TPTP Problem File: SLH0259^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Risk_Free_Lending/0000_Risk_Free_Lending/prob_02063_065678__6072482_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1345 ( 552 unt; 72 typ; 0 def)
% Number of atoms : 3565 (1175 equ; 0 cnn)
% Maximal formula atoms : 12 ( 2 avg)
% Number of connectives : 10594 ( 309 ~; 104 |; 136 &;8407 @)
% ( 0 <=>;1638 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 6 avg)
% Number of types : 6 ( 5 usr)
% Number of type conns : 410 ( 410 >; 0 *; 0 +; 0 <<)
% Number of symbols : 70 ( 67 usr; 15 con; 0-4 aty)
% Number of variables : 3573 ( 217 ^;3223 !; 133 ?;3573 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 15:58:23.923
%------------------------------------------------------------------------------
% Could-be-implicit typings (5)
thf(ty_n_t__Risk____Free____Lending__Oaccount,type,
risk_Free_account: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (67)
thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
abs_abs_int: int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Risk____Free____Lending__Oaccount,type,
minus_4846202936726426316ccount: risk_Free_account > risk_Free_account > risk_Free_account ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Risk____Free____Lending__Oaccount,type,
plus_p1863581527469039996ccount: risk_Free_account > risk_Free_account > risk_Free_account ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Risk____Free____Lending__Oaccount,type,
zero_z1425366712893667068ccount: risk_Free_account ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_If_001t__Real__Oreal,type,
if_real: $o > real > real > real ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Risk____Free____Lending__Oaccount,type,
ord_le2131251472502387783ccount: risk_Free_account > risk_Free_account > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Int__Oint_J,type,
ord_less_eq_o_int: ( $o > int ) > ( $o > int ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Nat__Onat_J,type,
ord_less_eq_o_nat: ( $o > nat ) > ( $o > nat ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Real__Oreal_J,type,
ord_less_eq_o_real: ( $o > real ) > ( $o > real ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_I_Eo_Mt__Risk____Free____Lending__Oaccount_J,type,
ord_le5935478747920154396ccount: ( $o > risk_Free_account ) > ( $o > risk_Free_account ) > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Risk____Free____Lending__Oaccount,type,
ord_le4245800335709223507ccount: risk_Free_account > risk_Free_account > $o ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Int__Oint,type,
order_Greatest_int: ( int > $o ) > int ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
order_Greatest_nat: ( nat > $o ) > nat ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Real__Oreal,type,
order_Greatest_real: ( real > $o ) > real ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Risk____Free____Lending__Oaccount,type,
order_4130363404468270554ccount: ( risk_Free_account > $o ) > risk_Free_account ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Risk__Free__Lending_Oaccount_ORep__account,type,
risk_F170160801229183585ccount: risk_Free_account > nat > real ).
thf(sy_c_Risk__Free__Lending_Obulk__update__account,type,
risk_F2412532053715321062ccount: nat > ( nat > real ) > real > risk_Free_account > risk_Free_account ).
thf(sy_c_Risk__Free__Lending_Ojust__cash,type,
risk_Free_just_cash: real > risk_Free_account ).
thf(sy_c_Risk__Free__Lending_Oloan,type,
risk_Free_loan: nat > real > risk_Free_account ).
thf(sy_c_Risk__Free__Lending_Onet__asset__value,type,
risk_F2906766666041932210_value: risk_Free_account > real ).
thf(sy_c_Risk__Free__Lending_Oreturn__loans,type,
risk_F2121631595377017831_loans: ( nat > real ) > risk_Free_account > risk_Free_account ).
thf(sy_c_Risk__Free__Lending_Oshortest__period,type,
risk_F4612863212915232279period: risk_Free_account > nat ).
thf(sy_c_Risk__Free__Lending_Ostrictly__solvent,type,
risk_F1636578016437888323olvent: risk_Free_account > $o ).
thf(sy_c_Risk__Free__Lending_Oupdate__account,type,
risk_F444380041991734328ccount: ( nat > real ) > real > risk_Free_account > risk_Free_account ).
thf(sy_c_Risk__Free__Lending_Ovalid__transfer,type,
risk_F1023690899723030139ansfer: risk_Free_account > risk_Free_account > $o ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v__092_060alpha_062,type,
alpha: risk_Free_account ).
thf(sy_v__092_060nu_062_H____,type,
nu: nat > real ).
thf(sy_v__092_060nu_062____,type,
nu2: nat > real ).
thf(sy_v__092_060rho_062,type,
rho: nat > real ).
thf(sy_v_i,type,
i: real ).
thf(sy_v_ka____,type,
ka: nat ).
thf(sy_v_m____,type,
m: nat ).
thf(sy_v_ma____,type,
ma: nat ).
thf(sy_v_n,type,
n: nat ).
% Relevant facts (1265)
thf(fact_0__092_060open_062k_A_092_060le_062_Am_____092_060close_062,axiom,
ord_less_eq_nat @ ka @ m ).
% \<open>k \<le> m__\<close>
thf(fact_1_False,axiom,
( ka
!= ( suc @ ma ) ) ).
% False
thf(fact_2_Suc_Oprems_I2_J,axiom,
ord_less_eq_nat @ ka @ ( suc @ ma ) ).
% Suc.prems(2)
thf(fact_3_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_4_order__refl,axiom,
! [X: real] : ( ord_less_eq_real @ X @ X ) ).
% order_refl
thf(fact_5_order__refl,axiom,
! [X: int] : ( ord_less_eq_int @ X @ X ) ).
% order_refl
thf(fact_6_order__refl,axiom,
! [X: risk_Free_account] : ( ord_le4245800335709223507ccount @ X @ X ) ).
% order_refl
thf(fact_7_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_8_dual__order_Orefl,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% dual_order.refl
thf(fact_9_dual__order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% dual_order.refl
thf(fact_10_dual__order_Orefl,axiom,
! [A: risk_Free_account] : ( ord_le4245800335709223507ccount @ A @ A ) ).
% dual_order.refl
thf(fact_11__092_060open_062k_A_092_060le_062_Ashortest__period_A_092_060alpha_062_092_060close_062,axiom,
ord_less_eq_nat @ ka @ ( risk_F4612863212915232279period @ alpha ) ).
% \<open>k \<le> shortest_period \<alpha>\<close>
thf(fact_12_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_13_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_14_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_15_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_16_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_17_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ? [X2: nat] :
( ( P @ X2 )
& ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ X2 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_18_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M2: nat] :
( ( P @ X )
=> ( ! [X2: nat] :
( ( P @ X2 )
=> ( ord_less_eq_nat @ X2 @ M2 ) )
=> ~ ! [M3: nat] :
( ( P @ M3 )
=> ~ ! [X3: nat] :
( ( P @ X3 )
=> ( ord_less_eq_nat @ X3 @ M3 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_19_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_20_verit__comp__simplify1_I2_J,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_21_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_22_verit__comp__simplify1_I2_J,axiom,
! [A: risk_Free_account] : ( ord_le4245800335709223507ccount @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_23_nat_Oinject,axiom,
! [X22: nat,Y22: nat] :
( ( ( suc @ X22 )
= ( suc @ Y22 ) )
= ( X22 = Y22 ) ) ).
% nat.inject
thf(fact_24_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_25_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_26_Suc__inject,axiom,
! [X: nat,Y3: nat] :
( ( ( suc @ X )
= ( suc @ Y3 ) )
=> ( X = Y3 ) ) ).
% Suc_inject
thf(fact_27_n__not__Suc__n,axiom,
! [N: nat] :
( N
!= ( suc @ N ) ) ).
% n_not_Suc_n
thf(fact_28_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ! [X2: nat] : ( R @ X2 @ X2 )
=> ( ! [X2: nat,Y: nat,Z: nat] :
( ( R @ X2 @ Y )
=> ( ( R @ Y @ Z )
=> ( R @ X2 @ Z ) ) )
=> ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
=> ( R @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_29_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( P @ M )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_30_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M4: nat] :
( ( ord_less_eq_nat @ ( suc @ M4 ) @ N2 )
=> ( P @ M4 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_31_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_32_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_33_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_34_Suc__le__D,axiom,
! [N: nat,M5: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M5 )
=> ? [M3: nat] :
( M5
= ( suc @ M3 ) ) ) ).
% Suc_le_D
thf(fact_35_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_36_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_37_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_leD
thf(fact_38_lift__Suc__antimono__le,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_39_lift__Suc__antimono__le,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_real @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_40_lift__Suc__antimono__le,axiom,
! [F: nat > int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_int @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_int @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_41_lift__Suc__antimono__le,axiom,
! [F: nat > risk_Free_account,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_le4245800335709223507ccount @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_le4245800335709223507ccount @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_42_lift__Suc__mono__le,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_43_lift__Suc__mono__le,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_44_lift__Suc__mono__le,axiom,
! [F: nat > int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_eq_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_less_eq_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_45_lift__Suc__mono__le,axiom,
! [F: nat > risk_Free_account,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_le4245800335709223507ccount @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_eq_nat @ N @ N3 )
=> ( ord_le4245800335709223507ccount @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_46_order__antisym__conv,axiom,
! [Y3: nat,X: nat] :
( ( ord_less_eq_nat @ Y3 @ X )
=> ( ( ord_less_eq_nat @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_47_order__antisym__conv,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ Y3 @ X )
=> ( ( ord_less_eq_real @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_48_order__antisym__conv,axiom,
! [Y3: int,X: int] :
( ( ord_less_eq_int @ Y3 @ X )
=> ( ( ord_less_eq_int @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_49_order__antisym__conv,axiom,
! [Y3: risk_Free_account,X: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ Y3 @ X )
=> ( ( ord_le4245800335709223507ccount @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% order_antisym_conv
thf(fact_50_linorder__le__cases,axiom,
! [X: nat,Y3: nat] :
( ~ ( ord_less_eq_nat @ X @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ X ) ) ).
% linorder_le_cases
thf(fact_51_linorder__le__cases,axiom,
! [X: real,Y3: real] :
( ~ ( ord_less_eq_real @ X @ Y3 )
=> ( ord_less_eq_real @ Y3 @ X ) ) ).
% linorder_le_cases
thf(fact_52_linorder__le__cases,axiom,
! [X: int,Y3: int] :
( ~ ( ord_less_eq_int @ X @ Y3 )
=> ( ord_less_eq_int @ Y3 @ X ) ) ).
% linorder_le_cases
thf(fact_53_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_54_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_55_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_56_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_57_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_58_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_59_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_60_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_61_ord__le__eq__subst,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_62_ord__le__eq__subst,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_63_ord__eq__le__subst,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_64_ord__eq__le__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_65_ord__eq__le__subst,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_66_ord__eq__le__subst,axiom,
! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_67_ord__eq__le__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_68_ord__eq__le__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_69_ord__eq__le__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_70_ord__eq__le__subst,axiom,
! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_71_ord__eq__le__subst,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_72_ord__eq__le__subst,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_73_linorder__linear,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
| ( ord_less_eq_nat @ Y3 @ X ) ) ).
% linorder_linear
thf(fact_74_linorder__linear,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ Y3 )
| ( ord_less_eq_real @ Y3 @ X ) ) ).
% linorder_linear
thf(fact_75_linorder__linear,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
| ( ord_less_eq_int @ Y3 @ X ) ) ).
% linorder_linear
thf(fact_76_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_77_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_78_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_79_order__eq__refl,axiom,
! [X: nat,Y3: nat] :
( ( X = Y3 )
=> ( ord_less_eq_nat @ X @ Y3 ) ) ).
% order_eq_refl
thf(fact_80_order__eq__refl,axiom,
! [X: real,Y3: real] :
( ( X = Y3 )
=> ( ord_less_eq_real @ X @ Y3 ) ) ).
% order_eq_refl
thf(fact_81_order__eq__refl,axiom,
! [X: int,Y3: int] :
( ( X = Y3 )
=> ( ord_less_eq_int @ X @ Y3 ) ) ).
% order_eq_refl
thf(fact_82_order__eq__refl,axiom,
! [X: risk_Free_account,Y3: risk_Free_account] :
( ( X = Y3 )
=> ( ord_le4245800335709223507ccount @ X @ Y3 ) ) ).
% order_eq_refl
thf(fact_83_order__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_84_order__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_85_order__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_86_order__subst2,axiom,
! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_87_order__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_88_order__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_89_order__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_90_order__subst2,axiom,
! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_91_order__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_92_order__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_93_order__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_94_order__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_95_order__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_96_order__subst1,axiom,
! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X2: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_97_order__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_98_order__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_99_order__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_100_order__subst1,axiom,
! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X2: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_101_order__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_102_order__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_103_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
& ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_104_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ A2 @ B2 )
& ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_105_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ A2 @ B2 )
& ( ord_less_eq_int @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_106_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y4: risk_Free_account,Z2: risk_Free_account] : ( Y4 = Z2 ) )
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A2 @ B2 )
& ( ord_le4245800335709223507ccount @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_107_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_108_Collect__mem__eq,axiom,
! [A3: set_real] :
( ( collect_real
@ ^ [X4: real] : ( member_real @ X4 @ A3 ) )
= A3 ) ).
% Collect_mem_eq
thf(fact_109_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_110_antisym,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_111_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_112_antisym,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_113_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_114_dual__order_Otrans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_115_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_116_dual__order_Otrans,axiom,
! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B @ A )
=> ( ( ord_le4245800335709223507ccount @ C @ B )
=> ( ord_le4245800335709223507ccount @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_117_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_118_dual__order_Oantisym,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_119_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_120_dual__order_Oantisym,axiom,
! [B: risk_Free_account,A: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B @ A )
=> ( ( ord_le4245800335709223507ccount @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_121_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
& ( ord_less_eq_nat @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_122_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ B2 @ A2 )
& ( ord_less_eq_real @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_123_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ B2 @ A2 )
& ( ord_less_eq_int @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_124_dual__order_Oeq__iff,axiom,
( ( ^ [Y4: risk_Free_account,Z2: risk_Free_account] : ( Y4 = Z2 ) )
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B2 @ A2 )
& ( ord_le4245800335709223507ccount @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_125_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B3: nat] :
( ( ord_less_eq_nat @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: nat,B3: nat] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_126_linorder__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A4: real,B3: real] :
( ( ord_less_eq_real @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: real,B3: real] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_127_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B3: int] :
( ( ord_less_eq_int @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: int,B3: int] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_128_order__trans,axiom,
! [X: nat,Y3: nat,Z3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ord_less_eq_nat @ Y3 @ Z3 )
=> ( ord_less_eq_nat @ X @ Z3 ) ) ) ).
% order_trans
thf(fact_129_order__trans,axiom,
! [X: real,Y3: real,Z3: real] :
( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ Z3 )
=> ( ord_less_eq_real @ X @ Z3 ) ) ) ).
% order_trans
thf(fact_130_order__trans,axiom,
! [X: int,Y3: int,Z3: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ Z3 )
=> ( ord_less_eq_int @ X @ Z3 ) ) ) ).
% order_trans
thf(fact_131_order__trans,axiom,
! [X: risk_Free_account,Y3: risk_Free_account,Z3: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X @ Y3 )
=> ( ( ord_le4245800335709223507ccount @ Y3 @ Z3 )
=> ( ord_le4245800335709223507ccount @ X @ Z3 ) ) ) ).
% order_trans
thf(fact_132_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_133_order_Otrans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% order.trans
thf(fact_134_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_135_order_Otrans,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ord_le4245800335709223507ccount @ A @ C ) ) ) ).
% order.trans
thf(fact_136_order__antisym,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ord_less_eq_nat @ Y3 @ X )
=> ( X = Y3 ) ) ) ).
% order_antisym
thf(fact_137_order__antisym,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ X )
=> ( X = Y3 ) ) ) ).
% order_antisym
thf(fact_138_order__antisym,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ X )
=> ( X = Y3 ) ) ) ).
% order_antisym
thf(fact_139_order__antisym,axiom,
! [X: risk_Free_account,Y3: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X @ Y3 )
=> ( ( ord_le4245800335709223507ccount @ Y3 @ X )
=> ( X = Y3 ) ) ) ).
