TPTP Problem File: SLH0241^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Undirected_Graph_Theory/0019_Connectivity/prob_00142_007041__13379444_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1420 ( 478 unt; 142 typ;   0 def)
%            Number of atoms       : 3832 (1347 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 12093 ( 415   ~;  71   |; 299   &;9627   @)
%                                         (   0 <=>;1681  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   29 (   7 avg)
%            Number of types       :   12 (  11 usr)
%            Number of type conns  :  446 ( 446   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  132 ( 131 usr;  20 con; 0-5 aty)
%            Number of variables   : 3723 ( 166   ^;3400   !; 157   ?;3723   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 14:34:18.919
%------------------------------------------------------------------------------
% Could-be-implicit typings (11)
thf(ty_n_t__List__Olist_It__List__Olist_It__Set__Oset_Itf__a_J_J_J,type,
    list_list_set_a: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_It__Set__Oset_Itf__a_J_J_J,type,
    list_set_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_Itf__a_J_J_J,type,
    set_set_set_a: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    list_list_a: $tType ).

thf(ty_n_t__List__Olist_It__Set__Oset_Itf__a_J_J,type,
    list_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_a: $tType ).

thf(ty_n_t__List__Olist_Itf__a_J,type,
    list_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (131)
thf(sy_c_Connectivity_Oulgraph_Oconnecting__path_001t__Set__Oset_Itf__a_J,type,
    connec7350987497872064604_set_a: set_set_a > set_set_set_a > set_a > set_a > list_set_a > $o ).

thf(sy_c_Connectivity_Oulgraph_Oconnecting__path_001tf__a,type,
    connecting_path_a: set_a > set_set_a > a > a > list_a > $o ).

thf(sy_c_Connectivity_Oulgraph_Oconnecting__path__str_001tf__a,type,
    connec3015921205769380621_str_a: set_a > set_set_a > a > a > list_a > $o ).

thf(sy_c_Connectivity_Oulgraph_Oconnecting__walk_001t__Set__Oset_Itf__a_J,type,
    connec1530789871921280536_set_a: set_set_a > set_set_set_a > set_a > set_a > list_set_a > $o ).

thf(sy_c_Connectivity_Oulgraph_Oconnecting__walk_001tf__a,type,
    connecting_walk_a: set_a > set_set_a > a > a > list_a > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_Itf__a_J,type,
    finite_finite_set_a: set_set_a > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    minus_5736297505244876581_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
    one_one_real: real ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
    plus_plus_real: real > real > real ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    sup_sup_set_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
    sup_sup_set_a: set_a > set_a > set_a ).

thf(sy_c_List_Oappend_001t__Set__Oset_Itf__a_J,type,
    append_set_a: list_set_a > list_set_a > list_set_a ).

thf(sy_c_List_Oappend_001tf__a,type,
    append_a: list_a > list_a > list_a ).

thf(sy_c_List_Odistinct_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    distinct_set_set_a: list_set_set_a > $o ).

thf(sy_c_List_Odistinct_001t__Set__Oset_Itf__a_J,type,
    distinct_set_a: list_set_a > $o ).

thf(sy_c_List_Odistinct_001tf__a,type,
    distinct_a: list_a > $o ).

thf(sy_c_List_Odrop_001tf__a,type,
    drop_a: nat > list_a > list_a ).

thf(sy_c_List_Olast_001t__Set__Oset_Itf__a_J,type,
    last_set_a: list_set_a > set_a ).

thf(sy_c_List_Olast_001tf__a,type,
    last_a: list_a > a ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_It__Set__Oset_Itf__a_J_J,type,
    cons_list_set_a: list_set_a > list_list_set_a > list_list_set_a ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_Itf__a_J,type,
    cons_list_a: list_a > list_list_a > list_list_a ).

thf(sy_c_List_Olist_OCons_001t__Set__Oset_Itf__a_J,type,
    cons_set_a: set_a > list_set_a > list_set_a ).

thf(sy_c_List_Olist_OCons_001tf__a,type,
    cons_a: a > list_a > list_a ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_It__Set__Oset_Itf__a_J_J,type,
    nil_list_set_a: list_list_set_a ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_Itf__a_J,type,
    nil_list_a: list_list_a ).

thf(sy_c_List_Olist_ONil_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    nil_set_set_a: list_set_set_a ).

thf(sy_c_List_Olist_ONil_001t__Set__Oset_Itf__a_J,type,
    nil_set_a: list_set_a ).

thf(sy_c_List_Olist_ONil_001tf__a,type,
    nil_a: list_a ).

thf(sy_c_List_Olist_Ohd_001t__Set__Oset_Itf__a_J,type,
    hd_set_a: list_set_a > set_a ).

thf(sy_c_List_Olist_Ohd_001tf__a,type,
    hd_a: list_a > a ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_set_a2: list_set_set_a > set_set_set_a ).

thf(sy_c_List_Olist_Oset_001t__Set__Oset_Itf__a_J,type,
    set_set_a2: list_set_a > set_set_a ).

thf(sy_c_List_Olist_Oset_001tf__a,type,
    set_a2: list_a > set_a ).

thf(sy_c_List_Olist_Otl_001t__Set__Oset_Itf__a_J,type,
    tl_set_a: list_set_a > list_set_a ).

thf(sy_c_List_Olist_Otl_001tf__a,type,
    tl_a: list_a > list_a ).

thf(sy_c_List_Onth_001t__Set__Oset_Itf__a_J,type,
    nth_set_a: list_set_a > nat > set_a ).

thf(sy_c_List_Onth_001tf__a,type,
    nth_a: list_a > nat > a ).

thf(sy_c_List_Orev_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    rev_set_set_a: list_set_set_a > list_set_set_a ).

thf(sy_c_List_Orev_001t__Set__Oset_Itf__a_J,type,
    rev_set_a: list_set_a > list_set_a ).

thf(sy_c_List_Orev_001tf__a,type,
    rev_a: list_a > list_a ).

thf(sy_c_List_Otake_001tf__a,type,
    take_a: nat > list_a > list_a ).

thf(sy_c_List_Ounion_001t__Set__Oset_Itf__a_J,type,
    union_set_a: list_set_a > list_set_a > list_set_a ).

thf(sy_c_List_Ounion_001tf__a,type,
    union_a: list_a > list_a > list_a ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Set__Oset_Itf__a_J_J,type,
    size_size_list_set_a: list_set_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_Itf__a_J,type,
    size_size_list_a: list_a > nat ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Set__Oset_Itf__a_J_M_Eo_J,type,
    bot_bot_set_a_o: set_a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
    bot_bot_a_o: a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    bot_bot_set_set_a: set_set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
    ord_less_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    ord_less_set_set_a: set_set_a > set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__a_J,type,
    ord_less_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Set__Oset_Itf__a_J_J_J,type,
    ord_le5722252365846178494_set_a: set_set_set_a > set_set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    ord_le3724670747650509150_set_a: set_set_a > set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Set_OCollect_001t__Set__Oset_Itf__a_J,type,
    collect_set_a: ( set_a > $o ) > set_set_a ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_Itf__a_J,type,
    insert_set_a: set_a > set_set_a > set_set_a ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set_Othe__elem_001t__Set__Oset_Itf__a_J,type,
    the_elem_set_a: set_set_a > set_a ).

thf(sy_c_Set_Othe__elem_001tf__a,type,
    the_elem_a: set_a > a ).

thf(sy_c_Undirected__Graph__Basics_Oall__edges_001t__Set__Oset_Itf__a_J,type,
    undire8247866692393712962_set_a: set_set_a > set_set_set_a ).

thf(sy_c_Undirected__Graph__Basics_Oall__edges_001tf__a,type,
    undire2918257014606996450dges_a: set_a > set_set_a ).

thf(sy_c_Undirected__Graph__Basics_Ograph__system_001t__Set__Oset_Itf__a_J,type,
    undire7159349782766787846_set_a: set_set_a > set_set_set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Ograph__system_001tf__a,type,
    undire2554140024507503526stem_a: set_a > set_set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Ograph__system_Oedge__adj_001t__Set__Oset_Itf__a_J,type,
    undire3485422320110889978_set_a: set_set_set_a > set_set_a > set_set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Ograph__system_Oedge__adj_001tf__a,type,
    undire4022703626023482010_adj_a: set_set_a > set_a > set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Ograph__system_Oincident_001t__Set__Oset_Itf__a_J,type,
    undire2320338297334612420_set_a: set_a > set_set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Ograph__system_Oincident_001tf__a,type,
    undire1521409233611534436dent_a: a > set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Ograph__system_Oincident__edges_001tf__a,type,
    undire3231912044278729248dges_a: set_set_a > a > set_set_a ).

thf(sy_c_Undirected__Graph__Basics_Ograph__system_Oinduced__edges_001t__Set__Oset_Itf__a_J,type,
    undire7854589003810675244_set_a: set_set_set_a > set_set_a > set_set_set_a ).

thf(sy_c_Undirected__Graph__Basics_Ograph__system_Oinduced__edges_001tf__a,type,
    undire7777452895879145676dges_a: set_set_a > set_a > set_set_a ).

thf(sy_c_Undirected__Graph__Basics_Osubgraph_001t__Set__Oset_Itf__a_J,type,
    undire1186139521737116585_set_a: set_set_a > set_set_set_a > set_set_a > set_set_set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Osubgraph_001tf__a,type,
    undire7103218114511261257raph_a: set_a > set_set_a > set_a > set_set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_001t__Set__Oset_Itf__a_J,type,
    undire6886684016831807756_set_a: set_set_a > set_set_set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_001tf__a,type,
    undire7251896706689453996raph_a: set_a > set_set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Odegree_001t__Set__Oset_Itf__a_J,type,
    undire8939077443744732368_set_a: set_set_set_a > set_a > nat ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Odegree_001tf__a,type,
    undire8867928226783802224gree_a: set_set_a > a > nat ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Oedge__density_001t__Set__Oset_Itf__a_J,type,
    undire8927637694342045747_set_a: set_set_set_a > set_set_a > set_set_a > real ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Oedge__density_001tf__a,type,
    undire297304480579013331sity_a: set_set_a > set_a > set_a > real ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Ohas__loop_001t__Set__Oset_Itf__a_J,type,
    undire5774735625301615776_set_a: set_set_set_a > set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Ohas__loop_001tf__a,type,
    undire3617971648856834880loop_a: set_set_a > a > $o ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Oincident__loops_001tf__a,type,
    undire4753905205749729249oops_a: set_set_a > a > set_set_a ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Oincident__sedges_001tf__a,type,
    undire1270416042309875431dges_a: set_set_a > a > set_set_a ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Ois__edge__between_001tf__a,type,
    undire8544646567961481629ween_a: set_a > set_a > set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Ois__isolated__vertex_001t__Set__Oset_Itf__a_J,type,
    undire6879241558604981877_set_a: set_set_a > set_set_set_a > set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Ois__isolated__vertex_001tf__a,type,
    undire8931668460104145173rtex_a: set_a > set_set_a > a > $o ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Oneighborhood_001tf__a,type,
    undire8504279938402040014hood_a: set_a > set_set_a > a > set_a ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Overt__adj_001t__Set__Oset_Itf__a_J,type,
    undire3510646817838285160_set_a: set_set_set_a > set_a > set_a > $o ).

thf(sy_c_Undirected__Graph__Basics_Oulgraph_Overt__adj_001tf__a,type,
    undire397441198561214472_adj_a: set_set_a > a > a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__closed__walk_001t__Set__Oset_Itf__a_J,type,
    undire4100213446647512896_set_a: set_set_a > set_set_set_a > list_set_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__closed__walk_001tf__a,type,
    undire3370724456595283424walk_a: set_a > set_set_a > list_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__cycle_001t__Set__Oset_Itf__a_J,type,
    undire797940137672299967_set_a: set_set_a > set_set_set_a > list_set_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__cycle_001tf__a,type,
    undire2407311113669455967ycle_a: set_a > set_set_a > list_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__gen__path_001t__Set__Oset_Itf__a_J,type,
    undire7201326534205417136_set_a: set_set_a > set_set_set_a > list_set_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__gen__path_001tf__a,type,
    undire3562951555376170320path_a: set_a > set_set_a > list_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__open__walk_001t__Set__Oset_Itf__a_J,type,
    undire526879649183275522_set_a: set_set_a > set_set_set_a > list_set_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__open__walk_001tf__a,type,
    undire2427028224930250914walk_a: set_a > set_set_a > list_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__path_001t__Set__Oset_Itf__a_J,type,
    undire8834939040163919632_set_a: set_set_a > set_set_set_a > list_set_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__path_001tf__a,type,
    undire427332500224447920path_a: set_a > set_set_a > list_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__trail_001t__Set__Oset_Itf__a_J,type,
    undire1224551742100448159_set_a: set_set_a > set_set_set_a > list_set_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__trail_001tf__a,type,
    undire7142031287334043199rail_a: set_a > set_set_a > list_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__walk_001t__Set__Oset_Itf__a_J,type,
    undire3014741414213135564_set_a: set_set_a > set_set_set_a > list_set_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Ois__walk_001tf__a,type,
    undire6133010728901294956walk_a: set_a > set_set_a > list_a > $o ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Owalk__edges_001t__Set__Oset_Itf__a_J,type,
    undire6234387080713648494_set_a: list_set_a > list_set_set_a ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Owalk__edges_001tf__a,type,
    undire7337870655677353998dges_a: list_a > list_set_a ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Owalk__length_001t__Set__Oset_Itf__a_J,type,
    undire4424681683220949296_set_a: list_set_a > nat ).

thf(sy_c_Undirected__Graph__Walks_Oulgraph_Owalk__length_001tf__a,type,
    undire8849074589633906640ngth_a: list_a > nat ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    member_set_set_a: set_set_a > set_set_set_a > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
    member_set_a: set_a > set_set_a > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_edges,type,
    edges: set_set_a ).

thf(sy_v_thesis,type,
    thesis: $o ).

thf(sy_v_u,type,
    u: a ).

thf(sy_v_v,type,
    v: a ).

thf(sy_v_vertices,type,
    vertices: set_a ).

thf(sy_v_xs,type,
    xs: list_a ).

thf(sy_v_ys,type,
    ys: list_a ).

thf(sy_v_z,type,
    z: a ).

