TPTP Problem File: SLH0263^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Median_Method/0000_Median/prob_00325_012119__14817918_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1360 ( 619 unt; 93 typ; 0 def)
% Number of atoms : 3559 (1114 equ; 0 cnn)
% Maximal formula atoms : 26 ( 2 avg)
% Number of connectives : 9442 ( 451 ~; 132 |; 158 &;7225 @)
% ( 0 <=>;1476 =>; 0 <=; 0 <~>)
% Maximal formula depth : 25 ( 6 avg)
% Number of types : 13 ( 12 usr)
% Number of type conns : 389 ( 389 >; 0 *; 0 +; 0 <<)
% Number of symbols : 84 ( 81 usr; 20 con; 0-3 aty)
% Number of variables : 3143 ( 195 ^;2796 !; 152 ?;3143 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 15:45:28.758
%------------------------------------------------------------------------------
% Could-be-implicit typings (12)
thf(ty_n_t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
numera4273646738625120315l_num1: $tType ).
thf(ty_n_t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
numera6367994245245682809l_num1: $tType ).
thf(ty_n_t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
numera2417102609627094330l_num1: $tType ).
thf(ty_n_t__Extended____Nonnegative____Real__Oennreal,type,
extend8495563244428889912nnreal: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Extended____Real__Oereal,type,
extended_ereal: $tType ).
thf(ty_n_t__Extended____Nat__Oenat,type,
extended_enat: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (81)
thf(sy_c_Bit__Operations_Oring__bit__operations__class_Osigned__take__bit_001t__Int__Oint,type,
bit_ri631733984087533419it_int: nat > int > int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
one_on7984719198319812577d_enat: extended_enat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nonnegative____Real__Oennreal,type,
one_on2969667320475766781nnreal: extend8495563244428889912nnreal ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Real__Oereal,type,
one_on4623092294121504201_ereal: extended_ereal ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
one_on7795324986448017462l_num1: numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
one_on3868389512446148991l_num1: numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
one_on7819281148064737470l_num1: numera6367994245245682809l_num1 ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nonnegative____Real__Oennreal,type,
plus_p1859984266308609217nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Extended____Real__Oereal,type,
uminus27091377158695749_ereal: extended_ereal > extended_ereal ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
uminus1336558196688952754l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
zero_z5237406670263579293d_enat: extended_enat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nonnegative____Real__Oennreal,type,
zero_z7100319975126383169nnreal: extend8495563244428889912nnreal ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Real__Oereal,type,
zero_z2744965634713055877_ereal: extended_ereal ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
zero_z2241845390563828978l_num1: numera4273646738625120315l_num1 ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_Int_Oring__1__class_Oof__int_001t__Real__Oreal,type,
ring_1_of_int_real: int > real ).
thf(sy_c_Nat__Bijection_Oset__decode,type,
nat_set_decode: nat > set_nat ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
neg_numeral_dbl_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
neg_nu5816564918971239084l_num1: numera4273646738625120315l_num1 > numera4273646738625120315l_num1 ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
neg_numeral_dbl_real: real > real ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OBit1,type,
bit1: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
numera1916890842035813515d_enat: num > extended_enat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nonnegative____Real__Oennreal,type,
numera4658534427948366547nnreal: num > extend8495563244428889912nnreal ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit0_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
numera7754357348821619680l_num1: num > numera4273646738625120315l_num1 ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
numera2161328050825114965l_num1: num > numera2417102609627094330l_num1 ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit1_It__Numeral____Type__Onum1_J,type,
numera6112219686443703444l_num1: num > numera6367994245245682809l_num1 ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Num_Opow,type,
pow: num > num > num ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nonnegative____Real__Oennreal,type,
ord_le7381754540660121996nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Real__Oereal,type,
ord_le1188267648640031866_ereal: extended_ereal > extended_ereal > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nonnegative____Real__Oennreal,type,
ord_le3935885782089961368nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Real__Oereal,type,
ord_le1083603963089353582_ereal: extended_ereal > extended_ereal > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
ord_less_eq_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
ord_less_eq_set_nat: set_nat > set_nat > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nonnegative____Real__Oennreal,type,
power_6007165696250533058nnreal: extend8495563244428889912nnreal > nat > extend8495563244428889912nnreal ).
thf(sy_c_Power_Opower__class_Opower_001t__Extended____Real__Oereal,type,
power_1054015426188190660_ereal: extended_ereal > nat > extended_ereal ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Extended____Nonnegative____Real__Oennreal,type,
divide4826598186094686858nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Extended____Real__Oereal,type,
divide8893690120176169980_ereal: extended_ereal > extended_ereal > extended_ereal ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Int__Oint,type,
divide_divide_int: int > int > int ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
divide_divide_nat: nat > nat > nat ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Int__Oint,type,
dvd_dvd_int: int > int > $o ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
modulo_modulo_int: int > int > int ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
modulo_modulo_nat: nat > nat > nat ).
thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
collect_nat: ( nat > $o ) > set_nat ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v_n,type,
n: nat ).
% Relevant facts (1261)
thf(fact_0_assms_I1_J,axiom,
ord_less_eq_nat @ one_one_nat @ n ).
% assms(1)
thf(fact_1_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_2_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_3_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_4_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_5_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_6_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_7_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( numeral_numeral_nat @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_8_numeral__Bit0__div__2,axiom,
! [N: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( numeral_numeral_int @ N ) ) ).
% numeral_Bit0_div_2
thf(fact_9_divide__numeral__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ ( numeral_numeral_real @ one ) )
= A ) ).
% divide_numeral_1
thf(fact_10_verit__eq__simplify_I8_J,axiom,
! [X2: num,Y2: num] :
( ( ( bit0 @ X2 )
= ( bit0 @ Y2 ) )
= ( X2 = Y2 ) ) ).
% verit_eq_simplify(8)
thf(fact_11_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_12_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numera1916890842035813515d_enat @ M )
= ( numera1916890842035813515d_enat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_13_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_14_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_15_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_16_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_17_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_18_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_19_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_20_verit__eq__simplify_I10_J,axiom,
! [X2: num] :
( one
!= ( bit0 @ X2 ) ) ).
% verit_eq_simplify(10)
thf(fact_21_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_22_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_23_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_24_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_25_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_26_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_27_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_on7984719198319812577d_enat
= ( numera1916890842035813515d_enat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_28_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_29_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_30_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_int
= ( numeral_numeral_int @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_31_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numera1916890842035813515d_enat @ N )
= one_on7984719198319812577d_enat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_32_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_33_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_34_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_int @ N )
= one_one_int )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_35_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_36_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_37_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_38_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_39_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_40_verit__comp__simplify1_I2_J,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_41_verit__comp__simplify1_I2_J,axiom,
! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_42_verit__comp__simplify1_I2_J,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_43_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_44_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_45_le__numeral__extra_I4_J,axiom,
ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat ).
% le_numeral_extra(4)
thf(fact_46_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_47_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_48_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_49_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_50_verit__la__disequality,axiom,
! [A: num,B: num] :
( ( A = B )
| ~ ( ord_less_eq_num @ A @ B )
| ~ ( ord_less_eq_num @ B @ A ) ) ).
% verit_la_disequality
thf(fact_51_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_52_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_53_one__le__numeral,axiom,
! [N: num] : ( ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) ) ).
% one_le_numeral
thf(fact_54_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ one_one_real @ ( numeral_numeral_real @ N ) ) ).
% one_le_numeral
thf(fact_55_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) ) ).
% one_le_numeral
thf(fact_56_one__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ one_one_int @ ( numeral_numeral_int @ N ) ) ).
% one_le_numeral
thf(fact_57_verit__comp__simplify1_I3_J,axiom,
! [B2: extended_enat,A2: extended_enat] :
( ( ~ ( ord_le2932123472753598470d_enat @ B2 @ A2 ) )
= ( ord_le72135733267957522d_enat @ A2 @ B2 ) ) ).
% verit_comp_simplify1(3)
thf(fact_58_verit__comp__simplify1_I3_J,axiom,
! [B2: real,A2: real] :
( ( ~ ( ord_less_eq_real @ B2 @ A2 ) )
= ( ord_less_real @ A2 @ B2 ) ) ).
% verit_comp_simplify1(3)
thf(fact_59_verit__comp__simplify1_I3_J,axiom,
! [B2: num,A2: num] :
( ( ~ ( ord_less_eq_num @ B2 @ A2 ) )
= ( ord_less_num @ A2 @ B2 ) ) ).
% verit_comp_simplify1(3)
thf(fact_60_verit__comp__simplify1_I3_J,axiom,
! [B2: nat,A2: nat] :
( ( ~ ( ord_less_eq_nat @ B2 @ A2 ) )
= ( ord_less_nat @ A2 @ B2 ) ) ).
% verit_comp_simplify1(3)
thf(fact_61_verit__comp__simplify1_I3_J,axiom,
! [B2: int,A2: int] :
( ( ~ ( ord_less_eq_int @ B2 @ A2 ) )
= ( ord_less_int @ A2 @ B2 ) ) ).
% verit_comp_simplify1(3)
thf(fact_62_less__numeral__extra_I4_J,axiom,
~ ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat ) ).
% less_numeral_extra(4)
thf(fact_63_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_64_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_65_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_66_verit__comp__simplify1_I1_J,axiom,
! [A: extended_enat] :
~ ( ord_le72135733267957522d_enat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_67_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_68_verit__comp__simplify1_I1_J,axiom,
! [A: num] :
~ ( ord_less_num @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_69_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_70_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_71_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat ) ).
% not_numeral_less_one
thf(fact_72_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ one_one_real ) ).
% not_numeral_less_one
thf(fact_73_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat ) ).
% not_numeral_less_one
thf(fact_74_not__numeral__less__one,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ one_one_int ) ).
% not_numeral_less_one
thf(fact_75_numeral__One,axiom,
( ( numera7754357348821619680l_num1 @ one )
= one_on7795324986448017462l_num1 ) ).
% numeral_One
thf(fact_76_numeral__One,axiom,
( ( numera1916890842035813515d_enat @ one )
= one_on7984719198319812577d_enat ) ).
% numeral_One
thf(fact_77_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_78_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_79_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_80_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_81_one__less__numeral,axiom,
! [N: num] :
( ( ord_le7381754540660121996nnreal @ one_on2969667320475766781nnreal @ ( numera4658534427948366547nnreal @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral
thf(fact_82_enat__ord__number_I2_J,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(2)
thf(fact_83_bits__div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% bits_div_by_1
thf(fact_84_bits__div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% bits_div_by_1
thf(fact_85_div__by__1,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ one_one_nat )
= A ) ).
% div_by_1
thf(fact_86_div__by__1,axiom,
! [A: int] :
( ( divide_divide_int @ A @ one_one_int )
= A ) ).
% div_by_1
thf(fact_87_div__by__1,axiom,
! [A: real] :
( ( divide_divide_real @ A @ one_one_real )
= A ) ).
% div_by_1
thf(fact_88_dbl__simps_I3_J,axiom,
( ( neg_nu5816564918971239084l_num1 @ one_on7795324986448017462l_num1 )
= ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_89_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_90_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_91_zdiv__numeral__Bit0,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit0 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit0
thf(fact_92_order__refl,axiom,
! [X: real] : ( ord_less_eq_real @ X @ X ) ).
% order_refl
thf(fact_93_order__refl,axiom,
! [X: set_nat] : ( ord_less_eq_set_nat @ X @ X ) ).
% order_refl
thf(fact_94_order__refl,axiom,
! [X: num] : ( ord_less_eq_num @ X @ X ) ).
% order_refl
thf(fact_95_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_96_order__refl,axiom,
! [X: int] : ( ord_less_eq_int @ X @ X ) ).
% order_refl
thf(fact_97_dual__order_Orefl,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% dual_order.refl
thf(fact_98_dual__order_Orefl,axiom,
! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).
% dual_order.refl
thf(fact_99_dual__order_Orefl,axiom,
! [A: num] : ( ord_less_eq_num @ A @ A ) ).
% dual_order.refl
thf(fact_100_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_101_dual__order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% dual_order.refl
thf(fact_102_log__induct,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N2 )
=> ( ( P @ ( divide_divide_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( P @ N2 ) ) )
=> ( P @ N ) ) ) ) ).
% log_induct
thf(fact_103_div__le__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).
% div_le_dividend
thf(fact_104_div__le__mono,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).
% div_le_mono
thf(fact_105_one__divide__one__divide__ennreal,axiom,
! [C: extend8495563244428889912nnreal] :
( ( divide4826598186094686858nnreal @ one_on2969667320475766781nnreal @ ( divide4826598186094686858nnreal @ one_on2969667320475766781nnreal @ C ) )
= C ) ).
% one_divide_one_divide_ennreal
thf(fact_106_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_107_mem__Collect__eq,axiom,
! [A: nat,P: nat > $o] :
( ( member_nat @ A @ ( collect_nat @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_108_Collect__mem__eq,axiom,
! [A3: set_real] :
( ( collect_real
@ ^ [X3: real] : ( member_real @ X3 @ A3 ) )
= A3 ) ).
% Collect_mem_eq
thf(fact_109_Collect__mem__eq,axiom,
! [A3: set_nat] :
( ( collect_nat
@ ^ [X3: nat] : ( member_nat @ X3 @ A3 ) )
= A3 ) ).
% Collect_mem_eq
thf(fact_110_le__zero__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% le_zero_eq
thf(fact_111_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_112_not__gr__zero,axiom,
! [N: extended_enat] :
( ( ~ ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% not_gr_zero
thf(fact_113_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_114_div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% div_0
thf(fact_115_div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% div_0
thf(fact_116_div__0,axiom,
! [A: real] :
( ( divide_divide_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% div_0
thf(fact_117_div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% div_by_0
thf(fact_118_div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% div_by_0
thf(fact_119_div__by__0,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% div_by_0
thf(fact_120_bits__div__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_div_0
thf(fact_121_bits__div__0,axiom,
! [A: int] :
( ( divide_divide_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_div_0
thf(fact_122_bits__div__by__0,axiom,
! [A: nat] :
( ( divide_divide_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% bits_div_by_0
thf(fact_123_bits__div__by__0,axiom,
! [A: int] :
( ( divide_divide_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% bits_div_by_0
thf(fact_124_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(71)
thf(fact_125_semiring__norm_I68_J,axiom,
! [N: num] : ( ord_less_eq_num @ one @ N ) ).
% semiring_norm(68)
thf(fact_126_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_real @ zero_zero_real )
= zero_zero_real ) ).
% dbl_simps(2)
thf(fact_127_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_int @ zero_zero_int )
= zero_zero_int ) ).
% dbl_simps(2)
thf(fact_128_div__self,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
=> ( ( divide_divide_nat @ A @ A )
= one_one_nat ) ) ).
% div_self
thf(fact_129_div__self,axiom,
! [A: int] :
( ( A != zero_zero_int )
=> ( ( divide_divide_int @ A @ A )
= one_one_int ) ) ).
% div_self
thf(fact_130_div__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% div_self
thf(fact_131_div__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( divide_divide_nat @ M @ N )
= zero_zero_nat ) ) ).
% div_less
thf(fact_132_semiring__norm_I69_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).
% semiring_norm(69)
thf(fact_133_enat__ord__number_I1_J,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(1)
thf(fact_134_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu5816564918971239084l_num1 @ ( numera7754357348821619680l_num1 @ K ) )
= ( numera7754357348821619680l_num1 @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_135_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_136_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_137_bits__1__div__2,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% bits_1_div_2
thf(fact_138_bits__1__div__2,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% bits_1_div_2
thf(fact_139_one__div__two__eq__zero,axiom,
( ( divide_divide_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% one_div_two_eq_zero
thf(fact_140_one__div__two__eq__zero,axiom,
( ( divide_divide_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% one_div_two_eq_zero
thf(fact_141_enat__less__induct,axiom,
! [P: extended_enat > $o,N: extended_enat] :
( ! [N2: extended_enat] :
( ! [M2: extended_enat] :
( ( ord_le72135733267957522d_enat @ M2 @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% enat_less_induct
thf(fact_142_zero__reorient,axiom,
! [X: extended_ereal] :
( ( zero_z2744965634713055877_ereal = X )
= ( X = zero_z2744965634713055877_ereal ) ) ).
% zero_reorient
thf(fact_143_zero__reorient,axiom,
! [X: extended_enat] :
( ( zero_z5237406670263579293d_enat = X )
= ( X = zero_z5237406670263579293d_enat ) ) ).
% zero_reorient
thf(fact_144_zero__reorient,axiom,
! [X: real] :
( ( zero_zero_real = X )
= ( X = zero_zero_real ) ) ).
% zero_reorient
thf(fact_145_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_146_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_147_zero__le,axiom,
! [X: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ X ) ).
% zero_le
thf(fact_148_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_149_gr__zeroI,axiom,
! [N: extended_enat] :
( ( N != zero_z5237406670263579293d_enat )
=> ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ).
% gr_zeroI
thf(fact_150_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_151_not__less__zero,axiom,
! [N: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).
% not_less_zero
thf(fact_152_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_153_gr__implies__not__zero,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ M @ N )
=> ( N != zero_z5237406670263579293d_enat ) ) ).
% gr_implies_not_zero
thf(fact_154_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_155_zero__less__iff__neq__zero,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
= ( N != zero_z5237406670263579293d_enat ) ) ).
% zero_less_iff_neq_zero
thf(fact_156_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_157_zero__neq__one,axiom,
zero_z2241845390563828978l_num1 != one_on7795324986448017462l_num1 ).
% zero_neq_one
thf(fact_158_zero__neq__one,axiom,
zero_z2744965634713055877_ereal != one_on4623092294121504201_ereal ).
% zero_neq_one
thf(fact_159_zero__neq__one,axiom,
zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).
% zero_neq_one
thf(fact_160_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_161_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_162_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_163_le__num__One__iff,axiom,
! [X: num] :
( ( ord_less_eq_num @ X @ one )
= ( X = one ) ) ).
% le_num_One_iff
thf(fact_164_le__numeral__extra_I3_J,axiom,
ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ zero_z5237406670263579293d_enat ).
% le_numeral_extra(3)
thf(fact_165_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_166_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_167_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_168_less__numeral__extra_I3_J,axiom,
~ ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ zero_z5237406670263579293d_enat ) ).
% less_numeral_extra(3)
thf(fact_169_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_170_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_171_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_172_zero__neq__numeral,axiom,
! [N: num] :
( zero_z5237406670263579293d_enat
!= ( numera1916890842035813515d_enat @ N ) ) ).
% zero_neq_numeral
thf(fact_173_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( numeral_numeral_real @ N ) ) ).
% zero_neq_numeral
thf(fact_174_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_nat
!= ( numeral_numeral_nat @ N ) ) ).
% zero_neq_numeral
thf(fact_175_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( numeral_numeral_int @ N ) ) ).
% zero_neq_numeral
thf(fact_176_not__one__le__zero,axiom,
~ ( ord_le2932123472753598470d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat ) ).
% not_one_le_zero
thf(fact_177_not__one__le__zero,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% not_one_le_zero
thf(fact_178_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_179_not__one__le__zero,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% not_one_le_zero
thf(fact_180_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_181_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_182_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_183_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_184_zero__less__one__class_Ozero__le__one,axiom,
ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat ).
% zero_less_one_class.zero_le_one
thf(fact_185_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% zero_less_one_class.zero_le_one
thf(fact_186_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_187_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% zero_less_one_class.zero_le_one
thf(fact_188_zero__less__one,axiom,
ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat ).
% zero_less_one
thf(fact_189_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_190_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_191_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_192_not__one__less__zero,axiom,
~ ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ zero_z5237406670263579293d_enat ) ).
% not_one_less_zero
thf(fact_193_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_194_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_195_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_196_Euclidean__Division_Odiv__eq__0__iff,axiom,
! [M: nat,N: nat] :
( ( ( divide_divide_nat @ M @ N )
= zero_zero_nat )
= ( ( ord_less_nat @ M @ N )
| ( N = zero_zero_nat ) ) ) ).
% Euclidean_Division.div_eq_0_iff
thf(fact_197_zero__le__numeral,axiom,
! [N: num] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ N ) ) ).
% zero_le_numeral
thf(fact_198_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_le_numeral
thf(fact_199_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_le_numeral
thf(fact_200_zero__le__numeral,axiom,
! [N: num] : ( ord_less_eq_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_le_numeral
thf(fact_201_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ N ) @ zero_z5237406670263579293d_enat ) ).
% not_numeral_le_zero
thf(fact_202_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_le_zero
thf(fact_203_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_le_zero
thf(fact_204_not__numeral__le__zero,axiom,
! [N: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_le_zero
thf(fact_205_less__numeral__extra_I1_J,axiom,
ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ one_on7984719198319812577d_enat ).