% order_antisym
thf(fact_140_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_141_ord__le__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_142_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_143_ord__le__eq__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( B = C )
=> ( ord_le4245800335709223507ccount @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_144_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_145_ord__eq__le__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_146_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_147_ord__eq__le__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( A = B )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ord_le4245800335709223507ccount @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_148_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
= ( ^ [X4: nat,Y5: nat] :
( ( ord_less_eq_nat @ X4 @ Y5 )
& ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_149_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
= ( ^ [X4: real,Y5: real] :
( ( ord_less_eq_real @ X4 @ Y5 )
& ( ord_less_eq_real @ Y5 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_150_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
= ( ^ [X4: int,Y5: int] :
( ( ord_less_eq_int @ X4 @ Y5 )
& ( ord_less_eq_int @ Y5 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_151_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y4: risk_Free_account,Z2: risk_Free_account] : ( Y4 = Z2 ) )
= ( ^ [X4: risk_Free_account,Y5: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X4 @ Y5 )
& ( ord_le4245800335709223507ccount @ Y5 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_152_le__cases3,axiom,
! [X: nat,Y3: nat,Z3: nat] :
( ( ( ord_less_eq_nat @ X @ Y3 )
=> ~ ( ord_less_eq_nat @ Y3 @ Z3 ) )
=> ( ( ( ord_less_eq_nat @ Y3 @ X )
=> ~ ( ord_less_eq_nat @ X @ Z3 ) )
=> ( ( ( ord_less_eq_nat @ X @ Z3 )
=> ~ ( ord_less_eq_nat @ Z3 @ Y3 ) )
=> ( ( ( ord_less_eq_nat @ Z3 @ Y3 )
=> ~ ( ord_less_eq_nat @ Y3 @ X ) )
=> ( ( ( ord_less_eq_nat @ Y3 @ Z3 )
=> ~ ( ord_less_eq_nat @ Z3 @ X ) )
=> ~ ( ( ord_less_eq_nat @ Z3 @ X )
=> ~ ( ord_less_eq_nat @ X @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_153_le__cases3,axiom,
! [X: real,Y3: real,Z3: real] :
( ( ( ord_less_eq_real @ X @ Y3 )
=> ~ ( ord_less_eq_real @ Y3 @ Z3 ) )
=> ( ( ( ord_less_eq_real @ Y3 @ X )
=> ~ ( ord_less_eq_real @ X @ Z3 ) )
=> ( ( ( ord_less_eq_real @ X @ Z3 )
=> ~ ( ord_less_eq_real @ Z3 @ Y3 ) )
=> ( ( ( ord_less_eq_real @ Z3 @ Y3 )
=> ~ ( ord_less_eq_real @ Y3 @ X ) )
=> ( ( ( ord_less_eq_real @ Y3 @ Z3 )
=> ~ ( ord_less_eq_real @ Z3 @ X ) )
=> ~ ( ( ord_less_eq_real @ Z3 @ X )
=> ~ ( ord_less_eq_real @ X @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_154_le__cases3,axiom,
! [X: int,Y3: int,Z3: int] :
( ( ( ord_less_eq_int @ X @ Y3 )
=> ~ ( ord_less_eq_int @ Y3 @ Z3 ) )
=> ( ( ( ord_less_eq_int @ Y3 @ X )
=> ~ ( ord_less_eq_int @ X @ Z3 ) )
=> ( ( ( ord_less_eq_int @ X @ Z3 )
=> ~ ( ord_less_eq_int @ Z3 @ Y3 ) )
=> ( ( ( ord_less_eq_int @ Z3 @ Y3 )
=> ~ ( ord_less_eq_int @ Y3 @ X ) )
=> ( ( ( ord_less_eq_int @ Y3 @ Z3 )
=> ~ ( ord_less_eq_int @ Z3 @ X ) )
=> ~ ( ( ord_less_eq_int @ Z3 @ X )
=> ~ ( ord_less_eq_int @ X @ Y3 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_155_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_156_nle__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_eq_real @ A @ B ) )
= ( ( ord_less_eq_real @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_157_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_158_Greatest__equality,axiom,
! [P: real > $o,X: real] :
( ( P @ X )
=> ( ! [Y: real] :
( ( P @ Y )
=> ( ord_less_eq_real @ Y @ X ) )
=> ( ( order_Greatest_real @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_159_Greatest__equality,axiom,
! [P: int > $o,X: int] :
( ( P @ X )
=> ( ! [Y: int] :
( ( P @ Y )
=> ( ord_less_eq_int @ Y @ X ) )
=> ( ( order_Greatest_int @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_160_Greatest__equality,axiom,
! [P: risk_Free_account > $o,X: risk_Free_account] :
( ( P @ X )
=> ( ! [Y: risk_Free_account] :
( ( P @ Y )
=> ( ord_le4245800335709223507ccount @ Y @ X ) )
=> ( ( order_4130363404468270554ccount @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_161_Greatest__equality,axiom,
! [P: nat > $o,X: nat] :
( ( P @ X )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ X ) )
=> ( ( order_Greatest_nat @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_162_GreatestI2__order,axiom,
! [P: real > $o,X: real,Q: real > $o] :
( ( P @ X )
=> ( ! [Y: real] :
( ( P @ Y )
=> ( ord_less_eq_real @ Y @ X ) )
=> ( ! [X2: real] :
( ( P @ X2 )
=> ( ! [Y2: real] :
( ( P @ Y2 )
=> ( ord_less_eq_real @ Y2 @ X2 ) )
=> ( Q @ X2 ) ) )
=> ( Q @ ( order_Greatest_real @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_163_GreatestI2__order,axiom,
! [P: int > $o,X: int,Q: int > $o] :
( ( P @ X )
=> ( ! [Y: int] :
( ( P @ Y )
=> ( ord_less_eq_int @ Y @ X ) )
=> ( ! [X2: int] :
( ( P @ X2 )
=> ( ! [Y2: int] :
( ( P @ Y2 )
=> ( ord_less_eq_int @ Y2 @ X2 ) )
=> ( Q @ X2 ) ) )
=> ( Q @ ( order_Greatest_int @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_164_GreatestI2__order,axiom,
! [P: risk_Free_account > $o,X: risk_Free_account,Q: risk_Free_account > $o] :
( ( P @ X )
=> ( ! [Y: risk_Free_account] :
( ( P @ Y )
=> ( ord_le4245800335709223507ccount @ Y @ X ) )
=> ( ! [X2: risk_Free_account] :
( ( P @ X2 )
=> ( ! [Y2: risk_Free_account] :
( ( P @ Y2 )
=> ( ord_le4245800335709223507ccount @ Y2 @ X2 ) )
=> ( Q @ X2 ) ) )
=> ( Q @ ( order_4130363404468270554ccount @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_165_GreatestI2__order,axiom,
! [P: nat > $o,X: nat,Q: nat > $o] :
( ( P @ X )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ X ) )
=> ( ! [X2: nat] :
( ( P @ X2 )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ X2 ) )
=> ( Q @ X2 ) ) )
=> ( Q @ ( order_Greatest_nat @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_166_le__rel__bool__arg__iff,axiom,
( ord_less_eq_o_nat
= ( ^ [X5: $o > nat,Y6: $o > nat] :
( ( ord_less_eq_nat @ ( X5 @ $false ) @ ( Y6 @ $false ) )
& ( ord_less_eq_nat @ ( X5 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).
% le_rel_bool_arg_iff
thf(fact_167_le__rel__bool__arg__iff,axiom,
( ord_less_eq_o_real
= ( ^ [X5: $o > real,Y6: $o > real] :
( ( ord_less_eq_real @ ( X5 @ $false ) @ ( Y6 @ $false ) )
& ( ord_less_eq_real @ ( X5 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).
% le_rel_bool_arg_iff
thf(fact_168_le__rel__bool__arg__iff,axiom,
( ord_less_eq_o_int
= ( ^ [X5: $o > int,Y6: $o > int] :
( ( ord_less_eq_int @ ( X5 @ $false ) @ ( Y6 @ $false ) )
& ( ord_less_eq_int @ ( X5 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).
% le_rel_bool_arg_iff
thf(fact_169_le__rel__bool__arg__iff,axiom,
( ord_le5935478747920154396ccount
= ( ^ [X5: $o > risk_Free_account,Y6: $o > risk_Free_account] :
( ( ord_le4245800335709223507ccount @ ( X5 @ $false ) @ ( Y6 @ $false ) )
& ( ord_le4245800335709223507ccount @ ( X5 @ $true ) @ ( Y6 @ $true ) ) ) ) ) ).
% le_rel_bool_arg_iff
thf(fact_170_Suc_Oprems_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ ka ).
% Suc.prems(1)
thf(fact_171_GreatestI__ex__nat,axiom,
! [P: nat > $o,B: nat] :
( ? [X_1: nat] : ( P @ X_1 )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_ex_nat
thf(fact_172_Greatest__le__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).
% Greatest_le_nat
thf(fact_173_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_174_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_175_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_176_Suc__less__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_less_eq
thf(fact_177_Suc__mono,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).
% Suc_mono
thf(fact_178_lessI,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).
% lessI
thf(fact_179_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_180_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_181_zero__less__Suc,axiom,
! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).
% zero_less_Suc
thf(fact_182_less__Suc0,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
= ( N = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_183_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_184_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_185_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_186_lt__ex,axiom,
! [X: real] :
? [Y: real] : ( ord_less_real @ Y @ X ) ).
% lt_ex
thf(fact_187_lt__ex,axiom,
! [X: int] :
? [Y: int] : ( ord_less_int @ Y @ X ) ).
% lt_ex
thf(fact_188_gt__ex,axiom,
! [X: nat] :
? [X_12: nat] : ( ord_less_nat @ X @ X_12 ) ).
% gt_ex
thf(fact_189_gt__ex,axiom,
! [X: real] :
? [X_12: real] : ( ord_less_real @ X @ X_12 ) ).
% gt_ex
thf(fact_190_gt__ex,axiom,
! [X: int] :
? [X_12: int] : ( ord_less_int @ X @ X_12 ) ).
% gt_ex
thf(fact_191_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_192_dense,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ? [Z: real] :
( ( ord_less_real @ X @ Z )
& ( ord_less_real @ Z @ Y3 ) ) ) ).
% dense
thf(fact_193_less__imp__neq,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( X != Y3 ) ) ).
% less_imp_neq
thf(fact_194_less__imp__neq,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( X != Y3 ) ) ).
% less_imp_neq
thf(fact_195_less__imp__neq,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ( X != Y3 ) ) ).
% less_imp_neq
thf(fact_196_order_Oasym,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order.asym
thf(fact_197_order_Oasym,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order.asym
thf(fact_198_order_Oasym,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order.asym
thf(fact_199_ord__eq__less__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_200_ord__eq__less__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_201_ord__eq__less__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_202_ord__less__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_203_ord__less__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_204_ord__less__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_205_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X2: nat] :
( ! [Y2: nat] :
( ( ord_less_nat @ Y2 @ X2 )
=> ( P @ Y2 ) )
=> ( P @ X2 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_206_antisym__conv3,axiom,
! [Y3: nat,X: nat] :
( ~ ( ord_less_nat @ Y3 @ X )
=> ( ( ~ ( ord_less_nat @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv3
thf(fact_207_antisym__conv3,axiom,
! [Y3: real,X: real] :
( ~ ( ord_less_real @ Y3 @ X )
=> ( ( ~ ( ord_less_real @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv3
thf(fact_208_antisym__conv3,axiom,
! [Y3: int,X: int] :
( ~ ( ord_less_int @ Y3 @ X )
=> ( ( ~ ( ord_less_int @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv3
thf(fact_209_linorder__cases,axiom,
! [X: nat,Y3: nat] :
( ~ ( ord_less_nat @ X @ Y3 )
=> ( ( X != Y3 )
=> ( ord_less_nat @ Y3 @ X ) ) ) ).
% linorder_cases
thf(fact_210_linorder__cases,axiom,
! [X: real,Y3: real] :
( ~ ( ord_less_real @ X @ Y3 )
=> ( ( X != Y3 )
=> ( ord_less_real @ Y3 @ X ) ) ) ).
% linorder_cases
thf(fact_211_linorder__cases,axiom,
! [X: int,Y3: int] :
( ~ ( ord_less_int @ X @ Y3 )
=> ( ( X != Y3 )
=> ( ord_less_int @ Y3 @ X ) ) ) ).
% linorder_cases
thf(fact_212_dual__order_Oasym,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ A @ B ) ) ).
% dual_order.asym
thf(fact_213_dual__order_Oasym,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ A @ B ) ) ).
% dual_order.asym
thf(fact_214_dual__order_Oasym,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ A @ B ) ) ).
% dual_order.asym
thf(fact_215_dual__order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% dual_order.irrefl
thf(fact_216_dual__order_Oirrefl,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% dual_order.irrefl
thf(fact_217_dual__order_Oirrefl,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% dual_order.irrefl
thf(fact_218_exists__least__iff,axiom,
( ( ^ [P2: nat > $o] :
? [X6: nat] : ( P2 @ X6 ) )
= ( ^ [P3: nat > $o] :
? [N4: nat] :
( ( P3 @ N4 )
& ! [M6: nat] :
( ( ord_less_nat @ M6 @ N4 )
=> ~ ( P3 @ M6 ) ) ) ) ) ).
% exists_least_iff
thf(fact_219_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B3: nat] :
( ( ord_less_nat @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: nat] : ( P @ A4 @ A4 )
=> ( ! [A4: nat,B3: nat] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_220_linorder__less__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A4: real,B3: real] :
( ( ord_less_real @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: real] : ( P @ A4 @ A4 )
=> ( ! [A4: real,B3: real] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_221_linorder__less__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A4: int,B3: int] :
( ( ord_less_int @ A4 @ B3 )
=> ( P @ A4 @ B3 ) )
=> ( ! [A4: int] : ( P @ A4 @ A4 )
=> ( ! [A4: int,B3: int] :
( ( P @ B3 @ A4 )
=> ( P @ A4 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_222_order_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_223_order_Ostrict__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_224_order_Ostrict__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_225_not__less__iff__gr__or__eq,axiom,
! [X: nat,Y3: nat] :
( ( ~ ( ord_less_nat @ X @ Y3 ) )
= ( ( ord_less_nat @ Y3 @ X )
| ( X = Y3 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_226_not__less__iff__gr__or__eq,axiom,
! [X: real,Y3: real] :
( ( ~ ( ord_less_real @ X @ Y3 ) )
= ( ( ord_less_real @ Y3 @ X )
| ( X = Y3 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_227_not__less__iff__gr__or__eq,axiom,
! [X: int,Y3: int] :
( ( ~ ( ord_less_int @ X @ Y3 ) )
= ( ( ord_less_int @ Y3 @ X )
| ( X = Y3 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_228_dual__order_Ostrict__trans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_229_dual__order_Ostrict__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_230_dual__order_Ostrict__trans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_231_order_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_232_order_Ostrict__implies__not__eq,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_233_order_Ostrict__implies__not__eq,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_234_dual__order_Ostrict__implies__not__eq,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_235_dual__order_Ostrict__implies__not__eq,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_236_dual__order_Ostrict__implies__not__eq,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_237_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_238_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_239_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_240_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_241_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_242_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_243_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_244_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_245_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_246_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_247_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M4: nat] :
( ( ord_less_nat @ M4 @ N2 )
=> ( P @ M4 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_248_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M4: nat] :
( ( ord_less_nat @ M4 @ N2 )
& ~ ( P @ M4 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_249_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M4: nat] :
( ( ord_less_nat @ M4 @ N2 )
& ~ ( P @ M4 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_250_linorder__neqE__nat,axiom,
! [X: nat,Y3: nat] :
( ( X != Y3 )
=> ( ~ ( ord_less_nat @ X @ Y3 )
=> ( ord_less_nat @ Y3 @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_251_linorder__neqE,axiom,
! [X: nat,Y3: nat] :
( ( X != Y3 )
=> ( ~ ( ord_less_nat @ X @ Y3 )
=> ( ord_less_nat @ Y3 @ X ) ) ) ).
% linorder_neqE
thf(fact_252_linorder__neqE,axiom,
! [X: real,Y3: real] :
( ( X != Y3 )
=> ( ~ ( ord_less_real @ X @ Y3 )
=> ( ord_less_real @ Y3 @ X ) ) ) ).
% linorder_neqE
thf(fact_253_linorder__neqE,axiom,
! [X: int,Y3: int] :
( ( X != Y3 )
=> ( ~ ( ord_less_int @ X @ Y3 )
=> ( ord_less_int @ Y3 @ X ) ) ) ).
% linorder_neqE
thf(fact_254_order__less__asym,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ~ ( ord_less_nat @ Y3 @ X ) ) ).
% order_less_asym
thf(fact_255_order__less__asym,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ~ ( ord_less_real @ Y3 @ X ) ) ).
% order_less_asym
thf(fact_256_order__less__asym,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ~ ( ord_less_int @ Y3 @ X ) ) ).
% order_less_asym
thf(fact_257_linorder__neq__iff,axiom,
! [X: nat,Y3: nat] :
( ( X != Y3 )
= ( ( ord_less_nat @ X @ Y3 )
| ( ord_less_nat @ Y3 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_258_linorder__neq__iff,axiom,
! [X: real,Y3: real] :
( ( X != Y3 )
= ( ( ord_less_real @ X @ Y3 )
| ( ord_less_real @ Y3 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_259_linorder__neq__iff,axiom,
! [X: int,Y3: int] :
( ( X != Y3 )
= ( ( ord_less_int @ X @ Y3 )
| ( ord_less_int @ Y3 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_260_order__less__asym_H,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order_less_asym'
thf(fact_261_order__less__asym_H,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order_less_asym'
thf(fact_262_order__less__asym_H,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order_less_asym'
thf(fact_263_order__less__trans,axiom,
! [X: nat,Y3: nat,Z3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( ( ord_less_nat @ Y3 @ Z3 )
=> ( ord_less_nat @ X @ Z3 ) ) ) ).
% order_less_trans
thf(fact_264_order__less__trans,axiom,
! [X: real,Y3: real,Z3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_real @ Y3 @ Z3 )
=> ( ord_less_real @ X @ Z3 ) ) ) ).
% order_less_trans
thf(fact_265_order__less__trans,axiom,
! [X: int,Y3: int,Z3: int] :
( ( ord_less_int @ X @ Y3 )
=> ( ( ord_less_int @ Y3 @ Z3 )
=> ( ord_less_int @ X @ Z3 ) ) ) ).
% order_less_trans
thf(fact_266_ord__eq__less__subst,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_267_ord__eq__less__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_268_ord__eq__less__subst,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_269_ord__eq__less__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_270_ord__eq__less__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_271_ord__eq__less__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_272_ord__eq__less__subst,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_273_ord__eq__less__subst,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_274_ord__eq__less__subst,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_275_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_276_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_277_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_278_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_279_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_280_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_281_ord__less__eq__subst,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_282_ord__less__eq__subst,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_283_ord__less__eq__subst,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_284_order__less__irrefl,axiom,
! [X: nat] :
~ ( ord_less_nat @ X @ X ) ).
% order_less_irrefl
thf(fact_285_order__less__irrefl,axiom,
! [X: real] :
~ ( ord_less_real @ X @ X ) ).
% order_less_irrefl
thf(fact_286_order__less__irrefl,axiom,
! [X: int] :
~ ( ord_less_int @ X @ X ) ).
% order_less_irrefl
thf(fact_287_order__less__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_288_order__less__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_289_order__less__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_290_order__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_291_order__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_292_order__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_293_order__less__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_294_order__less__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_295_order__less__subst1,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_296_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_297_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_298_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_299_order__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_300_order__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_301_order__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_302_order__less__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_303_order__less__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_304_order__less__subst2,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_305_order__less__not__sym,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ~ ( ord_less_nat @ Y3 @ X ) ) ).
% order_less_not_sym
thf(fact_306_order__less__not__sym,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ~ ( ord_less_real @ Y3 @ X ) ) ).
% order_less_not_sym
thf(fact_307_order__less__not__sym,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ~ ( ord_less_int @ Y3 @ X ) ) ).
% order_less_not_sym
thf(fact_308_order__less__imp__triv,axiom,
! [X: nat,Y3: nat,P: $o] :
( ( ord_less_nat @ X @ Y3 )
=> ( ( ord_less_nat @ Y3 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_309_order__less__imp__triv,axiom,
! [X: real,Y3: real,P: $o] :
( ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_real @ Y3 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_310_order__less__imp__triv,axiom,
! [X: int,Y3: int,P: $o] :
( ( ord_less_int @ X @ Y3 )
=> ( ( ord_less_int @ Y3 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_311_linorder__less__linear,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
| ( X = Y3 )
| ( ord_less_nat @ Y3 @ X ) ) ).
% linorder_less_linear
thf(fact_312_linorder__less__linear,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
| ( X = Y3 )
| ( ord_less_real @ Y3 @ X ) ) ).
% linorder_less_linear
thf(fact_313_linorder__less__linear,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
| ( X = Y3 )
| ( ord_less_int @ Y3 @ X ) ) ).
% linorder_less_linear
thf(fact_314_order__less__imp__not__eq,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( X != Y3 ) ) ).
% order_less_imp_not_eq
thf(fact_315_order__less__imp__not__eq,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( X != Y3 ) ) ).
% order_less_imp_not_eq
thf(fact_316_order__less__imp__not__eq,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ( X != Y3 ) ) ).