% Relevant facts (1277)
thf(fact_0_connecting__path__walk,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ vertices @ edges @ U @ V @ Xs )
     => ( connecting_walk_a @ vertices @ edges @ U @ V @ Xs ) ) ).

% connecting_path_walk
thf(fact_1_connecting__walk__split,axiom,
    ! [U: a,V: a,Xs: list_a,Z: a,Ys: list_a] :
      ( ( connecting_walk_a @ vertices @ edges @ U @ V @ Xs )
     => ( ( connecting_walk_a @ vertices @ edges @ V @ Z @ Ys )
       => ( connecting_walk_a @ vertices @ edges @ U @ Z @ ( append_a @ Xs @ ( tl_a @ Ys ) ) ) ) ) ).

% connecting_walk_split
thf(fact_2_assms_I2_J,axiom,
    connecting_path_a @ vertices @ edges @ v @ z @ ys ).

% assms(2)
thf(fact_3_assms_I1_J,axiom,
    connecting_path_a @ vertices @ edges @ u @ v @ xs ).

% assms(1)
thf(fact_4_connecting__walk__wf,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connecting_walk_a @ vertices @ edges @ U @ V @ Xs )
     => ( ( member_a @ U @ vertices )
        & ( member_a @ V @ vertices ) ) ) ).

% connecting_walk_wf
thf(fact_5_ulgraph__axioms,axiom,
    undire7251896706689453996raph_a @ vertices @ edges ).

% ulgraph_axioms
thf(fact_6_edge__adj__inE,axiom,
    ! [E1: set_a,E2: set_a] :
      ( ( undire4022703626023482010_adj_a @ edges @ E1 @ E2 )
     => ( ( member_set_a @ E1 @ edges )
        & ( member_set_a @ E2 @ edges ) ) ) ).

% edge_adj_inE
thf(fact_7_edge__adjacent__alt__def,axiom,
    ! [E1: set_a,E2: set_a] :
      ( ( member_set_a @ E1 @ edges )
     => ( ( member_set_a @ E2 @ edges )
       => ( ? [X: a] :
              ( ( member_a @ X @ vertices )
              & ( member_a @ X @ E1 )
              & ( member_a @ X @ E2 ) )
         => ( undire4022703626023482010_adj_a @ edges @ E1 @ E2 ) ) ) ) ).

% edge_adjacent_alt_def
thf(fact_8_ulgraph_Oconnecting__walk_Ocong,axiom,
    connecting_walk_a = connecting_walk_a ).

% ulgraph.connecting_walk.cong
thf(fact_9_has__loop__in__verts,axiom,
    ! [V: a] :
      ( ( undire3617971648856834880loop_a @ edges @ V )
     => ( member_a @ V @ vertices ) ) ).

% has_loop_in_verts
thf(fact_10_connecting__path__str__gen,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connec3015921205769380621_str_a @ vertices @ edges @ U @ V @ Xs )
     => ( connecting_path_a @ vertices @ edges @ U @ V @ Xs ) ) ).

% connecting_path_str_gen
thf(fact_11_incident__edge__in__wf,axiom,
    ! [E: set_a,V: a] :
      ( ( member_set_a @ E @ edges )
     => ( ( undire1521409233611534436dent_a @ V @ E )
       => ( member_a @ V @ vertices ) ) ) ).

% incident_edge_in_wf
thf(fact_12_vert__adj__imp__inV,axiom,
    ! [V1: a,V2: a] :
      ( ( undire397441198561214472_adj_a @ edges @ V1 @ V2 )
     => ( ( member_a @ V1 @ vertices )
        & ( member_a @ V2 @ vertices ) ) ) ).

% vert_adj_imp_inV
thf(fact_13_subgraph__refl,axiom,
    undire7103218114511261257raph_a @ vertices @ edges @ vertices @ edges ).

% subgraph_refl
thf(fact_14_connecting__walk__rev,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connecting_walk_a @ vertices @ edges @ U @ V @ Xs )
      = ( connecting_walk_a @ vertices @ edges @ V @ U @ ( rev_a @ Xs ) ) ) ).

% connecting_walk_rev
thf(fact_15_wellformed,axiom,
    ! [E: set_a] :
      ( ( member_set_a @ E @ edges )
     => ( ord_less_eq_set_a @ E @ vertices ) ) ).

% wellformed
thf(fact_16_append_Oassoc,axiom,
    ! [A: list_a,B: list_a,C: list_a] :
      ( ( append_a @ ( append_a @ A @ B ) @ C )
      = ( append_a @ A @ ( append_a @ B @ C ) ) ) ).

% append.assoc
thf(fact_17_append_Oassoc,axiom,
    ! [A: list_set_a,B: list_set_a,C: list_set_a] :
      ( ( append_set_a @ ( append_set_a @ A @ B ) @ C )
      = ( append_set_a @ A @ ( append_set_a @ B @ C ) ) ) ).

% append.assoc
thf(fact_18_append__assoc,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( append_a @ ( append_a @ Xs @ Ys ) @ Zs )
      = ( append_a @ Xs @ ( append_a @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_19_append__assoc,axiom,
    ! [Xs: list_set_a,Ys: list_set_a,Zs: list_set_a] :
      ( ( append_set_a @ ( append_set_a @ Xs @ Ys ) @ Zs )
      = ( append_set_a @ Xs @ ( append_set_a @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_20_append__same__eq,axiom,
    ! [Ys: list_a,Xs: list_a,Zs: list_a] :
      ( ( ( append_a @ Ys @ Xs )
        = ( append_a @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_21_append__same__eq,axiom,
    ! [Ys: list_set_a,Xs: list_set_a,Zs: list_set_a] :
      ( ( ( append_set_a @ Ys @ Xs )
        = ( append_set_a @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_22_same__append__eq,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_23_same__append__eq,axiom,
    ! [Xs: list_set_a,Ys: list_set_a,Zs: list_set_a] :
      ( ( ( append_set_a @ Xs @ Ys )
        = ( append_set_a @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_24_connecting__path__alt__def,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ vertices @ edges @ U @ V @ Xs )
      = ( ( connecting_walk_a @ vertices @ edges @ U @ V @ Xs )
        & ( undire3562951555376170320path_a @ vertices @ edges @ Xs ) ) ) ).

% connecting_path_alt_def
thf(fact_25_incident__def,axiom,
    undire1521409233611534436dent_a = member_a ).

% incident_def
thf(fact_26_vert__adj__sym,axiom,
    ! [V1: a,V2: a] :
      ( ( undire397441198561214472_adj_a @ edges @ V1 @ V2 )
      = ( undire397441198561214472_adj_a @ edges @ V2 @ V1 ) ) ).

% vert_adj_sym
thf(fact_27_vert__adj__edge__iff2,axiom,
    ! [V1: a,V2: a] :
      ( ( V1 != V2 )
     => ( ( undire397441198561214472_adj_a @ edges @ V1 @ V2 )
        = ( ? [X2: set_a] :
              ( ( member_set_a @ X2 @ edges )
              & ( undire1521409233611534436dent_a @ V1 @ X2 )
              & ( undire1521409233611534436dent_a @ V2 @ X2 ) ) ) ) ) ).

% vert_adj_edge_iff2
thf(fact_28_rev__rev__ident,axiom,
    ! [Xs: list_a] :
      ( ( rev_a @ ( rev_a @ Xs ) )
      = Xs ) ).

% rev_rev_ident
thf(fact_29_rev__rev__ident,axiom,
    ! [Xs: list_set_a] :
      ( ( rev_set_a @ ( rev_set_a @ Xs ) )
      = Xs ) ).

% rev_rev_ident
thf(fact_30_rev__is__rev__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( rev_a @ Xs )
        = ( rev_a @ Ys ) )
      = ( Xs = Ys ) ) ).

% rev_is_rev_conv
thf(fact_31_rev__is__rev__conv,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( ( rev_set_a @ Xs )
        = ( rev_set_a @ Ys ) )
      = ( Xs = Ys ) ) ).

% rev_is_rev_conv
thf(fact_32_connecting__path__rev,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ vertices @ edges @ U @ V @ Xs )
      = ( connecting_path_a @ vertices @ edges @ V @ U @ ( rev_a @ Xs ) ) ) ).

% connecting_path_rev
thf(fact_33_is__gen__path__rev,axiom,
    ! [P: list_a] :
      ( ( undire3562951555376170320path_a @ vertices @ edges @ P )
      = ( undire3562951555376170320path_a @ vertices @ edges @ ( rev_a @ P ) ) ) ).

% is_gen_path_rev
thf(fact_34_rev__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( rev_a @ ( append_a @ Xs @ Ys ) )
      = ( append_a @ ( rev_a @ Ys ) @ ( rev_a @ Xs ) ) ) ).

% rev_append
thf(fact_35_rev__append,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( rev_set_a @ ( append_set_a @ Xs @ Ys ) )
      = ( append_set_a @ ( rev_set_a @ Ys ) @ ( rev_set_a @ Xs ) ) ) ).

% rev_append
thf(fact_36_is__trail__rev,axiom,
    ! [Xs: list_a] :
      ( ( undire7142031287334043199rail_a @ vertices @ edges @ Xs )
      = ( undire7142031287334043199rail_a @ vertices @ edges @ ( rev_a @ Xs ) ) ) ).

% is_trail_rev
thf(fact_37_ulgraph_Oconnecting__path__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,U: set_a,V: set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( connec7350987497872064604_set_a @ Vertices @ Edges @ U @ V @ Xs )
        = ( connec7350987497872064604_set_a @ Vertices @ Edges @ V @ U @ ( rev_set_a @ Xs ) ) ) ) ).

% ulgraph.connecting_path_rev
thf(fact_38_ulgraph_Oconnecting__path__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_path_a @ Vertices @ Edges @ U @ V @ Xs )
        = ( connecting_path_a @ Vertices @ Edges @ V @ U @ ( rev_a @ Xs ) ) ) ) ).

% ulgraph.connecting_path_rev
thf(fact_39_ulgraph_Oconnecting__path__str__gen,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connec3015921205769380621_str_a @ Vertices @ Edges @ U @ V @ Xs )
       => ( connecting_path_a @ Vertices @ Edges @ U @ V @ Xs ) ) ) ).

% ulgraph.connecting_path_str_gen
thf(fact_40_rev__swap,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( rev_a @ Xs )
        = Ys )
      = ( Xs
        = ( rev_a @ Ys ) ) ) ).

% rev_swap
thf(fact_41_rev__swap,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( ( rev_set_a @ Xs )
        = Ys )
      = ( Xs
        = ( rev_set_a @ Ys ) ) ) ).

% rev_swap
thf(fact_42_ulgraph_Oconnecting__path__str_Ocong,axiom,
    connec3015921205769380621_str_a = connec3015921205769380621_str_a ).

% ulgraph.connecting_path_str.cong
thf(fact_43_ulgraph_Oconnecting__walk__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,U: set_a,V: set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( connec1530789871921280536_set_a @ Vertices @ Edges @ U @ V @ Xs )
        = ( connec1530789871921280536_set_a @ Vertices @ Edges @ V @ U @ ( rev_set_a @ Xs ) ) ) ) ).

% ulgraph.connecting_walk_rev
thf(fact_44_ulgraph_Oconnecting__walk__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_walk_a @ Vertices @ Edges @ U @ V @ Xs )
        = ( connecting_walk_a @ Vertices @ Edges @ V @ U @ ( rev_a @ Xs ) ) ) ) ).

% ulgraph.connecting_walk_rev
thf(fact_45_ulgraph_Oconnecting__path__alt__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_path_a @ Vertices @ Edges @ U @ V @ Xs )
        = ( ( connecting_walk_a @ Vertices @ Edges @ U @ V @ Xs )
          & ( undire3562951555376170320path_a @ Vertices @ Edges @ Xs ) ) ) ) ).

