TPTP Problem File: SLH0282^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Frequency_Moments/0086_Frequency_Moment_2/prob_00540_024855__19978372_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1116 ( 496 unt; 71 typ; 0 def)
% Number of atoms : 2870 ( 995 equ; 0 cnn)
% Maximal formula atoms : 26 ( 2 avg)
% Number of connectives : 8214 ( 237 ~; 88 |; 143 &;6580 @)
% ( 0 <=>;1166 =>; 0 <=; 0 <~>)
% Maximal formula depth : 25 ( 6 avg)
% Number of types : 11 ( 10 usr)
% Number of type conns : 267 ( 267 >; 0 *; 0 +; 0 <<)
% Number of symbols : 64 ( 61 usr; 10 con; 0-3 aty)
% Number of variables : 2712 ( 120 ^;2552 !; 40 ?;2712 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 12:18:29.233
%------------------------------------------------------------------------------
% Could-be-implicit typings (10)
thf(ty_n_t__List__Olist_It__Real__Oreal_J,type,
list_real: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
list_nat: $tType ).
thf(ty_n_t__List__Olist_It__Int__Oint_J,type,
list_int: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__String__Ochar,type,
char: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (61)
thf(sy_c_Factorial__Ring_Onormalization__semidom__class_Oprime_001t__Int__Oint,type,
factor1798656936486255268me_int: int > $o ).
thf(sy_c_Factorial__Ring_Onormalization__semidom__class_Oprime_001t__Nat__Onat,type,
factor1801147406995305544me_nat: nat > $o ).
thf(sy_c_Float_Oreal__divl,type,
real_divl: nat > real > real > real ).
thf(sy_c_Float_Oreal__divr,type,
real_divr: nat > real > real > real ).
thf(sy_c_Frequency__Moment__2_Op,type,
frequency_Moment_p: nat > nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Int__Oint_J,type,
plus_plus_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Nat__Onat_J,type,
plus_plus_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Real__Oreal_J,type,
plus_plus_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Int__Oint_J,type,
times_times_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Nat__Onat_J,type,
times_times_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Real__Oreal_J,type,
times_times_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Int__Oint,type,
groups4559388385066561235st_int: list_int > int ).
thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Nat__Onat,type,
groups4561878855575611511st_nat: list_nat > nat ).
thf(sy_c_Groups__List_Omonoid__add__class_Osum__list_001t__Real__Oreal,type,
groups6723090944982001619t_real: list_real > real ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__Int__Oint,type,
map_int_int: ( int > int ) > list_int > list_int ).
thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__Nat__Onat,type,
map_int_nat: ( int > nat ) > list_int > list_nat ).
thf(sy_c_List_Olist_Omap_001t__Int__Oint_001t__Real__Oreal,type,
map_int_real: ( int > real ) > list_int > list_real ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Int__Oint,type,
map_nat_int: ( nat > int ) > list_nat > list_int ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Nat__Onat,type,
map_nat_nat: ( nat > nat ) > list_nat > list_nat ).
thf(sy_c_List_Olist_Omap_001t__Nat__Onat_001t__Real__Oreal,type,
map_nat_real: ( nat > real ) > list_nat > list_real ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Int__Oint_J,type,
size_size_list_int: list_int > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
size_size_list_nat: list_nat > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Real__Oreal_J,type,
size_size_list_real: list_real > nat ).
thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
size_size_char: char > nat ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Int__Oint_J,type,
ord_less_eq_set_int: set_int > set_int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
ord_less_eq_set_real: set_real > set_real > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
dvd_dvd_int: int > int > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_String_Ochar_Osize__char,type,
size_char: char > nat ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v_as,type,
as: list_nat ).
thf(sy_v_n,type,
n: nat ).
% Relevant facts (1041)
thf(fact_0_sum__list__triv,axiom,
! [R: int,Xs: list_int] :
( ( groups4559388385066561235st_int
@ ( map_int_int
@ ^ [X: int] : R
@ Xs ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ ( size_size_list_int @ Xs ) ) @ R ) ) ).
% sum_list_triv
thf(fact_1_sum__list__triv,axiom,
! [R: real,Xs: list_int] :
( ( groups6723090944982001619t_real
@ ( map_int_real
@ ^ [X: int] : R
@ Xs ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ ( size_size_list_int @ Xs ) ) @ R ) ) ).
% sum_list_triv
thf(fact_2_sum__list__triv,axiom,
! [R: nat,Xs: list_int] :
( ( groups4561878855575611511st_nat
@ ( map_int_nat
@ ^ [X: int] : R
@ Xs ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( size_size_list_int @ Xs ) ) @ R ) ) ).
% sum_list_triv
thf(fact_3_sum__list__triv,axiom,
! [R: nat,Xs: list_nat] :
( ( groups4561878855575611511st_nat
@ ( map_nat_nat
@ ^ [X: nat] : R
@ Xs ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ ( size_size_list_nat @ Xs ) ) @ R ) ) ).
% sum_list_triv
thf(fact_4_sum__list__triv,axiom,
! [R: real,Xs: list_nat] :
( ( groups6723090944982001619t_real
@ ( map_nat_real
@ ^ [X: nat] : R
@ Xs ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ ( size_size_list_nat @ Xs ) ) @ R ) ) ).
% sum_list_triv
thf(fact_5_sum__list__triv,axiom,
! [R: int,Xs: list_nat] :
( ( groups4559388385066561235st_int
@ ( map_nat_int
@ ^ [X: nat] : R
@ Xs ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ ( size_size_list_nat @ Xs ) ) @ R ) ) ).
% sum_list_triv
thf(fact_6_length__map,axiom,
! [F: nat > real,Xs: list_nat] :
( ( size_size_list_real @ ( map_nat_real @ F @ Xs ) )
= ( size_size_list_nat @ Xs ) ) ).
% length_map
thf(fact_7_length__map,axiom,
! [F: int > nat,Xs: list_int] :
( ( size_size_list_nat @ ( map_int_nat @ F @ Xs ) )
= ( size_size_list_int @ Xs ) ) ).
% length_map
thf(fact_8_length__map,axiom,
! [F: int > int,Xs: list_int] :
( ( size_size_list_int @ ( map_int_int @ F @ Xs ) )
= ( size_size_list_int @ Xs ) ) ).
% length_map
thf(fact_9_length__map,axiom,
! [F: nat > int,Xs: list_nat] :
( ( size_size_list_int @ ( map_nat_int @ F @ Xs ) )
= ( size_size_list_nat @ Xs ) ) ).
% length_map
thf(fact_10_length__map,axiom,
! [F: nat > nat,Xs: list_nat] :
( ( size_size_list_nat @ ( map_nat_nat @ F @ Xs ) )
= ( size_size_list_nat @ Xs ) ) ).
% length_map
thf(fact_11_Num_Oof__nat__simps_I4_J,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% Num.of_nat_simps(4)
thf(fact_12_Num_Oof__nat__simps_I4_J,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% Num.of_nat_simps(4)
thf(fact_13_Num_Oof__nat__simps_I4_J,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% Num.of_nat_simps(4)
thf(fact_14_Num_Oof__nat__simps_I2_J,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% Num.of_nat_simps(2)
thf(fact_15_Num_Oof__nat__simps_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% Num.of_nat_simps(2)
thf(fact_16_Num_Oof__nat__simps_I2_J,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% Num.of_nat_simps(2)
thf(fact_17_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_18_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_19_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_20_semiring__char__0__class_Oof__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% semiring_char_0_class.of_nat_eq_1_iff
thf(fact_21_semiring__char__0__class_Oof__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1314217659103216013at_int @ N )
= one_one_int )
= ( N = one_one_nat ) ) ).
% semiring_char_0_class.of_nat_eq_1_iff
thf(fact_22_semiring__char__0__class_Oof__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% semiring_char_0_class.of_nat_eq_1_iff
thf(fact_23_Totient_Oof__nat__eq__1__iff,axiom,
! [X2: nat] :
( ( ( semiri1316708129612266289at_nat @ X2 )
= one_one_nat )
= ( X2 = one_one_nat ) ) ).
% Totient.of_nat_eq_1_iff
thf(fact_24_Totient_Oof__nat__eq__1__iff,axiom,
! [X2: nat] :
( ( ( semiri1314217659103216013at_int @ X2 )
= one_one_int )
= ( X2 = one_one_nat ) ) ).
% Totient.of_nat_eq_1_iff
thf(fact_25_Totient_Oof__nat__eq__1__iff,axiom,
! [X2: nat] :
( ( ( semiri5074537144036343181t_real @ X2 )
= one_one_real )
= ( X2 = one_one_nat ) ) ).
% Totient.of_nat_eq_1_iff
thf(fact_26_Num_Oof__nat__simps_I5_J,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% Num.of_nat_simps(5)
thf(fact_27_Num_Oof__nat__simps_I5_J,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% Num.of_nat_simps(5)
thf(fact_28_Num_Oof__nat__simps_I5_J,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% Num.of_nat_simps(5)
thf(fact_29_more__arith__simps_I6_J,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% more_arith_simps(6)
thf(fact_30_more__arith__simps_I6_J,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% more_arith_simps(6)
thf(fact_31_more__arith__simps_I6_J,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% more_arith_simps(6)
thf(fact_32_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= ( semiri1316708129612266289at_nat @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_33_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_34_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_35_map__ident,axiom,
( ( map_nat_nat
@ ^ [X: nat] : X )
= ( ^ [Xs2: list_nat] : Xs2 ) ) ).
% map_ident
thf(fact_36_more__arith__simps_I5_J,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% more_arith_simps(5)
thf(fact_37_more__arith__simps_I5_J,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% more_arith_simps(5)
thf(fact_38_more__arith__simps_I5_J,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% more_arith_simps(5)
thf(fact_39_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_40_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_41_nat__distrib_I1_J,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% nat_distrib(1)
thf(fact_42_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_43_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_44_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_45_more__arith__simps_I11_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% more_arith_simps(11)
thf(fact_46_more__arith__simps_I11_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% more_arith_simps(11)
thf(fact_47_more__arith__simps_I11_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% more_arith_simps(11)
thf(fact_48_nat__arith_Oadd2,axiom,
! [B2: int,K: int,B: int,A: int] :
( ( B2
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B2 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% nat_arith.add2
thf(fact_49_nat__arith_Oadd2,axiom,
! [B2: nat,K: nat,B: nat,A: nat] :
( ( B2
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B2 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% nat_arith.add2
thf(fact_50_nat__arith_Oadd2,axiom,
! [B2: real,K: real,B: real,A: real] :
( ( B2
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B2 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% nat_arith.add2
thf(fact_51_nat__arith_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% nat_arith.add1
thf(fact_52_nat__arith_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% nat_arith.add1
thf(fact_53_nat__arith_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% nat_arith.add1
thf(fact_54_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_55_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_56_size__neq__size__imp__neq,axiom,
! [X2: list_nat,Y: list_nat] :
( ( ( size_size_list_nat @ X2 )
!= ( size_size_list_nat @ Y ) )
=> ( X2 != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_57_size__neq__size__imp__neq,axiom,
! [X2: char,Y: char] :
( ( ( size_size_char @ X2 )
!= ( size_size_char @ Y ) )
=> ( X2 != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_58_size__neq__size__imp__neq,axiom,
! [X2: list_int,Y: list_int] :
( ( ( size_size_list_int @ X2 )
!= ( size_size_list_int @ Y ) )
=> ( X2 != Y ) ) ).
% size_neq_size_imp_neq
thf(fact_59_neq__if__length__neq,axiom,
! [Xs: list_nat,Ys: list_nat] :
( ( ( size_size_list_nat @ Xs )
!= ( size_size_list_nat @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_60_neq__if__length__neq,axiom,
! [Xs: list_int,Ys: list_int] :
( ( ( size_size_list_int @ Xs )
!= ( size_size_list_int @ Ys ) )
=> ( Xs != Ys ) ) ).
% neq_if_length_neq
thf(fact_61_Ex__list__of__length,axiom,
! [N: nat] :
? [Xs3: list_nat] :
( ( size_size_list_nat @ Xs3 )
= N ) ).
% Ex_list_of_length
thf(fact_62_Ex__list__of__length,axiom,
! [N: nat] :
? [Xs3: list_int] :
( ( size_size_list_int @ Xs3 )
= N ) ).
% Ex_list_of_length
thf(fact_63_list_Omap__ident,axiom,
! [T: list_nat] :
( ( map_nat_nat
@ ^ [X: nat] : X
@ T )
= T ) ).
% list.map_ident
thf(fact_64_nat__distrib_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% nat_distrib(2)
thf(fact_65_nat__distrib_I2_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% nat_distrib(2)
thf(fact_66_nat__distrib_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% nat_distrib(2)
thf(fact_67_mult__of__nat__commute,axiom,
! [X2: nat,Y: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X2 ) @ Y )
= ( times_times_int @ Y @ ( semiri1314217659103216013at_int @ X2 ) ) ) ).
% mult_of_nat_commute
thf(fact_68_mult__of__nat__commute,axiom,
! [X2: nat,Y: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X2 ) @ Y )
= ( times_times_real @ Y @ ( semiri5074537144036343181t_real @ X2 ) ) ) ).
% mult_of_nat_commute
thf(fact_69_mult__of__nat__commute,axiom,
! [X2: nat,Y: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X2 ) @ Y )
= ( times_times_nat @ Y @ ( semiri1316708129612266289at_nat @ X2 ) ) ) ).
% mult_of_nat_commute
thf(fact_70_map__eq__imp__length__eq,axiom,
! [F: nat > int,Xs: list_nat,G: nat > int,Ys: list_nat] :
( ( ( map_nat_int @ F @ Xs )
= ( map_nat_int @ G @ Ys ) )
=> ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys ) ) ) ).
% map_eq_imp_length_eq
thf(fact_71_map__eq__imp__length__eq,axiom,
! [F: nat > real,Xs: list_nat,G: nat > real,Ys: list_nat] :
( ( ( map_nat_real @ F @ Xs )
= ( map_nat_real @ G @ Ys ) )
=> ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys ) ) ) ).