% order_less_imp_not_eq
thf(fact_317_order__less__imp__not__eq2,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( Y3 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_318_order__less__imp__not__eq2,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( Y3 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_319_order__less__imp__not__eq2,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ( Y3 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_320_order__less__imp__not__less,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ~ ( ord_less_nat @ Y3 @ X ) ) ).
% order_less_imp_not_less
thf(fact_321_order__less__imp__not__less,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ~ ( ord_less_real @ Y3 @ X ) ) ).
% order_less_imp_not_less
thf(fact_322_order__less__imp__not__less,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ~ ( ord_less_int @ Y3 @ X ) ) ).
% order_less_imp_not_less
thf(fact_323_lift__Suc__mono__less__iff,axiom,
! [F: nat > nat,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_324_lift__Suc__mono__less__iff,axiom,
! [F: nat > real,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_real @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_325_lift__Suc__mono__less__iff,axiom,
! [F: nat > int,N: nat,M: nat] :
( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_int @ ( F @ N ) @ ( F @ M ) )
= ( ord_less_nat @ N @ M ) ) ) ).
% lift_Suc_mono_less_iff
thf(fact_326_lift__Suc__mono__less,axiom,
! [F: nat > nat,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_327_lift__Suc__mono__less,axiom,
! [F: nat > real,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_real @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_real @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_328_lift__Suc__mono__less,axiom,
! [F: nat > int,N: nat,N3: nat] :
( ! [N2: nat] : ( ord_less_int @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
=> ( ( ord_less_nat @ N @ N3 )
=> ( ord_less_int @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).
% lift_Suc_mono_less
thf(fact_329_less__Suc__eq__0__disj,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( M = zero_zero_nat )
| ? [J2: nat] :
( ( M
= ( suc @ J2 ) )
& ( ord_less_nat @ J2 @ N ) ) ) ) ).
% less_Suc_eq_0_disj
thf(fact_330_gr0__implies__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% gr0_implies_Suc
thf(fact_331_All__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
=> ( P @ I2 ) ) )
= ( ( P @ zero_zero_nat )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( P @ ( suc @ I2 ) ) ) ) ) ).
% All_less_Suc2
thf(fact_332_gr0__conv__Suc,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( ? [M6: nat] :
( N
= ( suc @ M6 ) ) ) ) ).
% gr0_conv_Suc
thf(fact_333_Ex__less__Suc2,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
& ( P @ I2 ) ) )
= ( ( P @ zero_zero_nat )
| ? [I2: nat] :
( ( ord_less_nat @ I2 @ N )
& ( P @ ( suc @ I2 ) ) ) ) ) ).
% Ex_less_Suc2
thf(fact_334_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K2 )
=> ~ ( P @ I3 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_335_ex__least__nat__less,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_nat @ K2 @ N )
& ! [I3: nat] :
( ( ord_less_eq_nat @ I3 @ K2 )
=> ~ ( P @ I3 ) )
& ( P @ ( suc @ K2 ) ) ) ) ) ).
% ex_least_nat_less
thf(fact_336_verit__comp__simplify1_I3_J,axiom,
! [B4: nat,A5: nat] :
( ( ~ ( ord_less_eq_nat @ B4 @ A5 ) )
= ( ord_less_nat @ A5 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_337_verit__comp__simplify1_I3_J,axiom,
! [B4: real,A5: real] :
( ( ~ ( ord_less_eq_real @ B4 @ A5 ) )
= ( ord_less_real @ A5 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_338_verit__comp__simplify1_I3_J,axiom,
! [B4: int,A5: int] :
( ( ~ ( ord_less_eq_int @ B4 @ A5 ) )
= ( ord_less_int @ A5 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_339_leD,axiom,
! [Y3: nat,X: nat] :
( ( ord_less_eq_nat @ Y3 @ X )
=> ~ ( ord_less_nat @ X @ Y3 ) ) ).
% leD
thf(fact_340_leD,axiom,
! [Y3: real,X: real] :
( ( ord_less_eq_real @ Y3 @ X )
=> ~ ( ord_less_real @ X @ Y3 ) ) ).
% leD
thf(fact_341_leD,axiom,
! [Y3: int,X: int] :
( ( ord_less_eq_int @ Y3 @ X )
=> ~ ( ord_less_int @ X @ Y3 ) ) ).
% leD
thf(fact_342_leD,axiom,
! [Y3: risk_Free_account,X: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ Y3 @ X )
=> ~ ( ord_le2131251472502387783ccount @ X @ Y3 ) ) ).
% leD
thf(fact_343_leI,axiom,
! [X: nat,Y3: nat] :
( ~ ( ord_less_nat @ X @ Y3 )
=> ( ord_less_eq_nat @ Y3 @ X ) ) ).
% leI
thf(fact_344_leI,axiom,
! [X: real,Y3: real] :
( ~ ( ord_less_real @ X @ Y3 )
=> ( ord_less_eq_real @ Y3 @ X ) ) ).
% leI
thf(fact_345_leI,axiom,
! [X: int,Y3: int] :
( ~ ( ord_less_int @ X @ Y3 )
=> ( ord_less_eq_int @ Y3 @ X ) ) ).
% leI
thf(fact_346_nless__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_nat @ A @ B ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_347_nless__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_real @ A @ B ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_348_nless__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_int @ A @ B ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_349_nless__le,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ~ ( ord_le2131251472502387783ccount @ A @ B ) )
= ( ~ ( ord_le4245800335709223507ccount @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_350_antisym__conv1,axiom,
! [X: nat,Y3: nat] :
( ~ ( ord_less_nat @ X @ Y3 )
=> ( ( ord_less_eq_nat @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% antisym_conv1
thf(fact_351_antisym__conv1,axiom,
! [X: real,Y3: real] :
( ~ ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_eq_real @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% antisym_conv1
thf(fact_352_antisym__conv1,axiom,
! [X: int,Y3: int] :
( ~ ( ord_less_int @ X @ Y3 )
=> ( ( ord_less_eq_int @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% antisym_conv1
thf(fact_353_antisym__conv1,axiom,
! [X: risk_Free_account,Y3: risk_Free_account] :
( ~ ( ord_le2131251472502387783ccount @ X @ Y3 )
=> ( ( ord_le4245800335709223507ccount @ X @ Y3 )
= ( X = Y3 ) ) ) ).
% antisym_conv1
thf(fact_354_antisym__conv2,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ~ ( ord_less_nat @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv2
thf(fact_355_antisym__conv2,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ~ ( ord_less_real @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv2
thf(fact_356_antisym__conv2,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ~ ( ord_less_int @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv2
thf(fact_357_antisym__conv2,axiom,
! [X: risk_Free_account,Y3: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X @ Y3 )
=> ( ( ~ ( ord_le2131251472502387783ccount @ X @ Y3 ) )
= ( X = Y3 ) ) ) ).
% antisym_conv2
thf(fact_358_dense__ge,axiom,
! [Z3: real,Y3: real] :
( ! [X2: real] :
( ( ord_less_real @ Z3 @ X2 )
=> ( ord_less_eq_real @ Y3 @ X2 ) )
=> ( ord_less_eq_real @ Y3 @ Z3 ) ) ).
% dense_ge
thf(fact_359_dense__le,axiom,
! [Y3: real,Z3: real] :
( ! [X2: real] :
( ( ord_less_real @ X2 @ Y3 )
=> ( ord_less_eq_real @ X2 @ Z3 ) )
=> ( ord_less_eq_real @ Y3 @ Z3 ) ) ).
% dense_le
thf(fact_360_less__le__not__le,axiom,
( ord_less_nat
= ( ^ [X4: nat,Y5: nat] :
( ( ord_less_eq_nat @ X4 @ Y5 )
& ~ ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_361_less__le__not__le,axiom,
( ord_less_real
= ( ^ [X4: real,Y5: real] :
( ( ord_less_eq_real @ X4 @ Y5 )
& ~ ( ord_less_eq_real @ Y5 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_362_less__le__not__le,axiom,
( ord_less_int
= ( ^ [X4: int,Y5: int] :
( ( ord_less_eq_int @ X4 @ Y5 )
& ~ ( ord_less_eq_int @ Y5 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_363_less__le__not__le,axiom,
( ord_le2131251472502387783ccount
= ( ^ [X4: risk_Free_account,Y5: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X4 @ Y5 )
& ~ ( ord_le4245800335709223507ccount @ Y5 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_364_not__le__imp__less,axiom,
! [Y3: nat,X: nat] :
( ~ ( ord_less_eq_nat @ Y3 @ X )
=> ( ord_less_nat @ X @ Y3 ) ) ).
% not_le_imp_less
thf(fact_365_not__le__imp__less,axiom,
! [Y3: real,X: real] :
( ~ ( ord_less_eq_real @ Y3 @ X )
=> ( ord_less_real @ X @ Y3 ) ) ).
% not_le_imp_less
thf(fact_366_not__le__imp__less,axiom,
! [Y3: int,X: int] :
( ~ ( ord_less_eq_int @ Y3 @ X )
=> ( ord_less_int @ X @ Y3 ) ) ).
% not_le_imp_less
thf(fact_367_order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_nat @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_368_order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [A2: real,B2: real] :
( ( ord_less_real @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_369_order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [A2: int,B2: int] :
( ( ord_less_int @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_370_order_Oorder__iff__strict,axiom,
( ord_le4245800335709223507ccount
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_371_order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_372_order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_373_order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_374_order_Ostrict__iff__order,axiom,
( ord_le2131251472502387783ccount
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_375_order_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_376_order_Ostrict__trans1,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_377_order_Ostrict__trans1,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_378_order_Ostrict__trans1,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ B @ C )
=> ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_379_order_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_380_order_Ostrict__trans2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_381_order_Ostrict__trans2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_382_order_Ostrict__trans2,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_383_order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
& ~ ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_384_order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ A2 @ B2 )
& ~ ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_385_order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ A2 @ B2 )
& ~ ( ord_less_eq_int @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_386_order_Ostrict__iff__not,axiom,
( ord_le2131251472502387783ccount
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A2 @ B2 )
& ~ ( ord_le4245800335709223507ccount @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_387_dense__ge__bounded,axiom,
! [Z3: real,X: real,Y3: real] :
( ( ord_less_real @ Z3 @ X )
=> ( ! [W: real] :
( ( ord_less_real @ Z3 @ W )
=> ( ( ord_less_real @ W @ X )
=> ( ord_less_eq_real @ Y3 @ W ) ) )
=> ( ord_less_eq_real @ Y3 @ Z3 ) ) ) ).
% dense_ge_bounded
thf(fact_388_dense__le__bounded,axiom,
! [X: real,Y3: real,Z3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( ! [W: real] :
( ( ord_less_real @ X @ W )
=> ( ( ord_less_real @ W @ Y3 )
=> ( ord_less_eq_real @ W @ Z3 ) ) )
=> ( ord_less_eq_real @ Y3 @ Z3 ) ) ) ).
% dense_le_bounded
thf(fact_389_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [B2: nat,A2: nat] :
( ( ord_less_nat @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_390_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [B2: real,A2: real] :
( ( ord_less_real @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_391_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [B2: int,A2: int] :
( ( ord_less_int @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_392_dual__order_Oorder__iff__strict,axiom,
( ord_le4245800335709223507ccount
= ( ^ [B2: risk_Free_account,A2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_393_dual__order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_394_dual__order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [B2: real,A2: real] :
( ( ord_less_eq_real @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_395_dual__order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [B2: int,A2: int] :
( ( ord_less_eq_int @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_396_dual__order_Ostrict__iff__order,axiom,
( ord_le2131251472502387783ccount
= ( ^ [B2: risk_Free_account,A2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_397_dual__order_Ostrict__trans1,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_398_dual__order_Ostrict__trans1,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_399_dual__order_Ostrict__trans1,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_400_dual__order_Ostrict__trans1,axiom,
! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B @ A )
=> ( ( ord_le2131251472502387783ccount @ C @ B )
=> ( ord_le2131251472502387783ccount @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_401_dual__order_Ostrict__trans2,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_402_dual__order_Ostrict__trans2,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_403_dual__order_Ostrict__trans2,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_404_dual__order_Ostrict__trans2,axiom,
! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ B @ A )
=> ( ( ord_le4245800335709223507ccount @ C @ B )
=> ( ord_le2131251472502387783ccount @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_405_dual__order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
& ~ ( ord_less_eq_nat @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_406_dual__order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [B2: real,A2: real] :
( ( ord_less_eq_real @ B2 @ A2 )
& ~ ( ord_less_eq_real @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_407_dual__order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [B2: int,A2: int] :
( ( ord_less_eq_int @ B2 @ A2 )
& ~ ( ord_less_eq_int @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_408_dual__order_Ostrict__iff__not,axiom,
( ord_le2131251472502387783ccount
= ( ^ [B2: risk_Free_account,A2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B2 @ A2 )
& ~ ( ord_le4245800335709223507ccount @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_409_order_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_410_order_Ostrict__implies__order,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_411_order_Ostrict__implies__order,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_412_order_Ostrict__implies__order,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ord_le4245800335709223507ccount @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_413_dual__order_Ostrict__implies__order,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_414_dual__order_Ostrict__implies__order,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_eq_real @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_415_dual__order_Ostrict__implies__order,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_eq_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_416_dual__order_Ostrict__implies__order,axiom,
! [B: risk_Free_account,A: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ B @ A )
=> ( ord_le4245800335709223507ccount @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_417_order__le__less,axiom,
( ord_less_eq_nat
= ( ^ [X4: nat,Y5: nat] :
( ( ord_less_nat @ X4 @ Y5 )
| ( X4 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_418_order__le__less,axiom,
( ord_less_eq_real
= ( ^ [X4: real,Y5: real] :
( ( ord_less_real @ X4 @ Y5 )
| ( X4 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_419_order__le__less,axiom,
( ord_less_eq_int
= ( ^ [X4: int,Y5: int] :
( ( ord_less_int @ X4 @ Y5 )
| ( X4 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_420_order__le__less,axiom,
( ord_le4245800335709223507ccount
= ( ^ [X4: risk_Free_account,Y5: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X4 @ Y5 )
| ( X4 = Y5 ) ) ) ) ).
% order_le_less
thf(fact_421_order__less__le,axiom,
( ord_less_nat
= ( ^ [X4: nat,Y5: nat] :
( ( ord_less_eq_nat @ X4 @ Y5 )
& ( X4 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_422_order__less__le,axiom,
( ord_less_real
= ( ^ [X4: real,Y5: real] :
( ( ord_less_eq_real @ X4 @ Y5 )
& ( X4 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_423_order__less__le,axiom,
( ord_less_int
= ( ^ [X4: int,Y5: int] :
( ( ord_less_eq_int @ X4 @ Y5 )
& ( X4 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_424_order__less__le,axiom,
( ord_le2131251472502387783ccount
= ( ^ [X4: risk_Free_account,Y5: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X4 @ Y5 )
& ( X4 != Y5 ) ) ) ) ).
% order_less_le
thf(fact_425_linorder__not__le,axiom,
! [X: nat,Y3: nat] :
( ( ~ ( ord_less_eq_nat @ X @ Y3 ) )
= ( ord_less_nat @ Y3 @ X ) ) ).
% linorder_not_le
thf(fact_426_linorder__not__le,axiom,
! [X: real,Y3: real] :
( ( ~ ( ord_less_eq_real @ X @ Y3 ) )
= ( ord_less_real @ Y3 @ X ) ) ).
% linorder_not_le
thf(fact_427_linorder__not__le,axiom,
! [X: int,Y3: int] :
( ( ~ ( ord_less_eq_int @ X @ Y3 ) )
= ( ord_less_int @ Y3 @ X ) ) ).
% linorder_not_le
thf(fact_428_linorder__not__less,axiom,
! [X: nat,Y3: nat] :
( ( ~ ( ord_less_nat @ X @ Y3 ) )
= ( ord_less_eq_nat @ Y3 @ X ) ) ).
% linorder_not_less
thf(fact_429_linorder__not__less,axiom,
! [X: real,Y3: real] :
( ( ~ ( ord_less_real @ X @ Y3 ) )
= ( ord_less_eq_real @ Y3 @ X ) ) ).
% linorder_not_less
thf(fact_430_linorder__not__less,axiom,
! [X: int,Y3: int] :
( ( ~ ( ord_less_int @ X @ Y3 ) )
= ( ord_less_eq_int @ Y3 @ X ) ) ).
% linorder_not_less
thf(fact_431_order__less__imp__le,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( ord_less_eq_nat @ X @ Y3 ) ) ).
% order_less_imp_le
thf(fact_432_order__less__imp__le,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( ord_less_eq_real @ X @ Y3 ) ) ).
% order_less_imp_le
thf(fact_433_order__less__imp__le,axiom,
! [X: int,Y3: int] :
( ( ord_less_int @ X @ Y3 )
=> ( ord_less_eq_int @ X @ Y3 ) ) ).
% order_less_imp_le
thf(fact_434_order__less__imp__le,axiom,
! [X: risk_Free_account,Y3: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y3 )
=> ( ord_le4245800335709223507ccount @ X @ Y3 ) ) ).
% order_less_imp_le
thf(fact_435_order__le__neq__trans,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( A != B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_436_order__le__neq__trans,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( A != B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_437_order__le__neq__trans,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_438_order__le__neq__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( A != B )
=> ( ord_le2131251472502387783ccount @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_439_order__neq__le__trans,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_440_order__neq__le__trans,axiom,
! [A: real,B: real] :
( ( A != B )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_441_order__neq__le__trans,axiom,
! [A: int,B: int] :
( ( A != B )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_442_order__neq__le__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( A != B )
=> ( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ord_le2131251472502387783ccount @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_443_order__le__less__trans,axiom,
! [X: nat,Y3: nat,Z3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ord_less_nat @ Y3 @ Z3 )
=> ( ord_less_nat @ X @ Z3 ) ) ) ).
% order_le_less_trans
thf(fact_444_order__le__less__trans,axiom,
! [X: real,Y3: real,Z3: real] :
( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_real @ Y3 @ Z3 )
=> ( ord_less_real @ X @ Z3 ) ) ) ).
% order_le_less_trans
thf(fact_445_order__le__less__trans,axiom,
! [X: int,Y3: int,Z3: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ord_less_int @ Y3 @ Z3 )
=> ( ord_less_int @ X @ Z3 ) ) ) ).
% order_le_less_trans
thf(fact_446_order__le__less__trans,axiom,
! [X: risk_Free_account,Y3: risk_Free_account,Z3: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X @ Y3 )
=> ( ( ord_le2131251472502387783ccount @ Y3 @ Z3 )
=> ( ord_le2131251472502387783ccount @ X @ Z3 ) ) ) ).