% ulgraph.connecting_path_alt_def
thf(fact_46_ulgraph_Oconnecting__path__walk,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_path_a @ Vertices @ Edges @ U @ V @ Xs )
       => ( connecting_walk_a @ Vertices @ Edges @ U @ V @ Xs ) ) ) ).

% ulgraph.connecting_path_walk
thf(fact_47_ulgraph_Oconnecting__walk__wf,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,U: set_a,V: set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( connec1530789871921280536_set_a @ Vertices @ Edges @ U @ V @ Xs )
       => ( ( member_set_a @ U @ Vertices )
          & ( member_set_a @ V @ Vertices ) ) ) ) ).

% ulgraph.connecting_walk_wf
thf(fact_48_ulgraph_Oconnecting__walk__wf,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_walk_a @ Vertices @ Edges @ U @ V @ Xs )
       => ( ( member_a @ U @ Vertices )
          & ( member_a @ V @ Vertices ) ) ) ) ).

% ulgraph.connecting_walk_wf
thf(fact_49_ulgraph_Oconnecting__path_Ocong,axiom,
    connecting_path_a = connecting_path_a ).

% ulgraph.connecting_path.cong
thf(fact_50_ulgraph_Oconnecting__walk__split,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,U: set_a,V: set_a,Xs: list_set_a,Z: set_a,Ys: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( connec1530789871921280536_set_a @ Vertices @ Edges @ U @ V @ Xs )
       => ( ( connec1530789871921280536_set_a @ Vertices @ Edges @ V @ Z @ Ys )
         => ( connec1530789871921280536_set_a @ Vertices @ Edges @ U @ Z @ ( append_set_a @ Xs @ ( tl_set_a @ Ys ) ) ) ) ) ) ).

% ulgraph.connecting_walk_split
thf(fact_51_ulgraph_Oconnecting__walk__split,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a,Z: a,Ys: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_walk_a @ Vertices @ Edges @ U @ V @ Xs )
       => ( ( connecting_walk_a @ Vertices @ Edges @ V @ Z @ Ys )
         => ( connecting_walk_a @ Vertices @ Edges @ U @ Z @ ( append_a @ Xs @ ( tl_a @ Ys ) ) ) ) ) ) ).

% ulgraph.connecting_walk_split
thf(fact_52_append__eq__append__conv2,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,Ts: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Zs @ Ts ) )
      = ( ? [Us: list_a] :
            ( ( ( Xs
                = ( append_a @ Zs @ Us ) )
              & ( ( append_a @ Us @ Ys )
                = Ts ) )
            | ( ( ( append_a @ Xs @ Us )
                = Zs )
              & ( Ys
                = ( append_a @ Us @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_53_append__eq__append__conv2,axiom,
    ! [Xs: list_set_a,Ys: list_set_a,Zs: list_set_a,Ts: list_set_a] :
      ( ( ( append_set_a @ Xs @ Ys )
        = ( append_set_a @ Zs @ Ts ) )
      = ( ? [Us: list_set_a] :
            ( ( ( Xs
                = ( append_set_a @ Zs @ Us ) )
              & ( ( append_set_a @ Us @ Ys )
                = Ts ) )
            | ( ( ( append_set_a @ Xs @ Us )
                = Zs )
              & ( Ys
                = ( append_set_a @ Us @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_54_append__eq__appendI,axiom,
    ! [Xs: list_a,Xs1: list_a,Zs: list_a,Ys: list_a,Us2: list_a] :
      ( ( ( append_a @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_a @ Xs1 @ Us2 ) )
       => ( ( append_a @ Xs @ Ys )
          = ( append_a @ Zs @ Us2 ) ) ) ) ).

% append_eq_appendI
thf(fact_55_append__eq__appendI,axiom,
    ! [Xs: list_set_a,Xs1: list_set_a,Zs: list_set_a,Ys: list_set_a,Us2: list_set_a] :
      ( ( ( append_set_a @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_set_a @ Xs1 @ Us2 ) )
       => ( ( append_set_a @ Xs @ Ys )
          = ( append_set_a @ Zs @ Us2 ) ) ) ) ).

% append_eq_appendI
thf(fact_56_is__open__walk__rev,axiom,
    ! [Xs: list_a] :
      ( ( undire2427028224930250914walk_a @ vertices @ edges @ Xs )
      = ( undire2427028224930250914walk_a @ vertices @ edges @ ( rev_a @ Xs ) ) ) ).

% is_open_walk_rev
thf(fact_57_is__closed__walk__rev,axiom,
    ! [Xs: list_a] :
      ( ( undire3370724456595283424walk_a @ vertices @ edges @ Xs )
      = ( undire3370724456595283424walk_a @ vertices @ edges @ ( rev_a @ Xs ) ) ) ).

% is_closed_walk_rev
thf(fact_58_is__isolated__vertex__no__loop,axiom,
    ! [V: a] :
      ( ( undire8931668460104145173rtex_a @ vertices @ edges @ V )
     => ~ ( undire3617971648856834880loop_a @ edges @ V ) ) ).

% is_isolated_vertex_no_loop
thf(fact_59_mem__Collect__eq,axiom,
    ! [A: a,P2: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P2 ) )
      = ( P2 @ A ) ) ).

% mem_Collect_eq
thf(fact_60_mem__Collect__eq,axiom,
    ! [A: set_a,P2: set_a > $o] :
      ( ( member_set_a @ A @ ( collect_set_a @ P2 ) )
      = ( P2 @ A ) ) ).

% mem_Collect_eq
thf(fact_61_Collect__mem__eq,axiom,
    ! [A2: set_a] :
      ( ( collect_a
        @ ^ [X2: a] : ( member_a @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_62_Collect__mem__eq,axiom,
    ! [A2: set_set_a] :
      ( ( collect_set_a
        @ ^ [X2: set_a] : ( member_set_a @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_63_is__isolated__vertex__def,axiom,
    ! [V: a] :
      ( ( undire8931668460104145173rtex_a @ vertices @ edges @ V )
      = ( ( member_a @ V @ vertices )
        & ! [X2: a] :
            ( ( member_a @ X2 @ vertices )
           => ~ ( undire397441198561214472_adj_a @ edges @ X2 @ V ) ) ) ) ).

% is_isolated_vertex_def
thf(fact_64_is__isolated__vertex__edge,axiom,
    ! [V: a,E: set_a] :
      ( ( undire8931668460104145173rtex_a @ vertices @ edges @ V )
     => ( ( member_set_a @ E @ edges )
       => ~ ( undire1521409233611534436dent_a @ V @ E ) ) ) ).

% is_isolated_vertex_edge
thf(fact_65_induced__is__subgraph,axiom,
    ! [V3: set_a] :
      ( ( ord_less_eq_set_a @ V3 @ vertices )
     => ( undire7103218114511261257raph_a @ V3 @ ( undire7777452895879145676dges_a @ edges @ V3 ) @ vertices @ edges ) ) ).

% induced_is_subgraph
thf(fact_66_is__path__rev,axiom,
    ! [Xs: list_a] :
      ( ( undire427332500224447920path_a @ vertices @ edges @ Xs )
      = ( undire427332500224447920path_a @ vertices @ edges @ ( rev_a @ Xs ) ) ) ).

% is_path_rev
thf(fact_67_is__path__gen__path,axiom,
    ! [P: list_a] :
      ( ( undire427332500224447920path_a @ vertices @ edges @ P )
     => ( undire3562951555376170320path_a @ vertices @ edges @ P ) ) ).

% is_path_gen_path
thf(fact_68_is__cycle__rev,axiom,
    ! [Xs: list_a] :
      ( ( undire2407311113669455967ycle_a @ vertices @ edges @ Xs )
      = ( undire2407311113669455967ycle_a @ vertices @ edges @ ( rev_a @ Xs ) ) ) ).

% is_cycle_rev
thf(fact_69_is__gen__path__cycle,axiom,
    ! [P: list_a] :
      ( ( undire2407311113669455967ycle_a @ vertices @ edges @ P )
     => ( undire3562951555376170320path_a @ vertices @ edges @ P ) ) ).

% is_gen_path_cycle
thf(fact_70_ulgraph_Overt__adj__edge__iff2,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V1: a,V2: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( V1 != V2 )
       => ( ( undire397441198561214472_adj_a @ Edges @ V1 @ V2 )
          = ( ? [X2: set_a] :
                ( ( member_set_a @ X2 @ Edges )
                & ( undire1521409233611534436dent_a @ V1 @ X2 )
                & ( undire1521409233611534436dent_a @ V2 @ X2 ) ) ) ) ) ) ).

% ulgraph.vert_adj_edge_iff2
thf(fact_71_ulgraph_Ois__isolated__vertex_Ocong,axiom,
    undire8931668460104145173rtex_a = undire8931668460104145173rtex_a ).

% ulgraph.is_isolated_vertex.cong
thf(fact_72_graph__system_Oinduced__edges_Ocong,axiom,
    undire7777452895879145676dges_a = undire7777452895879145676dges_a ).

% graph_system.induced_edges.cong
thf(fact_73_ulgraph_Ois__isolated__vertex__def,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,V: set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire6879241558604981877_set_a @ Vertices @ Edges @ V )
        = ( ( member_set_a @ V @ Vertices )
          & ! [X2: set_a] :
              ( ( member_set_a @ X2 @ Vertices )
             => ~ ( undire3510646817838285160_set_a @ Edges @ X2 @ V ) ) ) ) ) ).

% ulgraph.is_isolated_vertex_def
thf(fact_74_ulgraph_Ois__isolated__vertex__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire8931668460104145173rtex_a @ Vertices @ Edges @ V )
        = ( ( member_a @ V @ Vertices )
          & ! [X2: a] :
              ( ( member_a @ X2 @ Vertices )
             => ~ ( undire397441198561214472_adj_a @ Edges @ X2 @ V ) ) ) ) ) ).

% ulgraph.is_isolated_vertex_def
thf(fact_75_ulgraph_Ois__isolated__vertex__edge,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V: a,E: set_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire8931668460104145173rtex_a @ Vertices @ Edges @ V )
       => ( ( member_set_a @ E @ Edges )
         => ~ ( undire1521409233611534436dent_a @ V @ E ) ) ) ) ).

% ulgraph.is_isolated_vertex_edge
thf(fact_76_ulgraph_Ois__isolated__vertex__no__loop,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire8931668460104145173rtex_a @ Vertices @ Edges @ V )
       => ~ ( undire3617971648856834880loop_a @ Edges @ V ) ) ) ).

% ulgraph.is_isolated_vertex_no_loop
thf(fact_77_subgraph_Osubgraph__antisym,axiom,
    ! [V_H: set_a,E_H: set_set_a,V_G: set_a,E_G: set_set_a,V3: set_a,E3: set_set_a,V4: set_a,E4: set_set_a] :
      ( ( undire7103218114511261257raph_a @ V_H @ E_H @ V_G @ E_G )
     => ( ( undire7103218114511261257raph_a @ V3 @ E3 @ V4 @ E4 )
       => ( ( undire7103218114511261257raph_a @ V4 @ E4 @ V3 @ E3 )
         => ( ( V4 = V3 )
            & ( E4 = E3 ) ) ) ) ) ).

% subgraph.subgraph_antisym
thf(fact_78_ulgraph_Overt__adj_Ocong,axiom,
    undire397441198561214472_adj_a = undire397441198561214472_adj_a ).

% ulgraph.vert_adj.cong
thf(fact_79_comp__sgraph_Oincident__def,axiom,
    undire2320338297334612420_set_a = member_set_a ).

% comp_sgraph.incident_def
thf(fact_80_comp__sgraph_Oincident__def,axiom,
    undire1521409233611534436dent_a = member_a ).

% comp_sgraph.incident_def
thf(fact_81_ulgraph_Ohas__loop_Ocong,axiom,
    undire3617971648856834880loop_a = undire3617971648856834880loop_a ).

% ulgraph.has_loop.cong
thf(fact_82_graph__system_Oedge__adj_Ocong,axiom,
    undire4022703626023482010_adj_a = undire4022703626023482010_adj_a ).

% graph_system.edge_adj.cong
thf(fact_83_subgraph_Overts__ss,axiom,
    ! [V_H: set_set_a,E_H: set_set_set_a,V_G: set_set_a,E_G: set_set_set_a] :
      ( ( undire1186139521737116585_set_a @ V_H @ E_H @ V_G @ E_G )
     => ( ord_le3724670747650509150_set_a @ V_H @ V_G ) ) ).

% subgraph.verts_ss
thf(fact_84_subgraph_Overts__ss,axiom,
    ! [V_H: set_a,E_H: set_set_a,V_G: set_a,E_G: set_set_a] :
      ( ( undire7103218114511261257raph_a @ V_H @ E_H @ V_G @ E_G )
     => ( ord_less_eq_set_a @ V_H @ V_G ) ) ).