% map_eq_imp_length_eq
thf(fact_72_map__eq__imp__length__eq,axiom,
! [F: nat > nat,Xs: list_nat,G: nat > nat,Ys: list_nat] :
( ( ( map_nat_nat @ F @ Xs )
= ( map_nat_nat @ G @ Ys ) )
=> ( ( size_size_list_nat @ Xs )
= ( size_size_list_nat @ Ys ) ) ) ).
% map_eq_imp_length_eq
thf(fact_73_map__eq__imp__length__eq,axiom,
! [F: nat > int,Xs: list_nat,G: int > int,Ys: list_int] :
( ( ( map_nat_int @ F @ Xs )
= ( map_int_int @ G @ Ys ) )
=> ( ( size_size_list_nat @ Xs )
= ( size_size_list_int @ Ys ) ) ) ).
% map_eq_imp_length_eq
thf(fact_74_map__eq__imp__length__eq,axiom,
! [F: nat > real,Xs: list_nat,G: int > real,Ys: list_int] :
( ( ( map_nat_real @ F @ Xs )
= ( map_int_real @ G @ Ys ) )
=> ( ( size_size_list_nat @ Xs )
= ( size_size_list_int @ Ys ) ) ) ).
% map_eq_imp_length_eq
thf(fact_75_map__eq__imp__length__eq,axiom,
! [F: nat > nat,Xs: list_nat,G: int > nat,Ys: list_int] :
( ( ( map_nat_nat @ F @ Xs )
= ( map_int_nat @ G @ Ys ) )
=> ( ( size_size_list_nat @ Xs )
= ( size_size_list_int @ Ys ) ) ) ).
% map_eq_imp_length_eq
thf(fact_76_map__eq__imp__length__eq,axiom,
! [F: int > int,Xs: list_int,G: nat > int,Ys: list_nat] :
( ( ( map_int_int @ F @ Xs )
= ( map_nat_int @ G @ Ys ) )
=> ( ( size_size_list_int @ Xs )
= ( size_size_list_nat @ Ys ) ) ) ).
% map_eq_imp_length_eq
thf(fact_77_map__eq__imp__length__eq,axiom,
! [F: int > real,Xs: list_int,G: nat > real,Ys: list_nat] :
( ( ( map_int_real @ F @ Xs )
= ( map_nat_real @ G @ Ys ) )
=> ( ( size_size_list_int @ Xs )
= ( size_size_list_nat @ Ys ) ) ) ).
% map_eq_imp_length_eq
thf(fact_78_map__eq__imp__length__eq,axiom,
! [F: int > nat,Xs: list_int,G: nat > nat,Ys: list_nat] :
( ( ( map_int_nat @ F @ Xs )
= ( map_nat_nat @ G @ Ys ) )
=> ( ( size_size_list_int @ Xs )
= ( size_size_list_nat @ Ys ) ) ) ).
% map_eq_imp_length_eq
thf(fact_79_sum__list__mult__const,axiom,
! [F: nat > int,C: int,Xs: list_nat] :
( ( groups4559388385066561235st_int
@ ( map_nat_int
@ ^ [X: nat] : ( times_times_int @ ( F @ X ) @ C )
@ Xs ) )
= ( times_times_int @ ( groups4559388385066561235st_int @ ( map_nat_int @ F @ Xs ) ) @ C ) ) ).
% sum_list_mult_const
thf(fact_80_sum__list__mult__const,axiom,
! [F: nat > real,C: real,Xs: list_nat] :
( ( groups6723090944982001619t_real
@ ( map_nat_real
@ ^ [X: nat] : ( times_times_real @ ( F @ X ) @ C )
@ Xs ) )
= ( times_times_real @ ( groups6723090944982001619t_real @ ( map_nat_real @ F @ Xs ) ) @ C ) ) ).
% sum_list_mult_const
thf(fact_81_sum__list__mult__const,axiom,
! [F: nat > nat,C: nat,Xs: list_nat] :
( ( groups4561878855575611511st_nat
@ ( map_nat_nat
@ ^ [X: nat] : ( times_times_nat @ ( F @ X ) @ C )
@ Xs ) )
= ( times_times_nat @ ( groups4561878855575611511st_nat @ ( map_nat_nat @ F @ Xs ) ) @ C ) ) ).
% sum_list_mult_const
thf(fact_82_sum__list__const__mult,axiom,
! [C: int,F: nat > int,Xs: list_nat] :
( ( groups4559388385066561235st_int
@ ( map_nat_int
@ ^ [X: nat] : ( times_times_int @ C @ ( F @ X ) )
@ Xs ) )
= ( times_times_int @ C @ ( groups4559388385066561235st_int @ ( map_nat_int @ F @ Xs ) ) ) ) ).
% sum_list_const_mult
thf(fact_83_sum__list__const__mult,axiom,
! [C: real,F: nat > real,Xs: list_nat] :
( ( groups6723090944982001619t_real
@ ( map_nat_real
@ ^ [X: nat] : ( times_times_real @ C @ ( F @ X ) )
@ Xs ) )
= ( times_times_real @ C @ ( groups6723090944982001619t_real @ ( map_nat_real @ F @ Xs ) ) ) ) ).
% sum_list_const_mult
thf(fact_84_sum__list__const__mult,axiom,
! [C: nat,F: nat > nat,Xs: list_nat] :
( ( groups4561878855575611511st_nat
@ ( map_nat_nat
@ ^ [X: nat] : ( times_times_nat @ C @ ( F @ X ) )
@ Xs ) )
= ( times_times_nat @ C @ ( groups4561878855575611511st_nat @ ( map_nat_nat @ F @ Xs ) ) ) ) ).
% sum_list_const_mult
thf(fact_85_sum__list__addf,axiom,
! [F: nat > int,G: nat > int,Xs: list_nat] :
( ( groups4559388385066561235st_int
@ ( map_nat_int
@ ^ [X: nat] : ( plus_plus_int @ ( F @ X ) @ ( G @ X ) )
@ Xs ) )
= ( plus_plus_int @ ( groups4559388385066561235st_int @ ( map_nat_int @ F @ Xs ) ) @ ( groups4559388385066561235st_int @ ( map_nat_int @ G @ Xs ) ) ) ) ).
% sum_list_addf
thf(fact_86_sum__list__addf,axiom,
! [F: nat > real,G: nat > real,Xs: list_nat] :
( ( groups6723090944982001619t_real
@ ( map_nat_real
@ ^ [X: nat] : ( plus_plus_real @ ( F @ X ) @ ( G @ X ) )
@ Xs ) )
= ( plus_plus_real @ ( groups6723090944982001619t_real @ ( map_nat_real @ F @ Xs ) ) @ ( groups6723090944982001619t_real @ ( map_nat_real @ G @ Xs ) ) ) ) ).
% sum_list_addf
thf(fact_87_sum__list__addf,axiom,
! [F: nat > nat,G: nat > nat,Xs: list_nat] :
( ( groups4561878855575611511st_nat
@ ( map_nat_nat
@ ^ [X: nat] : ( plus_plus_nat @ ( F @ X ) @ ( G @ X ) )
@ Xs ) )
= ( plus_plus_nat @ ( groups4561878855575611511st_nat @ ( map_nat_nat @ F @ Xs ) ) @ ( groups4561878855575611511st_nat @ ( map_nat_nat @ G @ Xs ) ) ) ) ).
% sum_list_addf
thf(fact_88_vector__space__over__itself_Oscale__one,axiom,
! [X2: real] :
( ( times_times_real @ one_one_real @ X2 )
= X2 ) ).
% vector_space_over_itself.scale_one
thf(fact_89_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_90_Collect__mem__eq,axiom,
! [A2: set_real] :
( ( collect_real
@ ^ [X: real] : ( member_real @ X @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_91_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_92_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_93_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_94_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_95_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_96_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_97_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_98_Groups_Omult__ac_I3_J,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% Groups.mult_ac(3)
thf(fact_99_Groups_Omult__ac_I3_J,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% Groups.mult_ac(3)
thf(fact_100_Groups_Omult__ac_I3_J,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% Groups.mult_ac(3)
thf(fact_101_Groups_Omult__ac_I2_J,axiom,
( times_times_int
= ( ^ [A3: int,B3: int] : ( times_times_int @ B3 @ A3 ) ) ) ).
% Groups.mult_ac(2)
thf(fact_102_Groups_Omult__ac_I2_J,axiom,
( times_times_nat
= ( ^ [A3: nat,B3: nat] : ( times_times_nat @ B3 @ A3 ) ) ) ).
% Groups.mult_ac(2)
thf(fact_103_Groups_Omult__ac_I2_J,axiom,
( times_times_real
= ( ^ [A3: real,B3: real] : ( times_times_real @ B3 @ A3 ) ) ) ).
% Groups.mult_ac(2)
thf(fact_104_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_105_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_106_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_107_vector__space__over__itself_Ovector__space__assms_I3_J,axiom,
! [A: real,B: real,X2: real] :
( ( times_times_real @ A @ ( times_times_real @ B @ X2 ) )
= ( times_times_real @ ( times_times_real @ A @ B ) @ X2 ) ) ).
% vector_space_over_itself.vector_space_assms(3)
thf(fact_108_vector__space__over__itself_Oscale__left__commute,axiom,
! [A: real,B: real,X2: real] :
( ( times_times_real @ A @ ( times_times_real @ B @ X2 ) )
= ( times_times_real @ B @ ( times_times_real @ A @ X2 ) ) ) ).
% vector_space_over_itself.scale_left_commute
thf(fact_109_one__reorient,axiom,
! [X2: int] :
( ( one_one_int = X2 )
= ( X2 = one_one_int ) ) ).
% one_reorient
thf(fact_110_one__reorient,axiom,
! [X2: nat] :
( ( one_one_nat = X2 )
= ( X2 = one_one_nat ) ) ).
% one_reorient
thf(fact_111_one__reorient,axiom,
! [X2: real] :
( ( one_one_real = X2 )
= ( X2 = one_one_real ) ) ).
% one_reorient
thf(fact_112_Groups_Oadd__ac_I3_J,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% Groups.add_ac(3)
thf(fact_113_Groups_Oadd__ac_I3_J,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% Groups.add_ac(3)
thf(fact_114_Groups_Oadd__ac_I3_J,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% Groups.add_ac(3)
thf(fact_115_Groups_Oadd__ac_I2_J,axiom,
( plus_plus_int
= ( ^ [A3: int,B3: int] : ( plus_plus_int @ B3 @ A3 ) ) ) ).
% Groups.add_ac(2)
thf(fact_116_Groups_Oadd__ac_I2_J,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B3: nat] : ( plus_plus_nat @ B3 @ A3 ) ) ) ).
% Groups.add_ac(2)
thf(fact_117_Groups_Oadd__ac_I2_J,axiom,
( plus_plus_real
= ( ^ [A3: real,B3: real] : ( plus_plus_real @ B3 @ A3 ) ) ) ).
% Groups.add_ac(2)
thf(fact_118_Groups_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% Groups.add_ac(1)
thf(fact_119_Groups_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% Groups.add_ac(1)
thf(fact_120_Groups_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% Groups.add_ac(1)
thf(fact_121_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_122_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_123_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_124_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_125_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_126_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_127_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_128_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_129_group__add__class_Oadd_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% group_add_class.add.right_cancel
thf(fact_130_group__add__class_Oadd_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% group_add_class.add.right_cancel
thf(fact_131_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_132_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_133_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_134_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_135_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_136_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_137_nat__int__comparison_I1_J,axiom,
( ( ^ [Y2: nat,Z: nat] : ( Y2 = Z ) )
= ( ^ [A3: nat,B3: nat] :
( ( semiri1314217659103216013at_int @ A3 )
= ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_138_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_139_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_140_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_141_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_142_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_143_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_144_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_145_vector__space__over__itself_Ovector__space__assms_I2_J,axiom,
! [A: real,B: real,X2: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ X2 )
= ( plus_plus_real @ ( times_times_real @ A @ X2 ) @ ( times_times_real @ B @ X2 ) ) ) ).
% vector_space_over_itself.vector_space_assms(2)
thf(fact_146_vector__space__over__itself_Ovector__space__assms_I1_J,axiom,
! [A: real,X2: real,Y: real] :
( ( times_times_real @ A @ ( plus_plus_real @ X2 @ Y ) )
= ( plus_plus_real @ ( times_times_real @ A @ X2 ) @ ( times_times_real @ A @ Y ) ) ) ).
% vector_space_over_itself.vector_space_assms(1)
thf(fact_147_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_148_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_149_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_150_zadd__int__left,axiom,
! [M: nat,N: nat,Z2: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z2 ) ) ).
% zadd_int_left
thf(fact_151_p__gt__1,axiom,
ord_less_nat @ one_one_nat @ ( frequency_Moment_p @ n ) ).
% p_gt_1
thf(fact_152_set__plus__intro,axiom,
! [A: int,C2: set_int,B: int,D: set_int] :
( ( member_int @ A @ C2 )
=> ( ( member_int @ B @ D )
=> ( member_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_set_int @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_153_set__plus__intro,axiom,
! [A: nat,C2: set_nat,B: nat,D: set_nat] :
( ( member_nat @ A @ C2 )
=> ( ( member_nat @ B @ D )
=> ( member_nat @ ( plus_plus_nat @ A @ B ) @ ( plus_plus_set_nat @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_154_set__plus__intro,axiom,
! [A: real,C2: set_real,B: real,D: set_real] :
( ( member_real @ A @ C2 )
=> ( ( member_real @ B @ D )
=> ( member_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_set_real @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_155_set__times__intro,axiom,
! [A: int,C2: set_int,B: int,D: set_int] :
( ( member_int @ A @ C2 )
=> ( ( member_int @ B @ D )
=> ( member_int @ ( times_times_int @ A @ B ) @ ( times_times_set_int @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_156_set__times__intro,axiom,
! [A: nat,C2: set_nat,B: nat,D: set_nat] :
( ( member_nat @ A @ C2 )
=> ( ( member_nat @ B @ D )
=> ( member_nat @ ( times_times_nat @ A @ B ) @ ( times_times_set_nat @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_157_set__times__intro,axiom,
! [A: real,C2: set_real,B: real,D: set_real] :
( ( member_real @ A @ C2 )
=> ( ( member_real @ B @ D )
=> ( member_real @ ( times_times_real @ A @ B ) @ ( times_times_set_real @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_158_lambda__one,axiom,
( ( ^ [X: int] : X )
= ( times_times_int @ one_one_int ) ) ).