% order_le_less_trans
thf(fact_447_order__less__le__trans,axiom,
! [X: nat,Y3: nat,Z3: nat] :
( ( ord_less_nat @ X @ Y3 )
=> ( ( ord_less_eq_nat @ Y3 @ Z3 )
=> ( ord_less_nat @ X @ Z3 ) ) ) ).
% order_less_le_trans
thf(fact_448_order__less__le__trans,axiom,
! [X: real,Y3: real,Z3: real] :
( ( ord_less_real @ X @ Y3 )
=> ( ( ord_less_eq_real @ Y3 @ Z3 )
=> ( ord_less_real @ X @ Z3 ) ) ) ).
% order_less_le_trans
thf(fact_449_order__less__le__trans,axiom,
! [X: int,Y3: int,Z3: int] :
( ( ord_less_int @ X @ Y3 )
=> ( ( ord_less_eq_int @ Y3 @ Z3 )
=> ( ord_less_int @ X @ Z3 ) ) ) ).
% order_less_le_trans
thf(fact_450_order__less__le__trans,axiom,
! [X: risk_Free_account,Y3: risk_Free_account,Z3: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y3 )
=> ( ( ord_le4245800335709223507ccount @ Y3 @ Z3 )
=> ( ord_le2131251472502387783ccount @ X @ Z3 ) ) ) ).
% order_less_le_trans
thf(fact_451_order__le__less__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_452_order__le__less__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_453_order__le__less__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_454_order__le__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_455_order__le__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_456_order__le__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_457_order__le__less__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_458_order__le__less__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_459_order__le__less__subst1,axiom,
! [A: int,F: int > int,B: int,C: int] :
( ( ord_less_eq_int @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_460_order__le__less__subst1,axiom,
! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_461_order__le__less__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_462_order__le__less__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_463_order__le__less__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_464_order__le__less__subst2,axiom,
! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_465_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_466_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_467_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_468_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_469_order__le__less__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_470_order__le__less__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_471_order__less__le__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_472_order__less__le__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_473_order__less__le__subst1,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_474_order__less__le__subst1,axiom,
! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_eq_nat @ X2 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_475_order__less__le__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_476_order__less__le__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_477_order__less__le__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_less_eq_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_478_order__less__le__subst1,axiom,
! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_eq_real @ X2 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_479_order__less__le__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_480_order__less__le__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_eq_int @ X2 @ Y )
=> ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_481_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_482_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_483_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > nat,C: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_nat @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_484_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_485_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_486_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_real @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_487_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_488_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X2: real,Y: real] :
( ( ord_less_real @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_489_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X2: int,Y: int] :
( ( ord_less_int @ X2 @ Y )
=> ( ord_less_int @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_490_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
=> ( ! [X2: nat,Y: nat] :
( ( ord_less_nat @ X2 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X2 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_491_linorder__le__less__linear,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
| ( ord_less_nat @ Y3 @ X ) ) ).
% linorder_le_less_linear
thf(fact_492_linorder__le__less__linear,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ Y3 )
| ( ord_less_real @ Y3 @ X ) ) ).
% linorder_le_less_linear
thf(fact_493_linorder__le__less__linear,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
| ( ord_less_int @ Y3 @ X ) ) ).
% linorder_le_less_linear
thf(fact_494_order__le__imp__less__or__eq,axiom,
! [X: nat,Y3: nat] :
( ( ord_less_eq_nat @ X @ Y3 )
=> ( ( ord_less_nat @ X @ Y3 )
| ( X = Y3 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_495_order__le__imp__less__or__eq,axiom,
! [X: real,Y3: real] :
( ( ord_less_eq_real @ X @ Y3 )
=> ( ( ord_less_real @ X @ Y3 )
| ( X = Y3 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_496_order__le__imp__less__or__eq,axiom,
! [X: int,Y3: int] :
( ( ord_less_eq_int @ X @ Y3 )
=> ( ( ord_less_int @ X @ Y3 )
| ( X = Y3 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_497_order__le__imp__less__or__eq,axiom,
! [X: risk_Free_account,Y3: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X @ Y3 )
=> ( ( ord_le2131251472502387783ccount @ X @ Y3 )
| ( X = Y3 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_498_not__less__less__Suc__eq,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% not_less_less_Suc_eq
thf(fact_499_strict__inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I4: nat] :
( ( J
= ( suc @ I4 ) )
=> ( P @ I4 ) )
=> ( ! [I4: nat] :
( ( ord_less_nat @ I4 @ J )
=> ( ( P @ ( suc @ I4 ) )
=> ( P @ I4 ) ) )
=> ( P @ I ) ) ) ) ).
% strict_inc_induct
thf(fact_500_less__Suc__induct,axiom,
! [I: nat,J: nat,P: nat > nat > $o] :
( ( ord_less_nat @ I @ J )
=> ( ! [I4: nat] : ( P @ I4 @ ( suc @ I4 ) )
=> ( ! [I4: nat,J3: nat,K2: nat] :
( ( ord_less_nat @ I4 @ J3 )
=> ( ( ord_less_nat @ J3 @ K2 )
=> ( ( P @ I4 @ J3 )
=> ( ( P @ J3 @ K2 )
=> ( P @ I4 @ K2 ) ) ) ) )
=> ( P @ I @ J ) ) ) ) ).
% less_Suc_induct
thf(fact_501_less__trans__Suc,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).
% less_trans_Suc
thf(fact_502_Suc__less__SucD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_less_SucD
thf(fact_503_less__antisym,axiom,
! [N: nat,M: nat] :
( ~ ( ord_less_nat @ N @ M )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
=> ( M = N ) ) ) ).
% less_antisym
thf(fact_504_Suc__less__eq2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ N ) @ M )
= ( ? [M7: nat] :
( ( M
= ( suc @ M7 ) )
& ( ord_less_nat @ N @ M7 ) ) ) ) ).
% Suc_less_eq2
thf(fact_505_All__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ! [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
=> ( P @ I2 ) ) )
= ( ( P @ N )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( P @ I2 ) ) ) ) ).
% All_less_Suc
thf(fact_506_not__less__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_nat @ M @ N ) )
= ( ord_less_nat @ N @ ( suc @ M ) ) ) ).
% not_less_eq
thf(fact_507_less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ( ord_less_nat @ M @ N )
| ( M = N ) ) ) ).
% less_Suc_eq
thf(fact_508_Ex__less__Suc,axiom,
! [N: nat,P: nat > $o] :
( ( ? [I2: nat] :
( ( ord_less_nat @ I2 @ ( suc @ N ) )
& ( P @ I2 ) ) )
= ( ( P @ N )
| ? [I2: nat] :
( ( ord_less_nat @ I2 @ N )
& ( P @ I2 ) ) ) ) ).
% Ex_less_Suc
thf(fact_509_less__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% less_SucI
thf(fact_510_less__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_nat @ M @ N )
=> ( M = N ) ) ) ).
% less_SucE
thf(fact_511_Suc__lessI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ( suc @ M )
!= N )
=> ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).
% Suc_lessI
thf(fact_512_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I ) @ K )
=> ~ ! [J3: nat] :
( ( ord_less_nat @ I @ J3 )
=> ( K
!= ( suc @ J3 ) ) ) ) ).
% Suc_lessE
thf(fact_513_Suc__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_lessD
thf(fact_514_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J3: nat] :
( ( ord_less_nat @ I @ J3 )
=> ( K
!= ( suc @ J3 ) ) ) ) ) ).
% Nat.lessE
thf(fact_515_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M6: nat,N4: nat] :
( ( ord_less_eq_nat @ M6 @ N4 )
& ( M6 != N4 ) ) ) ) ).
% nat_less_le
thf(fact_516_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_517_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M6: nat,N4: nat] :
( ( ord_less_nat @ M6 @ N4 )
| ( M6 = N4 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_518_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_519_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_520_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I4: nat,J3: nat] :
( ( ord_less_nat @ I4 @ J3 )
=> ( ord_less_nat @ ( F @ I4 ) @ ( F @ J3 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_521_not0__implies__Suc,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ? [M3: nat] :
( N
= ( suc @ M3 ) ) ) ).
% not0_implies_Suc
thf(fact_522_Zero__not__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_not_Suc
thf(fact_523_Zero__neq__Suc,axiom,
! [M: nat] :
( zero_zero_nat
!= ( suc @ M ) ) ).
% Zero_neq_Suc
thf(fact_524_Suc__neq__Zero,axiom,
! [M: nat] :
( ( suc @ M )
!= zero_zero_nat ) ).
% Suc_neq_Zero
thf(fact_525_zero__induct,axiom,
! [P: nat > $o,K: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ zero_zero_nat ) ) ) ).
% zero_induct
thf(fact_526_diff__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [X2: nat] : ( P @ X2 @ zero_zero_nat )
=> ( ! [Y: nat] : ( P @ zero_zero_nat @ ( suc @ Y ) )
=> ( ! [X2: nat,Y: nat] :
( ( P @ X2 @ Y )
=> ( P @ ( suc @ X2 ) @ ( suc @ Y ) ) )
=> ( P @ M @ N ) ) ) ) ).
% diff_induct
thf(fact_527_nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) )
=> ( P @ N ) ) ) ).
% nat_induct
thf(fact_528_old_Onat_Oexhaust,axiom,
! [Y3: nat] :
( ( Y3 != zero_zero_nat )
=> ~ ! [Nat3: nat] :
( Y3
!= ( suc @ Nat3 ) ) ) ).
% old.nat.exhaust
thf(fact_529_nat_OdiscI,axiom,
! [Nat: nat,X22: nat] :
( ( Nat
= ( suc @ X22 ) )
=> ( Nat != zero_zero_nat ) ) ).
% nat.discI
thf(fact_530_old_Onat_Odistinct_I1_J,axiom,
! [Nat2: nat] :
( zero_zero_nat
!= ( suc @ Nat2 ) ) ).
% old.nat.distinct(1)
thf(fact_531_old_Onat_Odistinct_I2_J,axiom,
! [Nat2: nat] :
( ( suc @ Nat2 )
!= zero_zero_nat ) ).
% old.nat.distinct(2)
thf(fact_532_nat_Odistinct_I1_J,axiom,
! [X22: nat] :
( zero_zero_nat
!= ( suc @ X22 ) ) ).
% nat.distinct(1)
thf(fact_533_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_534_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_535_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_536_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_537_le__imp__less__Suc,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_nat @ M @ ( suc @ N ) ) ) ).
% le_imp_less_Suc
thf(fact_538_less__eq__Suc__le,axiom,
( ord_less_nat
= ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).
% less_eq_Suc_le
thf(fact_539_less__Suc__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ ( suc @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% less_Suc_eq_le
thf(fact_540_le__less__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_nat @ N @ ( suc @ M ) )
= ( N = M ) ) ) ).
% le_less_Suc_eq
thf(fact_541_Suc__le__lessD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_nat @ M @ N ) ) ).
% Suc_le_lessD
thf(fact_542_inc__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ J )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) ) ) )
=> ( P @ I ) ) ) ) ).
% inc_induct
thf(fact_543_dec__induct,axiom,
! [I: nat,J: nat,P: nat > $o] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( P @ I )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( ord_less_nat @ N2 @ J )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) ) )
=> ( P @ J ) ) ) ) ).
% dec_induct
thf(fact_544_Suc__le__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_le_eq
thf(fact_545_Suc__leI,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).
% Suc_leI
thf(fact_546_GreatestI__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_nat
thf(fact_547_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_548_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_549__092_060open_062_092_060forall_062k_062shortest__period_A_092_060alpha_062_O_A_092_060nu_062_Ak_A_061_A_092_060nu_062_H_Ak_092_060close_062,axiom,
! [K3: nat] :
( ( ord_less_nat @ ( risk_F4612863212915232279period @ alpha ) @ K3 )
=> ( ( nu2 @ K3 )
= ( nu @ K3 ) ) ) ).
% \<open>\<forall>k>shortest_period \<alpha>. \<nu> k = \<nu>' k\<close>
thf(fact_550_nat__descend__induct,axiom,
! [N: nat,P: nat > $o,M: nat] :
( ! [K2: nat] :
( ( ord_less_nat @ N @ K2 )
=> ( P @ K2 ) )
=> ( ! [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
=> ( ! [I3: nat] :
( ( ord_less_nat @ K2 @ I3 )
=> ( P @ I3 ) )
=> ( P @ K2 ) ) )
=> ( P @ M ) ) ) ).
% nat_descend_induct
thf(fact_551_exists__least__lemma,axiom,
! [P: nat > $o] :
( ~ ( P @ zero_zero_nat )
=> ( ? [X_1: nat] : ( P @ X_1 )
=> ? [N2: nat] :
( ~ ( P @ N2 )
& ( P @ ( suc @ N2 ) ) ) ) ) ).
% exists_least_lemma
thf(fact_552_field__lbound__gt__zero,axiom,
! [D1: real,D2: real] :
( ( ord_less_real @ zero_zero_real @ D1 )
=> ( ( ord_less_real @ zero_zero_real @ D2 )
=> ? [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
& ( ord_less_real @ E @ D1 )
& ( ord_less_real @ E @ D2 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_553_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_554_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_555_assms_I1_J,axiom,
ord_less_eq_real @ zero_zero_real @ i ).
% assms(1)
thf(fact_556_assms_I4_J,axiom,
( ( rho @ zero_zero_nat )
= zero_zero_real ) ).
% assms(4)
thf(fact_557_assms_I3_J,axiom,
! [N5: nat,M4: nat] :
( ( ord_less_nat @ N5 @ M4 )
=> ( ord_less_real @ ( rho @ N5 ) @ ( rho @ M4 ) ) ) ).
% assms(3)
thf(fact_558_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_559_zero__reorient,axiom,
! [X: real] :
( ( zero_zero_real = X )
= ( X = zero_zero_real ) ) ).
% zero_reorient
thf(fact_560_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_561_zero__reorient,axiom,
! [X: risk_Free_account] :
( ( zero_z1425366712893667068ccount = X )
= ( X = zero_z1425366712893667068ccount ) ) ).
% zero_reorient
thf(fact_562_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_563_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_564_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_565_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_566_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_567_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_568_complete__interval,axiom,
! [A: nat,B: nat,P: nat > $o] :
( ( ord_less_nat @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C2: nat] :
( ( ord_less_eq_nat @ A @ C2 )
& ( ord_less_eq_nat @ C2 @ B )
& ! [X3: nat] :
( ( ( ord_less_eq_nat @ A @ X3 )
& ( ord_less_nat @ X3 @ C2 ) )
=> ( P @ X3 ) )
& ! [D: nat] :
( ! [X2: nat] :
( ( ( ord_less_eq_nat @ A @ X2 )
& ( ord_less_nat @ X2 @ D ) )
=> ( P @ X2 ) )
=> ( ord_less_eq_nat @ D @ C2 ) ) ) ) ) ) ).
% complete_interval
thf(fact_569_complete__interval,axiom,
! [A: real,B: real,P: real > $o] :
( ( ord_less_real @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C2: real] :
( ( ord_less_eq_real @ A @ C2 )
& ( ord_less_eq_real @ C2 @ B )
& ! [X3: real] :
( ( ( ord_less_eq_real @ A @ X3 )
& ( ord_less_real @ X3 @ C2 ) )
=> ( P @ X3 ) )
& ! [D: real] :
( ! [X2: real] :
( ( ( ord_less_eq_real @ A @ X2 )
& ( ord_less_real @ X2 @ D ) )
=> ( P @ X2 ) )
=> ( ord_less_eq_real @ D @ C2 ) ) ) ) ) ) ).
% complete_interval
thf(fact_570_complete__interval,axiom,
! [A: int,B: int,P: int > $o] :
( ( ord_less_int @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C2: int] :
( ( ord_less_eq_int @ A @ C2 )
& ( ord_less_eq_int @ C2 @ B )
& ! [X3: int] :
( ( ( ord_less_eq_int @ A @ X3 )
& ( ord_less_int @ X3 @ C2 ) )
=> ( P @ X3 ) )
& ! [D: int] :
( ! [X2: int] :
( ( ( ord_less_eq_int @ A @ X2 )
& ( ord_less_int @ X2 @ D ) )
=> ( P @ X2 ) )
=> ( ord_less_eq_int @ D @ C2 ) ) ) ) ) ) ).
% complete_interval
thf(fact_571_pinf_I6_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ~ ( ord_less_eq_nat @ X3 @ T ) ) ).
% pinf(6)
thf(fact_572_pinf_I6_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ~ ( ord_less_eq_real @ X3 @ T ) ) ).
% pinf(6)
thf(fact_573_pinf_I6_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ~ ( ord_less_eq_int @ X3 @ T ) ) ).
% pinf(6)
thf(fact_574_pinf_I8_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ( ord_less_eq_nat @ T @ X3 ) ) ).
% pinf(8)
thf(fact_575_pinf_I8_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ( ord_less_eq_real @ T @ X3 ) ) ).
% pinf(8)
thf(fact_576_pinf_I8_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( ord_less_eq_int @ T @ X3 ) ) ).
% pinf(8)
thf(fact_577_minf_I6_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( ord_less_eq_nat @ X3 @ T ) ) ).
% minf(6)
thf(fact_578_minf_I6_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ( ord_less_eq_real @ X3 @ T ) ) ).
% minf(6)
thf(fact_579_minf_I6_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( ord_less_eq_int @ X3 @ T ) ) ).
% minf(6)
thf(fact_580_minf_I8_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ~ ( ord_less_eq_nat @ T @ X3 ) ) ).
% minf(8)
thf(fact_581_minf_I8_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ~ ( ord_less_eq_real @ T @ X3 ) ) ).
% minf(8)
thf(fact_582_minf_I8_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ~ ( ord_less_eq_int @ T @ X3 ) ) ).
% minf(8)
thf(fact_583_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_584_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_585_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_586_assms_I2_J,axiom,
! [N5: nat] : ( ord_less_real @ ( rho @ N5 ) @ one_one_real ) ).
% assms(2)
thf(fact_587_complete__real,axiom,
! [S2: set_real] :
( ? [X3: real] : ( member_real @ X3 @ S2 )
=> ( ? [Z4: real] :
! [X2: real] :
( ( member_real @ X2 @ S2 )
=> ( ord_less_eq_real @ X2 @ Z4 ) )
=> ? [Y: real] :
( ! [X3: real] :
( ( member_real @ X3 @ S2 )
=> ( ord_less_eq_real @ X3 @ Y ) )
& ! [Z4: real] :
( ! [X2: real] :
( ( member_real @ X2 @ S2 )
=> ( ord_less_eq_real @ X2 @ Z4 ) )
=> ( ord_less_eq_real @ Y @ Z4 ) ) ) ) ) ).
% complete_real
thf(fact_588_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X4: real,Y5: real] :
( ( ord_less_real @ X4 @ Y5 )
| ( X4 = Y5 ) ) ) ) ).