% subgraph.verts_ss
thf(fact_85_subgraph_Ois__subgraph__ulgraph,axiom,
    ! [V_H: set_a,E_H: set_set_a,V_G: set_a,E_G: set_set_a] :
      ( ( undire7103218114511261257raph_a @ V_H @ E_H @ V_G @ E_G )
     => ( ( undire7251896706689453996raph_a @ V_G @ E_G )
       => ( undire7251896706689453996raph_a @ V_H @ E_H ) ) ) ).

% subgraph.is_subgraph_ulgraph
thf(fact_86_ulgraph_Overt__adj__imp__inV,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,V1: set_a,V2: set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire3510646817838285160_set_a @ Edges @ V1 @ V2 )
       => ( ( member_set_a @ V1 @ Vertices )
          & ( member_set_a @ V2 @ Vertices ) ) ) ) ).

% ulgraph.vert_adj_imp_inV
thf(fact_87_ulgraph_Overt__adj__imp__inV,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V1: a,V2: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire397441198561214472_adj_a @ Edges @ V1 @ V2 )
       => ( ( member_a @ V1 @ Vertices )
          & ( member_a @ V2 @ Vertices ) ) ) ) ).

% ulgraph.vert_adj_imp_inV
thf(fact_88_ulgraph_Overt__adj__sym,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V1: a,V2: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire397441198561214472_adj_a @ Edges @ V1 @ V2 )
        = ( undire397441198561214472_adj_a @ Edges @ V2 @ V1 ) ) ) ).

% ulgraph.vert_adj_sym
thf(fact_89_ulgraph_Ohas__loop__in__verts,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,V: set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire5774735625301615776_set_a @ Edges @ V )
       => ( member_set_a @ V @ Vertices ) ) ) ).

% ulgraph.has_loop_in_verts
thf(fact_90_ulgraph_Ohas__loop__in__verts,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire3617971648856834880loop_a @ Edges @ V )
       => ( member_a @ V @ Vertices ) ) ) ).

% ulgraph.has_loop_in_verts
thf(fact_91_induced__edges__ss,axiom,
    ! [V3: set_a] :
      ( ( ord_less_eq_set_a @ V3 @ vertices )
     => ( ord_le3724670747650509150_set_a @ ( undire7777452895879145676dges_a @ edges @ V3 ) @ edges ) ) ).

% induced_edges_ss
thf(fact_92_is__path__def,axiom,
    ! [Xs: list_a] :
      ( ( undire427332500224447920path_a @ vertices @ edges @ Xs )
      = ( ( undire2427028224930250914walk_a @ vertices @ edges @ Xs )
        & ( distinct_a @ Xs ) ) ) ).

% is_path_def
thf(fact_93_ulgraph_Ois__trail__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire1224551742100448159_set_a @ Vertices @ Edges @ Xs )
        = ( undire1224551742100448159_set_a @ Vertices @ Edges @ ( rev_set_a @ Xs ) ) ) ) ).

% ulgraph.is_trail_rev
thf(fact_94_ulgraph_Ois__trail__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire7142031287334043199rail_a @ Vertices @ Edges @ Xs )
        = ( undire7142031287334043199rail_a @ Vertices @ Edges @ ( rev_a @ Xs ) ) ) ) ).

% ulgraph.is_trail_rev
thf(fact_95_ulgraph_Ois__closed__walk__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire4100213446647512896_set_a @ Vertices @ Edges @ Xs )
        = ( undire4100213446647512896_set_a @ Vertices @ Edges @ ( rev_set_a @ Xs ) ) ) ) ).

% ulgraph.is_closed_walk_rev
thf(fact_96_ulgraph_Ois__closed__walk__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire3370724456595283424walk_a @ Vertices @ Edges @ Xs )
        = ( undire3370724456595283424walk_a @ Vertices @ Edges @ ( rev_a @ Xs ) ) ) ) ).

% ulgraph.is_closed_walk_rev
thf(fact_97_ulgraph_Ois__open__walk__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire526879649183275522_set_a @ Vertices @ Edges @ Xs )
        = ( undire526879649183275522_set_a @ Vertices @ Edges @ ( rev_set_a @ Xs ) ) ) ) ).

% ulgraph.is_open_walk_rev
thf(fact_98_ulgraph_Ois__open__walk__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire2427028224930250914walk_a @ Vertices @ Edges @ Xs )
        = ( undire2427028224930250914walk_a @ Vertices @ Edges @ ( rev_a @ Xs ) ) ) ) ).

% ulgraph.is_open_walk_rev
thf(fact_99_ulgraph_Ois__path__gen__path,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire427332500224447920path_a @ Vertices @ Edges @ P )
       => ( undire3562951555376170320path_a @ Vertices @ Edges @ P ) ) ) ).

% ulgraph.is_path_gen_path
thf(fact_100_ulgraph_Ois__gen__path__cycle,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire2407311113669455967ycle_a @ Vertices @ Edges @ P )
       => ( undire3562951555376170320path_a @ Vertices @ Edges @ P ) ) ) ).

% ulgraph.is_gen_path_cycle
thf(fact_101_ulgraph_Ois__path__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire8834939040163919632_set_a @ Vertices @ Edges @ Xs )
        = ( undire8834939040163919632_set_a @ Vertices @ Edges @ ( rev_set_a @ Xs ) ) ) ) ).

% ulgraph.is_path_rev
thf(fact_102_ulgraph_Ois__path__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire427332500224447920path_a @ Vertices @ Edges @ Xs )
        = ( undire427332500224447920path_a @ Vertices @ Edges @ ( rev_a @ Xs ) ) ) ) ).

% ulgraph.is_path_rev
thf(fact_103_ulgraph_Ois__cycle__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire797940137672299967_set_a @ Vertices @ Edges @ Xs )
        = ( undire797940137672299967_set_a @ Vertices @ Edges @ ( rev_set_a @ Xs ) ) ) ) ).

% ulgraph.is_cycle_rev
thf(fact_104_ulgraph_Ois__cycle__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire2407311113669455967ycle_a @ Vertices @ Edges @ Xs )
        = ( undire2407311113669455967ycle_a @ Vertices @ Edges @ ( rev_a @ Xs ) ) ) ) ).

% ulgraph.is_cycle_rev
thf(fact_105_ulgraph_Ois__gen__path__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,P: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire7201326534205417136_set_a @ Vertices @ Edges @ P )
        = ( undire7201326534205417136_set_a @ Vertices @ Edges @ ( rev_set_a @ P ) ) ) ) ).

% ulgraph.is_gen_path_rev
thf(fact_106_ulgraph_Ois__gen__path__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire3562951555376170320path_a @ Vertices @ Edges @ P )
        = ( undire3562951555376170320path_a @ Vertices @ Edges @ ( rev_a @ P ) ) ) ) ).

% ulgraph.is_gen_path_rev
thf(fact_107_is__path__walk,axiom,
    ! [Xs: list_a] :
      ( ( undire427332500224447920path_a @ vertices @ edges @ Xs )
     => ( undire6133010728901294956walk_a @ vertices @ edges @ Xs ) ) ).

% is_path_walk
thf(fact_108_is__walk__rev,axiom,
    ! [Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
      = ( undire6133010728901294956walk_a @ vertices @ edges @ ( rev_a @ Xs ) ) ) ).

% is_walk_rev
thf(fact_109_distinct__rev,axiom,
    ! [Xs: list_a] :
      ( ( distinct_a @ ( rev_a @ Xs ) )
      = ( distinct_a @ Xs ) ) ).

% distinct_rev
thf(fact_110_distinct__rev,axiom,
    ! [Xs: list_set_a] :
      ( ( distinct_set_a @ ( rev_set_a @ Xs ) )
      = ( distinct_set_a @ Xs ) ) ).

% distinct_rev
thf(fact_111_ulgraph_Ois__walk_Ocong,axiom,
    undire6133010728901294956walk_a = undire6133010728901294956walk_a ).

% ulgraph.is_walk.cong
thf(fact_112_distinct__tl,axiom,
    ! [Xs: list_a] :
      ( ( distinct_a @ Xs )
     => ( distinct_a @ ( tl_a @ Xs ) ) ) ).

% distinct_tl
thf(fact_113_distinct__tl,axiom,
    ! [Xs: list_set_a] :
      ( ( distinct_set_a @ Xs )
     => ( distinct_set_a @ ( tl_set_a @ Xs ) ) ) ).

% distinct_tl
thf(fact_114_subgraph_Oedges__ss,axiom,
    ! [V_H: set_a,E_H: set_set_a,V_G: set_a,E_G: set_set_a] :
      ( ( undire7103218114511261257raph_a @ V_H @ E_H @ V_G @ E_G )
     => ( ord_le3724670747650509150_set_a @ E_H @ E_G ) ) ).

% subgraph.edges_ss
thf(fact_115_ulgraph_Ois__walk__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ Xs )
        = ( undire3014741414213135564_set_a @ Vertices @ Edges @ ( rev_set_a @ Xs ) ) ) ) ).

% ulgraph.is_walk_rev
thf(fact_116_ulgraph_Ois__walk__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
        = ( undire6133010728901294956walk_a @ Vertices @ Edges @ ( rev_a @ Xs ) ) ) ) ).

% ulgraph.is_walk_rev
thf(fact_117_ulgraph_Ois__path__walk,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire427332500224447920path_a @ Vertices @ Edges @ Xs )
       => ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs ) ) ) ).

% ulgraph.is_path_walk
thf(fact_118_ulgraph_Ois__path__def,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire8834939040163919632_set_a @ Vertices @ Edges @ Xs )
        = ( ( undire526879649183275522_set_a @ Vertices @ Edges @ Xs )
          & ( distinct_set_a @ Xs ) ) ) ) ).

% ulgraph.is_path_def
thf(fact_119_ulgraph_Ois__path__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire427332500224447920path_a @ Vertices @ Edges @ Xs )
        = ( ( undire2427028224930250914walk_a @ Vertices @ Edges @ Xs )
          & ( distinct_a @ Xs ) ) ) ) ).

% ulgraph.is_path_def
thf(fact_120_ulgraph_Ois__gen__path_Ocong,axiom,
    undire3562951555376170320path_a = undire3562951555376170320path_a ).

% ulgraph.is_gen_path.cong
thf(fact_121_ulgraph_Ois__cycle_Ocong,axiom,
    undire2407311113669455967ycle_a = undire2407311113669455967ycle_a ).

% ulgraph.is_cycle.cong
thf(fact_122_ulgraph_Ois__path_Ocong,axiom,
    undire427332500224447920path_a = undire427332500224447920path_a ).

% ulgraph.is_path.cong
thf(fact_123_ulgraph_Ois__open__walk_Ocong,axiom,
    undire2427028224930250914walk_a = undire2427028224930250914walk_a ).

% ulgraph.is_open_walk.cong
thf(fact_124_ulgraph_Ois__closed__walk_Ocong,axiom,
    undire3370724456595283424walk_a = undire3370724456595283424walk_a ).

% ulgraph.is_closed_walk.cong
thf(fact_125_ulgraph_Ois__trail_Ocong,axiom,
    undire7142031287334043199rail_a = undire7142031287334043199rail_a ).

% ulgraph.is_trail.cong
thf(fact_126_is__walk__wf,axiom,
    ! [Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
     => ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ vertices ) ) ).

% is_walk_wf
thf(fact_127_is__walk__not__empty2,axiom,
    ~ ( undire6133010728901294956walk_a @ vertices @ edges @ nil_a ) ).

% is_walk_not_empty2
thf(fact_128_is__walk__not__empty,axiom,
    ! [Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
     => ( Xs != nil_a ) ) ).

% is_walk_not_empty
thf(fact_129_is__walk__wf__last,axiom,
    ! [Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
     => ( member_a @ ( last_a @ Xs ) @ vertices ) ) ).

% is_walk_wf_last
thf(fact_130_is__walk__wf__hd,axiom,
    ! [Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
     => ( member_a @ ( hd_a @ Xs ) @ vertices ) ) ).

% is_walk_wf_hd
thf(fact_131_subsetI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ( member_a @ X3 @ B2 ) )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% subsetI
thf(fact_132_subsetI,axiom,
    ! [A2: set_set_a,B2: set_set_a] :
      ( ! [X3: set_a] :
          ( ( member_set_a @ X3 @ A2 )
         => ( member_set_a @ X3 @ B2 ) )
     => ( ord_le3724670747650509150_set_a @ A2 @ B2 ) ) ).

% subsetI
thf(fact_133_subset__antisym,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% subset_antisym
thf(fact_134_subset__antisym,axiom,
    ! [A2: set_set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B2 )
     => ( ( ord_le3724670747650509150_set_a @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% subset_antisym
thf(fact_135_distinct__union,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( distinct_a @ ( union_a @ Xs @ Ys ) )
      = ( distinct_a @ Ys ) ) ).

% distinct_union
thf(fact_136_distinct__union,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( distinct_set_a @ ( union_set_a @ Xs @ Ys ) )
      = ( distinct_set_a @ Ys ) ) ).