% lambda_one
thf(fact_159_lambda__one,axiom,
( ( ^ [X: nat] : X )
= ( times_times_nat @ one_one_nat ) ) ).
% lambda_one
thf(fact_160_lambda__one,axiom,
( ( ^ [X: real] : X )
= ( times_times_real @ one_one_real ) ) ).
% lambda_one
thf(fact_161_p__ge__n,axiom,
ord_less_eq_nat @ n @ ( frequency_Moment_p @ n ) ).
% p_ge_n
thf(fact_162_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_163_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_164_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(1)
thf(fact_165_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_166_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_167_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_168_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_169_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_170_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_171_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_172_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_173_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_174_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_175_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_176_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_177_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_178_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_179_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_180_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_181_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_182_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_183_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_184_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_185_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_186_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_187_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_188_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_189_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_190_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_191_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_192_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_193_verit__comp__simplify1_I2_J,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_194_verit__comp__simplify1_I3_J,axiom,
! [B4: nat,A4: nat] :
( ( ~ ( ord_less_eq_nat @ B4 @ A4 ) )
= ( ord_less_nat @ A4 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_195_verit__comp__simplify1_I3_J,axiom,
! [B4: int,A4: int] :
( ( ~ ( ord_less_eq_int @ B4 @ A4 ) )
= ( ord_less_int @ A4 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_196_verit__comp__simplify1_I3_J,axiom,
! [B4: real,A4: real] :
( ( ~ ( ord_less_eq_real @ B4 @ A4 ) )
= ( ord_less_real @ A4 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_197_verit__eq__simplify_I6_J,axiom,
! [X2: nat,Y: nat] :
( ( X2 = Y )
=> ( ord_less_eq_nat @ X2 @ Y ) ) ).
% verit_eq_simplify(6)
thf(fact_198_verit__eq__simplify_I6_J,axiom,
! [X2: int,Y: int] :
( ( X2 = Y )
=> ( ord_less_eq_int @ X2 @ Y ) ) ).
% verit_eq_simplify(6)
thf(fact_199_verit__eq__simplify_I6_J,axiom,
! [X2: real,Y: real] :
( ( X2 = Y )
=> ( ord_less_eq_real @ X2 @ Y ) ) ).
% verit_eq_simplify(6)
thf(fact_200_linorder__neqE__linordered__idom,axiom,
! [X2: int,Y: int] :
( ( X2 != Y )
=> ( ~ ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ Y @ X2 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_201_linorder__neqE__linordered__idom,axiom,
! [X2: real,Y: real] :
( ( X2 != Y )
=> ( ~ ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ Y @ X2 ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_202_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_203_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_204_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B ) )
=> ? [X3: nat] :
( ( P @ X3 )
& ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_205_linorder__neqE__nat,axiom,
! [X2: nat,Y: nat] :
( ( X2 != Y )
=> ( ~ ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ Y @ X2 ) ) ) ).
% linorder_neqE_nat
thf(fact_206_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_207_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
| ( M2 = N2 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_208_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ~ ( P @ N3 )
=> ? [M3: nat] :
( ( ord_less_nat @ M3 @ N3 )
& ~ ( P @ M3 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_209_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M3: nat] :
( ( ord_less_nat @ M3 @ N3 )
=> ( P @ M3 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_210_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_211_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_212_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_213_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_214_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_215_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_216_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_217_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
& ( M2 != N2 ) ) ) ) ).
% nat_less_le
thf(fact_218_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_219_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_220_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_221_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_222_add__less__le__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).
% add_less_le_mono
thf(fact_223_add__less__le__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).
% add_less_le_mono
thf(fact_224_add__less__le__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).
% add_less_le_mono
thf(fact_225_add__le__less__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D2 )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).
% add_le_less_mono
thf(fact_226_add__le__less__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D2 )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).
% add_le_less_mono
thf(fact_227_add__le__less__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D2 )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).
% add_le_less_mono
thf(fact_228_add__mono__thms__linordered__field_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_229_add__mono__thms__linordered__field_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_230_add__mono__thms__linordered__field_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_231_add__mono__thms__linordered__field_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_232_add__mono__thms__linordered__field_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_233_add__mono__thms__linordered__field_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_234_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_235_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_236_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_237_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_238_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_239_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_240_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_241_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_242_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_243_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M4: nat,N3: nat] :
( ( ord_less_nat @ M4 @ N3 )
=> ( ord_less_nat @ ( F @ M4 ) @ ( F @ N3 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_244_semiring__norm_I138_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% semiring_norm(138)
thf(fact_245_semiring__norm_I138_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% semiring_norm(138)
thf(fact_246_semiring__norm_I138_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% semiring_norm(138)
thf(fact_247_semiring__norm_I114_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% semiring_norm(114)
thf(fact_248_semiring__norm_I114_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% semiring_norm(114)
thf(fact_249_semiring__norm_I114_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% semiring_norm(114)
thf(fact_250_add__less__imp__less__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_251_add__less__imp__less__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_252_add__less__imp__less__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_253_add__less__imp__less__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_254_add__less__imp__less__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_255_add__less__imp__less__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_256_add__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_257_add__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_258_add__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_259_add__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_260_add__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_261_add__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_262_add__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D2 )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).
% add_strict_mono
thf(fact_263_add__strict__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D2 )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).
% add_strict_mono
thf(fact_264_add__strict__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D2 )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).
% add_strict_mono
thf(fact_265_add__mono__thms__linordered__field_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_266_add__mono__thms__linordered__field_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( K = L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_267_add__mono__thms__linordered__field_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( K = L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_268_add__mono__thms__linordered__field_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_269_add__mono__thms__linordered__field_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_270_add__mono__thms__linordered__field_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_271_add__mono__thms__linordered__field_I5_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_nat @ I @ J )
& ( ord_less_nat @ K @ L ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_272_add__mono__thms__linordered__field_I5_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_int @ I @ J )
& ( ord_less_int @ K @ L ) )
=> ( ord_less_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_273_add__mono__thms__linordered__field_I5_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_real @ I @ J )
& ( ord_less_real @ K @ L ) )
=> ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_274_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_275_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_276_add__le__imp__le__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_277_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_278_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_279_add__le__imp__le__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_280_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] :
? [C3: nat] :
( B3
= ( plus_plus_nat @ A3 @ C3 ) ) ) ) ).
% le_iff_add
thf(fact_281_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_282_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_283_add__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_right_mono
thf(fact_284_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C4: nat] :
( B
!= ( plus_plus_nat @ A @ C4 ) ) ) ).
% less_eqE
thf(fact_285_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_286_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_287_add__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_left_mono
thf(fact_288_add__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_289_add__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_290_add__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D2 ) ) ) ) ).
% add_mono
thf(fact_291_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_292_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_293_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_294_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_295_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_296_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( ord_less_eq_real @ K @ L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_297_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_298_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_299_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( ord_less_eq_real @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_300_length__induct,axiom,
! [P: list_nat > $o,Xs: list_nat] :
( ! [Xs3: list_nat] :
( ! [Ys2: list_nat] :
( ( ord_less_nat @ ( size_size_list_nat @ Ys2 ) @ ( size_size_list_nat @ Xs3 ) )
=> ( P @ Ys2 ) )
=> ( P @ Xs3 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_301_length__induct,axiom,
! [P: list_int > $o,Xs: list_int] :
( ! [Xs3: list_int] :
( ! [Ys2: list_int] :
( ( ord_less_nat @ ( size_size_list_int @ Ys2 ) @ ( size_size_list_int @ Xs3 ) )
=> ( P @ Ys2 ) )
=> ( P @ Xs3 ) )
=> ( P @ Xs ) ) ).
% length_induct
thf(fact_302_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_303_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_304_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_305_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_306_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_307_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_308_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_309_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_310_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_311_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_312_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_313_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_314_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_315_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N3: nat] :
( L
= ( plus_plus_nat @ K @ N3 ) ) ) ).
% le_Suc_ex
thf(fact_316_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_317_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_318_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_319_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_320_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M2: nat,N2: nat] :
? [K2: nat] :
( N2
= ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).
% nat_le_iff_add
thf(fact_321_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_322_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_323_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_324_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_325_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_326_less__1__mult,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ( ord_less_nat @ one_one_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_327_less__1__mult,axiom,
! [M: int,N: int] :
( ( ord_less_int @ one_one_int @ M )
=> ( ( ord_less_int @ one_one_int @ N )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_328_less__1__mult,axiom,
! [M: real,N: real] :
( ( ord_less_real @ one_one_real @ M )
=> ( ( ord_less_real @ one_one_real @ N )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_329_add__mono1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).
% add_mono1
thf(fact_330_add__mono1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ one_one_int ) @ ( plus_plus_int @ B @ one_one_int ) ) ) ).
% add_mono1
thf(fact_331_add__mono1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ one_one_real ) @ ( plus_plus_real @ B @ one_one_real ) ) ) ).
% add_mono1
thf(fact_332_less__add__one,axiom,
! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).
% less_add_one
thf(fact_333_less__add__one,axiom,
! [A: int] : ( ord_less_int @ A @ ( plus_plus_int @ A @ one_one_int ) ) ).
% less_add_one
thf(fact_334_less__add__one,axiom,
! [A: real] : ( ord_less_real @ A @ ( plus_plus_real @ A @ one_one_real ) ) ).
% less_add_one
thf(fact_335_set__times__elim,axiom,
! [X2: int,A2: set_int,B2: set_int] :
( ( member_int @ X2 @ ( times_times_set_int @ A2 @ B2 ) )
=> ~ ! [A5: int,B5: int] :
( ( X2
= ( times_times_int @ A5 @ B5 ) )
=> ( ( member_int @ A5 @ A2 )
=> ~ ( member_int @ B5 @ B2 ) ) ) ) ).
% set_times_elim
thf(fact_336_set__times__elim,axiom,
! [X2: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ X2 @ ( times_times_set_nat @ A2 @ B2 ) )
=> ~ ! [A5: nat,B5: nat] :
( ( X2
= ( times_times_nat @ A5 @ B5 ) )
=> ( ( member_nat @ A5 @ A2 )
=> ~ ( member_nat @ B5 @ B2 ) ) ) ) ).
% set_times_elim
thf(fact_337_set__times__elim,axiom,
! [X2: real,A2: set_real,B2: set_real] :
( ( member_real @ X2 @ ( times_times_set_real @ A2 @ B2 ) )
=> ~ ! [A5: real,B5: real] :
( ( X2
= ( times_times_real @ A5 @ B5 ) )
=> ( ( member_real @ A5 @ A2 )
=> ~ ( member_real @ B5 @ B2 ) ) ) ) ).
% set_times_elim
thf(fact_338_set__plus__elim,axiom,
! [X2: int,A2: set_int,B2: set_int] :
( ( member_int @ X2 @ ( plus_plus_set_int @ A2 @ B2 ) )
=> ~ ! [A5: int,B5: int] :
( ( X2
= ( plus_plus_int @ A5 @ B5 ) )
=> ( ( member_int @ A5 @ A2 )
=> ~ ( member_int @ B5 @ B2 ) ) ) ) ).
% set_plus_elim
thf(fact_339_set__plus__elim,axiom,
! [X2: nat,A2: set_nat,B2: set_nat] :
( ( member_nat @ X2 @ ( plus_plus_set_nat @ A2 @ B2 ) )
=> ~ ! [A5: nat,B5: nat] :
( ( X2
= ( plus_plus_nat @ A5 @ B5 ) )
=> ( ( member_nat @ A5 @ A2 )
=> ~ ( member_nat @ B5 @ B2 ) ) ) ) ).
% set_plus_elim
thf(fact_340_set__plus__elim,axiom,
! [X2: real,A2: set_real,B2: set_real] :
( ( member_real @ X2 @ ( plus_plus_set_real @ A2 @ B2 ) )
=> ~ ! [A5: real,B5: real] :
( ( X2
= ( plus_plus_real @ A5 @ B5 ) )
=> ( ( member_real @ A5 @ A2 )
=> ~ ( member_real @ B5 @ B2 ) ) ) ) ).
% set_plus_elim
thf(fact_341_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_342_combine__common__factor,axiom,
! [A: int,E: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_343_combine__common__factor,axiom,
! [A: nat,E: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_344_combine__common__factor,axiom,
! [A: real,E: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_345_distrib__right,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_346_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_347_distrib__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_348_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_349_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_350_comm__semiring__class_Odistrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_351_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_352_ring__class_Oring__distribs_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_353_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_354_ring__class_Oring__distribs_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_355_one__less__of__natD,axiom,
! [N: nat] :
( ( ord_less_int @ one_one_int @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ one_one_nat @ N ) ) ).
% one_less_of_natD
thf(fact_356_one__less__of__natD,axiom,
! [N: nat] :
( ( ord_less_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ one_one_nat @ N ) ) ).
% one_less_of_natD
thf(fact_357_one__less__of__natD,axiom,
! [N: nat] :
( ( ord_less_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ one_one_nat @ N ) ) ).
% one_less_of_natD
thf(fact_358_of__nat__ge__1__iff,axiom,
! [X2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ ( semiri1316708129612266289at_nat @ X2 ) )
= ( ord_less_eq_nat @ one_one_nat @ X2 ) ) ).
% of_nat_ge_1_iff
thf(fact_359_of__nat__ge__1__iff,axiom,
! [X2: nat] :
( ( ord_less_eq_int @ one_one_int @ ( semiri1314217659103216013at_int @ X2 ) )
= ( ord_less_eq_nat @ one_one_nat @ X2 ) ) ).
% of_nat_ge_1_iff
thf(fact_360_of__nat__ge__1__iff,axiom,
! [X2: nat] :
( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ X2 ) )
= ( ord_less_eq_nat @ one_one_nat @ X2 ) ) ).