% less_eq_real_def
thf(fact_589_ex__gt__or__lt,axiom,
! [A: real] :
? [B3: real] :
( ( ord_less_real @ A @ B3 )
| ( ord_less_real @ B3 @ A ) ) ).
% ex_gt_or_lt
thf(fact_590_pinf_I1_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
( ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P4 @ X3 )
& ( Q2 @ X3 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_591_pinf_I1_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
( ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P4 @ X3 )
& ( Q2 @ X3 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_592_pinf_I1_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
( ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P4 @ X3 )
& ( Q2 @ X3 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_593_pinf_I2_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
( ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P4 @ X3 )
| ( Q2 @ X3 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_594_pinf_I2_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
( ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P4 @ X3 )
| ( Q2 @ X3 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_595_pinf_I2_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
( ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P4 @ X3 )
| ( Q2 @ X3 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_596_pinf_I3_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ( X3 != T ) ) ).
% pinf(3)
thf(fact_597_pinf_I3_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ( X3 != T ) ) ).
% pinf(3)
thf(fact_598_pinf_I3_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( X3 != T ) ) ).
% pinf(3)
thf(fact_599_pinf_I4_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ( X3 != T ) ) ).
% pinf(4)
thf(fact_600_pinf_I4_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ( X3 != T ) ) ).
% pinf(4)
thf(fact_601_pinf_I4_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( X3 != T ) ) ).
% pinf(4)
thf(fact_602_pinf_I5_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ~ ( ord_less_nat @ X3 @ T ) ) ).
% pinf(5)
thf(fact_603_pinf_I5_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ~ ( ord_less_real @ X3 @ T ) ) ).
% pinf(5)
thf(fact_604_pinf_I5_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ~ ( ord_less_int @ X3 @ T ) ) ).
% pinf(5)
thf(fact_605_pinf_I7_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ( ord_less_nat @ T @ X3 ) ) ).
% pinf(7)
thf(fact_606_pinf_I7_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ( ord_less_real @ T @ X3 ) ) ).
% pinf(7)
thf(fact_607_pinf_I7_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( ord_less_int @ T @ X3 ) ) ).
% pinf(7)
thf(fact_608_minf_I1_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
( ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P4 @ X3 )
& ( Q2 @ X3 ) ) ) ) ) ) ).
% minf(1)
thf(fact_609_minf_I1_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
( ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P4 @ X3 )
& ( Q2 @ X3 ) ) ) ) ) ) ).
% minf(1)
thf(fact_610_minf_I1_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
( ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P4 @ X3 )
& ( Q2 @ X3 ) ) ) ) ) ) ).
% minf(1)
thf(fact_611_minf_I2_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
( ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P4 @ X3 )
| ( Q2 @ X3 ) ) ) ) ) ) ).
% minf(2)
thf(fact_612_minf_I2_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
( ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P4 @ X3 )
| ( Q2 @ X3 ) ) ) ) ) ) ).
% minf(2)
thf(fact_613_minf_I2_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
( ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( ( Q @ X2 )
= ( Q2 @ X2 ) ) )
=> ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P4 @ X3 )
| ( Q2 @ X3 ) ) ) ) ) ) ).
% minf(2)
thf(fact_614_minf_I3_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( X3 != T ) ) ).
% minf(3)
thf(fact_615_minf_I3_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ( X3 != T ) ) ).
% minf(3)
thf(fact_616_minf_I3_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( X3 != T ) ) ).
% minf(3)
thf(fact_617_minf_I4_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( X3 != T ) ) ).
% minf(4)
thf(fact_618_minf_I4_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ( X3 != T ) ) ).
% minf(4)
thf(fact_619_minf_I4_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( X3 != T ) ) ).
% minf(4)
thf(fact_620_minf_I5_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( ord_less_nat @ X3 @ T ) ) ).
% minf(5)
thf(fact_621_minf_I5_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ( ord_less_real @ X3 @ T ) ) ).
% minf(5)
thf(fact_622_minf_I5_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( ord_less_int @ X3 @ T ) ) ).
% minf(5)
thf(fact_623_minf_I7_J,axiom,
! [T: nat] :
? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ~ ( ord_less_nat @ T @ X3 ) ) ).
% minf(7)
thf(fact_624_minf_I7_J,axiom,
! [T: real] :
? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ~ ( ord_less_real @ T @ X3 ) ) ).
% minf(7)
thf(fact_625_minf_I7_J,axiom,
! [T: int] :
? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ~ ( ord_less_int @ T @ X3 ) ) ).
% minf(7)
thf(fact_626_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_627_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_628_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_629_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_630_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_631_Suc__pred,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
= N ) ) ).
% Suc_pred
thf(fact_632_power__strict__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_633_power__strict__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_634_power__strict__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ) ).
% power_strict_mono
thf(fact_635_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_636_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_637_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_638_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_639_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_640_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_641_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_642_diff__self,axiom,
! [A: risk_Free_account] :
( ( minus_4846202936726426316ccount @ A @ A )
= zero_z1425366712893667068ccount ) ).
% diff_self
thf(fact_643_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_644_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_645_diff__0__right,axiom,
! [A: risk_Free_account] :
( ( minus_4846202936726426316ccount @ A @ zero_z1425366712893667068ccount )
= A ) ).
% diff_0_right
thf(fact_646_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_647_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_648_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_649_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_650_diff__zero,axiom,
! [A: risk_Free_account] :
( ( minus_4846202936726426316ccount @ A @ zero_z1425366712893667068ccount )
= A ) ).
% diff_zero
thf(fact_651_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_652_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_653_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_654_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: risk_Free_account] :
( ( minus_4846202936726426316ccount @ A @ A )
= zero_z1425366712893667068ccount ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_655_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_656_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_657_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_658_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_659_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_660_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_661_power__one,axiom,
! [N: nat] :
( ( power_power_int @ one_one_int @ N )
= one_one_int ) ).
% power_one
thf(fact_662_power__one,axiom,
! [N: nat] :
( ( power_power_nat @ one_one_nat @ N )
= one_one_nat ) ).
% power_one
thf(fact_663_power__one,axiom,
! [N: nat] :
( ( power_power_real @ one_one_real @ N )
= one_one_real ) ).
% power_one
thf(fact_664_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_665_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1314217659103216013at_int @ N )
= one_one_int )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_666_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_667_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_668_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_669_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_670_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_671_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_672_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_673_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M: nat] :
( ( ( power_power_nat @ X @ M )
= ( suc @ zero_zero_nat ) )
= ( ( M = zero_zero_nat )
| ( X
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_674_power__Suc__0,axiom,
! [N: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_675_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_676_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).
% of_nat_power
thf(fact_677_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
= ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).
% of_nat_power
thf(fact_678_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
= ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).
% of_nat_power
thf(fact_679_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 )
= ( semiri1316708129612266289at_nat @ X ) )
= ( ( power_power_nat @ B @ W2 )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_680_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 )
= ( semiri1314217659103216013at_int @ X ) )
= ( ( power_power_nat @ B @ W2 )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_681_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 )
= ( semiri5074537144036343181t_real @ X ) )
= ( ( power_power_nat @ B @ W2 )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_682_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ( semiri1316708129612266289at_nat @ X )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) )
= ( X
= ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_683_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ( semiri1314217659103216013at_int @ X )
= ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) )
= ( X
= ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_684_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ( semiri5074537144036343181t_real @ X )
= ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) )
= ( X
= ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_685_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_686_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_687_diff__Suc__Suc,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_Suc_Suc
thf(fact_688_Suc__diff__diff,axiom,
! [M: nat,N: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).
% Suc_diff_diff
thf(fact_689_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_690_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_691_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_692_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_693_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ I @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_694_diff__ge__0__iff__ge,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_695_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_696_diff__ge__0__iff__ge,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ ( minus_4846202936726426316ccount @ A @ B ) )
= ( ord_le4245800335709223507ccount @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_697_diff__gt__0__iff__gt,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ zero_z1425366712893667068ccount @ ( minus_4846202936726426316ccount @ A @ B ) )
= ( ord_le2131251472502387783ccount @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_698_diff__gt__0__iff__gt,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_699_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_700_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_701_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_702_power__inject__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M )
= ( power_power_nat @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_703_power__inject__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M )
= ( power_power_real @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_704_power__inject__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M )
= ( power_power_int @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_705_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_int @ zero_zero_int @ ( suc @ N ) )
= zero_zero_int ) ).
% power_0_Suc
thf(fact_706_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_nat @ zero_zero_nat @ ( suc @ N ) )
= zero_zero_nat ) ).
% power_0_Suc
thf(fact_707_power__0__Suc,axiom,
! [N: nat] :
( ( power_power_real @ zero_zero_real @ ( suc @ N ) )
= zero_zero_real ) ).
% power_0_Suc
thf(fact_708_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_709_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_710_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_711_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_712_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_713_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_714_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_715_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_716_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_717_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_718_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_719_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_720_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_721_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_722_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_723_power__Suc0__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_724_power__Suc0__right,axiom,
! [A: real] :
( ( power_power_real @ A @ ( suc @ zero_zero_nat ) )
= A ) ).
% power_Suc0_right
thf(fact_725_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mult
thf(fact_726_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mult
thf(fact_727_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_mult
thf(fact_728_mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_729_one__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M @ N ) )
= ( ( M
= ( suc @ zero_zero_nat ) )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_730_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_731_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_732_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_733_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_734_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_735_power__strict__increasing__iff,axiom,
! [B: nat,X: nat,Y3: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y3 ) )
= ( ord_less_nat @ X @ Y3 ) ) ) ).
% power_strict_increasing_iff
thf(fact_736_power__strict__increasing__iff,axiom,
! [B: real,X: nat,Y3: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y3 ) )
= ( ord_less_nat @ X @ Y3 ) ) ) ).
% power_strict_increasing_iff
thf(fact_737_power__strict__increasing__iff,axiom,
! [B: int,X: nat,Y3: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y3 ) )
= ( ord_less_nat @ X @ Y3 ) ) ) ).
% power_strict_increasing_iff
thf(fact_738_power__eq__0__iff,axiom,
! [A: int,N: nat] :
( ( ( power_power_int @ A @ N )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_739_power__eq__0__iff,axiom,
! [A: nat,N: nat] :
( ( ( power_power_nat @ A @ N )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_740_power__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( power_power_real @ A @ N )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_741_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_742_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_743_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_744_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_745_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_746_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_747_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_748_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_749_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_750_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_751_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_752_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_753_power__strict__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_754_power__strict__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_755_power__strict__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_756_power__increasing__iff,axiom,
! [B: nat,X: nat,Y3: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y3 ) )
= ( ord_less_eq_nat @ X @ Y3 ) ) ) ).
% power_increasing_iff
thf(fact_757_power__increasing__iff,axiom,
! [B: real,X: nat,Y3: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y3 ) )
= ( ord_less_eq_nat @ X @ Y3 ) ) ) ).
% power_increasing_iff
thf(fact_758_power__increasing__iff,axiom,
! [B: int,X: nat,Y3: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y3 ) )
= ( ord_less_eq_nat @ X @ Y3 ) ) ) ).
% power_increasing_iff
thf(fact_759_power__mono__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_760_power__mono__iff,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_761_power__mono__iff,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_762_power__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_763_power__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_764_power__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_765_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_766_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_767_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_768_real__arch__pow,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ one_one_real @ X )
=> ? [N2: nat] : ( ord_less_real @ Y3 @ ( power_power_real @ X @ N2 ) ) ) ).
% real_arch_pow
thf(fact_769_power__less__power__Suc,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_770_power__less__power__Suc,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_771_power__less__power__Suc,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_772_power__gt1__lemma,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_773_power__gt1__lemma,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_774_power__gt1__lemma,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_775_power__Suc__less,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_776_power__Suc__less,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_777_power__Suc__less,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_778_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_779_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_780_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_781_power__eq__if,axiom,
( power_power_nat
= ( ^ [P5: nat,M6: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P5 @ ( power_power_nat @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_782_power__eq__if,axiom,
( power_power_int
= ( ^ [P5: int,M6: nat] : ( if_int @ ( M6 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P5 @ ( power_power_int @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_783_power__eq__if,axiom,
( power_power_real
= ( ^ [P5: real,M6: nat] : ( if_real @ ( M6 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P5 @ ( power_power_real @ P5 @ ( minus_minus_nat @ M6 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_784_power__not__zero,axiom,
! [A: int,N: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_785_power__not__zero,axiom,
! [A: nat,N: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_786_power__not__zero,axiom,
! [A: real,N: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_787_power__le__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ one_one_nat ) ) ) ).
% power_le_one
thf(fact_788_power__le__one,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real ) ) ) ).
% power_le_one
thf(fact_789_power__le__one,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ one_one_int ) ) ) ).
% power_le_one
thf(fact_790_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_791_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_792_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_793_power__gt1,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_794_power__gt1,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_795_power__gt1,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ ( suc @ N ) ) ) ) ).
% power_gt1
thf(fact_796_power__increasing,axiom,
! [N: nat,N6: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N6 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N6 ) ) ) ) ).
% power_increasing
thf(fact_797_power__increasing,axiom,
! [N: nat,N6: nat,A: real] :
( ( ord_less_eq_nat @ N @ N6 )
=> ( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N6 ) ) ) ) ).
% power_increasing
thf(fact_798_power__increasing,axiom,
! [N: nat,N6: nat,A: int] :
( ( ord_less_eq_nat @ N @ N6 )
=> ( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N6 ) ) ) ) ).
% power_increasing
thf(fact_799_power__less__imp__less__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_800_power__less__imp__less__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_801_power__less__imp__less__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_802_power__strict__increasing,axiom,
! [N: nat,N6: nat,A: nat] :
( ( ord_less_nat @ N @ N6 )
=> ( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N6 ) ) ) ) ).
% power_strict_increasing
thf(fact_803_power__strict__increasing,axiom,
! [N: nat,N6: nat,A: real] :
( ( ord_less_nat @ N @ N6 )
=> ( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N6 ) ) ) ) ).
% power_strict_increasing
thf(fact_804_power__strict__increasing,axiom,
! [N: nat,N6: nat,A: int] :
( ( ord_less_nat @ N @ N6 )
=> ( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N6 ) ) ) ) ).
% power_strict_increasing
thf(fact_805_inf__period_I1_J,axiom,
! [P: int > $o,D3: int,Q: int > $o] :
( ! [X2: int,K2: int] :
( ( P @ X2 )
= ( P @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D3 ) ) ) )
=> ( ! [X2: int,K2: int] :
( ( Q @ X2 )
= ( Q @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D3 ) ) ) )
=> ! [X3: int,K3: int] :
( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D3 ) ) )
& ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D3 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_806_inf__period_I1_J,axiom,
! [P: real > $o,D3: real,Q: real > $o] :
( ! [X2: real,K2: real] :
( ( P @ X2 )
= ( P @ ( minus_minus_real @ X2 @ ( times_times_real @ K2 @ D3 ) ) ) )
=> ( ! [X2: real,K2: real] :
( ( Q @ X2 )
= ( Q @ ( minus_minus_real @ X2 @ ( times_times_real @ K2 @ D3 ) ) ) )
=> ! [X3: real,K3: real] :
( ( ( P @ X3 )
& ( Q @ X3 ) )
= ( ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D3 ) ) )
& ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D3 ) ) ) ) ) ) ) ).
% inf_period(1)
thf(fact_807_inf__period_I2_J,axiom,
! [P: int > $o,D3: int,Q: int > $o] :
( ! [X2: int,K2: int] :
( ( P @ X2 )
= ( P @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D3 ) ) ) )
=> ( ! [X2: int,K2: int] :
( ( Q @ X2 )
= ( Q @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D3 ) ) ) )
=> ! [X3: int,K3: int] :
( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D3 ) ) )
| ( Q @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D3 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_808_inf__period_I2_J,axiom,
! [P: real > $o,D3: real,Q: real > $o] :
( ! [X2: real,K2: real] :
( ( P @ X2 )
= ( P @ ( minus_minus_real @ X2 @ ( times_times_real @ K2 @ D3 ) ) ) )
=> ( ! [X2: real,K2: real] :
( ( Q @ X2 )
= ( Q @ ( minus_minus_real @ X2 @ ( times_times_real @ K2 @ D3 ) ) ) )
=> ! [X3: real,K3: real] :
( ( ( P @ X3 )
| ( Q @ X3 ) )
= ( ( P @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D3 ) ) )
| ( Q @ ( minus_minus_real @ X3 @ ( times_times_real @ K3 @ D3 ) ) ) ) ) ) ) ).
% inf_period(2)
thf(fact_809_one__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ).
% one_le_power
thf(fact_810_one__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ).
% one_le_power
thf(fact_811_one__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ).
% one_le_power
thf(fact_812_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1316708129612266289at_nat @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ) ).
% of_nat_diff
thf(fact_813_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ) ).
% of_nat_diff
thf(fact_814_of__nat__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( semiri5074537144036343181t_real @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% of_nat_diff
thf(fact_815_power__mult,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_816_power__mult,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_817_power__commutes,axiom,
! [A: nat,N: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_commutes
thf(fact_818_power__commutes,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_commutes
thf(fact_819_power__commutes,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_commutes
thf(fact_820_power__mult__distrib,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_821_power__mult__distrib,axiom,
! [A: int,B: int,N: nat] :
( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
= ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_822_power__mult__distrib,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
= ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_823_left__right__inverse__power,axiom,
! [X: nat,Y3: nat,N: nat] :
( ( ( times_times_nat @ X @ Y3 )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y3 @ N ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_824_left__right__inverse__power,axiom,
! [X: int,Y3: int,N: nat] :
( ( ( times_times_int @ X @ Y3 )
= one_one_int )
=> ( ( times_times_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y3 @ N ) )
= one_one_int ) ) ).
% left_right_inverse_power
thf(fact_825_left__right__inverse__power,axiom,
! [X: real,Y3: real,N: nat] :
( ( ( times_times_real @ X @ Y3 )
= one_one_real )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y3 @ N ) )
= one_one_real ) ) ).
% left_right_inverse_power
thf(fact_826_power__commuting__commutes,axiom,
! [X: nat,Y3: nat,N: nat] :
( ( ( times_times_nat @ X @ Y3 )
= ( times_times_nat @ Y3 @ X ) )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y3 )
= ( times_times_nat @ Y3 @ ( power_power_nat @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_827_power__commuting__commutes,axiom,
! [X: int,Y3: int,N: nat] :
( ( ( times_times_int @ X @ Y3 )
= ( times_times_int @ Y3 @ X ) )
=> ( ( times_times_int @ ( power_power_int @ X @ N ) @ Y3 )
= ( times_times_int @ Y3 @ ( power_power_int @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_828_power__commuting__commutes,axiom,
! [X: real,Y3: real,N: nat] :
( ( ( times_times_real @ X @ Y3 )
= ( times_times_real @ Y3 @ X ) )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ Y3 )
= ( times_times_real @ Y3 @ ( power_power_real @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_829_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_830_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_831_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_832_mult__of__nat__commute,axiom,
! [X: nat,Y3: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y3 )
= ( times_times_nat @ Y3 @ ( semiri1316708129612266289at_nat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_833_mult__of__nat__commute,axiom,
! [X: nat,Y3: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y3 )
= ( times_times_int @ Y3 @ ( semiri1314217659103216013at_int @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_834_mult__of__nat__commute,axiom,
! [X: nat,Y3: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y3 )
= ( times_times_real @ Y3 @ ( semiri5074537144036343181t_real @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_835_power__Suc2,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_836_power__Suc2,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ ( power_power_int @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_837_power__Suc2,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ ( power_power_real @ A @ N ) @ A ) ) ).
