X2 )
=> ( ord_less_eq_nat @ ( F @ Y4 @ Z3 ) @ X2 ) ) )
=> ( ( sup_sup_nat @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% sup_unique
thf(fact_322_sup__unique,axiom,
! [F: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] :
( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ X2 @ ( F @ X2 @ Y4 ) )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ Y4 @ ( F @ X2 @ Y4 ) )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c,Z3: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ Y4 @ X2 )
=> ( ( ord_le282488521294790766od_b_c @ Z3 @ X2 )
=> ( ord_le282488521294790766od_b_c @ ( F @ Y4 @ Z3 ) @ X2 ) ) )
=> ( ( sup_su3823046536922626210od_b_c @ X @ Y )
= ( F @ X @ Y ) ) ) ) ) ).
% sup_unique
thf(fact_323_sup_OorderI,axiom,
! [A2: set_a,B2: set_a] :
( ( A2
= ( sup_sup_set_a @ A2 @ B2 ) )
=> ( ord_less_eq_set_a @ B2 @ A2 ) ) ).
% sup.orderI
thf(fact_324_sup_OorderI,axiom,
! [A2: nat,B2: nat] :
( ( A2
= ( sup_sup_nat @ A2 @ B2 ) )
=> ( ord_less_eq_nat @ B2 @ A2 ) ) ).
% sup.orderI
thf(fact_325_sup_OorderI,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( A2
= ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) )
=> ( ord_le282488521294790766od_b_c @ B2 @ A2 ) ) ).
% sup.orderI
thf(fact_326_sup_OorderE,axiom,
! [B2: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ B2 @ A2 )
=> ( A2
= ( sup_sup_set_a @ A2 @ B2 ) ) ) ).
% sup.orderE
thf(fact_327_sup_OorderE,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
=> ( A2
= ( sup_sup_nat @ A2 @ B2 ) ) ) ).
% sup.orderE
thf(fact_328_sup_OorderE,axiom,
! [B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B2 @ A2 )
=> ( A2
= ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) ) ) ).
% sup.orderE
thf(fact_329_le__iff__sup,axiom,
( ord_less_eq_set_a
= ( ^ [X4: set_a,Y2: set_a] :
( ( sup_sup_set_a @ X4 @ Y2 )
= Y2 ) ) ) ).
% le_iff_sup
thf(fact_330_le__iff__sup,axiom,
( ord_less_eq_nat
= ( ^ [X4: nat,Y2: nat] :
( ( sup_sup_nat @ X4 @ Y2 )
= Y2 ) ) ) ).
% le_iff_sup
thf(fact_331_le__iff__sup,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [X4: set_li6436108459499378894od_b_c,Y2: set_li6436108459499378894od_b_c] :
( ( sup_su3823046536922626210od_b_c @ X4 @ Y2 )
= Y2 ) ) ) ).
% le_iff_sup
thf(fact_332_sup__least,axiom,
! [Y: set_a,X: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( ord_less_eq_set_a @ Z @ X )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X ) ) ) ).
% sup_least
thf(fact_333_sup__least,axiom,
! [Y: nat,X: nat,Z: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( ord_less_eq_nat @ Z @ X )
=> ( ord_less_eq_nat @ ( sup_sup_nat @ Y @ Z ) @ X ) ) ) ).
% sup_least
thf(fact_334_sup__least,axiom,
! [Y: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c,Z: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ Y @ X )
=> ( ( ord_le282488521294790766od_b_c @ Z @ X )
=> ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ Y @ Z ) @ X ) ) ) ).
% sup_least
thf(fact_335_sup__mono,axiom,
! [A2: set_a,C: set_a,B2: set_a,D2: set_a] :
( ( ord_less_eq_set_a @ A2 @ C )
=> ( ( ord_less_eq_set_a @ B2 @ D2 )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ ( sup_sup_set_a @ C @ D2 ) ) ) ) ).
% sup_mono
thf(fact_336_sup__mono,axiom,
! [A2: nat,C: nat,B2: nat,D2: nat] :
( ( ord_less_eq_nat @ A2 @ C )
=> ( ( ord_less_eq_nat @ B2 @ D2 )
=> ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B2 ) @ ( sup_sup_nat @ C @ D2 ) ) ) ) ).
% sup_mono
thf(fact_337_sup__mono,axiom,
! [A2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,D2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ C )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ D2 )
=> ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) @ ( sup_su3823046536922626210od_b_c @ C @ D2 ) ) ) ) ).
% sup_mono
thf(fact_338_sup_Omono,axiom,
! [C: set_a,A2: set_a,D2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ C @ A2 )
=> ( ( ord_less_eq_set_a @ D2 @ B2 )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ C @ D2 ) @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ) ).
% sup.mono
thf(fact_339_sup_Omono,axiom,
! [C: nat,A2: nat,D2: nat,B2: nat] :
( ( ord_less_eq_nat @ C @ A2 )
=> ( ( ord_less_eq_nat @ D2 @ B2 )
=> ( ord_less_eq_nat @ ( sup_sup_nat @ C @ D2 ) @ ( sup_sup_nat @ A2 @ B2 ) ) ) ) ).
% sup.mono
thf(fact_340_sup_Omono,axiom,
! [C: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c,D2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ C @ A2 )
=> ( ( ord_le282488521294790766od_b_c @ D2 @ B2 )
=> ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ C @ D2 ) @ ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) ) ) ) ).
% sup.mono
thf(fact_341_le__supI2,axiom,
! [X: set_a,B2: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ X @ B2 )
=> ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).
% le_supI2
thf(fact_342_le__supI2,axiom,
! [X: nat,B2: nat,A2: nat] :
( ( ord_less_eq_nat @ X @ B2 )
=> ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).
% le_supI2
thf(fact_343_le__supI2,axiom,
! [X: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ B2 )
=> ( ord_le282488521294790766od_b_c @ X @ ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) ) ) ).
% le_supI2
thf(fact_344_le__supI1,axiom,
! [X: set_a,A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ X @ A2 )
=> ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).
% le_supI1
thf(fact_345_le__supI1,axiom,
! [X: nat,A2: nat,B2: nat] :
( ( ord_less_eq_nat @ X @ A2 )
=> ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).
% le_supI1
thf(fact_346_le__supI1,axiom,
! [X: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ A2 )
=> ( ord_le282488521294790766od_b_c @ X @ ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) ) ) ).
% le_supI1
thf(fact_347_sup__ge2,axiom,
! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).
% sup_ge2
thf(fact_348_sup__ge2,axiom,
! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).
% sup_ge2
thf(fact_349_sup__ge2,axiom,
! [Y: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ Y @ ( sup_su3823046536922626210od_b_c @ X @ Y ) ) ).
% sup_ge2
thf(fact_350_sup__ge1,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).
% sup_ge1
thf(fact_351_sup__ge1,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).
% sup_ge1
thf(fact_352_sup__ge1,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ X @ ( sup_su3823046536922626210od_b_c @ X @ Y ) ) ).
% sup_ge1
thf(fact_353_le__supI,axiom,
! [A2: set_a,X: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ A2 @ X )
=> ( ( ord_less_eq_set_a @ B2 @ X )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ X ) ) ) ).
% le_supI
thf(fact_354_le__supI,axiom,
! [A2: nat,X: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ X )
=> ( ( ord_less_eq_nat @ B2 @ X )
=> ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B2 ) @ X ) ) ) ).
% le_supI
thf(fact_355_le__supI,axiom,
! [A2: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ X )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ X )
=> ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) @ X ) ) ) ).
% le_supI
thf(fact_356_le__supE,axiom,
! [A2: set_a,B2: set_a,X: set_a] :
( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ X )
=> ~ ( ( ord_less_eq_set_a @ A2 @ X )
=> ~ ( ord_less_eq_set_a @ B2 @ X ) ) ) ).
% le_supE
thf(fact_357_le__supE,axiom,
! [A2: nat,B2: nat,X: nat] :
( ( ord_less_eq_nat @ ( sup_sup_nat @ A2 @ B2 ) @ X )
=> ~ ( ( ord_less_eq_nat @ A2 @ X )
=> ~ ( ord_less_eq_nat @ B2 @ X ) ) ) ).
% le_supE
thf(fact_358_le__supE,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ A2 @ B2 ) @ X )
=> ~ ( ( ord_le282488521294790766od_b_c @ A2 @ X )
=> ~ ( ord_le282488521294790766od_b_c @ B2 @ X ) ) ) ).
% le_supE
thf(fact_359_inf__sup__ord_I3_J,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).
% inf_sup_ord(3)
thf(fact_360_inf__sup__ord_I3_J,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).
% inf_sup_ord(3)
thf(fact_361_inf__sup__ord_I3_J,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ X @ ( sup_su3823046536922626210od_b_c @ X @ Y ) ) ).
% inf_sup_ord(3)
thf(fact_362_inf__sup__ord_I4_J,axiom,
! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).
% inf_sup_ord(4)
thf(fact_363_inf__sup__ord_I4_J,axiom,
! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).
% inf_sup_ord(4)
thf(fact_364_inf__sup__ord_I4_J,axiom,
! [Y: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ Y @ ( sup_su3823046536922626210od_b_c @ X @ Y ) ) ).
% inf_sup_ord(4)
thf(fact_365_subset__Un__eq,axiom,
( ord_less_eq_set_a
= ( ^ [A3: set_a,B3: set_a] :
( ( sup_sup_set_a @ A3 @ B3 )
= B3 ) ) ) ).
% subset_Un_eq
thf(fact_366_subset__Un__eq,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [A3: set_li6436108459499378894od_b_c,B3: set_li6436108459499378894od_b_c] :
( ( sup_su3823046536922626210od_b_c @ A3 @ B3 )
= B3 ) ) ) ).
% subset_Un_eq
thf(fact_367_subset__UnE,axiom,
! [C2: set_a,A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ C2 @ ( sup_sup_set_a @ A @ B ) )
=> ~ ! [A5: set_a] :
( ( ord_less_eq_set_a @ A5 @ A )
=> ! [B5: set_a] :
( ( ord_less_eq_set_a @ B5 @ B )
=> ( C2
!= ( sup_sup_set_a @ A5 @ B5 ) ) ) ) ) ).
% subset_UnE
thf(fact_368_subset__UnE,axiom,
! [C2: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ C2 @ ( sup_su3823046536922626210od_b_c @ A @ B ) )
=> ~ ! [A5: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A5 @ A )
=> ! [B5: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B5 @ B )
=> ( C2
!= ( sup_su3823046536922626210od_b_c @ A5 @ B5 ) ) ) ) ) ).
% subset_UnE
thf(fact_369_Un__absorb2,axiom,
! [B: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B @ A )
=> ( ( sup_sup_set_a @ A @ B )
= A ) ) ).
% Un_absorb2
thf(fact_370_Un__absorb2,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B @ A )
=> ( ( sup_su3823046536922626210od_b_c @ A @ B )
= A ) ) ).
% Un_absorb2
thf(fact_371_Un__absorb1,axiom,
! [A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( sup_sup_set_a @ A @ B )
= B ) ) ).
% Un_absorb1
thf(fact_372_Un__absorb1,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( sup_su3823046536922626210od_b_c @ A @ B )
= B ) ) ).
% Un_absorb1
thf(fact_373_Un__upper2,axiom,
! [B: set_a,A: set_a] : ( ord_less_eq_set_a @ B @ ( sup_sup_set_a @ A @ B ) ) ).
% Un_upper2
thf(fact_374_Un__upper2,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ B @ ( sup_su3823046536922626210od_b_c @ A @ B ) ) ).
% Un_upper2
thf(fact_375_Un__upper1,axiom,
! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ A @ ( sup_sup_set_a @ A @ B ) ) ).
% Un_upper1
thf(fact_376_Un__upper1,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ A @ ( sup_su3823046536922626210od_b_c @ A @ B ) ) ).
% Un_upper1
thf(fact_377_Un__least,axiom,
! [A: set_a,C2: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ C2 )
=> ( ( ord_less_eq_set_a @ B @ C2 )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B ) @ C2 ) ) ) ).
% Un_least
thf(fact_378_Un__least,axiom,
! [A: set_li6436108459499378894od_b_c,C2: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ C2 )
=> ( ( ord_le282488521294790766od_b_c @ B @ C2 )
=> ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ A @ B ) @ C2 ) ) ) ).
% Un_least
thf(fact_379_Un__mono,axiom,
! [A: set_a,C2: set_a,B: set_a,D: set_a] :
( ( ord_less_eq_set_a @ A @ C2 )
=> ( ( ord_less_eq_set_a @ B @ D )
=> ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B ) @ ( sup_sup_set_a @ C2 @ D ) ) ) ) ).
% Un_mono
thf(fact_380_Un__mono,axiom,
! [A: set_li6436108459499378894od_b_c,C2: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,D: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ C2 )
=> ( ( ord_le282488521294790766od_b_c @ B @ D )
=> ( ord_le282488521294790766od_b_c @ ( sup_su3823046536922626210od_b_c @ A @ B ) @ ( sup_su3823046536922626210od_b_c @ C2 @ D ) ) ) ) ).
% Un_mono
thf(fact_381_language__prefix,axiom,
! [Io1: list_P903359562653991662od_b_c,Io2: list_P903359562653991662od_b_c,M2: fsm_a_b_c,Q: a] :
( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Io1 @ Io2 ) @ ( lS_a_b_c @ M2 @ Q ) )
=> ( member6330420149250801815od_b_c @ Io1 @ ( lS_a_b_c @ M2 @ Q ) ) ) ).
% language_prefix
thf(fact_382_ex__in__conv,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ( ? [X4: list_P903359562653991662od_b_c] : ( member6330420149250801815od_b_c @ X4 @ A ) )
= ( A != bot_bo4166481423041325370od_b_c ) ) ).
% ex_in_conv
thf(fact_383_ex__in__conv,axiom,
! [A: set_a] :
( ( ? [X4: a] : ( member_a @ X4 @ A ) )
= ( A != bot_bot_set_a ) ) ).
% ex_in_conv
thf(fact_384_equals0I,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ! [Y4: list_P903359562653991662od_b_c] :
~ ( member6330420149250801815od_b_c @ Y4 @ A )
=> ( A = bot_bo4166481423041325370od_b_c ) ) ).
% equals0I
thf(fact_385_equals0I,axiom,
! [A: set_a] :
( ! [Y4: a] :
~ ( member_a @ Y4 @ A )
=> ( A = bot_bot_set_a ) ) ).
% equals0I
thf(fact_386_equals0D,axiom,
! [A: set_li6436108459499378894od_b_c,A2: list_P903359562653991662od_b_c] :
( ( A = bot_bo4166481423041325370od_b_c )
=> ~ ( member6330420149250801815od_b_c @ A2 @ A ) ) ).
% equals0D
thf(fact_387_equals0D,axiom,
! [A: set_a,A2: a] :
( ( A = bot_bot_set_a )
=> ~ ( member_a @ A2 @ A ) ) ).
% equals0D
thf(fact_388_emptyE,axiom,
! [A2: list_P903359562653991662od_b_c] :
~ ( member6330420149250801815od_b_c @ A2 @ bot_bo4166481423041325370od_b_c ) ).
% emptyE
thf(fact_389_emptyE,axiom,
! [A2: a] :
~ ( member_a @ A2 @ bot_bot_set_a ) ).
% emptyE
thf(fact_390_sup__left__commute,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
= ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z ) ) ) ).
% sup_left_commute
thf(fact_391_sup_Oleft__commute,axiom,
! [B2: set_a,A2: set_a,C: set_a] :
( ( sup_sup_set_a @ B2 @ ( sup_sup_set_a @ A2 @ C ) )
= ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C ) ) ) ).
% sup.left_commute
thf(fact_392_sup__commute,axiom,
( sup_sup_set_a
= ( ^ [X4: set_a,Y2: set_a] : ( sup_sup_set_a @ Y2 @ X4 ) ) ) ).
% sup_commute
thf(fact_393_sup_Ocommute,axiom,
( sup_sup_set_a
= ( ^ [A4: set_a,B4: set_a] : ( sup_sup_set_a @ B4 @ A4 ) ) ) ).
% sup.commute
thf(fact_394_sup__assoc,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
= ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).
% sup_assoc
thf(fact_395_sup_Oassoc,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C )
= ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C ) ) ) ).
% sup.assoc
thf(fact_396_inf__sup__aci_I5_J,axiom,
( sup_sup_set_a
= ( ^ [X4: set_a,Y2: set_a] : ( sup_sup_set_a @ Y2 @ X4 ) ) ) ).
% inf_sup_aci(5)
thf(fact_397_inf__sup__aci_I6_J,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
= ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).
% inf_sup_aci(6)
thf(fact_398_inf__sup__aci_I7_J,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
= ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z ) ) ) ).
% inf_sup_aci(7)
thf(fact_399_inf__sup__aci_I8_J,axiom,
! [X: set_a,Y: set_a] :
( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
= ( sup_sup_set_a @ X @ Y ) ) ).
% inf_sup_aci(8)
thf(fact_400_observable__after__language__append,axiom,
! [M2: fsm_a_b_c,Io1: list_P903359562653991662od_b_c,Q: a,Io2: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Io1 @ ( lS_a_b_c @ M2 @ Q ) )
=> ( ( member6330420149250801815od_b_c @ Io2 @ ( lS_a_b_c @ M2 @ ( after_a_b_c @ M2 @ Q @ Io1 ) ) )
=> ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Io1 @ Io2 ) @ ( lS_a_b_c @ M2 @ Q ) ) ) ) ) ).
% observable_after_language_append
thf(fact_401_observable__after__language__none,axiom,
! [M2: fsm_a_b_c,Io1: list_P903359562653991662od_b_c,Q: a,Io2: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Io1 @ ( lS_a_b_c @ M2 @ Q ) )
=> ( ~ ( member6330420149250801815od_b_c @ Io2 @ ( lS_a_b_c @ M2 @ ( after_a_b_c @ M2 @ Q @ Io1 ) ) )
=> ~ ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Io1 @ Io2 ) @ ( lS_a_b_c @ M2 @ Q ) ) ) ) ) ).
% observable_after_language_none
thf(fact_402_observable__after__eq,axiom,
! [M2: fsm_a_b_c,Q: a,Io1: list_P903359562653991662od_b_c,Io2: list_P903359562653991662od_b_c,Io: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( ( after_a_b_c @ M2 @ Q @ Io1 )
= ( after_a_b_c @ M2 @ Q @ Io2 ) )
=> ( ( member6330420149250801815od_b_c @ Io1 @ ( lS_a_b_c @ M2 @ Q ) )
=> ( ( member6330420149250801815od_b_c @ Io2 @ ( lS_a_b_c @ M2 @ Q ) )
=> ( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Io1 @ Io ) @ ( lS_a_b_c @ M2 @ Q ) )
= ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Io2 @ Io ) @ ( lS_a_b_c @ M2 @ Q ) ) ) ) ) ) ) ).
% observable_after_eq
thf(fact_403_after__language__iff,axiom,
! [M2: fsm_a_b_c,Alpha: list_P903359562653991662od_b_c,Q: a,Gamma: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Alpha @ ( lS_a_b_c @ M2 @ Q ) )
=> ( ( member6330420149250801815od_b_c @ Gamma @ ( lS_a_b_c @ M2 @ ( after_a_b_c @ M2 @ Q @ Alpha ) ) )
= ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Alpha @ Gamma ) @ ( lS_a_b_c @ M2 @ Q ) ) ) ) ) ).
% after_language_iff
thf(fact_404_after__split,axiom,
! [M2: fsm_a_b_c,Alpha: list_P903359562653991662od_b_c,Gamma: list_P903359562653991662od_b_c,Q: a] :
( ( observable_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Alpha @ Gamma ) @ ( lS_a_b_c @ M2 @ Q ) )
=> ( ( after_a_b_c @ M2 @ ( after_a_b_c @ M2 @ Q @ Alpha ) @ Gamma )
= ( after_a_b_c @ M2 @ Q @ ( append2547753245680614915od_b_c @ Alpha @ Gamma ) ) ) ) ) ).
% after_split
thf(fact_405_Un__left__commute,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B @ C2 ) )
= ( sup_sup_set_a @ B @ ( sup_sup_set_a @ A @ C2 ) ) ) ).
% Un_left_commute
thf(fact_406_Un__left__absorb,axiom,
! [A: set_a,B: set_a] :
( ( sup_sup_set_a @ A @ ( sup_sup_set_a @ A @ B ) )
= ( sup_sup_set_a @ A @ B ) ) ).
% Un_left_absorb
thf(fact_407_Un__commute,axiom,
( sup_sup_set_a
= ( ^ [A3: set_a,B3: set_a] : ( sup_sup_set_a @ B3 @ A3 ) ) ) ).
% Un_commute
thf(fact_408_Un__absorb,axiom,
! [A: set_a] :
( ( sup_sup_set_a @ A @ A )
= A ) ).
% Un_absorb
thf(fact_409_Un__assoc,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B ) @ C2 )
= ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B @ C2 ) ) ) ).
% Un_assoc
thf(fact_410_ball__Un,axiom,
! [A: set_a,B: set_a,P: a > $o] :
( ( ! [X4: a] :
( ( member_a @ X4 @ ( sup_sup_set_a @ A @ B ) )
=> ( P @ X4 ) ) )
= ( ! [X4: a] :
( ( member_a @ X4 @ A )
=> ( P @ X4 ) )
& ! [X4: a] :
( ( member_a @ X4 @ B )
=> ( P @ X4 ) ) ) ) ).
% ball_Un
thf(fact_411_bex__Un,axiom,
! [A: set_a,B: set_a,P: a > $o] :
( ( ? [X4: a] :
( ( member_a @ X4 @ ( sup_sup_set_a @ A @ B ) )
& ( P @ X4 ) ) )
= ( ? [X4: a] :
( ( member_a @ X4 @ A )
& ( P @ X4 ) )
| ? [X4: a] :
( ( member_a @ X4 @ B )
& ( P @ X4 ) ) ) ) ).
% bex_Un
thf(fact_412_UnI2,axiom,
! [C: list_P903359562653991662od_b_c,B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ C @ B )
=> ( member6330420149250801815od_b_c @ C @ ( sup_su3823046536922626210od_b_c @ A @ B ) ) ) ).
% UnI2
thf(fact_413_UnI2,axiom,
! [C: a,B: set_a,A: set_a] :
( ( member_a @ C @ B )
=> ( member_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).
% UnI2
thf(fact_414_UnI1,axiom,
! [C: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ C @ A )
=> ( member6330420149250801815od_b_c @ C @ ( sup_su3823046536922626210od_b_c @ A @ B ) ) ) ).
% UnI1
thf(fact_415_UnI1,axiom,
! [C: a,A: set_a,B: set_a] :
( ( member_a @ C @ A )
=> ( member_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).
% UnI1
thf(fact_416_UnE,axiom,
! [C: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ C @ ( sup_su3823046536922626210od_b_c @ A @ B ) )
=> ( ~ ( member6330420149250801815od_b_c @ C @ A )
=> ( member6330420149250801815od_b_c @ C @ B ) ) ) ).
% UnE
thf(fact_417_UnE,axiom,
! [C: a,A: set_a,B: set_a] :
( ( member_a @ C @ ( sup_sup_set_a @ A @ B ) )
=> ( ~ ( member_a @ C @ A )
=> ( member_a @ C @ B ) ) ) ).
% UnE
thf(fact_418_distinguish__prepend,axiom,
! [M2: fsm_li6801133765522507155_c_b_c,Q1: list_P903359562653991662od_b_c,Io: list_P903359562653991662od_b_c,Q22: list_P903359562653991662od_b_c,W: list_P903359562653991662od_b_c] :
( ( observ6293852833591064631_c_b_c @ M2 )
=> ( ( distin2804555989863659119_c_b_c @ M2 @ ( after_4052058690717316294_c_b_c @ M2 @ Q1 @ Io ) @ ( after_4052058690717316294_c_b_c @ M2 @ Q22 @ Io ) @ W )
=> ( ( member6330420149250801815od_b_c @ Q1 @ ( states7681702920031268536_c_b_c @ M2 ) )
=> ( ( member6330420149250801815od_b_c @ Q22 @ ( states7681702920031268536_c_b_c @ M2 ) )
=> ( ( member6330420149250801815od_b_c @ Io @ ( lS_lis2930931384350476499_c_b_c @ M2 @ Q1 ) )
=> ( ( member6330420149250801815od_b_c @ Io @ ( lS_lis2930931384350476499_c_b_c @ M2 @ Q22 ) )
=> ( distin2804555989863659119_c_b_c @ M2 @ Q1 @ Q22 @ ( append2547753245680614915od_b_c @ Io @ W ) ) ) ) ) ) ) ) ).
% distinguish_prepend
thf(fact_419_distinguish__prepend,axiom,
! [M2: fsm_a_b_c,Q1: a,Io: list_P903359562653991662od_b_c,Q22: a,W: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( distinguishes_a_b_c @ M2 @ ( after_a_b_c @ M2 @ Q1 @ Io ) @ ( after_a_b_c @ M2 @ Q22 @ Io ) @ W )
=> ( ( member_a @ Q1 @ ( states_a_b_c @ M2 ) )
=> ( ( member_a @ Q22 @ ( states_a_b_c @ M2 ) )
=> ( ( member6330420149250801815od_b_c @ Io @ ( lS_a_b_c @ M2 @ Q1 ) )
=> ( ( member6330420149250801815od_b_c @ Io @ ( lS_a_b_c @ M2 @ Q22 ) )
=> ( distinguishes_a_b_c @ M2 @ Q1 @ Q22 @ ( append2547753245680614915od_b_c @ Io @ W ) ) ) ) ) ) ) ) ).
% distinguish_prepend
thf(fact_420_Un__empty__right,axiom,
! [A: set_a] :
( ( sup_sup_set_a @ A @ bot_bot_set_a )
= A ) ).
% Un_empty_right
thf(fact_421_Un__empty__left,axiom,
! [B: set_a] :
( ( sup_sup_set_a @ bot_bot_set_a @ B )
= B ) ).
% Un_empty_left
thf(fact_422_minimally__distinguishes__after__append,axiom,
! [M2: fsm_li6801133765522507155_c_b_c,Q1: list_P903359562653991662od_b_c,Q22: list_P903359562653991662od_b_c,W: list_P903359562653991662od_b_c,W2: list_P903359562653991662od_b_c] :
( ( observ6293852833591064631_c_b_c @ M2 )
=> ( ( minima1987601567150520449_c_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Q1 @ ( states7681702920031268536_c_b_c @ M2 ) )
=> ( ( member6330420149250801815od_b_c @ Q22 @ ( states7681702920031268536_c_b_c @ M2 ) )
=> ( ( minima9089413714839006869_c_b_c @ M2 @ Q1 @ Q22 @ ( append2547753245680614915od_b_c @ W @ W2 ) )
=> ( ( W2 != nil_Product_prod_b_c )
=> ( minima9089413714839006869_c_b_c @ M2 @ ( after_4052058690717316294_c_b_c @ M2 @ Q1 @ W ) @ ( after_4052058690717316294_c_b_c @ M2 @ Q22 @ W ) @ W2 ) ) ) ) ) ) ) ).
% minimally_distinguishes_after_append
thf(fact_423_minimally__distinguishes__after__append,axiom,
! [M2: fsm_a_b_c,Q1: a,Q22: a,W: list_P903359562653991662od_b_c,W2: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( minimal_a_b_c @ M2 )
=> ( ( member_a @ Q1 @ ( states_a_b_c @ M2 ) )
=> ( ( member_a @ Q22 @ ( states_a_b_c @ M2 ) )
=> ( ( minima243535863231358885_a_b_c @ M2 @ Q1 @ Q22 @ ( append2547753245680614915od_b_c @ W @ W2 ) )
=> ( ( W2 != nil_Product_prod_b_c )
=> ( minima243535863231358885_a_b_c @ M2 @ ( after_a_b_c @ M2 @ Q1 @ W ) @ ( after_a_b_c @ M2 @ Q22 @ W ) @ W2 ) ) ) ) ) ) ) ).
% minimally_distinguishes_after_append
thf(fact_424_append__is__Nil__conv,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c] :
( ( ( append2547753245680614915od_b_c @ Xs @ Ys )
= nil_Product_prod_b_c )
= ( ( Xs = nil_Product_prod_b_c )
& ( Ys = nil_Product_prod_b_c ) ) ) ).
% append_is_Nil_conv
thf(fact_425_Nil__is__append__conv,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c] :
( ( nil_Product_prod_b_c
= ( append2547753245680614915od_b_c @ Xs @ Ys ) )
= ( ( Xs = nil_Product_prod_b_c )
& ( Ys = nil_Product_prod_b_c ) ) ) ).
% Nil_is_append_conv
thf(fact_426_self__append__conv2,axiom,
! [Y: list_P903359562653991662od_b_c,Xs: list_P903359562653991662od_b_c] :
( ( Y
= ( append2547753245680614915od_b_c @ Xs @ Y ) )
= ( Xs = nil_Product_prod_b_c ) ) ).
% self_append_conv2
thf(fact_427_append__self__conv2,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c] :
( ( ( append2547753245680614915od_b_c @ Xs @ Ys )
= Ys )
= ( Xs = nil_Product_prod_b_c ) ) ).
% append_self_conv2
thf(fact_428_self__append__conv,axiom,
! [Y: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c] :
( ( Y
= ( append2547753245680614915od_b_c @ Y @ Ys ) )
= ( Ys = nil_Product_prod_b_c ) ) ).
% self_append_conv
thf(fact_429_append__self__conv,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c] :
( ( ( append2547753245680614915od_b_c @ Xs @ Ys )
= Xs )
= ( Ys = nil_Product_prod_b_c ) ) ).
% append_self_conv
thf(fact_430_append__Nil2,axiom,
! [Xs: list_P903359562653991662od_b_c] :
( ( append2547753245680614915od_b_c @ Xs @ nil_Product_prod_b_c )
= Xs ) ).
% append_Nil2
thf(fact_431_append_Oright__neutral,axiom,
! [A2: list_P903359562653991662od_b_c] :
( ( append2547753245680614915od_b_c @ A2 @ nil_Product_prod_b_c )
= A2 ) ).
% append.right_neutral
thf(fact_432_boolean__algebra_Oconj__zero__right,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ bot_bot_set_a )
= bot_bot_set_a ) ).
% boolean_algebra.conj_zero_right
thf(fact_433_boolean__algebra_Oconj__zero__left,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ bot_bot_set_a @ X )
= bot_bot_set_a ) ).
% boolean_algebra.conj_zero_left
thf(fact_434_same__append__eq,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c,Zs: list_P903359562653991662od_b_c] :
( ( ( append2547753245680614915od_b_c @ Xs @ Ys )
= ( append2547753245680614915od_b_c @ Xs @ Zs ) )
= ( Ys = Zs ) ) ).
% same_append_eq
thf(fact_435_append_Oassoc,axiom,
! [A2: list_P903359562653991662od_b_c,B2: list_P903359562653991662od_b_c,C: list_P903359562653991662od_b_c] :
( ( append2547753245680614915od_b_c @ ( append2547753245680614915od_b_c @ A2 @ B2 ) @ C )
= ( append2547753245680614915od_b_c @ A2 @ ( append2547753245680614915od_b_c @ B2 @ C ) ) ) ).
% append.assoc
thf(fact_436_append__assoc,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c,Zs: list_P903359562653991662od_b_c] :
( ( append2547753245680614915od_b_c @ ( append2547753245680614915od_b_c @ Xs @ Ys ) @ Zs )
= ( append2547753245680614915od_b_c @ Xs @ ( append2547753245680614915od_b_c @ Ys @ Zs ) ) ) ).
% append_assoc
thf(fact_437_append__same__eq,axiom,
! [Ys: list_P903359562653991662od_b_c,Xs: list_P903359562653991662od_b_c,Zs: list_P903359562653991662od_b_c] :
( ( ( append2547753245680614915od_b_c @ Ys @ Xs )
= ( append2547753245680614915od_b_c @ Zs @ Xs ) )
= ( Ys = Zs ) ) ).
% append_same_eq
thf(fact_438_distinguishes__def,axiom,
( distinguishes_a_b_c
= ( ^ [M: fsm_a_b_c,Q12: a,Q23: a,Io3: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ Io3 @ ( sup_su3823046536922626210od_b_c @ ( lS_a_b_c @ M @ Q12 ) @ ( lS_a_b_c @ M @ Q23 ) ) )
& ~ ( member6330420149250801815od_b_c @ Io3 @ ( inf_in4978071631833541052od_b_c @ ( lS_a_b_c @ M @ Q12 ) @ ( lS_a_b_c @ M @ Q23 ) ) ) ) ) ) ).
% distinguishes_def
thf(fact_439_boolean__algebra__cancel_Oinf1,axiom,
! [A: set_a,K: set_a,A2: set_a,B2: set_a] :
( ( A
= ( inf_inf_set_a @ K @ A2 ) )
=> ( ( inf_inf_set_a @ A @ B2 )
= ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).
% boolean_algebra_cancel.inf1
thf(fact_440_boolean__algebra__cancel_Oinf2,axiom,
! [B: set_a,K: set_a,B2: set_a,A2: set_a] :
( ( B
= ( inf_inf_set_a @ K @ B2 ) )
=> ( ( inf_inf_set_a @ A2 @ B )
= ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).
% boolean_algebra_cancel.inf2
thf(fact_441_boolean__algebra__cancel_Osup1,axiom,
! [A: set_a,K: set_a,A2: set_a,B2: set_a] :
( ( A
= ( sup_sup_set_a @ K @ A2 ) )
=> ( ( sup_sup_set_a @ A @ B2 )
= ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ) ).
% boolean_algebra_cancel.sup1
thf(fact_442_boolean__algebra__cancel_Osup2,axiom,
! [B: set_a,K: set_a,B2: set_a,A2: set_a] :
( ( B
= ( sup_sup_set_a @ K @ B2 ) )
=> ( ( sup_sup_set_a @ A2 @ B )
= ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ) ).
% boolean_algebra_cancel.sup2
thf(fact_443_append__eq__appendI,axiom,
! [Xs: list_P903359562653991662od_b_c,Xs1: list_P903359562653991662od_b_c,Zs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c,Us: list_P903359562653991662od_b_c] :
( ( ( append2547753245680614915od_b_c @ Xs @ Xs1 )
= Zs )
=> ( ( Ys
= ( append2547753245680614915od_b_c @ Xs1 @ Us ) )
=> ( ( append2547753245680614915od_b_c @ Xs @ Ys )
= ( append2547753245680614915od_b_c @ Zs @ Us ) ) ) ) ).