% of_nat_ge_1_iff
thf(fact_361_affine__ineq,axiom,
! [X2: int,V: int,U: int] :
( ( ord_less_eq_int @ X2 @ one_one_int )
=> ( ( ord_less_eq_int @ V @ U )
=> ( ord_less_eq_int @ ( plus_plus_int @ V @ ( times_times_int @ X2 @ U ) ) @ ( plus_plus_int @ U @ ( times_times_int @ X2 @ V ) ) ) ) ) ).
% affine_ineq
thf(fact_362_affine__ineq,axiom,
! [X2: real,V: real,U: real] :
( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ( ord_less_eq_real @ V @ U )
=> ( ord_less_eq_real @ ( plus_plus_real @ V @ ( times_times_real @ X2 @ U ) ) @ ( plus_plus_real @ U @ ( times_times_real @ X2 @ V ) ) ) ) ) ).
% affine_ineq
thf(fact_363_p__gt__0,axiom,
ord_less_nat @ zero_zero_nat @ ( frequency_Moment_p @ n ) ).
% p_gt_0
thf(fact_364_order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% order.refl
thf(fact_365_order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% order.refl
thf(fact_366_order_Orefl,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% order.refl
thf(fact_367_order__refl,axiom,
! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).
% order_refl
thf(fact_368_order__refl,axiom,
! [X2: int] : ( ord_less_eq_int @ X2 @ X2 ) ).
% order_refl
thf(fact_369_order__refl,axiom,
! [X2: real] : ( ord_less_eq_real @ X2 @ X2 ) ).
% order_refl
thf(fact_370_nat__descend__induct,axiom,
! [N: nat,P: nat > $o,M: nat] :
( ! [K3: nat] :
( ( ord_less_nat @ N @ K3 )
=> ( P @ K3 ) )
=> ( ! [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N )
=> ( ! [I3: nat] :
( ( ord_less_nat @ K3 @ I3 )
=> ( P @ I3 ) )
=> ( P @ K3 ) ) )
=> ( P @ M ) ) ) ).
% nat_descend_induct
thf(fact_371_zero__order_I2_J,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% zero_order(2)
thf(fact_372_arithmetic__simps_I63_J,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% arithmetic_simps(63)
thf(fact_373_arithmetic__simps_I63_J,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% arithmetic_simps(63)
thf(fact_374_arithmetic__simps_I63_J,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% arithmetic_simps(63)
thf(fact_375_arithmetic__simps_I62_J,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% arithmetic_simps(62)
thf(fact_376_arithmetic__simps_I62_J,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% arithmetic_simps(62)
thf(fact_377_arithmetic__simps_I62_J,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% arithmetic_simps(62)
thf(fact_378_vector__space__over__itself_Oscale__eq__0__iff,axiom,
! [A: real,X2: real] :
( ( ( times_times_real @ A @ X2 )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( X2 = zero_zero_real ) ) ) ).
% vector_space_over_itself.scale_eq_0_iff
thf(fact_379_vector__space__over__itself_Oscale__zero__left,axiom,
! [X2: real] :
( ( times_times_real @ zero_zero_real @ X2 )
= zero_zero_real ) ).
% vector_space_over_itself.scale_zero_left
thf(fact_380_vector__space__over__itself_Oscale__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% vector_space_over_itself.scale_zero_right
thf(fact_381_vector__space__over__itself_Oscale__cancel__left,axiom,
! [A: real,X2: real,Y: real] :
( ( ( times_times_real @ A @ X2 )
= ( times_times_real @ A @ Y ) )
= ( ( X2 = Y )
| ( A = zero_zero_real ) ) ) ).
% vector_space_over_itself.scale_cancel_left
thf(fact_382_vector__space__over__itself_Oscale__cancel__right,axiom,
! [A: real,X2: real,B: real] :
( ( ( times_times_real @ A @ X2 )
= ( times_times_real @ B @ X2 ) )
= ( ( A = B )
| ( X2 = zero_zero_real ) ) ) ).
% vector_space_over_itself.scale_cancel_right
thf(fact_383_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_384_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_385_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_386_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_387_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_388_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_389_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_390_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_391_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_392_zero__order_I5_J,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% zero_order(5)
thf(fact_393_arithmetic__simps_I50_J,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% arithmetic_simps(50)
thf(fact_394_arithmetic__simps_I50_J,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% arithmetic_simps(50)
thf(fact_395_arithmetic__simps_I50_J,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% arithmetic_simps(50)
thf(fact_396_arithmetic__simps_I49_J,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% arithmetic_simps(49)
thf(fact_397_arithmetic__simps_I49_J,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% arithmetic_simps(49)
thf(fact_398_arithmetic__simps_I49_J,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% arithmetic_simps(49)
thf(fact_399_linordered__ab__group__add__class_Odouble__zero,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% linordered_ab_group_add_class.double_zero
thf(fact_400_linordered__ab__group__add__class_Odouble__zero,axiom,
! [A: real] :
( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% linordered_ab_group_add_class.double_zero
thf(fact_401_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_402_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_403_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_404_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_405_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_406_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_407_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_408_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_409_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_410_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_411_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_412_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_413_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_414_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_415_add__eq__0__iff__both__eq__0,axiom,
! [X2: nat,Y: nat] :
( ( ( plus_plus_nat @ X2 @ Y )
= zero_zero_nat )
= ( ( X2 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_416_zero__eq__add__iff__both__eq__0,axiom,
! [X2: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X2 @ Y ) )
= ( ( X2 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_417_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_418_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_419_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_420_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_421_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_422_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_423_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_424_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_425_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_426_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_427_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_428_zle__add1__eq__le,axiom,
! [W: int,Z2: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z2 ) ) ).
% zle_add1_eq_le
thf(fact_429_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_430_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_431_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_432_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_433_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_434_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_435_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_436_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_437_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_438_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_439_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_440_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_441_linordered__ab__group__add__class_Odouble__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% linordered_ab_group_add_class.double_add_le_zero_iff_single_add_le_zero
thf(fact_442_linordered__ab__group__add__class_Odouble__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% linordered_ab_group_add_class.double_add_le_zero_iff_single_add_le_zero
thf(fact_443_linordered__ab__group__add__class_Ozero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% linordered_ab_group_add_class.zero_le_double_add_iff_zero_le_single_add
thf(fact_444_linordered__ab__group__add__class_Ozero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% linordered_ab_group_add_class.zero_le_double_add_iff_zero_le_single_add
thf(fact_445_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_446_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_447_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_448_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_449_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_450_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_451_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_452_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_453_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_454_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_455_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_456_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_457_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_458_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_459_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_460_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_461_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_462_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_463_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_464_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_465_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_466_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_467_linordered__ab__group__add__class_Ozero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% linordered_ab_group_add_class.zero_less_double_add_iff_zero_less_single_add
thf(fact_468_linordered__ab__group__add__class_Ozero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% linordered_ab_group_add_class.zero_less_double_add_iff_zero_less_single_add
thf(fact_469_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_470_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_471_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_472_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_473_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_474_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_475_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_476_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_477_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_478_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_479_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_480_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_481_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_482_mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel1
thf(fact_483_sum__list__0,axiom,
! [Xs: list_nat] :
( ( groups4559388385066561235st_int
@ ( map_nat_int
@ ^ [X: nat] : zero_zero_int
@ Xs ) )
= zero_zero_int ) ).
% sum_list_0
thf(fact_484_sum__list__0,axiom,
! [Xs: list_nat] :
( ( groups6723090944982001619t_real
@ ( map_nat_real
@ ^ [X: nat] : zero_zero_real
@ Xs ) )
= zero_zero_real ) ).
% sum_list_0
thf(fact_485_sum__list__0,axiom,
! [Xs: list_nat] :
( ( groups4561878855575611511st_nat
@ ( map_nat_nat
@ ^ [X: nat] : zero_zero_nat
@ Xs ) )
= zero_zero_nat ) ).
% sum_list_0
thf(fact_486_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_487_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_488_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_489_mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel1
thf(fact_490_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_491_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_492_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_493_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_494_zero__reorient,axiom,
! [X2: nat] :
( ( zero_zero_nat = X2 )
= ( X2 = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_495_zero__reorient,axiom,
! [X2: int] :
( ( zero_zero_int = X2 )
= ( X2 = zero_zero_int ) ) ).
% zero_reorient
thf(fact_496_zero__reorient,axiom,
! [X2: real] :
( ( zero_zero_real = X2 )
= ( X2 = zero_zero_real ) ) ).
% zero_reorient
thf(fact_497_set__zero__plus2,axiom,
! [A2: set_nat,B2: set_nat] :
( ( member_nat @ zero_zero_nat @ A2 )
=> ( ord_less_eq_set_nat @ B2 @ ( plus_plus_set_nat @ A2 @ B2 ) ) ) ).
% set_zero_plus2
thf(fact_498_set__zero__plus2,axiom,
! [A2: set_int,B2: set_int] :
( ( member_int @ zero_zero_int @ A2 )
=> ( ord_less_eq_set_int @ B2 @ ( plus_plus_set_int @ A2 @ B2 ) ) ) ).
% set_zero_plus2
thf(fact_499_set__zero__plus2,axiom,
! [A2: set_real,B2: set_real] :
( ( member_real @ zero_zero_real @ A2 )
=> ( ord_less_eq_set_real @ B2 @ ( plus_plus_set_real @ A2 @ B2 ) ) ) ).
% set_zero_plus2
thf(fact_500_add1__zle__eq,axiom,
! [W: int,Z2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 )
= ( ord_less_int @ W @ Z2 ) ) ).
% add1_zle_eq
thf(fact_501_zless__imp__add1__zle,axiom,
! [W: int,Z2: int] :
( ( ord_less_int @ W @ Z2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 ) ) ).
% zless_imp_add1_zle
thf(fact_502_rel__simps_I46_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% rel_simps(46)
thf(fact_503_rel__simps_I46_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% rel_simps(46)
thf(fact_504_rel__simps_I46_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% rel_simps(46)
thf(fact_505_zero__order_I1_J,axiom,
! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).
% zero_order(1)
thf(fact_506_vector__space__over__itself_Oscale__left__imp__eq,axiom,
! [A: real,X2: real,Y: real] :
( ( A != zero_zero_real )
=> ( ( ( times_times_real @ A @ X2 )
= ( times_times_real @ A @ Y ) )
=> ( X2 = Y ) ) ) ).
% vector_space_over_itself.scale_left_imp_eq
thf(fact_507_vector__space__over__itself_Oscale__right__imp__eq,axiom,
! [X2: real,A: real,B: real] :
( ( X2 != zero_zero_real )
=> ( ( ( times_times_real @ A @ X2 )
= ( times_times_real @ B @ X2 ) )
=> ( A = B ) ) ) ).
% vector_space_over_itself.scale_right_imp_eq
thf(fact_508_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_509_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_510_mult__not__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_511_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_512_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_513_divisors__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_514_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_515_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_516_no__zero__divisors,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_517_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_518_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_519_mult__left__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_520_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_521_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_522_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_523_rel__simps_I70_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% rel_simps(70)
thf(fact_524_rel__simps_I70_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% rel_simps(70)
thf(fact_525_rel__simps_I70_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% rel_simps(70)
thf(fact_526_zero__order_I4_J,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_order(4)
thf(fact_527_zero__order_I3_J,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% zero_order(3)
thf(fact_528_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_529_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_530_verit__eq__simplify_I24_J,axiom,
one_one_nat != zero_zero_nat ).
% verit_eq_simplify(24)
thf(fact_531_verit__eq__simplify_I24_J,axiom,
one_one_int != zero_zero_int ).
% verit_eq_simplify(24)
thf(fact_532_verit__eq__simplify_I24_J,axiom,
one_one_real != zero_zero_real ).
% verit_eq_simplify(24)
thf(fact_533_pth__7_I2_J,axiom,
! [X2: real] :
( ( plus_plus_real @ X2 @ zero_zero_real )
= X2 ) ).
% pth_7(2)
thf(fact_534_pth__7_I1_J,axiom,
! [X2: real] :
( ( plus_plus_real @ zero_zero_real @ X2 )
= X2 ) ).
% pth_7(1)
thf(fact_535_group__cancel_Orule0,axiom,
! [A: nat] :
( A
= ( plus_plus_nat @ A @ zero_zero_nat ) ) ).
% group_cancel.rule0
thf(fact_536_group__cancel_Orule0,axiom,
! [A: int] :
( A
= ( plus_plus_int @ A @ zero_zero_int ) ) ).
% group_cancel.rule0
thf(fact_537_group__cancel_Orule0,axiom,
! [A: real] :
( A
= ( plus_plus_real @ A @ zero_zero_real ) ) ).
% group_cancel.rule0
thf(fact_538_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_539_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_540_comm__monoid__add__class_Oadd__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_541_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_542_add_Ogroup__left__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add.group_left_neutral
thf(fact_543_verit__sum__simplify,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% verit_sum_simplify
thf(fact_544_verit__sum__simplify,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% verit_sum_simplify
thf(fact_545_verit__sum__simplify,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% verit_sum_simplify
thf(fact_546_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_547_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_548_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_549_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_550_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_551_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_552_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
=> ( ~ ( P @ N3 )
=> ? [M3: nat] :
( ( ord_less_nat @ M3 @ N3 )
& ~ ( P @ M3 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_553_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_554_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_555_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_556_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_557_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_558_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_559_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_560_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_561_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_562_lambda__zero,axiom,
( ( ^ [H: int] : zero_zero_int )
= ( times_times_int @ zero_zero_int ) ) ).
% lambda_zero
thf(fact_563_lambda__zero,axiom,
( ( ^ [H: nat] : zero_zero_nat )
= ( times_times_nat @ zero_zero_nat ) ) ).
% lambda_zero
thf(fact_564_lambda__zero,axiom,
( ( ^ [H: real] : zero_zero_real )
= ( times_times_real @ zero_zero_real ) ) ).