% distinct_union
thf(fact_137_graph__system__axioms,axiom,
    undire2554140024507503526stem_a @ vertices @ edges ).

% graph_system_axioms
thf(fact_138_order__refl,axiom,
    ! [X4: set_a] : ( ord_less_eq_set_a @ X4 @ X4 ) ).

% order_refl
thf(fact_139_order__refl,axiom,
    ! [X4: set_set_a] : ( ord_le3724670747650509150_set_a @ X4 @ X4 ) ).

% order_refl
thf(fact_140_order__refl,axiom,
    ! [X4: nat] : ( ord_less_eq_nat @ X4 @ X4 ) ).

% order_refl
thf(fact_141_order__refl,axiom,
    ! [X4: real] : ( ord_less_eq_real @ X4 @ X4 ) ).

% order_refl
thf(fact_142_induced__is__graph__sys,axiom,
    ! [V3: set_a] : ( undire2554140024507503526stem_a @ V3 @ ( undire7777452895879145676dges_a @ edges @ V3 ) ) ).

% induced_is_graph_sys
thf(fact_143_dual__order_Orefl,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% dual_order.refl
thf(fact_144_dual__order_Orefl,axiom,
    ! [A: set_set_a] : ( ord_le3724670747650509150_set_a @ A @ A ) ).

% dual_order.refl
thf(fact_145_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_146_dual__order_Orefl,axiom,
    ! [A: real] : ( ord_less_eq_real @ A @ A ) ).

% dual_order.refl
thf(fact_147_append_Oright__neutral,axiom,
    ! [A: list_a] :
      ( ( append_a @ A @ nil_a )
      = A ) ).

% append.right_neutral
thf(fact_148_append_Oright__neutral,axiom,
    ! [A: list_set_a] :
      ( ( append_set_a @ A @ nil_set_a )
      = A ) ).

% append.right_neutral
thf(fact_149_append__Nil2,axiom,
    ! [Xs: list_a] :
      ( ( append_a @ Xs @ nil_a )
      = Xs ) ).

% append_Nil2
thf(fact_150_append__Nil2,axiom,
    ! [Xs: list_set_a] :
      ( ( append_set_a @ Xs @ nil_set_a )
      = Xs ) ).

% append_Nil2
thf(fact_151_append__self__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_a ) ) ).

% append_self_conv
thf(fact_152_append__self__conv,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( ( append_set_a @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_set_a ) ) ).

% append_self_conv
thf(fact_153_self__append__conv,axiom,
    ! [Y: list_a,Ys: list_a] :
      ( ( Y
        = ( append_a @ Y @ Ys ) )
      = ( Ys = nil_a ) ) ).

% self_append_conv
thf(fact_154_self__append__conv,axiom,
    ! [Y: list_set_a,Ys: list_set_a] :
      ( ( Y
        = ( append_set_a @ Y @ Ys ) )
      = ( Ys = nil_set_a ) ) ).

% self_append_conv
thf(fact_155_append__self__conv2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_a ) ) ).

% append_self_conv2
thf(fact_156_append__self__conv2,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( ( append_set_a @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_set_a ) ) ).

% append_self_conv2
thf(fact_157_self__append__conv2,axiom,
    ! [Y: list_a,Xs: list_a] :
      ( ( Y
        = ( append_a @ Xs @ Y ) )
      = ( Xs = nil_a ) ) ).

% self_append_conv2
thf(fact_158_self__append__conv2,axiom,
    ! [Y: list_set_a,Xs: list_set_a] :
      ( ( Y
        = ( append_set_a @ Xs @ Y ) )
      = ( Xs = nil_set_a ) ) ).

% self_append_conv2
thf(fact_159_Nil__is__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( nil_a
        = ( append_a @ Xs @ Ys ) )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% Nil_is_append_conv
thf(fact_160_Nil__is__append__conv,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( nil_set_a
        = ( append_set_a @ Xs @ Ys ) )
      = ( ( Xs = nil_set_a )
        & ( Ys = nil_set_a ) ) ) ).

% Nil_is_append_conv
thf(fact_161_append__is__Nil__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = nil_a )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% append_is_Nil_conv
thf(fact_162_append__is__Nil__conv,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( ( append_set_a @ Xs @ Ys )
        = nil_set_a )
      = ( ( Xs = nil_set_a )
        & ( Ys = nil_set_a ) ) ) ).

% append_is_Nil_conv
thf(fact_163_connecting__walk__def,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connecting_walk_a @ vertices @ edges @ U @ V @ Xs )
      = ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
        & ( ( hd_a @ Xs )
          = U )
        & ( ( last_a @ Xs )
          = V ) ) ) ).

% connecting_walk_def
thf(fact_164_connecting__path__def,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ vertices @ edges @ U @ V @ Xs )
      = ( ( undire3562951555376170320path_a @ vertices @ edges @ Xs )
        & ( ( hd_a @ Xs )
          = U )
        & ( ( last_a @ Xs )
          = V ) ) ) ).

% connecting_path_def
thf(fact_165_rev__is__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( rev_a @ Xs )
        = nil_a )
      = ( Xs = nil_a ) ) ).

% rev_is_Nil_conv
thf(fact_166_rev__is__Nil__conv,axiom,
    ! [Xs: list_set_a] :
      ( ( ( rev_set_a @ Xs )
        = nil_set_a )
      = ( Xs = nil_set_a ) ) ).

% rev_is_Nil_conv
thf(fact_167_Nil__is__rev__conv,axiom,
    ! [Xs: list_a] :
      ( ( nil_a
        = ( rev_a @ Xs ) )
      = ( Xs = nil_a ) ) ).

% Nil_is_rev_conv
thf(fact_168_Nil__is__rev__conv,axiom,
    ! [Xs: list_set_a] :
      ( ( nil_set_a
        = ( rev_set_a @ Xs ) )
      = ( Xs = nil_set_a ) ) ).

% Nil_is_rev_conv
thf(fact_169_is__gen__path__distinct,axiom,
    ! [P: list_a] :
      ( ( undire3562951555376170320path_a @ vertices @ edges @ P )
     => ( ( ( hd_a @ P )
         != ( last_a @ P ) )
       => ( distinct_a @ P ) ) ) ).

% is_gen_path_distinct
thf(fact_170_set__rev,axiom,
    ! [Xs: list_a] :
      ( ( set_a2 @ ( rev_a @ Xs ) )
      = ( set_a2 @ Xs ) ) ).

% set_rev
thf(fact_171_set__rev,axiom,
    ! [Xs: list_set_a] :
      ( ( set_set_a2 @ ( rev_set_a @ Xs ) )
      = ( set_set_a2 @ Xs ) ) ).

% set_rev
thf(fact_172_is__closed__walk__def,axiom,
    ! [Xs: list_a] :
      ( ( undire3370724456595283424walk_a @ vertices @ edges @ Xs )
      = ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
        & ( ( hd_a @ Xs )
          = ( last_a @ Xs ) ) ) ) ).

% is_closed_walk_def
thf(fact_173_is__open__walk__def,axiom,
    ! [Xs: list_a] :
      ( ( undire2427028224930250914walk_a @ vertices @ edges @ Xs )
      = ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
        & ( ( hd_a @ Xs )
         != ( last_a @ Xs ) ) ) ) ).

% is_open_walk_def
thf(fact_174_connecting__path__str__def,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connec3015921205769380621_str_a @ vertices @ edges @ U @ V @ Xs )
      = ( ( undire427332500224447920path_a @ vertices @ edges @ Xs )
        & ( ( hd_a @ Xs )
          = U )
        & ( ( last_a @ Xs )
          = V ) ) ) ).

% connecting_path_str_def
thf(fact_175_is__walk__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
     => ( ( undire6133010728901294956walk_a @ vertices @ edges @ Ys )
       => ( ( ( last_a @ Xs )
            = ( hd_a @ Ys ) )
         => ( undire6133010728901294956walk_a @ vertices @ edges @ ( append_a @ Xs @ ( tl_a @ Ys ) ) ) ) ) ) ).

% is_walk_append
thf(fact_176_is__gen__path__distinct__tl,axiom,
    ! [P: list_a] :
      ( ( undire3562951555376170320path_a @ vertices @ edges @ P )
     => ( ( ( hd_a @ P )
          = ( last_a @ P ) )
       => ( distinct_a @ ( tl_a @ P ) ) ) ) ).

% is_gen_path_distinct_tl
thf(fact_177_is__gen__path__def,axiom,
    ! [P: list_a] :
      ( ( undire3562951555376170320path_a @ vertices @ edges @ P )
      = ( ( undire6133010728901294956walk_a @ vertices @ edges @ P )
        & ( ( ( distinct_a @ ( tl_a @ P ) )
            & ( ( hd_a @ P )
              = ( last_a @ P ) ) )
          | ( distinct_a @ P ) ) ) ) ).

% is_gen_path_def
thf(fact_178_hd__append2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
        = ( hd_a @ Xs ) ) ) ).

% hd_append2
thf(fact_179_hd__append2,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( Xs != nil_set_a )
     => ( ( hd_set_a @ ( append_set_a @ Xs @ Ys ) )
        = ( hd_set_a @ Xs ) ) ) ).

% hd_append2
thf(fact_180_tl__append2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
        = ( append_a @ ( tl_a @ Xs ) @ Ys ) ) ) ).

% tl_append2
thf(fact_181_tl__append2,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( Xs != nil_set_a )
     => ( ( tl_set_a @ ( append_set_a @ Xs @ Ys ) )
        = ( append_set_a @ ( tl_set_a @ Xs ) @ Ys ) ) ) ).

% tl_append2
thf(fact_182_last__appendR,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys != nil_a )
     => ( ( last_a @ ( append_a @ Xs @ Ys ) )
        = ( last_a @ Ys ) ) ) ).

% last_appendR
thf(fact_183_last__appendR,axiom,
    ! [Ys: list_set_a,Xs: list_set_a] :
      ( ( Ys != nil_set_a )
     => ( ( last_set_a @ ( append_set_a @ Xs @ Ys ) )
        = ( last_set_a @ Ys ) ) ) ).

% last_appendR
thf(fact_184_last__appendL,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys = nil_a )
     => ( ( last_a @ ( append_a @ Xs @ Ys ) )
        = ( last_a @ Xs ) ) ) ).

% last_appendL
thf(fact_185_last__appendL,axiom,
    ! [Ys: list_set_a,Xs: list_set_a] :
      ( ( Ys = nil_set_a )
     => ( ( last_set_a @ ( append_set_a @ Xs @ Ys ) )
        = ( last_set_a @ Xs ) ) ) ).

% last_appendL
thf(fact_186_is__subgraphI,axiom,
    ! [V3: set_set_a,V4: set_set_a,E3: set_set_set_a,E4: set_set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ V3 @ V4 )
     => ( ( ord_le5722252365846178494_set_a @ E3 @ E4 )
       => ( ( undire7159349782766787846_set_a @ V3 @ E3 )
         => ( ( undire7159349782766787846_set_a @ V4 @ E4 )
           => ( undire1186139521737116585_set_a @ V3 @ E3 @ V4 @ E4 ) ) ) ) ) ).

% is_subgraphI
thf(fact_187_is__subgraphI,axiom,
    ! [V3: set_a,V4: set_a,E3: set_set_a,E4: set_set_a] :
      ( ( ord_less_eq_set_a @ V3 @ V4 )
     => ( ( ord_le3724670747650509150_set_a @ E3 @ E4 )
       => ( ( undire2554140024507503526stem_a @ V3 @ E3 )
         => ( ( undire2554140024507503526stem_a @ V4 @ E4 )
           => ( undire7103218114511261257raph_a @ V3 @ E3 @ V4 @ E4 ) ) ) ) ) ).

% is_subgraphI
thf(fact_188_hd__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( Xs = nil_a )
       => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
          = ( hd_a @ Ys ) ) )
      & ( ( Xs != nil_a )
       => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
          = ( hd_a @ Xs ) ) ) ) ).

% hd_append
thf(fact_189_hd__append,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( ( Xs = nil_set_a )
       => ( ( hd_set_a @ ( append_set_a @ Xs @ Ys ) )
          = ( hd_set_a @ Ys ) ) )
      & ( ( Xs != nil_set_a )
       => ( ( hd_set_a @ ( append_set_a @ Xs @ Ys ) )
          = ( hd_set_a @ Xs ) ) ) ) ).

% hd_append
thf(fact_190_longest__common__prefix,axiom,
    ! [Xs: list_a,Ys: list_a] :
    ? [Ps: list_a,Xs2: list_a,Ys2: list_a] :
      ( ( Xs
        = ( append_a @ Ps @ Xs2 ) )
      & ( Ys
        = ( append_a @ Ps @ Ys2 ) )
      & ( ( Xs2 = nil_a )
        | ( Ys2 = nil_a )
        | ( ( hd_a @ Xs2 )
         != ( hd_a @ Ys2 ) ) ) ) ).