% append_eq_appendI
thf(fact_444_append__eq__append__conv2,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c,Zs: list_P903359562653991662od_b_c,Ts: list_P903359562653991662od_b_c] :
( ( ( append2547753245680614915od_b_c @ Xs @ Ys )
= ( append2547753245680614915od_b_c @ Zs @ Ts ) )
= ( ? [Us2: list_P903359562653991662od_b_c] :
( ( ( Xs
= ( append2547753245680614915od_b_c @ Zs @ Us2 ) )
& ( ( append2547753245680614915od_b_c @ Us2 @ Ys )
= Ts ) )
| ( ( ( append2547753245680614915od_b_c @ Xs @ Us2 )
= Zs )
& ( Ys
= ( append2547753245680614915od_b_c @ Us2 @ Ts ) ) ) ) ) ) ).
% append_eq_append_conv2
thf(fact_445_boolean__algebra_Odisj__zero__right,axiom,
! [X: set_a] :
( ( sup_sup_set_a @ X @ bot_bot_set_a )
= X ) ).
% boolean_algebra.disj_zero_right
thf(fact_446_append__Nil,axiom,
! [Ys: list_P903359562653991662od_b_c] :
( ( append2547753245680614915od_b_c @ nil_Product_prod_b_c @ Ys )
= Ys ) ).
% append_Nil
thf(fact_447_append_Oleft__neutral,axiom,
! [A2: list_P903359562653991662od_b_c] :
( ( append2547753245680614915od_b_c @ nil_Product_prod_b_c @ A2 )
= A2 ) ).
% append.left_neutral
thf(fact_448_eq__Nil__appendI,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c] :
( ( Xs = Ys )
=> ( Xs
= ( append2547753245680614915od_b_c @ nil_Product_prod_b_c @ Ys ) ) ) ).
% eq_Nil_appendI
thf(fact_449_boolean__algebra_Oconj__disj__distrib,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
= ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ).
% boolean_algebra.conj_disj_distrib
thf(fact_450_boolean__algebra_Odisj__conj__distrib,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).
% boolean_algebra.disj_conj_distrib
thf(fact_451_boolean__algebra_Oconj__disj__distrib2,axiom,
! [Y: set_a,Z: set_a,X: set_a] :
( ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X )
= ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ X ) @ ( inf_inf_set_a @ Z @ X ) ) ) ).
% boolean_algebra.conj_disj_distrib2
thf(fact_452_boolean__algebra_Odisj__conj__distrib2,axiom,
! [Y: set_a,Z: set_a,X: set_a] :
( ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ Z ) @ X )
= ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ X ) @ ( sup_sup_set_a @ Z @ X ) ) ) ).
% boolean_algebra.disj_conj_distrib2
thf(fact_453_order__refl,axiom,
! [X: set_a] : ( ord_less_eq_set_a @ X @ X ) ).
% order_refl
thf(fact_454_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_455_order__refl,axiom,
! [X: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ X @ X ) ).
% order_refl
thf(fact_456_dual__order_Orefl,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).
% dual_order.refl
thf(fact_457_dual__order_Orefl,axiom,
! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).
% dual_order.refl
thf(fact_458_dual__order_Orefl,axiom,
! [A2: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ A2 @ A2 ) ).
% dual_order.refl
thf(fact_459_bot__empty__eq,axiom,
( bot_bo5496101219168594979_b_c_o
= ( ^ [X4: list_P903359562653991662od_b_c] : ( member6330420149250801815od_b_c @ X4 @ bot_bo4166481423041325370od_b_c ) ) ) ).
% bot_empty_eq
thf(fact_460_bot__empty__eq,axiom,
( bot_bot_a_o
= ( ^ [X4: a] : ( member_a @ X4 @ bot_bot_set_a ) ) ) ).
% bot_empty_eq
thf(fact_461_Collect__empty__eq__bot,axiom,
! [P: a > $o] :
( ( ( collect_a @ P )
= bot_bot_set_a )
= ( P = bot_bot_a_o ) ) ).
% Collect_empty_eq_bot
thf(fact_462_minimally__distinguishes__no__prefix,axiom,
! [M2: fsm_a_b_c,U: list_P903359562653991662od_b_c,W: list_P903359562653991662od_b_c,V2: list_P903359562653991662od_b_c,W2: list_P903359562653991662od_b_c,W3: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ U @ W ) @ ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) )
=> ( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ V2 @ W ) @ ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) )
=> ( ( minima243535863231358885_a_b_c @ M2 @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ U ) @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ V2 ) @ ( append2547753245680614915od_b_c @ W @ ( append2547753245680614915od_b_c @ W2 @ W3 ) ) )
=> ( ( W2 != nil_Product_prod_b_c )
=> ~ ( distinguishes_a_b_c @ M2 @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ ( append2547753245680614915od_b_c @ U @ W ) ) @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ ( append2547753245680614915od_b_c @ V2 @ W ) ) @ W3 ) ) ) ) ) ) ).
% minimally_distinguishes_no_prefix
thf(fact_463_fsm__initial,axiom,
! [M2: fsm_a_b_c] : ( member_a @ ( initial_a_b_c @ M2 ) @ ( states_a_b_c @ M2 ) ) ).
% fsm_initial
thf(fact_464_language__contains__empty__sequence,axiom,
! [M2: fsm_a_b_c] : ( member6330420149250801815od_b_c @ nil_Product_prod_b_c @ ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) ) ).
% language_contains_empty_sequence
thf(fact_465_order__antisym__conv,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( ord_less_eq_set_a @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_466_order__antisym__conv,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( ord_less_eq_nat @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_467_order__antisym__conv,axiom,
! [Y: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ Y @ X )
=> ( ( ord_le282488521294790766od_b_c @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_468_linorder__le__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_469_ord__le__eq__subst,axiom,
! [A2: set_a,B2: set_a,F: set_a > set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A2 ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_470_ord__le__eq__subst,axiom,
! [A2: set_a,B2: set_a,F: set_a > nat,C: nat] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_471_ord__le__eq__subst,axiom,
! [A2: set_a,B2: set_a,F: set_a > set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ ( F @ A2 ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_472_ord__le__eq__subst,axiom,
! [A2: nat,B2: nat,F: nat > set_a,C: set_a] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A2 ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_473_ord__le__eq__subst,axiom,
! [A2: nat,B2: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_474_ord__le__eq__subst,axiom,
! [A2: nat,B2: nat,F: nat > set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ ( F @ A2 ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_475_ord__le__eq__subst,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > set_a,C: set_a] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A2 ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_476_ord__le__eq__subst,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > nat,C: nat] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_477_ord__le__eq__subst,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ ( F @ A2 ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_478_ord__eq__le__subst,axiom,
! [A2: set_a,F: set_a > set_a,B2: set_a,C: set_a] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A2 @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_479_ord__eq__le__subst,axiom,
! [A2: nat,F: set_a > nat,B2: set_a,C: set_a] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_480_ord__eq__le__subst,axiom,
! [A2: set_li6436108459499378894od_b_c,F: set_a > set_li6436108459499378894od_b_c,B2: set_a,C: set_a] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ A2 @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_481_ord__eq__le__subst,axiom,
! [A2: set_a,F: nat > set_a,B2: nat,C: nat] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A2 @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_482_ord__eq__le__subst,axiom,
! [A2: nat,F: nat > nat,B2: nat,C: nat] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_483_ord__eq__le__subst,axiom,
! [A2: set_li6436108459499378894od_b_c,F: nat > set_li6436108459499378894od_b_c,B2: nat,C: nat] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ A2 @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_484_ord__eq__le__subst,axiom,
! [A2: set_a,F: set_li6436108459499378894od_b_c > set_a,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A2 @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_485_ord__eq__le__subst,axiom,
! [A2: nat,F: set_li6436108459499378894od_b_c > nat,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_486_ord__eq__le__subst,axiom,
! [A2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ A2 @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_487_linorder__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
| ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_linear
thf(fact_488_order__eq__refl,axiom,
! [X: set_a,Y: set_a] :
( ( X = Y )
=> ( ord_less_eq_set_a @ X @ Y ) ) ).
% order_eq_refl
thf(fact_489_order__eq__refl,axiom,
! [X: nat,Y: nat] :
( ( X = Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ).
% order_eq_refl
thf(fact_490_order__eq__refl,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] :
( ( X = Y )
=> ( ord_le282488521294790766od_b_c @ X @ Y ) ) ).
% order_eq_refl
thf(fact_491_order__subst2,axiom,
! [A2: set_a,B2: set_a,F: set_a > set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ord_less_eq_set_a @ ( F @ B2 ) @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A2 ) @ C ) ) ) ) ).
% order_subst2
thf(fact_492_order__subst2,axiom,
! [A2: set_a,B2: set_a,F: set_a > nat,C: nat] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% order_subst2
thf(fact_493_order__subst2,axiom,
! [A2: set_a,B2: set_a,F: set_a > set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ord_le282488521294790766od_b_c @ ( F @ B2 ) @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ ( F @ A2 ) @ C ) ) ) ) ).
% order_subst2
thf(fact_494_order__subst2,axiom,
! [A2: nat,B2: nat,F: nat > set_a,C: set_a] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_less_eq_set_a @ ( F @ B2 ) @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A2 ) @ C ) ) ) ) ).
% order_subst2
thf(fact_495_order__subst2,axiom,
! [A2: nat,B2: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% order_subst2
thf(fact_496_order__subst2,axiom,
! [A2: nat,B2: nat,F: nat > set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_le282488521294790766od_b_c @ ( F @ B2 ) @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ ( F @ A2 ) @ C ) ) ) ) ).
% order_subst2
thf(fact_497_order__subst2,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > set_a,C: set_a] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ord_less_eq_set_a @ ( F @ B2 ) @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ ( F @ A2 ) @ C ) ) ) ) ).
% order_subst2
thf(fact_498_order__subst2,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > nat,C: nat] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% order_subst2
thf(fact_499_order__subst2,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ord_le282488521294790766od_b_c @ ( F @ B2 ) @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ ( F @ A2 ) @ C ) ) ) ) ).
% order_subst2
thf(fact_500_order__subst1,axiom,
! [A2: set_a,F: set_a > set_a,B2: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A2 @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_501_order__subst1,axiom,
! [A2: set_a,F: nat > set_a,B2: nat,C: nat] :
( ( ord_less_eq_set_a @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A2 @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_502_order__subst1,axiom,
! [A2: set_a,F: set_li6436108459499378894od_b_c > set_a,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_eq_set_a @ A2 @ ( F @ B2 ) )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_set_a @ A2 @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_503_order__subst1,axiom,
! [A2: nat,F: set_a > nat,B2: set_a,C: set_a] :
( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_504_order__subst1,axiom,
! [A2: nat,F: nat > nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_505_order__subst1,axiom,
! [A2: nat,F: set_li6436108459499378894od_b_c > nat,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_eq_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_506_order__subst1,axiom,
! [A2: set_li6436108459499378894od_b_c,F: set_a > set_li6436108459499378894od_b_c,B2: set_a,C: set_a] :
( ( ord_le282488521294790766od_b_c @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ A2 @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_507_order__subst1,axiom,
! [A2: set_li6436108459499378894od_b_c,F: nat > set_li6436108459499378894od_b_c,B2: nat,C: nat] :
( ( ord_le282488521294790766od_b_c @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ A2 @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_508_order__subst1,axiom,
! [A2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ ( F @ B2 ) )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le282488521294790766od_b_c @ A2 @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_509_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: set_a,Z2: set_a] : ( Y3 = Z2 ) )
= ( ^ [A4: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A4 @ B4 )
& ( ord_less_eq_set_a @ B4 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_510_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
= ( ^ [A4: nat,B4: nat] :
( ( ord_less_eq_nat @ A4 @ B4 )
& ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_511_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: set_li6436108459499378894od_b_c,Z2: set_li6436108459499378894od_b_c] : ( Y3 = Z2 ) )
= ( ^ [A4: set_li6436108459499378894od_b_c,B4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A4 @ B4 )
& ( ord_le282488521294790766od_b_c @ B4 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_512_antisym,axiom,
! [A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ord_less_eq_set_a @ B2 @ A2 )
=> ( A2 = B2 ) ) ) ).
% antisym
thf(fact_513_antisym,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ B2 @ A2 )
=> ( A2 = B2 ) ) ) ).
% antisym
thf(fact_514_antisym,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ A2 )
=> ( A2 = B2 ) ) ) ).
% antisym
thf(fact_515_dual__order_Otrans,axiom,
! [B2: set_a,A2: set_a,C: set_a] :
( ( ord_less_eq_set_a @ B2 @ A2 )
=> ( ( ord_less_eq_set_a @ C @ B2 )
=> ( ord_less_eq_set_a @ C @ A2 ) ) ) ).
% dual_order.trans
thf(fact_516_dual__order_Otrans,axiom,
! [B2: nat,A2: nat,C: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
=> ( ( ord_less_eq_nat @ C @ B2 )
=> ( ord_less_eq_nat @ C @ A2 ) ) ) ).
% dual_order.trans
thf(fact_517_dual__order_Otrans,axiom,
! [B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B2 @ A2 )
=> ( ( ord_le282488521294790766od_b_c @ C @ B2 )
=> ( ord_le282488521294790766od_b_c @ C @ A2 ) ) ) ).
% dual_order.trans
thf(fact_518_dual__order_Oantisym,axiom,
! [B2: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ B2 @ A2 )
=> ( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( A2 = B2 ) ) ) ).
% dual_order.antisym
thf(fact_519_dual__order_Oantisym,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
=> ( ( ord_less_eq_nat @ A2 @ B2 )
=> ( A2 = B2 ) ) ) ).
% dual_order.antisym
thf(fact_520_dual__order_Oantisym,axiom,
! [B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B2 @ A2 )
=> ( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( A2 = B2 ) ) ) ).
% dual_order.antisym
thf(fact_521_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: set_a,Z2: set_a] : ( Y3 = Z2 ) )
= ( ^ [A4: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ B4 @ A4 )
& ( ord_less_eq_set_a @ A4 @ B4 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_522_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
= ( ^ [A4: nat,B4: nat] :
( ( ord_less_eq_nat @ B4 @ A4 )
& ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_523_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: set_li6436108459499378894od_b_c,Z2: set_li6436108459499378894od_b_c] : ( Y3 = Z2 ) )
= ( ^ [A4: set_li6436108459499378894od_b_c,B4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B4 @ A4 )
& ( ord_le282488521294790766od_b_c @ A4 @ B4 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_524_linorder__wlog,axiom,
! [P: nat > nat > $o,A2: nat,B2: nat] :
( ! [A6: nat,B6: nat] :
( ( ord_less_eq_nat @ A6 @ B6 )
=> ( P @ A6 @ B6 ) )
=> ( ! [A6: nat,B6: nat] :
( ( P @ B6 @ A6 )
=> ( P @ A6 @ B6 ) )
=> ( P @ A2 @ B2 ) ) ) ).
% linorder_wlog
thf(fact_525_order__trans,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ Y @ Z )
=> ( ord_less_eq_set_a @ X @ Z ) ) ) ).
% order_trans
thf(fact_526_order__trans,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z )
=> ( ord_less_eq_nat @ X @ Z ) ) ) ).
% order_trans
thf(fact_527_order__trans,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c,Z: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ Y )
=> ( ( ord_le282488521294790766od_b_c @ Y @ Z )
=> ( ord_le282488521294790766od_b_c @ X @ Z ) ) ) ).
% order_trans
thf(fact_528_order_Otrans,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ord_less_eq_set_a @ A2 @ C ) ) ) ).
% order.trans
thf(fact_529_order_Otrans,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ord_less_eq_nat @ A2 @ C ) ) ) ).
% order.trans
thf(fact_530_order_Otrans,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ord_le282488521294790766od_b_c @ A2 @ C ) ) ) ).
% order.trans
thf(fact_531_order__antisym,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_532_order__antisym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_533_order__antisym,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ Y )
=> ( ( ord_le282488521294790766od_b_c @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_534_ord__le__eq__trans,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( B2 = C )
=> ( ord_less_eq_set_a @ A2 @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_535_ord__le__eq__trans,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( B2 = C )
=> ( ord_less_eq_nat @ A2 @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_536_ord__le__eq__trans,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( B2 = C )
=> ( ord_le282488521294790766od_b_c @ A2 @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_537_ord__eq__le__trans,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( A2 = B2 )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ord_less_eq_set_a @ A2 @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_538_ord__eq__le__trans,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( A2 = B2 )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ord_less_eq_nat @ A2 @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_539_ord__eq__le__trans,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( A2 = B2 )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ord_le282488521294790766od_b_c @ A2 @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_540_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: set_a,Z2: set_a] : ( Y3 = Z2 ) )
= ( ^ [X4: set_a,Y2: set_a] :
( ( ord_less_eq_set_a @ X4 @ Y2 )
& ( ord_less_eq_set_a @ Y2 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_541_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
= ( ^ [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
& ( ord_less_eq_nat @ Y2 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_542_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: set_li6436108459499378894od_b_c,Z2: set_li6436108459499378894od_b_c] : ( Y3 = Z2 ) )
= ( ^ [X4: set_li6436108459499378894od_b_c,Y2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X4 @ Y2 )
& ( ord_le282488521294790766od_b_c @ Y2 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_543_le__cases3,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ( ord_less_eq_nat @ X @ Y )
=> ~ ( ord_less_eq_nat @ Y @ Z ) )
=> ( ( ( ord_less_eq_nat @ Y @ X )
=> ~ ( ord_less_eq_nat @ X @ Z ) )
=> ( ( ( ord_less_eq_nat @ X @ Z )
=> ~ ( ord_less_eq_nat @ Z @ Y ) )
=> ( ( ( ord_less_eq_nat @ Z @ Y )
=> ~ ( ord_less_eq_nat @ Y @ X ) )
=> ( ( ( ord_less_eq_nat @ Y @ Z )
=> ~ ( ord_less_eq_nat @ Z @ X ) )
=> ~ ( ( ord_less_eq_nat @ Z @ X )
=> ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_544_nle__le,axiom,
! [A2: nat,B2: nat] :
( ( ~ ( ord_less_eq_nat @ A2 @ B2 ) )
= ( ( ord_less_eq_nat @ B2 @ A2 )
& ( B2 != A2 ) ) ) ).
% nle_le
thf(fact_545_after__language__append__iff,axiom,
! [M2: fsm_a_b_c,Alpha: list_P903359562653991662od_b_c,Gamma: list_P903359562653991662od_b_c,Beta: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Alpha @ Gamma ) @ ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) )
=> ( ( member6330420149250801815od_b_c @ Beta @ ( lS_a_b_c @ M2 @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ ( append2547753245680614915od_b_c @ Alpha @ Gamma ) ) ) )
= ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Gamma @ Beta ) @ ( lS_a_b_c @ M2 @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ Alpha ) ) ) ) ) ) ).
% after_language_append_iff
thf(fact_546_after__language__subset,axiom,
! [M2: fsm_a_b_c,Alpha: list_P903359562653991662od_b_c,Gamma: list_P903359562653991662od_b_c,Beta: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Alpha @ Gamma ) @ ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) )
=> ( ( member6330420149250801815od_b_c @ Beta @ ( lS_a_b_c @ M2 @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ ( append2547753245680614915od_b_c @ Alpha @ Gamma ) ) ) )
=> ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Gamma @ Beta ) @ ( lS_a_b_c @ M2 @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ Alpha ) ) ) ) ) ) ).
% after_language_subset
thf(fact_547_distinguish__prepend__initial,axiom,
! [M2: fsm_a_b_c,Io1: list_P903359562653991662od_b_c,Io: list_P903359562653991662od_b_c,Io2: list_P903359562653991662od_b_c,W: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( distinguishes_a_b_c @ M2 @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ ( append2547753245680614915od_b_c @ Io1 @ Io ) ) @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ ( append2547753245680614915od_b_c @ Io2 @ Io ) ) @ W )
=> ( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Io1 @ Io ) @ ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) )
=> ( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Io2 @ Io ) @ ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) )
=> ( distinguishes_a_b_c @ M2 @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ Io1 ) @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ Io2 ) @ ( append2547753245680614915od_b_c @ Io @ W ) ) ) ) ) ) ).
% distinguish_prepend_initial
thf(fact_548_bot_Oextremum__uniqueI,axiom,
! [A2: set_a] :
( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
=> ( A2 = bot_bot_set_a ) ) ).
% bot.extremum_uniqueI
thf(fact_549_bot_Oextremum__uniqueI,axiom,
! [A2: nat] :
( ( ord_less_eq_nat @ A2 @ bot_bot_nat )
=> ( A2 = bot_bot_nat ) ) ).
% bot.extremum_uniqueI
thf(fact_550_bot_Oextremum__uniqueI,axiom,
! [A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ bot_bo4166481423041325370od_b_c )
=> ( A2 = bot_bo4166481423041325370od_b_c ) ) ).
% bot.extremum_uniqueI
thf(fact_551_bot_Oextremum__unique,axiom,
! [A2: set_a] :
( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
= ( A2 = bot_bot_set_a ) ) ).
% bot.extremum_unique
thf(fact_552_bot_Oextremum__unique,axiom,
! [A2: nat] :
( ( ord_less_eq_nat @ A2 @ bot_bot_nat )
= ( A2 = bot_bot_nat ) ) ).
% bot.extremum_unique
thf(fact_553_bot_Oextremum__unique,axiom,
! [A2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ bot_bo4166481423041325370od_b_c )
= ( A2 = bot_bo4166481423041325370od_b_c ) ) ).
% bot.extremum_unique
thf(fact_554_bot_Oextremum,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A2 ) ).
% bot.extremum
thf(fact_555_bot_Oextremum,axiom,
! [A2: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A2 ) ).
% bot.extremum
thf(fact_556_bot_Oextremum,axiom,
! [A2: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ bot_bo4166481423041325370od_b_c @ A2 ) ).
% bot.extremum
thf(fact_557_minimally__distinguishes__after__append__initial,axiom,
! [M2: fsm_a_b_c,U: list_P903359562653991662od_b_c,V2: list_P903359562653991662od_b_c,W: list_P903359562653991662od_b_c,W2: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( minimal_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ U @ ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) )
=> ( ( member6330420149250801815od_b_c @ V2 @ ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) )
=> ( ( minima243535863231358885_a_b_c @ M2 @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ U ) @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ V2 ) @ ( append2547753245680614915od_b_c @ W @ W2 ) )
=> ( ( W2 != nil_Product_prod_b_c )
=> ( minima243535863231358885_a_b_c @ M2 @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ ( append2547753245680614915od_b_c @ U @ W ) ) @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ ( append2547753245680614915od_b_c @ V2 @ W ) ) @ W2 ) ) ) ) ) ) ) ).
% minimally_distinguishes_after_append_initial
thf(fact_558_W__finite,axiom,
! [S2: set_a,S3: set_a] : ( finite3074115686814133143od_b_c @ ( w @ S2 @ S3 ) ) ).
% W_finite
thf(fact_559_subset__emptyI,axiom,
! [A: set_a] :
( ! [X2: a] :
~ ( member_a @ X2 @ A )
=> ( ord_less_eq_set_a @ A @ bot_bot_set_a ) ) ).
% subset_emptyI
thf(fact_560_subset__emptyI,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ! [X2: list_P903359562653991662od_b_c] :
~ ( member6330420149250801815od_b_c @ X2 @ A )
=> ( ord_le282488521294790766od_b_c @ A @ bot_bo4166481423041325370od_b_c ) ) ).
% subset_emptyI
thf(fact_561_maximal__prefix__in__language__properties_I1_J,axiom,
! [M2: fsm_li6801133765522507155_c_b_c,Q: list_P903359562653991662od_b_c,Io: list_P903359562653991662od_b_c] :
( ( observ6293852833591064631_c_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Q @ ( states7681702920031268536_c_b_c @ M2 ) )
=> ( member6330420149250801815od_b_c @ ( maxima8146652644187019584_c_b_c @ M2 @ Q @ Io ) @ ( lS_lis2930931384350476499_c_b_c @ M2 @ Q ) ) ) ) ).
% maximal_prefix_in_language_properties(1)
thf(fact_562_maximal__prefix__in__language__properties_I1_J,axiom,
! [M2: fsm_a_b_c,Q: a,Io: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( member_a @ Q @ ( states_a_b_c @ M2 ) )
=> ( member6330420149250801815od_b_c @ ( maxima1559550560783484624_a_b_c @ M2 @ Q @ Io ) @ ( lS_a_b_c @ M2 @ Q ) ) ) ) ).
% maximal_prefix_in_language_properties(1)
thf(fact_563__092_060open_062finite_AS_092_060close_062,axiom,
finite_finite_a @ sa ).
% \<open>finite S\<close>
thf(fact_564_k__def,axiom,
( k2
= ( finite_card_a @ s ) ) ).
% k_def
thf(fact_565_is__in__language__iff,axiom,
! [M2: fsm_li6801133765522507155_c_b_c,Q: list_P903359562653991662od_b_c,Io: list_P903359562653991662od_b_c] :
( ( observ6293852833591064631_c_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Q @ ( states7681702920031268536_c_b_c @ M2 ) )
=> ( ( is_in_7104650932667917939_c_b_c @ M2 @ Q @ Io )
= ( member6330420149250801815od_b_c @ Io @ ( lS_lis2930931384350476499_c_b_c @ M2 @ Q ) ) ) ) ) ).
% is_in_language_iff
thf(fact_566_is__in__language__iff,axiom,
! [M2: fsm_a_b_c,Q: a,Io: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( member_a @ Q @ ( states_a_b_c @ M2 ) )
=> ( ( is_in_language_a_b_c @ M2 @ Q @ Io )
= ( member6330420149250801815od_b_c @ Io @ ( lS_a_b_c @ M2 @ Q ) ) ) ) ) ).
% is_in_language_iff
thf(fact_567_less_Oprems_I1_J,axiom,
( ka
= ( finite_card_a @ sa ) ) ).
% less.prems(1)
thf(fact_568_fsm__states__finite,axiom,
! [M2: fsm_a_b_c] : ( finite_finite_a @ ( states_a_b_c @ M2 ) ) ).
% fsm_states_finite
thf(fact_569__092_060open_062card_AS_A_061_Acard_AS1_A_L_Acard_AS2_092_060close_062,axiom,
( ( finite_card_a @ sa )
= ( plus_plus_nat @ ( finite_card_a @ s1 ) @ ( finite_card_a @ s2 ) ) ) ).
% \<open>card S = card S1 + card S2\<close>
thf(fact_570_finite__Un,axiom,
! [F2: set_li6436108459499378894od_b_c,G: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ ( sup_su3823046536922626210od_b_c @ F2 @ G ) )
= ( ( finite3074115686814133143od_b_c @ F2 )
& ( finite3074115686814133143od_b_c @ G ) ) ) ).
% finite_Un
thf(fact_571_finite__Un,axiom,
! [F2: set_nat,G: set_nat] :
( ( finite_finite_nat @ ( sup_sup_set_nat @ F2 @ G ) )
= ( ( finite_finite_nat @ F2 )
& ( finite_finite_nat @ G ) ) ) ).
% finite_Un
thf(fact_572_finite__Un,axiom,
! [F2: set_a,G: set_a] :
( ( finite_finite_a @ ( sup_sup_set_a @ F2 @ G ) )
= ( ( finite_finite_a @ F2 )
& ( finite_finite_a @ G ) ) ) ).
% finite_Un
thf(fact_573_finite__Int,axiom,
! [F2: set_li6436108459499378894od_b_c,G: set_li6436108459499378894od_b_c] :
( ( ( finite3074115686814133143od_b_c @ F2 )
| ( finite3074115686814133143od_b_c @ G ) )
=> ( finite3074115686814133143od_b_c @ ( inf_in4978071631833541052od_b_c @ F2 @ G ) ) ) ).
% finite_Int
thf(fact_574_finite__Int,axiom,
! [F2: set_nat,G: set_nat] :
( ( ( finite_finite_nat @ F2 )
| ( finite_finite_nat @ G ) )
=> ( finite_finite_nat @ ( inf_inf_set_nat @ F2 @ G ) ) ) ).
% finite_Int
thf(fact_575_finite__Int,axiom,
! [F2: set_a,G: set_a] :
( ( ( finite_finite_a @ F2 )
| ( finite_finite_a @ G ) )
=> ( finite_finite_a @ ( inf_inf_set_a @ F2 @ G ) ) ) ).
% finite_Int
thf(fact_576_finite__set__elem__maximal__extension__ex,axiom,
! [Xs: list_P903359562653991662od_b_c,S: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ Xs @ S )
=> ( ( finite3074115686814133143od_b_c @ S )
=> ? [Ys2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Xs @ Ys2 ) @ S )
& ~ ? [Zs2: list_P903359562653991662od_b_c] :
( ( Zs2 != nil_Product_prod_b_c )
& ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ Xs @ ( append2547753245680614915od_b_c @ Ys2 @ Zs2 ) ) @ S ) ) ) ) ) ).
% finite_set_elem_maximal_extension_ex
thf(fact_577_prefix__free__set__maximal__list__ob,axiom,
! [Xs: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( finite3074115686814133143od_b_c @ Xs )
=> ( ( member6330420149250801815od_b_c @ X @ Xs )
=> ~ ! [X5: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ X @ X5 ) @ Xs )
=> ? [Y5: list_P903359562653991662od_b_c] :
( ( Y5 != nil_Product_prod_b_c )
& ( member6330420149250801815od_b_c @ ( append2547753245680614915od_b_c @ ( append2547753245680614915od_b_c @ X @ X5 ) @ Y5 ) @ Xs ) ) ) ) ) ).
% prefix_free_set_maximal_list_ob
thf(fact_578_card__mono,axiom,
! [B: set_nat,A: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ A @ B )
=> ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B ) ) ) ) ).
% card_mono
thf(fact_579_card__mono,axiom,
! [B: set_a,A: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A @ B )
=> ( ord_less_eq_nat @ ( finite_card_a @ A ) @ ( finite_card_a @ B ) ) ) ) ).
% card_mono
thf(fact_580_card__mono,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ B )
=> ( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ord_less_eq_nat @ ( finite5583770498833199894od_b_c @ A ) @ ( finite5583770498833199894od_b_c @ B ) ) ) ) ).
% card_mono
thf(fact_581_card__Un__le,axiom,
! [A: set_a,B: set_a] : ( ord_less_eq_nat @ ( finite_card_a @ ( sup_sup_set_a @ A @ B ) ) @ ( plus_plus_nat @ ( finite_card_a @ A ) @ ( finite_card_a @ B ) ) ) ).
% card_Un_le
thf(fact_582_card__Un__Int,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ A )
=> ( ( finite3074115686814133143od_b_c @ B )
=> ( ( plus_plus_nat @ ( finite5583770498833199894od_b_c @ A ) @ ( finite5583770498833199894od_b_c @ B ) )
= ( plus_plus_nat @ ( finite5583770498833199894od_b_c @ ( sup_su3823046536922626210od_b_c @ A @ B ) ) @ ( finite5583770498833199894od_b_c @ ( inf_in4978071631833541052od_b_c @ A @ B ) ) ) ) ) ) ).
% card_Un_Int
thf(fact_583_card__Un__Int,axiom,
! [A: set_nat,B: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( finite_finite_nat @ B )
=> ( ( plus_plus_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B ) )
= ( plus_plus_nat @ ( finite_card_nat @ ( sup_sup_set_nat @ A @ B ) ) @ ( finite_card_nat @ ( inf_inf_set_nat @ A @ B ) ) ) ) ) ) ).
% card_Un_Int
thf(fact_584_card__Un__Int,axiom,
! [A: set_a,B: set_a] :
( ( finite_finite_a @ A )
=> ( ( finite_finite_a @ B )
=> ( ( plus_plus_nat @ ( finite_card_a @ A ) @ ( finite_card_a @ B ) )
= ( plus_plus_nat @ ( finite_card_a @ ( sup_sup_set_a @ A @ B ) ) @ ( finite_card_a @ ( inf_inf_set_a @ A @ B ) ) ) ) ) ) ).
% card_Un_Int
thf(fact_585_finite__set__min__param__ex,axiom,
! [XS: set_li6436108459499378894od_b_c,P: list_P903359562653991662od_b_c > nat > $o] :
( ( finite3074115686814133143od_b_c @ XS )
=> ( ! [X2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X2 @ XS )
=> ? [K2: nat] :
! [K3: nat] :
( ( ord_less_eq_nat @ K2 @ K3 )
=> ( P @ X2 @ K3 ) ) )
=> ? [K4: nat] :
! [X3: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X3 @ XS )
=> ( P @ X3 @ K4 ) ) ) ) ).
% finite_set_min_param_ex
thf(fact_586_finite__set__min__param__ex,axiom,
! [XS: set_a,P: a > nat > $o] :
( ( finite_finite_a @ XS )
=> ( ! [X2: a] :
( ( member_a @ X2 @ XS )
=> ? [K2: nat] :
! [K3: nat] :
( ( ord_less_eq_nat @ K2 @ K3 )
=> ( P @ X2 @ K3 ) ) )
=> ? [K4: nat] :
! [X3: a] :
( ( member_a @ X3 @ XS )
=> ( P @ X3 @ K4 ) ) ) ) ).
% finite_set_min_param_ex
thf(fact_587_finite__set__min__param__ex,axiom,
! [XS: set_nat,P: nat > nat > $o] :
( ( finite_finite_nat @ XS )
=> ( ! [X2: nat] :
( ( member_nat @ X2 @ XS )
=> ? [K2: nat] :
! [K3: nat] :
( ( ord_less_eq_nat @ K2 @ K3 )
=> ( P @ X2 @ K3 ) ) )
=> ? [K4: nat] :
! [X3: nat] :
( ( member_nat @ X3 @ XS )
=> ( P @ X3 @ K4 ) ) ) ) ).
% finite_set_min_param_ex
thf(fact_588_card__Un__disjoint,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ A )
=> ( ( finite3074115686814133143od_b_c @ B )
=> ( ( ( inf_in4978071631833541052od_b_c @ A @ B )
= bot_bo4166481423041325370od_b_c )
=> ( ( finite5583770498833199894od_b_c @ ( sup_su3823046536922626210od_b_c @ A @ B ) )
= ( plus_plus_nat @ ( finite5583770498833199894od_b_c @ A ) @ ( finite5583770498833199894od_b_c @ B ) ) ) ) ) ) ).
% card_Un_disjoint
thf(fact_589_card__Un__disjoint,axiom,
! [A: set_nat,B: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( finite_finite_nat @ B )
=> ( ( ( inf_inf_set_nat @ A @ B )
= bot_bot_set_nat )
=> ( ( finite_card_nat @ ( sup_sup_set_nat @ A @ B ) )
= ( plus_plus_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B ) ) ) ) ) ) ).