% lambda_zero
thf(fact_565_mult__eq__1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ( ord_less_eq_nat @ B @ one_one_nat )
=> ( ( ( times_times_nat @ A @ B )
= one_one_nat )
= ( ( A = one_one_nat )
& ( B = one_one_nat ) ) ) ) ) ) ).
% mult_eq_1
thf(fact_566_mult__eq__1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ( ord_less_eq_int @ B @ one_one_int )
=> ( ( ( times_times_int @ A @ B )
= one_one_int )
= ( ( A = one_one_int )
& ( B = one_one_int ) ) ) ) ) ) ).
% mult_eq_1
thf(fact_567_mult__eq__1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ( ord_less_eq_real @ B @ one_one_real )
=> ( ( ( times_times_real @ A @ B )
= one_one_real )
= ( ( A = one_one_real )
& ( B = one_one_real ) ) ) ) ) ) ).
% mult_eq_1
thf(fact_568_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_569_zless__add1__eq,axiom,
! [W: int,Z2: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ( ord_less_int @ W @ Z2 )
| ( W = Z2 ) ) ) ).
% zless_add1_eq
thf(fact_570_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_571_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_572_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_573_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% zle_int
thf(fact_574_mult__sign__intros_I4_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_sign_intros(4)
thf(fact_575_mult__sign__intros_I4_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_sign_intros(4)
thf(fact_576_mult__sign__intros_I3_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_sign_intros(3)
thf(fact_577_mult__sign__intros_I3_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_sign_intros(3)
thf(fact_578_mult__sign__intros_I3_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_sign_intros(3)
thf(fact_579_mult__sign__intros_I2_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_sign_intros(2)
thf(fact_580_mult__sign__intros_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_sign_intros(2)
thf(fact_581_mult__sign__intros_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_sign_intros(2)
thf(fact_582_mult__sign__intros_I1_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_sign_intros(1)
thf(fact_583_mult__sign__intros_I1_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_sign_intros(1)
thf(fact_584_mult__sign__intros_I1_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_sign_intros(1)
thf(fact_585_mult__mono,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).
% mult_mono
thf(fact_586_mult__mono,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).
% mult_mono
thf(fact_587_mult__mono,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).
% mult_mono
thf(fact_588_mult__mono_H,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) ) ) ) ) ) ).
% mult_mono'
thf(fact_589_mult__mono_H,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) ) ) ) ) ) ).
% mult_mono'
thf(fact_590_mult__mono_H,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) ) ) ) ) ) ).
% mult_mono'
thf(fact_591_zero__le__square,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).
% zero_le_square
thf(fact_592_zero__le__square,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).
% zero_le_square
thf(fact_593_split__mult__pos__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_594_split__mult__pos__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_595_mult__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_596_mult__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_597_mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_598_mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_599_mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_600_mult__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_601_mult__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_602_mult__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_603_mult__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_604_mult__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_605_mult__le__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_606_mult__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_607_split__mult__neg__le,axiom,
! [A: nat,B: nat] :
( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
& ( ord_less_eq_nat @ B @ zero_zero_nat ) )
| ( ( ord_less_eq_nat @ A @ zero_zero_nat )
& ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).
% split_mult_neg_le
thf(fact_608_split__mult__neg__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).
% split_mult_neg_le
thf(fact_609_split__mult__neg__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).
% split_mult_neg_le
thf(fact_610_mult__nonneg__nonpos2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_611_mult__nonneg__nonpos2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_612_mult__nonneg__nonpos2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_613_zero__le__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).
% zero_le_mult_iff
thf(fact_614_zero__le__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_mult_iff
thf(fact_615_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_616_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_617_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_618_verit__comp__simplify_I29_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% verit_comp_simplify(29)
thf(fact_619_verit__comp__simplify_I29_J,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% verit_comp_simplify(29)
thf(fact_620_verit__comp__simplify_I29_J,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% verit_comp_simplify(29)
thf(fact_621_le__numeral__extra_I2_J,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% le_numeral_extra(2)
thf(fact_622_le__numeral__extra_I2_J,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% le_numeral_extra(2)
thf(fact_623_le__numeral__extra_I2_J,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% le_numeral_extra(2)
thf(fact_624_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_625_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% zero_less_one_class.zero_le_one
thf(fact_626_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% zero_less_one_class.zero_le_one
thf(fact_627_add__sign__intros_I8_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_sign_intros(8)
thf(fact_628_add__sign__intros_I8_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_sign_intros(8)
thf(fact_629_add__sign__intros_I8_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_sign_intros(8)
thf(fact_630_add__sign__intros_I4_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_sign_intros(4)
thf(fact_631_add__sign__intros_I4_J,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_sign_intros(4)
thf(fact_632_add__sign__intros_I4_J,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_sign_intros(4)
thf(fact_633_add__decreasing,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_634_add__decreasing,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_635_add__decreasing,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_636_add__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_637_add__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_638_add__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_639_add__decreasing2,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_640_add__decreasing2,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_641_add__decreasing2,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_642_add__increasing2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_643_add__increasing2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_644_add__increasing2,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_645_add__nonneg__eq__0__iff,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( plus_plus_nat @ X2 @ Y )
= zero_zero_nat )
= ( ( X2 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_646_add__nonneg__eq__0__iff,axiom,
! [X2: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ( plus_plus_int @ X2 @ Y )
= zero_zero_int )
= ( ( X2 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_647_add__nonneg__eq__0__iff,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ( plus_plus_real @ X2 @ Y )
= zero_zero_real )
= ( ( X2 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_648_add__nonpos__eq__0__iff,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X2 @ Y )
= zero_zero_nat )
= ( ( X2 = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_649_add__nonpos__eq__0__iff,axiom,
! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y @ zero_zero_int )
=> ( ( ( plus_plus_int @ X2 @ Y )
= zero_zero_int )
= ( ( X2 = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_650_add__nonpos__eq__0__iff,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ( ( plus_plus_real @ X2 @ Y )
= zero_zero_real )
= ( ( X2 = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_651_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W2: int,Z3: int] :
? [N2: nat] :
( Z3
= ( plus_plus_int @ W2 @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_652_mult__sign__intros_I8_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_sign_intros(8)
thf(fact_653_mult__sign__intros_I8_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_sign_intros(8)
thf(fact_654_mult__sign__intros_I7_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_sign_intros(7)
thf(fact_655_mult__sign__intros_I7_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_sign_intros(7)
thf(fact_656_mult__sign__intros_I7_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_sign_intros(7)
thf(fact_657_mult__sign__intros_I6_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_sign_intros(6)
thf(fact_658_mult__sign__intros_I6_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_sign_intros(6)
thf(fact_659_mult__sign__intros_I6_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_sign_intros(6)
thf(fact_660_mult__sign__intros_I5_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_sign_intros(5)
thf(fact_661_mult__sign__intros_I5_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_sign_intros(5)
thf(fact_662_mult__sign__intros_I5_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_sign_intros(5)
thf(fact_663_not__square__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).
% not_square_less_zero
thf(fact_664_not__square__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).
% not_square_less_zero
thf(fact_665_mult__less__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ B @ zero_zero_int ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_666_mult__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_667_mult__pos__neg2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_668_mult__pos__neg2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_pos_neg2
thf(fact_669_mult__pos__neg2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_pos_neg2
thf(fact_670_zero__less__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ zero_zero_int @ B ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).
% zero_less_mult_iff
thf(fact_671_zero__less__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_mult_iff
thf(fact_672_zero__less__mult__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_673_zero__less__mult__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_674_zero__less__mult__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_675_zero__less__mult__pos2,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_676_zero__less__mult__pos2,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_677_zero__less__mult__pos2,axiom,
! [B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_678_mult__less__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_679_mult__less__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_680_mult__less__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_681_mult__less__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_682_mult__strict__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_683_mult__strict__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_684_mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_685_mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_686_mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_687_mult__less__cancel__left__disj,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_688_mult__less__cancel__left__disj,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_689_mult__strict__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_690_mult__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_691_mult__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_692_mult__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_693_mult__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_694_mult__less__cancel__right__disj,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_695_mult__less__cancel__right__disj,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_696_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_697_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_698_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_699_verit__comp__simplify_I28_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% verit_comp_simplify(28)
thf(fact_700_verit__comp__simplify_I28_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% verit_comp_simplify(28)
thf(fact_701_verit__comp__simplify_I28_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% verit_comp_simplify(28)
thf(fact_702_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_703_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_704_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_705_less__numeral__extra_I2_J,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% less_numeral_extra(2)
thf(fact_706_less__numeral__extra_I2_J,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% less_numeral_extra(2)
thf(fact_707_less__numeral__extra_I2_J,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% less_numeral_extra(2)
thf(fact_708_add__sign__intros_I6_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_sign_intros(6)
thf(fact_709_add__sign__intros_I6_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_sign_intros(6)
thf(fact_710_add__sign__intros_I6_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_sign_intros(6)
thf(fact_711_add__sign__intros_I2_J,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_sign_intros(2)
thf(fact_712_add__sign__intros_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_sign_intros(2)
thf(fact_713_add__sign__intros_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_sign_intros(2)
thf(fact_714_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ! [C4: nat] :
( ( B
= ( plus_plus_nat @ A @ C4 ) )
=> ( C4 = zero_zero_nat ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_715_pos__add__strict,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_716_pos__add__strict,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_717_pos__add__strict,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_718_add__less__zeroD,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ ( plus_plus_int @ X2 @ Y ) @ zero_zero_int )
=> ( ( ord_less_int @ X2 @ zero_zero_int )
| ( ord_less_int @ Y @ zero_zero_int ) ) ) ).
% add_less_zeroD
thf(fact_719_add__less__zeroD,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ ( plus_plus_real @ X2 @ Y ) @ zero_zero_real )
=> ( ( ord_less_real @ X2 @ zero_zero_real )
| ( ord_less_real @ Y @ zero_zero_real ) ) ) ).
% add_less_zeroD
thf(fact_720_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_721_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).
% of_nat_0_le_iff
thf(fact_722_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).
% of_nat_0_le_iff
thf(fact_723_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_724_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_725_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_726_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K3 )
=> ~ ( P @ I3 ) )
& ( P @ K3 ) ) ) ) ).
% ex_least_nat_le
thf(fact_727_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K3: nat] :
( ( ord_less_nat @ zero_zero_nat @ K3 )
& ( ( plus_plus_nat @ I @ K3 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_728_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_729_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_730_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_731_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_732_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_733_nat__less__as__int,axiom,
( ord_less_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_less_as_int
thf(fact_734_nat__leq__as__int,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B3: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B3 ) ) ) ) ).
% nat_leq_as_int
thf(fact_735_order__antisym__conv,axiom,
! [Y: nat,X2: nat] :
( ( ord_less_eq_nat @ Y @ X2 )
=> ( ( ord_less_eq_nat @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% order_antisym_conv
thf(fact_736_order__antisym__conv,axiom,
! [Y: int,X2: int] :
( ( ord_less_eq_int @ Y @ X2 )
=> ( ( ord_less_eq_int @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% order_antisym_conv
thf(fact_737_order__antisym__conv,axiom,
! [Y: real,X2: real] :
( ( ord_less_eq_real @ Y @ X2 )
=> ( ( ord_less_eq_real @ X2 @ Y )
= ( X2 = Y ) ) ) ).
% order_antisym_conv
thf(fact_738_linorder__le__cases,axiom,
! [X2: nat,Y: nat] :
( ~ ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ Y @ X2 ) ) ).
% linorder_le_cases
thf(fact_739_linorder__le__cases,axiom,
! [X2: int,Y: int] :
( ~ ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_int @ Y @ X2 ) ) ).
% linorder_le_cases
thf(fact_740_linorder__le__cases,axiom,
! [X2: real,Y: real] :
( ~ ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_real @ Y @ X2 ) ) ).
% linorder_le_cases
thf(fact_741_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_742_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_743_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_744_ord__le__eq__subst,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_745_ord__le__eq__subst,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_746_ord__le__eq__subst,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_747_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_748_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_749_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_750_ord__eq__le__subst,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_751_ord__eq__le__subst,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_752_ord__eq__le__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_753_ord__eq__le__subst,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_754_ord__eq__le__subst,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_755_ord__eq__le__subst,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_756_ord__eq__le__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_757_ord__eq__le__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_758_ord__eq__le__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_759_linorder__linear,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
| ( ord_less_eq_nat @ Y @ X2 ) ) ).
% linorder_linear
thf(fact_760_linorder__linear,axiom,
! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
| ( ord_less_eq_int @ Y @ X2 ) ) ).
% linorder_linear
thf(fact_761_linorder__linear,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
| ( ord_less_eq_real @ Y @ X2 ) ) ).
% linorder_linear
thf(fact_762_order__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_763_order__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_764_order__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_765_order__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_766_order__subst2,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_767_order__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_768_order__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_769_order__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_770_order__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_771_order__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_772_order__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_773_order__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_774_order__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_775_order__subst1,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_776_order__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_777_order__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_eq_nat @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_778_order__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_eq_int @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_779_order__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_eq_real @ X3 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_780_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y2: nat,Z: nat] : ( Y2 = Z ) )
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ A3 @ B3 )
& ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_781_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y2: int,Z: int] : ( Y2 = Z ) )
= ( ^ [A3: int,B3: int] :
( ( ord_less_eq_int @ A3 @ B3 )
& ( ord_less_eq_int @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_782_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y2: real,Z: real] : ( Y2 = Z ) )
= ( ^ [A3: real,B3: real] :
( ( ord_less_eq_real @ A3 @ B3 )
& ( ord_less_eq_real @ B3 @ A3 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_783_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_784_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_785_antisym,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_786_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_787_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_788_dual__order_Otrans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_789_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_790_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_791_dual__order_Oantisym,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_792_dual__order_Oeq__iff,axiom,
( ( ^ [Y2: nat,Z: nat] : ( Y2 = Z ) )
= ( ^ [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ B3 @ A3 )
& ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_793_dual__order_Oeq__iff,axiom,
( ( ^ [Y2: int,Z: int] : ( Y2 = Z ) )
= ( ^ [A3: int,B3: int] :
( ( ord_less_eq_int @ B3 @ A3 )
& ( ord_less_eq_int @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_794_dual__order_Oeq__iff,axiom,
( ( ^ [Y2: real,Z: real] : ( Y2 = Z ) )
= ( ^ [A3: real,B3: real] :
( ( ord_less_eq_real @ B3 @ A3 )
& ( ord_less_eq_real @ A3 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_795_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A5: nat,B5: nat] :
( ( ord_less_eq_nat @ A5 @ B5 )
=> ( P @ A5 @ B5 ) )
=> ( ! [A5: nat,B5: nat] :
( ( P @ B5 @ A5 )
=> ( P @ A5 @ B5 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_796_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A5: int,B5: int] :
( ( ord_less_eq_int @ A5 @ B5 )
=> ( P @ A5 @ B5 ) )
=> ( ! [A5: int,B5: int] :
( ( P @ B5 @ A5 )
=> ( P @ A5 @ B5 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_797_linorder__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A5: real,B5: real] :
( ( ord_less_eq_real @ A5 @ B5 )
=> ( P @ A5 @ B5 ) )
=> ( ! [A5: real,B5: real] :
( ( P @ B5 @ A5 )
=> ( P @ A5 @ B5 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_798_order__trans,axiom,
! [X2: nat,Y: nat,Z2: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z2 )
=> ( ord_less_eq_nat @ X2 @ Z2 ) ) ) ).