% less_numeral_extra(1)
thf(fact_206_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_207_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_208_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_209_zero__less__numeral,axiom,
! [N: num] : ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( numera1916890842035813515d_enat @ N ) ) ).
% zero_less_numeral
thf(fact_210_zero__less__numeral,axiom,
! [N: num] : ( ord_less_real @ zero_zero_real @ ( numeral_numeral_real @ N ) ) ).
% zero_less_numeral
thf(fact_211_zero__less__numeral,axiom,
! [N: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).
% zero_less_numeral
thf(fact_212_zero__less__numeral,axiom,
! [N: num] : ( ord_less_int @ zero_zero_int @ ( numeral_numeral_int @ N ) ) ).
% zero_less_numeral
thf(fact_213_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ N ) @ zero_z5237406670263579293d_enat ) ).
% not_numeral_less_zero
thf(fact_214_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ N ) @ zero_zero_real ) ).
% not_numeral_less_zero
thf(fact_215_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).
% not_numeral_less_zero
thf(fact_216_not__numeral__less__zero,axiom,
! [N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ N ) @ zero_zero_int ) ).
% not_numeral_less_zero
thf(fact_217_div__le__mono2,axiom,
! [M: nat,N: nat,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).
% div_le_mono2
thf(fact_218_div__greater__zero__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ N @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% div_greater_zero_iff
thf(fact_219_div__less__dividend,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ one_one_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).
% div_less_dividend
thf(fact_220_div__eq__dividend__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ( divide_divide_nat @ M @ N )
= M )
= ( N = one_one_nat ) ) ) ).
% div_eq_dividend_iff
thf(fact_221_order__antisym__conv,axiom,
! [Y: real,X: real] :
( ( ord_less_eq_real @ Y @ X )
=> ( ( ord_less_eq_real @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_222_order__antisym__conv,axiom,
! [Y: set_nat,X: set_nat] :
( ( ord_less_eq_set_nat @ Y @ X )
=> ( ( ord_less_eq_set_nat @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_223_order__antisym__conv,axiom,
! [Y: num,X: num] :
( ( ord_less_eq_num @ Y @ X )
=> ( ( ord_less_eq_num @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_224_order__antisym__conv,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( ord_less_eq_nat @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_225_order__antisym__conv,axiom,
! [Y: int,X: int] :
( ( ord_less_eq_int @ Y @ X )
=> ( ( ord_less_eq_int @ X @ Y )
= ( X = Y ) ) ) ).
% order_antisym_conv
thf(fact_226_linorder__le__cases,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_eq_real @ X @ Y )
=> ( ord_less_eq_real @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_227_linorder__le__cases,axiom,
! [X: num,Y: num] :
( ~ ( ord_less_eq_num @ X @ Y )
=> ( ord_less_eq_num @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_228_linorder__le__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_eq_nat @ X @ Y )
=> ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_229_linorder__le__cases,axiom,
! [X: int,Y: int] :
( ~ ( ord_less_eq_int @ X @ Y )
=> ( ord_less_eq_int @ Y @ X ) ) ).
% linorder_le_cases
thf(fact_230_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_231_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_232_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_233_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_234_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_235_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_236_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_237_ord__le__eq__subst,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_238_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_eq_nat @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_239_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > num,C: num] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_eq_nat @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_240_ord__eq__le__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_241_ord__eq__le__subst,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_242_ord__eq__le__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_243_ord__eq__le__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_244_ord__eq__le__subst,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_245_ord__eq__le__subst,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_246_ord__eq__le__subst,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_247_ord__eq__le__subst,axiom,
! [A: int,F: num > int,B: num,C: num] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_248_ord__eq__le__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_eq_nat @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_249_ord__eq__le__subst,axiom,
! [A: num,F: nat > num,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_eq_nat @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_250_linorder__linear,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
| ( ord_less_eq_real @ Y @ X ) ) ).
% linorder_linear
thf(fact_251_linorder__linear,axiom,
! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
| ( ord_less_eq_num @ Y @ X ) ) ).
% linorder_linear
thf(fact_252_linorder__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
| ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_linear
thf(fact_253_linorder__linear,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
| ( ord_less_eq_int @ Y @ X ) ) ).
% linorder_linear
thf(fact_254_order__eq__refl,axiom,
! [X: real,Y: real] :
( ( X = Y )
=> ( ord_less_eq_real @ X @ Y ) ) ).
% order_eq_refl
thf(fact_255_order__eq__refl,axiom,
! [X: set_nat,Y: set_nat] :
( ( X = Y )
=> ( ord_less_eq_set_nat @ X @ Y ) ) ).
% order_eq_refl
thf(fact_256_order__eq__refl,axiom,
! [X: num,Y: num] :
( ( X = Y )
=> ( ord_less_eq_num @ X @ Y ) ) ).
% order_eq_refl
thf(fact_257_order__eq__refl,axiom,
! [X: nat,Y: nat] :
( ( X = Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ).
% order_eq_refl
thf(fact_258_order__eq__refl,axiom,
! [X: int,Y: int] :
( ( X = Y )
=> ( ord_less_eq_int @ X @ Y ) ) ).
% order_eq_refl
thf(fact_259_order__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_260_order__subst2,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_261_order__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_262_order__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_263_order__subst2,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_264_order__subst2,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_265_order__subst2,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_266_order__subst2,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_267_order__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_eq_nat @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_268_order__subst2,axiom,
! [A: nat,B: nat,F: nat > num,C: num] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_num @ ( F @ B ) @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_eq_nat @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_269_order__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_270_order__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_271_order__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_eq_nat @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_272_order__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X4: int,Y3: int] :
( ( ord_less_eq_int @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_273_order__subst1,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_274_order__subst1,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_275_order__subst1,axiom,
! [A: num,F: nat > num,B: nat,C: nat] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_eq_nat @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_276_order__subst1,axiom,
! [A: num,F: int > num,B: int,C: int] :
( ( ord_less_eq_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X4: int,Y3: int] :
( ( ord_less_eq_int @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_277_order__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_278_order__subst1,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_279_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
= ( ^ [A4: real,B3: real] :
( ( ord_less_eq_real @ A4 @ B3 )
& ( ord_less_eq_real @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_280_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: set_nat,Z: set_nat] : ( Y4 = Z ) )
= ( ^ [A4: set_nat,B3: set_nat] :
( ( ord_less_eq_set_nat @ A4 @ B3 )
& ( ord_less_eq_set_nat @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_281_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: num,Z: num] : ( Y4 = Z ) )
= ( ^ [A4: num,B3: num] :
( ( ord_less_eq_num @ A4 @ B3 )
& ( ord_less_eq_num @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_282_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ A4 @ B3 )
& ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_283_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [A4: int,B3: int] :
( ( ord_less_eq_int @ A4 @ B3 )
& ( ord_less_eq_int @ B3 @ A4 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_284_antisym,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_285_antisym,axiom,
! [A: set_nat,B: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( ord_less_eq_set_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_286_antisym,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_287_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_288_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_289_dual__order_Otrans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_290_dual__order_Otrans,axiom,
! [B: set_nat,A: set_nat,C: set_nat] :
( ( ord_less_eq_set_nat @ B @ A )
=> ( ( ord_less_eq_set_nat @ C @ B )
=> ( ord_less_eq_set_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_291_dual__order_Otrans,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ B )
=> ( ord_less_eq_num @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_292_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_293_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_294_dual__order_Oantisym,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_295_dual__order_Oantisym,axiom,
! [B: set_nat,A: set_nat] :
( ( ord_less_eq_set_nat @ B @ A )
=> ( ( ord_less_eq_set_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_296_dual__order_Oantisym,axiom,
! [B: num,A: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_eq_num @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_297_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_298_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_299_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
= ( ^ [A4: real,B3: real] :
( ( ord_less_eq_real @ B3 @ A4 )
& ( ord_less_eq_real @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_300_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: set_nat,Z: set_nat] : ( Y4 = Z ) )
= ( ^ [A4: set_nat,B3: set_nat] :
( ( ord_less_eq_set_nat @ B3 @ A4 )
& ( ord_less_eq_set_nat @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_301_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: num,Z: num] : ( Y4 = Z ) )
= ( ^ [A4: num,B3: num] :
( ( ord_less_eq_num @ B3 @ A4 )
& ( ord_less_eq_num @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_302_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ B3 @ A4 )
& ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_303_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [A4: int,B3: int] :
( ( ord_less_eq_int @ B3 @ A4 )
& ( ord_less_eq_int @ A4 @ B3 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_304_linorder__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A5: real,B4: real] :
( ( ord_less_eq_real @ A5 @ B4 )
=> ( P @ A5 @ B4 ) )
=> ( ! [A5: real,B4: real] :
( ( P @ B4 @ A5 )
=> ( P @ A5 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_305_linorder__wlog,axiom,
! [P: num > num > $o,A: num,B: num] :
( ! [A5: num,B4: num] :
( ( ord_less_eq_num @ A5 @ B4 )
=> ( P @ A5 @ B4 ) )
=> ( ! [A5: num,B4: num] :
( ( P @ B4 @ A5 )
=> ( P @ A5 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_306_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A5: nat,B4: nat] :
( ( ord_less_eq_nat @ A5 @ B4 )
=> ( P @ A5 @ B4 ) )
=> ( ! [A5: nat,B4: nat] :
( ( P @ B4 @ A5 )
=> ( P @ A5 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_307_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A5: int,B4: int] :
( ( ord_less_eq_int @ A5 @ B4 )
=> ( P @ A5 @ B4 ) )
=> ( ! [A5: int,B4: int] :
( ( P @ B4 @ A5 )
=> ( P @ A5 @ B4 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_308_order__trans,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_eq_real @ Y @ Z2 )
=> ( ord_less_eq_real @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_309_order__trans,axiom,
! [X: set_nat,Y: set_nat,Z2: set_nat] :
( ( ord_less_eq_set_nat @ X @ Y )
=> ( ( ord_less_eq_set_nat @ Y @ Z2 )
=> ( ord_less_eq_set_nat @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_310_order__trans,axiom,
! [X: num,Y: num,Z2: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ( ord_less_eq_num @ Y @ Z2 )
=> ( ord_less_eq_num @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_311_order__trans,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z2 )
=> ( ord_less_eq_nat @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_312_order__trans,axiom,
! [X: int,Y: int,Z2: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_eq_int @ Y @ Z2 )
=> ( ord_less_eq_int @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_313_order_Otrans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% order.trans
thf(fact_314_order_Otrans,axiom,
! [A: set_nat,B: set_nat,C: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( ord_less_eq_set_nat @ B @ C )
=> ( ord_less_eq_set_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_315_order_Otrans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% order.trans
thf(fact_316_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_317_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_318_order__antisym,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_eq_real @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_319_order__antisym,axiom,
! [X: set_nat,Y: set_nat] :
( ( ord_less_eq_set_nat @ X @ Y )
=> ( ( ord_less_eq_set_nat @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_320_order__antisym,axiom,
! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ( ord_less_eq_num @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_321_order__antisym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_322_order__antisym,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_eq_int @ Y @ X )
=> ( X = Y ) ) ) ).
% order_antisym
thf(fact_323_ord__le__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_324_ord__le__eq__trans,axiom,
! [A: set_nat,B: set_nat,C: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_set_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_325_ord__le__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_326_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_327_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_328_ord__eq__le__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_329_ord__eq__le__trans,axiom,
! [A: set_nat,B: set_nat,C: set_nat] :
( ( A = B )
=> ( ( ord_less_eq_set_nat @ B @ C )
=> ( ord_less_eq_set_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_330_ord__eq__le__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_eq_num @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_331_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_332_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_333_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
= ( ^ [X3: real,Y5: real] :
( ( ord_less_eq_real @ X3 @ Y5 )
& ( ord_less_eq_real @ Y5 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_334_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: set_nat,Z: set_nat] : ( Y4 = Z ) )
= ( ^ [X3: set_nat,Y5: set_nat] :
( ( ord_less_eq_set_nat @ X3 @ Y5 )
& ( ord_less_eq_set_nat @ Y5 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_335_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: num,Z: num] : ( Y4 = Z ) )
= ( ^ [X3: num,Y5: num] :
( ( ord_less_eq_num @ X3 @ Y5 )
& ( ord_less_eq_num @ Y5 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_336_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
= ( ^ [X3: nat,Y5: nat] :
( ( ord_less_eq_nat @ X3 @ Y5 )
& ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_337_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z: int] : ( Y4 = Z ) )
= ( ^ [X3: int,Y5: int] :
( ( ord_less_eq_int @ X3 @ Y5 )
& ( ord_less_eq_int @ Y5 @ X3 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_338_le__cases3,axiom,
! [X: real,Y: real,Z2: real] :
( ( ( ord_less_eq_real @ X @ Y )
=> ~ ( ord_less_eq_real @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_real @ Y @ X )
=> ~ ( ord_less_eq_real @ X @ Z2 ) )
=> ( ( ( ord_less_eq_real @ X @ Z2 )
=> ~ ( ord_less_eq_real @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_real @ Z2 @ Y )
=> ~ ( ord_less_eq_real @ Y @ X ) )
=> ( ( ( ord_less_eq_real @ Y @ Z2 )
=> ~ ( ord_less_eq_real @ Z2 @ X ) )
=> ~ ( ( ord_less_eq_real @ Z2 @ X )
=> ~ ( ord_less_eq_real @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_339_le__cases3,axiom,
! [X: num,Y: num,Z2: num] :
( ( ( ord_less_eq_num @ X @ Y )
=> ~ ( ord_less_eq_num @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_num @ Y @ X )
=> ~ ( ord_less_eq_num @ X @ Z2 ) )
=> ( ( ( ord_less_eq_num @ X @ Z2 )
=> ~ ( ord_less_eq_num @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_num @ Z2 @ Y )
=> ~ ( ord_less_eq_num @ Y @ X ) )
=> ( ( ( ord_less_eq_num @ Y @ Z2 )
=> ~ ( ord_less_eq_num @ Z2 @ X ) )
=> ~ ( ( ord_less_eq_num @ Z2 @ X )
=> ~ ( ord_less_eq_num @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_340_le__cases3,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ( ord_less_eq_nat @ X @ Y )
=> ~ ( ord_less_eq_nat @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ Y @ X )
=> ~ ( ord_less_eq_nat @ X @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ X @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_nat @ Z2 @ Y )
=> ~ ( ord_less_eq_nat @ Y @ X ) )
=> ( ( ( ord_less_eq_nat @ Y @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ X ) )
=> ~ ( ( ord_less_eq_nat @ Z2 @ X )
=> ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_341_le__cases3,axiom,
! [X: int,Y: int,Z2: int] :
( ( ( ord_less_eq_int @ X @ Y )
=> ~ ( ord_less_eq_int @ Y @ Z2 ) )
=> ( ( ( ord_less_eq_int @ Y @ X )
=> ~ ( ord_less_eq_int @ X @ Z2 ) )
=> ( ( ( ord_less_eq_int @ X @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ Y ) )
=> ( ( ( ord_less_eq_int @ Z2 @ Y )
=> ~ ( ord_less_eq_int @ Y @ X ) )
=> ( ( ( ord_less_eq_int @ Y @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ X ) )
=> ~ ( ( ord_less_eq_int @ Z2 @ X )
=> ~ ( ord_less_eq_int @ X @ Y ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_342_nle__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_eq_real @ A @ B ) )
= ( ( ord_less_eq_real @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_343_nle__le,axiom,
! [A: num,B: num] :
( ( ~ ( ord_less_eq_num @ A @ B ) )
= ( ( ord_less_eq_num @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_344_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_345_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_346_lt__ex,axiom,
! [X: real] :
? [Y3: real] : ( ord_less_real @ Y3 @ X ) ).
% lt_ex
thf(fact_347_lt__ex,axiom,
! [X: int] :
? [Y3: int] : ( ord_less_int @ Y3 @ X ) ).
% lt_ex
thf(fact_348_gt__ex,axiom,
! [X: real] :
? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).
% gt_ex
thf(fact_349_gt__ex,axiom,
! [X: nat] :
? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).
% gt_ex
thf(fact_350_gt__ex,axiom,
! [X: int] :
? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).
% gt_ex
thf(fact_351_dense,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ? [Z3: real] :
( ( ord_less_real @ X @ Z3 )
& ( ord_less_real @ Z3 @ Y ) ) ) ).
% dense
thf(fact_352_less__imp__neq,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_353_less__imp__neq,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_354_less__imp__neq,axiom,
! [X: num,Y: num] :
( ( ord_less_num @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_355_less__imp__neq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_356_less__imp__neq,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ( X != Y ) ) ).
% less_imp_neq
thf(fact_357_order_Oasym,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ~ ( ord_le72135733267957522d_enat @ B @ A ) ) ).
% order.asym
thf(fact_358_order_Oasym,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order.asym
thf(fact_359_order_Oasym,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ~ ( ord_less_num @ B @ A ) ) ).
% order.asym
thf(fact_360_order_Oasym,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order.asym
thf(fact_361_order_Oasym,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order.asym
thf(fact_362_ord__eq__less__trans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( A = B )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_363_ord__eq__less__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_364_ord__eq__less__trans,axiom,
! [A: num,B: num,C: num] :
( ( A = B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_365_ord__eq__less__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_366_ord__eq__less__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_367_ord__less__eq__trans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( B = C )
=> ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_368_ord__less__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_369_ord__less__eq__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( B = C )
=> ( ord_less_num @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_370_ord__less__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_371_ord__less__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_372_less__induct,axiom,
! [P: extended_enat > $o,A: extended_enat] :
( ! [X4: extended_enat] :
( ! [Y6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Y6 @ X4 )
=> ( P @ Y6 ) )
=> ( P @ X4 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_373_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X4: nat] :
( ! [Y6: nat] :
( ( ord_less_nat @ Y6 @ X4 )
=> ( P @ Y6 ) )
=> ( P @ X4 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_374_antisym__conv3,axiom,
! [Y: extended_enat,X: extended_enat] :
( ~ ( ord_le72135733267957522d_enat @ Y @ X )
=> ( ( ~ ( ord_le72135733267957522d_enat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_375_antisym__conv3,axiom,
! [Y: real,X: real] :
( ~ ( ord_less_real @ Y @ X )
=> ( ( ~ ( ord_less_real @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_376_antisym__conv3,axiom,
! [Y: num,X: num] :
( ~ ( ord_less_num @ Y @ X )
=> ( ( ~ ( ord_less_num @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_377_antisym__conv3,axiom,
! [Y: nat,X: nat] :
( ~ ( ord_less_nat @ Y @ X )
=> ( ( ~ ( ord_less_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_378_antisym__conv3,axiom,
! [Y: int,X: int] :
( ~ ( ord_less_int @ Y @ X )
=> ( ( ~ ( ord_less_int @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv3
thf(fact_379_linorder__cases,axiom,
! [X: extended_enat,Y: extended_enat] :
( ~ ( ord_le72135733267957522d_enat @ X @ Y )
=> ( ( X != Y )
=> ( ord_le72135733267957522d_enat @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_380_linorder__cases,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_real @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_real @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_381_linorder__cases,axiom,
! [X: num,Y: num] :
( ~ ( ord_less_num @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_num @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_382_linorder__cases,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_383_linorder__cases,axiom,
! [X: int,Y: int] :
( ~ ( ord_less_int @ X @ Y )
=> ( ( X != Y )
=> ( ord_less_int @ Y @ X ) ) ) ).
% linorder_cases
thf(fact_384_dual__order_Oasym,axiom,
! [B: extended_enat,A: extended_enat] :
( ( ord_le72135733267957522d_enat @ B @ A )
=> ~ ( ord_le72135733267957522d_enat @ A @ B ) ) ).
% dual_order.asym
thf(fact_385_dual__order_Oasym,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ A @ B ) ) ).
% dual_order.asym
thf(fact_386_dual__order_Oasym,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ~ ( ord_less_num @ A @ B ) ) ).
% dual_order.asym
thf(fact_387_dual__order_Oasym,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ A @ B ) ) ).
% dual_order.asym
thf(fact_388_dual__order_Oasym,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ A @ B ) ) ).
% dual_order.asym
thf(fact_389_dual__order_Oirrefl,axiom,
! [A: extended_enat] :
~ ( ord_le72135733267957522d_enat @ A @ A ) ).
% dual_order.irrefl
thf(fact_390_dual__order_Oirrefl,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% dual_order.irrefl
thf(fact_391_dual__order_Oirrefl,axiom,
! [A: num] :
~ ( ord_less_num @ A @ A ) ).