% card_Un_disjoint
thf(fact_590_card__Un__disjoint,axiom,
! [A: set_a,B: set_a] :
( ( finite_finite_a @ A )
=> ( ( finite_finite_a @ B )
=> ( ( ( inf_inf_set_a @ A @ B )
= bot_bot_set_a )
=> ( ( finite_card_a @ ( sup_sup_set_a @ A @ B ) )
= ( plus_plus_nat @ ( finite_card_a @ A ) @ ( finite_card_a @ B ) ) ) ) ) ) ).
% card_Un_disjoint
thf(fact_591_finite__has__maximal2,axiom,
! [A: set_set_a,A2: set_a] :
( ( finite_finite_set_a @ A )
=> ( ( member_set_a @ A2 @ A )
=> ? [X2: set_a] :
( ( member_set_a @ X2 @ A )
& ( ord_less_eq_set_a @ A2 @ X2 )
& ! [Xa2: set_a] :
( ( member_set_a @ Xa2 @ A )
=> ( ( ord_less_eq_set_a @ X2 @ Xa2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_592_finite__has__maximal2,axiom,
! [A: set_nat,A2: nat] :
( ( finite_finite_nat @ A )
=> ( ( member_nat @ A2 @ A )
=> ? [X2: nat] :
( ( member_nat @ X2 @ A )
& ( ord_less_eq_nat @ A2 @ X2 )
& ! [Xa2: nat] :
( ( member_nat @ Xa2 @ A )
=> ( ( ord_less_eq_nat @ X2 @ Xa2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_593_finite__has__maximal2,axiom,
! [A: set_se3924713247505902254od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( finite1374199133651033463od_b_c @ A )
=> ( ( member6985331446368301687od_b_c @ A2 @ A )
=> ? [X2: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ X2 @ A )
& ( ord_le282488521294790766od_b_c @ A2 @ X2 )
& ! [Xa2: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ Xa2 @ A )
=> ( ( ord_le282488521294790766od_b_c @ X2 @ Xa2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_maximal2
thf(fact_594_finite__has__minimal2,axiom,
! [A: set_set_a,A2: set_a] :
( ( finite_finite_set_a @ A )
=> ( ( member_set_a @ A2 @ A )
=> ? [X2: set_a] :
( ( member_set_a @ X2 @ A )
& ( ord_less_eq_set_a @ X2 @ A2 )
& ! [Xa2: set_a] :
( ( member_set_a @ Xa2 @ A )
=> ( ( ord_less_eq_set_a @ Xa2 @ X2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_595_finite__has__minimal2,axiom,
! [A: set_nat,A2: nat] :
( ( finite_finite_nat @ A )
=> ( ( member_nat @ A2 @ A )
=> ? [X2: nat] :
( ( member_nat @ X2 @ A )
& ( ord_less_eq_nat @ X2 @ A2 )
& ! [Xa2: nat] :
( ( member_nat @ Xa2 @ A )
=> ( ( ord_less_eq_nat @ Xa2 @ X2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_596_finite__has__minimal2,axiom,
! [A: set_se3924713247505902254od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( finite1374199133651033463od_b_c @ A )
=> ( ( member6985331446368301687od_b_c @ A2 @ A )
=> ? [X2: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ X2 @ A )
& ( ord_le282488521294790766od_b_c @ X2 @ A2 )
& ! [Xa2: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ Xa2 @ A )
=> ( ( ord_le282488521294790766od_b_c @ Xa2 @ X2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_minimal2
thf(fact_597_infinite__imp__nonempty,axiom,
! [S: set_li6436108459499378894od_b_c] :
( ~ ( finite3074115686814133143od_b_c @ S )
=> ( S != bot_bo4166481423041325370od_b_c ) ) ).
% infinite_imp_nonempty
thf(fact_598_infinite__imp__nonempty,axiom,
! [S: set_nat] :
( ~ ( finite_finite_nat @ S )
=> ( S != bot_bot_set_nat ) ) ).
% infinite_imp_nonempty
thf(fact_599_infinite__imp__nonempty,axiom,
! [S: set_a] :
( ~ ( finite_finite_a @ S )
=> ( S != bot_bot_set_a ) ) ).
% infinite_imp_nonempty
thf(fact_600_finite_OemptyI,axiom,
finite3074115686814133143od_b_c @ bot_bo4166481423041325370od_b_c ).
% finite.emptyI
thf(fact_601_finite_OemptyI,axiom,
finite_finite_nat @ bot_bot_set_nat ).
% finite.emptyI
thf(fact_602_finite_OemptyI,axiom,
finite_finite_a @ bot_bot_set_a ).
% finite.emptyI
thf(fact_603_finite__subset,axiom,
! [A: set_nat,B: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( finite_finite_nat @ B )
=> ( finite_finite_nat @ A ) ) ) ).
% finite_subset
thf(fact_604_finite__subset,axiom,
! [A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( finite_finite_a @ B )
=> ( finite_finite_a @ A ) ) ) ).
% finite_subset
thf(fact_605_finite__subset,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( finite3074115686814133143od_b_c @ B )
=> ( finite3074115686814133143od_b_c @ A ) ) ) ).
% finite_subset
thf(fact_606_infinite__super,axiom,
! [S: set_nat,T: set_nat] :
( ( ord_less_eq_set_nat @ S @ T )
=> ( ~ ( finite_finite_nat @ S )
=> ~ ( finite_finite_nat @ T ) ) ) ).
% infinite_super
thf(fact_607_infinite__super,axiom,
! [S: set_a,T: set_a] :
( ( ord_less_eq_set_a @ S @ T )
=> ( ~ ( finite_finite_a @ S )
=> ~ ( finite_finite_a @ T ) ) ) ).
% infinite_super
thf(fact_608_infinite__super,axiom,
! [S: set_li6436108459499378894od_b_c,T: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ S @ T )
=> ( ~ ( finite3074115686814133143od_b_c @ S )
=> ~ ( finite3074115686814133143od_b_c @ T ) ) ) ).
% infinite_super
thf(fact_609_rev__finite__subset,axiom,
! [B: set_nat,A: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ A @ B )
=> ( finite_finite_nat @ A ) ) ) ).
% rev_finite_subset
thf(fact_610_rev__finite__subset,axiom,
! [B: set_a,A: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A @ B )
=> ( finite_finite_a @ A ) ) ) ).
% rev_finite_subset
thf(fact_611_rev__finite__subset,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ B )
=> ( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( finite3074115686814133143od_b_c @ A ) ) ) ).
% rev_finite_subset
thf(fact_612_infinite__Un,axiom,
! [S: set_li6436108459499378894od_b_c,T: set_li6436108459499378894od_b_c] :
( ( ~ ( finite3074115686814133143od_b_c @ ( sup_su3823046536922626210od_b_c @ S @ T ) ) )
= ( ~ ( finite3074115686814133143od_b_c @ S )
| ~ ( finite3074115686814133143od_b_c @ T ) ) ) ).
% infinite_Un
thf(fact_613_infinite__Un,axiom,
! [S: set_nat,T: set_nat] :
( ( ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T ) ) )
= ( ~ ( finite_finite_nat @ S )
| ~ ( finite_finite_nat @ T ) ) ) ).
% infinite_Un
thf(fact_614_infinite__Un,axiom,
! [S: set_a,T: set_a] :
( ( ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T ) ) )
= ( ~ ( finite_finite_a @ S )
| ~ ( finite_finite_a @ T ) ) ) ).
% infinite_Un
thf(fact_615_Un__infinite,axiom,
! [S: set_li6436108459499378894od_b_c,T: set_li6436108459499378894od_b_c] :
( ~ ( finite3074115686814133143od_b_c @ S )
=> ~ ( finite3074115686814133143od_b_c @ ( sup_su3823046536922626210od_b_c @ S @ T ) ) ) ).
% Un_infinite
thf(fact_616_Un__infinite,axiom,
! [S: set_nat,T: set_nat] :
( ~ ( finite_finite_nat @ S )
=> ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T ) ) ) ).
% Un_infinite
thf(fact_617_Un__infinite,axiom,
! [S: set_a,T: set_a] :
( ~ ( finite_finite_a @ S )
=> ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T ) ) ) ).
% Un_infinite
thf(fact_618_finite__UnI,axiom,
! [F2: set_li6436108459499378894od_b_c,G: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ F2 )
=> ( ( finite3074115686814133143od_b_c @ G )
=> ( finite3074115686814133143od_b_c @ ( sup_su3823046536922626210od_b_c @ F2 @ G ) ) ) ) ).
% finite_UnI
thf(fact_619_finite__UnI,axiom,
! [F2: set_nat,G: set_nat] :
( ( finite_finite_nat @ F2 )
=> ( ( finite_finite_nat @ G )
=> ( finite_finite_nat @ ( sup_sup_set_nat @ F2 @ G ) ) ) ) ).
% finite_UnI
thf(fact_620_finite__UnI,axiom,
! [F2: set_a,G: set_a] :
( ( finite_finite_a @ F2 )
=> ( ( finite_finite_a @ G )
=> ( finite_finite_a @ ( sup_sup_set_a @ F2 @ G ) ) ) ) ).
% finite_UnI
thf(fact_621_finite__has__maximal,axiom,
! [A: set_set_a] :
( ( finite_finite_set_a @ A )
=> ( ( A != bot_bot_set_set_a )
=> ? [X2: set_a] :
( ( member_set_a @ X2 @ A )
& ! [Xa2: set_a] :
( ( member_set_a @ Xa2 @ A )
=> ( ( ord_less_eq_set_a @ X2 @ Xa2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_622_finite__has__maximal,axiom,
! [A: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ? [X2: nat] :
( ( member_nat @ X2 @ A )
& ! [Xa2: nat] :
( ( member_nat @ Xa2 @ A )
=> ( ( ord_less_eq_nat @ X2 @ Xa2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_623_finite__has__maximal,axiom,
! [A: set_se3924713247505902254od_b_c] :
( ( finite1374199133651033463od_b_c @ A )
=> ( ( A != bot_bo2794119844231891738od_b_c )
=> ? [X2: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ X2 @ A )
& ! [Xa2: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ Xa2 @ A )
=> ( ( ord_le282488521294790766od_b_c @ X2 @ Xa2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_maximal
thf(fact_624_finite__has__minimal,axiom,
! [A: set_set_a] :
( ( finite_finite_set_a @ A )
=> ( ( A != bot_bot_set_set_a )
=> ? [X2: set_a] :
( ( member_set_a @ X2 @ A )
& ! [Xa2: set_a] :
( ( member_set_a @ Xa2 @ A )
=> ( ( ord_less_eq_set_a @ Xa2 @ X2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_625_finite__has__minimal,axiom,
! [A: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ? [X2: nat] :
( ( member_nat @ X2 @ A )
& ! [Xa2: nat] :
( ( member_nat @ Xa2 @ A )
=> ( ( ord_less_eq_nat @ Xa2 @ X2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_626_finite__has__minimal,axiom,
! [A: set_se3924713247505902254od_b_c] :
( ( finite1374199133651033463od_b_c @ A )
=> ( ( A != bot_bo2794119844231891738od_b_c )
=> ? [X2: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ X2 @ A )
& ! [Xa2: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ Xa2 @ A )
=> ( ( ord_le282488521294790766od_b_c @ Xa2 @ X2 )
=> ( X2 = Xa2 ) ) ) ) ) ) ).
% finite_has_minimal
thf(fact_627_finite__if__finite__subsets__card__bdd,axiom,
! [F2: set_nat,C2: nat] :
( ! [G2: set_nat] :
( ( ord_less_eq_set_nat @ G2 @ F2 )
=> ( ( finite_finite_nat @ G2 )
=> ( ord_less_eq_nat @ ( finite_card_nat @ G2 ) @ C2 ) ) )
=> ( ( finite_finite_nat @ F2 )
& ( ord_less_eq_nat @ ( finite_card_nat @ F2 ) @ C2 ) ) ) ).
% finite_if_finite_subsets_card_bdd
thf(fact_628_finite__if__finite__subsets__card__bdd,axiom,
! [F2: set_a,C2: nat] :
( ! [G2: set_a] :
( ( ord_less_eq_set_a @ G2 @ F2 )
=> ( ( finite_finite_a @ G2 )
=> ( ord_less_eq_nat @ ( finite_card_a @ G2 ) @ C2 ) ) )
=> ( ( finite_finite_a @ F2 )
& ( ord_less_eq_nat @ ( finite_card_a @ F2 ) @ C2 ) ) ) ).
% finite_if_finite_subsets_card_bdd
thf(fact_629_finite__if__finite__subsets__card__bdd,axiom,
! [F2: set_li6436108459499378894od_b_c,C2: nat] :
( ! [G2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ G2 @ F2 )
=> ( ( finite3074115686814133143od_b_c @ G2 )
=> ( ord_less_eq_nat @ ( finite5583770498833199894od_b_c @ G2 ) @ C2 ) ) )
=> ( ( finite3074115686814133143od_b_c @ F2 )
& ( ord_less_eq_nat @ ( finite5583770498833199894od_b_c @ F2 ) @ C2 ) ) ) ).
% finite_if_finite_subsets_card_bdd
thf(fact_630_infinite__arbitrarily__large,axiom,
! [A: set_nat,N: nat] :
( ~ ( finite_finite_nat @ A )
=> ? [B7: set_nat] :
( ( finite_finite_nat @ B7 )
& ( ( finite_card_nat @ B7 )
= N )
& ( ord_less_eq_set_nat @ B7 @ A ) ) ) ).
% infinite_arbitrarily_large
thf(fact_631_infinite__arbitrarily__large,axiom,
! [A: set_a,N: nat] :
( ~ ( finite_finite_a @ A )
=> ? [B7: set_a] :
( ( finite_finite_a @ B7 )
& ( ( finite_card_a @ B7 )
= N )
& ( ord_less_eq_set_a @ B7 @ A ) ) ) ).
% infinite_arbitrarily_large
thf(fact_632_infinite__arbitrarily__large,axiom,
! [A: set_li6436108459499378894od_b_c,N: nat] :
( ~ ( finite3074115686814133143od_b_c @ A )
=> ? [B7: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ B7 )
& ( ( finite5583770498833199894od_b_c @ B7 )
= N )
& ( ord_le282488521294790766od_b_c @ B7 @ A ) ) ) ).
% infinite_arbitrarily_large
thf(fact_633_obtain__subset__with__card__n,axiom,
! [N: nat,S: set_nat] :
( ( ord_less_eq_nat @ N @ ( finite_card_nat @ S ) )
=> ~ ! [T3: set_nat] :
( ( ord_less_eq_set_nat @ T3 @ S )
=> ( ( ( finite_card_nat @ T3 )
= N )
=> ~ ( finite_finite_nat @ T3 ) ) ) ) ).
% obtain_subset_with_card_n
thf(fact_634_obtain__subset__with__card__n,axiom,
! [N: nat,S: set_a] :
( ( ord_less_eq_nat @ N @ ( finite_card_a @ S ) )
=> ~ ! [T3: set_a] :
( ( ord_less_eq_set_a @ T3 @ S )
=> ( ( ( finite_card_a @ T3 )
= N )
=> ~ ( finite_finite_a @ T3 ) ) ) ) ).
% obtain_subset_with_card_n
thf(fact_635_obtain__subset__with__card__n,axiom,
! [N: nat,S: set_li6436108459499378894od_b_c] :
( ( ord_less_eq_nat @ N @ ( finite5583770498833199894od_b_c @ S ) )
=> ~ ! [T3: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ T3 @ S )
=> ( ( ( finite5583770498833199894od_b_c @ T3 )
= N )
=> ~ ( finite3074115686814133143od_b_c @ T3 ) ) ) ) ).
% obtain_subset_with_card_n
thf(fact_636_exists__subset__between,axiom,
! [A: set_nat,N: nat,C2: set_nat] :
( ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( finite_card_nat @ C2 ) )
=> ( ( ord_less_eq_set_nat @ A @ C2 )
=> ( ( finite_finite_nat @ C2 )
=> ? [B7: set_nat] :
( ( ord_less_eq_set_nat @ A @ B7 )
& ( ord_less_eq_set_nat @ B7 @ C2 )
& ( ( finite_card_nat @ B7 )
= N ) ) ) ) ) ) ).
% exists_subset_between
thf(fact_637_exists__subset__between,axiom,
! [A: set_a,N: nat,C2: set_a] :
( ( ord_less_eq_nat @ ( finite_card_a @ A ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( finite_card_a @ C2 ) )
=> ( ( ord_less_eq_set_a @ A @ C2 )
=> ( ( finite_finite_a @ C2 )
=> ? [B7: set_a] :
( ( ord_less_eq_set_a @ A @ B7 )
& ( ord_less_eq_set_a @ B7 @ C2 )
& ( ( finite_card_a @ B7 )
= N ) ) ) ) ) ) ).
% exists_subset_between
thf(fact_638_exists__subset__between,axiom,
! [A: set_li6436108459499378894od_b_c,N: nat,C2: set_li6436108459499378894od_b_c] :
( ( ord_less_eq_nat @ ( finite5583770498833199894od_b_c @ A ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( finite5583770498833199894od_b_c @ C2 ) )
=> ( ( ord_le282488521294790766od_b_c @ A @ C2 )
=> ( ( finite3074115686814133143od_b_c @ C2 )
=> ? [B7: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B7 )
& ( ord_le282488521294790766od_b_c @ B7 @ C2 )
& ( ( finite5583770498833199894od_b_c @ B7 )
= N ) ) ) ) ) ) ).
% exists_subset_between
thf(fact_639_card__subset__eq,axiom,
! [B: set_nat,A: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ A @ B )
=> ( ( ( finite_card_nat @ A )
= ( finite_card_nat @ B ) )
=> ( A = B ) ) ) ) ).
% card_subset_eq
thf(fact_640_card__subset__eq,axiom,
! [B: set_a,A: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A @ B )
=> ( ( ( finite_card_a @ A )
= ( finite_card_a @ B ) )
=> ( A = B ) ) ) ) ).
% card_subset_eq
thf(fact_641_card__subset__eq,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ B )
=> ( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( ( finite5583770498833199894od_b_c @ A )
= ( finite5583770498833199894od_b_c @ B ) )
=> ( A = B ) ) ) ) ).
% card_subset_eq
thf(fact_642_card__seteq,axiom,
! [B: set_nat,A: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( finite_card_nat @ B ) @ ( finite_card_nat @ A ) )
=> ( A = B ) ) ) ) ).
% card_seteq
thf(fact_643_card__seteq,axiom,
! [B: set_a,A: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A @ B )
=> ( ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite_card_a @ A ) )
=> ( A = B ) ) ) ) ).
% card_seteq
thf(fact_644_card__seteq,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ B )
=> ( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( ord_less_eq_nat @ ( finite5583770498833199894od_b_c @ B ) @ ( finite5583770498833199894od_b_c @ A ) )
=> ( A = B ) ) ) ) ).
% card_seteq
thf(fact_645_Suc,axiom,
( ka
= ( suc @ k ) ) ).
% Suc
thf(fact_646_nat__add__left__cancel__le,axiom,
! [K: nat,M3: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M3 ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M3 @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_647__092_060open_062card_AS2_A_060_Ak_092_060close_062,axiom,
ord_less_nat @ ( finite_card_a @ s2 ) @ ka ).
% \<open>card S2 < k\<close>
thf(fact_648_add__le__cancel__right,axiom,
! [A2: nat,C: nat,B2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
= ( ord_less_eq_nat @ A2 @ B2 ) ) ).
% add_le_cancel_right
thf(fact_649_add__le__cancel__left,axiom,
! [C: nat,A2: nat,B2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
= ( ord_less_eq_nat @ A2 @ B2 ) ) ).
% add_le_cancel_left
thf(fact_650__092_060open_062card_AS1_A_060_Ak_092_060close_062,axiom,
ord_less_nat @ ( finite_card_a @ s1 ) @ ka ).
% \<open>card S1 < k\<close>
thf(fact_651_Suc__le__mono,axiom,
! [N: nat,M3: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M3 ) )
= ( ord_less_eq_nat @ N @ M3 ) ) ).
% Suc_le_mono
thf(fact_652_minimal__fixpoint__helper_I2_J,axiom,
! [F: nat > nat,P: nat > $o,K: nat,X: nat,X6: nat] :
( ( F
= ( ^ [X4: nat] : ( if_nat @ ( P @ X4 ) @ X4 @ ( F @ ( suc @ X4 ) ) ) ) )
=> ( ! [X2: nat] :
( ( ord_less_eq_nat @ K @ X2 )
=> ( P @ X2 ) )
=> ( ( ord_less_eq_nat @ X @ X6 )
=> ( ( ord_less_nat @ X6 @ ( F @ X ) )
=> ~ ( P @ X6 ) ) ) ) ) ).
% minimal_fixpoint_helper(2)
thf(fact_653_Suc__leD,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M3 ) @ N )
=> ( ord_less_eq_nat @ M3 @ N ) ) ).
% Suc_leD
thf(fact_654_Suc__leI,axiom,
! [M3: nat,N: nat] :
( ( ord_less_nat @ M3 @ N )
=> ( ord_less_eq_nat @ ( suc @ M3 ) @ N ) ) ).
% Suc_leI
thf(fact_655_le__SucE,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M3 @ N )
=> ( M3
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_656_le__SucI,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_nat @ M3 @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_657_Suc__le__D,axiom,
! [N: nat,M4: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M4 )
=> ? [M5: nat] :
( M4
= ( suc @ M5 ) ) ) ).
% Suc_le_D
thf(fact_658_Suc__le__eq,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M3 ) @ N )
= ( ord_less_nat @ M3 @ N ) ) ).
% Suc_le_eq
thf(fact_659_le__Suc__eq,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M3 @ N )
| ( M3
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_660_dec__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ I )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_661_inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ J )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) ) ) )
=> ( P @ I ) ) ) ) ).
% inc_induct
thf(fact_662_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M6: nat,N3: nat] :
( ( ord_less_eq_nat @ M6 @ N3 )
& ( M6 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_663_Suc__le__lessD,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M3 ) @ N )
=> ( ord_less_nat @ M3 @ N ) ) ).
% Suc_le_lessD
thf(fact_664_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_665_le__less__Suc__eq,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ( ord_less_nat @ N @ ( suc @ M3 ) )
= ( N = M3 ) ) ) ).
% le_less_Suc_eq
thf(fact_666_less__Suc__eq__le,axiom,
! [M3: nat,N: nat] :
( ( ord_less_nat @ M3 @ ( suc @ N ) )
= ( ord_less_eq_nat @ M3 @ N ) ) ).
% less_Suc_eq_le
thf(fact_667_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_668_not__less__eq__eq,axiom,
! [M3: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M3 @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M3 ) ) ).
% not_less_eq_eq
thf(fact_669_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M7: nat] :
( ( ord_less_eq_nat @ ( suc @ M7 ) @ N2 )
=> ( P @ M7 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_670_le__imp__less__Suc,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_nat @ M3 @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_671_less__imp__le__nat,axiom,
! [M3: nat,N: nat] :
( ( ord_less_nat @ M3 @ N )
=> ( ord_less_eq_nat @ M3 @ N ) ) ).
% less_imp_le_nat
thf(fact_672_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M6: nat,N3: nat] :
( ( ord_less_nat @ M6 @ N3 )
| ( M6 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_673_less__or__eq__imp__le,axiom,
! [M3: nat,N: nat] :
( ( ( ord_less_nat @ M3 @ N )
| ( M3 = N ) )
=> ( ord_less_eq_nat @ M3 @ N ) ) ).
% less_or_eq_imp_le
thf(fact_674_le__neq__implies__less,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ( M3 != N )
=> ( ord_less_nat @ M3 @ N ) ) ) ).
% le_neq_implies_less
thf(fact_675_nat__induct__at__least,axiom,
! [M3: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ( P @ M3 )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ M3 @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_676_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_677_transitive__stepwise__le,axiom,
! [M3: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ! [X2: nat] : ( R @ X2 @ X2 )
=> ( ! [X2: nat,Y4: nat,Z3: nat] :
( ( R @ X2 @ Y4 )
=> ( ( R @ Y4 @ Z3 )
=> ( R @ X2 @ Z3 ) ) )
=> ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
=> ( R @ M3 @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_678_order__less__imp__not__less,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_imp_not_less
thf(fact_679_order__less__imp__not__eq2,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( Y != X ) ) ).
% order_less_imp_not_eq2
thf(fact_680_order__less__imp__not__eq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( X != Y ) ) ).
% order_less_imp_not_eq
thf(fact_681_linorder__less__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
| ( X = Y )
| ( ord_less_nat @ Y @ X ) ) ).
% linorder_less_linear
thf(fact_682_order__less__imp__triv,axiom,
! [X: nat,Y: nat,P: $o] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_683_order__less__not__sym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_not_sym
thf(fact_684_order__less__subst2,axiom,
! [A2: nat,B2: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_nat @ ( F @ B2 ) @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_nat @ X2 @ Y4 )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_685_order__less__subst1,axiom,
! [A2: nat,F: nat > nat,B2: nat,C: nat] :
( ( ord_less_nat @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_nat @ X2 @ Y4 )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_686_order__less__irrefl,axiom,
! [X: nat] :
~ ( ord_less_nat @ X @ X ) ).
% order_less_irrefl
thf(fact_687_ord__less__eq__subst,axiom,
! [A2: nat,B2: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ( F @ B2 )
= C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_nat @ X2 @ Y4 )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_688_ord__eq__less__subst,axiom,
! [A2: nat,F: nat > nat,B2: nat,C: nat] :
( ( A2
= ( F @ B2 ) )
=> ( ( ord_less_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_nat @ X2 @ Y4 )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_689_order__less__trans,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ Z )
=> ( ord_less_nat @ X @ Z ) ) ) ).
% order_less_trans
thf(fact_690_order__less__asym_H,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ~ ( ord_less_nat @ B2 @ A2 ) ) ).
% order_less_asym'
thf(fact_691_linorder__neq__iff,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
= ( ( ord_less_nat @ X @ Y )
| ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neq_iff
thf(fact_692_order__less__asym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_asym
thf(fact_693_linorder__neqE,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE
thf(fact_694_dual__order_Ostrict__implies__not__eq,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_nat @ B2 @ A2 )
=> ( A2 != B2 ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_695_order_Ostrict__implies__not__eq,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( A2 != B2 ) ) ).
% order.strict_implies_not_eq
thf(fact_696_dual__order_Ostrict__trans,axiom,
! [B2: nat,A2: nat,C: nat] :
( ( ord_less_nat @ B2 @ A2 )
=> ( ( ord_less_nat @ C @ B2 )
=> ( ord_less_nat @ C @ A2 ) ) ) ).
% dual_order.strict_trans
thf(fact_697_not__less__iff__gr__or__eq,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X @ Y ) )
= ( ( ord_less_nat @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_698_order_Ostrict__trans,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_nat @ B2 @ C )
=> ( ord_less_nat @ A2 @ C ) ) ) ).
% order.strict_trans
thf(fact_699_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A2: nat,B2: nat] :
( ! [A6: nat,B6: nat] :
( ( ord_less_nat @ A6 @ B6 )
=> ( P @ A6 @ B6 ) )
=> ( ! [A6: nat] : ( P @ A6 @ A6 )
=> ( ! [A6: nat,B6: nat] :
( ( P @ B6 @ A6 )
=> ( P @ A6 @ B6 ) )
=> ( P @ A2 @ B2 ) ) ) ) ).
% linorder_less_wlog
thf(fact_700_exists__least__iff,axiom,
( ( ^ [P2: nat > $o] :
? [X7: nat] : ( P2 @ X7 ) )
= ( ^ [P3: nat > $o] :
? [N3: nat] :
( ( P3 @ N3 )
& ! [M6: nat] :
( ( ord_less_nat @ M6 @ N3 )
=> ~ ( P3 @ M6 ) ) ) ) ) ).
% exists_least_iff
thf(fact_701_dual__order_Oirrefl,axiom,
! [A2: nat] :
~ ( ord_less_nat @ A2 @ A2 ) ).
% dual_order.irrefl
thf(fact_702_dual__order_Oasym,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_nat @ B2 @ A2 )
=> ~ ( ord_less_nat @ A2 @ B2 ) ) ).
% dual_order.asym
thf(fact_703_linorder__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_704_antisym__conv3,axiom,
! [Y: nat,X: nat] :
( ~ ( ord_less_nat @ Y @ X )
=> ( ( ~ ( ord_less_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_705_less__induct,axiom,
! [P: nat > $o,A2: nat] :
( ! [X2: nat] :
( ! [Y6: nat] :
( ( ord_less_nat @ Y6 @ X2 )
=> ( P @ Y6 ) )
=> ( P @ X2 ) )
=> ( P @ A2 ) ) ).
% less_induct
thf(fact_706_ord__less__eq__trans,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( B2 = C )
=> ( ord_less_nat @ A2 @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_707_ord__eq__less__trans,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( A2 = B2 )
=> ( ( ord_less_nat @ B2 @ C )
=> ( ord_less_nat @ A2 @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_708_order_Oasym,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ~ ( ord_less_nat @ B2 @ A2 ) ) ).
% order.asym
thf(fact_709_less__imp__neq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_710_gt__ex,axiom,
! [X: nat] :
? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).
% gt_ex
thf(fact_711_order__le__imp__less__or__eq,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_set_a @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_712_order__le__imp__less__or__eq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_nat @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_713_order__le__imp__less__or__eq,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ Y )
=> ( ( ord_le5653067673530651002od_b_c @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_714_linorder__le__less__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
| ( ord_less_nat @ Y @ X ) ) ).
% linorder_le_less_linear
thf(fact_715_order__less__le__subst2,axiom,
! [A2: nat,B2: nat,F: nat > set_a,C: set_a] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_eq_set_a @ ( F @ B2 ) @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_nat @ X2 @ Y4 )
=> ( ord_less_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_set_a @ ( F @ A2 ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_716_order__less__le__subst2,axiom,
! [A2: nat,B2: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ ( F @ B2 ) @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_nat @ X2 @ Y4 )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_717_order__less__le__subst2,axiom,
! [A2: nat,B2: nat,F: nat > set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_le282488521294790766od_b_c @ ( F @ B2 ) @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_nat @ X2 @ Y4 )
=> ( ord_le5653067673530651002od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le5653067673530651002od_b_c @ ( F @ A2 ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_718_order__less__le__subst1,axiom,
! [A2: set_a,F: set_a > set_a,B2: set_a,C: set_a] :
( ( ord_less_set_a @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_set_a @ A2 @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_719_order__less__le__subst1,axiom,
! [A2: nat,F: set_a > nat,B2: set_a,C: set_a] :
( ( ord_less_nat @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_720_order__less__le__subst1,axiom,
! [A2: set_li6436108459499378894od_b_c,F: set_a > set_li6436108459499378894od_b_c,B2: set_a,C: set_a] :
( ( ord_le5653067673530651002od_b_c @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le5653067673530651002od_b_c @ A2 @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_721_order__less__le__subst1,axiom,
! [A2: set_a,F: nat > set_a,B2: nat,C: nat] :
( ( ord_less_set_a @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_set_a @ A2 @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_722_order__less__le__subst1,axiom,
! [A2: nat,F: nat > nat,B2: nat,C: nat] :
( ( ord_less_nat @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_723_order__less__le__subst1,axiom,
! [A2: set_li6436108459499378894od_b_c,F: nat > set_li6436108459499378894od_b_c,B2: nat,C: nat] :
( ( ord_le5653067673530651002od_b_c @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le5653067673530651002od_b_c @ A2 @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_724_order__less__le__subst1,axiom,
! [A2: set_a,F: set_li6436108459499378894od_b_c > set_a,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_set_a @ A2 @ ( F @ B2 ) )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_set_a @ A2 @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_725_order__less__le__subst1,axiom,
! [A2: nat,F: set_li6436108459499378894od_b_c > nat,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_nat @ A2 @ ( F @ B2 ) )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_726_order__less__le__subst1,axiom,
! [A2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ A2 @ ( F @ B2 ) )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le5653067673530651002od_b_c @ A2 @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_727_order__le__less__subst2,axiom,
! [A2: set_a,B2: set_a,F: set_a > set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ord_less_set_a @ ( F @ B2 ) @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_set_a @ ( F @ A2 ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_728_order__le__less__subst2,axiom,
! [A2: set_a,B2: set_a,F: set_a > nat,C: nat] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ord_less_nat @ ( F @ B2 ) @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_729_order__le__less__subst2,axiom,
! [A2: set_a,B2: set_a,F: set_a > set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ord_le5653067673530651002od_b_c @ ( F @ B2 ) @ C )
=> ( ! [X2: set_a,Y4: set_a] :
( ( ord_less_eq_set_a @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le5653067673530651002od_b_c @ ( F @ A2 ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_730_order__le__less__subst2,axiom,
! [A2: nat,B2: nat,F: nat > set_a,C: set_a] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_less_set_a @ ( F @ B2 ) @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_set_a @ ( F @ A2 ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_731_order__le__less__subst2,axiom,
! [A2: nat,B2: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_less_nat @ ( F @ B2 ) @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_732_order__le__less__subst2,axiom,
! [A2: nat,B2: nat,F: nat > set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_le5653067673530651002od_b_c @ ( F @ B2 ) @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_eq_nat @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le5653067673530651002od_b_c @ ( F @ A2 ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_733_order__le__less__subst2,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > set_a,C: set_a] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ord_less_set_a @ ( F @ B2 ) @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_set_a @ ( F @ A2 ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_734_order__le__less__subst2,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > nat,C: nat] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ord_less_nat @ ( F @ B2 ) @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ ( F @ A2 ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_735_order__le__less__subst2,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,F: set_li6436108459499378894od_b_c > set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ord_le5653067673530651002od_b_c @ ( F @ B2 ) @ C )
=> ( ! [X2: set_li6436108459499378894od_b_c,Y4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X2 @ Y4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le5653067673530651002od_b_c @ ( F @ A2 ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_736_order__le__less__subst1,axiom,
! [A2: set_a,F: nat > set_a,B2: nat,C: nat] :
( ( ord_less_eq_set_a @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_nat @ X2 @ Y4 )
=> ( ord_less_set_a @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_set_a @ A2 @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_737_order__le__less__subst1,axiom,
! [A2: nat,F: nat > nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_nat @ X2 @ Y4 )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_less_nat @ A2 @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_738_order__le__less__subst1,axiom,
! [A2: set_li6436108459499378894od_b_c,F: nat > set_li6436108459499378894od_b_c,B2: nat,C: nat] :
( ( ord_le282488521294790766od_b_c @ A2 @ ( F @ B2 ) )
=> ( ( ord_less_nat @ B2 @ C )
=> ( ! [X2: nat,Y4: nat] :
( ( ord_less_nat @ X2 @ Y4 )
=> ( ord_le5653067673530651002od_b_c @ ( F @ X2 ) @ ( F @ Y4 ) ) )
=> ( ord_le5653067673530651002od_b_c @ A2 @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_739_order__less__le__trans,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ Y @ Z )
=> ( ord_less_set_a @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_740_order__less__le__trans,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z )
=> ( ord_less_nat @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_741_order__less__le__trans,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c,Z: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ X @ Y )
=> ( ( ord_le282488521294790766od_b_c @ Y @ Z )
=> ( ord_le5653067673530651002od_b_c @ X @ Z ) ) ) ).