% order_trans
thf(fact_799_order__trans,axiom,
! [X2: int,Y: int,Z2: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ( ord_less_eq_int @ Y @ Z2 )
=> ( ord_less_eq_int @ X2 @ Z2 ) ) ) ).
% order_trans
thf(fact_800_order__trans,axiom,
! [X2: real,Y: real,Z2: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ( ord_less_eq_real @ Y @ Z2 )
=> ( ord_less_eq_real @ X2 @ Z2 ) ) ) ).
% order_trans
thf(fact_801_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_802_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_803_order_Otrans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% order.trans
thf(fact_804_order__antisym,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ( ord_less_eq_nat @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% order_antisym
thf(fact_805_order__antisym,axiom,
! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ( ord_less_eq_int @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% order_antisym
thf(fact_806_order__antisym,axiom,
! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ( ord_less_eq_real @ Y @ X2 )
=> ( X2 = Y ) ) ) ).
% order_antisym
thf(fact_807_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_808_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_809_ord__le__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_810_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_811_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_812_ord__eq__le__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_813_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y2: nat,Z: nat] : ( Y2 = Z ) )
= ( ^ [X: nat,Y5: nat] :
( ( ord_less_eq_nat @ X @ Y5 )
& ( ord_less_eq_nat @ Y5 @ X ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_814_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y2: int,Z: int] : ( Y2 = Z ) )
= ( ^ [X: int,Y5: int] :
( ( ord_less_eq_int @ X @ Y5 )
& ( ord_less_eq_int @ Y5 @ X ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_815_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y2: real,Z: real] : ( Y2 = Z ) )
= ( ^ [X: real,Y5: real] :
( ( ord_less_eq_real @ X @ Y5 )
& ( ord_less_eq_real @ Y5 @ X ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_816_le__cases3,axiom,
! [X2: nat,Y: nat,Z2: nat] :
( ( ( ord_less_eq_nat @ X2 @ Y )
=> ~ ( ord_less_eq_nat @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ Y @ X2 )
=> ~ ( ord_less_eq_nat @ X2 @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ X2 @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_nat @ Z2 @ Y )
=> ~ ( ord_less_eq_nat @ Y @ X2 ) )
=> ( ( ( ord_less_eq_nat @ Y @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ X2 ) )
=> ~ ( ( ord_less_eq_nat @ Z2 @ X2 )
=> ~ ( ord_less_eq_nat @ X2 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_817_le__cases3,axiom,
! [X2: int,Y: int,Z2: int] :
( ( ( ord_less_eq_int @ X2 @ Y )
=> ~ ( ord_less_eq_int @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_int @ Y @ X2 )
=> ~ ( ord_less_eq_int @ X2 @ Z2 ) )
=> ( ( ( ord_less_eq_int @ X2 @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_int @ Z2 @ Y )
=> ~ ( ord_less_eq_int @ Y @ X2 ) )
=> ( ( ( ord_less_eq_int @ Y @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ X2 ) )
=> ~ ( ( ord_less_eq_int @ Z2 @ X2 )
=> ~ ( ord_less_eq_int @ X2 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_818_le__cases3,axiom,
! [X2: real,Y: real,Z2: real] :
( ( ( ord_less_eq_real @ X2 @ Y )
=> ~ ( ord_less_eq_real @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_real @ Y @ X2 )
=> ~ ( ord_less_eq_real @ X2 @ Z2 ) )
=> ( ( ( ord_less_eq_real @ X2 @ Z2 )
=> ~ ( ord_less_eq_real @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_real @ Z2 @ Y )
=> ~ ( ord_less_eq_real @ Y @ X2 ) )
=> ( ( ( ord_less_eq_real @ Y @ Z2 )
=> ~ ( ord_less_eq_real @ Z2 @ X2 ) )
=> ~ ( ( ord_less_eq_real @ Z2 @ X2 )
=> ~ ( ord_less_eq_real @ X2 @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_819_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_820_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_821_nle__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_eq_real @ A @ B ) )
= ( ( ord_less_eq_real @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_822_order__less__imp__not__less,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ~ ( ord_less_nat @ Y @ X2 ) ) ).
% order_less_imp_not_less
thf(fact_823_order__less__imp__not__less,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ~ ( ord_less_int @ Y @ X2 ) ) ).
% order_less_imp_not_less
thf(fact_824_order__less__imp__not__less,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ~ ( ord_less_real @ Y @ X2 ) ) ).
% order_less_imp_not_less
thf(fact_825_order__less__imp__not__eq2,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( Y != X2 ) ) ).
% order_less_imp_not_eq2
thf(fact_826_order__less__imp__not__eq2,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( Y != X2 ) ) ).
% order_less_imp_not_eq2
thf(fact_827_order__less__imp__not__eq2,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( Y != X2 ) ) ).
% order_less_imp_not_eq2
thf(fact_828_order__less__imp__not__eq,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( X2 != Y ) ) ).
% order_less_imp_not_eq
thf(fact_829_order__less__imp__not__eq,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( X2 != Y ) ) ).
% order_less_imp_not_eq
thf(fact_830_order__less__imp__not__eq,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( X2 != Y ) ) ).
% order_less_imp_not_eq
thf(fact_831_linorder__less__linear,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
| ( X2 = Y )
| ( ord_less_nat @ Y @ X2 ) ) ).
% linorder_less_linear
thf(fact_832_linorder__less__linear,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
| ( X2 = Y )
| ( ord_less_int @ Y @ X2 ) ) ).
% linorder_less_linear
thf(fact_833_linorder__less__linear,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
| ( X2 = Y )
| ( ord_less_real @ Y @ X2 ) ) ).
% linorder_less_linear
thf(fact_834_order__less__imp__triv,axiom,
! [X2: nat,Y: nat,P: $o] :
( ( ord_less_nat @ X2 @ Y )
=> ( ( ord_less_nat @ Y @ X2 )
=> P ) ) ).
% order_less_imp_triv
thf(fact_835_order__less__imp__triv,axiom,
! [X2: int,Y: int,P: $o] :
( ( ord_less_int @ X2 @ Y )
=> ( ( ord_less_int @ Y @ X2 )
=> P ) ) ).
% order_less_imp_triv
thf(fact_836_order__less__imp__triv,axiom,
! [X2: real,Y: real,P: $o] :
( ( ord_less_real @ X2 @ Y )
=> ( ( ord_less_real @ Y @ X2 )
=> P ) ) ).
% order_less_imp_triv
thf(fact_837_order__less__not__sym,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ~ ( ord_less_nat @ Y @ X2 ) ) ).
% order_less_not_sym
thf(fact_838_order__less__not__sym,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ~ ( ord_less_int @ Y @ X2 ) ) ).
% order_less_not_sym
thf(fact_839_order__less__not__sym,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ~ ( ord_less_real @ Y @ X2 ) ) ).
% order_less_not_sym
thf(fact_840_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_841_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_842_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_843_order__less__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_844_order__less__subst2,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_845_order__less__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_846_order__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_847_order__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_848_order__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_849_order__less__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_850_order__less__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_851_order__less__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_852_order__less__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_853_order__less__subst1,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_854_order__less__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_855_order__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_856_order__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_857_order__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_858_order__less__irrefl,axiom,
! [X2: nat] :
~ ( ord_less_nat @ X2 @ X2 ) ).
% order_less_irrefl
thf(fact_859_order__less__irrefl,axiom,
! [X2: int] :
~ ( ord_less_int @ X2 @ X2 ) ).
% order_less_irrefl
thf(fact_860_order__less__irrefl,axiom,
! [X2: real] :
~ ( ord_less_real @ X2 @ X2 ) ).
% order_less_irrefl
thf(fact_861_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_862_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_863_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_864_ord__less__eq__subst,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_865_ord__less__eq__subst,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_866_ord__less__eq__subst,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_867_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_868_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_869_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_870_ord__eq__less__subst,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_871_ord__eq__less__subst,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_872_ord__eq__less__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y3: nat] :
( ( ord_less_nat @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_873_ord__eq__less__subst,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_874_ord__eq__less__subst,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_875_ord__eq__less__subst,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y3: int] :
( ( ord_less_int @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_876_ord__eq__less__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_877_ord__eq__less__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_878_ord__eq__less__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y3: real] :
( ( ord_less_real @ X3 @ Y3 )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_879_order__less__trans,axiom,
! [X2: nat,Y: nat,Z2: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ( ord_less_nat @ Y @ Z2 )
=> ( ord_less_nat @ X2 @ Z2 ) ) ) ).
% order_less_trans
thf(fact_880_order__less__trans,axiom,
! [X2: int,Y: int,Z2: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ X2 @ Z2 ) ) ) ).
% order_less_trans
thf(fact_881_order__less__trans,axiom,
! [X2: real,Y: real,Z2: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ( ord_less_real @ Y @ Z2 )
=> ( ord_less_real @ X2 @ Z2 ) ) ) ).
% order_less_trans
thf(fact_882_order__less__asym_H,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order_less_asym'
thf(fact_883_order__less__asym_H,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order_less_asym'
thf(fact_884_order__less__asym_H,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order_less_asym'
thf(fact_885_linorder__neq__iff,axiom,
! [X2: nat,Y: nat] :
( ( X2 != Y )
= ( ( ord_less_nat @ X2 @ Y )
| ( ord_less_nat @ Y @ X2 ) ) ) ).
% linorder_neq_iff
thf(fact_886_linorder__neq__iff,axiom,
! [X2: int,Y: int] :
( ( X2 != Y )
= ( ( ord_less_int @ X2 @ Y )
| ( ord_less_int @ Y @ X2 ) ) ) ).
% linorder_neq_iff
thf(fact_887_linorder__neq__iff,axiom,
! [X2: real,Y: real] :
( ( X2 != Y )
= ( ( ord_less_real @ X2 @ Y )
| ( ord_less_real @ Y @ X2 ) ) ) ).
% linorder_neq_iff
thf(fact_888_order__less__asym,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ~ ( ord_less_nat @ Y @ X2 ) ) ).
% order_less_asym
thf(fact_889_order__less__asym,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ~ ( ord_less_int @ Y @ X2 ) ) ).
% order_less_asym
thf(fact_890_order__less__asym,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ~ ( ord_less_real @ Y @ X2 ) ) ).
% order_less_asym
thf(fact_891_linorder__neqE,axiom,
! [X2: nat,Y: nat] :
( ( X2 != Y )
=> ( ~ ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ Y @ X2 ) ) ) ).
% linorder_neqE
thf(fact_892_linorder__neqE,axiom,
! [X2: int,Y: int] :
( ( X2 != Y )
=> ( ~ ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ Y @ X2 ) ) ) ).
% linorder_neqE
thf(fact_893_linorder__neqE,axiom,
! [X2: real,Y: real] :
( ( X2 != Y )
=> ( ~ ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ Y @ X2 ) ) ) ).
% linorder_neqE
thf(fact_894_dual__order_Ostrict__implies__not__eq,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_895_dual__order_Ostrict__implies__not__eq,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_896_dual__order_Ostrict__implies__not__eq,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_897_order_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_898_order_Ostrict__implies__not__eq,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_899_order_Ostrict__implies__not__eq,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_900_dual__order_Ostrict__trans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_901_dual__order_Ostrict__trans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_902_dual__order_Ostrict__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_903_not__less__iff__gr__or__eq,axiom,
! [X2: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X2 @ Y ) )
= ( ( ord_less_nat @ Y @ X2 )
| ( X2 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_904_not__less__iff__gr__or__eq,axiom,
! [X2: int,Y: int] :
( ( ~ ( ord_less_int @ X2 @ Y ) )
= ( ( ord_less_int @ Y @ X2 )
| ( X2 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_905_not__less__iff__gr__or__eq,axiom,
! [X2: real,Y: real] :
( ( ~ ( ord_less_real @ X2 @ Y ) )
= ( ( ord_less_real @ Y @ X2 )
| ( X2 = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_906_order_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_907_order_Ostrict__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_908_order_Ostrict__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_909_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A5: nat,B5: nat] :
( ( ord_less_nat @ A5 @ B5 )
=> ( P @ A5 @ B5 ) )
=> ( ! [A5: nat] : ( P @ A5 @ A5 )
=> ( ! [A5: nat,B5: nat] :
( ( P @ B5 @ A5 )
=> ( P @ A5 @ B5 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_910_linorder__less__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A5: int,B5: int] :
( ( ord_less_int @ A5 @ B5 )
=> ( P @ A5 @ B5 ) )
=> ( ! [A5: int] : ( P @ A5 @ A5 )
=> ( ! [A5: int,B5: int] :
( ( P @ B5 @ A5 )
=> ( P @ A5 @ B5 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_911_linorder__less__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A5: real,B5: real] :
( ( ord_less_real @ A5 @ B5 )
=> ( P @ A5 @ B5 ) )
=> ( ! [A5: real] : ( P @ A5 @ A5 )
=> ( ! [A5: real,B5: real] :
( ( P @ B5 @ A5 )
=> ( P @ A5 @ B5 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_912_exists__least__iff,axiom,
( ( ^ [P2: nat > $o] :
? [X4: nat] : ( P2 @ X4 ) )
= ( ^ [P3: nat > $o] :
? [N2: nat] :
( ( P3 @ N2 )
& ! [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ~ ( P3 @ M2 ) ) ) ) ) ).