% dual_order.irrefl
thf(fact_392_dual__order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% dual_order.irrefl
thf(fact_393_dual__order_Oirrefl,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% dual_order.irrefl
thf(fact_394_exists__least__iff,axiom,
( ( ^ [P2: extended_enat > $o] :
? [X5: extended_enat] : ( P2 @ X5 ) )
= ( ^ [P3: extended_enat > $o] :
? [N3: extended_enat] :
( ( P3 @ N3 )
& ! [M3: extended_enat] :
( ( ord_le72135733267957522d_enat @ M3 @ N3 )
=> ~ ( P3 @ M3 ) ) ) ) ) ).
% exists_least_iff
thf(fact_395_exists__least__iff,axiom,
( ( ^ [P2: nat > $o] :
? [X5: nat] : ( P2 @ X5 ) )
= ( ^ [P3: nat > $o] :
? [N3: nat] :
( ( P3 @ N3 )
& ! [M3: nat] :
( ( ord_less_nat @ M3 @ N3 )
=> ~ ( P3 @ M3 ) ) ) ) ) ).
% exists_least_iff
thf(fact_396_linorder__less__wlog,axiom,
! [P: extended_enat > extended_enat > $o,A: extended_enat,B: extended_enat] :
( ! [A5: extended_enat,B4: extended_enat] :
( ( ord_le72135733267957522d_enat @ A5 @ B4 )
=> ( P @ A5 @ B4 ) )
=> ( ! [A5: extended_enat] : ( P @ A5 @ A5 )
=> ( ! [A5: extended_enat,B4: extended_enat] :
( ( P @ B4 @ A5 )
=> ( P @ A5 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_397_linorder__less__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A5: real,B4: real] :
( ( ord_less_real @ A5 @ B4 )
=> ( P @ A5 @ B4 ) )
=> ( ! [A5: real] : ( P @ A5 @ A5 )
=> ( ! [A5: real,B4: real] :
( ( P @ B4 @ A5 )
=> ( P @ A5 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_398_linorder__less__wlog,axiom,
! [P: num > num > $o,A: num,B: num] :
( ! [A5: num,B4: num] :
( ( ord_less_num @ A5 @ B4 )
=> ( P @ A5 @ B4 ) )
=> ( ! [A5: num] : ( P @ A5 @ A5 )
=> ( ! [A5: num,B4: num] :
( ( P @ B4 @ A5 )
=> ( P @ A5 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_399_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A5: nat,B4: nat] :
( ( ord_less_nat @ A5 @ B4 )
=> ( P @ A5 @ B4 ) )
=> ( ! [A5: nat] : ( P @ A5 @ A5 )
=> ( ! [A5: nat,B4: nat] :
( ( P @ B4 @ A5 )
=> ( P @ A5 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_400_linorder__less__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A5: int,B4: int] :
( ( ord_less_int @ A5 @ B4 )
=> ( P @ A5 @ B4 ) )
=> ( ! [A5: int] : ( P @ A5 @ A5 )
=> ( ! [A5: int,B4: int] :
( ( P @ B4 @ A5 )
=> ( P @ A5 @ B4 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_401_order_Ostrict__trans,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_402_order_Ostrict__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_403_order_Ostrict__trans,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_404_order_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_405_order_Ostrict__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_406_not__less__iff__gr__or__eq,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ~ ( ord_le72135733267957522d_enat @ X @ Y ) )
= ( ( ord_le72135733267957522d_enat @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_407_not__less__iff__gr__or__eq,axiom,
! [X: real,Y: real] :
( ( ~ ( ord_less_real @ X @ Y ) )
= ( ( ord_less_real @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_408_not__less__iff__gr__or__eq,axiom,
! [X: num,Y: num] :
( ( ~ ( ord_less_num @ X @ Y ) )
= ( ( ord_less_num @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_409_not__less__iff__gr__or__eq,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X @ Y ) )
= ( ( ord_less_nat @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_410_not__less__iff__gr__or__eq,axiom,
! [X: int,Y: int] :
( ( ~ ( ord_less_int @ X @ Y ) )
= ( ( ord_less_int @ Y @ X )
| ( X = Y ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_411_dual__order_Ostrict__trans,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( ord_le72135733267957522d_enat @ B @ A )
=> ( ( ord_le72135733267957522d_enat @ C @ B )
=> ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_412_dual__order_Ostrict__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_413_dual__order_Ostrict__trans,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_num @ B @ A )
=> ( ( ord_less_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_414_dual__order_Ostrict__trans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_415_dual__order_Ostrict__trans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_416_order_Ostrict__implies__not__eq,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_417_order_Ostrict__implies__not__eq,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_418_order_Ostrict__implies__not__eq,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_419_order_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_420_order_Ostrict__implies__not__eq,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_421_dual__order_Ostrict__implies__not__eq,axiom,
! [B: extended_enat,A: extended_enat] :
( ( ord_le72135733267957522d_enat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_422_dual__order_Ostrict__implies__not__eq,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_423_dual__order_Ostrict__implies__not__eq,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_424_dual__order_Ostrict__implies__not__eq,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_425_dual__order_Ostrict__implies__not__eq,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_426_linorder__neqE__linordered__idom,axiom,
! [X: real,Y: real] :
( ( X != Y )
=> ( ~ ( ord_less_real @ X @ Y )
=> ( ord_less_real @ Y @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_427_linorder__neqE__linordered__idom,axiom,
! [X: int,Y: int] :
( ( X != Y )
=> ( ~ ( ord_less_int @ X @ Y )
=> ( ord_less_int @ Y @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_428_linorder__neqE,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( X != Y )
=> ( ~ ( ord_le72135733267957522d_enat @ X @ Y )
=> ( ord_le72135733267957522d_enat @ Y @ X ) ) ) ).
% linorder_neqE
thf(fact_429_linorder__neqE,axiom,
! [X: real,Y: real] :
( ( X != Y )
=> ( ~ ( ord_less_real @ X @ Y )
=> ( ord_less_real @ Y @ X ) ) ) ).
% linorder_neqE
thf(fact_430_linorder__neqE,axiom,
! [X: num,Y: num] :
( ( X != Y )
=> ( ~ ( ord_less_num @ X @ Y )
=> ( ord_less_num @ Y @ X ) ) ) ).
% linorder_neqE
thf(fact_431_linorder__neqE,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE
thf(fact_432_linorder__neqE,axiom,
! [X: int,Y: int] :
( ( X != Y )
=> ( ~ ( ord_less_int @ X @ Y )
=> ( ord_less_int @ Y @ X ) ) ) ).
% linorder_neqE
thf(fact_433_order__less__asym,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ~ ( ord_le72135733267957522d_enat @ Y @ X ) ) ).
% order_less_asym
thf(fact_434_order__less__asym,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ~ ( ord_less_real @ Y @ X ) ) ).
% order_less_asym
thf(fact_435_order__less__asym,axiom,
! [X: num,Y: num] :
( ( ord_less_num @ X @ Y )
=> ~ ( ord_less_num @ Y @ X ) ) ).
% order_less_asym
thf(fact_436_order__less__asym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_asym
thf(fact_437_order__less__asym,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ~ ( ord_less_int @ Y @ X ) ) ).
% order_less_asym
thf(fact_438_linorder__neq__iff,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( X != Y )
= ( ( ord_le72135733267957522d_enat @ X @ Y )
| ( ord_le72135733267957522d_enat @ Y @ X ) ) ) ).
% linorder_neq_iff
thf(fact_439_linorder__neq__iff,axiom,
! [X: real,Y: real] :
( ( X != Y )
= ( ( ord_less_real @ X @ Y )
| ( ord_less_real @ Y @ X ) ) ) ).
% linorder_neq_iff
thf(fact_440_linorder__neq__iff,axiom,
! [X: num,Y: num] :
( ( X != Y )
= ( ( ord_less_num @ X @ Y )
| ( ord_less_num @ Y @ X ) ) ) ).
% linorder_neq_iff
thf(fact_441_linorder__neq__iff,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
= ( ( ord_less_nat @ X @ Y )
| ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neq_iff
thf(fact_442_linorder__neq__iff,axiom,
! [X: int,Y: int] :
( ( X != Y )
= ( ( ord_less_int @ X @ Y )
| ( ord_less_int @ Y @ X ) ) ) ).
% linorder_neq_iff
thf(fact_443_order__less__asym_H,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ~ ( ord_le72135733267957522d_enat @ B @ A ) ) ).
% order_less_asym'
thf(fact_444_order__less__asym_H,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order_less_asym'
thf(fact_445_order__less__asym_H,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ~ ( ord_less_num @ B @ A ) ) ).
% order_less_asym'
thf(fact_446_order__less__asym_H,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order_less_asym'
thf(fact_447_order__less__asym_H,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order_less_asym'
thf(fact_448_order__less__trans,axiom,
! [X: extended_enat,Y: extended_enat,Z2: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ( ( ord_le72135733267957522d_enat @ Y @ Z2 )
=> ( ord_le72135733267957522d_enat @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_449_order__less__trans,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_real @ X @ Y )
=> ( ( ord_less_real @ Y @ Z2 )
=> ( ord_less_real @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_450_order__less__trans,axiom,
! [X: num,Y: num,Z2: num] :
( ( ord_less_num @ X @ Y )
=> ( ( ord_less_num @ Y @ Z2 )
=> ( ord_less_num @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_451_order__less__trans,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ Z2 )
=> ( ord_less_nat @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_452_order__less__trans,axiom,
! [X: int,Y: int,Z2: int] :
( ( ord_less_int @ X @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_453_ord__eq__less__subst,axiom,
! [A: extended_enat,F: extended_enat > extended_enat,B: extended_enat,C: extended_enat] :
( ( A
= ( F @ B ) )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_454_ord__eq__less__subst,axiom,
! [A: real,F: extended_enat > real,B: extended_enat,C: extended_enat] :
( ( A
= ( F @ B ) )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_455_ord__eq__less__subst,axiom,
! [A: num,F: extended_enat > num,B: extended_enat,C: extended_enat] :
( ( A
= ( F @ B ) )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_456_ord__eq__less__subst,axiom,
! [A: nat,F: extended_enat > nat,B: extended_enat,C: extended_enat] :
( ( A
= ( F @ B ) )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_457_ord__eq__less__subst,axiom,
! [A: int,F: extended_enat > int,B: extended_enat,C: extended_enat] :
( ( A
= ( F @ B ) )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_458_ord__eq__less__subst,axiom,
! [A: extended_enat,F: real > extended_enat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_459_ord__eq__less__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_460_ord__eq__less__subst,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_461_ord__eq__less__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_462_ord__eq__less__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_463_ord__less__eq__subst,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > extended_enat,C: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_464_ord__less__eq__subst,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > real,C: real] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_465_ord__less__eq__subst,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > num,C: num] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_466_ord__less__eq__subst,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > nat,C: nat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_467_ord__less__eq__subst,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > int,C: int] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_468_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > extended_enat,C: extended_enat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_469_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_470_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_471_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_472_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_473_order__less__irrefl,axiom,
! [X: extended_enat] :
~ ( ord_le72135733267957522d_enat @ X @ X ) ).
% order_less_irrefl
thf(fact_474_order__less__irrefl,axiom,
! [X: real] :
~ ( ord_less_real @ X @ X ) ).
% order_less_irrefl
thf(fact_475_order__less__irrefl,axiom,
! [X: num] :
~ ( ord_less_num @ X @ X ) ).
% order_less_irrefl
thf(fact_476_order__less__irrefl,axiom,
! [X: nat] :
~ ( ord_less_nat @ X @ X ) ).
% order_less_irrefl
thf(fact_477_order__less__irrefl,axiom,
! [X: int] :
~ ( ord_less_int @ X @ X ) ).
% order_less_irrefl
thf(fact_478_order__less__subst1,axiom,
! [A: extended_enat,F: extended_enat > extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ ( F @ B ) )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_479_order__less__subst1,axiom,
! [A: extended_enat,F: real > extended_enat,B: real,C: real] :
( ( ord_le72135733267957522d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_480_order__less__subst1,axiom,
! [A: extended_enat,F: num > extended_enat,B: num,C: num] :
( ( ord_le72135733267957522d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_num @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_481_order__less__subst1,axiom,
! [A: extended_enat,F: nat > extended_enat,B: nat,C: nat] :
( ( ord_le72135733267957522d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_nat @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_482_order__less__subst1,axiom,
! [A: extended_enat,F: int > extended_enat,B: int,C: int] :
( ( ord_le72135733267957522d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y3: int] :
( ( ord_less_int @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_483_order__less__subst1,axiom,
! [A: real,F: extended_enat > real,B: extended_enat,C: extended_enat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_484_order__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_485_order__less__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_num @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_486_order__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_nat @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_487_order__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y3: int] :
( ( ord_less_int @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_488_order__less__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > extended_enat,C: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ord_le72135733267957522d_enat @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_489_order__less__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > real,C: real] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_490_order__less__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > num,C: num] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_491_order__less__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > nat,C: nat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_492_order__less__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > int,C: int] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_493_order__less__subst2,axiom,
! [A: real,B: real,F: real > extended_enat,C: extended_enat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_le72135733267957522d_enat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_494_order__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_495_order__less__subst2,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_496_order__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_497_order__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_498_order__less__not__sym,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ~ ( ord_le72135733267957522d_enat @ Y @ X ) ) ).
% order_less_not_sym
thf(fact_499_order__less__not__sym,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ~ ( ord_less_real @ Y @ X ) ) ).
% order_less_not_sym
thf(fact_500_order__less__not__sym,axiom,
! [X: num,Y: num] :
( ( ord_less_num @ X @ Y )
=> ~ ( ord_less_num @ Y @ X ) ) ).
% order_less_not_sym
thf(fact_501_order__less__not__sym,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_not_sym
thf(fact_502_order__less__not__sym,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ~ ( ord_less_int @ Y @ X ) ) ).
% order_less_not_sym
thf(fact_503_order__less__imp__triv,axiom,
! [X: extended_enat,Y: extended_enat,P: $o] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ( ( ord_le72135733267957522d_enat @ Y @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_504_order__less__imp__triv,axiom,
! [X: real,Y: real,P: $o] :
( ( ord_less_real @ X @ Y )
=> ( ( ord_less_real @ Y @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_505_order__less__imp__triv,axiom,
! [X: num,Y: num,P: $o] :
( ( ord_less_num @ X @ Y )
=> ( ( ord_less_num @ Y @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_506_order__less__imp__triv,axiom,
! [X: nat,Y: nat,P: $o] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_507_order__less__imp__triv,axiom,
! [X: int,Y: int,P: $o] :
( ( ord_less_int @ X @ Y )
=> ( ( ord_less_int @ Y @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_508_linorder__less__linear,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
| ( X = Y )
| ( ord_le72135733267957522d_enat @ Y @ X ) ) ).
% linorder_less_linear
thf(fact_509_linorder__less__linear,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
| ( X = Y )
| ( ord_less_real @ Y @ X ) ) ).
% linorder_less_linear
thf(fact_510_linorder__less__linear,axiom,
! [X: num,Y: num] :
( ( ord_less_num @ X @ Y )
| ( X = Y )
| ( ord_less_num @ Y @ X ) ) ).
% linorder_less_linear
thf(fact_511_linorder__less__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
| ( X = Y )
| ( ord_less_nat @ Y @ X ) ) ).
% linorder_less_linear
thf(fact_512_linorder__less__linear,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
| ( X = Y )
| ( ord_less_int @ Y @ X ) ) ).
% linorder_less_linear
thf(fact_513_order__less__imp__not__eq,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ( X != Y ) ) ).
% order_less_imp_not_eq
thf(fact_514_order__less__imp__not__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ( X != Y ) ) ).
% order_less_imp_not_eq
thf(fact_515_order__less__imp__not__eq,axiom,
! [X: num,Y: num] :
( ( ord_less_num @ X @ Y )
=> ( X != Y ) ) ).
% order_less_imp_not_eq
thf(fact_516_order__less__imp__not__eq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( X != Y ) ) ).
% order_less_imp_not_eq
thf(fact_517_order__less__imp__not__eq,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ( X != Y ) ) ).
% order_less_imp_not_eq
thf(fact_518_order__less__imp__not__eq2,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ( Y != X ) ) ).
% order_less_imp_not_eq2
thf(fact_519_order__less__imp__not__eq2,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ( Y != X ) ) ).
% order_less_imp_not_eq2
thf(fact_520_order__less__imp__not__eq2,axiom,
! [X: num,Y: num] :
( ( ord_less_num @ X @ Y )
=> ( Y != X ) ) ).
% order_less_imp_not_eq2
thf(fact_521_order__less__imp__not__eq2,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( Y != X ) ) ).
% order_less_imp_not_eq2
thf(fact_522_order__less__imp__not__eq2,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ( Y != X ) ) ).
% order_less_imp_not_eq2
thf(fact_523_order__less__imp__not__less,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ~ ( ord_le72135733267957522d_enat @ Y @ X ) ) ).
% order_less_imp_not_less
thf(fact_524_order__less__imp__not__less,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ~ ( ord_less_real @ Y @ X ) ) ).
% order_less_imp_not_less
thf(fact_525_order__less__imp__not__less,axiom,
! [X: num,Y: num] :
( ( ord_less_num @ X @ Y )
=> ~ ( ord_less_num @ Y @ X ) ) ).
% order_less_imp_not_less
thf(fact_526_order__less__imp__not__less,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ~ ( ord_less_nat @ Y @ X ) ) ).
% order_less_imp_not_less
thf(fact_527_order__less__imp__not__less,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ~ ( ord_less_int @ Y @ X ) ) ).
% order_less_imp_not_less
thf(fact_528_one__reorient,axiom,
! [X: numera4273646738625120315l_num1] :
( ( one_on7795324986448017462l_num1 = X )
= ( X = one_on7795324986448017462l_num1 ) ) ).
% one_reorient
thf(fact_529_one__reorient,axiom,
! [X: extended_enat] :
( ( one_on7984719198319812577d_enat = X )
= ( X = one_on7984719198319812577d_enat ) ) ).
% one_reorient
thf(fact_530_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_531_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_532_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_533_half__gt__zero,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ) ).
% half_gt_zero
thf(fact_534_half__gt__zero__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% half_gt_zero_iff
thf(fact_535_leD,axiom,
! [Y: extended_enat,X: extended_enat] :
( ( ord_le2932123472753598470d_enat @ Y @ X )
=> ~ ( ord_le72135733267957522d_enat @ X @ Y ) ) ).
% leD
thf(fact_536_leD,axiom,
! [Y: real,X: real] :
( ( ord_less_eq_real @ Y @ X )
=> ~ ( ord_less_real @ X @ Y ) ) ).
% leD
thf(fact_537_leD,axiom,
! [Y: set_nat,X: set_nat] :
( ( ord_less_eq_set_nat @ Y @ X )
=> ~ ( ord_less_set_nat @ X @ Y ) ) ).
% leD
thf(fact_538_leD,axiom,
! [Y: num,X: num] :
( ( ord_less_eq_num @ Y @ X )
=> ~ ( ord_less_num @ X @ Y ) ) ).
% leD
thf(fact_539_leD,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ~ ( ord_less_nat @ X @ Y ) ) ).
% leD
thf(fact_540_leD,axiom,
! [Y: int,X: int] :
( ( ord_less_eq_int @ Y @ X )
=> ~ ( ord_less_int @ X @ Y ) ) ).
% leD
thf(fact_541_leI,axiom,
! [X: extended_enat,Y: extended_enat] :
( ~ ( ord_le72135733267957522d_enat @ X @ Y )
=> ( ord_le2932123472753598470d_enat @ Y @ X ) ) ).
% leI
thf(fact_542_leI,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_real @ X @ Y )
=> ( ord_less_eq_real @ Y @ X ) ) ).
% leI
thf(fact_543_leI,axiom,
! [X: num,Y: num] :
( ~ ( ord_less_num @ X @ Y )
=> ( ord_less_eq_num @ Y @ X ) ) ).
% leI
thf(fact_544_leI,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_eq_nat @ Y @ X ) ) ).
% leI
thf(fact_545_leI,axiom,
! [X: int,Y: int] :
( ~ ( ord_less_int @ X @ Y )
=> ( ord_less_eq_int @ Y @ X ) ) ).