% order_less_le_trans
thf(fact_742_order__le__less__trans,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_set_a @ Y @ Z )
=> ( ord_less_set_a @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_743_order__le__less__trans,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ Z )
=> ( ord_less_nat @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_744_order__le__less__trans,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c,Z: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ Y )
=> ( ( ord_le5653067673530651002od_b_c @ Y @ Z )
=> ( ord_le5653067673530651002od_b_c @ X @ Z ) ) ) ).
% order_le_less_trans
thf(fact_745_order__neq__le__trans,axiom,
! [A2: set_a,B2: set_a] :
( ( A2 != B2 )
=> ( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ord_less_set_a @ A2 @ B2 ) ) ) ).
% order_neq_le_trans
thf(fact_746_order__neq__le__trans,axiom,
! [A2: nat,B2: nat] :
( ( A2 != B2 )
=> ( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ord_less_nat @ A2 @ B2 ) ) ) ).
% order_neq_le_trans
thf(fact_747_order__neq__le__trans,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( A2 != B2 )
=> ( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ord_le5653067673530651002od_b_c @ A2 @ B2 ) ) ) ).
% order_neq_le_trans
thf(fact_748_order__le__neq__trans,axiom,
! [A2: set_a,B2: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( A2 != B2 )
=> ( ord_less_set_a @ A2 @ B2 ) ) ) ).
% order_le_neq_trans
thf(fact_749_order__le__neq__trans,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( A2 != B2 )
=> ( ord_less_nat @ A2 @ B2 ) ) ) ).
% order_le_neq_trans
thf(fact_750_order__le__neq__trans,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( A2 != B2 )
=> ( ord_le5653067673530651002od_b_c @ A2 @ B2 ) ) ) ).
% order_le_neq_trans
thf(fact_751_order__less__imp__le,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_set_a @ X @ Y )
=> ( ord_less_eq_set_a @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_752_order__less__imp__le,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_753_order__less__imp__le,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ X @ Y )
=> ( ord_le282488521294790766od_b_c @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_754_linorder__not__less,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X @ Y ) )
= ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_not_less
thf(fact_755_linorder__not__le,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_eq_nat @ X @ Y ) )
= ( ord_less_nat @ Y @ X ) ) ).
% linorder_not_le
thf(fact_756_order__less__le,axiom,
( ord_less_set_a
= ( ^ [X4: set_a,Y2: set_a] :
( ( ord_less_eq_set_a @ X4 @ Y2 )
& ( X4 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_757_order__less__le,axiom,
( ord_less_nat
= ( ^ [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
& ( X4 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_758_order__less__le,axiom,
( ord_le5653067673530651002od_b_c
= ( ^ [X4: set_li6436108459499378894od_b_c,Y2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X4 @ Y2 )
& ( X4 != Y2 ) ) ) ) ).
% order_less_le
thf(fact_759_order__le__less,axiom,
( ord_less_eq_set_a
= ( ^ [X4: set_a,Y2: set_a] :
( ( ord_less_set_a @ X4 @ Y2 )
| ( X4 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_760_order__le__less,axiom,
( ord_less_eq_nat
= ( ^ [X4: nat,Y2: nat] :
( ( ord_less_nat @ X4 @ Y2 )
| ( X4 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_761_order__le__less,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [X4: set_li6436108459499378894od_b_c,Y2: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ X4 @ Y2 )
| ( X4 = Y2 ) ) ) ) ).
% order_le_less
thf(fact_762_dual__order_Ostrict__implies__order,axiom,
! [B2: set_a,A2: set_a] :
( ( ord_less_set_a @ B2 @ A2 )
=> ( ord_less_eq_set_a @ B2 @ A2 ) ) ).
% dual_order.strict_implies_order
thf(fact_763_dual__order_Ostrict__implies__order,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_nat @ B2 @ A2 )
=> ( ord_less_eq_nat @ B2 @ A2 ) ) ).
% dual_order.strict_implies_order
thf(fact_764_dual__order_Ostrict__implies__order,axiom,
! [B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ B2 @ A2 )
=> ( ord_le282488521294790766od_b_c @ B2 @ A2 ) ) ).
% dual_order.strict_implies_order
thf(fact_765_order_Ostrict__implies__order,axiom,
! [A2: set_a,B2: set_a] :
( ( ord_less_set_a @ A2 @ B2 )
=> ( ord_less_eq_set_a @ A2 @ B2 ) ) ).
% order.strict_implies_order
thf(fact_766_order_Ostrict__implies__order,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ord_less_eq_nat @ A2 @ B2 ) ) ).
% order.strict_implies_order
thf(fact_767_order_Ostrict__implies__order,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ A2 @ B2 )
=> ( ord_le282488521294790766od_b_c @ A2 @ B2 ) ) ).
% order.strict_implies_order
thf(fact_768_dual__order_Ostrict__iff__not,axiom,
( ord_less_set_a
= ( ^ [B4: set_a,A4: set_a] :
( ( ord_less_eq_set_a @ B4 @ A4 )
& ~ ( ord_less_eq_set_a @ A4 @ B4 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_769_dual__order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [B4: nat,A4: nat] :
( ( ord_less_eq_nat @ B4 @ A4 )
& ~ ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_770_dual__order_Ostrict__iff__not,axiom,
( ord_le5653067673530651002od_b_c
= ( ^ [B4: set_li6436108459499378894od_b_c,A4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B4 @ A4 )
& ~ ( ord_le282488521294790766od_b_c @ A4 @ B4 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_771_dual__order_Ostrict__trans2,axiom,
! [B2: set_a,A2: set_a,C: set_a] :
( ( ord_less_set_a @ B2 @ A2 )
=> ( ( ord_less_eq_set_a @ C @ B2 )
=> ( ord_less_set_a @ C @ A2 ) ) ) ).
% dual_order.strict_trans2
thf(fact_772_dual__order_Ostrict__trans2,axiom,
! [B2: nat,A2: nat,C: nat] :
( ( ord_less_nat @ B2 @ A2 )
=> ( ( ord_less_eq_nat @ C @ B2 )
=> ( ord_less_nat @ C @ A2 ) ) ) ).
% dual_order.strict_trans2
thf(fact_773_dual__order_Ostrict__trans2,axiom,
! [B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ B2 @ A2 )
=> ( ( ord_le282488521294790766od_b_c @ C @ B2 )
=> ( ord_le5653067673530651002od_b_c @ C @ A2 ) ) ) ).
% dual_order.strict_trans2
thf(fact_774_dual__order_Ostrict__trans1,axiom,
! [B2: set_a,A2: set_a,C: set_a] :
( ( ord_less_eq_set_a @ B2 @ A2 )
=> ( ( ord_less_set_a @ C @ B2 )
=> ( ord_less_set_a @ C @ A2 ) ) ) ).
% dual_order.strict_trans1
thf(fact_775_dual__order_Ostrict__trans1,axiom,
! [B2: nat,A2: nat,C: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
=> ( ( ord_less_nat @ C @ B2 )
=> ( ord_less_nat @ C @ A2 ) ) ) ).
% dual_order.strict_trans1
thf(fact_776_dual__order_Ostrict__trans1,axiom,
! [B2: set_li6436108459499378894od_b_c,A2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B2 @ A2 )
=> ( ( ord_le5653067673530651002od_b_c @ C @ B2 )
=> ( ord_le5653067673530651002od_b_c @ C @ A2 ) ) ) ).
% dual_order.strict_trans1
thf(fact_777_dual__order_Ostrict__iff__order,axiom,
( ord_less_set_a
= ( ^ [B4: set_a,A4: set_a] :
( ( ord_less_eq_set_a @ B4 @ A4 )
& ( A4 != B4 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_778_dual__order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [B4: nat,A4: nat] :
( ( ord_less_eq_nat @ B4 @ A4 )
& ( A4 != B4 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_779_dual__order_Ostrict__iff__order,axiom,
( ord_le5653067673530651002od_b_c
= ( ^ [B4: set_li6436108459499378894od_b_c,A4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ B4 @ A4 )
& ( A4 != B4 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_780_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_set_a
= ( ^ [B4: set_a,A4: set_a] :
( ( ord_less_set_a @ B4 @ A4 )
| ( A4 = B4 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_781_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [B4: nat,A4: nat] :
( ( ord_less_nat @ B4 @ A4 )
| ( A4 = B4 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_782_dual__order_Oorder__iff__strict,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [B4: set_li6436108459499378894od_b_c,A4: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ B4 @ A4 )
| ( A4 = B4 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_783_order_Ostrict__iff__not,axiom,
( ord_less_set_a
= ( ^ [A4: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A4 @ B4 )
& ~ ( ord_less_eq_set_a @ B4 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_784_order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [A4: nat,B4: nat] :
( ( ord_less_eq_nat @ A4 @ B4 )
& ~ ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_785_order_Ostrict__iff__not,axiom,
( ord_le5653067673530651002od_b_c
= ( ^ [A4: set_li6436108459499378894od_b_c,B4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A4 @ B4 )
& ~ ( ord_le282488521294790766od_b_c @ B4 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_786_order_Ostrict__trans2,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( ord_less_set_a @ A2 @ B2 )
=> ( ( ord_less_eq_set_a @ B2 @ C )
=> ( ord_less_set_a @ A2 @ C ) ) ) ).
% order.strict_trans2
thf(fact_787_order_Ostrict__trans2,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ord_less_nat @ A2 @ C ) ) ) ).
% order.strict_trans2
thf(fact_788_order_Ostrict__trans2,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ A2 @ B2 )
=> ( ( ord_le282488521294790766od_b_c @ B2 @ C )
=> ( ord_le5653067673530651002od_b_c @ A2 @ C ) ) ) ).
% order.strict_trans2
thf(fact_789_order_Ostrict__trans1,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A2 @ B2 )
=> ( ( ord_less_set_a @ B2 @ C )
=> ( ord_less_set_a @ A2 @ C ) ) ) ).
% order.strict_trans1
thf(fact_790_order_Ostrict__trans1,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_less_nat @ B2 @ C )
=> ( ord_less_nat @ A2 @ C ) ) ) ).
% order.strict_trans1
thf(fact_791_order_Ostrict__trans1,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c,C: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A2 @ B2 )
=> ( ( ord_le5653067673530651002od_b_c @ B2 @ C )
=> ( ord_le5653067673530651002od_b_c @ A2 @ C ) ) ) ).
% order.strict_trans1
thf(fact_792_order_Ostrict__iff__order,axiom,
( ord_less_set_a
= ( ^ [A4: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A4 @ B4 )
& ( A4 != B4 ) ) ) ) ).
% order.strict_iff_order
thf(fact_793_order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [A4: nat,B4: nat] :
( ( ord_less_eq_nat @ A4 @ B4 )
& ( A4 != B4 ) ) ) ) ).
% order.strict_iff_order
thf(fact_794_order_Ostrict__iff__order,axiom,
( ord_le5653067673530651002od_b_c
= ( ^ [A4: set_li6436108459499378894od_b_c,B4: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A4 @ B4 )
& ( A4 != B4 ) ) ) ) ).
% order.strict_iff_order
thf(fact_795_order_Oorder__iff__strict,axiom,
( ord_less_eq_set_a
= ( ^ [A4: set_a,B4: set_a] :
( ( ord_less_set_a @ A4 @ B4 )
| ( A4 = B4 ) ) ) ) ).
% order.order_iff_strict
thf(fact_796_order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B4: nat] :
( ( ord_less_nat @ A4 @ B4 )
| ( A4 = B4 ) ) ) ) ).
% order.order_iff_strict
thf(fact_797_order_Oorder__iff__strict,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [A4: set_li6436108459499378894od_b_c,B4: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ A4 @ B4 )
| ( A4 = B4 ) ) ) ) ).
% order.order_iff_strict
thf(fact_798_not__le__imp__less,axiom,
! [Y: nat,X: nat] :
( ~ ( ord_less_eq_nat @ Y @ X )
=> ( ord_less_nat @ X @ Y ) ) ).
% not_le_imp_less
thf(fact_799_less__le__not__le,axiom,
( ord_less_set_a
= ( ^ [X4: set_a,Y2: set_a] :
( ( ord_less_eq_set_a @ X4 @ Y2 )
& ~ ( ord_less_eq_set_a @ Y2 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_800_less__le__not__le,axiom,
( ord_less_nat
= ( ^ [X4: nat,Y2: nat] :
( ( ord_less_eq_nat @ X4 @ Y2 )
& ~ ( ord_less_eq_nat @ Y2 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_801_less__le__not__le,axiom,
( ord_le5653067673530651002od_b_c
= ( ^ [X4: set_li6436108459499378894od_b_c,Y2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X4 @ Y2 )
& ~ ( ord_le282488521294790766od_b_c @ Y2 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_802_antisym__conv2,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ~ ( ord_less_set_a @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_803_antisym__conv2,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ~ ( ord_less_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_804_antisym__conv2,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ X @ Y )
=> ( ( ~ ( ord_le5653067673530651002od_b_c @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_805_antisym__conv1,axiom,
! [X: set_a,Y: set_a] :
( ~ ( ord_less_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_806_antisym__conv1,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_807_antisym__conv1,axiom,
! [X: set_li6436108459499378894od_b_c,Y: set_li6436108459499378894od_b_c] :
( ~ ( ord_le5653067673530651002od_b_c @ X @ Y )
=> ( ( ord_le282488521294790766od_b_c @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_808_nless__le,axiom,
! [A2: set_a,B2: set_a] :
( ( ~ ( ord_less_set_a @ A2 @ B2 ) )
= ( ~ ( ord_less_eq_set_a @ A2 @ B2 )
| ( A2 = B2 ) ) ) ).
% nless_le
thf(fact_809_nless__le,axiom,
! [A2: nat,B2: nat] :
( ( ~ ( ord_less_nat @ A2 @ B2 ) )
= ( ~ ( ord_less_eq_nat @ A2 @ B2 )
| ( A2 = B2 ) ) ) ).
% nless_le
thf(fact_810_nless__le,axiom,
! [A2: set_li6436108459499378894od_b_c,B2: set_li6436108459499378894od_b_c] :
( ( ~ ( ord_le5653067673530651002od_b_c @ A2 @ B2 ) )
= ( ~ ( ord_le282488521294790766od_b_c @ A2 @ B2 )
| ( A2 = B2 ) ) ) ).
% nless_le
thf(fact_811_leI,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_eq_nat @ Y @ X ) ) ).
% leI
thf(fact_812_leD,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ~ ( ord_less_set_a @ X @ Y ) ) ).
% leD
thf(fact_813_leD,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ~ ( ord_less_nat @ X @ Y ) ) ).
% leD
thf(fact_814_leD,axiom,
! [Y: set_li6436108459499378894od_b_c,X: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ Y @ X )
=> ~ ( ord_le5653067673530651002od_b_c @ X @ Y ) ) ).
% leD
thf(fact_815_bot_Onot__eq__extremum,axiom,
! [A2: set_a] :
( ( A2 != bot_bot_set_a )
= ( ord_less_set_a @ bot_bot_set_a @ A2 ) ) ).
% bot.not_eq_extremum
thf(fact_816_bot_Onot__eq__extremum,axiom,
! [A2: nat] :
( ( A2 != bot_bot_nat )
= ( ord_less_nat @ bot_bot_nat @ A2 ) ) ).
% bot.not_eq_extremum
thf(fact_817_bot_Oextremum__strict,axiom,
! [A2: set_a] :
~ ( ord_less_set_a @ A2 @ bot_bot_set_a ) ).
% bot.extremum_strict
thf(fact_818_bot_Oextremum__strict,axiom,
! [A2: nat] :
~ ( ord_less_nat @ A2 @ bot_bot_nat ) ).
% bot.extremum_strict
thf(fact_819_less__infI1,axiom,
! [A2: set_a,X: set_a,B2: set_a] :
( ( ord_less_set_a @ A2 @ X )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ X ) ) ).
% less_infI1
thf(fact_820_less__infI1,axiom,
! [A2: nat,X: nat,B2: nat] :
( ( ord_less_nat @ A2 @ X )
=> ( ord_less_nat @ ( inf_inf_nat @ A2 @ B2 ) @ X ) ) ).
% less_infI1
thf(fact_821_less__infI2,axiom,
! [B2: set_a,X: set_a,A2: set_a] :
( ( ord_less_set_a @ B2 @ X )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ X ) ) ).
% less_infI2
thf(fact_822_less__infI2,axiom,
! [B2: nat,X: nat,A2: nat] :
( ( ord_less_nat @ B2 @ X )
=> ( ord_less_nat @ ( inf_inf_nat @ A2 @ B2 ) @ X ) ) ).
% less_infI2
thf(fact_823_inf_Oabsorb3,axiom,
! [A2: set_a,B2: set_a] :
( ( ord_less_set_a @ A2 @ B2 )
=> ( ( inf_inf_set_a @ A2 @ B2 )
= A2 ) ) ).
% inf.absorb3
thf(fact_824_inf_Oabsorb3,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( inf_inf_nat @ A2 @ B2 )
= A2 ) ) ).
% inf.absorb3
thf(fact_825_inf_Oabsorb4,axiom,
! [B2: set_a,A2: set_a] :
( ( ord_less_set_a @ B2 @ A2 )
=> ( ( inf_inf_set_a @ A2 @ B2 )
= B2 ) ) ).
% inf.absorb4
thf(fact_826_inf_Oabsorb4,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_nat @ B2 @ A2 )
=> ( ( inf_inf_nat @ A2 @ B2 )
= B2 ) ) ).
% inf.absorb4
thf(fact_827_inf_Ostrict__boundedE,axiom,
! [A2: set_a,B2: set_a,C: set_a] :
( ( ord_less_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C ) )
=> ~ ( ( ord_less_set_a @ A2 @ B2 )
=> ~ ( ord_less_set_a @ A2 @ C ) ) ) ).
% inf.strict_boundedE
thf(fact_828_inf_Ostrict__boundedE,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_nat @ A2 @ ( inf_inf_nat @ B2 @ C ) )
=> ~ ( ( ord_less_nat @ A2 @ B2 )
=> ~ ( ord_less_nat @ A2 @ C ) ) ) ).
% inf.strict_boundedE
thf(fact_829_inf_Ostrict__order__iff,axiom,
( ord_less_set_a
= ( ^ [A4: set_a,B4: set_a] :
( ( A4
= ( inf_inf_set_a @ A4 @ B4 ) )
& ( A4 != B4 ) ) ) ) ).
% inf.strict_order_iff
thf(fact_830_inf_Ostrict__order__iff,axiom,
( ord_less_nat
= ( ^ [A4: nat,B4: nat] :
( ( A4
= ( inf_inf_nat @ A4 @ B4 ) )
& ( A4 != B4 ) ) ) ) ).
% inf.strict_order_iff
thf(fact_831_inf_Ostrict__coboundedI1,axiom,
! [A2: set_a,C: set_a,B2: set_a] :
( ( ord_less_set_a @ A2 @ C )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C ) ) ).
% inf.strict_coboundedI1
thf(fact_832_inf_Ostrict__coboundedI1,axiom,
! [A2: nat,C: nat,B2: nat] :
( ( ord_less_nat @ A2 @ C )
=> ( ord_less_nat @ ( inf_inf_nat @ A2 @ B2 ) @ C ) ) ).
% inf.strict_coboundedI1
thf(fact_833_inf_Ostrict__coboundedI2,axiom,
! [B2: set_a,C: set_a,A2: set_a] :
( ( ord_less_set_a @ B2 @ C )
=> ( ord_less_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C ) ) ).
% inf.strict_coboundedI2
thf(fact_834_inf_Ostrict__coboundedI2,axiom,
! [B2: nat,C: nat,A2: nat] :
( ( ord_less_nat @ B2 @ C )
=> ( ord_less_nat @ ( inf_inf_nat @ A2 @ B2 ) @ C ) ) ).
% inf.strict_coboundedI2
thf(fact_835_less__supI1,axiom,
! [X: set_a,A2: set_a,B2: set_a] :
( ( ord_less_set_a @ X @ A2 )
=> ( ord_less_set_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).
% less_supI1
thf(fact_836_less__supI1,axiom,
! [X: nat,A2: nat,B2: nat] :
( ( ord_less_nat @ X @ A2 )
=> ( ord_less_nat @ X @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).
% less_supI1
thf(fact_837_less__supI2,axiom,
! [X: set_a,B2: set_a,A2: set_a] :
( ( ord_less_set_a @ X @ B2 )
=> ( ord_less_set_a @ X @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).
% less_supI2
thf(fact_838_less__supI2,axiom,
! [X: nat,B2: nat,A2: nat] :
( ( ord_less_nat @ X @ B2 )
=> ( ord_less_nat @ X @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).
% less_supI2
thf(fact_839_sup_Oabsorb3,axiom,
! [B2: set_a,A2: set_a] :
( ( ord_less_set_a @ B2 @ A2 )
=> ( ( sup_sup_set_a @ A2 @ B2 )
= A2 ) ) ).
% sup.absorb3
thf(fact_840_sup_Oabsorb3,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_nat @ B2 @ A2 )
=> ( ( sup_sup_nat @ A2 @ B2 )
= A2 ) ) ).
% sup.absorb3
thf(fact_841_sup_Oabsorb4,axiom,
! [A2: set_a,B2: set_a] :
( ( ord_less_set_a @ A2 @ B2 )
=> ( ( sup_sup_set_a @ A2 @ B2 )
= B2 ) ) ).
% sup.absorb4
thf(fact_842_sup_Oabsorb4,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( sup_sup_nat @ A2 @ B2 )
= B2 ) ) ).
% sup.absorb4
thf(fact_843_sup_Ostrict__boundedE,axiom,
! [B2: set_a,C: set_a,A2: set_a] :
( ( ord_less_set_a @ ( sup_sup_set_a @ B2 @ C ) @ A2 )
=> ~ ( ( ord_less_set_a @ B2 @ A2 )
=> ~ ( ord_less_set_a @ C @ A2 ) ) ) ).
% sup.strict_boundedE
thf(fact_844_sup_Ostrict__boundedE,axiom,
! [B2: nat,C: nat,A2: nat] :
( ( ord_less_nat @ ( sup_sup_nat @ B2 @ C ) @ A2 )
=> ~ ( ( ord_less_nat @ B2 @ A2 )
=> ~ ( ord_less_nat @ C @ A2 ) ) ) ).
% sup.strict_boundedE
thf(fact_845_sup_Ostrict__order__iff,axiom,
( ord_less_set_a
= ( ^ [B4: set_a,A4: set_a] :
( ( A4
= ( sup_sup_set_a @ A4 @ B4 ) )
& ( A4 != B4 ) ) ) ) ).
% sup.strict_order_iff
thf(fact_846_sup_Ostrict__order__iff,axiom,
( ord_less_nat
= ( ^ [B4: nat,A4: nat] :
( ( A4
= ( sup_sup_nat @ A4 @ B4 ) )
& ( A4 != B4 ) ) ) ) ).
% sup.strict_order_iff
thf(fact_847_sup_Ostrict__coboundedI1,axiom,
! [C: set_a,A2: set_a,B2: set_a] :
( ( ord_less_set_a @ C @ A2 )
=> ( ord_less_set_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).
% sup.strict_coboundedI1
thf(fact_848_sup_Ostrict__coboundedI1,axiom,
! [C: nat,A2: nat,B2: nat] :
( ( ord_less_nat @ C @ A2 )
=> ( ord_less_nat @ C @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).
% sup.strict_coboundedI1
thf(fact_849_sup_Ostrict__coboundedI2,axiom,
! [C: set_a,B2: set_a,A2: set_a] :
( ( ord_less_set_a @ C @ B2 )
=> ( ord_less_set_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).
% sup.strict_coboundedI2
thf(fact_850_sup_Ostrict__coboundedI2,axiom,
! [C: nat,B2: nat,A2: nat] :
( ( ord_less_nat @ C @ B2 )
=> ( ord_less_nat @ C @ ( sup_sup_nat @ A2 @ B2 ) ) ) ).
% sup.strict_coboundedI2
thf(fact_851_recursion__renaming__helper,axiom,
! [F1: nat > nat,P: nat > $o,F22: nat > nat,K: nat] :
( ( F1
= ( ^ [X4: nat] : ( if_nat @ ( P @ X4 ) @ X4 @ ( F1 @ ( suc @ X4 ) ) ) ) )
=> ( ( F22
= ( ^ [X4: nat] : ( if_nat @ ( P @ X4 ) @ X4 @ ( F22 @ ( suc @ X4 ) ) ) ) )
=> ( ! [X2: nat] :
( ( ord_less_eq_nat @ K @ X2 )
=> ( P @ X2 ) )
=> ( F1 = F22 ) ) ) ) ).
% recursion_renaming_helper
thf(fact_852_minimal__fixpoint__helper_I1_J,axiom,
! [F: nat > nat,P: nat > $o,K: nat,X: nat] :
( ( F
= ( ^ [X4: nat] : ( if_nat @ ( P @ X4 ) @ X4 @ ( F @ ( suc @ X4 ) ) ) ) )
=> ( ! [X2: nat] :
( ( ord_less_eq_nat @ K @ X2 )
=> ( P @ X2 ) )
=> ( P @ ( F @ X ) ) ) ) ).
% minimal_fixpoint_helper(1)
thf(fact_853_add__less__le__mono,axiom,
! [A2: nat,B2: nat,C: nat,D2: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D2 ) ) ) ) ).
% add_less_le_mono
thf(fact_854_add__le__less__mono,axiom,
! [A2: nat,B2: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_less_nat @ C @ D2 )
=> ( ord_less_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D2 ) ) ) ) ).
% add_le_less_mono
thf(fact_855_add__mono__thms__linordered__field_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_856_add__mono__thms__linordered__field_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_857_lift__Suc__mono__le,axiom,
! [F: nat > set_a,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_set_a @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_set_a @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_858_lift__Suc__mono__le,axiom,
! [F: nat > nat,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_859_lift__Suc__mono__le,axiom,
! [F: nat > set_li6436108459499378894od_b_c,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_le282488521294790766od_b_c @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ N ) @ ( F @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_860_lift__Suc__antimono__le,axiom,
! [F: nat > set_a,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_set_a @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_set_a @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_861_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_862_lift__Suc__antimono__le,axiom,
! [F: nat > set_li6436108459499378894od_b_c,N: nat,N4: nat] :
( ! [N2: nat] : ( ord_le282488521294790766od_b_c @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_le282488521294790766od_b_c @ ( F @ N4 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_863_mono__nat__linear__lb,axiom,
! [F: nat > nat,M3: nat,K: nat] :
( ! [M5: nat,N2: nat] :
( ( ord_less_nat @ M5 @ N2 )
=> ( ord_less_nat @ ( F @ M5 ) @ ( F @ N2 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M3 ) @ K ) @ ( F @ ( plus_plus_nat @ M3 @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_864_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B2: nat] :
( ( P @ K )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ B2 ) )
=> ? [X2: nat] :
( ( P @ X2 )
& ! [Y6: nat] :
( ( P @ Y6 )
=> ( ord_less_eq_nat @ Y6 @ X2 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_865_nat__le__linear,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
| ( ord_less_eq_nat @ N @ M3 ) ) ).
% nat_le_linear
thf(fact_866_le__antisym,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ( ord_less_eq_nat @ N @ M3 )
=> ( M3 = N ) ) ) ).
% le_antisym
thf(fact_867_eq__imp__le,axiom,
! [M3: nat,N: nat] :
( ( M3 = N )
=> ( ord_less_eq_nat @ M3 @ N ) ) ).
% eq_imp_le
thf(fact_868_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_869_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_870_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_871_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_872_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_873_add__mono,axiom,
! [A2: nat,B2: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ D2 ) ) ) ) ).
% add_mono
thf(fact_874_add__left__mono,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) ) ) ).
% add_left_mono
thf(fact_875_less__eqE,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ~ ! [C3: nat] :
( B2
!= ( plus_plus_nat @ A2 @ C3 ) ) ) ).
% less_eqE
thf(fact_876_add__right__mono,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) ) ) ).
% add_right_mono
thf(fact_877_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B4: nat] :
? [C4: nat] :
( B4
= ( plus_plus_nat @ A4 @ C4 ) ) ) ) ).
% le_iff_add
thf(fact_878_add__le__imp__le__left,axiom,
! [C: nat,A2: nat,B2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A2 ) @ ( plus_plus_nat @ C @ B2 ) )
=> ( ord_less_eq_nat @ A2 @ B2 ) ) ).
% add_le_imp_le_left
thf(fact_879_add__le__imp__le__right,axiom,
! [A2: nat,C: nat,B2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ ( plus_plus_nat @ B2 @ C ) )
=> ( ord_less_eq_nat @ A2 @ B2 ) ) ).
% add_le_imp_le_right
thf(fact_880_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M6: nat,N3: nat] :
? [K5: nat] :
( N3
= ( plus_plus_nat @ M6 @ K5 ) ) ) ) ).
% nat_le_iff_add
thf(fact_881_trans__le__add2,axiom,
! [I: nat,J: nat,M3: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M3 @ J ) ) ) ).
% trans_le_add2
thf(fact_882_trans__le__add1,axiom,
! [I: nat,J: nat,M3: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M3 ) ) ) ).
% trans_le_add1
thf(fact_883_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_884_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_885_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N2: nat] :
( L
= ( plus_plus_nat @ K @ N2 ) ) ) ).
% le_Suc_ex
thf(fact_886_add__leD2,axiom,
! [M3: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M3 @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_887_add__leD1,axiom,
! [M3: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M3 @ K ) @ N )
=> ( ord_less_eq_nat @ M3 @ N ) ) ).
% add_leD1
thf(fact_888_le__add2,axiom,
! [N: nat,M3: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M3 @ N ) ) ).
% le_add2
thf(fact_889_le__add1,axiom,
! [N: nat,M3: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M3 ) ) ).
% le_add1
thf(fact_890_add__leE,axiom,
! [M3: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M3 @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M3 @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_891__092_060open_0620_A_060_Acard_AS2_092_060close_062,axiom,
ord_less_nat @ zero_zero_nat @ ( finite_card_a @ s2 ) ).
% \<open>0 < card S2\<close>
thf(fact_892__092_060open_0620_A_060_Acard_AS1_092_060close_062,axiom,
ord_less_nat @ zero_zero_nat @ ( finite_card_a @ s1 ) ).
% \<open>0 < card S1\<close>
thf(fact_893__092_060open_062length_Aw_H_A_060_Alength_Awk_092_060close_062,axiom,
ord_less_nat @ ( size_s3392097710323735898od_b_c @ w3 ) @ ( size_s3392097710323735898od_b_c @ wk ) ).
% \<open>length w' < length wk\<close>
thf(fact_894_card__le__if__inj__on__rel,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c,R2: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o] :
( ( finite3074115686814133143od_b_c @ B )
=> ( ! [A6: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ A6 @ A )
=> ? [B8: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ B8 @ B )
& ( R2 @ A6 @ B8 ) ) )
=> ( ! [A1: list_P903359562653991662od_b_c,A22: list_P903359562653991662od_b_c,B6: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ A1 @ A )
=> ( ( member6330420149250801815od_b_c @ A22 @ A )
=> ( ( member6330420149250801815od_b_c @ B6 @ B )
=> ( ( R2 @ A1 @ B6 )
=> ( ( R2 @ A22 @ B6 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite5583770498833199894od_b_c @ A ) @ ( finite5583770498833199894od_b_c @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_895_card__le__if__inj__on__rel,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_a,R2: a > list_P903359562653991662od_b_c > $o] :
( ( finite3074115686814133143od_b_c @ B )
=> ( ! [A6: a] :
( ( member_a @ A6 @ A )
=> ? [B8: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ B8 @ B )
& ( R2 @ A6 @ B8 ) ) )
=> ( ! [A1: a,A22: a,B6: list_P903359562653991662od_b_c] :
( ( member_a @ A1 @ A )
=> ( ( member_a @ A22 @ A )
=> ( ( member6330420149250801815od_b_c @ B6 @ B )
=> ( ( R2 @ A1 @ B6 )
=> ( ( R2 @ A22 @ B6 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ A ) @ ( finite5583770498833199894od_b_c @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_896_card__le__if__inj__on__rel,axiom,
! [B: set_a,A: set_li6436108459499378894od_b_c,R2: list_P903359562653991662od_b_c > a > $o] :
( ( finite_finite_a @ B )
=> ( ! [A6: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ A6 @ A )
=> ? [B8: a] :
( ( member_a @ B8 @ B )
& ( R2 @ A6 @ B8 ) ) )
=> ( ! [A1: list_P903359562653991662od_b_c,A22: list_P903359562653991662od_b_c,B6: a] :
( ( member6330420149250801815od_b_c @ A1 @ A )
=> ( ( member6330420149250801815od_b_c @ A22 @ A )
=> ( ( member_a @ B6 @ B )
=> ( ( R2 @ A1 @ B6 )
=> ( ( R2 @ A22 @ B6 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite5583770498833199894od_b_c @ A ) @ ( finite_card_a @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_897_card__le__if__inj__on__rel,axiom,
! [B: set_a,A: set_a,R2: a > a > $o] :
( ( finite_finite_a @ B )
=> ( ! [A6: a] :
( ( member_a @ A6 @ A )
=> ? [B8: a] :
( ( member_a @ B8 @ B )
& ( R2 @ A6 @ B8 ) ) )
=> ( ! [A1: a,A22: a,B6: a] :
( ( member_a @ A1 @ A )
=> ( ( member_a @ A22 @ A )
=> ( ( member_a @ B6 @ B )
=> ( ( R2 @ A1 @ B6 )
=> ( ( R2 @ A22 @ B6 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ A ) @ ( finite_card_a @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_898_card__le__if__inj__on__rel,axiom,
! [B: set_nat,A: set_li6436108459499378894od_b_c,R2: list_P903359562653991662od_b_c > nat > $o] :
( ( finite_finite_nat @ B )
=> ( ! [A6: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ A6 @ A )
=> ? [B8: nat] :
( ( member_nat @ B8 @ B )
& ( R2 @ A6 @ B8 ) ) )
=> ( ! [A1: list_P903359562653991662od_b_c,A22: list_P903359562653991662od_b_c,B6: nat] :
( ( member6330420149250801815od_b_c @ A1 @ A )
=> ( ( member6330420149250801815od_b_c @ A22 @ A )
=> ( ( member_nat @ B6 @ B )
=> ( ( R2 @ A1 @ B6 )
=> ( ( R2 @ A22 @ B6 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite5583770498833199894od_b_c @ A ) @ ( finite_card_nat @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_899_card__le__if__inj__on__rel,axiom,
! [B: set_nat,A: set_a,R2: a > nat > $o] :
( ( finite_finite_nat @ B )
=> ( ! [A6: a] :
( ( member_a @ A6 @ A )
=> ? [B8: nat] :
( ( member_nat @ B8 @ B )
& ( R2 @ A6 @ B8 ) ) )
=> ( ! [A1: a,A22: a,B6: nat] :
( ( member_a @ A1 @ A )
=> ( ( member_a @ A22 @ A )
=> ( ( member_nat @ B6 @ B )
=> ( ( R2 @ A1 @ B6 )
=> ( ( R2 @ A22 @ B6 )
=> ( A1 = A22 ) ) ) ) ) )
=> ( ord_less_eq_nat @ ( finite_card_a @ A ) @ ( finite_card_nat @ B ) ) ) ) ) ).