% power_Suc2
thf(fact_838_power__Suc,axiom,
! [A: nat,N: nat] :
( ( power_power_nat @ A @ ( suc @ N ) )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_Suc
thf(fact_839_power__Suc,axiom,
! [A: int,N: nat] :
( ( power_power_int @ A @ ( suc @ N ) )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_Suc
thf(fact_840_power__Suc,axiom,
! [A: real,N: nat] :
( ( power_power_real @ A @ ( suc @ N ) )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_Suc
thf(fact_841_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_842_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_843_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_844_diff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_845_diff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_846_diff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_847_diff__right__commute,axiom,
! [A: risk_Free_account,C: risk_Free_account,B: risk_Free_account] :
( ( minus_4846202936726426316ccount @ ( minus_4846202936726426316ccount @ A @ C ) @ B )
= ( minus_4846202936726426316ccount @ ( minus_4846202936726426316ccount @ A @ B ) @ C ) ) ).
% diff_right_commute
thf(fact_848_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_849_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_850_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_851_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_852_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_853_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_854_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A2: nat,B2: nat] : ( times_times_nat @ B2 @ A2 ) ) ) ).
% mult.commute
thf(fact_855_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A2: int,B2: int] : ( times_times_int @ B2 @ A2 ) ) ) ).
% mult.commute
thf(fact_856_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A2: real,B2: real] : ( times_times_real @ B2 @ A2 ) ) ) ).
% mult.commute
thf(fact_857_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_858_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_859_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_860_diff__eq__diff__eq,axiom,
! [A: int,B: int,C: int,D4: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D4 ) )
=> ( ( A = B )
= ( C = D4 ) ) ) ).
% diff_eq_diff_eq
thf(fact_861_diff__eq__diff__eq,axiom,
! [A: real,B: real,C: real,D4: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D4 ) )
=> ( ( A = B )
= ( C = D4 ) ) ) ).
% diff_eq_diff_eq
thf(fact_862_diff__eq__diff__eq,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account,D4: risk_Free_account] :
( ( ( minus_4846202936726426316ccount @ A @ B )
= ( minus_4846202936726426316ccount @ C @ D4 ) )
=> ( ( A = B )
= ( C = D4 ) ) ) ).
% diff_eq_diff_eq
thf(fact_863_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_864_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_865_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_866_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_867_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_868_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_869_ex__less__of__nat__mult,axiom,
! [X: real,Y3: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ? [N2: nat] : ( ord_less_real @ Y3 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) ) ).
% ex_less_of_nat_mult
thf(fact_870_real__arch__pow__inv,axiom,
! [Y3: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y3 )
=> ( ( ord_less_real @ X @ one_one_real )
=> ? [N2: nat] : ( ord_less_real @ ( power_power_real @ X @ N2 ) @ Y3 ) ) ) ).
% real_arch_pow_inv
thf(fact_871_real__arch__simple,axiom,
! [X: real] :
? [N2: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).
% real_arch_simple
thf(fact_872_reals__Archimedean2,axiom,
! [X: real] :
? [N2: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N2 ) ) ).
% reals_Archimedean2
thf(fact_873_power__Suc__le__self,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_874_power__Suc__le__self,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_875_power__Suc__le__self,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ A ) ) ) ).
% power_Suc_le_self
thf(fact_876_power__Suc__less__one,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ one_one_nat ) ) ) ).
% power_Suc_less_one
thf(fact_877_power__Suc__less__one,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ ( suc @ N ) ) @ one_one_real ) ) ) ).
% power_Suc_less_one
thf(fact_878_power__Suc__less__one,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ ( suc @ N ) ) @ one_one_int ) ) ) ).
% power_Suc_less_one
thf(fact_879_power__decreasing,axiom,
! [N: nat,N6: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N6 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N6 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_880_power__decreasing,axiom,
! [N: nat,N6: nat,A: real] :
( ( ord_less_eq_nat @ N @ N6 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N6 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_881_power__decreasing,axiom,
! [N: nat,N6: nat,A: int] :
( ( ord_less_eq_nat @ N @ N6 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N6 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_882_power__strict__decreasing,axiom,
! [N: nat,N6: nat,A: nat] :
( ( ord_less_nat @ N @ N6 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N6 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_883_power__strict__decreasing,axiom,
! [N: nat,N6: nat,A: real] :
( ( ord_less_nat @ N @ N6 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ N6 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_884_power__strict__decreasing,axiom,
! [N: nat,N6: nat,A: int] :
( ( ord_less_nat @ N @ N6 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ N6 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_885_power__le__imp__le__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_886_power__le__imp__le__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_887_power__le__imp__le__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_888_self__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_889_self__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_890_self__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% self_le_power
thf(fact_891_one__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_892_one__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_893_one__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_894_diff__eq__diff__less__eq,axiom,
! [A: real,B: real,C: real,D4: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D4 ) )
=> ( ( ord_less_eq_real @ A @ B )
= ( ord_less_eq_real @ C @ D4 ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_895_diff__eq__diff__less__eq,axiom,
! [A: int,B: int,C: int,D4: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D4 ) )
=> ( ( ord_less_eq_int @ A @ B )
= ( ord_less_eq_int @ C @ D4 ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_896_diff__eq__diff__less__eq,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account,D4: risk_Free_account] :
( ( ( minus_4846202936726426316ccount @ A @ B )
= ( minus_4846202936726426316ccount @ C @ D4 ) )
=> ( ( ord_le4245800335709223507ccount @ A @ B )
= ( ord_le4245800335709223507ccount @ C @ D4 ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_897_diff__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_898_diff__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_899_diff__right__mono,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ord_le4245800335709223507ccount @ ( minus_4846202936726426316ccount @ A @ C ) @ ( minus_4846202936726426316ccount @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_900_diff__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_901_diff__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_902_diff__left__mono,axiom,
! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B @ A )
=> ( ord_le4245800335709223507ccount @ ( minus_4846202936726426316ccount @ C @ A ) @ ( minus_4846202936726426316ccount @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_903_diff__mono,axiom,
! [A: real,B: real,D4: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ D4 @ C )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D4 ) ) ) ) ).
% diff_mono
thf(fact_904_diff__mono,axiom,
! [A: int,B: int,D4: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D4 @ C )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D4 ) ) ) ) ).
% diff_mono
thf(fact_905_diff__mono,axiom,
! [A: risk_Free_account,B: risk_Free_account,D4: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ D4 @ C )
=> ( ord_le4245800335709223507ccount @ ( minus_4846202936726426316ccount @ A @ C ) @ ( minus_4846202936726426316ccount @ B @ D4 ) ) ) ) ).
% diff_mono
thf(fact_906_eq__iff__diff__eq__0,axiom,
( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
= ( ^ [A2: int,B2: int] :
( ( minus_minus_int @ A2 @ B2 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_907_eq__iff__diff__eq__0,axiom,
( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
= ( ^ [A2: real,B2: real] :
( ( minus_minus_real @ A2 @ B2 )
= zero_zero_real ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_908_eq__iff__diff__eq__0,axiom,
( ( ^ [Y4: risk_Free_account,Z2: risk_Free_account] : ( Y4 = Z2 ) )
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( minus_4846202936726426316ccount @ A2 @ B2 )
= zero_z1425366712893667068ccount ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_909_diff__strict__mono,axiom,
! [A: risk_Free_account,B: risk_Free_account,D4: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ D4 @ C )
=> ( ord_le2131251472502387783ccount @ ( minus_4846202936726426316ccount @ A @ C ) @ ( minus_4846202936726426316ccount @ B @ D4 ) ) ) ) ).
% diff_strict_mono
thf(fact_910_diff__strict__mono,axiom,
! [A: real,B: real,D4: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ D4 @ C )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D4 ) ) ) ) ).
% diff_strict_mono
thf(fact_911_diff__strict__mono,axiom,
! [A: int,B: int,D4: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ D4 @ C )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D4 ) ) ) ) ).
% diff_strict_mono
thf(fact_912_diff__eq__diff__less,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account,D4: risk_Free_account] :
( ( ( minus_4846202936726426316ccount @ A @ B )
= ( minus_4846202936726426316ccount @ C @ D4 ) )
=> ( ( ord_le2131251472502387783ccount @ A @ B )
= ( ord_le2131251472502387783ccount @ C @ D4 ) ) ) ).
% diff_eq_diff_less
thf(fact_913_diff__eq__diff__less,axiom,
! [A: real,B: real,C: real,D4: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D4 ) )
=> ( ( ord_less_real @ A @ B )
= ( ord_less_real @ C @ D4 ) ) ) ).
% diff_eq_diff_less
thf(fact_914_diff__eq__diff__less,axiom,
! [A: int,B: int,C: int,D4: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D4 ) )
=> ( ( ord_less_int @ A @ B )
= ( ord_less_int @ C @ D4 ) ) ) ).
% diff_eq_diff_less
thf(fact_915_diff__strict__left__mono,axiom,
! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ B @ A )
=> ( ord_le2131251472502387783ccount @ ( minus_4846202936726426316ccount @ C @ A ) @ ( minus_4846202936726426316ccount @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_916_diff__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_917_diff__strict__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_918_diff__strict__right__mono,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ord_le2131251472502387783ccount @ ( minus_4846202936726426316ccount @ A @ C ) @ ( minus_4846202936726426316ccount @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_919_diff__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_920_diff__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_921_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_922_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_923_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A2: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_924_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_925_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_926_zero__induct__lemma,axiom,
! [P: nat > $o,K: nat,I: nat] :
( ( P @ K )
=> ( ! [N2: nat] :
( ( P @ ( suc @ N2 ) )
=> ( P @ N2 ) )
=> ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).
% zero_induct_lemma
thf(fact_927_less__imp__diff__less,axiom,
! [J: nat,K: nat,N: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_928_diff__less__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_929_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_930_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_931_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_932_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_933_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_934_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_935_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_936_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_937_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_938_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_939_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_940_Suc__mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M )
= ( times_times_nat @ ( suc @ K ) @ N ) )
= ( M = N ) ) ).
% Suc_mult_cancel1
thf(fact_941_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_942_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_943_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_944_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_945_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_946_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_947_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_948_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_949_zero__le__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_le_power
thf(fact_950_zero__le__power,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_le_power
thf(fact_951_zero__le__power,axiom,
! [A: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_le_power
thf(fact_952_power__mono,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ) ).
% power_mono
thf(fact_953_power__mono,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ) ).
% power_mono
thf(fact_954_power__mono,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ) ).
% power_mono
thf(fact_955_zero__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_956_zero__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_less_power
thf(fact_957_zero__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_less_power
thf(fact_958_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_959_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) ) ).
% of_nat_0_le_iff
thf(fact_960_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) ) ).
% of_nat_0_le_iff
thf(fact_961_of__nat__0__le__iff,axiom,
! [N: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) ) ).
% of_nat_0_le_iff
thf(fact_962_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_963_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_964_of__nat__less__0__iff,axiom,
! [M: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_965_power__less__imp__less__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_966_power__less__imp__less__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_967_power__less__imp__less__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_968_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1316708129612266289at_nat @ ( suc @ N ) )
!= zero_zero_nat ) ).
% of_nat_neq_0
thf(fact_969_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
!= zero_zero_int ) ).
% of_nat_neq_0
thf(fact_970_of__nat__neq__0,axiom,
! [N: nat] :
( ( semiri5074537144036343181t_real @ ( suc @ N ) )
!= zero_zero_real ) ).
% of_nat_neq_0
thf(fact_971_power__inject__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ ( suc @ N ) )
= ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_972_power__inject__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ ( suc @ N ) )
= ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_973_power__inject__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ ( suc @ N ) )
= ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( A = B ) ) ) ) ).
% power_inject_base
thf(fact_974_power__le__imp__le__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ A @ ( suc @ N ) ) @ ( power_power_nat @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_975_power__le__imp__le__base,axiom,
! [A: real,N: nat,B: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( suc @ N ) ) @ ( power_power_real @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_976_power__le__imp__le__base,axiom,
! [A: int,N: nat,B: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( suc @ N ) ) @ ( power_power_int @ B @ ( suc @ N ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% power_le_imp_le_base
thf(fact_977_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_978_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_979_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_980_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_981_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_982_of__nat__less__imp__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
=> ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_imp_less
thf(fact_983_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_984_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_985_less__imp__of__nat__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% less_imp_of_nat_less
thf(fact_986_le__iff__diff__le__0,axiom,
( ord_less_eq_real
= ( ^ [A2: real,B2: real] : ( ord_less_eq_real @ ( minus_minus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).
% le_iff_diff_le_0
thf(fact_987_le__iff__diff__le__0,axiom,
( ord_less_eq_int
= ( ^ [A2: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).
% le_iff_diff_le_0
thf(fact_988_le__iff__diff__le__0,axiom,
( ord_le4245800335709223507ccount
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] : ( ord_le4245800335709223507ccount @ ( minus_4846202936726426316ccount @ A2 @ B2 ) @ zero_z1425366712893667068ccount ) ) ) ).
% le_iff_diff_le_0
thf(fact_989_less__iff__diff__less__0,axiom,
( ord_le2131251472502387783ccount
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] : ( ord_le2131251472502387783ccount @ ( minus_4846202936726426316ccount @ A2 @ B2 ) @ zero_z1425366712893667068ccount ) ) ) ).
% less_iff_diff_less_0
thf(fact_990_less__iff__diff__less__0,axiom,
( ord_less_real
= ( ^ [A2: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A2 @ B2 ) @ zero_zero_real ) ) ) ).
% less_iff_diff_less_0
thf(fact_991_less__iff__diff__less__0,axiom,
( ord_less_int
= ( ^ [A2: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A2 @ B2 ) @ zero_zero_int ) ) ) ).
% less_iff_diff_less_0
thf(fact_992_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ).
% zero_power
thf(fact_993_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_994_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ).
% zero_power
thf(fact_995_power__gt__expt,axiom,
! [N: nat,K: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ord_less_nat @ K @ ( power_power_nat @ N @ K ) ) ) ).
% power_gt_expt
thf(fact_996_nat__one__le__power,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ I )
=> ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( power_power_nat @ I @ N ) ) ) ).
% nat_one_le_power
thf(fact_997_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_998_Suc__diff__Suc,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( ( suc @ ( minus_minus_nat @ M @ ( suc @ N ) ) )
= ( minus_minus_nat @ M @ N ) ) ) ).
% Suc_diff_Suc
thf(fact_999_diff__less__Suc,axiom,
! [M: nat,N: nat] : ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ ( suc @ M ) ) ).
% diff_less_Suc
thf(fact_1000_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_1001_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_1002_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_1003_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_1004_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_1005_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_1006_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_1007_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_1008_Suc__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% Suc_mult_less_cancel1
thf(fact_1009_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_mult_le_cancel1
thf(fact_1010_power__eq__imp__eq__base,axiom,
! [A: nat,N: nat,B: nat] :
( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1011_power__eq__imp__eq__base,axiom,
! [A: real,N: nat,B: real] :
( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1012_power__eq__imp__eq__base,axiom,
! [A: int,N: nat,B: int] :
( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( A = B ) ) ) ) ) ).
% power_eq_imp_eq_base
thf(fact_1013_power__eq__iff__eq__base,axiom,
! [N: nat,A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ( power_power_nat @ A @ N )
= ( power_power_nat @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1014_power__eq__iff__eq__base,axiom,
! [N: nat,A: real,B: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ( power_power_real @ A @ N )
= ( power_power_real @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1015_power__eq__iff__eq__base,axiom,
! [N: nat,A: int,B: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ( power_power_int @ A @ N )
= ( power_power_int @ B @ N ) )
= ( A = B ) ) ) ) ) ).
% power_eq_iff_eq_base
thf(fact_1016_diff__Suc__less,axiom,
! [N: nat,I: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( minus_minus_nat @ N @ ( suc @ I ) ) @ N ) ) ).
% diff_Suc_less
thf(fact_1017_n__less__n__mult__m,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).
% n_less_n_mult_m
thf(fact_1018_n__less__m__mult__n,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).
% n_less_m_mult_n
thf(fact_1019_one__less__mult,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
=> ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
=> ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).
% one_less_mult
thf(fact_1020_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_1021_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_1022_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_1023_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_1024_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_1025_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_1026_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_1027_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_1028_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_1029_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_1030_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1031_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1032_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_1033_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1034_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1035_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_1036_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_1037_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_1038_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_1039_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_1040_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_1041_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_1042_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_1043_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_1044_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_1045_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_1046_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_1047_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_1048_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_1049_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_1050_diff__Suc__1,axiom,
! [N: nat] :
( ( minus_minus_nat @ ( suc @ N ) @ one_one_nat )
= N ) ).
% diff_Suc_1
thf(fact_1051_Suc__diff__1,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( suc @ ( minus_minus_nat @ N @ one_one_nat ) )
= N ) ) ).
% Suc_diff_1
thf(fact_1052_decr__mult__lemma,axiom,
! [D4: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ! [X2: int] :
( ( P @ X2 )
=> ( P @ ( minus_minus_int @ X2 @ D4 ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( minus_minus_int @ X3 @ ( times_times_int @ K @ D4 ) ) ) ) ) ) ) ).
% decr_mult_lemma
thf(fact_1053_minusinfinity,axiom,
! [D4: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ! [X2: int,K2: int] :
( ( P1 @ X2 )
= ( P1 @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D4 ) ) ) )
=> ( ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( ( P @ X2 )
= ( P1 @ X2 ) ) )
=> ( ? [X_1: int] : ( P1 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% minusinfinity
thf(fact_1054_plusinfinity,axiom,
! [D4: int,P4: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ! [X2: int,K2: int] :
( ( P4 @ X2 )
= ( P4 @ ( minus_minus_int @ X2 @ ( times_times_int @ K2 @ D4 ) ) ) )
=> ( ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( ( P @ X2 )
= ( P4 @ X2 ) ) )
=> ( ? [X_1: int] : ( P4 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% plusinfinity
thf(fact_1055_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_1056_nat__int__comparison_I1_J,axiom,
( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
= ( ^ [A2: nat,B2: nat] :
( ( semiri1314217659103216013at_int @ A2 )
= ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_1057_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_1058_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_1059_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_1060_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_1061_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_1062_reals__Archimedean3,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ! [Y2: real] :
? [N2: nat] : ( ord_less_real @ Y2 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) ) ).