% leI
thf(fact_546_nless__le,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ~ ( ord_le72135733267957522d_enat @ A @ B ) )
= ( ~ ( ord_le2932123472753598470d_enat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_547_nless__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_real @ A @ B ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_548_nless__le,axiom,
! [A: set_nat,B: set_nat] :
( ( ~ ( ord_less_set_nat @ A @ B ) )
= ( ~ ( ord_less_eq_set_nat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_549_nless__le,axiom,
! [A: num,B: num] :
( ( ~ ( ord_less_num @ A @ B ) )
= ( ~ ( ord_less_eq_num @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_550_nless__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_nat @ A @ B ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_551_nless__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_int @ A @ B ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_552_antisym__conv1,axiom,
! [X: extended_enat,Y: extended_enat] :
( ~ ( ord_le72135733267957522d_enat @ X @ Y )
=> ( ( ord_le2932123472753598470d_enat @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_553_antisym__conv1,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_real @ X @ Y )
=> ( ( ord_less_eq_real @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_554_antisym__conv1,axiom,
! [X: set_nat,Y: set_nat] :
( ~ ( ord_less_set_nat @ X @ Y )
=> ( ( ord_less_eq_set_nat @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_555_antisym__conv1,axiom,
! [X: num,Y: num] :
( ~ ( ord_less_num @ X @ Y )
=> ( ( ord_less_eq_num @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_556_antisym__conv1,axiom,
! [X: nat,Y: nat] :
( ~ ( ord_less_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_557_antisym__conv1,axiom,
! [X: int,Y: int] :
( ~ ( ord_less_int @ X @ Y )
=> ( ( ord_less_eq_int @ X @ Y )
= ( X = Y ) ) ) ).
% antisym_conv1
thf(fact_558_antisym__conv2,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y )
=> ( ( ~ ( ord_le72135733267957522d_enat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_559_antisym__conv2,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ~ ( ord_less_real @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_560_antisym__conv2,axiom,
! [X: set_nat,Y: set_nat] :
( ( ord_less_eq_set_nat @ X @ Y )
=> ( ( ~ ( ord_less_set_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_561_antisym__conv2,axiom,
! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ( ~ ( ord_less_num @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_562_antisym__conv2,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ~ ( ord_less_nat @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_563_antisym__conv2,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ~ ( ord_less_int @ X @ Y ) )
= ( X = Y ) ) ) ).
% antisym_conv2
thf(fact_564_dense__ge,axiom,
! [Z2: real,Y: real] :
( ! [X4: real] :
( ( ord_less_real @ Z2 @ X4 )
=> ( ord_less_eq_real @ Y @ X4 ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ).
% dense_ge
thf(fact_565_dense__le,axiom,
! [Y: real,Z2: real] :
( ! [X4: real] :
( ( ord_less_real @ X4 @ Y )
=> ( ord_less_eq_real @ X4 @ Z2 ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ).
% dense_le
thf(fact_566_less__le__not__le,axiom,
( ord_le72135733267957522d_enat
= ( ^ [X3: extended_enat,Y5: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X3 @ Y5 )
& ~ ( ord_le2932123472753598470d_enat @ Y5 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_567_less__le__not__le,axiom,
( ord_less_real
= ( ^ [X3: real,Y5: real] :
( ( ord_less_eq_real @ X3 @ Y5 )
& ~ ( ord_less_eq_real @ Y5 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_568_less__le__not__le,axiom,
( ord_less_set_nat
= ( ^ [X3: set_nat,Y5: set_nat] :
( ( ord_less_eq_set_nat @ X3 @ Y5 )
& ~ ( ord_less_eq_set_nat @ Y5 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_569_less__le__not__le,axiom,
( ord_less_num
= ( ^ [X3: num,Y5: num] :
( ( ord_less_eq_num @ X3 @ Y5 )
& ~ ( ord_less_eq_num @ Y5 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_570_less__le__not__le,axiom,
( ord_less_nat
= ( ^ [X3: nat,Y5: nat] :
( ( ord_less_eq_nat @ X3 @ Y5 )
& ~ ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_571_less__le__not__le,axiom,
( ord_less_int
= ( ^ [X3: int,Y5: int] :
( ( ord_less_eq_int @ X3 @ Y5 )
& ~ ( ord_less_eq_int @ Y5 @ X3 ) ) ) ) ).
% less_le_not_le
thf(fact_572_not__le__imp__less,axiom,
! [Y: extended_enat,X: extended_enat] :
( ~ ( ord_le2932123472753598470d_enat @ Y @ X )
=> ( ord_le72135733267957522d_enat @ X @ Y ) ) ).
% not_le_imp_less
thf(fact_573_not__le__imp__less,axiom,
! [Y: real,X: real] :
( ~ ( ord_less_eq_real @ Y @ X )
=> ( ord_less_real @ X @ Y ) ) ).
% not_le_imp_less
thf(fact_574_not__le__imp__less,axiom,
! [Y: num,X: num] :
( ~ ( ord_less_eq_num @ Y @ X )
=> ( ord_less_num @ X @ Y ) ) ).
% not_le_imp_less
thf(fact_575_not__le__imp__less,axiom,
! [Y: nat,X: nat] :
( ~ ( ord_less_eq_nat @ Y @ X )
=> ( ord_less_nat @ X @ Y ) ) ).
% not_le_imp_less
thf(fact_576_not__le__imp__less,axiom,
! [Y: int,X: int] :
( ~ ( ord_less_eq_int @ Y @ X )
=> ( ord_less_int @ X @ Y ) ) ).
% not_le_imp_less
thf(fact_577_order_Oorder__iff__strict,axiom,
( ord_le2932123472753598470d_enat
= ( ^ [A4: extended_enat,B3: extended_enat] :
( ( ord_le72135733267957522d_enat @ A4 @ B3 )
| ( A4 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_578_order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [A4: real,B3: real] :
( ( ord_less_real @ A4 @ B3 )
| ( A4 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_579_order_Oorder__iff__strict,axiom,
( ord_less_eq_set_nat
= ( ^ [A4: set_nat,B3: set_nat] :
( ( ord_less_set_nat @ A4 @ B3 )
| ( A4 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_580_order_Oorder__iff__strict,axiom,
( ord_less_eq_num
= ( ^ [A4: num,B3: num] :
( ( ord_less_num @ A4 @ B3 )
| ( A4 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_581_order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_nat @ A4 @ B3 )
| ( A4 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_582_order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [A4: int,B3: int] :
( ( ord_less_int @ A4 @ B3 )
| ( A4 = B3 ) ) ) ) ).
% order.order_iff_strict
thf(fact_583_order_Ostrict__iff__order,axiom,
( ord_le72135733267957522d_enat
= ( ^ [A4: extended_enat,B3: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A4 @ B3 )
& ( A4 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_584_order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [A4: real,B3: real] :
( ( ord_less_eq_real @ A4 @ B3 )
& ( A4 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_585_order_Ostrict__iff__order,axiom,
( ord_less_set_nat
= ( ^ [A4: set_nat,B3: set_nat] :
( ( ord_less_eq_set_nat @ A4 @ B3 )
& ( A4 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_586_order_Ostrict__iff__order,axiom,
( ord_less_num
= ( ^ [A4: num,B3: num] :
( ( ord_less_eq_num @ A4 @ B3 )
& ( A4 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_587_order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ A4 @ B3 )
& ( A4 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_588_order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [A4: int,B3: int] :
( ( ord_less_eq_int @ A4 @ B3 )
& ( A4 != B3 ) ) ) ) ).
% order.strict_iff_order
thf(fact_589_order_Ostrict__trans1,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_590_order_Ostrict__trans1,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_591_order_Ostrict__trans1,axiom,
! [A: set_nat,B: set_nat,C: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( ord_less_set_nat @ B @ C )
=> ( ord_less_set_nat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_592_order_Ostrict__trans1,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_593_order_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_594_order_Ostrict__trans1,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_595_order_Ostrict__trans2,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ B @ C )
=> ( ord_le72135733267957522d_enat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_596_order_Ostrict__trans2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_597_order_Ostrict__trans2,axiom,
! [A: set_nat,B: set_nat,C: set_nat] :
( ( ord_less_set_nat @ A @ B )
=> ( ( ord_less_eq_set_nat @ B @ C )
=> ( ord_less_set_nat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_598_order_Ostrict__trans2,axiom,
! [A: num,B: num,C: num] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ord_less_num @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_599_order_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_600_order_Ostrict__trans2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_601_order_Ostrict__iff__not,axiom,
( ord_le72135733267957522d_enat
= ( ^ [A4: extended_enat,B3: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A4 @ B3 )
& ~ ( ord_le2932123472753598470d_enat @ B3 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_602_order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [A4: real,B3: real] :
( ( ord_less_eq_real @ A4 @ B3 )
& ~ ( ord_less_eq_real @ B3 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_603_order_Ostrict__iff__not,axiom,
( ord_less_set_nat
= ( ^ [A4: set_nat,B3: set_nat] :
( ( ord_less_eq_set_nat @ A4 @ B3 )
& ~ ( ord_less_eq_set_nat @ B3 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_604_order_Ostrict__iff__not,axiom,
( ord_less_num
= ( ^ [A4: num,B3: num] :
( ( ord_less_eq_num @ A4 @ B3 )
& ~ ( ord_less_eq_num @ B3 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_605_order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ A4 @ B3 )
& ~ ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_606_order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [A4: int,B3: int] :
( ( ord_less_eq_int @ A4 @ B3 )
& ~ ( ord_less_eq_int @ B3 @ A4 ) ) ) ) ).
% order.strict_iff_not
thf(fact_607_dense__ge__bounded,axiom,
! [Z2: real,X: real,Y: real] :
( ( ord_less_real @ Z2 @ X )
=> ( ! [W2: real] :
( ( ord_less_real @ Z2 @ W2 )
=> ( ( ord_less_real @ W2 @ X )
=> ( ord_less_eq_real @ Y @ W2 ) ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ) ).
% dense_ge_bounded
thf(fact_608_dense__le__bounded,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_real @ X @ Y )
=> ( ! [W2: real] :
( ( ord_less_real @ X @ W2 )
=> ( ( ord_less_real @ W2 @ Y )
=> ( ord_less_eq_real @ W2 @ Z2 ) ) )
=> ( ord_less_eq_real @ Y @ Z2 ) ) ) ).
% dense_le_bounded
thf(fact_609_dual__order_Oorder__iff__strict,axiom,
( ord_le2932123472753598470d_enat
= ( ^ [B3: extended_enat,A4: extended_enat] :
( ( ord_le72135733267957522d_enat @ B3 @ A4 )
| ( A4 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_610_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [B3: real,A4: real] :
( ( ord_less_real @ B3 @ A4 )
| ( A4 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_611_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_set_nat
= ( ^ [B3: set_nat,A4: set_nat] :
( ( ord_less_set_nat @ B3 @ A4 )
| ( A4 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_612_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_num
= ( ^ [B3: num,A4: num] :
( ( ord_less_num @ B3 @ A4 )
| ( A4 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_613_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [B3: nat,A4: nat] :
( ( ord_less_nat @ B3 @ A4 )
| ( A4 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_614_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [B3: int,A4: int] :
( ( ord_less_int @ B3 @ A4 )
| ( A4 = B3 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_615_dual__order_Ostrict__iff__order,axiom,
( ord_le72135733267957522d_enat
= ( ^ [B3: extended_enat,A4: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B3 @ A4 )
& ( A4 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_616_dual__order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [B3: real,A4: real] :
( ( ord_less_eq_real @ B3 @ A4 )
& ( A4 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_617_dual__order_Ostrict__iff__order,axiom,
( ord_less_set_nat
= ( ^ [B3: set_nat,A4: set_nat] :
( ( ord_less_eq_set_nat @ B3 @ A4 )
& ( A4 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_618_dual__order_Ostrict__iff__order,axiom,
( ord_less_num
= ( ^ [B3: num,A4: num] :
( ( ord_less_eq_num @ B3 @ A4 )
& ( A4 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_619_dual__order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [B3: nat,A4: nat] :
( ( ord_less_eq_nat @ B3 @ A4 )
& ( A4 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_620_dual__order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [B3: int,A4: int] :
( ( ord_less_eq_int @ B3 @ A4 )
& ( A4 != B3 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_621_dual__order_Ostrict__trans1,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B @ A )
=> ( ( ord_le72135733267957522d_enat @ C @ B )
=> ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_622_dual__order_Ostrict__trans1,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_623_dual__order_Ostrict__trans1,axiom,
! [B: set_nat,A: set_nat,C: set_nat] :
( ( ord_less_eq_set_nat @ B @ A )
=> ( ( ord_less_set_nat @ C @ B )
=> ( ord_less_set_nat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_624_dual__order_Ostrict__trans1,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_eq_num @ B @ A )
=> ( ( ord_less_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_625_dual__order_Ostrict__trans1,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_626_dual__order_Ostrict__trans1,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_627_dual__order_Ostrict__trans2,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( ord_le72135733267957522d_enat @ B @ A )
=> ( ( ord_le2932123472753598470d_enat @ C @ B )
=> ( ord_le72135733267957522d_enat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_628_dual__order_Ostrict__trans2,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_629_dual__order_Ostrict__trans2,axiom,
! [B: set_nat,A: set_nat,C: set_nat] :
( ( ord_less_set_nat @ B @ A )
=> ( ( ord_less_eq_set_nat @ C @ B )
=> ( ord_less_set_nat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_630_dual__order_Ostrict__trans2,axiom,
! [B: num,A: num,C: num] :
( ( ord_less_num @ B @ A )
=> ( ( ord_less_eq_num @ C @ B )
=> ( ord_less_num @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_631_dual__order_Ostrict__trans2,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_632_dual__order_Ostrict__trans2,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_633_dual__order_Ostrict__iff__not,axiom,
( ord_le72135733267957522d_enat
= ( ^ [B3: extended_enat,A4: extended_enat] :
( ( ord_le2932123472753598470d_enat @ B3 @ A4 )
& ~ ( ord_le2932123472753598470d_enat @ A4 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_634_dual__order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [B3: real,A4: real] :
( ( ord_less_eq_real @ B3 @ A4 )
& ~ ( ord_less_eq_real @ A4 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_635_dual__order_Ostrict__iff__not,axiom,
( ord_less_set_nat
= ( ^ [B3: set_nat,A4: set_nat] :
( ( ord_less_eq_set_nat @ B3 @ A4 )
& ~ ( ord_less_eq_set_nat @ A4 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_636_dual__order_Ostrict__iff__not,axiom,
( ord_less_num
= ( ^ [B3: num,A4: num] :
( ( ord_less_eq_num @ B3 @ A4 )
& ~ ( ord_less_eq_num @ A4 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_637_dual__order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [B3: nat,A4: nat] :
( ( ord_less_eq_nat @ B3 @ A4 )
& ~ ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_638_dual__order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [B3: int,A4: int] :
( ( ord_less_eq_int @ B3 @ A4 )
& ~ ( ord_less_eq_int @ A4 @ B3 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_639_order_Ostrict__implies__order,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ord_le2932123472753598470d_enat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_640_order_Ostrict__implies__order,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_641_order_Ostrict__implies__order,axiom,
! [A: set_nat,B: set_nat] :
( ( ord_less_set_nat @ A @ B )
=> ( ord_less_eq_set_nat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_642_order_Ostrict__implies__order,axiom,
! [A: num,B: num] :
( ( ord_less_num @ A @ B )
=> ( ord_less_eq_num @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_643_order_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_644_order_Ostrict__implies__order,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_645_dual__order_Ostrict__implies__order,axiom,
! [B: extended_enat,A: extended_enat] :
( ( ord_le72135733267957522d_enat @ B @ A )
=> ( ord_le2932123472753598470d_enat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_646_dual__order_Ostrict__implies__order,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_eq_real @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_647_dual__order_Ostrict__implies__order,axiom,
! [B: set_nat,A: set_nat] :
( ( ord_less_set_nat @ B @ A )
=> ( ord_less_eq_set_nat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_648_dual__order_Ostrict__implies__order,axiom,
! [B: num,A: num] :
( ( ord_less_num @ B @ A )
=> ( ord_less_eq_num @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_649_dual__order_Ostrict__implies__order,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_650_dual__order_Ostrict__implies__order,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_eq_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_651_order__le__less,axiom,
( ord_le2932123472753598470d_enat
= ( ^ [X3: extended_enat,Y5: extended_enat] :
( ( ord_le72135733267957522d_enat @ X3 @ Y5 )
| ( X3 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_652_order__le__less,axiom,
( ord_less_eq_real
= ( ^ [X3: real,Y5: real] :
( ( ord_less_real @ X3 @ Y5 )
| ( X3 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_653_order__le__less,axiom,
( ord_less_eq_set_nat
= ( ^ [X3: set_nat,Y5: set_nat] :
( ( ord_less_set_nat @ X3 @ Y5 )
| ( X3 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_654_order__le__less,axiom,
( ord_less_eq_num
= ( ^ [X3: num,Y5: num] :
( ( ord_less_num @ X3 @ Y5 )
| ( X3 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_655_order__le__less,axiom,
( ord_less_eq_nat
= ( ^ [X3: nat,Y5: nat] :
( ( ord_less_nat @ X3 @ Y5 )
| ( X3 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_656_order__le__less,axiom,
( ord_less_eq_int
= ( ^ [X3: int,Y5: int] :
( ( ord_less_int @ X3 @ Y5 )
| ( X3 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_657_order__less__le,axiom,
( ord_le72135733267957522d_enat
= ( ^ [X3: extended_enat,Y5: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X3 @ Y5 )
& ( X3 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_658_order__less__le,axiom,
( ord_less_real
= ( ^ [X3: real,Y5: real] :
( ( ord_less_eq_real @ X3 @ Y5 )
& ( X3 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_659_order__less__le,axiom,
( ord_less_set_nat
= ( ^ [X3: set_nat,Y5: set_nat] :
( ( ord_less_eq_set_nat @ X3 @ Y5 )
& ( X3 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_660_order__less__le,axiom,
( ord_less_num
= ( ^ [X3: num,Y5: num] :
( ( ord_less_eq_num @ X3 @ Y5 )
& ( X3 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_661_order__less__le,axiom,
( ord_less_nat
= ( ^ [X3: nat,Y5: nat] :
( ( ord_less_eq_nat @ X3 @ Y5 )
& ( X3 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_662_order__less__le,axiom,
( ord_less_int
= ( ^ [X3: int,Y5: int] :
( ( ord_less_eq_int @ X3 @ Y5 )
& ( X3 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_663_linorder__not__le,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ~ ( ord_le2932123472753598470d_enat @ X @ Y ) )
= ( ord_le72135733267957522d_enat @ Y @ X ) ) ).
% linorder_not_le
thf(fact_664_linorder__not__le,axiom,
! [X: real,Y: real] :
( ( ~ ( ord_less_eq_real @ X @ Y ) )
= ( ord_less_real @ Y @ X ) ) ).
% linorder_not_le
thf(fact_665_linorder__not__le,axiom,
! [X: num,Y: num] :
( ( ~ ( ord_less_eq_num @ X @ Y ) )
= ( ord_less_num @ Y @ X ) ) ).
% linorder_not_le
thf(fact_666_linorder__not__le,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_eq_nat @ X @ Y ) )
= ( ord_less_nat @ Y @ X ) ) ).
% linorder_not_le
thf(fact_667_linorder__not__le,axiom,
! [X: int,Y: int] :
( ( ~ ( ord_less_eq_int @ X @ Y ) )
= ( ord_less_int @ Y @ X ) ) ).
% linorder_not_le
thf(fact_668_linorder__not__less,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ~ ( ord_le72135733267957522d_enat @ X @ Y ) )
= ( ord_le2932123472753598470d_enat @ Y @ X ) ) ).
% linorder_not_less
thf(fact_669_linorder__not__less,axiom,
! [X: real,Y: real] :
( ( ~ ( ord_less_real @ X @ Y ) )
= ( ord_less_eq_real @ Y @ X ) ) ).
% linorder_not_less
thf(fact_670_linorder__not__less,axiom,
! [X: num,Y: num] :
( ( ~ ( ord_less_num @ X @ Y ) )
= ( ord_less_eq_num @ Y @ X ) ) ).
% linorder_not_less
thf(fact_671_linorder__not__less,axiom,
! [X: nat,Y: nat] :
( ( ~ ( ord_less_nat @ X @ Y ) )
= ( ord_less_eq_nat @ Y @ X ) ) ).
% linorder_not_less
thf(fact_672_linorder__not__less,axiom,
! [X: int,Y: int] :
( ( ~ ( ord_less_int @ X @ Y ) )
= ( ord_less_eq_int @ Y @ X ) ) ).