% card_le_if_inj_on_rel
thf(fact_900_psubsetI,axiom,
! [A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( A != B )
=> ( ord_less_set_a @ A @ B ) ) ) ).
% psubsetI
thf(fact_901_psubsetI,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( A != B )
=> ( ord_le5653067673530651002od_b_c @ A @ B ) ) ) ).
% psubsetI
thf(fact_902_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_903_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_904_bot__nat__0_Oextremum,axiom,
! [A2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A2 ) ).
% bot_nat_0.extremum
thf(fact_905_append__eq__append__conv,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c,Us: list_P903359562653991662od_b_c,Vs: list_P903359562653991662od_b_c] :
( ( ( ( size_s3392097710323735898od_b_c @ Xs )
= ( size_s3392097710323735898od_b_c @ Ys ) )
| ( ( size_s3392097710323735898od_b_c @ Us )
= ( size_s3392097710323735898od_b_c @ Vs ) ) )
=> ( ( ( append2547753245680614915od_b_c @ Xs @ Us )
= ( append2547753245680614915od_b_c @ Ys @ Vs ) )
= ( ( Xs = Ys )
& ( Us = Vs ) ) ) ) ).
% append_eq_append_conv
thf(fact_906_add__le__same__cancel1,axiom,
! [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B2 @ A2 ) @ B2 )
= ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_907_add__le__same__cancel2,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B2 ) @ B2 )
= ( ord_less_eq_nat @ A2 @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_908_le__add__same__cancel1,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ A2 @ B2 ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) ).
% le_add_same_cancel1
thf(fact_909_le__add__same__cancel2,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ ( plus_plus_nat @ B2 @ A2 ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B2 ) ) ).
% le_add_same_cancel2
thf(fact_910_length__0__conv,axiom,
! [Xs: list_P903359562653991662od_b_c] :
( ( ( size_s3392097710323735898od_b_c @ Xs )
= zero_zero_nat )
= ( Xs = nil_Product_prod_b_c ) ) ).
% length_0_conv
thf(fact_911_card_Oinfinite,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ~ ( finite3074115686814133143od_b_c @ A )
=> ( ( finite5583770498833199894od_b_c @ A )
= zero_zero_nat ) ) ).
% card.infinite
thf(fact_912_card_Oinfinite,axiom,
! [A: set_a] :
( ~ ( finite_finite_a @ A )
=> ( ( finite_card_a @ A )
= zero_zero_nat ) ) ).
% card.infinite
thf(fact_913_card_Oinfinite,axiom,
! [A: set_nat] :
( ~ ( finite_finite_nat @ A )
=> ( ( finite_card_nat @ A )
= zero_zero_nat ) ) ).
% card.infinite
thf(fact_914_card_Oempty,axiom,
( ( finite_card_a @ bot_bot_set_a )
= zero_zero_nat ) ).
% card.empty
thf(fact_915_length__append,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c] :
( ( size_s3392097710323735898od_b_c @ ( append2547753245680614915od_b_c @ Xs @ Ys ) )
= ( plus_plus_nat @ ( size_s3392097710323735898od_b_c @ Xs ) @ ( size_s3392097710323735898od_b_c @ Ys ) ) ) ).
% length_append
thf(fact_916_length__greater__0__conv,axiom,
! [Xs: list_P903359562653991662od_b_c] :
( ( ord_less_nat @ zero_zero_nat @ ( size_s3392097710323735898od_b_c @ Xs ) )
= ( Xs != nil_Product_prod_b_c ) ) ).
% length_greater_0_conv
thf(fact_917_card__0__eq,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ A )
=> ( ( ( finite5583770498833199894od_b_c @ A )
= zero_zero_nat )
= ( A = bot_bo4166481423041325370od_b_c ) ) ) ).
% card_0_eq
thf(fact_918_card__0__eq,axiom,
! [A: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( ( finite_card_nat @ A )
= zero_zero_nat )
= ( A = bot_bot_set_nat ) ) ) ).
% card_0_eq
thf(fact_919_card__0__eq,axiom,
! [A: set_a] :
( ( finite_finite_a @ A )
=> ( ( ( finite_card_a @ A )
= zero_zero_nat )
= ( A = bot_bot_set_a ) ) ) ).
% card_0_eq
thf(fact_920_list_Osize_I3_J,axiom,
( ( size_s3392097710323735898od_b_c @ nil_Product_prod_b_c )
= zero_zero_nat ) ).
% list.size(3)
thf(fact_921_Ex__list__of__length,axiom,
! [N: nat] :
? [Xs2: list_P903359562653991662od_b_c] :
( ( size_s3392097710323735898od_b_c @ Xs2 )
= N ) ).
% Ex_list_of_length
thf(fact_922_neq__if__length__neq,axiom,
! [Xs: list_P903359562653991662od_b_c,Ys: list_P903359562653991662od_b_c] :
( ( ( size_s3392097710323735898od_b_c @ Xs )
!= ( size_s3392097710323735898od_b_c @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_923_length__induct,axiom,
! [P: list_P903359562653991662od_b_c > $o,Xs: list_P903359562653991662od_b_c] :
( ! [Xs2: list_P903359562653991662od_b_c] :
( ! [Ys3: list_P903359562653991662od_b_c] :
( ( ord_less_nat @ ( size_s3392097710323735898od_b_c @ Ys3 ) @ ( size_s3392097710323735898od_b_c @ Xs2 ) )
=> ( P @ Ys3 ) )
=> ( P @ Xs2 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_924_finite__psubset__induct,axiom,
! [A: set_li6436108459499378894od_b_c,P: set_li6436108459499378894od_b_c > $o] :
( ( finite3074115686814133143od_b_c @ A )
=> ( ! [A7: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ A7 )
=> ( ! [B9: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ B9 @ A7 )
=> ( P @ B9 ) )
=> ( P @ A7 ) ) )
=> ( P @ A ) ) ) ).
% finite_psubset_induct
thf(fact_925_finite__psubset__induct,axiom,
! [A: set_a,P: set_a > $o] :
( ( finite_finite_a @ A )
=> ( ! [A7: set_a] :
( ( finite_finite_a @ A7 )
=> ( ! [B9: set_a] :
( ( ord_less_set_a @ B9 @ A7 )
=> ( P @ B9 ) )
=> ( P @ A7 ) ) )
=> ( P @ A ) ) ) ).
% finite_psubset_induct
thf(fact_926_finite__psubset__induct,axiom,
! [A: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A )
=> ( ! [A7: set_nat] :
( ( finite_finite_nat @ A7 )
=> ( ! [B9: set_nat] :
( ( ord_less_set_nat @ B9 @ A7 )
=> ( P @ B9 ) )
=> ( P @ A7 ) ) )
=> ( P @ A ) ) ) ).
% finite_psubset_induct
thf(fact_927_not__psubset__empty,axiom,
! [A: set_a] :
~ ( ord_less_set_a @ A @ bot_bot_set_a ) ).
% not_psubset_empty
thf(fact_928_maximal__set__cover,axiom,
! [X8: set_set_a,S: set_a] :
( ( finite_finite_set_a @ X8 )
=> ( ( member_set_a @ S @ X8 )
=> ? [X2: set_a] :
( ( member_set_a @ X2 @ X8 )
& ( ord_less_eq_set_a @ S @ X2 )
& ! [Xa2: set_a] :
( ( member_set_a @ Xa2 @ X8 )
=> ~ ( ord_less_set_a @ X2 @ Xa2 ) ) ) ) ) ).
% maximal_set_cover
thf(fact_929_maximal__set__cover,axiom,
! [X8: set_se3924713247505902254od_b_c,S: set_li6436108459499378894od_b_c] :
( ( finite1374199133651033463od_b_c @ X8 )
=> ( ( member6985331446368301687od_b_c @ S @ X8 )
=> ? [X2: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ X2 @ X8 )
& ( ord_le282488521294790766od_b_c @ S @ X2 )
& ! [Xa2: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ Xa2 @ X8 )
=> ~ ( ord_le5653067673530651002od_b_c @ X2 @ Xa2 ) ) ) ) ) ).
% maximal_set_cover
thf(fact_930_subset__iff__psubset__eq,axiom,
( ord_less_eq_set_a
= ( ^ [A3: set_a,B3: set_a] :
( ( ord_less_set_a @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_931_subset__iff__psubset__eq,axiom,
( ord_le282488521294790766od_b_c
= ( ^ [A3: set_li6436108459499378894od_b_c,B3: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ A3 @ B3 )
| ( A3 = B3 ) ) ) ) ).
% subset_iff_psubset_eq
thf(fact_932_subset__psubset__trans,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( ord_less_set_a @ B @ C2 )
=> ( ord_less_set_a @ A @ C2 ) ) ) ).
% subset_psubset_trans
thf(fact_933_subset__psubset__trans,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,C2: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( ord_le5653067673530651002od_b_c @ B @ C2 )
=> ( ord_le5653067673530651002od_b_c @ A @ C2 ) ) ) ).
% subset_psubset_trans
thf(fact_934_subset__not__subset__eq,axiom,
( ord_less_set_a
= ( ^ [A3: set_a,B3: set_a] :
( ( ord_less_eq_set_a @ A3 @ B3 )
& ~ ( ord_less_eq_set_a @ B3 @ A3 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_935_subset__not__subset__eq,axiom,
( ord_le5653067673530651002od_b_c
= ( ^ [A3: set_li6436108459499378894od_b_c,B3: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A3 @ B3 )
& ~ ( ord_le282488521294790766od_b_c @ B3 @ A3 ) ) ) ) ).
% subset_not_subset_eq
thf(fact_936_psubset__subset__trans,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( ord_less_set_a @ A @ B )
=> ( ( ord_less_eq_set_a @ B @ C2 )
=> ( ord_less_set_a @ A @ C2 ) ) ) ).
% psubset_subset_trans
thf(fact_937_psubset__subset__trans,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,C2: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ A @ B )
=> ( ( ord_le282488521294790766od_b_c @ B @ C2 )
=> ( ord_le5653067673530651002od_b_c @ A @ C2 ) ) ) ).
% psubset_subset_trans
thf(fact_938_psubset__imp__subset,axiom,
! [A: set_a,B: set_a] :
( ( ord_less_set_a @ A @ B )
=> ( ord_less_eq_set_a @ A @ B ) ) ).
% psubset_imp_subset
thf(fact_939_psubset__imp__subset,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ A @ B )
=> ( ord_le282488521294790766od_b_c @ A @ B ) ) ).
% psubset_imp_subset
thf(fact_940_psubset__eq,axiom,
( ord_less_set_a
= ( ^ [A3: set_a,B3: set_a] :
( ( ord_less_eq_set_a @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% psubset_eq
thf(fact_941_psubset__eq,axiom,
( ord_le5653067673530651002od_b_c
= ( ^ [A3: set_li6436108459499378894od_b_c,B3: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ A3 @ B3 )
& ( A3 != B3 ) ) ) ) ).
% psubset_eq
thf(fact_942_psubsetE,axiom,
! [A: set_a,B: set_a] :
( ( ord_less_set_a @ A @ B )
=> ~ ( ( ord_less_eq_set_a @ A @ B )
=> ( ord_less_eq_set_a @ B @ A ) ) ) ).
% psubsetE
thf(fact_943_psubsetE,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le5653067673530651002od_b_c @ A @ B )
=> ~ ( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ord_le282488521294790766od_b_c @ B @ A ) ) ) ).
% psubsetE
thf(fact_944_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_945_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_946_bot__nat__0_Oextremum__uniqueI,axiom,
! [A2: nat] :
( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
=> ( A2 = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_947_bot__nat__0_Oextremum__unique,axiom,
! [A2: nat] :
( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
= ( A2 = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_948_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_949_add__decreasing,axiom,
! [A2: nat,C: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ C @ B2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B2 ) ) ) ).
% add_decreasing
thf(fact_950_add__increasing,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ord_less_eq_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).
% add_increasing
thf(fact_951_add__decreasing2,axiom,
! [C: nat,A2: nat,B2: nat] :
( ( ord_less_eq_nat @ C @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ A2 @ B2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ C ) @ B2 ) ) ) ).
% add_decreasing2
thf(fact_952_add__increasing2,axiom,
! [C: nat,B2: nat,A2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( ord_less_eq_nat @ B2 @ A2 )
=> ( ord_less_eq_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).
% add_increasing2
thf(fact_953_add__nonneg__nonneg,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_954_add__nonpos__nonpos,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).
% add_nonpos_nonpos
thf(fact_955_add__nonneg__eq__0__iff,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_956_add__nonpos__eq__0__iff,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_957_finite__maxlen,axiom,
! [M2: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ M2 )
=> ? [N2: nat] :
! [X3: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X3 @ M2 )
=> ( ord_less_nat @ ( size_s3392097710323735898od_b_c @ X3 ) @ N2 ) ) ) ).
% finite_maxlen
thf(fact_958_min__length__elem,axiom,
! [Xs: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ Xs )
=> ( ( Xs != bot_bo4166481423041325370od_b_c )
=> ? [X2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X2 @ Xs )
& ~ ? [Xa2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ Xa2 @ Xs )
& ( ord_less_nat @ ( size_s3392097710323735898od_b_c @ Xa2 ) @ ( size_s3392097710323735898od_b_c @ X2 ) ) ) ) ) ) ).
% min_length_elem
thf(fact_959_max__length__elem,axiom,
! [Xs: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ Xs )
=> ( ( Xs != bot_bo4166481423041325370od_b_c )
=> ? [X2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X2 @ Xs )
& ~ ? [Xa2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ Xa2 @ Xs )
& ( ord_less_nat @ ( size_s3392097710323735898od_b_c @ X2 ) @ ( size_s3392097710323735898od_b_c @ Xa2 ) ) ) ) ) ) ).
% max_length_elem
thf(fact_960_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K4: nat] :
( ( ord_less_eq_nat @ K4 @ N )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K4 )
=> ~ ( P @ I3 ) )
& ( P @ K4 ) ) ) ) ).
% ex_least_nat_le
thf(fact_961_psubset__card__mono,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ B )
=> ( ( ord_le5653067673530651002od_b_c @ A @ B )
=> ( ord_less_nat @ ( finite5583770498833199894od_b_c @ A ) @ ( finite5583770498833199894od_b_c @ B ) ) ) ) ).
% psubset_card_mono
thf(fact_962_psubset__card__mono,axiom,
! [B: set_a,A: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_set_a @ A @ B )
=> ( ord_less_nat @ ( finite_card_a @ A ) @ ( finite_card_a @ B ) ) ) ) ).
% psubset_card_mono
thf(fact_963_psubset__card__mono,axiom,
! [B: set_nat,A: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_set_nat @ A @ B )
=> ( ord_less_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B ) ) ) ) ).
% psubset_card_mono
thf(fact_964_add__strict__increasing2,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_nat @ B2 @ C )
=> ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_965_add__strict__increasing,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ord_less_nat @ B2 @ ( plus_plus_nat @ A2 @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_966_add__pos__nonneg,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B2 )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).
% add_pos_nonneg
thf(fact_967_add__nonpos__neg,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ zero_zero_nat )
=> ( ( ord_less_nat @ B2 @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).
% add_nonpos_neg
thf(fact_968_add__nonneg__pos,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A2 )
=> ( ( ord_less_nat @ zero_zero_nat @ B2 )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A2 @ B2 ) ) ) ) ).
% add_nonneg_pos
thf(fact_969_add__neg__nonpos,axiom,
! [A2: nat,B2: nat] :
( ( ord_less_nat @ A2 @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B2 @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A2 @ B2 ) @ zero_zero_nat ) ) ) ).
% add_neg_nonpos
thf(fact_970_finite__nat__set__iff__bounded,axiom,
( finite_finite_nat
= ( ^ [N5: set_nat] :
? [M6: nat] :
! [X4: nat] :
( ( member_nat @ X4 @ N5 )
=> ( ord_less_nat @ X4 @ M6 ) ) ) ) ).
% finite_nat_set_iff_bounded
thf(fact_971_bounded__nat__set__is__finite,axiom,
! [N6: set_nat,N: nat] :
( ! [X2: nat] :
( ( member_nat @ X2 @ N6 )
=> ( ord_less_nat @ X2 @ N ) )
=> ( finite_finite_nat @ N6 ) ) ).
% bounded_nat_set_is_finite
thf(fact_972_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M2: nat] :
( ( P @ X )
=> ( ! [X2: nat] :
( ( P @ X2 )
=> ( ord_less_eq_nat @ X2 @ M2 ) )
=> ~ ! [M5: nat] :
( ( P @ M5 )
=> ~ ! [X3: nat] :
( ( P @ X3 )
=> ( ord_less_eq_nat @ X3 @ M5 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_973_finite__nat__set__iff__bounded__le,axiom,
( finite_finite_nat
= ( ^ [N5: set_nat] :
? [M6: nat] :
! [X4: nat] :
( ( member_nat @ X4 @ N5 )
=> ( ord_less_eq_nat @ X4 @ M6 ) ) ) ) ).
% finite_nat_set_iff_bounded_le
thf(fact_974_finite__subset__mapping__limit,axiom,
! [F: nat > set_nat] :
( ( finite_finite_nat @ ( F @ zero_zero_nat ) )
=> ( ! [I2: nat,J2: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ord_less_eq_set_nat @ ( F @ J2 ) @ ( F @ I2 ) ) )
=> ~ ! [K4: nat] :
~ ! [K6: nat] :
( ( ord_less_eq_nat @ K4 @ K6 )
=> ( ( F @ K6 )
= ( F @ K4 ) ) ) ) ) ).
% finite_subset_mapping_limit
thf(fact_975_finite__subset__mapping__limit,axiom,
! [F: nat > set_a] :
( ( finite_finite_a @ ( F @ zero_zero_nat ) )
=> ( ! [I2: nat,J2: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ord_less_eq_set_a @ ( F @ J2 ) @ ( F @ I2 ) ) )
=> ~ ! [K4: nat] :
~ ! [K6: nat] :
( ( ord_less_eq_nat @ K4 @ K6 )
=> ( ( F @ K6 )
= ( F @ K4 ) ) ) ) ) ).
% finite_subset_mapping_limit
thf(fact_976_finite__subset__mapping__limit,axiom,
! [F: nat > set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ ( F @ zero_zero_nat ) )
=> ( ! [I2: nat,J2: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ord_le282488521294790766od_b_c @ ( F @ J2 ) @ ( F @ I2 ) ) )
=> ~ ! [K4: nat] :
~ ! [K6: nat] :
( ( ord_less_eq_nat @ K4 @ K6 )
=> ( ( F @ K6 )
= ( F @ K4 ) ) ) ) ) ).
% finite_subset_mapping_limit
thf(fact_977_card__eq__0__iff,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ( ( finite5583770498833199894od_b_c @ A )
= zero_zero_nat )
= ( ( A = bot_bo4166481423041325370od_b_c )
| ~ ( finite3074115686814133143od_b_c @ A ) ) ) ).
% card_eq_0_iff
thf(fact_978_card__eq__0__iff,axiom,
! [A: set_nat] :
( ( ( finite_card_nat @ A )
= zero_zero_nat )
= ( ( A = bot_bot_set_nat )
| ~ ( finite_finite_nat @ A ) ) ) ).
% card_eq_0_iff
thf(fact_979_card__eq__0__iff,axiom,
! [A: set_a] :
( ( ( finite_card_a @ A )
= zero_zero_nat )
= ( ( A = bot_bot_set_a )
| ~ ( finite_finite_a @ A ) ) ) ).
% card_eq_0_iff
thf(fact_980_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K4: nat] :
( ( ord_less_nat @ K4 @ N )
& ! [I3: nat] :
( ( ord_less_eq_nat @ I3 @ K4 )
=> ~ ( P @ I3 ) )
& ( P @ ( suc @ K4 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_981_card__ge__0__finite,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ( ord_less_nat @ zero_zero_nat @ ( finite5583770498833199894od_b_c @ A ) )
=> ( finite3074115686814133143od_b_c @ A ) ) ).
% card_ge_0_finite
thf(fact_982_card__ge__0__finite,axiom,
! [A: set_a] :
( ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ A ) )
=> ( finite_finite_a @ A ) ) ).
% card_ge_0_finite
thf(fact_983_card__ge__0__finite,axiom,
! [A: set_nat] :
( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A ) )
=> ( finite_finite_nat @ A ) ) ).
% card_ge_0_finite
thf(fact_984_minimally__distinguishes__def,axiom,
( minima243535863231358885_a_b_c
= ( ^ [M: fsm_a_b_c,Q12: a,Q23: a,Io3: list_P903359562653991662od_b_c] :
( ( distinguishes_a_b_c @ M @ Q12 @ Q23 @ Io3 )
& ! [Io4: list_P903359562653991662od_b_c] :
( ( distinguishes_a_b_c @ M @ Q12 @ Q23 @ Io4 )
=> ( ord_less_eq_nat @ ( size_s3392097710323735898od_b_c @ Io3 ) @ ( size_s3392097710323735898od_b_c @ Io4 ) ) ) ) ) ) ).
% minimally_distinguishes_def
thf(fact_985_card__psubset,axiom,
! [B: set_nat,A: set_nat] :
( ( finite_finite_nat @ B )
=> ( ( ord_less_eq_set_nat @ A @ B )
=> ( ( ord_less_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B ) )
=> ( ord_less_set_nat @ A @ B ) ) ) ) ).
% card_psubset
thf(fact_986_card__psubset,axiom,
! [B: set_a,A: set_a] :
( ( finite_finite_a @ B )
=> ( ( ord_less_eq_set_a @ A @ B )
=> ( ( ord_less_nat @ ( finite_card_a @ A ) @ ( finite_card_a @ B ) )
=> ( ord_less_set_a @ A @ B ) ) ) ) ).
% card_psubset
thf(fact_987_card__psubset,axiom,
! [B: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ B )
=> ( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( ord_less_nat @ ( finite5583770498833199894od_b_c @ A ) @ ( finite5583770498833199894od_b_c @ B ) )
=> ( ord_le5653067673530651002od_b_c @ A @ B ) ) ) ) ).
% card_psubset
thf(fact_988_card__gt__0__iff,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ( ord_less_nat @ zero_zero_nat @ ( finite5583770498833199894od_b_c @ A ) )
= ( ( A != bot_bo4166481423041325370od_b_c )
& ( finite3074115686814133143od_b_c @ A ) ) ) ).
% card_gt_0_iff
thf(fact_989_card__gt__0__iff,axiom,
! [A: set_nat] :
( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A ) )
= ( ( A != bot_bot_set_nat )
& ( finite_finite_nat @ A ) ) ) ).
% card_gt_0_iff
thf(fact_990_card__gt__0__iff,axiom,
! [A: set_a] :
( ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ A ) )
= ( ( A != bot_bot_set_a )
& ( finite_finite_a @ A ) ) ) ).
% card_gt_0_iff
thf(fact_991_card__le__Suc0__iff__eq,axiom,
! [A: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ A )
=> ( ( ord_less_eq_nat @ ( finite5583770498833199894od_b_c @ A ) @ ( suc @ zero_zero_nat ) )
= ( ! [X4: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X4 @ A )
=> ! [Y2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ Y2 @ A )
=> ( X4 = Y2 ) ) ) ) ) ) ).
% card_le_Suc0_iff_eq
thf(fact_992_card__le__Suc0__iff__eq,axiom,
! [A: set_a] :
( ( finite_finite_a @ A )
=> ( ( ord_less_eq_nat @ ( finite_card_a @ A ) @ ( suc @ zero_zero_nat ) )
= ( ! [X4: a] :
( ( member_a @ X4 @ A )
=> ! [Y2: a] :
( ( member_a @ Y2 @ A )
=> ( X4 = Y2 ) ) ) ) ) ) ).
% card_le_Suc0_iff_eq
thf(fact_993_card__le__Suc0__iff__eq,axiom,
! [A: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( ord_less_eq_nat @ ( finite_card_nat @ A ) @ ( suc @ zero_zero_nat ) )
= ( ! [X4: nat] :
( ( member_nat @ X4 @ A )
=> ! [Y2: nat] :
( ( member_nat @ Y2 @ A )
=> ( X4 = Y2 ) ) ) ) ) ) ).
% card_le_Suc0_iff_eq
thf(fact_994_ex__min__if__finite,axiom,
! [S: set_nat] :
( ( finite_finite_nat @ S )
=> ( ( S != bot_bot_set_nat )
=> ? [X2: nat] :
( ( member_nat @ X2 @ S )
& ~ ? [Xa2: nat] :
( ( member_nat @ Xa2 @ S )
& ( ord_less_nat @ Xa2 @ X2 ) ) ) ) ) ).
% ex_min_if_finite
thf(fact_995_infinite__growing,axiom,
! [X8: set_nat] :
( ( X8 != bot_bot_set_nat )
=> ( ! [X2: nat] :
( ( member_nat @ X2 @ X8 )
=> ? [Xa2: nat] :
( ( member_nat @ Xa2 @ X8 )
& ( ord_less_nat @ X2 @ Xa2 ) ) )
=> ~ ( finite_finite_nat @ X8 ) ) ) ).
% infinite_growing
thf(fact_996_arg__min__if__finite_I2_J,axiom,
! [S: set_li6436108459499378894od_b_c,F: list_P903359562653991662od_b_c > nat] :
( ( finite3074115686814133143od_b_c @ S )
=> ( ( S != bot_bo4166481423041325370od_b_c )
=> ~ ? [X3: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X3 @ S )
& ( ord_less_nat @ ( F @ X3 ) @ ( F @ ( lattic9077399895930519397_c_nat @ F @ S ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_997_arg__min__if__finite_I2_J,axiom,
! [S: set_nat,F: nat > nat] :
( ( finite_finite_nat @ S )
=> ( ( S != bot_bot_set_nat )
=> ~ ? [X3: nat] :
( ( member_nat @ X3 @ S )
& ( ord_less_nat @ ( F @ X3 ) @ ( F @ ( lattic7446932960582359483at_nat @ F @ S ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_998_arg__min__if__finite_I2_J,axiom,
! [S: set_a,F: a > nat] :
( ( finite_finite_a @ S )
=> ( ( S != bot_bot_set_a )
=> ~ ? [X3: a] :
( ( member_a @ X3 @ S )
& ( ord_less_nat @ ( F @ X3 ) @ ( F @ ( lattic6340287419671400565_a_nat @ F @ S ) ) ) ) ) ) ).
% arg_min_if_finite(2)
thf(fact_999_arg__min__least,axiom,
! [S: set_li6436108459499378894od_b_c,Y: list_P903359562653991662od_b_c,F: list_P903359562653991662od_b_c > nat] :
( ( finite3074115686814133143od_b_c @ S )
=> ( ( S != bot_bo4166481423041325370od_b_c )
=> ( ( member6330420149250801815od_b_c @ Y @ S )
=> ( ord_less_eq_nat @ ( F @ ( lattic9077399895930519397_c_nat @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1000_arg__min__least,axiom,
! [S: set_nat,Y: nat,F: nat > nat] :
( ( finite_finite_nat @ S )
=> ( ( S != bot_bot_set_nat )
=> ( ( member_nat @ Y @ S )
=> ( ord_less_eq_nat @ ( F @ ( lattic7446932960582359483at_nat @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1001_arg__min__least,axiom,
! [S: set_a,Y: a,F: a > nat] :
( ( finite_finite_a @ S )
=> ( ( S != bot_bot_set_a )
=> ( ( member_a @ Y @ S )
=> ( ord_less_eq_nat @ ( F @ ( lattic6340287419671400565_a_nat @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).
% arg_min_least
thf(fact_1002_nat__descend__induct,axiom,
! [N: nat,P: nat > $o,M3: nat] :
( ! [K4: nat] :
( ( ord_less_nat @ N @ K4 )
=> ( P @ K4 ) )
=> ( ! [K4: nat] :
( ( ord_less_eq_nat @ K4 @ N )
=> ( ! [I3: nat] :
( ( ord_less_nat @ K4 @ I3 )
=> ( P @ I3 ) )
=> ( P @ K4 ) ) )
=> ( P @ M3 ) ) ) ).
% nat_descend_induct
thf(fact_1003_psubsetD,axiom,
! [A: set_a,B: set_a,C: a] :
( ( ord_less_set_a @ A @ B )
=> ( ( member_a @ C @ A )
=> ( member_a @ C @ B ) ) ) ).
% psubsetD
thf(fact_1004_psubsetD,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,C: list_P903359562653991662od_b_c] :
( ( ord_le5653067673530651002od_b_c @ A @ B )
=> ( ( member6330420149250801815od_b_c @ C @ A )
=> ( member6330420149250801815od_b_c @ C @ B ) ) ) ).
% psubsetD
thf(fact_1005_observable__minimal__size__r__language__distinct,axiom,
! [M1: fsm_a_b_c,M22: fsm_a_b_c] :
( ( minimal_a_b_c @ M1 )
=> ( ( minimal_a_b_c @ M22 )
=> ( ( observable_a_b_c @ M1 )
=> ( ( observable_a_b_c @ M22 )
=> ( ( ord_less_nat @ ( finite_card_a @ ( reacha1620305530751930115_a_b_c @ M1 ) ) @ ( finite_card_a @ ( reacha1620305530751930115_a_b_c @ M22 ) ) )
=> ( ( lS_a_b_c @ M1 @ ( initial_a_b_c @ M1 ) )
!= ( lS_a_b_c @ M22 @ ( initial_a_b_c @ M22 ) ) ) ) ) ) ) ) ).
% observable_minimal_size_r_language_distinct
thf(fact_1006_complete__interval,axiom,
! [A2: nat,B2: nat,P: nat > $o] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( P @ A2 )
=> ( ~ ( P @ B2 )
=> ? [C3: nat] :
( ( ord_less_eq_nat @ A2 @ C3 )
& ( ord_less_eq_nat @ C3 @ B2 )
& ! [X3: nat] :
( ( ( ord_less_eq_nat @ A2 @ X3 )
& ( ord_less_nat @ X3 @ C3 ) )
=> ( P @ X3 ) )
& ! [D3: nat] :
( ! [X2: nat] :
( ( ( ord_less_eq_nat @ A2 @ X2 )
& ( ord_less_nat @ X2 @ D3 ) )
=> ( P @ X2 ) )
=> ( ord_less_eq_nat @ D3 @ C3 ) ) ) ) ) ) ).
% complete_interval
thf(fact_1007_verit__comp__simplify1_I3_J,axiom,
! [B10: nat,A8: nat] :
( ( ~ ( ord_less_eq_nat @ B10 @ A8 ) )
= ( ord_less_nat @ A8 @ B10 ) ) ).
% verit_comp_simplify1(3)
thf(fact_1008_reachable__state__is__state,axiom,
! [Q: a,M2: fsm_a_b_c] :
( ( member_a @ Q @ ( reacha1620305530751930115_a_b_c @ M2 ) )
=> ( member_a @ Q @ ( states_a_b_c @ M2 ) ) ) ).
% reachable_state_is_state
thf(fact_1009_verit__la__disequality,axiom,
! [A2: nat,B2: nat] :
( ( A2 = B2 )
| ~ ( ord_less_eq_nat @ A2 @ B2 )
| ~ ( ord_less_eq_nat @ B2 @ A2 ) ) ).
% verit_la_disequality
thf(fact_1010_verit__comp__simplify1_I2_J,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).
% verit_comp_simplify1(2)
thf(fact_1011_verit__comp__simplify1_I2_J,axiom,
! [A2: nat] : ( ord_less_eq_nat @ A2 @ A2 ) ).
% verit_comp_simplify1(2)
thf(fact_1012_verit__comp__simplify1_I2_J,axiom,
! [A2: set_li6436108459499378894od_b_c] : ( ord_le282488521294790766od_b_c @ A2 @ A2 ) ).
% verit_comp_simplify1(2)
thf(fact_1013_after__reachable,axiom,
! [M2: fsm_li6801133765522507155_c_b_c,Io: list_P903359562653991662od_b_c,Q: list_P903359562653991662od_b_c] :
( ( observ6293852833591064631_c_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Io @ ( lS_lis2930931384350476499_c_b_c @ M2 @ Q ) )
=> ( ( member6330420149250801815od_b_c @ Q @ ( reacha8116992257183400179_c_b_c @ M2 ) )
=> ( member6330420149250801815od_b_c @ ( after_4052058690717316294_c_b_c @ M2 @ Q @ Io ) @ ( reacha8116992257183400179_c_b_c @ M2 ) ) ) ) ) ).
% after_reachable
thf(fact_1014_after__reachable,axiom,
! [M2: fsm_a_b_c,Io: list_P903359562653991662od_b_c,Q: a] :
( ( observable_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Io @ ( lS_a_b_c @ M2 @ Q ) )
=> ( ( member_a @ Q @ ( reacha1620305530751930115_a_b_c @ M2 ) )
=> ( member_a @ ( after_a_b_c @ M2 @ Q @ Io ) @ ( reacha1620305530751930115_a_b_c @ M2 ) ) ) ) ) ).