% reals_Archimedean3
thf(fact_1063_One__nat__def,axiom,
( one_one_nat
= ( suc @ zero_zero_nat ) ) ).
% One_nat_def
thf(fact_1064_diff__Suc__eq__diff__pred,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ M @ ( suc @ N ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N ) ) ).
% diff_Suc_eq_diff_pred
thf(fact_1065_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_1066_zdiff__int__split,axiom,
! [P: int > $o,X: nat,Y3: nat] :
( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y3 ) ) )
= ( ( ( ord_less_eq_nat @ Y3 @ X )
=> ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y3 ) ) ) )
& ( ( ord_less_nat @ X @ Y3 )
=> ( P @ zero_zero_int ) ) ) ) ).
% zdiff_int_split
thf(fact_1067_linorder__neqE__linordered__idom,axiom,
! [X: real,Y3: real] :
( ( X != Y3 )
=> ( ~ ( ord_less_real @ X @ Y3 )
=> ( ord_less_real @ Y3 @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_1068_linorder__neqE__linordered__idom,axiom,
! [X: int,Y3: int] :
( ( X != Y3 )
=> ( ~ ( ord_less_int @ X @ Y3 )
=> ( ord_less_int @ Y3 @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_1069_nat__induct__non__zero,axiom,
! [N: nat,P: nat > $o] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ N2 )
=> ( P @ ( suc @ N2 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_non_zero
thf(fact_1070_real__archimedian__rdiv__eq__0,axiom,
! [X: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ! [M3: nat] :
( ( ord_less_nat @ zero_zero_nat @ M3 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M3 ) @ X ) @ C ) )
=> ( X = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_1071_Suc__pred_H,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( N
= ( suc @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_pred'
thf(fact_1072_Suc__diff__eq__diff__pred,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( minus_minus_nat @ M @ ( minus_minus_nat @ N @ one_one_nat ) ) ) ) ).
% Suc_diff_eq_diff_pred
thf(fact_1073_power__minus__mult,axiom,
! [N: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_nat @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_1074_power__minus__mult,axiom,
! [N: nat,A: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_int @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_1075_power__minus__mult,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_real @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_1076_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_1077_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_1078_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_1079_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_1080_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_1081_zle__diff1__eq,axiom,
! [W2: int,Z3: int] :
( ( ord_less_eq_int @ W2 @ ( minus_minus_int @ Z3 @ one_one_int ) )
= ( ord_less_int @ W2 @ Z3 ) ) ).
% zle_diff1_eq
thf(fact_1082_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% pos_int_cases
thf(fact_1083_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_1084_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_1085_not__real__square__gt__zero,axiom,
! [X: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
= ( X = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_1086_int__distrib_I4_J,axiom,
! [W2: int,Z1: int,Z22: int] :
( ( times_times_int @ W2 @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W2 @ Z1 ) @ ( times_times_int @ W2 @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_1087_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W2: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W2 )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W2 ) @ ( times_times_int @ Z22 @ W2 ) ) ) ).
% int_distrib(3)
thf(fact_1088_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_1089_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_1090_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_1091_int__le__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ K )
=> ( ! [I4: int] :
( ( ord_less_eq_int @ I4 @ K )
=> ( ( P @ I4 )
=> ( P @ ( minus_minus_int @ I4 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_le_induct
thf(fact_1092_int__less__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_int @ I @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I4: int] :
( ( ord_less_int @ I4 @ K )
=> ( ( P @ I4 )
=> ( P @ ( minus_minus_int @ I4 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_less_induct
thf(fact_1093_int__diff__cases,axiom,
! [Z3: int] :
~ ! [M3: nat,N2: nat] :
( Z3
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M3 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% int_diff_cases
thf(fact_1094_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_1095_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_1096_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1097_int__one__le__iff__zero__less,axiom,
! [Z3: int] :
( ( ord_less_eq_int @ one_one_int @ Z3 )
= ( ord_less_int @ zero_zero_int @ Z3 ) ) ).
% int_one_le_iff_zero_less
thf(fact_1098_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% zle_int
thf(fact_1099_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_1100_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( K
!= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% nonneg_int_cases
thf(fact_1101_realpow__pos__nth2,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ? [R2: real] :
( ( ord_less_real @ zero_zero_real @ R2 )
& ( ( power_power_real @ R2 @ ( suc @ N ) )
= A ) ) ) ).
% realpow_pos_nth2
thf(fact_1102_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_1103_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X2: real] :
( ( ord_less_real @ zero_zero_real @ X2 )
& ( ( power_power_real @ X2 @ N )
= A )
& ! [Y2: real] :
( ( ( ord_less_real @ zero_zero_real @ Y2 )
& ( ( power_power_real @ Y2 @ N )
= A ) )
=> ( Y2 = X2 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1104_Bolzano,axiom,
! [A: real,B: real,P: real > real > $o] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [A4: real,B3: real,C2: real] :
( ( P @ A4 @ B3 )
=> ( ( P @ B3 @ C2 )
=> ( ( ord_less_eq_real @ A4 @ B3 )
=> ( ( ord_less_eq_real @ B3 @ C2 )
=> ( P @ A4 @ C2 ) ) ) ) )
=> ( ! [X2: real] :
( ( ord_less_eq_real @ A @ X2 )
=> ( ( ord_less_eq_real @ X2 @ B )
=> ? [D: real] :
( ( ord_less_real @ zero_zero_real @ D )
& ! [A4: real,B3: real] :
( ( ( ord_less_eq_real @ A4 @ X2 )
& ( ord_less_eq_real @ X2 @ B3 )
& ( ord_less_real @ ( minus_minus_real @ B3 @ A4 ) @ D ) )
=> ( P @ A4 @ B3 ) ) ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Bolzano
thf(fact_1105__092_060open_062_092_060nu_062_Ak_A_061_A_I1_A_N_A_092_060rho_062_Ak_J_A_094_An_A_K_A_092_060pi_062_A_092_060alpha_062_Ak_092_060close_062,axiom,
( ( nu2 @ ka )
= ( times_times_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( rho @ ka ) ) @ n ) @ ( risk_F170160801229183585ccount @ alpha @ ka ) ) ) ).
% \<open>\<nu> k = (1 - \<rho> k) ^ n * \<pi> \<alpha> k\<close>
thf(fact_1106_Rep__account__zero,axiom,
( ( risk_F170160801229183585ccount @ zero_z1425366712893667068ccount )
= ( ^ [Uu: nat] : zero_zero_real ) ) ).
% Rep_account_zero
thf(fact_1107_Rep__account__inject,axiom,
! [X: risk_Free_account,Y3: risk_Free_account] :
( ( ( risk_F170160801229183585ccount @ X )
= ( risk_F170160801229183585ccount @ Y3 ) )
= ( X = Y3 ) ) ).
% Rep_account_inject
thf(fact_1108_shortest__period___092_060pi_062,axiom,
! [Alpha: risk_Free_account,I: nat] :
( ( ( risk_F170160801229183585ccount @ Alpha @ I )
!= zero_zero_real )
=> ( ( risk_F170160801229183585ccount @ Alpha @ ( risk_F4612863212915232279period @ Alpha ) )
!= zero_zero_real ) ) ).
% shortest_period_\<pi>
thf(fact_1109_greater__than__shortest__period__zero,axiom,
! [Alpha: risk_Free_account,M: nat] :
( ( ord_less_nat @ ( risk_F4612863212915232279period @ Alpha ) @ M )
=> ( ( risk_F170160801229183585ccount @ Alpha @ M )
= zero_zero_real ) ) ).
% greater_than_shortest_period_zero
thf(fact_1110_shortest__period__bound,axiom,
! [Alpha: risk_Free_account,I: nat] :
( ( ( risk_F170160801229183585ccount @ Alpha @ I )
!= zero_zero_real )
=> ( ord_less_eq_nat @ I @ ( risk_F4612863212915232279period @ Alpha ) ) ) ).
% shortest_period_bound
thf(fact_1111__092_060open_062_092_060forall_062c_O_A_092_060pi_062_A_Ijust__cash_Ac_J_Ak_A_061_A0_092_060close_062,axiom,
! [C3: real] :
( ( risk_F170160801229183585ccount @ ( risk_Free_just_cash @ C3 ) @ ka )
= zero_zero_real ) ).
% \<open>\<forall>c. \<pi> (just_cash c) k = 0\<close>
thf(fact_1112_Rep__account__return__loans,axiom,
! [Rho: nat > real,Alpha: risk_Free_account] :
( ( risk_F170160801229183585ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) )
= ( ^ [N4: nat] : ( times_times_real @ ( minus_minus_real @ one_one_real @ ( Rho @ N4 ) ) @ ( risk_F170160801229183585ccount @ Alpha @ N4 ) ) ) ) ).
% Rep_account_return_loans
thf(fact_1113_update__account__mono,axiom,
! [I: real,Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( ord_less_eq_real @ zero_zero_real @ I )
=> ( ! [N2: nat] : ( ord_less_real @ ( Rho @ N2 ) @ one_one_real )
=> ( ! [N2: nat,M3: nat] :
( ( ord_less_eq_nat @ N2 @ M3 )
=> ( ord_less_eq_real @ ( Rho @ N2 ) @ ( Rho @ M3 ) ) )
=> ( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
=> ( ord_le4245800335709223507ccount @ ( risk_F444380041991734328ccount @ Rho @ I @ Alpha ) @ ( risk_F444380041991734328ccount @ Rho @ I @ Beta ) ) ) ) ) ) ).
% update_account_mono
thf(fact_1114_just__cash__subtract,axiom,
! [A: real,B: real] :
( ( minus_4846202936726426316ccount @ ( risk_Free_just_cash @ A ) @ ( risk_Free_just_cash @ B ) )
= ( risk_Free_just_cash @ ( minus_minus_real @ A @ B ) ) ) ).
% just_cash_subtract
thf(fact_1115_return__loans__zero,axiom,
! [Rho: nat > real] :
( ( risk_F2121631595377017831_loans @ Rho @ zero_z1425366712893667068ccount )
= zero_z1425366712893667068ccount ) ).
% return_loans_zero
thf(fact_1116_update__account__zero,axiom,
! [Rho: nat > real,I: real] :
( ( risk_F444380041991734328ccount @ Rho @ I @ zero_z1425366712893667068ccount )
= zero_z1425366712893667068ccount ) ).
% update_account_zero
thf(fact_1117_Rep__account__just__cash,axiom,
! [C: real] :
( ( risk_F170160801229183585ccount @ ( risk_Free_just_cash @ C ) )
= ( ^ [N4: nat] : ( if_real @ ( N4 = zero_zero_nat ) @ C @ zero_zero_real ) ) ) ).
% Rep_account_just_cash
thf(fact_1118_update__account__subtract,axiom,
! [Rho: nat > real,I: real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F444380041991734328ccount @ Rho @ I @ ( minus_4846202936726426316ccount @ Alpha @ Beta ) )
= ( minus_4846202936726426316ccount @ ( risk_F444380041991734328ccount @ Rho @ I @ Alpha ) @ ( risk_F444380041991734328ccount @ Rho @ I @ Beta ) ) ) ).
% update_account_subtract
thf(fact_1119_return__loans__subtract,axiom,
! [Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F2121631595377017831_loans @ Rho @ ( minus_4846202936726426316ccount @ Alpha @ Beta ) )
= ( minus_4846202936726426316ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) @ ( risk_F2121631595377017831_loans @ Rho @ Beta ) ) ) ).
% return_loans_subtract
thf(fact_1120_just__cash__embed,axiom,
( ( ^ [Y4: real,Z2: real] : ( Y4 = Z2 ) )
= ( ^ [A2: real,B2: real] :
( ( risk_Free_just_cash @ A2 )
= ( risk_Free_just_cash @ B2 ) ) ) ) ).
% just_cash_embed
thf(fact_1121_just__cash__order__embed,axiom,
( ord_less_eq_real
= ( ^ [A2: real,B2: real] : ( ord_le4245800335709223507ccount @ ( risk_Free_just_cash @ A2 ) @ ( risk_Free_just_cash @ B2 ) ) ) ) ).
% just_cash_order_embed
thf(fact_1122_zero__account__alt__def,axiom,
( ( risk_Free_just_cash @ zero_zero_real )
= zero_z1425366712893667068ccount ) ).
% zero_account_alt_def
thf(fact_1123_return__loans__just__cash,axiom,
! [Rho: nat > real,C: real] :
( ( ( Rho @ zero_zero_nat )
= zero_zero_real )
=> ( ( risk_F2121631595377017831_loans @ Rho @ ( risk_Free_just_cash @ C ) )
= ( risk_Free_just_cash @ C ) ) ) ).
% return_loans_just_cash
thf(fact_1124_return__loans__mono,axiom,
! [Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ! [N2: nat] : ( ord_less_real @ ( Rho @ N2 ) @ one_one_real )
=> ( ! [N2: nat,M3: nat] :
( ( ord_less_eq_nat @ N2 @ M3 )
=> ( ord_less_eq_real @ ( Rho @ N2 ) @ ( Rho @ M3 ) ) )
=> ( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
=> ( ord_le4245800335709223507ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) @ ( risk_F2121631595377017831_loans @ Rho @ Beta ) ) ) ) ) ).
% return_loans_mono
thf(fact_1125_bulk__update__account__mono,axiom,
! [I: real,Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ I )
=> ( ! [N2: nat] : ( ord_less_real @ ( Rho @ N2 ) @ one_one_real )
=> ( ! [N2: nat,M3: nat] :
( ( ord_less_eq_nat @ N2 @ M3 )
=> ( ord_less_eq_real @ ( Rho @ N2 ) @ ( Rho @ M3 ) ) )
=> ( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
=> ( ord_le4245800335709223507ccount @ ( risk_F2412532053715321062ccount @ N @ Rho @ I @ Alpha ) @ ( risk_F2412532053715321062ccount @ N @ Rho @ I @ Beta ) ) ) ) ) ) ).
% bulk_update_account_mono
thf(fact_1126_update__preserves__strictly__solvent,axiom,
! [I: real,Rho: nat > real,Alpha: risk_Free_account] :
( ( ord_less_eq_real @ zero_zero_real @ I )
=> ( ! [N2: nat] : ( ord_less_real @ ( Rho @ N2 ) @ one_one_real )
=> ( ! [N2: nat,M3: nat] :
( ( ord_less_eq_nat @ N2 @ M3 )
=> ( ord_less_eq_real @ ( Rho @ N2 ) @ ( Rho @ M3 ) ) )
=> ( ( risk_F1636578016437888323olvent @ Alpha )
=> ( risk_F1636578016437888323olvent @ ( risk_F444380041991734328ccount @ Rho @ I @ Alpha ) ) ) ) ) ) ).
% update_preserves_strictly_solvent
thf(fact_1127_return__loans__loan,axiom,
! [Rho: nat > real,N: nat,C: real] :
( ( risk_F2121631595377017831_loans @ Rho @ ( risk_Free_loan @ N @ C ) )
= ( risk_Free_loan @ N @ ( times_times_real @ ( minus_minus_real @ one_one_real @ ( Rho @ N ) ) @ C ) ) ) ).
% return_loans_loan
thf(fact_1128_bulk__update__account__zero,axiom,
! [N: nat,Rho: nat > real,I: real] :
( ( risk_F2412532053715321062ccount @ N @ Rho @ I @ zero_z1425366712893667068ccount )
= zero_z1425366712893667068ccount ) ).
% bulk_update_account_zero
thf(fact_1129_Rep__account__loan,axiom,
! [N: nat,X: real] :
( ( risk_F170160801229183585ccount @ ( risk_Free_loan @ N @ X ) )
= ( ^ [M6: nat] : ( if_real @ ( N = M6 ) @ X @ zero_zero_real ) ) ) ).
% Rep_account_loan
thf(fact_1130_loan__zero,axiom,
! [N: nat] :
( ( risk_Free_loan @ N @ zero_zero_real )
= zero_z1425366712893667068ccount ) ).
% loan_zero
thf(fact_1131_bulk__update__account_Osimps_I1_J,axiom,
! [Uu2: nat > real,Uv: real,Alpha: risk_Free_account] :
( ( risk_F2412532053715321062ccount @ zero_zero_nat @ Uu2 @ Uv @ Alpha )
= Alpha ) ).
% bulk_update_account.simps(1)
thf(fact_1132_bulk__update__account__subtract,axiom,
! [N: nat,Rho: nat > real,I: real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F2412532053715321062ccount @ N @ Rho @ I @ ( minus_4846202936726426316ccount @ Alpha @ Beta ) )
= ( minus_4846202936726426316ccount @ ( risk_F2412532053715321062ccount @ N @ Rho @ I @ Alpha ) @ ( risk_F2412532053715321062ccount @ N @ Rho @ I @ Beta ) ) ) ).
% bulk_update_account_subtract
thf(fact_1133_loan__just__cash,axiom,
! [C: real] :
( ( risk_Free_loan @ zero_zero_nat @ C )
= ( risk_Free_just_cash @ C ) ) ).
% loan_just_cash
thf(fact_1134_bulk__update__account_Osimps_I2_J,axiom,
! [N: nat,Rho: nat > real,I: real,Alpha: risk_Free_account] :
( ( risk_F2412532053715321062ccount @ ( suc @ N ) @ Rho @ I @ Alpha )
= ( risk_F444380041991734328ccount @ Rho @ I @ ( risk_F2412532053715321062ccount @ N @ Rho @ I @ Alpha ) ) ) ).
% bulk_update_account.simps(2)
thf(fact_1135_shortest__period__loan,axiom,
! [C: real,N: nat] :
( ( C != zero_zero_real )
=> ( ( risk_F4612863212915232279period @ ( risk_Free_loan @ N @ C ) )
= N ) ) ).
% shortest_period_loan
thf(fact_1136_strictly__solvent__alt__def,axiom,
( risk_F1636578016437888323olvent
= ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount ) ) ).
% strictly_solvent_alt_def
thf(fact_1137_strictly__solvent__just__cash__equiv,axiom,
! [C: real] :
( ( risk_F1636578016437888323olvent @ ( risk_Free_just_cash @ C ) )
= ( ord_less_eq_real @ zero_zero_real @ C ) ) ).
% strictly_solvent_just_cash_equiv
thf(fact_1138_bulk__update__safety,axiom,
! [I: real,Rho: nat > real,Alpha: risk_Free_account,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ I )
=> ( ! [N2: nat] : ( ord_less_real @ ( Rho @ N2 ) @ one_one_real )
=> ( ! [N2: nat,M3: nat] :
( ( ord_less_eq_nat @ N2 @ M3 )
=> ( ord_less_eq_real @ ( Rho @ N2 ) @ ( Rho @ M3 ) ) )
=> ( ( risk_F1636578016437888323olvent @ Alpha )
=> ( ord_less_eq_real @ zero_zero_real @ ( risk_F2906766666041932210_value @ ( risk_F2412532053715321062ccount @ N @ Rho @ I @ Alpha ) ) ) ) ) ) ) ).