% linorder_not_less
thf(fact_673_order__less__imp__le,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ( ord_le2932123472753598470d_enat @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_674_order__less__imp__le,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ Y )
=> ( ord_less_eq_real @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_675_order__less__imp__le,axiom,
! [X: set_nat,Y: set_nat] :
( ( ord_less_set_nat @ X @ Y )
=> ( ord_less_eq_set_nat @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_676_order__less__imp__le,axiom,
! [X: num,Y: num] :
( ( ord_less_num @ X @ Y )
=> ( ord_less_eq_num @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_677_order__less__imp__le,axiom,
! [X: nat,Y: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ord_less_eq_nat @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_678_order__less__imp__le,axiom,
! [X: int,Y: int] :
( ( ord_less_int @ X @ Y )
=> ( ord_less_eq_int @ X @ Y ) ) ).
% order_less_imp_le
thf(fact_679_order__le__neq__trans,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ( A != B )
=> ( ord_le72135733267957522d_enat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_680_order__le__neq__trans,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( A != B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_681_order__le__neq__trans,axiom,
! [A: set_nat,B: set_nat] :
( ( ord_less_eq_set_nat @ A @ B )
=> ( ( A != B )
=> ( ord_less_set_nat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_682_order__le__neq__trans,axiom,
! [A: num,B: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( A != B )
=> ( ord_less_num @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_683_order__le__neq__trans,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( A != B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_684_order__le__neq__trans,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_685_order__neq__le__trans,axiom,
! [A: extended_enat,B: extended_enat] :
( ( A != B )
=> ( ( ord_le2932123472753598470d_enat @ A @ B )
=> ( ord_le72135733267957522d_enat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_686_order__neq__le__trans,axiom,
! [A: real,B: real] :
( ( A != B )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_687_order__neq__le__trans,axiom,
! [A: set_nat,B: set_nat] :
( ( A != B )
=> ( ( ord_less_eq_set_nat @ A @ B )
=> ( ord_less_set_nat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_688_order__neq__le__trans,axiom,
! [A: num,B: num] :
( ( A != B )
=> ( ( ord_less_eq_num @ A @ B )
=> ( ord_less_num @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_689_order__neq__le__trans,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_690_order__neq__le__trans,axiom,
! [A: int,B: int] :
( ( A != B )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_691_order__le__less__trans,axiom,
! [X: extended_enat,Y: extended_enat,Z2: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y )
=> ( ( ord_le72135733267957522d_enat @ Y @ Z2 )
=> ( ord_le72135733267957522d_enat @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_692_order__le__less__trans,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_real @ Y @ Z2 )
=> ( ord_less_real @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_693_order__le__less__trans,axiom,
! [X: set_nat,Y: set_nat,Z2: set_nat] :
( ( ord_less_eq_set_nat @ X @ Y )
=> ( ( ord_less_set_nat @ Y @ Z2 )
=> ( ord_less_set_nat @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_694_order__le__less__trans,axiom,
! [X: num,Y: num,Z2: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ( ord_less_num @ Y @ Z2 )
=> ( ord_less_num @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_695_order__le__less__trans,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_nat @ Y @ Z2 )
=> ( ord_less_nat @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_696_order__le__less__trans,axiom,
! [X: int,Y: int,Z2: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_int @ Y @ Z2 )
=> ( ord_less_int @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_697_order__less__le__trans,axiom,
! [X: extended_enat,Y: extended_enat,Z2: extended_enat] :
( ( ord_le72135733267957522d_enat @ X @ Y )
=> ( ( ord_le2932123472753598470d_enat @ Y @ Z2 )
=> ( ord_le72135733267957522d_enat @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_698_order__less__le__trans,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_real @ X @ Y )
=> ( ( ord_less_eq_real @ Y @ Z2 )
=> ( ord_less_real @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_699_order__less__le__trans,axiom,
! [X: set_nat,Y: set_nat,Z2: set_nat] :
( ( ord_less_set_nat @ X @ Y )
=> ( ( ord_less_eq_set_nat @ Y @ Z2 )
=> ( ord_less_set_nat @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_700_order__less__le__trans,axiom,
! [X: num,Y: num,Z2: num] :
( ( ord_less_num @ X @ Y )
=> ( ( ord_less_eq_num @ Y @ Z2 )
=> ( ord_less_num @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_701_order__less__le__trans,axiom,
! [X: nat,Y: nat,Z2: nat] :
( ( ord_less_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ Y @ Z2 )
=> ( ord_less_nat @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_702_order__less__le__trans,axiom,
! [X: int,Y: int,Z2: int] :
( ( ord_less_int @ X @ Y )
=> ( ( ord_less_eq_int @ Y @ Z2 )
=> ( ord_less_int @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_703_order__le__less__subst1,axiom,
! [A: extended_enat,F: extended_enat > extended_enat,B: extended_enat,C: extended_enat] :
( ( ord_le2932123472753598470d_enat @ A @ ( F @ B ) )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_704_order__le__less__subst1,axiom,
! [A: extended_enat,F: real > extended_enat,B: real,C: real] :
( ( ord_le2932123472753598470d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_705_order__le__less__subst1,axiom,
! [A: extended_enat,F: num > extended_enat,B: num,C: num] :
( ( ord_le2932123472753598470d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_num @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_706_order__le__less__subst1,axiom,
! [A: extended_enat,F: nat > extended_enat,B: nat,C: nat] :
( ( ord_le2932123472753598470d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_nat @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_707_order__le__less__subst1,axiom,
! [A: extended_enat,F: int > extended_enat,B: int,C: int] :
( ( ord_le2932123472753598470d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y3: int] :
( ( ord_less_int @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_708_order__le__less__subst1,axiom,
! [A: real,F: extended_enat > real,B: extended_enat,C: extended_enat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_le72135733267957522d_enat @ B @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_709_order__le__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_710_order__le__less__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_num @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_711_order__le__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_nat @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_712_order__le__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X4: int,Y3: int] :
( ( ord_less_int @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_713_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > extended_enat,C: extended_enat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_le72135733267957522d_enat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_714_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_715_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > num,C: num] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_716_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_717_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_718_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > extended_enat,C: extended_enat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_le72135733267957522d_enat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_719_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_720_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > num,C: num] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_num @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_721_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > nat,C: nat] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_722_order__le__less__subst2,axiom,
! [A: num,B: num,F: num > int,C: int] :
( ( ord_less_eq_num @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_723_order__less__le__subst1,axiom,
! [A: extended_enat,F: real > extended_enat,B: real,C: real] :
( ( ord_le72135733267957522d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_724_order__less__le__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_725_order__less__le__subst1,axiom,
! [A: num,F: real > num,B: real,C: real] :
( ( ord_less_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_726_order__less__le__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_727_order__less__le__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_eq_real @ X4 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_728_order__less__le__subst1,axiom,
! [A: extended_enat,F: num > extended_enat,B: num,C: num] :
( ( ord_le72135733267957522d_enat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_le2932123472753598470d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_729_order__less__le__subst1,axiom,
! [A: real,F: num > real,B: num,C: num] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_730_order__less__le__subst1,axiom,
! [A: num,F: num > num,B: num,C: num] :
( ( ord_less_num @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_num @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_731_order__less__le__subst1,axiom,
! [A: nat,F: num > nat,B: num,C: num] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_732_order__less__le__subst1,axiom,
! [A: int,F: num > int,B: num,C: num] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_num @ B @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_eq_num @ X4 @ Y3 )
=> ( ord_less_eq_int @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_733_order__less__le__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > extended_enat,C: extended_enat] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_734_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > extended_enat,C: extended_enat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_735_order__less__le__subst2,axiom,
! [A: num,B: num,F: num > extended_enat,C: extended_enat] :
( ( ord_less_num @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_num @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_736_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > extended_enat,C: extended_enat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_nat @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_737_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > extended_enat,C: extended_enat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_le2932123472753598470d_enat @ ( F @ B ) @ C )
=> ( ! [X4: int,Y3: int] :
( ( ord_less_int @ X4 @ Y3 )
=> ( ord_le72135733267957522d_enat @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_le72135733267957522d_enat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_738_order__less__le__subst2,axiom,
! [A: extended_enat,B: extended_enat,F: extended_enat > real,C: real] :
( ( ord_le72135733267957522d_enat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: extended_enat,Y3: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_739_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: real,Y3: real] :
( ( ord_less_real @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_740_order__less__le__subst2,axiom,
! [A: num,B: num,F: num > real,C: real] :
( ( ord_less_num @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: num,Y3: num] :
( ( ord_less_num @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_741_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: nat,Y3: nat] :
( ( ord_less_nat @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_742_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X4: int,Y3: int] :
( ( ord_less_int @ X4 @ Y3 )
=> ( ord_less_real @ ( F @ X4 ) @ ( F @ Y3 ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_743_linorder__le__less__linear,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y )
| ( ord_le72135733267957522d_enat @ Y @ X ) ) ).
% linorder_le_less_linear
thf(fact_744_linorder__le__less__linear,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
| ( ord_less_real @ Y @ X ) ) ).
% linorder_le_less_linear
thf(fact_745_linorder__le__less__linear,axiom,
! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
| ( ord_less_num @ Y @ X ) ) ).
% linorder_le_less_linear
thf(fact_746_linorder__le__less__linear,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
| ( ord_less_nat @ Y @ X ) ) ).
% linorder_le_less_linear
thf(fact_747_linorder__le__less__linear,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
| ( ord_less_int @ Y @ X ) ) ).
% linorder_le_less_linear
thf(fact_748_order__le__imp__less__or__eq,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ord_le2932123472753598470d_enat @ X @ Y )
=> ( ( ord_le72135733267957522d_enat @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_749_order__le__imp__less__or__eq,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_real @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_750_order__le__imp__less__or__eq,axiom,
! [X: set_nat,Y: set_nat] :
( ( ord_less_eq_set_nat @ X @ Y )
=> ( ( ord_less_set_nat @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_751_order__le__imp__less__or__eq,axiom,
! [X: num,Y: num] :
( ( ord_less_eq_num @ X @ Y )
=> ( ( ord_less_num @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_752_order__le__imp__less__or__eq,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_nat @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_753_order__le__imp__less__or__eq,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_int @ X @ Y )
| ( X = Y ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_754_divide__le__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% divide_le_eq_1_neg
thf(fact_755_divide__le__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% divide_le_eq_1_pos
thf(fact_756_le__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% le_divide_eq_1_neg
thf(fact_757_le__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% le_divide_eq_1_pos
thf(fact_758_divide__less__0__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% divide_less_0_1_iff
thf(fact_759_divide__less__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ A @ B ) ) ) ).
% divide_less_eq_1_neg
thf(fact_760_divide__less__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ord_less_real @ B @ A ) ) ) ).
% divide_less_eq_1_pos
thf(fact_761_less__divide__eq__1__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ B @ A ) ) ) ).
% less_divide_eq_1_neg
thf(fact_762_less__divide__eq__1__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ord_less_real @ A @ B ) ) ) ).
% less_divide_eq_1_pos
thf(fact_763_zero__less__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_divide_1_iff
thf(fact_764_divide__le__0__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ one_one_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% divide_le_0_1_iff
thf(fact_765_div__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_pos_pos_trivial
thf(fact_766_div__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L @ K )
=> ( ( divide_divide_int @ K @ L )
= zero_zero_int ) ) ) ).
% div_neg_neg_trivial
thf(fact_767_ennreal__zero__divide,axiom,
! [X: extend8495563244428889912nnreal] :
( ( divide4826598186094686858nnreal @ zero_z7100319975126383169nnreal @ X )
= zero_z7100319975126383169nnreal ) ).
% ennreal_zero_divide
thf(fact_768_i0__less,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
= ( N != zero_z5237406670263579293d_enat ) ) ).
% i0_less
thf(fact_769_division__ring__divide__zero,axiom,
! [A: real] :
( ( divide_divide_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% division_ring_divide_zero
thf(fact_770_divide__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( divide_divide_real @ A @ C )
= ( divide_divide_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_right
thf(fact_771_divide__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( divide_divide_real @ C @ A )
= ( divide_divide_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% divide_cancel_left
thf(fact_772_divide__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divide_eq_0_iff
thf(fact_773_zero__eq__1__divide__iff,axiom,
! [A: real] :
( ( zero_zero_real
= ( divide_divide_real @ one_one_real @ A ) )
= ( A = zero_zero_real ) ) ).
% zero_eq_1_divide_iff
thf(fact_774_one__divide__eq__0__iff,axiom,
! [A: real] :
( ( ( divide_divide_real @ one_one_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% one_divide_eq_0_iff
thf(fact_775_eq__divide__eq__1,axiom,
! [B: real,A: real] :
( ( one_one_real
= ( divide_divide_real @ B @ A ) )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% eq_divide_eq_1
thf(fact_776_divide__eq__eq__1,axiom,
! [B: real,A: real] :
( ( ( divide_divide_real @ B @ A )
= one_one_real )
= ( ( A != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_eq_1
thf(fact_777_divide__self__if,axiom,
! [A: real] :
( ( ( A = zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= zero_zero_real ) )
& ( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ) ).
% divide_self_if
thf(fact_778_divide__self,axiom,
! [A: real] :
( ( A != zero_zero_real )
=> ( ( divide_divide_real @ A @ A )
= one_one_real ) ) ).
% divide_self
thf(fact_779_one__eq__divide__iff,axiom,
! [A: real,B: real] :
( ( one_one_real
= ( divide_divide_real @ A @ B ) )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% one_eq_divide_iff
thf(fact_780_divide__eq__1__iff,axiom,
! [A: real,B: real] :
( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( ( B != zero_zero_real )
& ( A = B ) ) ) ).
% divide_eq_1_iff
thf(fact_781_zero__le__divide__1__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ one_one_real @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_divide_1_iff
thf(fact_782_half__negative__int__iff,axiom,
! [K: int] :
( ( ord_less_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% half_negative_int_iff
thf(fact_783_half__nonnegative__int__iff,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% half_nonnegative_int_iff
thf(fact_784_i0__lb,axiom,
! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).
% i0_lb
thf(fact_785_ile0__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% ile0_eq
thf(fact_786_divide__right__mono__ennreal,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( ord_le3935885782089961368nnreal @ A @ B )
=> ( ord_le3935885782089961368nnreal @ ( divide4826598186094686858nnreal @ A @ C ) @ ( divide4826598186094686858nnreal @ B @ C ) ) ) ).
% divide_right_mono_ennreal
thf(fact_787_nonneg1__imp__zdiv__pos__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% nonneg1_imp_zdiv_pos_iff
thf(fact_788_pos__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ) ).
% pos_imp_zdiv_nonneg_iff
thf(fact_789_neg__imp__zdiv__nonneg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ A @ B ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ) ).
% neg_imp_zdiv_nonneg_iff
thf(fact_790_pos__imp__zdiv__pos__iff,axiom,
! [K: int,I: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ zero_zero_int @ ( divide_divide_int @ I @ K ) )
= ( ord_less_eq_int @ K @ I ) ) ) ).
% pos_imp_zdiv_pos_iff
thf(fact_791_pos__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ) ).
% pos_imp_zdiv_neg_iff
thf(fact_792_neg__imp__zdiv__neg__iff,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ zero_zero_int )
=> ( ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ) ).
% neg_imp_zdiv_neg_iff
thf(fact_793_div__nonpos__pos__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonpos_pos_le0
thf(fact_794_div__nonneg__neg__le0,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_nonneg_neg_le0
thf(fact_795_int__div__less__self,axiom,
! [X: int,K: int] :
( ( ord_less_int @ zero_zero_int @ X )
=> ( ( ord_less_int @ one_one_int @ K )
=> ( ord_less_int @ ( divide_divide_int @ X @ K ) @ X ) ) ) ).
% int_div_less_self
thf(fact_796_div__neg__pos__less0,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( divide_divide_int @ A @ B ) @ zero_zero_int ) ) ) ).
% div_neg_pos_less0
thf(fact_797_div__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( divide_divide_int @ K @ L ) )
= ( ( K = zero_zero_int )
| ( L = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ K )
& ( ord_less_eq_int @ zero_zero_int @ L ) )
| ( ( ord_less_int @ K @ zero_zero_int )
& ( ord_less_int @ L @ zero_zero_int ) ) ) ) ).
% div_int_pos_iff
thf(fact_798_zdiv__mono2__neg,axiom,
! [A: int,B2: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B2 )
=> ( ( ord_less_eq_int @ B2 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B2 ) @ ( divide_divide_int @ A @ B ) ) ) ) ) ).
% zdiv_mono2_neg
thf(fact_799_zdiv__mono1__neg,axiom,
! [A: int,A2: int,B: int] :
( ( ord_less_eq_int @ A @ A2 )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( divide_divide_int @ A2 @ B ) @ ( divide_divide_int @ A @ B ) ) ) ) ).
% zdiv_mono1_neg
thf(fact_800_zdiv__eq__0__iff,axiom,
! [I: int,K: int] :
( ( ( divide_divide_int @ I @ K )
= zero_zero_int )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I )
& ( ord_less_int @ I @ K ) )
| ( ( ord_less_eq_int @ I @ zero_zero_int )
& ( ord_less_int @ K @ I ) ) ) ) ).
% zdiv_eq_0_iff
thf(fact_801_zdiv__mono2,axiom,
! [A: int,B2: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B2 )
=> ( ( ord_less_eq_int @ B2 @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A @ B2 ) ) ) ) ) ).
% zdiv_mono2
thf(fact_802_zdiv__mono1,axiom,
! [A: int,A2: int,B: int] :
( ( ord_less_eq_int @ A @ A2 )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( divide_divide_int @ A @ B ) @ ( divide_divide_int @ A2 @ B ) ) ) ) ).
% zdiv_mono1
thf(fact_803_not__iless0,axiom,
! [N: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).
% not_iless0
thf(fact_804_ennreal__zero__less__one,axiom,
ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ one_on2969667320475766781nnreal ).
% ennreal_zero_less_one
thf(fact_805_linordered__field__no__ub,axiom,
! [X6: real] :
? [X_1: real] : ( ord_less_real @ X6 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_806_linordered__field__no__lb,axiom,
! [X6: real] :
? [Y3: real] : ( ord_less_real @ Y3 @ X6 ) ).
% linordered_field_no_lb
thf(fact_807_divide__right__mono__neg,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ B @ C ) @ ( divide_divide_real @ A @ C ) ) ) ) ).
% divide_right_mono_neg
thf(fact_808_divide__nonpos__nonpos,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_nonpos_nonpos
thf(fact_809_divide__nonpos__nonneg,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonpos_nonneg
thf(fact_810_divide__nonneg__nonpos,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonneg_nonpos
thf(fact_811_divide__nonneg__nonneg,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_nonneg_nonneg
thf(fact_812_zero__le__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_divide_iff
thf(fact_813_divide__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_right_mono
thf(fact_814_divide__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% divide_le_0_iff
thf(fact_815_divide__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono_neg
thf(fact_816_divide__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) ) ) ) ).
% divide_strict_right_mono
thf(fact_817_zero__less__divide__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_divide_iff
thf(fact_818_divide__less__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) )
& ( C != zero_zero_real ) ) ) ).
% divide_less_cancel
thf(fact_819_divide__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( divide_divide_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% divide_less_0_iff
thf(fact_820_divide__pos__pos,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_pos_pos
thf(fact_821_divide__pos__neg,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_pos_neg
thf(fact_822_divide__neg__pos,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_neg_pos
thf(fact_823_divide__neg__neg,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_neg_neg
thf(fact_824_right__inverse__eq,axiom,
! [B: real,A: real] :
( ( B != zero_zero_real )
=> ( ( ( divide_divide_real @ A @ B )
= one_one_real )
= ( A = B ) ) ) ).
% right_inverse_eq
thf(fact_825_divide__nonpos__pos,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonpos_pos
thf(fact_826_divide__nonpos__neg,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_nonpos_neg
thf(fact_827_divide__nonneg__pos,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ zero_zero_real @ Y )
=> ( ord_less_eq_real @ zero_zero_real @ ( divide_divide_real @ X @ Y ) ) ) ) ).
% divide_nonneg_pos
thf(fact_828_divide__nonneg__neg,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ Y @ zero_zero_real )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Y ) @ zero_zero_real ) ) ) ).
% divide_nonneg_neg
thf(fact_829_divide__le__cancel,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ A @ C ) @ ( divide_divide_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% divide_le_cancel
thf(fact_830_frac__less2,axiom,
! [X: real,Y: real,W: real,Z2: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_real @ W @ Z2 )
=> ( ord_less_real @ ( divide_divide_real @ X @ Z2 ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).
% frac_less2
thf(fact_831_frac__less,axiom,
! [X: real,Y: real,W: real,Z2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z2 )
=> ( ord_less_real @ ( divide_divide_real @ X @ Z2 ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).