% after_reachable
thf(fact_1015_after__reachable__initial,axiom,
! [M2: fsm_li6801133765522507155_c_b_c,Io: list_P903359562653991662od_b_c] :
( ( observ6293852833591064631_c_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Io @ ( lS_lis2930931384350476499_c_b_c @ M2 @ ( initia3567573336347591134_c_b_c @ M2 ) ) )
=> ( member6330420149250801815od_b_c @ ( after_4052058690717316294_c_b_c @ M2 @ ( initia3567573336347591134_c_b_c @ M2 ) @ Io ) @ ( reacha8116992257183400179_c_b_c @ M2 ) ) ) ) ).
% after_reachable_initial
thf(fact_1016_after__reachable__initial,axiom,
! [M2: fsm_a_b_c,Io: list_P903359562653991662od_b_c] :
( ( observable_a_b_c @ M2 )
=> ( ( member6330420149250801815od_b_c @ Io @ ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) )
=> ( member_a @ ( after_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) @ Io ) @ ( reacha1620305530751930115_a_b_c @ M2 ) ) ) ) ).
% after_reachable_initial
thf(fact_1017_minimal__equivalence__size__r,axiom,
! [M1: fsm_a_b_c,M22: fsm_a_b_c] :
( ( minimal_a_b_c @ M1 )
=> ( ( minimal_a_b_c @ M22 )
=> ( ( observable_a_b_c @ M1 )
=> ( ( observable_a_b_c @ M22 )
=> ( ( ( lS_a_b_c @ M1 @ ( initial_a_b_c @ M1 ) )
= ( lS_a_b_c @ M22 @ ( initial_a_b_c @ M22 ) ) )
=> ( ( finite_card_a @ ( reacha1620305530751930115_a_b_c @ M1 ) )
= ( finite_card_a @ ( reacha1620305530751930115_a_b_c @ M22 ) ) ) ) ) ) ) ) ).
% minimal_equivalence_size_r
thf(fact_1018_minf_I8_J,axiom,
! [T4: nat] :
? [Z3: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z3 )
=> ~ ( ord_less_eq_nat @ T4 @ X3 ) ) ).
% minf(8)
thf(fact_1019_minf_I6_J,axiom,
! [T4: nat] :
? [Z3: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z3 )
=> ( ord_less_eq_nat @ X3 @ T4 ) ) ).
% minf(6)
thf(fact_1020_pinf_I8_J,axiom,
! [T4: nat] :
? [Z3: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z3 @ X3 )
=> ( ord_less_eq_nat @ T4 @ X3 ) ) ).
% pinf(8)
thf(fact_1021_pinf_I6_J,axiom,
! [T4: nat] :
? [Z3: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z3 @ X3 )
=> ~ ( ord_less_eq_nat @ X3 @ T4 ) ) ).
% pinf(6)
thf(fact_1022_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_1023_gen__length__def,axiom,
( gen_le7668512674959329659od_b_c
= ( ^ [N3: nat,Xs3: list_P903359562653991662od_b_c] : ( plus_plus_nat @ N3 @ ( size_s3392097710323735898od_b_c @ Xs3 ) ) ) ) ).
% gen_length_def
thf(fact_1024_length__code,axiom,
( size_s3392097710323735898od_b_c
= ( gen_le7668512674959329659od_b_c @ zero_zero_nat ) ) ).
% length_code
thf(fact_1025_gen__length__code_I1_J,axiom,
! [N: nat] :
( ( gen_le7668512674959329659od_b_c @ N @ nil_Product_prod_b_c )
= N ) ).
% gen_length_code(1)
thf(fact_1026_remdups__adj__length__ge1,axiom,
! [Xs: list_P903359562653991662od_b_c] :
( ( Xs != nil_Product_prod_b_c )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( size_s3392097710323735898od_b_c @ ( remdup2090892755044397220od_b_c @ Xs ) ) ) ) ).
% remdups_adj_length_ge1
thf(fact_1027_restrict__to__reachable__states__simps_I2_J,axiom,
! [M2: fsm_a_b_c] :
( ( states_a_b_c @ ( restri9132545300209641082_a_b_c @ M2 ) )
= ( reacha1620305530751930115_a_b_c @ M2 ) ) ).
% restrict_to_reachable_states_simps(2)
thf(fact_1028_Set_Ois__empty__def,axiom,
( is_empty_a
= ( ^ [A3: set_a] : ( A3 = bot_bot_set_a ) ) ) ).
% Set.is_empty_def
thf(fact_1029_remdups__adj__Nil__iff,axiom,
! [Xs: list_P903359562653991662od_b_c] :
( ( ( remdup2090892755044397220od_b_c @ Xs )
= nil_Product_prod_b_c )
= ( Xs = nil_Product_prod_b_c ) ) ).
% remdups_adj_Nil_iff
thf(fact_1030_remdups__adj_Osimps_I1_J,axiom,
( ( remdup2090892755044397220od_b_c @ nil_Product_prod_b_c )
= nil_Product_prod_b_c ) ).
% remdups_adj.simps(1)
thf(fact_1031_restrict__to__reachable__states__observable,axiom,
! [M2: fsm_a_b_c] :
( ( observable_a_b_c @ M2 )
=> ( observable_a_b_c @ ( restri9132545300209641082_a_b_c @ M2 ) ) ) ).
% restrict_to_reachable_states_observable
thf(fact_1032_remdups__adj__length,axiom,
! [Xs: list_P903359562653991662od_b_c] : ( ord_less_eq_nat @ ( size_s3392097710323735898od_b_c @ ( remdup2090892755044397220od_b_c @ Xs ) ) @ ( size_s3392097710323735898od_b_c @ Xs ) ) ).
% remdups_adj_length
thf(fact_1033_restrict__to__reachable__states__minimal,axiom,
! [M2: fsm_a_b_c] :
( ( minimal_a_b_c @ M2 )
=> ( minimal_a_b_c @ ( restri9132545300209641082_a_b_c @ M2 ) ) ) ).
% restrict_to_reachable_states_minimal
thf(fact_1034_restrict__to__reachable__states__language,axiom,
! [M2: fsm_a_b_c] :
( ( lS_a_b_c @ ( restri9132545300209641082_a_b_c @ M2 ) @ ( initial_a_b_c @ ( restri9132545300209641082_a_b_c @ M2 ) ) )
= ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) ) ).
% restrict_to_reachable_states_language
thf(fact_1035_restrict__to__reachable__states__reachable__states,axiom,
! [M2: fsm_a_b_c] :
( ( reacha1620305530751930115_a_b_c @ ( restri9132545300209641082_a_b_c @ M2 ) )
= ( states_a_b_c @ ( restri9132545300209641082_a_b_c @ M2 ) ) ) ).
% restrict_to_reachable_states_reachable_states
thf(fact_1036_acyclic__alt__def,axiom,
( acyclic_a_b_c
= ( ^ [M: fsm_a_b_c] : ( finite3074115686814133143od_b_c @ ( lS_a_b_c @ M @ ( initial_a_b_c @ M ) ) ) ) ) ).
% acyclic_alt_def
thf(fact_1037_Inf__fin_Osemilattice__order__set__axioms,axiom,
lattic8986249270076014136_set_a @ inf_inf_set_a @ ord_less_eq_set_a @ ord_less_set_a ).
% Inf_fin.semilattice_order_set_axioms
thf(fact_1038_Inf__fin_Osemilattice__order__set__axioms,axiom,
lattic6009151579333465974et_nat @ inf_inf_nat @ ord_less_eq_nat @ ord_less_nat ).
% Inf_fin.semilattice_order_set_axioms
thf(fact_1039_Inf__fin_Osemilattice__order__set__axioms,axiom,
lattic2204479054038723496od_b_c @ inf_in4978071631833541052od_b_c @ ord_le282488521294790766od_b_c @ ord_le5653067673530651002od_b_c ).
% Inf_fin.semilattice_order_set_axioms
thf(fact_1040_card__Un__disjnt,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ A )
=> ( ( finite3074115686814133143od_b_c @ B )
=> ( ( disjnt5456880891938978613od_b_c @ A @ B )
=> ( ( finite5583770498833199894od_b_c @ ( sup_su3823046536922626210od_b_c @ A @ B ) )
= ( plus_plus_nat @ ( finite5583770498833199894od_b_c @ A ) @ ( finite5583770498833199894od_b_c @ B ) ) ) ) ) ) ).
% card_Un_disjnt
thf(fact_1041_card__Un__disjnt,axiom,
! [A: set_nat,B: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( finite_finite_nat @ B )
=> ( ( disjnt_nat @ A @ B )
=> ( ( finite_card_nat @ ( sup_sup_set_nat @ A @ B ) )
= ( plus_plus_nat @ ( finite_card_nat @ A ) @ ( finite_card_nat @ B ) ) ) ) ) ) ).
% card_Un_disjnt
thf(fact_1042_card__Un__disjnt,axiom,
! [A: set_a,B: set_a] :
( ( finite_finite_a @ A )
=> ( ( finite_finite_a @ B )
=> ( ( disjnt_a @ A @ B )
=> ( ( finite_card_a @ ( sup_sup_set_a @ A @ B ) )
= ( plus_plus_nat @ ( finite_card_a @ A ) @ ( finite_card_a @ B ) ) ) ) ) ) ).
% card_Un_disjnt
thf(fact_1043_disjnt__self__iff__empty,axiom,
! [S: set_a] :
( ( disjnt_a @ S @ S )
= ( S = bot_bot_set_a ) ) ).
% disjnt_self_iff_empty
thf(fact_1044_disjnt__Un1,axiom,
! [A: set_a,B: set_a,C2: set_a] :
( ( disjnt_a @ ( sup_sup_set_a @ A @ B ) @ C2 )
= ( ( disjnt_a @ A @ C2 )
& ( disjnt_a @ B @ C2 ) ) ) ).
% disjnt_Un1
thf(fact_1045_disjnt__Un2,axiom,
! [C2: set_a,A: set_a,B: set_a] :
( ( disjnt_a @ C2 @ ( sup_sup_set_a @ A @ B ) )
= ( ( disjnt_a @ C2 @ A )
& ( disjnt_a @ C2 @ B ) ) ) ).
% disjnt_Un2
thf(fact_1046_disjnt__empty2,axiom,
! [A: set_a] : ( disjnt_a @ A @ bot_bot_set_a ) ).
% disjnt_empty2
thf(fact_1047_disjnt__empty1,axiom,
! [A: set_a] : ( disjnt_a @ bot_bot_set_a @ A ) ).
% disjnt_empty1
thf(fact_1048_disjnt__iff,axiom,
( disjnt_a
= ( ^ [A3: set_a,B3: set_a] :
! [X4: a] :
~ ( ( member_a @ X4 @ A3 )
& ( member_a @ X4 @ B3 ) ) ) ) ).
% disjnt_iff
thf(fact_1049_disjnt__iff,axiom,
( disjnt5456880891938978613od_b_c
= ( ^ [A3: set_li6436108459499378894od_b_c,B3: set_li6436108459499378894od_b_c] :
! [X4: list_P903359562653991662od_b_c] :
~ ( ( member6330420149250801815od_b_c @ X4 @ A3 )
& ( member6330420149250801815od_b_c @ X4 @ B3 ) ) ) ) ).
% disjnt_iff
thf(fact_1050_disjnt__subset1,axiom,
! [X8: set_a,Y7: set_a,Z4: set_a] :
( ( disjnt_a @ X8 @ Y7 )
=> ( ( ord_less_eq_set_a @ Z4 @ X8 )
=> ( disjnt_a @ Z4 @ Y7 ) ) ) ).
% disjnt_subset1
thf(fact_1051_disjnt__subset1,axiom,
! [X8: set_li6436108459499378894od_b_c,Y7: set_li6436108459499378894od_b_c,Z4: set_li6436108459499378894od_b_c] :
( ( disjnt5456880891938978613od_b_c @ X8 @ Y7 )
=> ( ( ord_le282488521294790766od_b_c @ Z4 @ X8 )
=> ( disjnt5456880891938978613od_b_c @ Z4 @ Y7 ) ) ) ).
% disjnt_subset1
thf(fact_1052_disjnt__subset2,axiom,
! [X8: set_a,Y7: set_a,Z4: set_a] :
( ( disjnt_a @ X8 @ Y7 )
=> ( ( ord_less_eq_set_a @ Z4 @ Y7 )
=> ( disjnt_a @ X8 @ Z4 ) ) ) ).
% disjnt_subset2
thf(fact_1053_disjnt__subset2,axiom,
! [X8: set_li6436108459499378894od_b_c,Y7: set_li6436108459499378894od_b_c,Z4: set_li6436108459499378894od_b_c] :
( ( disjnt5456880891938978613od_b_c @ X8 @ Y7 )
=> ( ( ord_le282488521294790766od_b_c @ Z4 @ Y7 )
=> ( disjnt5456880891938978613od_b_c @ X8 @ Z4 ) ) ) ).
% disjnt_subset2
thf(fact_1054_disjnt__def,axiom,
( disjnt_a
= ( ^ [A3: set_a,B3: set_a] :
( ( inf_inf_set_a @ A3 @ B3 )
= bot_bot_set_a ) ) ) ).
% disjnt_def
thf(fact_1055_LS__from__LS__acyclic,axiom,
! [M2: fsm_a_b_c] :
( ( acyclic_a_b_c @ M2 )
=> ( ( lS_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) )
= ( lS_acyclic_a_b_c @ M2 @ ( initial_a_b_c @ M2 ) ) ) ) ).
% LS_from_LS_acyclic
thf(fact_1056_semilattice__order__set_Osubset__imp,axiom,
! [F: nat > nat > nat,Less_eq: nat > nat > $o,Less: nat > nat > $o,A: set_nat,B: set_nat] :
( ( lattic6009151579333465974et_nat @ F @ Less_eq @ Less )
=> ( ( ord_less_eq_set_nat @ A @ B )
=> ( ( A != bot_bot_set_nat )
=> ( ( finite_finite_nat @ B )
=> ( Less_eq @ ( lattic7742739596368939638_F_nat @ F @ B ) @ ( lattic7742739596368939638_F_nat @ F @ A ) ) ) ) ) ) ).
% semilattice_order_set.subset_imp
thf(fact_1057_semilattice__order__set_Osubset__imp,axiom,
! [F: a > a > a,Less_eq: a > a > $o,Less: a > a > $o,A: set_a,B: set_a] :
( ( lattic5078705180708912344_set_a @ F @ Less_eq @ Less )
=> ( ( ord_less_eq_set_a @ A @ B )
=> ( ( A != bot_bot_set_a )
=> ( ( finite_finite_a @ B )
=> ( Less_eq @ ( lattic5116578512385870296ce_F_a @ F @ B ) @ ( lattic5116578512385870296ce_F_a @ F @ A ) ) ) ) ) ) ).
% semilattice_order_set.subset_imp
thf(fact_1058_semilattice__order__set_Osubset__imp,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,Less_eq: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o,Less: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( lattic2195833625579453896od_b_c @ F @ Less_eq @ Less )
=> ( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ( A != bot_bo4166481423041325370od_b_c )
=> ( ( finite3074115686814133143od_b_c @ B )
=> ( Less_eq @ ( lattic2734920875441048264od_b_c @ F @ B ) @ ( lattic2734920875441048264od_b_c @ F @ A ) ) ) ) ) ) ).
% semilattice_order_set.subset_imp
thf(fact_1059_Sup__fin_Ounion,axiom,
! [A: set_nat,B: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ( finite_finite_nat @ B )
=> ( ( B != bot_bot_set_nat )
=> ( ( lattic1093996805478795353in_nat @ ( sup_sup_set_nat @ A @ B ) )
= ( sup_sup_nat @ ( lattic1093996805478795353in_nat @ A ) @ ( lattic1093996805478795353in_nat @ B ) ) ) ) ) ) ) ).
% Sup_fin.union
thf(fact_1060_Sup__fin_Ounion,axiom,
! [A: set_set_a,B: set_set_a] :
( ( finite_finite_set_a @ A )
=> ( ( A != bot_bot_set_set_a )
=> ( ( finite_finite_set_a @ B )
=> ( ( B != bot_bot_set_set_a )
=> ( ( lattic2918178356826803221_set_a @ ( sup_sup_set_set_a @ A @ B ) )
= ( sup_sup_set_a @ ( lattic2918178356826803221_set_a @ A ) @ ( lattic2918178356826803221_set_a @ B ) ) ) ) ) ) ) ).
% Sup_fin.union
thf(fact_1061_inf__Sup__absorb,axiom,
! [A: set_nat,A2: nat] :
( ( finite_finite_nat @ A )
=> ( ( member_nat @ A2 @ A )
=> ( ( inf_inf_nat @ A2 @ ( lattic1093996805478795353in_nat @ A ) )
= A2 ) ) ) ).
% inf_Sup_absorb
thf(fact_1062_inf__Sup__absorb,axiom,
! [A: set_set_a,A2: set_a] :
( ( finite_finite_set_a @ A )
=> ( ( member_set_a @ A2 @ A )
=> ( ( inf_inf_set_a @ A2 @ ( lattic2918178356826803221_set_a @ A ) )
= A2 ) ) ) ).
% inf_Sup_absorb
thf(fact_1063_Sup__fin__def,axiom,
( lattic2918178356826803221_set_a
= ( lattic2714821017709792056_set_a @ sup_sup_set_a ) ) ).
% Sup_fin_def
thf(fact_1064_Sup__fin_OcoboundedI,axiom,
! [A: set_set_a,A2: set_a] :
( ( finite_finite_set_a @ A )
=> ( ( member_set_a @ A2 @ A )
=> ( ord_less_eq_set_a @ A2 @ ( lattic2918178356826803221_set_a @ A ) ) ) ) ).
% Sup_fin.coboundedI
thf(fact_1065_Sup__fin_OcoboundedI,axiom,
! [A: set_nat,A2: nat] :
( ( finite_finite_nat @ A )
=> ( ( member_nat @ A2 @ A )
=> ( ord_less_eq_nat @ A2 @ ( lattic1093996805478795353in_nat @ A ) ) ) ) ).
% Sup_fin.coboundedI
thf(fact_1066_Sup__fin_OcoboundedI,axiom,
! [A: set_se3924713247505902254od_b_c,A2: set_li6436108459499378894od_b_c] :
( ( finite1374199133651033463od_b_c @ A )
=> ( ( member6985331446368301687od_b_c @ A2 @ A )
=> ( ord_le282488521294790766od_b_c @ A2 @ ( lattic8058834985641542149od_b_c @ A ) ) ) ) ).
% Sup_fin.coboundedI
thf(fact_1067_Sup__fin_Oin__idem,axiom,
! [A: set_nat,X: nat] :
( ( finite_finite_nat @ A )
=> ( ( member_nat @ X @ A )
=> ( ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ A ) )
= ( lattic1093996805478795353in_nat @ A ) ) ) ) ).
% Sup_fin.in_idem
thf(fact_1068_Sup__fin_Oin__idem,axiom,
! [A: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A )
=> ( ( member_set_a @ X @ A )
=> ( ( sup_sup_set_a @ X @ ( lattic2918178356826803221_set_a @ A ) )
= ( lattic2918178356826803221_set_a @ A ) ) ) ) ).
% Sup_fin.in_idem
thf(fact_1069_semilattice__order__set_OcoboundedI,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,Less_eq: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o,Less: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o,A: set_li6436108459499378894od_b_c,A2: list_P903359562653991662od_b_c] :
( ( lattic2195833625579453896od_b_c @ F @ Less_eq @ Less )
=> ( ( finite3074115686814133143od_b_c @ A )
=> ( ( member6330420149250801815od_b_c @ A2 @ A )
=> ( Less_eq @ ( lattic2734920875441048264od_b_c @ F @ A ) @ A2 ) ) ) ) ).
% semilattice_order_set.coboundedI
thf(fact_1070_semilattice__order__set_OcoboundedI,axiom,
! [F: a > a > a,Less_eq: a > a > $o,Less: a > a > $o,A: set_a,A2: a] :
( ( lattic5078705180708912344_set_a @ F @ Less_eq @ Less )
=> ( ( finite_finite_a @ A )
=> ( ( member_a @ A2 @ A )
=> ( Less_eq @ ( lattic5116578512385870296ce_F_a @ F @ A ) @ A2 ) ) ) ) ).
% semilattice_order_set.coboundedI
thf(fact_1071_semilattice__order__set_OcoboundedI,axiom,
! [F: nat > nat > nat,Less_eq: nat > nat > $o,Less: nat > nat > $o,A: set_nat,A2: nat] :
( ( lattic6009151579333465974et_nat @ F @ Less_eq @ Less )
=> ( ( finite_finite_nat @ A )
=> ( ( member_nat @ A2 @ A )
=> ( Less_eq @ ( lattic7742739596368939638_F_nat @ F @ A ) @ A2 ) ) ) ) ).
% semilattice_order_set.coboundedI
thf(fact_1072_Sup__fin_Obounded__iff,axiom,
! [A: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A )
=> ( ( A != bot_bot_set_set_a )
=> ( ( ord_less_eq_set_a @ ( lattic2918178356826803221_set_a @ A ) @ X )
= ( ! [X4: set_a] :
( ( member_set_a @ X4 @ A )
=> ( ord_less_eq_set_a @ X4 @ X ) ) ) ) ) ) ).
% Sup_fin.bounded_iff
thf(fact_1073_Sup__fin_Obounded__iff,axiom,
! [A: set_nat,X: nat] :
( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A ) @ X )
= ( ! [X4: nat] :
( ( member_nat @ X4 @ A )
=> ( ord_less_eq_nat @ X4 @ X ) ) ) ) ) ) ).
% Sup_fin.bounded_iff
thf(fact_1074_Sup__fin_Obounded__iff,axiom,
! [A: set_se3924713247505902254od_b_c,X: set_li6436108459499378894od_b_c] :
( ( finite1374199133651033463od_b_c @ A )
=> ( ( A != bot_bo2794119844231891738od_b_c )
=> ( ( ord_le282488521294790766od_b_c @ ( lattic8058834985641542149od_b_c @ A ) @ X )
= ( ! [X4: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ X4 @ A )
=> ( ord_le282488521294790766od_b_c @ X4 @ X ) ) ) ) ) ) ).
% Sup_fin.bounded_iff
thf(fact_1075_Sup__fin_OboundedI,axiom,
! [A: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A )
=> ( ( A != bot_bot_set_set_a )
=> ( ! [A6: set_a] :
( ( member_set_a @ A6 @ A )
=> ( ord_less_eq_set_a @ A6 @ X ) )
=> ( ord_less_eq_set_a @ ( lattic2918178356826803221_set_a @ A ) @ X ) ) ) ) ).
% Sup_fin.boundedI
thf(fact_1076_Sup__fin_OboundedI,axiom,
! [A: set_nat,X: nat] :
( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ! [A6: nat] :
( ( member_nat @ A6 @ A )
=> ( ord_less_eq_nat @ A6 @ X ) )
=> ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A ) @ X ) ) ) ) ).
% Sup_fin.boundedI
thf(fact_1077_Sup__fin_OboundedI,axiom,
! [A: set_se3924713247505902254od_b_c,X: set_li6436108459499378894od_b_c] :
( ( finite1374199133651033463od_b_c @ A )
=> ( ( A != bot_bo2794119844231891738od_b_c )
=> ( ! [A6: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ A6 @ A )
=> ( ord_le282488521294790766od_b_c @ A6 @ X ) )
=> ( ord_le282488521294790766od_b_c @ ( lattic8058834985641542149od_b_c @ A ) @ X ) ) ) ) ).
% Sup_fin.boundedI
thf(fact_1078_Sup__fin_OboundedE,axiom,
! [A: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A )
=> ( ( A != bot_bot_set_set_a )
=> ( ( ord_less_eq_set_a @ ( lattic2918178356826803221_set_a @ A ) @ X )
=> ! [A9: set_a] :
( ( member_set_a @ A9 @ A )
=> ( ord_less_eq_set_a @ A9 @ X ) ) ) ) ) ).
% Sup_fin.boundedE
thf(fact_1079_Sup__fin_OboundedE,axiom,
! [A: set_nat,X: nat] :
( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A ) @ X )
=> ! [A9: nat] :
( ( member_nat @ A9 @ A )
=> ( ord_less_eq_nat @ A9 @ X ) ) ) ) ) ).
% Sup_fin.boundedE
thf(fact_1080_Sup__fin_OboundedE,axiom,
! [A: set_se3924713247505902254od_b_c,X: set_li6436108459499378894od_b_c] :
( ( finite1374199133651033463od_b_c @ A )
=> ( ( A != bot_bo2794119844231891738od_b_c )
=> ( ( ord_le282488521294790766od_b_c @ ( lattic8058834985641542149od_b_c @ A ) @ X )
=> ! [A9: set_li6436108459499378894od_b_c] :
( ( member6985331446368301687od_b_c @ A9 @ A )
=> ( ord_le282488521294790766od_b_c @ A9 @ X ) ) ) ) ) ).
% Sup_fin.boundedE
thf(fact_1081_semilattice__order__set_OboundedE,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,Less_eq: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o,Less: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o,A: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( lattic2195833625579453896od_b_c @ F @ Less_eq @ Less )
=> ( ( finite3074115686814133143od_b_c @ A )
=> ( ( A != bot_bo4166481423041325370od_b_c )
=> ( ( Less_eq @ X @ ( lattic2734920875441048264od_b_c @ F @ A ) )
=> ! [A9: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ A9 @ A )
=> ( Less_eq @ X @ A9 ) ) ) ) ) ) ).
% semilattice_order_set.boundedE
thf(fact_1082_semilattice__order__set_OboundedE,axiom,
! [F: nat > nat > nat,Less_eq: nat > nat > $o,Less: nat > nat > $o,A: set_nat,X: nat] :
( ( lattic6009151579333465974et_nat @ F @ Less_eq @ Less )
=> ( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ( Less_eq @ X @ ( lattic7742739596368939638_F_nat @ F @ A ) )
=> ! [A9: nat] :
( ( member_nat @ A9 @ A )
=> ( Less_eq @ X @ A9 ) ) ) ) ) ) ).
% semilattice_order_set.boundedE
thf(fact_1083_semilattice__order__set_OboundedE,axiom,
! [F: a > a > a,Less_eq: a > a > $o,Less: a > a > $o,A: set_a,X: a] :
( ( lattic5078705180708912344_set_a @ F @ Less_eq @ Less )
=> ( ( finite_finite_a @ A )
=> ( ( A != bot_bot_set_a )
=> ( ( Less_eq @ X @ ( lattic5116578512385870296ce_F_a @ F @ A ) )
=> ! [A9: a] :
( ( member_a @ A9 @ A )
=> ( Less_eq @ X @ A9 ) ) ) ) ) ) ).
% semilattice_order_set.boundedE
thf(fact_1084_semilattice__order__set_OboundedI,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,Less_eq: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o,Less: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o,A: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( lattic2195833625579453896od_b_c @ F @ Less_eq @ Less )
=> ( ( finite3074115686814133143od_b_c @ A )
=> ( ( A != bot_bo4166481423041325370od_b_c )
=> ( ! [A6: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ A6 @ A )
=> ( Less_eq @ X @ A6 ) )
=> ( Less_eq @ X @ ( lattic2734920875441048264od_b_c @ F @ A ) ) ) ) ) ) ).
% semilattice_order_set.boundedI
thf(fact_1085_semilattice__order__set_OboundedI,axiom,
! [F: nat > nat > nat,Less_eq: nat > nat > $o,Less: nat > nat > $o,A: set_nat,X: nat] :
( ( lattic6009151579333465974et_nat @ F @ Less_eq @ Less )
=> ( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ! [A6: nat] :
( ( member_nat @ A6 @ A )
=> ( Less_eq @ X @ A6 ) )
=> ( Less_eq @ X @ ( lattic7742739596368939638_F_nat @ F @ A ) ) ) ) ) ) ).
% semilattice_order_set.boundedI
thf(fact_1086_semilattice__order__set_OboundedI,axiom,
! [F: a > a > a,Less_eq: a > a > $o,Less: a > a > $o,A: set_a,X: a] :
( ( lattic5078705180708912344_set_a @ F @ Less_eq @ Less )
=> ( ( finite_finite_a @ A )
=> ( ( A != bot_bot_set_a )
=> ( ! [A6: a] :
( ( member_a @ A6 @ A )
=> ( Less_eq @ X @ A6 ) )
=> ( Less_eq @ X @ ( lattic5116578512385870296ce_F_a @ F @ A ) ) ) ) ) ) ).
% semilattice_order_set.boundedI
thf(fact_1087_semilattice__order__set_Obounded__iff,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,Less_eq: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o,Less: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > $o,A: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( lattic2195833625579453896od_b_c @ F @ Less_eq @ Less )
=> ( ( finite3074115686814133143od_b_c @ A )
=> ( ( A != bot_bo4166481423041325370od_b_c )
=> ( ( Less_eq @ X @ ( lattic2734920875441048264od_b_c @ F @ A ) )
= ( ! [X4: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ X4 @ A )
=> ( Less_eq @ X @ X4 ) ) ) ) ) ) ) ).
% semilattice_order_set.bounded_iff
thf(fact_1088_semilattice__order__set_Obounded__iff,axiom,
! [F: nat > nat > nat,Less_eq: nat > nat > $o,Less: nat > nat > $o,A: set_nat,X: nat] :
( ( lattic6009151579333465974et_nat @ F @ Less_eq @ Less )
=> ( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ( Less_eq @ X @ ( lattic7742739596368939638_F_nat @ F @ A ) )
= ( ! [X4: nat] :
( ( member_nat @ X4 @ A )
=> ( Less_eq @ X @ X4 ) ) ) ) ) ) ) ).
% semilattice_order_set.bounded_iff
thf(fact_1089_semilattice__order__set_Obounded__iff,axiom,
! [F: a > a > a,Less_eq: a > a > $o,Less: a > a > $o,A: set_a,X: a] :
( ( lattic5078705180708912344_set_a @ F @ Less_eq @ Less )
=> ( ( finite_finite_a @ A )
=> ( ( A != bot_bot_set_a )
=> ( ( Less_eq @ X @ ( lattic5116578512385870296ce_F_a @ F @ A ) )
= ( ! [X4: a] :
( ( member_a @ X4 @ A )
=> ( Less_eq @ X @ X4 ) ) ) ) ) ) ) ).
% semilattice_order_set.bounded_iff
thf(fact_1090_Sup__fin_Osubset__imp,axiom,
! [A: set_set_a,B: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A @ B )
=> ( ( A != bot_bot_set_set_a )
=> ( ( finite_finite_set_a @ B )
=> ( ord_less_eq_set_a @ ( lattic2918178356826803221_set_a @ A ) @ ( lattic2918178356826803221_set_a @ B ) ) ) ) ) ).
% Sup_fin.subset_imp
thf(fact_1091_Sup__fin_Osubset__imp,axiom,
! [A: set_nat,B: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( A != bot_bot_set_nat )
=> ( ( finite_finite_nat @ B )
=> ( ord_less_eq_nat @ ( lattic1093996805478795353in_nat @ A ) @ ( lattic1093996805478795353in_nat @ B ) ) ) ) ) ).
% Sup_fin.subset_imp
thf(fact_1092_Sup__fin_Osubset__imp,axiom,
! [A: set_se3924713247505902254od_b_c,B: set_se3924713247505902254od_b_c] :
( ( ord_le6656836712342966862od_b_c @ A @ B )
=> ( ( A != bot_bo2794119844231891738od_b_c )
=> ( ( finite1374199133651033463od_b_c @ B )
=> ( ord_le282488521294790766od_b_c @ ( lattic8058834985641542149od_b_c @ A ) @ ( lattic8058834985641542149od_b_c @ B ) ) ) ) ) ).
% Sup_fin.subset_imp
thf(fact_1093_Sup__fin_Osubset,axiom,
! [A: set_nat,B: set_nat] :
( ( finite_finite_nat @ A )
=> ( ( B != bot_bot_set_nat )
=> ( ( ord_less_eq_set_nat @ B @ A )
=> ( ( sup_sup_nat @ ( lattic1093996805478795353in_nat @ B ) @ ( lattic1093996805478795353in_nat @ A ) )
= ( lattic1093996805478795353in_nat @ A ) ) ) ) ) ).
% Sup_fin.subset
thf(fact_1094_Sup__fin_Osubset,axiom,
! [A: set_set_a,B: set_set_a] :
( ( finite_finite_set_a @ A )
=> ( ( B != bot_bot_set_set_a )
=> ( ( ord_le3724670747650509150_set_a @ B @ A )
=> ( ( sup_sup_set_a @ ( lattic2918178356826803221_set_a @ B ) @ ( lattic2918178356826803221_set_a @ A ) )
= ( lattic2918178356826803221_set_a @ A ) ) ) ) ) ).
% Sup_fin.subset
thf(fact_1095_semilattice__set_Ounion,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( lattic4067905262246253180od_b_c @ F )
=> ( ( finite3074115686814133143od_b_c @ A )
=> ( ( A != bot_bo4166481423041325370od_b_c )
=> ( ( finite3074115686814133143od_b_c @ B )
=> ( ( B != bot_bo4166481423041325370od_b_c )
=> ( ( lattic2734920875441048264od_b_c @ F @ ( sup_su3823046536922626210od_b_c @ A @ B ) )
= ( F @ ( lattic2734920875441048264od_b_c @ F @ A ) @ ( lattic2734920875441048264od_b_c @ F @ B ) ) ) ) ) ) ) ) ).
% semilattice_set.union
thf(fact_1096_semilattice__set_Ounion,axiom,
! [F: nat > nat > nat,A: set_nat,B: set_nat] :
( ( lattic1029310888574255042et_nat @ F )
=> ( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ( finite_finite_nat @ B )
=> ( ( B != bot_bot_set_nat )
=> ( ( lattic7742739596368939638_F_nat @ F @ ( sup_sup_set_nat @ A @ B ) )
= ( F @ ( lattic7742739596368939638_F_nat @ F @ A ) @ ( lattic7742739596368939638_F_nat @ F @ B ) ) ) ) ) ) ) ) ).
% semilattice_set.union
thf(fact_1097_semilattice__set_Ounion,axiom,
! [F: a > a > a,A: set_a,B: set_a] :
( ( lattic5961991414251573132_set_a @ F )
=> ( ( finite_finite_a @ A )
=> ( ( A != bot_bot_set_a )
=> ( ( finite_finite_a @ B )
=> ( ( B != bot_bot_set_a )
=> ( ( lattic5116578512385870296ce_F_a @ F @ ( sup_sup_set_a @ A @ B ) )
= ( F @ ( lattic5116578512385870296ce_F_a @ F @ A ) @ ( lattic5116578512385870296ce_F_a @ F @ B ) ) ) ) ) ) ) ) ).