% bulk_update_safety
thf(fact_1139_bulk__update__just__cash__closed__form,axiom,
! [Rho: nat > real,N: nat,I: real,C: real] :
( ( ( Rho @ zero_zero_nat )
= zero_zero_real )
=> ( ( risk_F2412532053715321062ccount @ N @ Rho @ I @ ( risk_Free_just_cash @ C ) )
= ( risk_Free_just_cash @ ( times_times_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ I ) @ N ) @ C ) ) ) ) ).
% bulk_update_just_cash_closed_form
thf(fact_1140_just__cash__valid__transfer,axiom,
! [C: real,T: real] :
( ( risk_F1023690899723030139ansfer @ ( risk_Free_just_cash @ C ) @ ( risk_Free_just_cash @ T ) )
= ( ( ord_less_eq_real @ zero_zero_real @ T )
& ( ord_less_eq_real @ T @ C ) ) ) ).
% just_cash_valid_transfer
thf(fact_1141_net__asset__value__loan,axiom,
! [N: nat,C: real] :
( ( risk_F2906766666041932210_value @ ( risk_Free_loan @ N @ C ) )
= C ) ).
% net_asset_value_loan
thf(fact_1142_net__asset__value__zero,axiom,
( ( risk_F2906766666041932210_value @ zero_z1425366712893667068ccount )
= zero_zero_real ) ).
% net_asset_value_zero
thf(fact_1143_net__asset__value__just__cash__left__inverse,axiom,
! [C: real] :
( ( risk_F2906766666041932210_value @ ( risk_Free_just_cash @ C ) )
= C ) ).
% net_asset_value_just_cash_left_inverse
thf(fact_1144_only__strictly__solvent__accounts__can__transfer,axiom,
! [Alpha: risk_Free_account,Tau: risk_Free_account] :
( ( risk_F1023690899723030139ansfer @ Alpha @ Tau )
=> ( risk_F1636578016437888323olvent @ Alpha ) ) ).
% only_strictly_solvent_accounts_can_transfer
thf(fact_1145_net__asset__value__mono,axiom,
! [Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
=> ( ord_less_eq_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).
% net_asset_value_mono
thf(fact_1146_net__asset__value__minus,axiom,
! [Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F2906766666041932210_value @ ( minus_4846202936726426316ccount @ Alpha @ Beta ) )
= ( minus_minus_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).
% net_asset_value_minus
thf(fact_1147_nat__less__real__le,axiom,
( ord_less_nat
= ( ^ [N4: nat,M6: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N4 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M6 ) ) ) ) ).
% nat_less_real_le
thf(fact_1148_nat__le__real__less,axiom,
( ord_less_eq_nat
= ( ^ [N4: nat,M6: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N4 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M6 ) @ one_one_real ) ) ) ) ).
% nat_le_real_less
thf(fact_1149_strictly__solvent__net__asset__value,axiom,
! [Alpha: risk_Free_account] :
( ( risk_F1636578016437888323olvent @ Alpha )
=> ( ord_less_eq_real @ zero_zero_real @ ( risk_F2906766666041932210_value @ Alpha ) ) ) ).
% strictly_solvent_net_asset_value
thf(fact_1150_valid__transfer__def,axiom,
( risk_F1023690899723030139ansfer
= ( ^ [Alpha2: risk_Free_account,Tau2: risk_Free_account] :
( ( risk_F1636578016437888323olvent @ Tau2 )
& ( risk_F1636578016437888323olvent @ ( minus_4846202936726426316ccount @ Alpha2 @ Tau2 ) ) ) ) ) ).
% valid_transfer_def
thf(fact_1151_valid__transfer__alt__def,axiom,
( risk_F1023690899723030139ansfer
= ( ^ [Alpha2: risk_Free_account,Tau2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ Tau2 )
& ( ord_le4245800335709223507ccount @ Tau2 @ Alpha2 ) ) ) ) ).
% valid_transfer_alt_def
thf(fact_1152_linear__plus__1__le__power,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N ) ) ) ).
% linear_plus_1_le_power
thf(fact_1153_eq__diff__eq_H,axiom,
! [X: real,Y3: real,Z3: real] :
( ( X
= ( minus_minus_real @ Y3 @ Z3 ) )
= ( Y3
= ( plus_plus_real @ X @ Z3 ) ) ) ).
% eq_diff_eq'
thf(fact_1154_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_1155_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_1156_add__Suc__right,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ M @ ( suc @ N ) )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc_right
thf(fact_1157_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_1158_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_1159_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_1160_Rep__account__plus,axiom,
! [Alpha_1: risk_Free_account,Alpha_2: risk_Free_account] :
( ( risk_F170160801229183585ccount @ ( plus_p1863581527469039996ccount @ Alpha_1 @ Alpha_2 ) )
= ( ^ [N4: nat] : ( plus_plus_real @ ( risk_F170160801229183585ccount @ Alpha_1 @ N4 ) @ ( risk_F170160801229183585ccount @ Alpha_2 @ N4 ) ) ) ) ).
% Rep_account_plus
thf(fact_1161_just__cash__plus,axiom,
! [A: real,B: real] :
( ( plus_p1863581527469039996ccount @ ( risk_Free_just_cash @ A ) @ ( risk_Free_just_cash @ B ) )
= ( risk_Free_just_cash @ ( plus_plus_real @ A @ B ) ) ) ).
% just_cash_plus
thf(fact_1162_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_1163_mult__Suc__right,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ M @ ( suc @ N ) )
= ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc_right
thf(fact_1164_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1165_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1166_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_1167_zle__add1__eq__le,axiom,
! [W2: int,Z3: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z3 @ one_one_int ) )
= ( ord_less_eq_int @ W2 @ Z3 ) ) ).
% zle_add1_eq_le
thf(fact_1168_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_1169_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_1170_bulk__update__account__plus,axiom,
! [N: nat,Rho: nat > real,I: real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F2412532053715321062ccount @ N @ Rho @ I @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
= ( plus_p1863581527469039996ccount @ ( risk_F2412532053715321062ccount @ N @ Rho @ I @ Alpha ) @ ( risk_F2412532053715321062ccount @ N @ Rho @ I @ Beta ) ) ) ).
% bulk_update_account_plus
thf(fact_1171_additive__strictly__solvent,axiom,
! [Alpha_1: risk_Free_account,Alpha_2: risk_Free_account] :
( ( risk_F1636578016437888323olvent @ Alpha_1 )
=> ( ( risk_F1636578016437888323olvent @ Alpha_2 )
=> ( risk_F1636578016437888323olvent @ ( plus_p1863581527469039996ccount @ Alpha_1 @ Alpha_2 ) ) ) ) ).
% additive_strictly_solvent
thf(fact_1172_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% Nat.diff_cancel
thf(fact_1173_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_cancel2
thf(fact_1174_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
thf(fact_1175_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_1176_int__distrib_I2_J,axiom,
! [W2: int,Z1: int,Z22: int] :
( ( times_times_int @ W2 @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W2 @ Z1 ) @ ( times_times_int @ W2 @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_1177_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W2: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W2 )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W2 ) @ ( times_times_int @ Z22 @ W2 ) ) ) ).
% int_distrib(1)
thf(fact_1178_zadd__int__left,axiom,
! [M: nat,N: nat,Z3: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z3 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z3 ) ) ).
% zadd_int_left
thf(fact_1179_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_1180_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_1181_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_1182_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_1183_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_1184_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_1185_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_1186_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_1187_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1188_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_1189_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_1190_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1191_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_1192_nat__arith_Osuc1,axiom,
! [A3: nat,K: nat,A: nat] :
( ( A3
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A3 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_1193_add__Suc,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).
% add_Suc
thf(fact_1194_add__Suc__shift,axiom,
! [M: nat,N: nat] :
( ( plus_plus_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).
% add_Suc_shift
thf(fact_1195_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_1196_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1197_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_1198_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_1199_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_1200_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_1201_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_1202_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N2: nat] :
( L
= ( plus_plus_nat @ K @ N2 ) ) ) ).
% le_Suc_ex
thf(fact_1203_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_1204_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_1205_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_1206_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_1207_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M6: nat,N4: nat] :
? [K4: nat] :
( N4
= ( plus_plus_nat @ M6 @ K4 ) ) ) ) ).
% nat_le_iff_add
thf(fact_1208_return__loans__plus,axiom,
! [Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F2121631595377017831_loans @ Rho @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
= ( plus_p1863581527469039996ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) @ ( risk_F2121631595377017831_loans @ Rho @ Beta ) ) ) ).
% return_loans_plus
thf(fact_1209_update__account__plus,axiom,
! [Rho: nat > real,I: real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F444380041991734328ccount @ Rho @ I @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
= ( plus_p1863581527469039996ccount @ ( risk_F444380041991734328ccount @ Rho @ I @ Alpha ) @ ( risk_F444380041991734328ccount @ Rho @ I @ Beta ) ) ) ).
% update_account_plus
thf(fact_1210_add__is__1,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= ( suc @ zero_zero_nat ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_1211_one__is__add,axiom,
! [M: nat,N: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M @ N ) )
= ( ( ( M
= ( suc @ zero_zero_nat ) )
& ( N = zero_zero_nat ) )
| ( ( M = zero_zero_nat )
& ( N
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_1212_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1213_less__natE,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ~ ! [Q3: nat] :
( N
!= ( suc @ ( plus_plus_nat @ M @ Q3 ) ) ) ) ).
% less_natE
thf(fact_1214_less__add__Suc1,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).
% less_add_Suc1
thf(fact_1215_less__add__Suc2,axiom,
! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).
% less_add_Suc2
thf(fact_1216_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M6: nat,N4: nat] :
? [K4: nat] :
( N4
= ( suc @ ( plus_plus_nat @ M6 @ K4 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_1217_less__imp__Suc__add,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ? [K2: nat] :
( N
= ( suc @ ( plus_plus_nat @ M @ K2 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_1218_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M3: nat,N2: nat] :
( ( ord_less_nat @ M3 @ N2 )
=> ( ord_less_nat @ ( F @ M3 ) @ ( F @ N2 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1219_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_1220_mult__Suc,axiom,
! [M: nat,N: nat] :
( ( times_times_nat @ ( suc @ M ) @ N )
= ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).
% mult_Suc
thf(fact_1221_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_1222_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_1223_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_1224_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_1225_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
= ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_1226_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_1227_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_1228_odd__nonzero,axiom,
! [Z3: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z3 ) @ Z3 )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_1229_Suc__eq__plus1,axiom,
( suc
= ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_1230_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_1231_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_1232_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I4: int] :
( ( ord_less_eq_int @ K @ I4 )
=> ( ( P @ I4 )
=> ( P @ ( plus_plus_int @ I4 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_1233_zless__add1__eq,axiom,
! [W2: int,Z3: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z3 @ one_one_int ) )
= ( ( ord_less_int @ W2 @ Z3 )
| ( W2 = Z3 ) ) ) ).
% zless_add1_eq
thf(fact_1234_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I4: int] :
( ( ord_less_int @ K @ I4 )
=> ( ( P @ I4 )
=> ( P @ ( plus_plus_int @ I4 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_1235_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W3: int,Z5: int] :
? [N4: nat] :
( Z5
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_1236_net__asset__value__plus,axiom,
! [Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F2906766666041932210_value @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
= ( plus_plus_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).
% net_asset_value_plus
thf(fact_1237_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D5: nat] :
( ( A
= ( plus_plus_nat @ B @ D5 ) )
& ~ ( P @ D5 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_1238_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D5: nat] :
( ( A
= ( plus_plus_nat @ B @ D5 ) )
=> ( P @ D5 ) ) ) ) ).
% nat_diff_split
thf(fact_1239_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_1240_int__ops_I4_J,axiom,
! [A: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ A ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ one_one_int ) ) ).
% int_ops(4)
thf(fact_1241_int__Suc,axiom,
! [N: nat] :
( ( semiri1314217659103216013at_int @ ( suc @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ one_one_int ) ) ).
% int_Suc
thf(fact_1242_nat__diff__add__eq2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_1243_nat__diff__add__eq1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_diff_add_eq1
thf(fact_1244_nat__le__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_le_add_iff2
thf(fact_1245_nat__le__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_le_add_iff1
thf(fact_1246_nat__eq__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( M
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_1247_nat__eq__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
= N ) ) ) ).
% nat_eq_add_iff1
thf(fact_1248_zless__iff__Suc__zadd,axiom,
( ord_less_int
= ( ^ [W3: int,Z5: int] :
? [N4: nat] :
( Z5
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ ( suc @ N4 ) ) ) ) ) ) ).
% zless_iff_Suc_zadd
thf(fact_1249_odd__less__0__iff,axiom,
! [Z3: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z3 ) @ Z3 ) @ zero_zero_int )
= ( ord_less_int @ Z3 @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1250_zless__imp__add1__zle,axiom,
! [W2: int,Z3: int] :
( ( ord_less_int @ W2 @ Z3 )
=> ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z3 ) ) ).
% zless_imp_add1_zle
thf(fact_1251_add1__zle__eq,axiom,
! [W2: int,Z3: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z3 )
= ( ord_less_int @ W2 @ Z3 ) ) ).
% add1_zle_eq
thf(fact_1252_int__induct,axiom,
! [P: int > $o,K: int,I: int] :
( ( P @ K )
=> ( ! [I4: int] :
( ( ord_less_eq_int @ K @ I4 )
=> ( ( P @ I4 )
=> ( P @ ( plus_plus_int @ I4 @ one_one_int ) ) ) )
=> ( ! [I4: int] :
( ( ord_less_eq_int @ I4 @ K )
=> ( ( P @ I4 )
=> ( P @ ( minus_minus_int @ I4 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_induct
thf(fact_1253_distribute__interest__plus,axiom,
! [I: real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_Free_just_cash @ ( times_times_real @ I @ ( risk_F2906766666041932210_value @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) ) ) )
= ( plus_p1863581527469039996ccount @ ( risk_Free_just_cash @ ( times_times_real @ I @ ( risk_F2906766666041932210_value @ Alpha ) ) ) @ ( risk_Free_just_cash @ ( times_times_real @ I @ ( risk_F2906766666041932210_value @ Beta ) ) ) ) ) ).
% distribute_interest_plus
thf(fact_1254_add__eq__if,axiom,
( plus_plus_nat
= ( ^ [M6: nat,N4: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ N4 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M6 @ one_one_nat ) @ N4 ) ) ) ) ) ).
% add_eq_if
thf(fact_1255_nat__less__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_less_add_iff1
thf(fact_1256_nat__less__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_less_add_iff2
thf(fact_1257_le__imp__0__less,axiom,
! [Z3: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z3 )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z3 ) ) ) ).
% le_imp_0_less
thf(fact_1258_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M6: nat,N4: nat] : ( if_nat @ ( M6 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N4 @ ( times_times_nat @ ( minus_minus_nat @ M6 @ one_one_nat ) @ N4 ) ) ) ) ) ).
% mult_eq_if
thf(fact_1259_incr__mult__lemma,axiom,
! [D4: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D4 )
=> ( ! [X2: int] :
( ( P @ X2 )
=> ( P @ ( plus_plus_int @ X2 @ D4 ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( plus_plus_int @ X3 @ ( times_times_int @ K @ D4 ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_1260_update__account__def,axiom,
( risk_F444380041991734328ccount
= ( ^ [Rho2: nat > real,I2: real,Alpha2: risk_Free_account] : ( plus_p1863581527469039996ccount @ ( risk_Free_just_cash @ ( times_times_real @ I2 @ ( risk_F2906766666041932210_value @ Alpha2 ) ) ) @ ( risk_F2121631595377017831_loans @ Rho2 @ Alpha2 ) ) ) ) ).
% update_account_def
thf(fact_1261_bulk__update__loan__closed__form,axiom,
! [Rho: nat > real,K: nat,I: real,N: nat,C: real] :
( ( ( Rho @ K )
!= one_one_real )
=> ( ( ord_less_real @ zero_zero_real @ ( Rho @ K ) )
=> ( ( ( Rho @ zero_zero_nat )
= zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ I )
=> ( ( risk_F2412532053715321062ccount @ N @ Rho @ I @ ( risk_Free_loan @ K @ C ) )
= ( plus_p1863581527469039996ccount @ ( risk_Free_just_cash @ ( divide_divide_real @ ( times_times_real @ ( times_times_real @ C @ I ) @ ( minus_minus_real @ ( power_power_real @ ( plus_plus_real @ one_one_real @ I ) @ N ) @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( Rho @ K ) ) @ N ) ) ) @ ( plus_plus_real @ I @ ( Rho @ K ) ) ) ) @ ( risk_Free_loan @ K @ ( times_times_real @ ( power_power_real @ ( minus_minus_real @ one_one_real @ ( Rho @ K ) ) @ N ) @ C ) ) ) ) ) ) ) ) ).
% bulk_update_loan_closed_form
thf(fact_1262_nat0__intermed__int__val,axiom,
! [N: nat,F: nat > int,K: int] :
( ! [I4: nat] :
( ( ord_less_nat @ I4 @ N )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I4 @ one_one_nat ) ) @ ( F @ I4 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N ) )
=> ? [I4: nat] :
( ( ord_less_eq_nat @ I4 @ N )
& ( ( F @ I4 )
= K ) ) ) ) ) ).
% nat0_intermed_int_val
thf(fact_1263_real__divide__square__eq,axiom,
! [R3: real,A: real] :
( ( divide_divide_real @ ( times_times_real @ R3 @ A ) @ ( times_times_real @ R3 @ R3 ) )
= ( divide_divide_real @ A @ R3 ) ) ).
% real_divide_square_eq
thf(fact_1264_zabs__less__one__iff,axiom,
! [Z3: int] :
( ( ord_less_int @ ( abs_abs_int @ Z3 ) @ one_one_int )
= ( Z3 = zero_zero_int ) ) ).
% zabs_less_one_iff
% Helper facts (7)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y3: int] :
( ( if_int @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y3: int] :
( ( if_int @ $true @ X @ Y3 )
= X ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y3: nat] :
( ( if_nat @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y3: nat] :
( ( if_nat @ $true @ X @ Y3 )
= X ) ).
thf(help_If_3_1_If_001t__Real__Oreal_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y3: real] :
( ( if_real @ $false @ X @ Y3 )
= Y3 ) ).
thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y3: real] :
( ( if_real @ $true @ X @ Y3 )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
ord_less_eq_nat @ ka @ ma ).
%------------------------------------------------------------------------------