% frac_less
thf(fact_832_frac__le,axiom,
! [Y: real,X: real,W: real,Z2: real] :
( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ X @ Y )
=> ( ( ord_less_real @ zero_zero_real @ W )
=> ( ( ord_less_eq_real @ W @ Z2 )
=> ( ord_less_eq_real @ ( divide_divide_real @ X @ Z2 ) @ ( divide_divide_real @ Y @ W ) ) ) ) ) ) ).
% frac_le
thf(fact_833_less__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% less_divide_eq_1
thf(fact_834_divide__less__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_less_eq_1
thf(fact_835_le__divide__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ one_one_real @ ( divide_divide_real @ B @ A ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ A @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ A ) ) ) ) ).
% le_divide_eq_1
thf(fact_836_divide__le__eq__1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( divide_divide_real @ B @ A ) @ one_one_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ A ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ A @ B ) )
| ( A = zero_zero_real ) ) ) ).
% divide_le_eq_1
thf(fact_837_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_838_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_839_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_840_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_841_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_842_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_843_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_844_kuhn__labelling__lemma_H,axiom,
! [P: ( nat > real ) > $o,F: ( nat > real ) > nat > real,Q: nat > $o] :
( ! [X4: nat > real] :
( ( P @ X4 )
=> ( P @ ( F @ X4 ) ) )
=> ( ! [X4: nat > real] :
( ( P @ X4 )
=> ! [I2: nat] :
( ( Q @ I2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( X4 @ I2 ) )
& ( ord_less_eq_real @ ( X4 @ I2 ) @ one_one_real ) ) ) )
=> ? [L2: ( nat > real ) > nat > nat] :
( ! [X6: nat > real,I3: nat] : ( ord_less_eq_nat @ ( L2 @ X6 @ I3 ) @ one_one_nat )
& ! [X6: nat > real,I3: nat] :
( ( ( P @ X6 )
& ( Q @ I3 )
& ( ( X6 @ I3 )
= zero_zero_real ) )
=> ( ( L2 @ X6 @ I3 )
= zero_zero_nat ) )
& ! [X6: nat > real,I3: nat] :
( ( ( P @ X6 )
& ( Q @ I3 )
& ( ( X6 @ I3 )
= one_one_real ) )
=> ( ( L2 @ X6 @ I3 )
= one_one_nat ) )
& ! [X6: nat > real,I3: nat] :
( ( ( P @ X6 )
& ( Q @ I3 )
& ( ( L2 @ X6 @ I3 )
= zero_zero_nat ) )
=> ( ord_less_eq_real @ ( X6 @ I3 ) @ ( F @ X6 @ I3 ) ) )
& ! [X6: nat > real,I3: nat] :
( ( ( P @ X6 )
& ( Q @ I3 )
& ( ( L2 @ X6 @ I3 )
= one_one_nat ) )
=> ( ord_less_eq_real @ ( F @ X6 @ I3 ) @ ( X6 @ I3 ) ) ) ) ) ) ).
% kuhn_labelling_lemma'
thf(fact_845_zero__one__enat__neq_I1_J,axiom,
zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).
% zero_one_enat_neq(1)
thf(fact_846_verit__la__generic,axiom,
! [A: int,X: int] :
( ( ord_less_eq_int @ A @ X )
| ( A = X )
| ( ord_less_eq_int @ X @ A ) ) ).
% verit_la_generic
thf(fact_847_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y3: nat] :
( ( P @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ B ) )
=> ? [X4: nat] :
( ( P @ X4 )
& ! [Y6: nat] :
( ( P @ Y6 )
=> ( ord_less_eq_nat @ Y6 @ X4 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_848_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_849_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_850_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_851_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_852_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_853_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_854_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_855_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_856_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_857_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_858_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_859_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_860_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_861_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_862_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_863_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_864_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_865_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_866_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_867_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_868_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_869_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_870_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_871_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_872_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M3: nat,N3: nat] :
( ( ord_less_eq_nat @ M3 @ N3 )
& ( M3 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_873_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_874_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M3: nat,N3: nat] :
( ( ord_less_nat @ M3 @ N3 )
| ( M3 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_875_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_876_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_877_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_878_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K2 )
=> ~ ( P @ I3 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_879_int__one__le__iff__zero__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ one_one_int @ Z2 )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% int_one_le_iff_zero_less
thf(fact_880_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_881_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_882_imp__le__cong,axiom,
! [X: int,X7: int,P: $o,P4: $o] :
( ( X = X7 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
=> ( P = P4 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
=> P )
= ( ( ord_less_eq_int @ zero_zero_int @ X7 )
=> P4 ) ) ) ) ).
% imp_le_cong
thf(fact_883_conj__le__cong,axiom,
! [X: int,X7: int,P: $o,P4: $o] :
( ( X = X7 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X7 )
=> ( P = P4 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
& P )
= ( ( ord_less_eq_int @ zero_zero_int @ X7 )
& P4 ) ) ) ) ).
% conj_le_cong
thf(fact_884_mod2__gr__0,axiom,
! [M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% mod2_gr_0
thf(fact_885_mod__mod__trivial,axiom,
! [A: nat,B: nat] :
( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= ( modulo_modulo_nat @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_886_mod__mod__trivial,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( modulo_modulo_int @ A @ B ) @ B )
= ( modulo_modulo_int @ A @ B ) ) ).
% mod_mod_trivial
thf(fact_887_mod__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mod_0
thf(fact_888_mod__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mod_0
thf(fact_889_mod__by__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ zero_zero_nat )
= A ) ).
% mod_by_0
thf(fact_890_mod__by__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ zero_zero_int )
= A ) ).
% mod_by_0
thf(fact_891_mod__self,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ A )
= zero_zero_nat ) ).
% mod_self
thf(fact_892_mod__self,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ A )
= zero_zero_int ) ).
% mod_self
thf(fact_893_bits__mod__0,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% bits_mod_0
thf(fact_894_bits__mod__0,axiom,
! [A: int] :
( ( modulo_modulo_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% bits_mod_0
thf(fact_895_mod__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( modulo_modulo_nat @ M @ N )
= M ) ) ).
% mod_less
thf(fact_896_bits__mod__by__1,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ one_one_nat )
= zero_zero_nat ) ).
% bits_mod_by_1
thf(fact_897_bits__mod__by__1,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ one_one_int )
= zero_zero_int ) ).
% bits_mod_by_1
thf(fact_898_mod__by__1,axiom,
! [A: nat] :
( ( modulo_modulo_nat @ A @ one_one_nat )
= zero_zero_nat ) ).
% mod_by_1
thf(fact_899_mod__by__1,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ one_one_int )
= zero_zero_int ) ).
% mod_by_1
thf(fact_900_mod__div__trivial,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% mod_div_trivial
thf(fact_901_mod__div__trivial,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
= zero_zero_int ) ).
% mod_div_trivial
thf(fact_902_bits__mod__div__trivial,axiom,
! [A: nat,B: nat] :
( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
= zero_zero_nat ) ).
% bits_mod_div_trivial
thf(fact_903_bits__mod__div__trivial,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( modulo_modulo_int @ A @ B ) @ B )
= zero_zero_int ) ).
% bits_mod_div_trivial
thf(fact_904_one__mod__two__eq__one,axiom,
( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_mod_two_eq_one
thf(fact_905_one__mod__two__eq__one,axiom,
( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_mod_two_eq_one
thf(fact_906_bits__one__mod__two__eq__one,axiom,
( ( modulo_modulo_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% bits_one_mod_two_eq_one
thf(fact_907_bits__one__mod__two__eq__one,axiom,
( ( modulo_modulo_int @ one_one_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% bits_one_mod_two_eq_one
thf(fact_908_not__mod__2__eq__1__eq__0,axiom,
! [A: nat] :
( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= one_one_nat )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_909_not__mod__2__eq__1__eq__0,axiom,
! [A: int] :
( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= one_one_int )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= zero_zero_int ) ) ).
% not_mod_2_eq_1_eq_0
thf(fact_910_not__mod__2__eq__0__eq__1,axiom,
! [A: nat] :
( ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= zero_zero_nat )
= ( ( modulo_modulo_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_911_not__mod__2__eq__0__eq__1,axiom,
! [A: int] :
( ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
!= zero_zero_int )
= ( ( modulo_modulo_int @ A @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ) ).
% not_mod_2_eq_0_eq_1
thf(fact_912_mod__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).
% mod_less_eq_dividend
thf(fact_913_mod__eq__self__iff__div__eq__0,axiom,
! [A: nat,B: nat] :
( ( ( modulo_modulo_nat @ A @ B )
= A )
= ( ( divide_divide_nat @ A @ B )
= zero_zero_nat ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_914_mod__eq__self__iff__div__eq__0,axiom,
! [A: int,B: int] :
( ( ( modulo_modulo_int @ A @ B )
= A )
= ( ( divide_divide_int @ A @ B )
= zero_zero_int ) ) ).
% mod_eq_self_iff_div_eq_0
thf(fact_915_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ Q2 ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_916_cong__exp__iff__simps_I9_J,axiom,
! [M: num,Q2: num,N: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ Q2 ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(9)
thf(fact_917_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ one ) )
= ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_918_cong__exp__iff__simps_I4_J,axiom,
! [M: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ one ) )
= ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) ) ) ).
% cong_exp_iff_simps(4)
thf(fact_919_mod__less__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).
% mod_less_divisor
thf(fact_920_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q2: num] :
( ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
= zero_zero_nat )
= ( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ Q2 ) )
= zero_zero_nat ) ) ).
% cong_exp_iff_simps(2)
thf(fact_921_cong__exp__iff__simps_I2_J,axiom,
! [N: num,Q2: num] :
( ( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
= zero_zero_int )
= ( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ Q2 ) )
= zero_zero_int ) ) ).
% cong_exp_iff_simps(2)
thf(fact_922_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ one ) )
= zero_zero_nat ) ).
% cong_exp_iff_simps(1)
thf(fact_923_cong__exp__iff__simps_I1_J,axiom,
! [N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ one ) )
= zero_zero_int ) ).
% cong_exp_iff_simps(1)
thf(fact_924_cong__exp__iff__simps_I6_J,axiom,
! [Q2: num,N: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ N ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_925_cong__exp__iff__simps_I6_J,axiom,
! [Q2: num,N: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ N ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(6)
thf(fact_926_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q2: num] :
( ( modulo_modulo_nat @ ( numeral_numeral_nat @ ( bit0 @ M ) ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_nat @ ( numeral_numeral_nat @ one ) @ ( numeral_numeral_nat @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_927_cong__exp__iff__simps_I8_J,axiom,
! [M: num,Q2: num] :
( ( modulo_modulo_int @ ( numeral_numeral_int @ ( bit0 @ M ) ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) )
!= ( modulo_modulo_int @ ( numeral_numeral_int @ one ) @ ( numeral_numeral_int @ ( bit0 @ Q2 ) ) ) ) ).
% cong_exp_iff_simps(8)
thf(fact_928_mod__le__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).
% mod_le_divisor
thf(fact_929_div__less__mono,axiom,
! [A3: nat,B5: nat,N: nat] :
( ( ord_less_nat @ A3 @ B5 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ( modulo_modulo_nat @ A3 @ N )
= zero_zero_nat )
=> ( ( ( modulo_modulo_nat @ B5 @ N )
= zero_zero_nat )
=> ( ord_less_nat @ ( divide_divide_nat @ A3 @ N ) @ ( divide_divide_nat @ B5 @ N ) ) ) ) ) ) ).
% div_less_mono
thf(fact_930_pinf_I1_J,axiom,
! [P: extended_enat > $o,P4: extended_enat > $o,Q: extended_enat > $o,Q3: extended_enat > $o] :
( ? [Z4: extended_enat] :
! [X4: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: extended_enat] :
! [X4: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X6 )
=> ( ( ( P @ X6 )
& ( Q @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_931_pinf_I1_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ Z3 @ X6 )
=> ( ( ( P @ X6 )
& ( Q @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_932_pinf_I1_J,axiom,
! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ Z3 @ X6 )
=> ( ( ( P @ X6 )
& ( Q @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_933_pinf_I1_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z3 @ X6 )
=> ( ( ( P @ X6 )
& ( Q @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_934_pinf_I1_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ Z3 @ X6 )
=> ( ( ( P @ X6 )
& ( Q @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_935_pinf_I2_J,axiom,
! [P: extended_enat > $o,P4: extended_enat > $o,Q: extended_enat > $o,Q3: extended_enat > $o] :
( ? [Z4: extended_enat] :
! [X4: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: extended_enat] :
! [X4: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X6 )
=> ( ( ( P @ X6 )
| ( Q @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_936_pinf_I2_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ Z3 @ X6 )
=> ( ( ( P @ X6 )
| ( Q @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_937_pinf_I2_J,axiom,
! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ Z3 @ X6 )
=> ( ( ( P @ X6 )
| ( Q @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_938_pinf_I2_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z3 @ X6 )
=> ( ( ( P @ X6 )
| ( Q @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_939_pinf_I2_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ Z4 @ X4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ Z3 @ X6 )
=> ( ( ( P @ X6 )
| ( Q @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_940_pinf_I3_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X6 )
=> ( X6 != T ) ) ).
% pinf(3)
thf(fact_941_pinf_I3_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ Z3 @ X6 )
=> ( X6 != T ) ) ).
% pinf(3)
thf(fact_942_pinf_I3_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ Z3 @ X6 )
=> ( X6 != T ) ) ).
% pinf(3)
thf(fact_943_pinf_I3_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z3 @ X6 )
=> ( X6 != T ) ) ).
% pinf(3)
thf(fact_944_pinf_I3_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ Z3 @ X6 )
=> ( X6 != T ) ) ).
% pinf(3)
thf(fact_945_pinf_I4_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X6 )
=> ( X6 != T ) ) ).
% pinf(4)
thf(fact_946_pinf_I4_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ Z3 @ X6 )
=> ( X6 != T ) ) ).
% pinf(4)
thf(fact_947_pinf_I4_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ Z3 @ X6 )
=> ( X6 != T ) ) ).
% pinf(4)
thf(fact_948_pinf_I4_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z3 @ X6 )
=> ( X6 != T ) ) ).
% pinf(4)
thf(fact_949_pinf_I4_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ Z3 @ X6 )
=> ( X6 != T ) ) ).
% pinf(4)
thf(fact_950_pinf_I5_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X6 )
=> ~ ( ord_le72135733267957522d_enat @ X6 @ T ) ) ).
% pinf(5)
thf(fact_951_pinf_I5_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ Z3 @ X6 )
=> ~ ( ord_less_real @ X6 @ T ) ) ).
% pinf(5)
thf(fact_952_pinf_I5_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ Z3 @ X6 )
=> ~ ( ord_less_num @ X6 @ T ) ) ).
% pinf(5)
thf(fact_953_pinf_I5_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z3 @ X6 )
=> ~ ( ord_less_nat @ X6 @ T ) ) ).
% pinf(5)
thf(fact_954_pinf_I5_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ Z3 @ X6 )
=> ~ ( ord_less_int @ X6 @ T ) ) ).
% pinf(5)
thf(fact_955_pinf_I7_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X6 )
=> ( ord_le72135733267957522d_enat @ T @ X6 ) ) ).
% pinf(7)
thf(fact_956_pinf_I7_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ Z3 @ X6 )
=> ( ord_less_real @ T @ X6 ) ) ).
% pinf(7)
thf(fact_957_pinf_I7_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ Z3 @ X6 )
=> ( ord_less_num @ T @ X6 ) ) ).
% pinf(7)
thf(fact_958_pinf_I7_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z3 @ X6 )
=> ( ord_less_nat @ T @ X6 ) ) ).
% pinf(7)
thf(fact_959_pinf_I7_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ Z3 @ X6 )
=> ( ord_less_int @ T @ X6 ) ) ).
% pinf(7)
thf(fact_960_minf_I1_J,axiom,
! [P: extended_enat > $o,P4: extended_enat > $o,Q: extended_enat > $o,Q3: extended_enat > $o] :
( ? [Z4: extended_enat] :
! [X4: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: extended_enat] :
! [X4: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z3 )
=> ( ( ( P @ X6 )
& ( Q @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(1)
thf(fact_961_minf_I1_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z3 )
=> ( ( ( P @ X6 )
& ( Q @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(1)
thf(fact_962_minf_I1_J,axiom,
! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z3 )
=> ( ( ( P @ X6 )
& ( Q @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(1)
thf(fact_963_minf_I1_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z3 )
=> ( ( ( P @ X6 )
& ( Q @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(1)
thf(fact_964_minf_I1_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z3 )
=> ( ( ( P @ X6 )
& ( Q @ X6 ) )
= ( ( P4 @ X6 )
& ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(1)
thf(fact_965_minf_I2_J,axiom,
! [P: extended_enat > $o,P4: extended_enat > $o,Q: extended_enat > $o,Q3: extended_enat > $o] :
( ? [Z4: extended_enat] :
! [X4: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: extended_enat] :
! [X4: extended_enat] :
( ( ord_le72135733267957522d_enat @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z3 )
=> ( ( ( P @ X6 )
| ( Q @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(2)
thf(fact_966_minf_I2_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q3: real > $o] :
( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: real] :
! [X4: real] :
( ( ord_less_real @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z3 )
=> ( ( ( P @ X6 )
| ( Q @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(2)
thf(fact_967_minf_I2_J,axiom,
! [P: num > $o,P4: num > $o,Q: num > $o,Q3: num > $o] :
( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: num] :
! [X4: num] :
( ( ord_less_num @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z3 )
=> ( ( ( P @ X6 )
| ( Q @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(2)
thf(fact_968_minf_I2_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: nat] :
! [X4: nat] :
( ( ord_less_nat @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z3 )
=> ( ( ( P @ X6 )
| ( Q @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(2)
thf(fact_969_minf_I2_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q3: int > $o] :
( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ( P @ X4 )
= ( P4 @ X4 ) ) )
=> ( ? [Z4: int] :
! [X4: int] :
( ( ord_less_int @ X4 @ Z4 )
=> ( ( Q @ X4 )
= ( Q3 @ X4 ) ) )
=> ? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z3 )
=> ( ( ( P @ X6 )
| ( Q @ X6 ) )
= ( ( P4 @ X6 )
| ( Q3 @ X6 ) ) ) ) ) ) ).
% minf(2)
thf(fact_970_minf_I3_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z3 )
=> ( X6 != T ) ) ).
% minf(3)
thf(fact_971_minf_I3_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z3 )
=> ( X6 != T ) ) ).
% minf(3)
thf(fact_972_minf_I3_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z3 )
=> ( X6 != T ) ) ).
% minf(3)
thf(fact_973_minf_I3_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z3 )
=> ( X6 != T ) ) ).
% minf(3)
thf(fact_974_minf_I3_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z3 )
=> ( X6 != T ) ) ).
% minf(3)
thf(fact_975_minf_I4_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z3 )
=> ( X6 != T ) ) ).
% minf(4)
thf(fact_976_minf_I4_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z3 )
=> ( X6 != T ) ) ).
% minf(4)
thf(fact_977_minf_I4_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z3 )
=> ( X6 != T ) ) ).
% minf(4)
thf(fact_978_minf_I4_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z3 )
=> ( X6 != T ) ) ).
% minf(4)
thf(fact_979_minf_I4_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z3 )
=> ( X6 != T ) ) ).
% minf(4)
thf(fact_980_minf_I5_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z3 )
=> ( ord_le72135733267957522d_enat @ X6 @ T ) ) ).
% minf(5)
thf(fact_981_minf_I5_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z3 )
=> ( ord_less_real @ X6 @ T ) ) ).
% minf(5)
thf(fact_982_minf_I5_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z3 )
=> ( ord_less_num @ X6 @ T ) ) ).
% minf(5)
thf(fact_983_minf_I5_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z3 )
=> ( ord_less_nat @ X6 @ T ) ) ).
% minf(5)
thf(fact_984_minf_I5_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z3 )
=> ( ord_less_int @ X6 @ T ) ) ).
% minf(5)
thf(fact_985_minf_I7_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z3 )
=> ~ ( ord_le72135733267957522d_enat @ T @ X6 ) ) ).
% minf(7)
thf(fact_986_minf_I7_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z3 )
=> ~ ( ord_less_real @ T @ X6 ) ) ).
% minf(7)
thf(fact_987_minf_I7_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z3 )
=> ~ ( ord_less_num @ T @ X6 ) ) ).
% minf(7)
thf(fact_988_minf_I7_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z3 )
=> ~ ( ord_less_nat @ T @ X6 ) ) ).
% minf(7)
thf(fact_989_minf_I7_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z3 )
=> ~ ( ord_less_int @ T @ X6 ) ) ).