% semilattice_set.union
thf(fact_1098_semilattice__set_Osubset,axiom,
! [F: nat > nat > nat,A: set_nat,B: set_nat] :
( ( lattic1029310888574255042et_nat @ F )
=> ( ( finite_finite_nat @ A )
=> ( ( B != bot_bot_set_nat )
=> ( ( ord_less_eq_set_nat @ B @ A )
=> ( ( F @ ( lattic7742739596368939638_F_nat @ F @ B ) @ ( lattic7742739596368939638_F_nat @ F @ A ) )
= ( lattic7742739596368939638_F_nat @ F @ A ) ) ) ) ) ) ).
% semilattice_set.subset
thf(fact_1099_semilattice__set_Osubset,axiom,
! [F: a > a > a,A: set_a,B: set_a] :
( ( lattic5961991414251573132_set_a @ F )
=> ( ( finite_finite_a @ A )
=> ( ( B != bot_bot_set_a )
=> ( ( ord_less_eq_set_a @ B @ A )
=> ( ( F @ ( lattic5116578512385870296ce_F_a @ F @ B ) @ ( lattic5116578512385870296ce_F_a @ F @ A ) )
= ( lattic5116578512385870296ce_F_a @ F @ A ) ) ) ) ) ) ).
% semilattice_set.subset
thf(fact_1100_semilattice__set_Osubset,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( lattic4067905262246253180od_b_c @ F )
=> ( ( finite3074115686814133143od_b_c @ A )
=> ( ( B != bot_bo4166481423041325370od_b_c )
=> ( ( ord_le282488521294790766od_b_c @ B @ A )
=> ( ( F @ ( lattic2734920875441048264od_b_c @ F @ B ) @ ( lattic2734920875441048264od_b_c @ F @ A ) )
= ( lattic2734920875441048264od_b_c @ F @ A ) ) ) ) ) ) ).
% semilattice_set.subset
thf(fact_1101_Sup__fin_Oinsert,axiom,
! [A: set_nat,X: nat] :
( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ( lattic1093996805478795353in_nat @ ( insert_nat @ X @ A ) )
= ( sup_sup_nat @ X @ ( lattic1093996805478795353in_nat @ A ) ) ) ) ) ).
% Sup_fin.insert
thf(fact_1102_Sup__fin_Oinsert,axiom,
! [A: set_set_a,X: set_a] :
( ( finite_finite_set_a @ A )
=> ( ( A != bot_bot_set_set_a )
=> ( ( lattic2918178356826803221_set_a @ ( insert_set_a @ X @ A ) )
= ( sup_sup_set_a @ X @ ( lattic2918178356826803221_set_a @ A ) ) ) ) ) ).
% Sup_fin.insert
thf(fact_1103_insertCI,axiom,
! [A2: a,B: set_a,B2: a] :
( ( ~ ( member_a @ A2 @ B )
=> ( A2 = B2 ) )
=> ( member_a @ A2 @ ( insert_a @ B2 @ B ) ) ) ).
% insertCI
thf(fact_1104_insertCI,axiom,
! [A2: list_P903359562653991662od_b_c,B: set_li6436108459499378894od_b_c,B2: list_P903359562653991662od_b_c] :
( ( ~ ( member6330420149250801815od_b_c @ A2 @ B )
=> ( A2 = B2 ) )
=> ( member6330420149250801815od_b_c @ A2 @ ( insert6227932334100060350od_b_c @ B2 @ B ) ) ) ).
% insertCI
thf(fact_1105_insert__iff,axiom,
! [A2: a,B2: a,A: set_a] :
( ( member_a @ A2 @ ( insert_a @ B2 @ A ) )
= ( ( A2 = B2 )
| ( member_a @ A2 @ A ) ) ) ).
% insert_iff
thf(fact_1106_insert__iff,axiom,
! [A2: list_P903359562653991662od_b_c,B2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ A2 @ ( insert6227932334100060350od_b_c @ B2 @ A ) )
= ( ( A2 = B2 )
| ( member6330420149250801815od_b_c @ A2 @ A ) ) ) ).
% insert_iff
thf(fact_1107_finite__insert,axiom,
! [A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ ( insert6227932334100060350od_b_c @ A2 @ A ) )
= ( finite3074115686814133143od_b_c @ A ) ) ).
% finite_insert
thf(fact_1108_finite__insert,axiom,
! [A2: a,A: set_a] :
( ( finite_finite_a @ ( insert_a @ A2 @ A ) )
= ( finite_finite_a @ A ) ) ).
% finite_insert
thf(fact_1109_finite__insert,axiom,
! [A2: nat,A: set_nat] :
( ( finite_finite_nat @ ( insert_nat @ A2 @ A ) )
= ( finite_finite_nat @ A ) ) ).
% finite_insert
thf(fact_1110_singletonI,axiom,
! [A2: list_P903359562653991662od_b_c] : ( member6330420149250801815od_b_c @ A2 @ ( insert6227932334100060350od_b_c @ A2 @ bot_bo4166481423041325370od_b_c ) ) ).
% singletonI
thf(fact_1111_singletonI,axiom,
! [A2: a] : ( member_a @ A2 @ ( insert_a @ A2 @ bot_bot_set_a ) ) ).
% singletonI
thf(fact_1112_insert__subset,axiom,
! [X: a,A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ ( insert_a @ X @ A ) @ B )
= ( ( member_a @ X @ B )
& ( ord_less_eq_set_a @ A @ B ) ) ) ).
% insert_subset
thf(fact_1113_insert__subset,axiom,
! [X: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ord_le282488521294790766od_b_c @ ( insert6227932334100060350od_b_c @ X @ A ) @ B )
= ( ( member6330420149250801815od_b_c @ X @ B )
& ( ord_le282488521294790766od_b_c @ A @ B ) ) ) ).
% insert_subset
thf(fact_1114_Int__insert__left__if0,axiom,
! [A2: list_P903359562653991662od_b_c,C2: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ~ ( member6330420149250801815od_b_c @ A2 @ C2 )
=> ( ( inf_in4978071631833541052od_b_c @ ( insert6227932334100060350od_b_c @ A2 @ B ) @ C2 )
= ( inf_in4978071631833541052od_b_c @ B @ C2 ) ) ) ).
% Int_insert_left_if0
thf(fact_1115_Int__insert__left__if0,axiom,
! [A2: a,C2: set_a,B: set_a] :
( ~ ( member_a @ A2 @ C2 )
=> ( ( inf_inf_set_a @ ( insert_a @ A2 @ B ) @ C2 )
= ( inf_inf_set_a @ B @ C2 ) ) ) ).
% Int_insert_left_if0
thf(fact_1116_Int__insert__left__if1,axiom,
! [A2: list_P903359562653991662od_b_c,C2: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ A2 @ C2 )
=> ( ( inf_in4978071631833541052od_b_c @ ( insert6227932334100060350od_b_c @ A2 @ B ) @ C2 )
= ( insert6227932334100060350od_b_c @ A2 @ ( inf_in4978071631833541052od_b_c @ B @ C2 ) ) ) ) ).
% Int_insert_left_if1
thf(fact_1117_Int__insert__left__if1,axiom,
! [A2: a,C2: set_a,B: set_a] :
( ( member_a @ A2 @ C2 )
=> ( ( inf_inf_set_a @ ( insert_a @ A2 @ B ) @ C2 )
= ( insert_a @ A2 @ ( inf_inf_set_a @ B @ C2 ) ) ) ) ).
% Int_insert_left_if1
thf(fact_1118_insert__inter__insert,axiom,
! [A2: a,A: set_a,B: set_a] :
( ( inf_inf_set_a @ ( insert_a @ A2 @ A ) @ ( insert_a @ A2 @ B ) )
= ( insert_a @ A2 @ ( inf_inf_set_a @ A @ B ) ) ) ).
% insert_inter_insert
thf(fact_1119_Int__insert__right__if0,axiom,
! [A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ~ ( member6330420149250801815od_b_c @ A2 @ A )
=> ( ( inf_in4978071631833541052od_b_c @ A @ ( insert6227932334100060350od_b_c @ A2 @ B ) )
= ( inf_in4978071631833541052od_b_c @ A @ B ) ) ) ).
% Int_insert_right_if0
thf(fact_1120_Int__insert__right__if0,axiom,
! [A2: a,A: set_a,B: set_a] :
( ~ ( member_a @ A2 @ A )
=> ( ( inf_inf_set_a @ A @ ( insert_a @ A2 @ B ) )
= ( inf_inf_set_a @ A @ B ) ) ) ).
% Int_insert_right_if0
thf(fact_1121_Int__insert__right__if1,axiom,
! [A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ A2 @ A )
=> ( ( inf_in4978071631833541052od_b_c @ A @ ( insert6227932334100060350od_b_c @ A2 @ B ) )
= ( insert6227932334100060350od_b_c @ A2 @ ( inf_in4978071631833541052od_b_c @ A @ B ) ) ) ) ).
% Int_insert_right_if1
thf(fact_1122_Int__insert__right__if1,axiom,
! [A2: a,A: set_a,B: set_a] :
( ( member_a @ A2 @ A )
=> ( ( inf_inf_set_a @ A @ ( insert_a @ A2 @ B ) )
= ( insert_a @ A2 @ ( inf_inf_set_a @ A @ B ) ) ) ) ).
% Int_insert_right_if1
thf(fact_1123_Un__insert__left,axiom,
! [A2: a,B: set_a,C2: set_a] :
( ( sup_sup_set_a @ ( insert_a @ A2 @ B ) @ C2 )
= ( insert_a @ A2 @ ( sup_sup_set_a @ B @ C2 ) ) ) ).
% Un_insert_left
thf(fact_1124_Un__insert__right,axiom,
! [A: set_a,A2: a,B: set_a] :
( ( sup_sup_set_a @ A @ ( insert_a @ A2 @ B ) )
= ( insert_a @ A2 @ ( sup_sup_set_a @ A @ B ) ) ) ).
% Un_insert_right
thf(fact_1125_disjnt__insert2,axiom,
! [Y7: set_a,A2: a,X8: set_a] :
( ( disjnt_a @ Y7 @ ( insert_a @ A2 @ X8 ) )
= ( ~ ( member_a @ A2 @ Y7 )
& ( disjnt_a @ Y7 @ X8 ) ) ) ).
% disjnt_insert2
thf(fact_1126_disjnt__insert2,axiom,
! [Y7: set_li6436108459499378894od_b_c,A2: list_P903359562653991662od_b_c,X8: set_li6436108459499378894od_b_c] :
( ( disjnt5456880891938978613od_b_c @ Y7 @ ( insert6227932334100060350od_b_c @ A2 @ X8 ) )
= ( ~ ( member6330420149250801815od_b_c @ A2 @ Y7 )
& ( disjnt5456880891938978613od_b_c @ Y7 @ X8 ) ) ) ).
% disjnt_insert2
thf(fact_1127_disjnt__insert1,axiom,
! [A2: a,X8: set_a,Y7: set_a] :
( ( disjnt_a @ ( insert_a @ A2 @ X8 ) @ Y7 )
= ( ~ ( member_a @ A2 @ Y7 )
& ( disjnt_a @ X8 @ Y7 ) ) ) ).
% disjnt_insert1
thf(fact_1128_disjnt__insert1,axiom,
! [A2: list_P903359562653991662od_b_c,X8: set_li6436108459499378894od_b_c,Y7: set_li6436108459499378894od_b_c] :
( ( disjnt5456880891938978613od_b_c @ ( insert6227932334100060350od_b_c @ A2 @ X8 ) @ Y7 )
= ( ~ ( member6330420149250801815od_b_c @ A2 @ Y7 )
& ( disjnt5456880891938978613od_b_c @ X8 @ Y7 ) ) ) ).
% disjnt_insert1
thf(fact_1129_singleton__insert__inj__eq,axiom,
! [B2: a,A2: a,A: set_a] :
( ( ( insert_a @ B2 @ bot_bot_set_a )
= ( insert_a @ A2 @ A ) )
= ( ( A2 = B2 )
& ( ord_less_eq_set_a @ A @ ( insert_a @ B2 @ bot_bot_set_a ) ) ) ) ).
% singleton_insert_inj_eq
thf(fact_1130_singleton__insert__inj__eq,axiom,
! [B2: list_P903359562653991662od_b_c,A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c] :
( ( ( insert6227932334100060350od_b_c @ B2 @ bot_bo4166481423041325370od_b_c )
= ( insert6227932334100060350od_b_c @ A2 @ A ) )
= ( ( A2 = B2 )
& ( ord_le282488521294790766od_b_c @ A @ ( insert6227932334100060350od_b_c @ B2 @ bot_bo4166481423041325370od_b_c ) ) ) ) ).
% singleton_insert_inj_eq
thf(fact_1131_singleton__insert__inj__eq_H,axiom,
! [A2: a,A: set_a,B2: a] :
( ( ( insert_a @ A2 @ A )
= ( insert_a @ B2 @ bot_bot_set_a ) )
= ( ( A2 = B2 )
& ( ord_less_eq_set_a @ A @ ( insert_a @ B2 @ bot_bot_set_a ) ) ) ) ).
% singleton_insert_inj_eq'
thf(fact_1132_singleton__insert__inj__eq_H,axiom,
! [A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B2: list_P903359562653991662od_b_c] :
( ( ( insert6227932334100060350od_b_c @ A2 @ A )
= ( insert6227932334100060350od_b_c @ B2 @ bot_bo4166481423041325370od_b_c ) )
= ( ( A2 = B2 )
& ( ord_le282488521294790766od_b_c @ A @ ( insert6227932334100060350od_b_c @ B2 @ bot_bo4166481423041325370od_b_c ) ) ) ) ).
% singleton_insert_inj_eq'
thf(fact_1133_disjoint__insert_I2_J,axiom,
! [A: set_li6436108459499378894od_b_c,B2: list_P903359562653991662od_b_c,B: set_li6436108459499378894od_b_c] :
( ( bot_bo4166481423041325370od_b_c
= ( inf_in4978071631833541052od_b_c @ A @ ( insert6227932334100060350od_b_c @ B2 @ B ) ) )
= ( ~ ( member6330420149250801815od_b_c @ B2 @ A )
& ( bot_bo4166481423041325370od_b_c
= ( inf_in4978071631833541052od_b_c @ A @ B ) ) ) ) ).
% disjoint_insert(2)
thf(fact_1134_disjoint__insert_I2_J,axiom,
! [A: set_a,B2: a,B: set_a] :
( ( bot_bot_set_a
= ( inf_inf_set_a @ A @ ( insert_a @ B2 @ B ) ) )
= ( ~ ( member_a @ B2 @ A )
& ( bot_bot_set_a
= ( inf_inf_set_a @ A @ B ) ) ) ) ).
% disjoint_insert(2)
thf(fact_1135_disjoint__insert_I1_J,axiom,
! [B: set_li6436108459499378894od_b_c,A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c] :
( ( ( inf_in4978071631833541052od_b_c @ B @ ( insert6227932334100060350od_b_c @ A2 @ A ) )
= bot_bo4166481423041325370od_b_c )
= ( ~ ( member6330420149250801815od_b_c @ A2 @ B )
& ( ( inf_in4978071631833541052od_b_c @ B @ A )
= bot_bo4166481423041325370od_b_c ) ) ) ).
% disjoint_insert(1)
thf(fact_1136_disjoint__insert_I1_J,axiom,
! [B: set_a,A2: a,A: set_a] :
( ( ( inf_inf_set_a @ B @ ( insert_a @ A2 @ A ) )
= bot_bot_set_a )
= ( ~ ( member_a @ A2 @ B )
& ( ( inf_inf_set_a @ B @ A )
= bot_bot_set_a ) ) ) ).
% disjoint_insert(1)
thf(fact_1137_insert__disjoint_I2_J,axiom,
! [A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( bot_bo4166481423041325370od_b_c
= ( inf_in4978071631833541052od_b_c @ ( insert6227932334100060350od_b_c @ A2 @ A ) @ B ) )
= ( ~ ( member6330420149250801815od_b_c @ A2 @ B )
& ( bot_bo4166481423041325370od_b_c
= ( inf_in4978071631833541052od_b_c @ A @ B ) ) ) ) ).
% insert_disjoint(2)
thf(fact_1138_insert__disjoint_I2_J,axiom,
! [A2: a,A: set_a,B: set_a] :
( ( bot_bot_set_a
= ( inf_inf_set_a @ ( insert_a @ A2 @ A ) @ B ) )
= ( ~ ( member_a @ A2 @ B )
& ( bot_bot_set_a
= ( inf_inf_set_a @ A @ B ) ) ) ) ).
% insert_disjoint(2)
thf(fact_1139_insert__disjoint_I1_J,axiom,
! [A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ( inf_in4978071631833541052od_b_c @ ( insert6227932334100060350od_b_c @ A2 @ A ) @ B )
= bot_bo4166481423041325370od_b_c )
= ( ~ ( member6330420149250801815od_b_c @ A2 @ B )
& ( ( inf_in4978071631833541052od_b_c @ A @ B )
= bot_bo4166481423041325370od_b_c ) ) ) ).
% insert_disjoint(1)
thf(fact_1140_insert__disjoint_I1_J,axiom,
! [A2: a,A: set_a,B: set_a] :
( ( ( inf_inf_set_a @ ( insert_a @ A2 @ A ) @ B )
= bot_bot_set_a )
= ( ~ ( member_a @ A2 @ B )
& ( ( inf_inf_set_a @ A @ B )
= bot_bot_set_a ) ) ) ).
% insert_disjoint(1)
thf(fact_1141_card__insert__disjoint,axiom,
! [A: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( finite3074115686814133143od_b_c @ A )
=> ( ~ ( member6330420149250801815od_b_c @ X @ A )
=> ( ( finite5583770498833199894od_b_c @ ( insert6227932334100060350od_b_c @ X @ A ) )
= ( suc @ ( finite5583770498833199894od_b_c @ A ) ) ) ) ) ).
% card_insert_disjoint
thf(fact_1142_card__insert__disjoint,axiom,
! [A: set_a,X: a] :
( ( finite_finite_a @ A )
=> ( ~ ( member_a @ X @ A )
=> ( ( finite_card_a @ ( insert_a @ X @ A ) )
= ( suc @ ( finite_card_a @ A ) ) ) ) ) ).
% card_insert_disjoint
thf(fact_1143_card__insert__disjoint,axiom,
! [A: set_nat,X: nat] :
( ( finite_finite_nat @ A )
=> ( ~ ( member_nat @ X @ A )
=> ( ( finite_card_nat @ ( insert_nat @ X @ A ) )
= ( suc @ ( finite_card_nat @ A ) ) ) ) ) ).
% card_insert_disjoint
thf(fact_1144_semilattice__set_Oinsert__not__elem,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( lattic4067905262246253180od_b_c @ F )
=> ( ( finite3074115686814133143od_b_c @ A )
=> ( ~ ( member6330420149250801815od_b_c @ X @ A )
=> ( ( A != bot_bo4166481423041325370od_b_c )
=> ( ( lattic2734920875441048264od_b_c @ F @ ( insert6227932334100060350od_b_c @ X @ A ) )
= ( F @ X @ ( lattic2734920875441048264od_b_c @ F @ A ) ) ) ) ) ) ) ).
% semilattice_set.insert_not_elem
thf(fact_1145_semilattice__set_Oinsert__not__elem,axiom,
! [F: nat > nat > nat,A: set_nat,X: nat] :
( ( lattic1029310888574255042et_nat @ F )
=> ( ( finite_finite_nat @ A )
=> ( ~ ( member_nat @ X @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ( lattic7742739596368939638_F_nat @ F @ ( insert_nat @ X @ A ) )
= ( F @ X @ ( lattic7742739596368939638_F_nat @ F @ A ) ) ) ) ) ) ) ).
% semilattice_set.insert_not_elem
thf(fact_1146_semilattice__set_Oinsert__not__elem,axiom,
! [F: a > a > a,A: set_a,X: a] :
( ( lattic5961991414251573132_set_a @ F )
=> ( ( finite_finite_a @ A )
=> ( ~ ( member_a @ X @ A )
=> ( ( A != bot_bot_set_a )
=> ( ( lattic5116578512385870296ce_F_a @ F @ ( insert_a @ X @ A ) )
= ( F @ X @ ( lattic5116578512385870296ce_F_a @ F @ A ) ) ) ) ) ) ) ).
% semilattice_set.insert_not_elem
thf(fact_1147_semilattice__set_Oinsert,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( lattic4067905262246253180od_b_c @ F )
=> ( ( finite3074115686814133143od_b_c @ A )
=> ( ( A != bot_bo4166481423041325370od_b_c )
=> ( ( lattic2734920875441048264od_b_c @ F @ ( insert6227932334100060350od_b_c @ X @ A ) )
= ( F @ X @ ( lattic2734920875441048264od_b_c @ F @ A ) ) ) ) ) ) ).
% semilattice_set.insert
thf(fact_1148_semilattice__set_Oinsert,axiom,
! [F: nat > nat > nat,A: set_nat,X: nat] :
( ( lattic1029310888574255042et_nat @ F )
=> ( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ( lattic7742739596368939638_F_nat @ F @ ( insert_nat @ X @ A ) )
= ( F @ X @ ( lattic7742739596368939638_F_nat @ F @ A ) ) ) ) ) ) ).
% semilattice_set.insert
thf(fact_1149_semilattice__set_Oinsert,axiom,
! [F: a > a > a,A: set_a,X: a] :
( ( lattic5961991414251573132_set_a @ F )
=> ( ( finite_finite_a @ A )
=> ( ( A != bot_bot_set_a )
=> ( ( lattic5116578512385870296ce_F_a @ F @ ( insert_a @ X @ A ) )
= ( F @ X @ ( lattic5116578512385870296ce_F_a @ F @ A ) ) ) ) ) ) ).
% semilattice_set.insert
thf(fact_1150_semilattice__set_Oclosed,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c] :
( ( lattic4067905262246253180od_b_c @ F )
=> ( ( finite3074115686814133143od_b_c @ A )
=> ( ( A != bot_bo4166481423041325370od_b_c )
=> ( ! [X2: list_P903359562653991662od_b_c,Y4: list_P903359562653991662od_b_c] : ( member6330420149250801815od_b_c @ ( F @ X2 @ Y4 ) @ ( insert6227932334100060350od_b_c @ X2 @ ( insert6227932334100060350od_b_c @ Y4 @ bot_bo4166481423041325370od_b_c ) ) )
=> ( member6330420149250801815od_b_c @ ( lattic2734920875441048264od_b_c @ F @ A ) @ A ) ) ) ) ) ).
% semilattice_set.closed
thf(fact_1151_semilattice__set_Oclosed,axiom,
! [F: nat > nat > nat,A: set_nat] :
( ( lattic1029310888574255042et_nat @ F )
=> ( ( finite_finite_nat @ A )
=> ( ( A != bot_bot_set_nat )
=> ( ! [X2: nat,Y4: nat] : ( member_nat @ ( F @ X2 @ Y4 ) @ ( insert_nat @ X2 @ ( insert_nat @ Y4 @ bot_bot_set_nat ) ) )
=> ( member_nat @ ( lattic7742739596368939638_F_nat @ F @ A ) @ A ) ) ) ) ) ).
% semilattice_set.closed
thf(fact_1152_semilattice__set_Oclosed,axiom,
! [F: a > a > a,A: set_a] :
( ( lattic5961991414251573132_set_a @ F )
=> ( ( finite_finite_a @ A )
=> ( ( A != bot_bot_set_a )
=> ( ! [X2: a,Y4: a] : ( member_a @ ( F @ X2 @ Y4 ) @ ( insert_a @ X2 @ ( insert_a @ Y4 @ bot_bot_set_a ) ) )
=> ( member_a @ ( lattic5116578512385870296ce_F_a @ F @ A ) @ A ) ) ) ) ) ).
% semilattice_set.closed
thf(fact_1153_semilattice__set_Osingleton,axiom,
! [F: a > a > a,X: a] :
( ( lattic5961991414251573132_set_a @ F )
=> ( ( lattic5116578512385870296ce_F_a @ F @ ( insert_a @ X @ bot_bot_set_a ) )
= X ) ) ).
% semilattice_set.singleton
thf(fact_1154_singleton__inject,axiom,
! [A2: a,B2: a] :
( ( ( insert_a @ A2 @ bot_bot_set_a )
= ( insert_a @ B2 @ bot_bot_set_a ) )
=> ( A2 = B2 ) ) ).
% singleton_inject
thf(fact_1155_insert__not__empty,axiom,
! [A2: a,A: set_a] :
( ( insert_a @ A2 @ A )
!= bot_bot_set_a ) ).
% insert_not_empty
thf(fact_1156_doubleton__eq__iff,axiom,
! [A2: a,B2: a,C: a,D2: a] :
( ( ( insert_a @ A2 @ ( insert_a @ B2 @ bot_bot_set_a ) )
= ( insert_a @ C @ ( insert_a @ D2 @ bot_bot_set_a ) ) )
= ( ( ( A2 = C )
& ( B2 = D2 ) )
| ( ( A2 = D2 )
& ( B2 = C ) ) ) ) ).
% doubleton_eq_iff
thf(fact_1157_singleton__iff,axiom,
! [B2: list_P903359562653991662od_b_c,A2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ B2 @ ( insert6227932334100060350od_b_c @ A2 @ bot_bo4166481423041325370od_b_c ) )
= ( B2 = A2 ) ) ).
% singleton_iff
thf(fact_1158_singleton__iff,axiom,
! [B2: a,A2: a] :
( ( member_a @ B2 @ ( insert_a @ A2 @ bot_bot_set_a ) )
= ( B2 = A2 ) ) ).
% singleton_iff
thf(fact_1159_singletonD,axiom,
! [B2: list_P903359562653991662od_b_c,A2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ B2 @ ( insert6227932334100060350od_b_c @ A2 @ bot_bo4166481423041325370od_b_c ) )
=> ( B2 = A2 ) ) ).
% singletonD
thf(fact_1160_singletonD,axiom,
! [B2: a,A2: a] :
( ( member_a @ B2 @ ( insert_a @ A2 @ bot_bot_set_a ) )
=> ( B2 = A2 ) ) ).
% singletonD
thf(fact_1161_insertE,axiom,
! [A2: a,B2: a,A: set_a] :
( ( member_a @ A2 @ ( insert_a @ B2 @ A ) )
=> ( ( A2 != B2 )
=> ( member_a @ A2 @ A ) ) ) ).
% insertE
thf(fact_1162_insertE,axiom,
! [A2: list_P903359562653991662od_b_c,B2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ A2 @ ( insert6227932334100060350od_b_c @ B2 @ A ) )
=> ( ( A2 != B2 )
=> ( member6330420149250801815od_b_c @ A2 @ A ) ) ) ).
% insertE
thf(fact_1163_insertI1,axiom,
! [A2: a,B: set_a] : ( member_a @ A2 @ ( insert_a @ A2 @ B ) ) ).
% insertI1
thf(fact_1164_insertI1,axiom,
! [A2: list_P903359562653991662od_b_c,B: set_li6436108459499378894od_b_c] : ( member6330420149250801815od_b_c @ A2 @ ( insert6227932334100060350od_b_c @ A2 @ B ) ) ).
% insertI1
thf(fact_1165_insertI2,axiom,
! [A2: a,B: set_a,B2: a] :
( ( member_a @ A2 @ B )
=> ( member_a @ A2 @ ( insert_a @ B2 @ B ) ) ) ).
% insertI2
thf(fact_1166_insertI2,axiom,
! [A2: list_P903359562653991662od_b_c,B: set_li6436108459499378894od_b_c,B2: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ A2 @ B )
=> ( member6330420149250801815od_b_c @ A2 @ ( insert6227932334100060350od_b_c @ B2 @ B ) ) ) ).
% insertI2
thf(fact_1167_Set_Oset__insert,axiom,
! [X: a,A: set_a] :
( ( member_a @ X @ A )
=> ~ ! [B7: set_a] :
( ( A
= ( insert_a @ X @ B7 ) )
=> ( member_a @ X @ B7 ) ) ) ).
% Set.set_insert
thf(fact_1168_Set_Oset__insert,axiom,
! [X: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ X @ A )
=> ~ ! [B7: set_li6436108459499378894od_b_c] :
( ( A
= ( insert6227932334100060350od_b_c @ X @ B7 ) )
=> ( member6330420149250801815od_b_c @ X @ B7 ) ) ) ).
% Set.set_insert
thf(fact_1169_insert__ident,axiom,
! [X: a,A: set_a,B: set_a] :
( ~ ( member_a @ X @ A )
=> ( ~ ( member_a @ X @ B )
=> ( ( ( insert_a @ X @ A )
= ( insert_a @ X @ B ) )
= ( A = B ) ) ) ) ).
% insert_ident
thf(fact_1170_insert__ident,axiom,
! [X: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ~ ( member6330420149250801815od_b_c @ X @ A )
=> ( ~ ( member6330420149250801815od_b_c @ X @ B )
=> ( ( ( insert6227932334100060350od_b_c @ X @ A )
= ( insert6227932334100060350od_b_c @ X @ B ) )
= ( A = B ) ) ) ) ).
% insert_ident
thf(fact_1171_insert__absorb,axiom,
! [A2: a,A: set_a] :
( ( member_a @ A2 @ A )
=> ( ( insert_a @ A2 @ A )
= A ) ) ).
% insert_absorb
thf(fact_1172_insert__absorb,axiom,
! [A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ A2 @ A )
=> ( ( insert6227932334100060350od_b_c @ A2 @ A )
= A ) ) ).
% insert_absorb
thf(fact_1173_insert__eq__iff,axiom,
! [A2: a,A: set_a,B2: a,B: set_a] :
( ~ ( member_a @ A2 @ A )
=> ( ~ ( member_a @ B2 @ B )
=> ( ( ( insert_a @ A2 @ A )
= ( insert_a @ B2 @ B ) )
= ( ( ( A2 = B2 )
=> ( A = B ) )
& ( ( A2 != B2 )
=> ? [C5: set_a] :
( ( A
= ( insert_a @ B2 @ C5 ) )
& ~ ( member_a @ B2 @ C5 )
& ( B
= ( insert_a @ A2 @ C5 ) )
& ~ ( member_a @ A2 @ C5 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_1174_insert__eq__iff,axiom,
! [A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B2: list_P903359562653991662od_b_c,B: set_li6436108459499378894od_b_c] :
( ~ ( member6330420149250801815od_b_c @ A2 @ A )
=> ( ~ ( member6330420149250801815od_b_c @ B2 @ B )
=> ( ( ( insert6227932334100060350od_b_c @ A2 @ A )
= ( insert6227932334100060350od_b_c @ B2 @ B ) )
= ( ( ( A2 = B2 )
=> ( A = B ) )
& ( ( A2 != B2 )
=> ? [C5: set_li6436108459499378894od_b_c] :
( ( A
= ( insert6227932334100060350od_b_c @ B2 @ C5 ) )
& ~ ( member6330420149250801815od_b_c @ B2 @ C5 )
& ( B
= ( insert6227932334100060350od_b_c @ A2 @ C5 ) )
& ~ ( member6330420149250801815od_b_c @ A2 @ C5 ) ) ) ) ) ) ) ).
% insert_eq_iff
thf(fact_1175_mk__disjoint__insert,axiom,
! [A2: a,A: set_a] :
( ( member_a @ A2 @ A )
=> ? [B7: set_a] :
( ( A
= ( insert_a @ A2 @ B7 ) )
& ~ ( member_a @ A2 @ B7 ) ) ) ).
% mk_disjoint_insert
thf(fact_1176_mk__disjoint__insert,axiom,
! [A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ A2 @ A )
=> ? [B7: set_li6436108459499378894od_b_c] :
( ( A
= ( insert6227932334100060350od_b_c @ A2 @ B7 ) )
& ~ ( member6330420149250801815od_b_c @ A2 @ B7 ) ) ) ).
% mk_disjoint_insert
thf(fact_1177_Int__insert__left,axiom,
! [A2: list_P903359562653991662od_b_c,C2: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ( member6330420149250801815od_b_c @ A2 @ C2 )
=> ( ( inf_in4978071631833541052od_b_c @ ( insert6227932334100060350od_b_c @ A2 @ B ) @ C2 )
= ( insert6227932334100060350od_b_c @ A2 @ ( inf_in4978071631833541052od_b_c @ B @ C2 ) ) ) )
& ( ~ ( member6330420149250801815od_b_c @ A2 @ C2 )
=> ( ( inf_in4978071631833541052od_b_c @ ( insert6227932334100060350od_b_c @ A2 @ B ) @ C2 )
= ( inf_in4978071631833541052od_b_c @ B @ C2 ) ) ) ) ).
% Int_insert_left
thf(fact_1178_Int__insert__left,axiom,
! [A2: a,C2: set_a,B: set_a] :
( ( ( member_a @ A2 @ C2 )
=> ( ( inf_inf_set_a @ ( insert_a @ A2 @ B ) @ C2 )
= ( insert_a @ A2 @ ( inf_inf_set_a @ B @ C2 ) ) ) )
& ( ~ ( member_a @ A2 @ C2 )
=> ( ( inf_inf_set_a @ ( insert_a @ A2 @ B ) @ C2 )
= ( inf_inf_set_a @ B @ C2 ) ) ) ) ).
% Int_insert_left
thf(fact_1179_Int__insert__right,axiom,
! [A2: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ( ( member6330420149250801815od_b_c @ A2 @ A )
=> ( ( inf_in4978071631833541052od_b_c @ A @ ( insert6227932334100060350od_b_c @ A2 @ B ) )
= ( insert6227932334100060350od_b_c @ A2 @ ( inf_in4978071631833541052od_b_c @ A @ B ) ) ) )
& ( ~ ( member6330420149250801815od_b_c @ A2 @ A )
=> ( ( inf_in4978071631833541052od_b_c @ A @ ( insert6227932334100060350od_b_c @ A2 @ B ) )
= ( inf_in4978071631833541052od_b_c @ A @ B ) ) ) ) ).
% Int_insert_right
thf(fact_1180_Int__insert__right,axiom,
! [A2: a,A: set_a,B: set_a] :
( ( ( member_a @ A2 @ A )
=> ( ( inf_inf_set_a @ A @ ( insert_a @ A2 @ B ) )
= ( insert_a @ A2 @ ( inf_inf_set_a @ A @ B ) ) ) )
& ( ~ ( member_a @ A2 @ A )
=> ( ( inf_inf_set_a @ A @ ( insert_a @ A2 @ B ) )
= ( inf_inf_set_a @ A @ B ) ) ) ) ).