% longest_common_prefix
thf(fact_191_longest__common__prefix,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
    ? [Ps: list_set_a,Xs2: list_set_a,Ys2: list_set_a] :
      ( ( Xs
        = ( append_set_a @ Ps @ Xs2 ) )
      & ( Ys
        = ( append_set_a @ Ps @ Ys2 ) )
      & ( ( Xs2 = nil_set_a )
        | ( Ys2 = nil_set_a )
        | ( ( hd_set_a @ Xs2 )
         != ( hd_set_a @ Ys2 ) ) ) ) ).

% longest_common_prefix
thf(fact_192_hd__rev,axiom,
    ! [Xs: list_set_a] :
      ( ( hd_set_a @ ( rev_set_a @ Xs ) )
      = ( last_set_a @ Xs ) ) ).

% hd_rev
thf(fact_193_hd__rev,axiom,
    ! [Xs: list_a] :
      ( ( hd_a @ ( rev_a @ Xs ) )
      = ( last_a @ Xs ) ) ).

% hd_rev
thf(fact_194_last__rev,axiom,
    ! [Xs: list_set_a] :
      ( ( last_set_a @ ( rev_set_a @ Xs ) )
      = ( hd_set_a @ Xs ) ) ).

% last_rev
thf(fact_195_last__rev,axiom,
    ! [Xs: list_a] :
      ( ( last_a @ ( rev_a @ Xs ) )
      = ( hd_a @ Xs ) ) ).

% last_rev
thf(fact_196_list_Oset__sel_I1_J,axiom,
    ! [A: list_a] :
      ( ( A != nil_a )
     => ( member_a @ ( hd_a @ A ) @ ( set_a2 @ A ) ) ) ).

% list.set_sel(1)
thf(fact_197_list_Oset__sel_I1_J,axiom,
    ! [A: list_set_a] :
      ( ( A != nil_set_a )
     => ( member_set_a @ ( hd_set_a @ A ) @ ( set_set_a2 @ A ) ) ) ).

% list.set_sel(1)
thf(fact_198_hd__in__set,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( member_a @ ( hd_a @ Xs ) @ ( set_a2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_199_hd__in__set,axiom,
    ! [Xs: list_set_a] :
      ( ( Xs != nil_set_a )
     => ( member_set_a @ ( hd_set_a @ Xs ) @ ( set_set_a2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_200_last__in__set,axiom,
    ! [As: list_a] :
      ( ( As != nil_a )
     => ( member_a @ ( last_a @ As ) @ ( set_a2 @ As ) ) ) ).

% last_in_set
thf(fact_201_last__in__set,axiom,
    ! [As: list_set_a] :
      ( ( As != nil_set_a )
     => ( member_set_a @ ( last_set_a @ As ) @ ( set_set_a2 @ As ) ) ) ).

% last_in_set
thf(fact_202_hd__Nil__eq__last,axiom,
    ( ( hd_a @ nil_a )
    = ( last_a @ nil_a ) ) ).

% hd_Nil_eq_last
thf(fact_203_hd__Nil__eq__last,axiom,
    ( ( hd_set_a @ nil_set_a )
    = ( last_set_a @ nil_set_a ) ) ).

% hd_Nil_eq_last
thf(fact_204_longest__common__suffix,axiom,
    ! [Xs: list_a,Ys: list_a] :
    ? [Ss: list_a,Xs2: list_a,Ys2: list_a] :
      ( ( Xs
        = ( append_a @ Xs2 @ Ss ) )
      & ( Ys
        = ( append_a @ Ys2 @ Ss ) )
      & ( ( Xs2 = nil_a )
        | ( Ys2 = nil_a )
        | ( ( last_a @ Xs2 )
         != ( last_a @ Ys2 ) ) ) ) ).

% longest_common_suffix
thf(fact_205_longest__common__suffix,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
    ? [Ss: list_set_a,Xs2: list_set_a,Ys2: list_set_a] :
      ( ( Xs
        = ( append_set_a @ Xs2 @ Ss ) )
      & ( Ys
        = ( append_set_a @ Ys2 @ Ss ) )
      & ( ( Xs2 = nil_set_a )
        | ( Ys2 = nil_set_a )
        | ( ( last_set_a @ Xs2 )
         != ( last_set_a @ Ys2 ) ) ) ) ).

% longest_common_suffix
thf(fact_206_last__append,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( ( Ys = nil_a )
       => ( ( last_a @ ( append_a @ Xs @ Ys ) )
          = ( last_a @ Xs ) ) )
      & ( ( Ys != nil_a )
       => ( ( last_a @ ( append_a @ Xs @ Ys ) )
          = ( last_a @ Ys ) ) ) ) ).

% last_append
thf(fact_207_last__append,axiom,
    ! [Ys: list_set_a,Xs: list_set_a] :
      ( ( ( Ys = nil_set_a )
       => ( ( last_set_a @ ( append_set_a @ Xs @ Ys ) )
          = ( last_set_a @ Xs ) ) )
      & ( ( Ys != nil_set_a )
       => ( ( last_set_a @ ( append_set_a @ Xs @ Ys ) )
          = ( last_set_a @ Ys ) ) ) ) ).

% last_append
thf(fact_208_list_Oexpand,axiom,
    ! [List: list_a,List2: list_a] :
      ( ( ( List = nil_a )
        = ( List2 = nil_a ) )
     => ( ( ( List != nil_a )
         => ( ( List2 != nil_a )
           => ( ( ( hd_a @ List )
                = ( hd_a @ List2 ) )
              & ( ( tl_a @ List )
                = ( tl_a @ List2 ) ) ) ) )
       => ( List = List2 ) ) ) ).

% list.expand
thf(fact_209_list_Oexpand,axiom,
    ! [List: list_set_a,List2: list_set_a] :
      ( ( ( List = nil_set_a )
        = ( List2 = nil_set_a ) )
     => ( ( ( List != nil_set_a )
         => ( ( List2 != nil_set_a )
           => ( ( ( hd_set_a @ List )
                = ( hd_set_a @ List2 ) )
              & ( ( tl_set_a @ List )
                = ( tl_set_a @ List2 ) ) ) ) )
       => ( List = List2 ) ) ) ).

% list.expand
thf(fact_210_last__tl,axiom,
    ! [Xs: list_a] :
      ( ( ( Xs = nil_a )
        | ( ( tl_a @ Xs )
         != nil_a ) )
     => ( ( last_a @ ( tl_a @ Xs ) )
        = ( last_a @ Xs ) ) ) ).

% last_tl
thf(fact_211_last__tl,axiom,
    ! [Xs: list_set_a] :
      ( ( ( Xs = nil_set_a )
        | ( ( tl_set_a @ Xs )
         != nil_set_a ) )
     => ( ( last_set_a @ ( tl_set_a @ Xs ) )
        = ( last_set_a @ Xs ) ) ) ).

% last_tl
thf(fact_212_list_Oset__sel_I2_J,axiom,
    ! [A: list_a,X4: a] :
      ( ( A != nil_a )
     => ( ( member_a @ X4 @ ( set_a2 @ ( tl_a @ A ) ) )
       => ( member_a @ X4 @ ( set_a2 @ A ) ) ) ) ).

% list.set_sel(2)
thf(fact_213_list_Oset__sel_I2_J,axiom,
    ! [A: list_set_a,X4: set_a] :
      ( ( A != nil_set_a )
     => ( ( member_set_a @ X4 @ ( set_set_a2 @ ( tl_set_a @ A ) ) )
       => ( member_set_a @ X4 @ ( set_set_a2 @ A ) ) ) ) ).

% list.set_sel(2)
thf(fact_214_subset__code_I1_J,axiom,
    ! [Xs: list_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ B2 )
      = ( ! [X2: a] :
            ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
           => ( member_a @ X2 @ B2 ) ) ) ) ).

% subset_code(1)
thf(fact_215_subset__code_I1_J,axiom,
    ! [Xs: list_set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ Xs ) @ B2 )
      = ( ! [X2: set_a] :
            ( ( member_set_a @ X2 @ ( set_set_a2 @ Xs ) )
           => ( member_set_a @ X2 @ B2 ) ) ) ) ).

% subset_code(1)
thf(fact_216_graph__system__def,axiom,
    ( undire7159349782766787846_set_a
    = ( ^ [Vertices2: set_set_a,Edges2: set_set_set_a] :
        ! [E5: set_set_a] :
          ( ( member_set_set_a @ E5 @ Edges2 )
         => ( ord_le3724670747650509150_set_a @ E5 @ Vertices2 ) ) ) ) ).

% graph_system_def
thf(fact_217_graph__system__def,axiom,
    ( undire2554140024507503526stem_a
    = ( ^ [Vertices2: set_a,Edges2: set_set_a] :
        ! [E5: set_a] :
          ( ( member_set_a @ E5 @ Edges2 )
         => ( ord_less_eq_set_a @ E5 @ Vertices2 ) ) ) ) ).

% graph_system_def
thf(fact_218_graph__system_Owellformed,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,E: set_set_a] :
      ( ( undire7159349782766787846_set_a @ Vertices @ Edges )
     => ( ( member_set_set_a @ E @ Edges )
       => ( ord_le3724670747650509150_set_a @ E @ Vertices ) ) ) ).

% graph_system.wellformed
thf(fact_219_graph__system_Owellformed,axiom,
    ! [Vertices: set_a,Edges: set_set_a,E: set_a] :
      ( ( undire2554140024507503526stem_a @ Vertices @ Edges )
     => ( ( member_set_a @ E @ Edges )
       => ( ord_less_eq_set_a @ E @ Vertices ) ) ) ).

% graph_system.wellformed
thf(fact_220_graph__system_Ointro,axiom,
    ! [Edges: set_set_set_a,Vertices: set_set_a] :
      ( ! [E6: set_set_a] :
          ( ( member_set_set_a @ E6 @ Edges )
         => ( ord_le3724670747650509150_set_a @ E6 @ Vertices ) )
     => ( undire7159349782766787846_set_a @ Vertices @ Edges ) ) ).

% graph_system.intro
thf(fact_221_graph__system_Ointro,axiom,
    ! [Edges: set_set_a,Vertices: set_a] :
      ( ! [E6: set_a] :
          ( ( member_set_a @ E6 @ Edges )
         => ( ord_less_eq_set_a @ E6 @ Vertices ) )
     => ( undire2554140024507503526stem_a @ Vertices @ Edges ) ) ).

% graph_system.intro
thf(fact_222_append__Nil,axiom,
    ! [Ys: list_a] :
      ( ( append_a @ nil_a @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_223_append__Nil,axiom,
    ! [Ys: list_set_a] :
      ( ( append_set_a @ nil_set_a @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_224_append_Oleft__neutral,axiom,
    ! [A: list_a] :
      ( ( append_a @ nil_a @ A )
      = A ) ).

% append.left_neutral
thf(fact_225_append_Oleft__neutral,axiom,
    ! [A: list_set_a] :
      ( ( append_set_a @ nil_set_a @ A )
      = A ) ).

% append.left_neutral
thf(fact_226_eq__Nil__appendI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_a @ nil_a @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_227_eq__Nil__appendI,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_set_a @ nil_set_a @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_228_ulgraph_Oaxioms_I1_J,axiom,
    ! [Vertices: set_a,Edges: set_set_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( undire2554140024507503526stem_a @ Vertices @ Edges ) ) ).

% ulgraph.axioms(1)
thf(fact_229_distinct_Osimps_I1_J,axiom,
    distinct_a @ nil_a ).

% distinct.simps(1)
thf(fact_230_distinct_Osimps_I1_J,axiom,
    distinct_set_a @ nil_set_a ).

% distinct.simps(1)
thf(fact_231_rev_Osimps_I1_J,axiom,
    ( ( rev_a @ nil_a )
    = nil_a ) ).

% rev.simps(1)
thf(fact_232_rev_Osimps_I1_J,axiom,
    ( ( rev_set_a @ nil_set_a )
    = nil_set_a ) ).

% rev.simps(1)
thf(fact_233_list_Osel_I2_J,axiom,
    ( ( tl_a @ nil_a )
    = nil_a ) ).

% list.sel(2)
thf(fact_234_list_Osel_I2_J,axiom,
    ( ( tl_set_a @ nil_set_a )
    = nil_set_a ) ).

% list.sel(2)
thf(fact_235_graph__system_Osubgraph__refl,axiom,
    ! [Vertices: set_a,Edges: set_set_a] :
      ( ( undire2554140024507503526stem_a @ Vertices @ Edges )
     => ( undire7103218114511261257raph_a @ Vertices @ Edges @ Vertices @ Edges ) ) ).