% minf(7)
thf(fact_990_pinf_I6_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X6 )
=> ~ ( ord_le2932123472753598470d_enat @ X6 @ T ) ) ).
% pinf(6)
thf(fact_991_pinf_I6_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ Z3 @ X6 )
=> ~ ( ord_less_eq_real @ X6 @ T ) ) ).
% pinf(6)
thf(fact_992_pinf_I6_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ Z3 @ X6 )
=> ~ ( ord_less_eq_num @ X6 @ T ) ) ).
% pinf(6)
thf(fact_993_pinf_I6_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z3 @ X6 )
=> ~ ( ord_less_eq_nat @ X6 @ T ) ) ).
% pinf(6)
thf(fact_994_pinf_I6_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ Z3 @ X6 )
=> ~ ( ord_less_eq_int @ X6 @ T ) ) ).
% pinf(6)
thf(fact_995_pinf_I8_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ Z3 @ X6 )
=> ( ord_le2932123472753598470d_enat @ T @ X6 ) ) ).
% pinf(8)
thf(fact_996_pinf_I8_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ Z3 @ X6 )
=> ( ord_less_eq_real @ T @ X6 ) ) ).
% pinf(8)
thf(fact_997_pinf_I8_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ Z3 @ X6 )
=> ( ord_less_eq_num @ T @ X6 ) ) ).
% pinf(8)
thf(fact_998_pinf_I8_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ Z3 @ X6 )
=> ( ord_less_eq_nat @ T @ X6 ) ) ).
% pinf(8)
thf(fact_999_pinf_I8_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ Z3 @ X6 )
=> ( ord_less_eq_int @ T @ X6 ) ) ).
% pinf(8)
thf(fact_1000_minf_I6_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z3 )
=> ( ord_le2932123472753598470d_enat @ X6 @ T ) ) ).
% minf(6)
thf(fact_1001_minf_I6_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z3 )
=> ( ord_less_eq_real @ X6 @ T ) ) ).
% minf(6)
thf(fact_1002_minf_I6_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z3 )
=> ( ord_less_eq_num @ X6 @ T ) ) ).
% minf(6)
thf(fact_1003_minf_I6_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z3 )
=> ( ord_less_eq_nat @ X6 @ T ) ) ).
% minf(6)
thf(fact_1004_minf_I6_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z3 )
=> ( ord_less_eq_int @ X6 @ T ) ) ).
% minf(6)
thf(fact_1005_minf_I8_J,axiom,
! [T: extended_enat] :
? [Z3: extended_enat] :
! [X6: extended_enat] :
( ( ord_le72135733267957522d_enat @ X6 @ Z3 )
=> ~ ( ord_le2932123472753598470d_enat @ T @ X6 ) ) ).
% minf(8)
thf(fact_1006_minf_I8_J,axiom,
! [T: real] :
? [Z3: real] :
! [X6: real] :
( ( ord_less_real @ X6 @ Z3 )
=> ~ ( ord_less_eq_real @ T @ X6 ) ) ).
% minf(8)
thf(fact_1007_minf_I8_J,axiom,
! [T: num] :
? [Z3: num] :
! [X6: num] :
( ( ord_less_num @ X6 @ Z3 )
=> ~ ( ord_less_eq_num @ T @ X6 ) ) ).
% minf(8)
thf(fact_1008_minf_I8_J,axiom,
! [T: nat] :
? [Z3: nat] :
! [X6: nat] :
( ( ord_less_nat @ X6 @ Z3 )
=> ~ ( ord_less_eq_nat @ T @ X6 ) ) ).
% minf(8)
thf(fact_1009_minf_I8_J,axiom,
! [T: int] :
? [Z3: int] :
! [X6: int] :
( ( ord_less_int @ X6 @ Z3 )
=> ~ ( ord_less_eq_int @ T @ X6 ) ) ).
% minf(8)
thf(fact_1010_gcd__nat__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [M4: nat] : ( P @ M4 @ zero_zero_nat )
=> ( ! [M4: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ N2 @ ( modulo_modulo_nat @ M4 @ N2 ) )
=> ( P @ M4 @ N2 ) ) )
=> ( P @ M @ N ) ) ) ).
% gcd_nat_induct
thf(fact_1011_nat__descend__induct,axiom,
! [N: nat,P: nat > $o,M: nat] :
( ! [K2: nat] :
( ( ord_less_nat @ N @ K2 )
=> ( P @ K2 ) )
=> ( ! [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ! [I3: nat] :
( ( ord_less_nat @ K2 @ I3 )
=> ( P @ I3 ) )
=> ( P @ K2 ) ) )
=> ( P @ M ) ) ) ).
% nat_descend_induct
thf(fact_1012_mod__neg__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L @ K )
=> ( ( modulo_modulo_int @ K @ L )
= K ) ) ) ).
% mod_neg_neg_trivial
thf(fact_1013_mod__pos__pos__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L )
=> ( ( modulo_modulo_int @ K @ L )
= K ) ) ) ).
% mod_pos_pos_trivial
thf(fact_1014_zmod__le__nonneg__dividend,axiom,
! [M: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K ) @ M ) ) ).
% zmod_le_nonneg_dividend
thf(fact_1015_neg__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_int @ L @ ( modulo_modulo_int @ K @ L ) ) ) ).
% neg_mod_bound
thf(fact_1016_Euclidean__Division_Opos__mod__bound,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_int @ ( modulo_modulo_int @ K @ L ) @ L ) ) ).
% Euclidean_Division.pos_mod_bound
thf(fact_1017_neg__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less_int @ L @ zero_zero_int )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L ) @ zero_zero_int ) ) ).
% neg_mod_sign
thf(fact_1018_Euclidean__Division_Opos__mod__sign,axiom,
! [L: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L )
=> ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) ) ) ).
% Euclidean_Division.pos_mod_sign
thf(fact_1019_zmod__trivial__iff,axiom,
! [I: int,K: int] :
( ( ( modulo_modulo_int @ I @ K )
= I )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I )
& ( ord_less_int @ I @ K ) )
| ( ( ord_less_eq_int @ I @ zero_zero_int )
& ( ord_less_int @ K @ I ) ) ) ) ).
% zmod_trivial_iff
thf(fact_1020_zdiv__mono__strict,axiom,
! [A3: int,B5: int,N: int] :
( ( ord_less_int @ A3 @ B5 )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ( ( modulo_modulo_int @ A3 @ N )
= zero_zero_int )
=> ( ( ( modulo_modulo_int @ B5 @ N )
= zero_zero_int )
=> ( ord_less_int @ ( divide_divide_int @ A3 @ N ) @ ( divide_divide_int @ B5 @ N ) ) ) ) ) ) ).
% zdiv_mono_strict
thf(fact_1021_eucl__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [B4: nat] : ( P @ B4 @ zero_zero_nat )
=> ( ! [A5: nat,B4: nat] :
( ( B4 != zero_zero_nat )
=> ( ( P @ B4 @ ( modulo_modulo_nat @ A5 @ B4 ) )
=> ( P @ A5 @ B4 ) ) )
=> ( P @ A @ B ) ) ) ).
% eucl_induct
thf(fact_1022_eucl__induct,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [B4: int] : ( P @ B4 @ zero_zero_int )
=> ( ! [A5: int,B4: int] :
( ( B4 != zero_zero_int )
=> ( ( P @ B4 @ ( modulo_modulo_int @ A5 @ B4 ) )
=> ( P @ A5 @ B4 ) ) )
=> ( P @ A @ B ) ) ) ).
% eucl_induct
thf(fact_1023_seq__mono__lemma,axiom,
! [M: nat,D: nat > real,E: nat > real] :
( ! [N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_real @ ( D @ N2 ) @ ( E @ N2 ) ) )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_eq_real @ ( E @ N2 ) @ ( E @ M ) ) )
=> ! [N4: nat] :
( ( ord_less_eq_nat @ M @ N4 )
=> ( ord_less_real @ ( D @ N4 ) @ ( E @ M ) ) ) ) ) ).
% seq_mono_lemma
thf(fact_1024_forall__2,axiom,
( ( ^ [P2: numera2417102609627094330l_num1 > $o] :
! [X5: numera2417102609627094330l_num1] : ( P2 @ X5 ) )
= ( ^ [P3: numera2417102609627094330l_num1 > $o] :
( ( P3 @ one_on3868389512446148991l_num1 )
& ( P3 @ ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ) ) ).
% forall_2
thf(fact_1025_exhaust__2,axiom,
! [X: numera2417102609627094330l_num1] :
( ( X = one_on3868389512446148991l_num1 )
| ( X
= ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ).
% exhaust_2
thf(fact_1026_dbl__simps_I4_J,axiom,
( ( neg_nu5816564918971239084l_num1 @ ( uminus1336558196688952754l_num1 @ one_on7795324986448017462l_num1 ) )
= ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_1027_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_1028_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_1029_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_1030_neg__equal__iff__equal,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_1031_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_1032_add_Oinverse__inverse,axiom,
! [A: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_1033_verit__minus__simplify_I4_J,axiom,
! [B: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_1034_verit__minus__simplify_I4_J,axiom,
! [B: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_1035_neg__le__iff__le,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_1036_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_1037_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_1038_add_Oinverse__neutral,axiom,
( ( uminus_uminus_real @ zero_zero_real )
= zero_zero_real ) ).
% add.inverse_neutral
thf(fact_1039_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_1040_neg__0__equal__iff__equal,axiom,
! [A: real] :
( ( zero_zero_real
= ( uminus_uminus_real @ A ) )
= ( zero_zero_real = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_1041_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_1042_neg__equal__0__iff__equal,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% neg_equal_0_iff_equal
thf(fact_1043_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_1044_equal__neg__zero,axiom,
! [A: real] :
( ( A
= ( uminus_uminus_real @ A ) )
= ( A = zero_zero_real ) ) ).
% equal_neg_zero
thf(fact_1045_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_1046_neg__equal__zero,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= A )
= ( A = zero_zero_real ) ) ).
% neg_equal_zero
thf(fact_1047_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_1048_neg__less__iff__less,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_1049_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_1050_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_1051_div__minus__minus,axiom,
! [A: int,B: int] :
( ( divide_divide_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( divide_divide_int @ A @ B ) ) ).
% div_minus_minus
thf(fact_1052_mod__minus__minus,axiom,
! [A: int,B: int] :
( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( modulo_modulo_int @ A @ B ) ) ) ).
% mod_minus_minus
thf(fact_1053_neg__less__eq__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_1054_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_1055_less__eq__neg__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% less_eq_neg_nonpos
thf(fact_1056_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_1057_neg__le__0__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_le_0_iff_le
thf(fact_1058_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_1059_neg__0__le__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% neg_0_le_iff_le
thf(fact_1060_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_1061_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_1062_neg__less__0__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_0_iff_less
thf(fact_1063_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_1064_neg__0__less__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% neg_0_less_iff_less
thf(fact_1065_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_1066_neg__less__pos,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_pos
thf(fact_1067_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_1068_less__neg__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% less_neg_neg
thf(fact_1069_divide__minus1,axiom,
! [X: real] :
( ( divide_divide_real @ X @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ X ) ) ).
% divide_minus1
thf(fact_1070_div__minus1__right,axiom,
! [A: int] :
( ( divide_divide_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ A ) ) ).
% div_minus1_right
thf(fact_1071_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu5816564918971239084l_num1 @ ( uminus1336558196688952754l_num1 @ ( numera7754357348821619680l_num1 @ K ) ) )
= ( uminus1336558196688952754l_num1 @ ( neg_nu5816564918971239084l_num1 @ ( numera7754357348821619680l_num1 @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_1072_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_1073_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_1074_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ one_one_int ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_1075_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ one_one_real ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_1076_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_1077_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_1078_mod__minus1__right,axiom,
! [A: int] :
( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% mod_minus1_right
thf(fact_1079_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_1080_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_1081_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_1082_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_1083_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_1084_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_1085_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_1086_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_1087_minus__1__div__2__eq,axiom,
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% minus_1_div_2_eq
thf(fact_1088_minus__1__mod__2__eq,axiom,
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% minus_1_mod_2_eq
thf(fact_1089_bits__minus__1__mod__2__eq,axiom,
( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ ( numeral_numeral_int @ ( bit0 @ one ) ) )
= one_one_int ) ).
% bits_minus_1_mod_2_eq
thf(fact_1090_minus__equation__iff,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( uminus_uminus_int @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_1091_minus__equation__iff,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( uminus_uminus_real @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_1092_equation__minus__iff,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% equation_minus_iff
thf(fact_1093_equation__minus__iff,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% equation_minus_iff
thf(fact_1094_verit__negate__coefficient_I3_J,axiom,
! [A: real,B: real] :
( ( A = B )
=> ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_1095_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_1096_zmod__zminus1__not__zero,axiom,
! [K: int,L: int] :
( ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L )
!= zero_zero_int ) ) ).
% zmod_zminus1_not_zero
thf(fact_1097_zmod__zminus2__not__zero,axiom,
! [K: int,L: int] :
( ( ( modulo_modulo_int @ K @ ( uminus_uminus_int @ L ) )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L )
!= zero_zero_int ) ) ).
% zmod_zminus2_not_zero
thf(fact_1098_div__eq__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( uminus_uminus_int @ one_one_int ) ) ) ).
% div_eq_minus1
thf(fact_1099_verit__less__mono__div__int2,axiom,
! [A3: int,B5: int,N: int] :
( ( ord_less_eq_int @ A3 @ B5 )
=> ( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ N ) )
=> ( ord_less_eq_int @ ( divide_divide_int @ B5 @ N ) @ ( divide_divide_int @ A3 @ N ) ) ) ) ).
% verit_less_mono_div_int2
thf(fact_1100_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X3: real,Y5: real] :
( ( ord_less_real @ X3 @ Y5 )
| ( X3 = Y5 ) ) ) ) ).
% less_eq_real_def
thf(fact_1101_signed__take__bit__minus,axiom,
! [N: nat,K: int] :
( ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ ( bit_ri631733984087533419it_int @ N @ K ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( uminus_uminus_int @ K ) ) ) ).
% signed_take_bit_minus
thf(fact_1102_complete__real,axiom,
! [S2: set_real] :
( ? [X6: real] : ( member_real @ X6 @ S2 )
=> ( ? [Z4: real] :
! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ord_less_eq_real @ X4 @ Z4 ) )
=> ? [Y3: real] :
( ! [X6: real] :
( ( member_real @ X6 @ S2 )
=> ( ord_less_eq_real @ X6 @ Y3 ) )
& ! [Z4: real] :
( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ord_less_eq_real @ X4 @ Z4 ) )
=> ( ord_less_eq_real @ Y3 @ Z4 ) ) ) ) ) ).
% complete_real
thf(fact_1103_signed__take__bit__int__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ( bit_ri631733984087533419it_int @ N @ K )
= K )
= ( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
& ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% signed_take_bit_int_eq_self_iff
thf(fact_1104_signed__take__bit__int__eq__self,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K )
=> ( ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
=> ( ( bit_ri631733984087533419it_int @ N @ K )
= K ) ) ) ).
% signed_take_bit_int_eq_self
thf(fact_1105_real__eq__0__iff__le__ge__0,axiom,
! [X: real] :
( ( X = zero_zero_real )
= ( ( ord_less_eq_real @ zero_zero_real @ X )
& ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ X ) ) ) ) ).
% real_eq_0_iff_le_ge_0
thf(fact_1106_verit__eq__simplify_I9_J,axiom,
! [X32: num,Y32: num] :
( ( ( bit1 @ X32 )
= ( bit1 @ Y32 ) )
= ( X32 = Y32 ) ) ).
% verit_eq_simplify(9)
thf(fact_1107_semiring__norm_I90_J,axiom,
! [M: num,N: num] :
( ( ( bit1 @ M )
= ( bit1 @ N ) )
= ( M = N ) ) ).
% semiring_norm(90)
thf(fact_1108_semiring__norm_I88_J,axiom,
! [M: num,N: num] :
( ( bit0 @ M )
!= ( bit1 @ N ) ) ).
% semiring_norm(88)
thf(fact_1109_semiring__norm_I89_J,axiom,
! [M: num,N: num] :
( ( bit1 @ M )
!= ( bit0 @ N ) ) ).
% semiring_norm(89)
thf(fact_1110_semiring__norm_I84_J,axiom,
! [N: num] :
( one
!= ( bit1 @ N ) ) ).
% semiring_norm(84)
thf(fact_1111_semiring__norm_I86_J,axiom,
! [M: num] :
( ( bit1 @ M )
!= one ) ).
% semiring_norm(86)
thf(fact_1112_semiring__norm_I80_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(80)
thf(fact_1113_semiring__norm_I73_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(73)
thf(fact_1114_semiring__norm_I81_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(81)
thf(fact_1115_semiring__norm_I77_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit1 @ N ) ) ).
% semiring_norm(77)
thf(fact_1116_semiring__norm_I72_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(72)
thf(fact_1117_semiring__norm_I70_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit1 @ M ) @ one ) ).
% semiring_norm(70)
thf(fact_1118_zdiv__numeral__Bit1,axiom,
! [V: num,W: num] :
( ( divide_divide_int @ ( numeral_numeral_int @ ( bit1 @ V ) ) @ ( numeral_numeral_int @ ( bit0 @ W ) ) )
= ( divide_divide_int @ ( numeral_numeral_int @ V ) @ ( numeral_numeral_int @ W ) ) ) ).
% zdiv_numeral_Bit1
thf(fact_1119_semiring__norm_I74_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(74)
thf(fact_1120_semiring__norm_I79_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(79)
thf(fact_1121_verit__eq__simplify_I14_J,axiom,
! [X2: num,X32: num] :
( ( bit0 @ X2 )
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(14)
thf(fact_1122_verit__eq__simplify_I12_J,axiom,
! [X32: num] :
( one
!= ( bit1 @ X32 ) ) ).
% verit_eq_simplify(12)
thf(fact_1123_num_Oexhaust,axiom,
! [Y: num] :
( ( Y != one )
=> ( ! [X22: num] :
( Y
!= ( bit0 @ X22 ) )
=> ~ ! [X33: num] :
( Y
!= ( bit1 @ X33 ) ) ) ) ).
% num.exhaust
thf(fact_1124_forall__3,axiom,
( ( ^ [P2: numera6367994245245682809l_num1 > $o] :
! [X5: numera6367994245245682809l_num1] : ( P2 @ X5 ) )
= ( ^ [P3: numera6367994245245682809l_num1 > $o] :
( ( P3 @ one_on7819281148064737470l_num1 )
& ( P3 @ ( numera6112219686443703444l_num1 @ ( bit0 @ one ) ) )
& ( P3 @ ( numera6112219686443703444l_num1 @ ( bit1 @ one ) ) ) ) ) ) ).
% forall_3
thf(fact_1125_exhaust__3,axiom,
! [X: numera6367994245245682809l_num1] :
( ( X = one_on7819281148064737470l_num1 )
| ( X
= ( numera6112219686443703444l_num1 @ ( bit0 @ one ) ) )
| ( X
= ( numera6112219686443703444l_num1 @ ( bit1 @ one ) ) ) ) ).
% exhaust_3
thf(fact_1126_forall__4,axiom,
( ( ^ [P2: numera4273646738625120315l_num1 > $o] :
! [X5: numera4273646738625120315l_num1] : ( P2 @ X5 ) )
= ( ^ [P3: numera4273646738625120315l_num1 > $o] :
( ( P3 @ one_on7795324986448017462l_num1 )
& ( P3 @ ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) )
& ( P3 @ ( numera7754357348821619680l_num1 @ ( bit1 @ one ) ) )
& ( P3 @ ( numera7754357348821619680l_num1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ) ).
% forall_4
thf(fact_1127_exhaust__4,axiom,
! [X: numera4273646738625120315l_num1] :
( ( X = one_on7795324986448017462l_num1 )
| ( X
= ( numera7754357348821619680l_num1 @ ( bit0 @ one ) ) )
| ( X
= ( numera7754357348821619680l_num1 @ ( bit1 @ one ) ) )
| ( X
= ( numera7754357348821619680l_num1 @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ).
% exhaust_4
thf(fact_1128_not__exp__less__eq__0__int,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).
% not_exp_less_eq_0_int
thf(fact_1129_signed__take__bit__int__less__exp,axiom,
! [N: nat,K: int] : ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% signed_take_bit_int_less_exp
thf(fact_1130_minus__1__div__exp__eq__int,axiom,
! [N: nat] :
( ( divide_divide_int @ ( uminus_uminus_int @ one_one_int ) @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) )
= ( uminus_uminus_int @ one_one_int ) ) ).
% minus_1_div_exp_eq_int
thf(fact_1131_signed__take__bit__int__less__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ K ) ) ).