% Int_insert_right
thf(fact_1181_insert__subsetI,axiom,
! [X: a,A: set_a,X8: set_a] :
( ( member_a @ X @ A )
=> ( ( ord_less_eq_set_a @ X8 @ A )
=> ( ord_less_eq_set_a @ ( insert_a @ X @ X8 ) @ A ) ) ) ).
% insert_subsetI
thf(fact_1182_insert__subsetI,axiom,
! [X: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,X8: set_li6436108459499378894od_b_c] :
( ( member6330420149250801815od_b_c @ X @ A )
=> ( ( ord_le282488521294790766od_b_c @ X8 @ A )
=> ( ord_le282488521294790766od_b_c @ ( insert6227932334100060350od_b_c @ X @ X8 ) @ A ) ) ) ).
% insert_subsetI
thf(fact_1183_insert__mono,axiom,
! [C2: set_a,D: set_a,A2: a] :
( ( ord_less_eq_set_a @ C2 @ D )
=> ( ord_less_eq_set_a @ ( insert_a @ A2 @ C2 ) @ ( insert_a @ A2 @ D ) ) ) ).
% insert_mono
thf(fact_1184_insert__mono,axiom,
! [C2: set_li6436108459499378894od_b_c,D: set_li6436108459499378894od_b_c,A2: list_P903359562653991662od_b_c] :
( ( ord_le282488521294790766od_b_c @ C2 @ D )
=> ( ord_le282488521294790766od_b_c @ ( insert6227932334100060350od_b_c @ A2 @ C2 ) @ ( insert6227932334100060350od_b_c @ A2 @ D ) ) ) ).
% insert_mono
thf(fact_1185_subset__insert,axiom,
! [X: a,A: set_a,B: set_a] :
( ~ ( member_a @ X @ A )
=> ( ( ord_less_eq_set_a @ A @ ( insert_a @ X @ B ) )
= ( ord_less_eq_set_a @ A @ B ) ) ) ).
% subset_insert
thf(fact_1186_subset__insert,axiom,
! [X: list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c] :
( ~ ( member6330420149250801815od_b_c @ X @ A )
=> ( ( ord_le282488521294790766od_b_c @ A @ ( insert6227932334100060350od_b_c @ X @ B ) )
= ( ord_le282488521294790766od_b_c @ A @ B ) ) ) ).
% subset_insert
thf(fact_1187_subset__insertI,axiom,
! [B: set_a,A2: a] : ( ord_less_eq_set_a @ B @ ( insert_a @ A2 @ B ) ) ).
% subset_insertI
thf(fact_1188_subset__insertI,axiom,
! [B: set_li6436108459499378894od_b_c,A2: list_P903359562653991662od_b_c] : ( ord_le282488521294790766od_b_c @ B @ ( insert6227932334100060350od_b_c @ A2 @ B ) ) ).
% subset_insertI
thf(fact_1189_subset__insertI2,axiom,
! [A: set_a,B: set_a,B2: a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ord_less_eq_set_a @ A @ ( insert_a @ B2 @ B ) ) ) ).
% subset_insertI2
thf(fact_1190_subset__insertI2,axiom,
! [A: set_li6436108459499378894od_b_c,B: set_li6436108459499378894od_b_c,B2: list_P903359562653991662od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ B )
=> ( ord_le282488521294790766od_b_c @ A @ ( insert6227932334100060350od_b_c @ B2 @ B ) ) ) ).
% subset_insertI2
thf(fact_1191_Inf__fin_Osemilattice__set__axioms,axiom,
lattic1258622339881844972_set_a @ inf_inf_set_a ).
% Inf_fin.semilattice_set_axioms
thf(fact_1192_Sup__fin_Osemilattice__set__axioms,axiom,
lattic1258622339881844972_set_a @ sup_sup_set_a ).
% Sup_fin.semilattice_set_axioms
thf(fact_1193_disjnt__insert,axiom,
! [X: a,N6: set_a,M2: set_a] :
( ~ ( member_a @ X @ N6 )
=> ( ( disjnt_a @ M2 @ N6 )
=> ( disjnt_a @ ( insert_a @ X @ M2 ) @ N6 ) ) ) ).
% disjnt_insert
thf(fact_1194_disjnt__insert,axiom,
! [X: list_P903359562653991662od_b_c,N6: set_li6436108459499378894od_b_c,M2: set_li6436108459499378894od_b_c] :
( ~ ( member6330420149250801815od_b_c @ X @ N6 )
=> ( ( disjnt5456880891938978613od_b_c @ M2 @ N6 )
=> ( disjnt5456880891938978613od_b_c @ ( insert6227932334100060350od_b_c @ X @ M2 ) @ N6 ) ) ) ).
% disjnt_insert
thf(fact_1195_finite_OinsertI,axiom,
! [A: set_li6436108459499378894od_b_c,A2: list_P903359562653991662od_b_c] :
( ( finite3074115686814133143od_b_c @ A )
=> ( finite3074115686814133143od_b_c @ ( insert6227932334100060350od_b_c @ A2 @ A ) ) ) ).
% finite.insertI
thf(fact_1196_finite_OinsertI,axiom,
! [A: set_a,A2: a] :
( ( finite_finite_a @ A )
=> ( finite_finite_a @ ( insert_a @ A2 @ A ) ) ) ).
% finite.insertI
thf(fact_1197_finite_OinsertI,axiom,
! [A: set_nat,A2: nat] :
( ( finite_finite_nat @ A )
=> ( finite_finite_nat @ ( insert_nat @ A2 @ A ) ) ) ).
% finite.insertI
thf(fact_1198_infinite__finite__induct,axiom,
! [P: set_li6436108459499378894od_b_c > $o,A: set_li6436108459499378894od_b_c] :
( ! [A7: set_li6436108459499378894od_b_c] :
( ~ ( finite3074115686814133143od_b_c @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bo4166481423041325370od_b_c )
=> ( ! [X2: list_P903359562653991662od_b_c,F3: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ F3 )
=> ( ~ ( member6330420149250801815od_b_c @ X2 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert6227932334100060350od_b_c @ X2 @ F3 ) ) ) ) )
=> ( P @ A ) ) ) ) ).
% infinite_finite_induct
thf(fact_1199_infinite__finite__induct,axiom,
! [P: set_nat > $o,A: set_nat] :
( ! [A7: set_nat] :
( ~ ( finite_finite_nat @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [X2: nat,F3: set_nat] :
( ( finite_finite_nat @ F3 )
=> ( ~ ( member_nat @ X2 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_nat @ X2 @ F3 ) ) ) ) )
=> ( P @ A ) ) ) ) ).
% infinite_finite_induct
thf(fact_1200_infinite__finite__induct,axiom,
! [P: set_a > $o,A: set_a] :
( ! [A7: set_a] :
( ~ ( finite_finite_a @ A7 )
=> ( P @ A7 ) )
=> ( ( P @ bot_bot_set_a )
=> ( ! [X2: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ~ ( member_a @ X2 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ X2 @ F3 ) ) ) ) )
=> ( P @ A ) ) ) ) ).
% infinite_finite_induct
thf(fact_1201_finite__ne__induct,axiom,
! [F2: set_li6436108459499378894od_b_c,P: set_li6436108459499378894od_b_c > $o] :
( ( finite3074115686814133143od_b_c @ F2 )
=> ( ( F2 != bot_bo4166481423041325370od_b_c )
=> ( ! [X2: list_P903359562653991662od_b_c] : ( P @ ( insert6227932334100060350od_b_c @ X2 @ bot_bo4166481423041325370od_b_c ) )
=> ( ! [X2: list_P903359562653991662od_b_c,F3: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ F3 )
=> ( ( F3 != bot_bo4166481423041325370od_b_c )
=> ( ~ ( member6330420149250801815od_b_c @ X2 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert6227932334100060350od_b_c @ X2 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_1202_finite__ne__induct,axiom,
! [F2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F2 )
=> ( ( F2 != bot_bot_set_nat )
=> ( ! [X2: nat] : ( P @ ( insert_nat @ X2 @ bot_bot_set_nat ) )
=> ( ! [X2: nat,F3: set_nat] :
( ( finite_finite_nat @ F3 )
=> ( ( F3 != bot_bot_set_nat )
=> ( ~ ( member_nat @ X2 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_nat @ X2 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_1203_finite__ne__induct,axiom,
! [F2: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( F2 != bot_bot_set_a )
=> ( ! [X2: a] : ( P @ ( insert_a @ X2 @ bot_bot_set_a ) )
=> ( ! [X2: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ( F3 != bot_bot_set_a )
=> ( ~ ( member_a @ X2 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ X2 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_ne_induct
thf(fact_1204_finite__induct,axiom,
! [F2: set_li6436108459499378894od_b_c,P: set_li6436108459499378894od_b_c > $o] :
( ( finite3074115686814133143od_b_c @ F2 )
=> ( ( P @ bot_bo4166481423041325370od_b_c )
=> ( ! [X2: list_P903359562653991662od_b_c,F3: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ F3 )
=> ( ~ ( member6330420149250801815od_b_c @ X2 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert6227932334100060350od_b_c @ X2 @ F3 ) ) ) ) )
=> ( P @ F2 ) ) ) ) ).
% finite_induct
thf(fact_1205_finite__induct,axiom,
! [F2: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F2 )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [X2: nat,F3: set_nat] :
( ( finite_finite_nat @ F3 )
=> ( ~ ( member_nat @ X2 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_nat @ X2 @ F3 ) ) ) ) )
=> ( P @ F2 ) ) ) ) ).
% finite_induct
thf(fact_1206_finite__induct,axiom,
! [F2: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( P @ bot_bot_set_a )
=> ( ! [X2: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ~ ( member_a @ X2 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ X2 @ F3 ) ) ) ) )
=> ( P @ F2 ) ) ) ) ).
% finite_induct
thf(fact_1207_finite_Osimps,axiom,
( finite3074115686814133143od_b_c
= ( ^ [A4: set_li6436108459499378894od_b_c] :
( ( A4 = bot_bo4166481423041325370od_b_c )
| ? [A3: set_li6436108459499378894od_b_c,B4: list_P903359562653991662od_b_c] :
( ( A4
= ( insert6227932334100060350od_b_c @ B4 @ A3 ) )
& ( finite3074115686814133143od_b_c @ A3 ) ) ) ) ) ).
% finite.simps
thf(fact_1208_finite_Osimps,axiom,
( finite_finite_nat
= ( ^ [A4: set_nat] :
( ( A4 = bot_bot_set_nat )
| ? [A3: set_nat,B4: nat] :
( ( A4
= ( insert_nat @ B4 @ A3 ) )
& ( finite_finite_nat @ A3 ) ) ) ) ) ).
% finite.simps
thf(fact_1209_finite_Osimps,axiom,
( finite_finite_a
= ( ^ [A4: set_a] :
( ( A4 = bot_bot_set_a )
| ? [A3: set_a,B4: a] :
( ( A4
= ( insert_a @ B4 @ A3 ) )
& ( finite_finite_a @ A3 ) ) ) ) ) ).
% finite.simps
thf(fact_1210_finite_Ocases,axiom,
! [A2: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ A2 )
=> ( ( A2 != bot_bo4166481423041325370od_b_c )
=> ~ ! [A7: set_li6436108459499378894od_b_c] :
( ? [A6: list_P903359562653991662od_b_c] :
( A2
= ( insert6227932334100060350od_b_c @ A6 @ A7 ) )
=> ~ ( finite3074115686814133143od_b_c @ A7 ) ) ) ) ).
% finite.cases
thf(fact_1211_finite_Ocases,axiom,
! [A2: set_nat] :
( ( finite_finite_nat @ A2 )
=> ( ( A2 != bot_bot_set_nat )
=> ~ ! [A7: set_nat] :
( ? [A6: nat] :
( A2
= ( insert_nat @ A6 @ A7 ) )
=> ~ ( finite_finite_nat @ A7 ) ) ) ) ).
% finite.cases
thf(fact_1212_finite_Ocases,axiom,
! [A2: set_a] :
( ( finite_finite_a @ A2 )
=> ( ( A2 != bot_bot_set_a )
=> ~ ! [A7: set_a] :
( ? [A6: a] :
( A2
= ( insert_a @ A6 @ A7 ) )
=> ~ ( finite_finite_a @ A7 ) ) ) ) ).
% finite.cases
thf(fact_1213_subset__singletonD,axiom,
! [A: set_a,X: a] :
( ( ord_less_eq_set_a @ A @ ( insert_a @ X @ bot_bot_set_a ) )
=> ( ( A = bot_bot_set_a )
| ( A
= ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).
% subset_singletonD
thf(fact_1214_subset__singletonD,axiom,
! [A: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( ord_le282488521294790766od_b_c @ A @ ( insert6227932334100060350od_b_c @ X @ bot_bo4166481423041325370od_b_c ) )
=> ( ( A = bot_bo4166481423041325370od_b_c )
| ( A
= ( insert6227932334100060350od_b_c @ X @ bot_bo4166481423041325370od_b_c ) ) ) ) ).
% subset_singletonD
thf(fact_1215_subset__singleton__iff,axiom,
! [X8: set_a,A2: a] :
( ( ord_less_eq_set_a @ X8 @ ( insert_a @ A2 @ bot_bot_set_a ) )
= ( ( X8 = bot_bot_set_a )
| ( X8
= ( insert_a @ A2 @ bot_bot_set_a ) ) ) ) ).
% subset_singleton_iff
thf(fact_1216_subset__singleton__iff,axiom,
! [X8: set_li6436108459499378894od_b_c,A2: list_P903359562653991662od_b_c] :
( ( ord_le282488521294790766od_b_c @ X8 @ ( insert6227932334100060350od_b_c @ A2 @ bot_bo4166481423041325370od_b_c ) )
= ( ( X8 = bot_bo4166481423041325370od_b_c )
| ( X8
= ( insert6227932334100060350od_b_c @ A2 @ bot_bo4166481423041325370od_b_c ) ) ) ) ).
% subset_singleton_iff
thf(fact_1217_singleton__Un__iff,axiom,
! [X: a,A: set_a,B: set_a] :
( ( ( insert_a @ X @ bot_bot_set_a )
= ( sup_sup_set_a @ A @ B ) )
= ( ( ( A = bot_bot_set_a )
& ( B
= ( insert_a @ X @ bot_bot_set_a ) ) )
| ( ( A
= ( insert_a @ X @ bot_bot_set_a ) )
& ( B = bot_bot_set_a ) )
| ( ( A
= ( insert_a @ X @ bot_bot_set_a ) )
& ( B
= ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).
% singleton_Un_iff
thf(fact_1218_Un__singleton__iff,axiom,
! [A: set_a,B: set_a,X: a] :
( ( ( sup_sup_set_a @ A @ B )
= ( insert_a @ X @ bot_bot_set_a ) )
= ( ( ( A = bot_bot_set_a )
& ( B
= ( insert_a @ X @ bot_bot_set_a ) ) )
| ( ( A
= ( insert_a @ X @ bot_bot_set_a ) )
& ( B = bot_bot_set_a ) )
| ( ( A
= ( insert_a @ X @ bot_bot_set_a ) )
& ( B
= ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).
% Un_singleton_iff
thf(fact_1219_insert__is__Un,axiom,
( insert_a
= ( ^ [A4: a] : ( sup_sup_set_a @ ( insert_a @ A4 @ bot_bot_set_a ) ) ) ) ).
% insert_is_Un
thf(fact_1220_card__insert__le,axiom,
! [A: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ A ) @ ( finite_card_a @ ( insert_a @ X @ A ) ) ) ).
% card_insert_le
thf(fact_1221_semilattice__set_Oin__idem,axiom,
! [F: list_P903359562653991662od_b_c > list_P903359562653991662od_b_c > list_P903359562653991662od_b_c,A: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( lattic4067905262246253180od_b_c @ F )
=> ( ( finite3074115686814133143od_b_c @ A )
=> ( ( member6330420149250801815od_b_c @ X @ A )
=> ( ( F @ X @ ( lattic2734920875441048264od_b_c @ F @ A ) )
= ( lattic2734920875441048264od_b_c @ F @ A ) ) ) ) ) ).
% semilattice_set.in_idem
thf(fact_1222_semilattice__set_Oin__idem,axiom,
! [F: a > a > a,A: set_a,X: a] :
( ( lattic5961991414251573132_set_a @ F )
=> ( ( finite_finite_a @ A )
=> ( ( member_a @ X @ A )
=> ( ( F @ X @ ( lattic5116578512385870296ce_F_a @ F @ A ) )
= ( lattic5116578512385870296ce_F_a @ F @ A ) ) ) ) ) ).
% semilattice_set.in_idem
thf(fact_1223_semilattice__set_Oin__idem,axiom,
! [F: nat > nat > nat,A: set_nat,X: nat] :
( ( lattic1029310888574255042et_nat @ F )
=> ( ( finite_finite_nat @ A )
=> ( ( member_nat @ X @ A )
=> ( ( F @ X @ ( lattic7742739596368939638_F_nat @ F @ A ) )
= ( lattic7742739596368939638_F_nat @ F @ A ) ) ) ) ) ).
% semilattice_set.in_idem
thf(fact_1224_finite__ranking__induct,axiom,
! [S: set_li6436108459499378894od_b_c,P: set_li6436108459499378894od_b_c > $o,F: list_P903359562653991662od_b_c > nat] :
( ( finite3074115686814133143od_b_c @ S )
=> ( ( P @ bot_bo4166481423041325370od_b_c )
=> ( ! [X2: list_P903359562653991662od_b_c,S4: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ S4 )
=> ( ! [Y6: list_P903359562653991662od_b_c] :
( ( member6330420149250801815od_b_c @ Y6 @ S4 )
=> ( ord_less_eq_nat @ ( F @ Y6 ) @ ( F @ X2 ) ) )
=> ( ( P @ S4 )
=> ( P @ ( insert6227932334100060350od_b_c @ X2 @ S4 ) ) ) ) )
=> ( P @ S ) ) ) ) ).
% finite_ranking_induct
thf(fact_1225_finite__ranking__induct,axiom,
! [S: set_nat,P: set_nat > $o,F: nat > nat] :
( ( finite_finite_nat @ S )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [X2: nat,S4: set_nat] :
( ( finite_finite_nat @ S4 )
=> ( ! [Y6: nat] :
( ( member_nat @ Y6 @ S4 )
=> ( ord_less_eq_nat @ ( F @ Y6 ) @ ( F @ X2 ) ) )
=> ( ( P @ S4 )
=> ( P @ ( insert_nat @ X2 @ S4 ) ) ) ) )
=> ( P @ S ) ) ) ) ).
% finite_ranking_induct
thf(fact_1226_finite__ranking__induct,axiom,
! [S: set_a,P: set_a > $o,F: a > nat] :
( ( finite_finite_a @ S )
=> ( ( P @ bot_bot_set_a )
=> ( ! [X2: a,S4: set_a] :
( ( finite_finite_a @ S4 )
=> ( ! [Y6: a] :
( ( member_a @ Y6 @ S4 )
=> ( ord_less_eq_nat @ ( F @ Y6 ) @ ( F @ X2 ) ) )
=> ( ( P @ S4 )
=> ( P @ ( insert_a @ X2 @ S4 ) ) ) ) )
=> ( P @ S ) ) ) ) ).
% finite_ranking_induct
thf(fact_1227_finite__linorder__min__induct,axiom,
! [A: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [B6: nat,A7: set_nat] :
( ( finite_finite_nat @ A7 )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A7 )
=> ( ord_less_nat @ B6 @ X3 ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_nat @ B6 @ A7 ) ) ) ) )
=> ( P @ A ) ) ) ) ).
% finite_linorder_min_induct
thf(fact_1228_finite__linorder__max__induct,axiom,
! [A: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ A )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [B6: nat,A7: set_nat] :
( ( finite_finite_nat @ A7 )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A7 )
=> ( ord_less_nat @ X3 @ B6 ) )
=> ( ( P @ A7 )
=> ( P @ ( insert_nat @ B6 @ A7 ) ) ) ) )
=> ( P @ A ) ) ) ) ).
% finite_linorder_max_induct
thf(fact_1229_finite__subset__induct,axiom,
! [F2: set_nat,A: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F2 )
=> ( ( ord_less_eq_set_nat @ F2 @ A )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [A6: nat,F3: set_nat] :
( ( finite_finite_nat @ F3 )
=> ( ( member_nat @ A6 @ A )
=> ( ~ ( member_nat @ A6 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_nat @ A6 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_1230_finite__subset__induct,axiom,
! [F2: set_a,A: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( ord_less_eq_set_a @ F2 @ A )
=> ( ( P @ bot_bot_set_a )
=> ( ! [A6: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ( member_a @ A6 @ A )
=> ( ~ ( member_a @ A6 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ A6 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_1231_finite__subset__induct,axiom,
! [F2: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c,P: set_li6436108459499378894od_b_c > $o] :
( ( finite3074115686814133143od_b_c @ F2 )
=> ( ( ord_le282488521294790766od_b_c @ F2 @ A )
=> ( ( P @ bot_bo4166481423041325370od_b_c )
=> ( ! [A6: list_P903359562653991662od_b_c,F3: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ F3 )
=> ( ( member6330420149250801815od_b_c @ A6 @ A )
=> ( ~ ( member6330420149250801815od_b_c @ A6 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert6227932334100060350od_b_c @ A6 @ F3 ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct
thf(fact_1232_finite__subset__induct_H,axiom,
! [F2: set_nat,A: set_nat,P: set_nat > $o] :
( ( finite_finite_nat @ F2 )
=> ( ( ord_less_eq_set_nat @ F2 @ A )
=> ( ( P @ bot_bot_set_nat )
=> ( ! [A6: nat,F3: set_nat] :
( ( finite_finite_nat @ F3 )
=> ( ( member_nat @ A6 @ A )
=> ( ( ord_less_eq_set_nat @ F3 @ A )
=> ( ~ ( member_nat @ A6 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_nat @ A6 @ F3 ) ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_1233_finite__subset__induct_H,axiom,
! [F2: set_a,A: set_a,P: set_a > $o] :
( ( finite_finite_a @ F2 )
=> ( ( ord_less_eq_set_a @ F2 @ A )
=> ( ( P @ bot_bot_set_a )
=> ( ! [A6: a,F3: set_a] :
( ( finite_finite_a @ F3 )
=> ( ( member_a @ A6 @ A )
=> ( ( ord_less_eq_set_a @ F3 @ A )
=> ( ~ ( member_a @ A6 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert_a @ A6 @ F3 ) ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_1234_finite__subset__induct_H,axiom,
! [F2: set_li6436108459499378894od_b_c,A: set_li6436108459499378894od_b_c,P: set_li6436108459499378894od_b_c > $o] :
( ( finite3074115686814133143od_b_c @ F2 )
=> ( ( ord_le282488521294790766od_b_c @ F2 @ A )
=> ( ( P @ bot_bo4166481423041325370od_b_c )
=> ( ! [A6: list_P903359562653991662od_b_c,F3: set_li6436108459499378894od_b_c] :
( ( finite3074115686814133143od_b_c @ F3 )
=> ( ( member6330420149250801815od_b_c @ A6 @ A )
=> ( ( ord_le282488521294790766od_b_c @ F3 @ A )
=> ( ~ ( member6330420149250801815od_b_c @ A6 @ F3 )
=> ( ( P @ F3 )
=> ( P @ ( insert6227932334100060350od_b_c @ A6 @ F3 ) ) ) ) ) ) )
=> ( P @ F2 ) ) ) ) ) ).
% finite_subset_induct'
thf(fact_1235_card__Suc__eq__finite,axiom,
! [A: set_li6436108459499378894od_b_c,K: nat] :
( ( ( finite5583770498833199894od_b_c @ A )
= ( suc @ K ) )
= ( ? [B4: list_P903359562653991662od_b_c,B3: set_li6436108459499378894od_b_c] :
( ( A
= ( insert6227932334100060350od_b_c @ B4 @ B3 ) )
& ~ ( member6330420149250801815od_b_c @ B4 @ B3 )
& ( ( finite5583770498833199894od_b_c @ B3 )
= K )
& ( finite3074115686814133143od_b_c @ B3 ) ) ) ) ).
% card_Suc_eq_finite
thf(fact_1236_card__Suc__eq__finite,axiom,
! [A: set_a,K: nat] :
( ( ( finite_card_a @ A )
= ( suc @ K ) )
= ( ? [B4: a,B3: set_a] :
( ( A
= ( insert_a @ B4 @ B3 ) )
& ~ ( member_a @ B4 @ B3 )
& ( ( finite_card_a @ B3 )
= K )
& ( finite_finite_a @ B3 ) ) ) ) ).
% card_Suc_eq_finite
thf(fact_1237_card__Suc__eq__finite,axiom,
! [A: set_nat,K: nat] :
( ( ( finite_card_nat @ A )
= ( suc @ K ) )
= ( ? [B4: nat,B3: set_nat] :
( ( A
= ( insert_nat @ B4 @ B3 ) )
& ~ ( member_nat @ B4 @ B3 )
& ( ( finite_card_nat @ B3 )
= K )
& ( finite_finite_nat @ B3 ) ) ) ) ).
% card_Suc_eq_finite
thf(fact_1238_card__insert__if,axiom,
! [A: set_li6436108459499378894od_b_c,X: list_P903359562653991662od_b_c] :
( ( finite3074115686814133143od_b_c @ A )
=> ( ( ( member6330420149250801815od_b_c @ X @ A )
=> ( ( finite5583770498833199894od_b_c @ ( insert6227932334100060350od_b_c @ X @ A ) )
= ( finite5583770498833199894od_b_c @ A ) ) )
& ( ~ ( member6330420149250801815od_b_c @ X @ A )
=> ( ( finite5583770498833199894od_b_c @ ( insert6227932334100060350od_b_c @ X @ A ) )
= ( suc @ ( finite5583770498833199894od_b_c @ A ) ) ) ) ) ) ).
% card_insert_if
thf(fact_1239_card__insert__if,axiom,
! [A: set_a,X: a] :
( ( finite_finite_a @ A )
=> ( ( ( member_a @ X @ A )
=> ( ( finite_card_a @ ( insert_a @ X @ A ) )
= ( finite_card_a @ A ) ) )
& ( ~ ( member_a @ X @ A )
=> ( ( finite_card_a @ ( insert_a @ X @ A ) )
= ( suc @ ( finite_card_a @ A ) ) ) ) ) ) ).
% card_insert_if
thf(fact_1240_card__insert__if,axiom,
! [A: set_nat,X: nat] :
( ( finite_finite_nat @ A )
=> ( ( ( member_nat @ X @ A )
=> ( ( finite_card_nat @ ( insert_nat @ X @ A ) )
= ( finite_card_nat @ A ) ) )
& ( ~ ( member_nat @ X @ A )
=> ( ( finite_card_nat @ ( insert_nat @ X @ A ) )
= ( suc @ ( finite_card_nat @ A ) ) ) ) ) ) ).
% card_insert_if
thf(fact_1241_card__1__singleton__iff,axiom,
! [A: set_a] :
( ( ( finite_card_a @ A )
= ( suc @ zero_zero_nat ) )
= ( ? [X4: a] :
( A
= ( insert_a @ X4 @ bot_bot_set_a ) ) ) ) ).
% card_1_singleton_iff
thf(fact_1242_card__eq__SucD,axiom,
! [A: set_li6436108459499378894od_b_c,K: nat] :
( ( ( finite5583770498833199894od_b_c @ A )
= ( suc @ K ) )
=> ? [B6: list_P903359562653991662od_b_c,B7: set_li6436108459499378894od_b_c] :
( ( A
= ( insert6227932334100060350od_b_c @ B6 @ B7 ) )
& ~ ( member6330420149250801815od_b_c @ B6 @ B7 )
& ( ( finite5583770498833199894od_b_c @ B7 )
= K )
& ( ( K = zero_zero_nat )
=> ( B7 = bot_bo4166481423041325370od_b_c ) ) ) ) ).
% card_eq_SucD
thf(fact_1243_card__eq__SucD,axiom,
! [A: set_a,K: nat] :
( ( ( finite_card_a @ A )
= ( suc @ K ) )
=> ? [B6: a,B7: set_a] :
( ( A
= ( insert_a @ B6 @ B7 ) )
& ~ ( member_a @ B6 @ B7 )
& ( ( finite_card_a @ B7 )
= K )
& ( ( K = zero_zero_nat )
=> ( B7 = bot_bot_set_a ) ) ) ) ).
% card_eq_SucD
thf(fact_1244_card__Suc__eq,axiom,
! [A: set_li6436108459499378894od_b_c,K: nat] :
( ( ( finite5583770498833199894od_b_c @ A )
= ( suc @ K ) )
= ( ? [B4: list_P903359562653991662od_b_c,B3: set_li6436108459499378894od_b_c] :
( ( A
= ( insert6227932334100060350od_b_c @ B4 @ B3 ) )
& ~ ( member6330420149250801815od_b_c @ B4 @ B3 )
& ( ( finite5583770498833199894od_b_c @ B3 )
= K )
& ( ( K = zero_zero_nat )
=> ( B3 = bot_bo4166481423041325370od_b_c ) ) ) ) ) ).
% card_Suc_eq
thf(fact_1245_card__Suc__eq,axiom,
! [A: set_a,K: nat] :
( ( ( finite_card_a @ A )
= ( suc @ K ) )
= ( ? [B4: a,B3: set_a] :
( ( A
= ( insert_a @ B4 @ B3 ) )
& ~ ( member_a @ B4 @ B3 )
& ( ( finite_card_a @ B3 )
= K )
& ( ( K = zero_zero_nat )
=> ( B3 = bot_bot_set_a ) ) ) ) ) ).
% card_Suc_eq
thf(fact_1246_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ I @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_1247_diff__is__0__eq_H,axiom,
! [M3: nat,N: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ( minus_minus_nat @ M3 @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_1248_diff__is__0__eq,axiom,
! [M3: nat,N: nat] :
( ( ( minus_minus_nat @ M3 @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M3 @ N ) ) ).
% diff_is_0_eq
thf(fact_1249_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_1250_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1251_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1252_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_1253_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_1254_diff__le__mono2,axiom,
! [M3: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M3 ) ) ) ).
% diff_le_mono2
thf(fact_1255_le__diff__iff_H,axiom,
! [A2: nat,C: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ C )
=> ( ( ord_less_eq_nat @ B2 @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A2 ) @ ( minus_minus_nat @ C @ B2 ) )
= ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).
% le_diff_iff'
thf(fact_1256_diff__le__self,axiom,
! [M3: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M3 @ N ) @ M3 ) ).
% diff_le_self
thf(fact_1257_diff__le__mono,axiom,
! [M3: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M3 @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M3 @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_1258_Nat_Odiff__diff__eq,axiom,
! [K: nat,M3: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M3 )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M3 @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M3 @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_1259_le__diff__iff,axiom,
! [K: nat,M3: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M3 )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M3 @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M3 @ N ) ) ) ) ).
% le_diff_iff
thf(fact_1260_eq__diff__iff,axiom,
! [K: nat,M3: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M3 )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M3 @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M3 = N ) ) ) ) ).
% eq_diff_iff
thf(fact_1261_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_1262_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_1263_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
= ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_1264_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_1265_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_1266_diff__less__mono,axiom,
! [A2: nat,B2: nat,C: nat] :
( ( ord_less_nat @ A2 @ B2 )
=> ( ( ord_less_eq_nat @ C @ A2 )
=> ( ord_less_nat @ ( minus_minus_nat @ A2 @ C ) @ ( minus_minus_nat @ B2 @ C ) ) ) ) ).
% diff_less_mono
thf(fact_1267_less__diff__iff,axiom,
! [K: nat,M3: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M3 )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M3 @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M3 @ N ) ) ) ) ).
% less_diff_iff
thf(fact_1268_Suc__diff__le,axiom,
! [N: nat,M3: nat] :
( ( ord_less_eq_nat @ N @ M3 )
=> ( ( minus_minus_nat @ ( suc @ M3 ) @ N )
= ( suc @ ( minus_minus_nat @ M3 @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_1269_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_1270_monotone__function__with__limit__witness__helper,axiom,
! [F: nat > nat,K: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_eq_nat @ I2 @ J2 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ( ( F @ I2 )
= ( F @ J2 ) )
=> ! [M5: nat] :
( ( ord_less_eq_nat @ J2 @ M5 )
=> ( ( F @ I2 )
= ( F @ M5 ) ) ) ) )
=> ( ! [I2: nat] : ( ord_less_eq_nat @ ( F @ I2 ) @ K )
=> ~ ! [X2: nat] :
( ( ( F @ ( suc @ X2 ) )
= ( F @ X2 ) )
=> ~ ( ord_less_eq_nat @ X2 @ ( minus_minus_nat @ K @ ( F @ zero_zero_nat ) ) ) ) ) ) ) ).
% monotone_function_with_limit_witness_helper
thf(fact_1271__092_060open_062_092_060And_062S_H_H_AS_H_O_AW_AS_H_AS_H_H_A_092_060subseteq_062_Aset_A_Iprefixes_Aw_J_092_060close_062,axiom,
! [S2: set_a,S3: set_a] : ( ord_le282488521294790766od_b_c @ ( w @ S2 @ S3 ) @ ( set_li4480668622519654659od_b_c @ ( prefix1131979855692807669od_b_c @ w2 ) ) ) ).
% \<open>\<And>S'' S'. W S' S'' \<subseteq> set (prefixes w)\<close>
thf(fact_1272__092_060open_062w_H_A_092_060in_062_Aset_A_Iprefixes_Aw_J_092_060close_062,axiom,
member6330420149250801815od_b_c @ w3 @ ( set_li4480668622519654659od_b_c @ ( prefix1131979855692807669od_b_c @ w2 ) ) ).
% \<open>w' \<in> set (prefixes w)\<close>
thf(fact_1273__092_060open_062wk_A_092_060in_062_Aset_A_Iprefixes_Aw_J_092_060close_062,axiom,
member6330420149250801815od_b_c @ wk @ ( set_li4480668622519654659od_b_c @ ( prefix1131979855692807669od_b_c @ w2 ) ) ).
% \<open>wk \<in> set (prefixes w)\<close>
% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( ( member_a @ ( after_a_b_c @ m @ q1 @ w3 ) @ s1 )
& ( member_a @ ( after_a_b_c @ m @ q2 @ w3 ) @ s2 ) )
| ( ( member_a @ ( after_a_b_c @ m @ q1 @ w3 ) @ s2 )
& ( member_a @ ( after_a_b_c @ m @ q2 @ w3 ) @ s1 ) ) ) ).
%------------------------------------------------------------------------------