% graph_system.subgraph_refl
thf(fact_236_subgraph_Osubgraph__trans,axiom,
    ! [V_H: set_a,E_H: set_set_a,V_G: set_a,E_G: set_set_a,V4: set_a,E4: set_set_a,V3: set_a,E3: set_set_a,V5: set_a,E7: set_set_a] :
      ( ( undire7103218114511261257raph_a @ V_H @ E_H @ V_G @ E_G )
     => ( ( undire2554140024507503526stem_a @ V4 @ E4 )
       => ( ( undire2554140024507503526stem_a @ V3 @ E3 )
         => ( ( undire2554140024507503526stem_a @ V5 @ E7 )
           => ( ( undire7103218114511261257raph_a @ V5 @ E7 @ V3 @ E3 )
             => ( ( undire7103218114511261257raph_a @ V3 @ E3 @ V4 @ E4 )
               => ( undire7103218114511261257raph_a @ V5 @ E7 @ V4 @ E4 ) ) ) ) ) ) ) ).

% subgraph.subgraph_trans
thf(fact_237_subgraph_Oaxioms_I1_J,axiom,
    ! [V_H: set_a,E_H: set_set_a,V_G: set_a,E_G: set_set_a] :
      ( ( undire7103218114511261257raph_a @ V_H @ E_H @ V_G @ E_G )
     => ( undire2554140024507503526stem_a @ V_H @ E_H ) ) ).

% subgraph.axioms(1)
thf(fact_238_subgraph_Oaxioms_I2_J,axiom,
    ! [V_H: set_a,E_H: set_set_a,V_G: set_a,E_G: set_set_a] :
      ( ( undire7103218114511261257raph_a @ V_H @ E_H @ V_G @ E_G )
     => ( undire2554140024507503526stem_a @ V_G @ E_G ) ) ).

% subgraph.axioms(2)
thf(fact_239_graph__system_Oinduced__is__graph__sys,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V3: set_a] :
      ( ( undire2554140024507503526stem_a @ Vertices @ Edges )
     => ( undire2554140024507503526stem_a @ V3 @ ( undire7777452895879145676dges_a @ Edges @ V3 ) ) ) ).

% graph_system.induced_is_graph_sys
thf(fact_240_graph__system_Oincident__edge__in__wf,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,E: set_set_a,V: set_a] :
      ( ( undire7159349782766787846_set_a @ Vertices @ Edges )
     => ( ( member_set_set_a @ E @ Edges )
       => ( ( undire2320338297334612420_set_a @ V @ E )
         => ( member_set_a @ V @ Vertices ) ) ) ) ).

% graph_system.incident_edge_in_wf
thf(fact_241_graph__system_Oincident__edge__in__wf,axiom,
    ! [Vertices: set_a,Edges: set_set_a,E: set_a,V: a] :
      ( ( undire2554140024507503526stem_a @ Vertices @ Edges )
     => ( ( member_set_a @ E @ Edges )
       => ( ( undire1521409233611534436dent_a @ V @ E )
         => ( member_a @ V @ Vertices ) ) ) ) ).

% graph_system.incident_edge_in_wf
thf(fact_242_graph__system_Oincident__def,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,V: set_a,E: set_set_a] :
      ( ( undire7159349782766787846_set_a @ Vertices @ Edges )
     => ( ( undire2320338297334612420_set_a @ V @ E )
        = ( member_set_a @ V @ E ) ) ) ).

% graph_system.incident_def
thf(fact_243_graph__system_Oincident__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V: a,E: set_a] :
      ( ( undire2554140024507503526stem_a @ Vertices @ Edges )
     => ( ( undire1521409233611534436dent_a @ V @ E )
        = ( member_a @ V @ E ) ) ) ).

% graph_system.incident_def
thf(fact_244_distinct__tl__rev,axiom,
    ! [Xs: list_a] :
      ( ( ( hd_a @ Xs )
        = ( last_a @ Xs ) )
     => ( ( distinct_a @ ( tl_a @ Xs ) )
        = ( distinct_a @ ( tl_a @ ( rev_a @ Xs ) ) ) ) ) ).

% distinct_tl_rev
thf(fact_245_distinct__tl__rev,axiom,
    ! [Xs: list_set_a] :
      ( ( ( hd_set_a @ Xs )
        = ( last_set_a @ Xs ) )
     => ( ( distinct_set_a @ ( tl_set_a @ Xs ) )
        = ( distinct_set_a @ ( tl_set_a @ ( rev_set_a @ Xs ) ) ) ) ) ).

% distinct_tl_rev
thf(fact_246_ulgraph_Ois__gen__path__distinct,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,P: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire7201326534205417136_set_a @ Vertices @ Edges @ P )
       => ( ( ( hd_set_a @ P )
           != ( last_set_a @ P ) )
         => ( distinct_set_a @ P ) ) ) ) ).

% ulgraph.is_gen_path_distinct
thf(fact_247_ulgraph_Ois__gen__path__distinct,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire3562951555376170320path_a @ Vertices @ Edges @ P )
       => ( ( ( hd_a @ P )
           != ( last_a @ P ) )
         => ( distinct_a @ P ) ) ) ) ).

% ulgraph.is_gen_path_distinct
thf(fact_248_ulgraph_Oconnecting__walk__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_walk_a @ Vertices @ Edges @ U @ V @ Xs )
        = ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
          & ( ( hd_a @ Xs )
            = U )
          & ( ( last_a @ Xs )
            = V ) ) ) ) ).

% ulgraph.connecting_walk_def
thf(fact_249_graph__system_Oedge__adjacent__alt__def,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,E1: set_set_a,E2: set_set_a] :
      ( ( undire7159349782766787846_set_a @ Vertices @ Edges )
     => ( ( member_set_set_a @ E1 @ Edges )
       => ( ( member_set_set_a @ E2 @ Edges )
         => ( ? [X: set_a] :
                ( ( member_set_a @ X @ Vertices )
                & ( member_set_a @ X @ E1 )
                & ( member_set_a @ X @ E2 ) )
           => ( undire3485422320110889978_set_a @ Edges @ E1 @ E2 ) ) ) ) ) ).

% graph_system.edge_adjacent_alt_def
thf(fact_250_graph__system_Oedge__adjacent__alt__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,E1: set_a,E2: set_a] :
      ( ( undire2554140024507503526stem_a @ Vertices @ Edges )
     => ( ( member_set_a @ E1 @ Edges )
       => ( ( member_set_a @ E2 @ Edges )
         => ( ? [X: a] :
                ( ( member_a @ X @ Vertices )
                & ( member_a @ X @ E1 )
                & ( member_a @ X @ E2 ) )
           => ( undire4022703626023482010_adj_a @ Edges @ E1 @ E2 ) ) ) ) ) ).

% graph_system.edge_adjacent_alt_def
thf(fact_251_graph__system_Oedge__adj__inE,axiom,
    ! [Vertices: set_a,Edges: set_set_a,E1: set_a,E2: set_a] :
      ( ( undire2554140024507503526stem_a @ Vertices @ Edges )
     => ( ( undire4022703626023482010_adj_a @ Edges @ E1 @ E2 )
       => ( ( member_set_a @ E1 @ Edges )
          & ( member_set_a @ E2 @ Edges ) ) ) ) ).

% graph_system.edge_adj_inE
thf(fact_252_ulgraph_Oconnecting__path__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_path_a @ Vertices @ Edges @ U @ V @ Xs )
        = ( ( undire3562951555376170320path_a @ Vertices @ Edges @ Xs )
          & ( ( hd_a @ Xs )
            = U )
          & ( ( last_a @ Xs )
            = V ) ) ) ) ).

% ulgraph.connecting_path_def
thf(fact_253_ulgraph_Ois__open__walk__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire2427028224930250914walk_a @ Vertices @ Edges @ Xs )
        = ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
          & ( ( hd_a @ Xs )
           != ( last_a @ Xs ) ) ) ) ) ).

% ulgraph.is_open_walk_def
thf(fact_254_ulgraph_Ois__closed__walk__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire3370724456595283424walk_a @ Vertices @ Edges @ Xs )
        = ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
          & ( ( hd_a @ Xs )
            = ( last_a @ Xs ) ) ) ) ) ).

% ulgraph.is_closed_walk_def
thf(fact_255_ulgraph_Oconnecting__path__str__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connec3015921205769380621_str_a @ Vertices @ Edges @ U @ V @ Xs )
        = ( ( undire427332500224447920path_a @ Vertices @ Edges @ Xs )
          & ( ( hd_a @ Xs )
            = U )
          & ( ( last_a @ Xs )
            = V ) ) ) ) ).

% ulgraph.connecting_path_str_def
thf(fact_256_ulgraph_Ois__walk__append,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a,Ys: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ Xs )
       => ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ Ys )
         => ( ( ( last_set_a @ Xs )
              = ( hd_set_a @ Ys ) )
           => ( undire3014741414213135564_set_a @ Vertices @ Edges @ ( append_set_a @ Xs @ ( tl_set_a @ Ys ) ) ) ) ) ) ) ).

% ulgraph.is_walk_append
thf(fact_257_ulgraph_Ois__walk__append,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a,Ys: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
       => ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Ys )
         => ( ( ( last_a @ Xs )
              = ( hd_a @ Ys ) )
           => ( undire6133010728901294956walk_a @ Vertices @ Edges @ ( append_a @ Xs @ ( tl_a @ Ys ) ) ) ) ) ) ) ).

% ulgraph.is_walk_append
thf(fact_258_ulgraph_Ois__gen__path__distinct__tl,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,P: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire7201326534205417136_set_a @ Vertices @ Edges @ P )
       => ( ( ( hd_set_a @ P )
            = ( last_set_a @ P ) )
         => ( distinct_set_a @ ( tl_set_a @ P ) ) ) ) ) ).

% ulgraph.is_gen_path_distinct_tl
thf(fact_259_ulgraph_Ois__gen__path__distinct__tl,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire3562951555376170320path_a @ Vertices @ Edges @ P )
       => ( ( ( hd_a @ P )
            = ( last_a @ P ) )
         => ( distinct_a @ ( tl_a @ P ) ) ) ) ) ).

% ulgraph.is_gen_path_distinct_tl
thf(fact_260_ulgraph_Ois__walk__wf__hd,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ Xs )
       => ( member_set_a @ ( hd_set_a @ Xs ) @ Vertices ) ) ) ).

% ulgraph.is_walk_wf_hd
thf(fact_261_ulgraph_Ois__walk__wf__hd,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
       => ( member_a @ ( hd_a @ Xs ) @ Vertices ) ) ) ).

% ulgraph.is_walk_wf_hd
thf(fact_262_ulgraph_Ois__walk__wf__last,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ Xs )
       => ( member_set_a @ ( last_set_a @ Xs ) @ Vertices ) ) ) ).

% ulgraph.is_walk_wf_last
thf(fact_263_ulgraph_Ois__walk__wf__last,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
       => ( member_a @ ( last_a @ Xs ) @ Vertices ) ) ) ).

% ulgraph.is_walk_wf_last
thf(fact_264_tl__append__if,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( Xs = nil_a )
       => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
          = ( tl_a @ Ys ) ) )
      & ( ( Xs != nil_a )
       => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
          = ( append_a @ ( tl_a @ Xs ) @ Ys ) ) ) ) ).

% tl_append_if
thf(fact_265_tl__append__if,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( ( Xs = nil_set_a )
       => ( ( tl_set_a @ ( append_set_a @ Xs @ Ys ) )
          = ( tl_set_a @ Ys ) ) )
      & ( ( Xs != nil_set_a )
       => ( ( tl_set_a @ ( append_set_a @ Xs @ Ys ) )
          = ( append_set_a @ ( tl_set_a @ Xs ) @ Ys ) ) ) ) ).

% tl_append_if
thf(fact_266_ulgraph_Ois__walk__not__empty2,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ~ ( undire3014741414213135564_set_a @ Vertices @ Edges @ nil_set_a ) ) ).

% ulgraph.is_walk_not_empty2
thf(fact_267_ulgraph_Ois__walk__not__empty2,axiom,
    ! [Vertices: set_a,Edges: set_set_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ~ ( undire6133010728901294956walk_a @ Vertices @ Edges @ nil_a ) ) ).

% ulgraph.is_walk_not_empty2
thf(fact_268_ulgraph_Ois__walk__not__empty,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ Xs )
       => ( Xs != nil_set_a ) ) ) ).

% ulgraph.is_walk_not_empty
thf(fact_269_ulgraph_Ois__walk__not__empty,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
       => ( Xs != nil_a ) ) ) ).

% ulgraph.is_walk_not_empty
thf(fact_270_ulgraph_Ois__gen__path__def,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,P: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire7201326534205417136_set_a @ Vertices @ Edges @ P )
        = ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ P )
          & ( ( ( distinct_set_a @ ( tl_set_a @ P ) )
              & ( ( hd_set_a @ P )
                = ( last_set_a @ P ) ) )
            | ( distinct_set_a @ P ) ) ) ) ) ).

% ulgraph.is_gen_path_def
thf(fact_271_ulgraph_Ois__gen__path__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire3562951555376170320path_a @ Vertices @ Edges @ P )
        = ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ P )
          & ( ( ( distinct_a @ ( tl_a @ P ) )
              & ( ( hd_a @ P )
                = ( last_a @ P ) ) )
            | ( distinct_a @ P ) ) ) ) ) ).