% exists_least_iff
thf(fact_913_dual__order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% dual_order.irrefl
thf(fact_914_dual__order_Oirrefl,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% dual_order.irrefl
thf(fact_915_dual__order_Oirrefl,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% dual_order.irrefl
thf(fact_916_dual__order_Oasym,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ A @ B ) ) ).
% dual_order.asym
thf(fact_917_dual__order_Oasym,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ A @ B ) ) ).
% dual_order.asym
thf(fact_918_dual__order_Oasym,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ A @ B ) ) ).
% dual_order.asym
thf(fact_919_linorder__cases,axiom,
! [X2: nat,Y: nat] :
( ~ ( ord_less_nat @ X2 @ Y )
=> ( ( X2 != Y )
=> ( ord_less_nat @ Y @ X2 ) ) ) ).
% linorder_cases
thf(fact_920_linorder__cases,axiom,
! [X2: int,Y: int] :
( ~ ( ord_less_int @ X2 @ Y )
=> ( ( X2 != Y )
=> ( ord_less_int @ Y @ X2 ) ) ) ).
% linorder_cases
thf(fact_921_linorder__cases,axiom,
! [X2: real,Y: real] :
( ~ ( ord_less_real @ X2 @ Y )
=> ( ( X2 != Y )
=> ( ord_less_real @ Y @ X2 ) ) ) ).
% linorder_cases
thf(fact_922_antisym__conv3,axiom,
! [Y: nat,X2: nat] :
( ~ ( ord_less_nat @ Y @ X2 )
=> ( ( ~ ( ord_less_nat @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv3
thf(fact_923_antisym__conv3,axiom,
! [Y: int,X2: int] :
( ~ ( ord_less_int @ Y @ X2 )
=> ( ( ~ ( ord_less_int @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv3
thf(fact_924_antisym__conv3,axiom,
! [Y: real,X2: real] :
( ~ ( ord_less_real @ Y @ X2 )
=> ( ( ~ ( ord_less_real @ X2 @ Y ) )
= ( X2 = Y ) ) ) ).
% antisym_conv3
thf(fact_925_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X3: nat] :
( ! [Y4: nat] :
( ( ord_less_nat @ Y4 @ X3 )
=> ( P @ Y4 ) )
=> ( P @ X3 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_926_ord__less__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_927_ord__less__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_928_ord__less__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_929_ord__eq__less__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_930_ord__eq__less__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_931_ord__eq__less__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_932_order_Oasym,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order.asym
thf(fact_933_order_Oasym,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order.asym
thf(fact_934_order_Oasym,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order.asym
thf(fact_935_less__imp__neq,axiom,
! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( X2 != Y ) ) ).
% less_imp_neq
thf(fact_936_less__imp__neq,axiom,
! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( X2 != Y ) ) ).
% less_imp_neq
thf(fact_937_less__imp__neq,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( X2 != Y ) ) ).
% less_imp_neq
thf(fact_938_dense,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ? [Z4: real] :
( ( ord_less_real @ X2 @ Z4 )
& ( ord_less_real @ Z4 @ Y ) ) ) ).
% dense
thf(fact_939_gt__ex,axiom,
! [X2: nat] :
? [X_1: nat] : ( ord_less_nat @ X2 @ X_1 ) ).
% gt_ex
thf(fact_940_gt__ex,axiom,
! [X2: int] :
? [X_1: int] : ( ord_less_int @ X2 @ X_1 ) ).
% gt_ex
thf(fact_941_gt__ex,axiom,
! [X2: real] :
? [X_1: real] : ( ord_less_real @ X2 @ X_1 ) ).
% gt_ex
thf(fact_942_lt__ex,axiom,
! [X2: int] :
? [Y3: int] : ( ord_less_int @ Y3 @ X2 ) ).
% lt_ex
thf(fact_943_lt__ex,axiom,
! [X2: real] :
? [Y3: real] : ( ord_less_real @ Y3 @ X2 ) ).
% lt_ex
thf(fact_944_mult__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_945_mult__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_946_mult__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_947_mult__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_948_bounded__Max__nat,axiom,
! [P: nat > $o,X2: nat,M5: nat] :
( ( P @ X2 )
=> ( ! [X3: nat] :
( ( P @ X3 )
=> ( ord_less_eq_nat @ X3 @ M5 ) )
=> ~ ! [M4: nat] :
( ( P @ M4 )
=> ~ ! [X5: nat] :
( ( P @ X5 )
=> ( ord_less_eq_nat @ X5 @ M4 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_949_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_950_kuhn__lemma,axiom,
! [P4: nat,N: nat,Label: ( nat > nat ) > nat > nat] :
( ( ord_less_nat @ zero_zero_nat @ P4 )
=> ( ! [X3: nat > nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ord_less_eq_nat @ ( X3 @ I3 ) @ P4 ) )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ( ( Label @ X3 @ I2 )
= zero_zero_nat )
| ( ( Label @ X3 @ I2 )
= one_one_nat ) ) ) )
=> ( ! [X3: nat > nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ord_less_eq_nat @ ( X3 @ I3 ) @ P4 ) )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ( ( X3 @ I2 )
= zero_zero_nat )
=> ( ( Label @ X3 @ I2 )
= zero_zero_nat ) ) ) )
=> ( ! [X3: nat > nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ord_less_eq_nat @ ( X3 @ I3 ) @ P4 ) )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ( ( X3 @ I2 )
= P4 )
=> ( ( Label @ X3 @ I2 )
= one_one_nat ) ) ) )
=> ~ ! [Q: nat > nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ord_less_nat @ ( Q @ I3 ) @ P4 ) )
=> ~ ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ? [R2: nat > nat] :
( ! [J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( ord_less_eq_nat @ ( Q @ J3 ) @ ( R2 @ J3 ) )
& ( ord_less_eq_nat @ ( R2 @ J3 ) @ ( plus_plus_nat @ ( Q @ J3 ) @ one_one_nat ) ) ) )
& ? [S2: nat > nat] :
( ! [J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( ord_less_eq_nat @ ( Q @ J3 ) @ ( S2 @ J3 ) )
& ( ord_less_eq_nat @ ( S2 @ J3 ) @ ( plus_plus_nat @ ( Q @ J3 ) @ one_one_nat ) ) ) )
& ( ( Label @ R2 @ I3 )
!= ( Label @ S2 @ I3 ) ) ) ) ) ) ) ) ) ) ).
% kuhn_lemma
thf(fact_951_verit__la__generic,axiom,
! [A: int,X2: int] :
( ( ord_less_eq_int @ A @ X2 )
| ( A = X2 )
| ( ord_less_eq_int @ X2 @ A ) ) ).
% verit_la_generic
thf(fact_952_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_953_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_954_int__one__le__iff__zero__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ one_one_int @ Z2 )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% int_one_le_iff_zero_less
thf(fact_955_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_956_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_957_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_958_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_959_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_960_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_961_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( K
!= ( semiri1314217659103216013at_int @ N3 ) ) ) ).
% nonneg_int_cases
thf(fact_962_kuhn__labelling__lemma_H,axiom,
! [P: ( nat > real ) > $o,F: ( nat > real ) > nat > real,Q2: nat > $o] :
( ! [X3: nat > real] :
( ( P @ X3 )
=> ( P @ ( F @ X3 ) ) )
=> ( ! [X3: nat > real] :
( ( P @ X3 )
=> ! [I2: nat] :
( ( Q2 @ I2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( X3 @ I2 ) )
& ( ord_less_eq_real @ ( X3 @ I2 ) @ one_one_real ) ) ) )
=> ? [L2: ( nat > real ) > nat > nat] :
( ! [X5: nat > real,I3: nat] : ( ord_less_eq_nat @ ( L2 @ X5 @ I3 ) @ one_one_nat )
& ! [X5: nat > real,I3: nat] :
( ( ( P @ X5 )
& ( Q2 @ I3 )
& ( ( X5 @ I3 )
= zero_zero_real ) )
=> ( ( L2 @ X5 @ I3 )
= zero_zero_nat ) )
& ! [X5: nat > real,I3: nat] :
( ( ( P @ X5 )
& ( Q2 @ I3 )
& ( ( X5 @ I3 )
= one_one_real ) )
=> ( ( L2 @ X5 @ I3 )
= one_one_nat ) )
& ! [X5: nat > real,I3: nat] :
( ( ( P @ X5 )
& ( Q2 @ I3 )
& ( ( L2 @ X5 @ I3 )
= zero_zero_nat ) )
=> ( ord_less_eq_real @ ( X5 @ I3 ) @ ( F @ X5 @ I3 ) ) )
& ! [X5: nat > real,I3: nat] :
( ( ( P @ X5 )
& ( Q2 @ I3 )
& ( ( L2 @ X5 @ I3 )
= one_one_nat ) )
=> ( ord_less_eq_real @ ( F @ X5 @ I3 ) @ ( X5 @ I3 ) ) ) ) ) ) ).
% kuhn_labelling_lemma'
thf(fact_963_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_964_odd__nonzero,axiom,
! [Z2: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_965_odd__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_966_le__imp__0__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).
% le_imp_0_less
thf(fact_967_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_968_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N3: nat] :
( ( ord_less_nat @ zero_zero_nat @ N3 )
& ( K
= ( semiri1314217659103216013at_int @ N3 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_969_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N3: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N3 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N3 ) ) ) ).
% pos_int_cases
thf(fact_970_incr__mult__lemma,axiom,
! [D2: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( plus_plus_int @ X3 @ D2 ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X5: int] :
( ( P @ X5 )
=> ( P @ ( plus_plus_int @ X5 @ ( times_times_int @ K @ D2 ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_971_sum__le__prod1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ one_one_real )
=> ( ( ord_less_eq_real @ B @ one_one_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ A @ B ) ) ) ) ) ).
% sum_le_prod1
thf(fact_972_conj__le__cong,axiom,
! [X2: int,X6: int,P: $o,P5: $o] :
( ( X2 = X6 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
=> ( P = P5 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X2 )
& P )
= ( ( ord_less_eq_int @ zero_zero_int @ X6 )
& P5 ) ) ) ) ).
% conj_le_cong
thf(fact_973_imp__le__cong,axiom,
! [X2: int,X6: int,P: $o,P5: $o] :
( ( X2 = X6 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
=> ( P = P5 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X2 )
=> P )
= ( ( ord_less_eq_int @ zero_zero_int @ X6 )
=> P5 ) ) ) ) ).
% imp_le_cong
thf(fact_974_real__of__nat__ge__one__iff,axiom,
! [N: nat] :
( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ one_one_nat @ N ) ) ).
% real_of_nat_ge_one_iff
thf(fact_975_real__archimedian__rdiv__eq__0,axiom,
! [X2: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ! [M4: nat] :
( ( ord_less_nat @ zero_zero_nat @ M4 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M4 ) @ X2 ) @ C ) )
=> ( X2 = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_976_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X: real,Y5: real] :
( ( ord_less_real @ X @ Y5 )
| ( X = Y5 ) ) ) ) ).
% less_eq_real_def
thf(fact_977_complete__real,axiom,
! [S3: set_real] :
( ? [X5: real] : ( member_real @ X5 @ S3 )
=> ( ? [Z5: real] :
! [X3: real] :
( ( member_real @ X3 @ S3 )
=> ( ord_less_eq_real @ X3 @ Z5 ) )
=> ? [Y3: real] :
( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ord_less_eq_real @ X5 @ Y3 ) )
& ! [Z5: real] :
( ! [X3: real] :
( ( member_real @ X3 @ S3 )
=> ( ord_less_eq_real @ X3 @ Z5 ) )
=> ( ord_less_eq_real @ Y3 @ Z5 ) ) ) ) ) ).
% complete_real
thf(fact_978_reals__Archimedean3,axiom,
! [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ! [Y4: real] :
? [N3: nat] : ( ord_less_real @ Y4 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N3 ) @ X2 ) ) ) ).
% reals_Archimedean3
thf(fact_979_nat__le__real__less,axiom,
( ord_less_eq_nat
= ( ^ [N2: nat,M2: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N2 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M2 ) @ one_one_real ) ) ) ) ).
% nat_le_real_less
thf(fact_980_nat__less__real__le,axiom,
( ord_less_nat
= ( ^ [N2: nat,M2: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N2 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M2 ) ) ) ) ).
% nat_less_real_le
thf(fact_981_not__real__square__gt__zero,axiom,
! [X2: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X2 @ X2 ) ) )
= ( X2 = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_982_square__bound__lemma,axiom,
! [X2: real] : ( ord_less_real @ X2 @ ( times_times_real @ ( plus_plus_real @ one_one_real @ X2 ) @ ( plus_plus_real @ one_one_real @ X2 ) ) ) ).
% square_bound_lemma
thf(fact_983_seq__mono__lemma,axiom,
! [M: nat,D2: nat > real,E: nat > real] :
( ! [N3: nat] :
( ( ord_less_eq_nat @ M @ N3 )
=> ( ord_less_real @ ( D2 @ N3 ) @ ( E @ N3 ) ) )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ M @ N3 )
=> ( ord_less_eq_real @ ( E @ N3 ) @ ( E @ M ) ) )
=> ! [N4: nat] :
( ( ord_less_eq_nat @ M @ N4 )
=> ( ord_less_real @ ( D2 @ N4 ) @ ( E @ M ) ) ) ) ) ).
% seq_mono_lemma
thf(fact_984_landau__o_OR__mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% landau_o.R_mult_left_mono
thf(fact_985_landau__o_OR__mult__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% landau_o.R_mult_right_mono
thf(fact_986_landau__o_OR__refl,axiom,
! [X2: real] : ( ord_less_eq_real @ X2 @ X2 ) ).