% signed_take_bit_int_less_self_iff
thf(fact_1132_signed__take__bit__int__greater__eq__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_eq_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ord_less_int @ K @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% signed_take_bit_int_greater_eq_self_iff
thf(fact_1133_signed__take__bit__int__less__eq__self__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ K )
= ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ K ) ) ).
% signed_take_bit_int_less_eq_self_iff
thf(fact_1134_signed__take__bit__int__greater__eq__minus__exp,axiom,
! [N: nat,K: int] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) @ ( bit_ri631733984087533419it_int @ N @ K ) ) ).
% signed_take_bit_int_greater_eq_minus_exp
thf(fact_1135_signed__take__bit__int__greater__self__iff,axiom,
! [K: int,N: nat] :
( ( ord_less_int @ K @ ( bit_ri631733984087533419it_int @ N @ K ) )
= ( ord_less_int @ K @ ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ) ).
% signed_take_bit_int_greater_self_iff
thf(fact_1136_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_1137_power__divide__distrib__ennreal,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,N: nat] :
( ( power_6007165696250533058nnreal @ ( divide4826598186094686858nnreal @ X @ Y ) @ N )
= ( divide4826598186094686858nnreal @ ( power_6007165696250533058nnreal @ X @ N ) @ ( power_6007165696250533058nnreal @ Y @ N ) ) ) ).
% power_divide_distrib_ennreal
thf(fact_1138_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_1139_power__mono__ennreal,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,N: nat] :
( ( ord_le3935885782089961368nnreal @ X @ Y )
=> ( ord_le3935885782089961368nnreal @ ( power_6007165696250533058nnreal @ X @ N ) @ ( power_6007165696250533058nnreal @ Y @ N ) ) ) ).
% power_mono_ennreal
thf(fact_1140_real__arch__pow,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ one_one_real @ X )
=> ? [N2: nat] : ( ord_less_real @ Y @ ( power_power_real @ X @ N2 ) ) ) ).
% real_arch_pow
thf(fact_1141_power2__nat__le__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_imp_le
thf(fact_1142_power2__nat__le__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_eq_le
thf(fact_1143_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).
% self_le_ge2_pow
thf(fact_1144_less__exp,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% less_exp
thf(fact_1145_real__arch__pow__inv,axiom,
! [Y: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X @ one_one_real )
=> ? [N2: nat] : ( ord_less_real @ ( power_power_real @ X @ N2 ) @ Y ) ) ) ).
% real_arch_pow_inv
thf(fact_1146_two__realpow__ge__one,axiom,
! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).
% two_realpow_ge_one
thf(fact_1147_power__le__one__iff,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real )
= ( ( N = zero_zero_nat )
| ( ord_less_eq_real @ A @ one_one_real ) ) ) ) ).
% power_le_one_iff
thf(fact_1148_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X4: real] :
( ( ord_less_real @ zero_zero_real @ X4 )
& ( ( power_power_real @ X4 @ N )
= A )
& ! [Y6: real] :
( ( ( ord_less_real @ zero_zero_real @ Y6 )
& ( ( power_power_real @ Y6 @ N )
= A ) )
=> ( Y6 = X4 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1149_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R: real] :
( ( ord_less_real @ zero_zero_real @ R )
& ( ( power_power_real @ R @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_1150_realpow__square__minus__le,axiom,
! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% realpow_square_minus_le
thf(fact_1151_mod__exhaust__less__4,axiom,
! [M: nat] :
( ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= zero_zero_nat )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= one_one_nat )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) )
| ( ( modulo_modulo_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) )
= ( numeral_numeral_nat @ ( bit1 @ one ) ) ) ) ).
% mod_exhaust_less_4
thf(fact_1152_reals__power__lt__ex,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ one_one_real @ Y )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ord_less_real @ ( power_power_real @ ( divide_divide_real @ one_one_real @ Y ) @ K2 ) @ X ) ) ) ) ).
% reals_power_lt_ex
thf(fact_1153_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_1154_gcd__nat_Oextremum,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% gcd_nat.extremum
thf(fact_1155_gcd__nat_Oextremum__strict,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
& ( zero_zero_nat != A ) ) ).
% gcd_nat.extremum_strict
thf(fact_1156_gcd__nat_Oextremum__unique,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_unique
thf(fact_1157_gcd__nat_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ( dvd_dvd_nat @ A @ zero_zero_nat )
& ( A != zero_zero_nat ) ) ) ).
% gcd_nat.not_eq_extremum
thf(fact_1158_gcd__nat_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_uniqueI
thf(fact_1159_dvd__antisym,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ N )
=> ( ( dvd_dvd_nat @ N @ M )
=> ( M = N ) ) ) ).
% dvd_antisym
thf(fact_1160_dvd__pos__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ M @ N )
=> ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).
% dvd_pos_nat
thf(fact_1161_nat__dvd__not__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_1162_pow_Osimps_I1_J,axiom,
! [X: num] :
( ( pow @ X @ one )
= X ) ).
% pow.simps(1)
thf(fact_1163_dvd__imp__le,axiom,
! [K: nat,N: nat] :
( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ) ).
% dvd_imp_le
thf(fact_1164_power__dvd__imp__le,axiom,
! [I: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ( ord_less_nat @ one_one_nat @ I )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_dvd_imp_le
thf(fact_1165_mod__greater__zero__iff__not__dvd,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( modulo_modulo_nat @ M @ N ) )
= ( ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% mod_greater_zero_iff_not_dvd
thf(fact_1166_dvd__power__iff__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% dvd_power_iff_le
thf(fact_1167_even__even__mod__4__iff,axiom,
! [N: nat] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( modulo_modulo_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ ( bit0 @ one ) ) ) ) ) ) ).
% even_even_mod_4_iff
thf(fact_1168_odd__pos,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% odd_pos
thf(fact_1169_ereal__power__uminus,axiom,
! [N: nat,X: extended_ereal] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_1054015426188190660_ereal @ ( uminus27091377158695749_ereal @ X ) @ N )
= ( power_1054015426188190660_ereal @ X @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_1054015426188190660_ereal @ ( uminus27091377158695749_ereal @ X ) @ N )
= ( uminus27091377158695749_ereal @ ( power_1054015426188190660_ereal @ X @ N ) ) ) ) ) ).
% ereal_power_uminus
thf(fact_1170_div2__even__ext__nat,axiom,
! [X: nat,Y: nat] :
( ( ( divide_divide_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( divide_divide_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
=> ( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X )
= ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ Y ) )
=> ( X = Y ) ) ) ).
% div2_even_ext_nat
thf(fact_1171_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_1172_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_1173_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_1174_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_1175_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_1176_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_1177_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_1178_semiring__norm_I7_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit1 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(7)
thf(fact_1179_semiring__norm_I9_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit0 @ N ) )
= ( bit1 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(9)
thf(fact_1180_real__add__minus__iff,axiom,
! [X: real,A: real] :
( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
= zero_zero_real )
= ( X = A ) ) ).
% real_add_minus_iff
thf(fact_1181_semiring__norm_I10_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ ( plus_plus_num @ M @ N ) @ one ) ) ) ).
% semiring_norm(10)
thf(fact_1182_semiring__norm_I8_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit1 @ M ) @ one )
= ( bit0 @ ( plus_plus_num @ M @ one ) ) ) ).
% semiring_norm(8)
thf(fact_1183_semiring__norm_I5_J,axiom,
! [M: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ one )
= ( bit1 @ M ) ) ).
% semiring_norm(5)
thf(fact_1184_semiring__norm_I4_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit1 @ N ) )
= ( bit0 @ ( plus_plus_num @ N @ one ) ) ) ).
% semiring_norm(4)
thf(fact_1185_semiring__norm_I3_J,axiom,
! [N: num] :
( ( plus_plus_num @ one @ ( bit0 @ N ) )
= ( bit1 @ N ) ) ).
% semiring_norm(3)
thf(fact_1186_zle__add1__eq__le,axiom,
! [W: int,Z2: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z2 ) ) ).
% zle_add1_eq_le
thf(fact_1187_add__self__div__2,axiom,
! [M: nat] :
( ( divide_divide_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= M ) ).
% add_self_div_2
thf(fact_1188_add__self__mod__2,axiom,
! [M: nat] :
( ( modulo_modulo_nat @ ( plus_plus_nat @ M @ M ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% add_self_mod_2
thf(fact_1189_add__divide__distrib__ennreal,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( divide4826598186094686858nnreal @ ( plus_p1859984266308609217nnreal @ A @ B ) @ C )
= ( plus_p1859984266308609217nnreal @ ( divide4826598186094686858nnreal @ A @ C ) @ ( divide4826598186094686858nnreal @ B @ C ) ) ) ).
% add_divide_distrib_ennreal
thf(fact_1190_uminus__dvd__conv_I1_J,axiom,
( dvd_dvd_int
= ( ^ [D2: int] : ( dvd_dvd_int @ ( uminus_uminus_int @ D2 ) ) ) ) ).
% uminus_dvd_conv(1)
thf(fact_1191_uminus__dvd__conv_I2_J,axiom,
( dvd_dvd_int
= ( ^ [D2: int,T2: int] : ( dvd_dvd_int @ D2 @ ( uminus_uminus_int @ T2 ) ) ) ) ).
% uminus_dvd_conv(2)
thf(fact_1192_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_1193_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A5: nat,B4: nat] :
( ( P @ A5 @ B4 )
= ( P @ B4 @ A5 ) )
=> ( ! [A5: nat] : ( P @ A5 @ zero_zero_nat )
=> ( ! [A5: nat,B4: nat] :
( ( P @ A5 @ B4 )
=> ( P @ A5 @ ( plus_plus_nat @ A5 @ B4 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_1194_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_1195_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1196_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_1197_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_1198_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_1199_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_1200_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_1201_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N2: nat] :
( L
= ( plus_plus_nat @ K @ N2 ) ) ) ).
% le_Suc_ex
thf(fact_1202_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_1203_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_1204_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_1205_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_1206_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M3: nat,N3: nat] :
? [K3: nat] :
( N3
= ( plus_plus_nat @ M3 @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_1207_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_1208_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_1209_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_1210_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1211_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_1212_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_1213_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1214_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_1215_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_1216_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_1217_iadd__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( plus_p3455044024723400733d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
& ( N = zero_z5237406670263579293d_enat ) ) ) ).
% iadd_is_0
thf(fact_1218_signed__take__bit__add,axiom,
! [N: nat,K: int,L: int] :
( ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ ( bit_ri631733984087533419it_int @ N @ K ) @ ( bit_ri631733984087533419it_int @ N @ L ) ) )
= ( bit_ri631733984087533419it_int @ N @ ( plus_plus_int @ K @ L ) ) ) ).
% signed_take_bit_add
thf(fact_1219_ereal__m1__less__0,axiom,
ord_le1188267648640031866_ereal @ ( uminus27091377158695749_ereal @ one_on4623092294121504201_ereal ) @ zero_z2744965634713055877_ereal ).
% ereal_m1_less_0
thf(fact_1220_zdvd__antisym__nonneg,axiom,
! [M: int,N: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ( ord_less_eq_int @ zero_zero_int @ N )
=> ( ( dvd_dvd_int @ M @ N )
=> ( ( dvd_dvd_int @ N @ M )
=> ( M = N ) ) ) ) ) ).
% zdvd_antisym_nonneg
thf(fact_1221_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1222_zdvd__not__zless,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ord_less_int @ M @ N )
=> ~ ( dvd_dvd_int @ N @ M ) ) ) ).
% zdvd_not_zless
thf(fact_1223_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M4: nat,N2: nat] :
( ( ord_less_nat @ M4 @ N2 )
=> ( ord_less_nat @ ( F @ M4 ) @ ( F @ N2 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1224_odd__nonzero,axiom,
! [Z2: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_1225_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_1226_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_1227_zless__add1__eq,axiom,
! [W: int,Z2: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ( ord_less_int @ W @ Z2 )
| ( W = Z2 ) ) ) ).
% zless_add1_eq
thf(fact_1228_real__0__le__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).
% real_0_le_add_iff
thf(fact_1229_real__add__le__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
= ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_le_0_iff
thf(fact_1230_real__0__less__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
= ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).
% real_0_less_add_iff
thf(fact_1231_real__add__less__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
= ( ord_less_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_less_0_iff
thf(fact_1232_zdvd__imp__le,axiom,
! [Z2: int,N: int] :
( ( dvd_dvd_int @ Z2 @ N )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int @ Z2 @ N ) ) ) ).
% zdvd_imp_le
thf(fact_1233_odd__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1234_zless__imp__add1__zle,axiom,
! [W: int,Z2: int] :
( ( ord_less_int @ W @ Z2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 ) ) ).
% zless_imp_add1_zle
thf(fact_1235_add1__zle__eq,axiom,
! [W: int,Z2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z2 )
= ( ord_less_int @ W @ Z2 ) ) ).
% add1_zle_eq
thf(fact_1236_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_1237_nat__add__1__add__1,axiom,
! [N: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ one_one_nat )
= ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% nat_add_1_add_1
thf(fact_1238_kuhn__lemma,axiom,
! [P5: nat,N: nat,Label: ( nat > nat ) > nat > nat] :
( ( ord_less_nat @ zero_zero_nat @ P5 )
=> ( ! [X4: nat > nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ord_less_eq_nat @ ( X4 @ I3 ) @ P5 ) )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ( ( Label @ X4 @ I2 )
= zero_zero_nat )
| ( ( Label @ X4 @ I2 )
= one_one_nat ) ) ) )
=> ( ! [X4: nat > nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ord_less_eq_nat @ ( X4 @ I3 ) @ P5 ) )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ( ( X4 @ I2 )
= zero_zero_nat )
=> ( ( Label @ X4 @ I2 )
= zero_zero_nat ) ) ) )
=> ( ! [X4: nat > nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ord_less_eq_nat @ ( X4 @ I3 ) @ P5 ) )
=> ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ( ( X4 @ I2 )
= P5 )
=> ( ( Label @ X4 @ I2 )
= one_one_nat ) ) ) )
=> ~ ! [Q4: nat > nat] :
( ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ord_less_nat @ ( Q4 @ I3 ) @ P5 ) )
=> ~ ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ? [R: nat > nat] :
( ! [J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( ord_less_eq_nat @ ( Q4 @ J3 ) @ ( R @ J3 ) )
& ( ord_less_eq_nat @ ( R @ J3 ) @ ( plus_plus_nat @ ( Q4 @ J3 ) @ one_one_nat ) ) ) )
& ? [S3: nat > nat] :
( ! [J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( ord_less_eq_nat @ ( Q4 @ J3 ) @ ( S3 @ J3 ) )
& ( ord_less_eq_nat @ ( S3 @ J3 ) @ ( plus_plus_nat @ ( Q4 @ J3 ) @ one_one_nat ) ) ) )
& ( ( Label @ R @ I3 )
!= ( Label @ S3 @ I3 ) ) ) ) ) ) ) ) ) ) ).
% kuhn_lemma
thf(fact_1239_mod__int__pos__iff,axiom,
! [K: int,L: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L ) )
= ( ( dvd_dvd_int @ L @ K )
| ( ( L = zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ K ) )
| ( ord_less_int @ zero_zero_int @ L ) ) ) ).
% mod_int_pos_iff
thf(fact_1240_le__imp__0__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).
% le_imp_0_less
thf(fact_1241_mod__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L )
= ( plus_plus_int @ K @ L ) ) ) ) ).
% mod_pos_neg_trivial
thf(fact_1242_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_1243_triangle__lemma,axiom,
! [X: real,Y: real,Z2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( plus_plus_real @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Z2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( ord_less_eq_real @ X @ ( plus_plus_real @ Y @ Z2 ) ) ) ) ) ) ).
% triangle_lemma
thf(fact_1244_verit__le__mono__div,axiom,
! [A3: nat,B5: nat,N: nat] :
( ( ord_less_nat @ A3 @ B5 )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat
@ ( plus_plus_nat @ ( divide_divide_nat @ A3 @ N )
@ ( if_nat
@ ( ( modulo_modulo_nat @ B5 @ N )
= zero_zero_nat )
@ one_one_nat
@ zero_zero_nat ) )
@ ( divide_divide_nat @ B5 @ N ) ) ) ) ).
% verit_le_mono_div
thf(fact_1245_div__pos__neg__trivial,axiom,
! [K: int,L: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L ) @ zero_zero_int )
=> ( ( divide_divide_int @ K @ L )
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% div_pos_neg_trivial
thf(fact_1246_verit__le__mono__div__int,axiom,
! [A3: int,B5: int,N: int] :
( ( ord_less_int @ A3 @ B5 )
=> ( ( ord_less_int @ zero_zero_int @ N )
=> ( ord_less_eq_int
@ ( plus_plus_int @ ( divide_divide_int @ A3 @ N )
@ ( if_int
@ ( ( modulo_modulo_int @ B5 @ N )
= zero_zero_int )
@ one_one_int
@ zero_zero_int ) )
@ ( divide_divide_int @ B5 @ N ) ) ) ) ).
% verit_le_mono_div_int
thf(fact_1247_ex__power__ivl2,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ? [N2: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl2
thf(fact_1248_ex__power__ivl1,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ one_one_nat @ K )
=> ? [N2: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl1
thf(fact_1249_set__decode__0,axiom,
! [X: nat] :
( ( member_nat @ zero_zero_nat @ ( nat_set_decode @ X ) )
= ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) ) ) ).
% set_decode_0
thf(fact_1250_ereal__divide__one,axiom,
! [X: extended_ereal] :
( ( divide8893690120176169980_ereal @ X @ one_on4623092294121504201_ereal )
= X ) ).
% ereal_divide_one
thf(fact_1251_real__of__int__div,axiom,
! [D: int,N: int] :
( ( dvd_dvd_int @ D @ N )
=> ( ( ring_1_of_int_real @ ( divide_divide_int @ N @ D ) )
= ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ D ) ) ) ) ).
% real_of_int_div
thf(fact_1252_subset__decode__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_set_nat @ ( nat_set_decode @ M ) @ ( nat_set_decode @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% subset_decode_imp_le
thf(fact_1253_ereal__one__not__less__zero__ereal,axiom,
~ ( ord_le1188267648640031866_ereal @ one_on4623092294121504201_ereal @ zero_z2744965634713055877_ereal ) ).
% ereal_one_not_less_zero_ereal
thf(fact_1254_one__not__le__zero__ereal,axiom,
~ ( ord_le1083603963089353582_ereal @ one_on4623092294121504201_ereal @ zero_z2744965634713055877_ereal ) ).
% one_not_le_zero_ereal
thf(fact_1255_zero__less__one__ereal,axiom,
ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ one_on4623092294121504201_ereal ).
% zero_less_one_ereal
thf(fact_1256_ereal__0__less__1,axiom,
ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ one_on4623092294121504201_ereal ).
% ereal_0_less_1
thf(fact_1257_int__less__real__le,axiom,
( ord_less_int
= ( ^ [N3: int,M3: int] : ( ord_less_eq_real @ ( plus_plus_real @ ( ring_1_of_int_real @ N3 ) @ one_one_real ) @ ( ring_1_of_int_real @ M3 ) ) ) ) ).
% int_less_real_le
thf(fact_1258_int__le__real__less,axiom,
( ord_less_eq_int
= ( ^ [N3: int,M3: int] : ( ord_less_real @ ( ring_1_of_int_real @ N3 ) @ ( plus_plus_real @ ( ring_1_of_int_real @ M3 ) @ one_one_real ) ) ) ) ).
% int_le_real_less
thf(fact_1259_real__of__int__div4,axiom,
! [N: int,X: int] : ( ord_less_eq_real @ ( ring_1_of_int_real @ ( divide_divide_int @ N @ X ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ N ) @ ( ring_1_of_int_real @ X ) ) ) ).
% real_of_int_div4
thf(fact_1260_real__of__int__div__aux,axiom,
! [X: int,D: int] :
( ( divide_divide_real @ ( ring_1_of_int_real @ X ) @ ( ring_1_of_int_real @ D ) )
= ( plus_plus_real @ ( ring_1_of_int_real @ ( divide_divide_int @ X @ D ) ) @ ( divide_divide_real @ ( ring_1_of_int_real @ ( modulo_modulo_int @ X @ D ) ) @ ( ring_1_of_int_real @ D ) ) ) ) ).
% real_of_int_div_aux
% Helper facts (5)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y: int] :
( ( if_int @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y: int] :
( ( if_int @ $true @ X @ Y )
= X ) ).
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
ord_less_nat @ ( divide_divide_nat @ n @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ n ).
%------------------------------------------------------------------------------