% landau_o.R_refl
thf(fact_987_landau__o_OR__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% landau_o.R_trans
thf(fact_988_landau__o_OR__linear,axiom,
! [X2: real,Y: real] :
( ~ ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_real @ Y @ X2 ) ) ).
% landau_o.R_linear
thf(fact_989_landau__omega_OR__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% landau_omega.R_trans
thf(fact_990_landau__omega_OR__linear,axiom,
! [Y: real,X2: real] :
( ~ ( ord_less_eq_real @ Y @ X2 )
=> ( ord_less_eq_real @ X2 @ Y ) ) ).
% landau_omega.R_linear
thf(fact_991_landau__o_OR,axiom,
( ( ord_less_eq_real = ord_less_eq_real )
| ( ord_less_eq_real
= ( ^ [X: real,Y5: real] : ( ord_less_eq_real @ Y5 @ X ) ) ) ) ).
% landau_o.R
thf(fact_992_landau__omega_OR,axiom,
( ( ( ^ [X: real,Y5: real] : ( ord_less_eq_real @ Y5 @ X ) )
= ord_less_eq_real )
| ( ( ^ [X: real,Y5: real] : ( ord_less_eq_real @ Y5 @ X ) )
= ( ^ [X: real,Y5: real] : ( ord_less_eq_real @ Y5 @ X ) ) ) ) ).
% landau_omega.R
thf(fact_993_landau__omega_OR__mult__right__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ B @ C ) @ ( times_times_real @ A @ C ) ) ) ) ).
% landau_omega.R_mult_right_mono
thf(fact_994_landau__omega_OR__mult__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ B ) @ ( times_times_real @ C @ A ) ) ) ) ).
% landau_omega.R_mult_left_mono
thf(fact_995_mult__mono__nonpos__nonpos,axiom,
! [C: real,A: real,D2: real,B: real] :
( ( ord_less_eq_real @ C @ A )
=> ( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ D2 @ B )
=> ( ( ord_less_eq_real @ D2 @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ C @ D2 ) ) ) ) ) ) ).
% mult_mono_nonpos_nonpos
thf(fact_996_size__char__eq__0,axiom,
( size_size_char
= ( ^ [C3: char] : zero_zero_nat ) ) ).
% size_char_eq_0
thf(fact_997_size_H__char__eq__0,axiom,
( size_char
= ( ^ [C3: char] : zero_zero_nat ) ) ).
% size'_char_eq_0
thf(fact_998_real__divl__pos__less1__bound,axiom,
! [X2: real,Prec: nat] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ord_less_eq_real @ one_one_real @ ( real_divl @ Prec @ one_one_real @ X2 ) ) ) ) ).
% real_divl_pos_less1_bound
thf(fact_999_real__divl__lower__bound,axiom,
! [X2: real,Y: real,Prec: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ zero_zero_real @ ( real_divl @ Prec @ X2 @ Y ) ) ) ) ).
% real_divl_lower_bound
thf(fact_1000_int_Olless__eq,axiom,
( ord_less_int
= ( ^ [X: int,Y5: int] :
( ( ord_less_eq_int @ X @ Y5 )
& ( X != Y5 ) ) ) ) ).
% int.lless_eq
thf(fact_1001_real__divr__pos__less1__lower__bound,axiom,
! [X2: real,Prec: nat] :
( ( ord_less_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ X2 @ one_one_real )
=> ( ord_less_eq_real @ one_one_real @ ( real_divr @ Prec @ one_one_real @ X2 ) ) ) ) ).
% real_divr_pos_less1_lower_bound
thf(fact_1002_real__divr__nonpos__pos__upper__bound,axiom,
! [X2: real,Y: real,Prec: nat] :
( ( ord_less_eq_real @ X2 @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ ( real_divr @ Prec @ X2 @ Y ) @ zero_zero_real ) ) ) ).
% real_divr_nonpos_pos_upper_bound
thf(fact_1003_real__divr__nonneg__neg__upper__bound,axiom,
! [X2: real,Y: real,Prec: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ ( real_divr @ Prec @ X2 @ Y ) @ zero_zero_real ) ) ) ).
% real_divr_nonneg_neg_upper_bound
thf(fact_1004_int_Ozero__not__one,axiom,
zero_zero_int != one_one_int ).
% int.zero_not_one
thf(fact_1005_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A5: nat,B5: nat] :
( ( P @ A5 @ B5 )
= ( P @ B5 @ A5 ) )
=> ( ! [A5: nat] : ( P @ A5 @ zero_zero_nat )
=> ( ! [A5: nat,B5: nat] :
( ( P @ A5 @ B5 )
=> ( P @ A5 @ ( plus_plus_nat @ A5 @ B5 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_1006_p__prime,axiom,
factor1801147406995305544me_nat @ ( frequency_Moment_p @ n ) ).
% p_prime
thf(fact_1007_int_Onat__pow__one,axiom,
! [N: nat] :
( ( power_power_int @ one_one_int @ N )
= one_one_int ) ).
% int.nat_pow_one
thf(fact_1008_nat__zero__less__power__iff,axiom,
! [X2: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X2 @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X2 )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_1009_int_Onat__pow__0,axiom,
! [X2: int] :
( ( power_power_int @ X2 @ zero_zero_nat )
= one_one_int ) ).
% int.nat_pow_0
thf(fact_1010_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_1011_real__arch__pow,axiom,
! [X2: real,Y: real] :
( ( ord_less_real @ one_one_real @ X2 )
=> ? [N3: nat] : ( ord_less_real @ Y @ ( power_power_real @ X2 @ N3 ) ) ) ).
% real_arch_pow
thf(fact_1012_int_Onat__pow__zero,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ).
% int.nat_pow_zero
thf(fact_1013_real__arch__pow__inv,axiom,
! [Y: real,X2: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X2 @ one_one_real )
=> ? [N3: nat] : ( ord_less_real @ ( power_power_real @ X2 @ N3 ) @ Y ) ) ) ).
% real_arch_pow_inv
thf(fact_1014_power__le__one__iff,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real )
= ( ( N = zero_zero_nat )
| ( ord_less_eq_real @ A @ one_one_real ) ) ) ) ).
% power_le_one_iff
thf(fact_1015_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
& ( ( power_power_real @ X3 @ N )
= A )
& ! [Y4: real] :
( ( ( ord_less_real @ zero_zero_real @ Y4 )
& ( ( power_power_real @ Y4 @ N )
= A ) )
=> ( Y4 = X3 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1016_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_1017_linear__plus__1__le__power,axiom,
! [X2: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X2 )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X2 ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X2 @ one_one_real ) @ N ) ) ) ).
% linear_plus_1_le_power
thf(fact_1018_prime__nat__int__transfer,axiom,
! [N: nat] :
( ( factor1798656936486255268me_int @ ( semiri1314217659103216013at_int @ N ) )
= ( factor1801147406995305544me_nat @ N ) ) ).
% prime_nat_int_transfer
thf(fact_1019_prime__ge__0__int,axiom,
! [P4: int] :
( ( factor1798656936486255268me_int @ P4 )
=> ( ord_less_eq_int @ zero_zero_int @ P4 ) ) ).
% prime_ge_0_int
thf(fact_1020_prime__ge__1__int,axiom,
! [P4: int] :
( ( factor1798656936486255268me_int @ P4 )
=> ( ord_less_eq_int @ one_one_int @ P4 ) ) ).
% prime_ge_1_int
thf(fact_1021_prime__gt__0__int,axiom,
! [P4: int] :
( ( factor1798656936486255268me_int @ P4 )
=> ( ord_less_int @ zero_zero_int @ P4 ) ) ).
% prime_gt_0_int
thf(fact_1022_prime__gt__1__int,axiom,
! [P4: int] :
( ( factor1798656936486255268me_int @ P4 )
=> ( ord_less_int @ one_one_int @ P4 ) ) ).
% prime_gt_1_int
thf(fact_1023_bigger__prime,axiom,
! [N: nat] :
? [P6: nat] :
( ( factor1801147406995305544me_nat @ P6 )
& ( ord_less_nat @ N @ P6 ) ) ).
% bigger_prime
thf(fact_1024_prime__gt__0__nat,axiom,
! [P4: nat] :
( ( factor1801147406995305544me_nat @ P4 )
=> ( ord_less_nat @ zero_zero_nat @ P4 ) ) ).
% prime_gt_0_nat
thf(fact_1025_prime__gt__1__nat,axiom,
! [P4: nat] :
( ( factor1801147406995305544me_nat @ P4 )
=> ( ord_less_nat @ one_one_nat @ P4 ) ) ).
% prime_gt_1_nat
thf(fact_1026_prime__ge__1__nat,axiom,
! [P4: nat] :
( ( factor1801147406995305544me_nat @ P4 )
=> ( ord_less_eq_nat @ one_one_nat @ P4 ) ) ).
% prime_ge_1_nat
thf(fact_1027_prime__product,axiom,
! [P4: nat,Q3: nat] :
( ( factor1801147406995305544me_nat @ ( times_times_nat @ P4 @ Q3 ) )
=> ( ( P4 = one_one_nat )
| ( Q3 = one_one_nat ) ) ) ).
% prime_product
thf(fact_1028_prime__power__exp__nat,axiom,
! [P4: nat,N: nat,X2: nat,K: nat] :
( ( factor1801147406995305544me_nat @ P4 )
=> ( ( N != zero_zero_nat )
=> ( ( ( power_power_nat @ X2 @ N )
= ( power_power_nat @ P4 @ K ) )
=> ? [I2: nat] :
( X2
= ( power_power_nat @ P4 @ I2 ) ) ) ) ) ).
% prime_power_exp_nat
thf(fact_1029_prime__power__mult__nat,axiom,
! [P4: nat,X2: nat,Y: nat,K: nat] :
( ( factor1801147406995305544me_nat @ P4 )
=> ( ( ( times_times_nat @ X2 @ Y )
= ( power_power_nat @ P4 @ K ) )
=> ? [I2: nat,J2: nat] :
( ( X2
= ( power_power_nat @ P4 @ I2 ) )
& ( Y
= ( power_power_nat @ P4 @ J2 ) ) ) ) ) ).
% prime_power_mult_nat
thf(fact_1030_not__prime__eq__prod__nat,axiom,
! [M: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ~ ( factor1801147406995305544me_nat @ M )
=> ? [N3: nat,K3: nat] :
( ( N3
= ( times_times_nat @ M @ K3 ) )
& ( ord_less_nat @ one_one_nat @ M )
& ( ord_less_nat @ M @ N3 )
& ( ord_less_nat @ one_one_nat @ K3 )
& ( ord_less_nat @ K3 @ N3 ) ) ) ) ).
% not_prime_eq_prod_nat
thf(fact_1031_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_1032_int__dvd__int__iff,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ).
% int_dvd_int_iff
thf(fact_1033_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_1034_prime__nat__iff,axiom,
( factor1801147406995305544me_nat
= ( ^ [N2: nat] :
( ( ord_less_nat @ one_one_nat @ N2 )
& ! [M2: nat] :
( ( dvd_dvd_nat @ M2 @ N2 )
=> ( ( M2 = one_one_nat )
| ( M2 = N2 ) ) ) ) ) ) ).
% prime_nat_iff
thf(fact_1035_prime__nat__not__dvd,axiom,
! [P4: nat,N: nat] :
( ( factor1801147406995305544me_nat @ P4 )
=> ( ( ord_less_nat @ N @ P4 )
=> ( ( N != one_one_nat )
=> ~ ( dvd_dvd_nat @ N @ P4 ) ) ) ) ).
% prime_nat_not_dvd
thf(fact_1036_prime__dvd__mult__int,axiom,
! [P4: int,A: int,B: int] :
( ( factor1798656936486255268me_int @ P4 )
=> ( ( dvd_dvd_int @ P4 @ ( times_times_int @ A @ B ) )
= ( ( dvd_dvd_int @ P4 @ A )
| ( dvd_dvd_int @ P4 @ B ) ) ) ) ).
% prime_dvd_mult_int
thf(fact_1037_prime__dvd__mult__nat,axiom,
! [P4: nat,A: nat,B: nat] :
( ( factor1801147406995305544me_nat @ P4 )
=> ( ( dvd_dvd_nat @ P4 @ ( times_times_nat @ A @ B ) )
= ( ( dvd_dvd_nat @ P4 @ A )
| ( dvd_dvd_nat @ P4 @ B ) ) ) ) ).
% prime_dvd_mult_nat
thf(fact_1038_prime__factor__nat,axiom,
! [N: nat] :
( ( N != one_one_nat )
=> ? [P6: nat] :
( ( factor1801147406995305544me_nat @ P6 )
& ( dvd_dvd_nat @ P6 @ N ) ) ) ).
% prime_factor_nat
thf(fact_1039_divides__primepow__nat,axiom,
! [P4: nat,D2: nat,K: nat] :
( ( factor1801147406995305544me_nat @ P4 )
=> ( ( dvd_dvd_nat @ D2 @ ( power_power_nat @ P4 @ K ) )
= ( ? [I4: nat] :
( ( ord_less_eq_nat @ I4 @ K )
& ( D2
= ( power_power_nat @ P4 @ I4 ) ) ) ) ) ) ).
% divides_primepow_nat
thf(fact_1040_zdvd__antisym__nonneg,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( dvd_dvd_int @ M @ N )
=> ( ( dvd_dvd_int @ N @ M )
=> ( M = N ) ) ) ) ) ).
% zdvd_antisym_nonneg
% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X2: nat,Y: nat] :
( ( if_nat @ $false @ X2 @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X2: nat,Y: nat] :
( ( if_nat @ $true @ X2 @ Y )
= X2 ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( groups4559388385066561235st_int
@ ( map_nat_int
@ ^ [Uu: nat] : ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( frequency_Moment_p @ n ) ) @ one_one_int )
@ as ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ ( size_size_list_nat @ as ) ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( frequency_Moment_p @ n ) ) @ one_one_int ) ) ) ).
%------------------------------------------------------------------------------