% ulgraph.is_gen_path_def
thf(fact_272_order__antisym__conv,axiom,
    ! [Y: set_a,X4: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X4 )
     => ( ( ord_less_eq_set_a @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% order_antisym_conv
thf(fact_273_order__antisym__conv,axiom,
    ! [Y: set_set_a,X4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ Y @ X4 )
     => ( ( ord_le3724670747650509150_set_a @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% order_antisym_conv
thf(fact_274_order__antisym__conv,axiom,
    ! [Y: nat,X4: nat] :
      ( ( ord_less_eq_nat @ Y @ X4 )
     => ( ( ord_less_eq_nat @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% order_antisym_conv
thf(fact_275_order__antisym__conv,axiom,
    ! [Y: real,X4: real] :
      ( ( ord_less_eq_real @ Y @ X4 )
     => ( ( ord_less_eq_real @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% order_antisym_conv
thf(fact_276_linorder__le__cases,axiom,
    ! [X4: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X4 @ Y )
     => ( ord_less_eq_nat @ Y @ X4 ) ) ).

% linorder_le_cases
thf(fact_277_linorder__le__cases,axiom,
    ! [X4: real,Y: real] :
      ( ~ ( ord_less_eq_real @ X4 @ Y )
     => ( ord_less_eq_real @ Y @ X4 ) ) ).

% linorder_le_cases
thf(fact_278_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_279_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_280_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_281_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_282_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_283_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > real,C: real] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_284_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_285_ord__le__eq__subst,axiom,
    ! [A: real,B: real,F: real > set_a,C: set_a] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_286_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_287_ord__le__eq__subst,axiom,
    ! [A: set_set_a,B: set_set_a,F: set_set_a > nat,C: nat] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_set_a,Y2: set_set_a] :
              ( ( ord_le3724670747650509150_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_288_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_289_ord__eq__le__subst,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_290_ord__eq__le__subst,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_291_ord__eq__le__subst,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_292_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_293_ord__eq__le__subst,axiom,
    ! [A: real,F: set_a > real,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_294_ord__eq__le__subst,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_295_ord__eq__le__subst,axiom,
    ! [A: set_a,F: real > set_a,B: real,C: real] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_296_ord__eq__le__subst,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_297_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_set_a > nat,B: set_set_a,C: set_set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le3724670747650509150_set_a @ B @ C )
       => ( ! [X3: set_set_a,Y2: set_set_a] :
              ( ( ord_le3724670747650509150_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_298_linorder__linear,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
      | ( ord_less_eq_nat @ Y @ X4 ) ) ).

% linorder_linear
thf(fact_299_linorder__linear,axiom,
    ! [X4: real,Y: real] :
      ( ( ord_less_eq_real @ X4 @ Y )
      | ( ord_less_eq_real @ Y @ X4 ) ) ).

% linorder_linear
thf(fact_300_order__eq__refl,axiom,
    ! [X4: set_a,Y: set_a] :
      ( ( X4 = Y )
     => ( ord_less_eq_set_a @ X4 @ Y ) ) ).

% order_eq_refl
thf(fact_301_order__eq__refl,axiom,
    ! [X4: set_set_a,Y: set_set_a] :
      ( ( X4 = Y )
     => ( ord_le3724670747650509150_set_a @ X4 @ Y ) ) ).

% order_eq_refl
thf(fact_302_order__eq__refl,axiom,
    ! [X4: nat,Y: nat] :
      ( ( X4 = Y )
     => ( ord_less_eq_nat @ X4 @ Y ) ) ).

% order_eq_refl
thf(fact_303_order__eq__refl,axiom,
    ! [X4: real,Y: real] :
      ( ( X4 = Y )
     => ( ord_less_eq_real @ X4 @ Y ) ) ).

% order_eq_refl
thf(fact_304_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_305_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_306_order__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_307_order__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_308_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_309_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > real,C: real] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_310_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_311_order__subst2,axiom,
    ! [A: real,B: real,F: real > set_a,C: set_a] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_312_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_313_order__subst2,axiom,
    ! [A: set_set_a,B: set_set_a,F: set_set_a > nat,C: nat] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_set_a,Y2: set_set_a] :
              ( ( ord_le3724670747650509150_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_314_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_315_order__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_316_order__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_317_order__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_318_order__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_319_order__subst1,axiom,
    ! [A: set_a,F: real > set_a,B: real,C: real] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_320_order__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_321_order__subst1,axiom,
    ! [A: real,F: set_a > real,B: set_a,C: set_a] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_322_order__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_323_order__subst1,axiom,
    ! [A: set_set_a,F: nat > set_set_a,B: nat,C: nat] :
      ( ( ord_le3724670747650509150_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_le3724670747650509150_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_le3724670747650509150_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_324_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: set_a,Z2: set_a] : ( Y3 = Z2 ) )
    = ( ^ [A3: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ A3 @ B3 )
          & ( ord_less_eq_set_a @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_325_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: set_set_a,Z2: set_set_a] : ( Y3 = Z2 ) )
    = ( ^ [A3: set_set_a,B3: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ A3 @ B3 )
          & ( ord_le3724670747650509150_set_a @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_326_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_327_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: real,Z2: real] : ( Y3 = Z2 ) )
    = ( ^ [A3: real,B3: real] :
          ( ( ord_less_eq_real @ A3 @ B3 )
          & ( ord_less_eq_real @ B3 @ A3 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_328_antisym,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_329_antisym,axiom,
    ! [A: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( ( ord_le3724670747650509150_set_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_330_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_331_antisym,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_332_dual__order_Otrans,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_eq_set_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_333_dual__order_Otrans,axiom,
    ! [B: set_set_a,A: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ A )
     => ( ( ord_le3724670747650509150_set_a @ C @ B )
       => ( ord_le3724670747650509150_set_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_334_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_335_dual__order_Otrans,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_336_dual__order_Oantisym,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_337_dual__order_Oantisym,axiom,
    ! [B: set_set_a,A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ A )
     => ( ( ord_le3724670747650509150_set_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_338_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_339_dual__order_Oantisym,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_eq_real @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_340_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: set_a,Z2: set_a] : ( Y3 = Z2 ) )
    = ( ^ [A3: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A3 )
          & ( ord_less_eq_set_a @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_341_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: set_set_a,Z2: set_set_a] : ( Y3 = Z2 ) )
    = ( ^ [A3: set_set_a,B3: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ B3 @ A3 )
          & ( ord_le3724670747650509150_set_a @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_342_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_343_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y3: real,Z2: real] : ( Y3 = Z2 ) )
    = ( ^ [A3: real,B3: real] :
          ( ( ord_less_eq_real @ B3 @ A3 )
          & ( ord_less_eq_real @ A3 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_344_linorder__wlog,axiom,
    ! [P2: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
         => ( P2 @ A4 @ B4 ) )
     => ( ! [A4: nat,B4: nat] :
            ( ( P2 @ B4 @ A4 )
           => ( P2 @ A4 @ B4 ) )
       => ( P2 @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_345_linorder__wlog,axiom,
    ! [P2: real > real > $o,A: real,B: real] :
      ( ! [A4: real,B4: real] :
          ( ( ord_less_eq_real @ A4 @ B4 )
         => ( P2 @ A4 @ B4 ) )
     => ( ! [A4: real,B4: real] :
            ( ( P2 @ B4 @ A4 )
           => ( P2 @ A4 @ B4 ) )
       => ( P2 @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_346_order__trans,axiom,
    ! [X4: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X4 @ Y )
     => ( ( ord_less_eq_set_a @ Y @ Z )
       => ( ord_less_eq_set_a @ X4 @ Z ) ) ) ).

% order_trans
thf(fact_347_order__trans,axiom,
    ! [X4: set_set_a,Y: set_set_a,Z: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X4 @ Y )
     => ( ( ord_le3724670747650509150_set_a @ Y @ Z )
       => ( ord_le3724670747650509150_set_a @ X4 @ Z ) ) ) ).

% order_trans
thf(fact_348_order__trans,axiom,
    ! [X4: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_eq_nat @ X4 @ Z ) ) ) ).

% order_trans
thf(fact_349_order__trans,axiom,
    ! [X4: real,Y: real,Z: real] :
      ( ( ord_less_eq_real @ X4 @ Y )
     => ( ( ord_less_eq_real @ Y @ Z )
       => ( ord_less_eq_real @ X4 @ Z ) ) ) ).

% order_trans
thf(fact_350_order_Otrans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% order.trans
thf(fact_351_order_Otrans,axiom,
    ! [A: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( ( ord_le3724670747650509150_set_a @ B @ C )
       => ( ord_le3724670747650509150_set_a @ A @ C ) ) ) ).

% order.trans
thf(fact_352_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_353_order_Otrans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% order.trans
thf(fact_354_order__antisym,axiom,
    ! [X4: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X4 @ Y )
     => ( ( ord_less_eq_set_a @ Y @ X4 )
       => ( X4 = Y ) ) ) ).

% order_antisym
thf(fact_355_order__antisym,axiom,
    ! [X4: set_set_a,Y: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X4 @ Y )
     => ( ( ord_le3724670747650509150_set_a @ Y @ X4 )
       => ( X4 = Y ) ) ) ).

% order_antisym
thf(fact_356_order__antisym,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ord_less_eq_nat @ Y @ X4 )
       => ( X4 = Y ) ) ) ).

% order_antisym
thf(fact_357_order__antisym,axiom,
    ! [X4: real,Y: real] :
      ( ( ord_less_eq_real @ X4 @ Y )
     => ( ( ord_less_eq_real @ Y @ X4 )
       => ( X4 = Y ) ) ) ).

% order_antisym
thf(fact_358_ord__le__eq__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_359_ord__le__eq__trans,axiom,
    ! [A: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( ( B = C )
       => ( ord_le3724670747650509150_set_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_360_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_361_ord__le__eq__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_362_ord__eq__le__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( A = B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_363_ord__eq__le__trans,axiom,
    ! [A: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( A = B )
     => ( ( ord_le3724670747650509150_set_a @ B @ C )
       => ( ord_le3724670747650509150_set_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_364_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_365_ord__eq__le__trans,axiom,
    ! [A: real,B: real,C: real] :
      ( ( A = B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_366_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: set_a,Z2: set_a] : ( Y3 = Z2 ) )
    = ( ^ [X2: set_a,Y4: set_a] :
          ( ( ord_less_eq_set_a @ X2 @ Y4 )
          & ( ord_less_eq_set_a @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_367_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: set_set_a,Z2: set_set_a] : ( Y3 = Z2 ) )
    = ( ^ [X2: set_set_a,Y4: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ X2 @ Y4 )
          & ( ord_le3724670747650509150_set_a @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_368_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_369_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y3: real,Z2: real] : ( Y3 = Z2 ) )
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ( ord_less_eq_real @ Y4 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_370_le__cases3,axiom,
    ! [X4: nat,Y: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X4 @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y @ X4 )
         => ~ ( ord_less_eq_nat @ X4 @ Z ) )
       => ( ( ( ord_less_eq_nat @ X4 @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X4 ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X4 ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X4 )
                 => ~ ( ord_less_eq_nat @ X4 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_371_le__cases3,axiom,
    ! [X4: real,Y: real,Z: real] :
      ( ( ( ord_less_eq_real @ X4 @ Y )
       => ~ ( ord_less_eq_real @ Y @ Z ) )
     => ( ( ( ord_less_eq_real @ Y @ X4 )
         => ~ ( ord_less_eq_real @ X4 @ Z ) )
       => ( ( ( ord_less_eq_real @ X4 @ Z )
           => ~ ( ord_less_eq_real @ Z @ Y ) )
         => ( ( ( ord_less_eq_real @ Z @ Y )
             => ~ ( ord_less_eq_real @ Y @ X4 ) )
           => ( ( ( ord_less_eq_real @ Y @ Z )
               => ~ ( ord_less_eq_real @ Z @ X4 ) )
             => ~ ( ( ord_less_eq_real @ Z @ X4 )
                 => ~ ( ord_less_eq_real @ X4 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_372_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_373_nle__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_eq_real @ A @ B ) )
      = ( ( ord_less_eq_real @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_374_ulgraph_Ois__walk__wf,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ Xs )
       => ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ Xs ) @ Vertices ) ) ) ).

% ulgraph.is_walk_wf
thf(fact_375_ulgraph_Ois__walk__wf,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
       => ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ Vertices ) ) ) ).

% ulgraph.is_walk_wf
thf(fact_376_Collect__mono__iff,axiom,
    ! [P2: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P2 ) @ ( collect_a @ Q ) )
      = ( ! [X2: a] :
            ( ( P2 @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_377_Collect__mono__iff,axiom,
    ! [P2: set_a > $o,Q: set_a > $o] :
      ( ( ord_le3724670747650509150_set_a @ ( collect_set_a @ P2 ) @ ( collect_set_a @ Q ) )
      = ( ! [X2: set_a] :
            ( ( P2 @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_378_set__eq__subset,axiom,
    ( ( ^ [Y3: set_a,Z2: set_a] : ( Y3 = Z2 ) )
    = ( ^ [A5: set_a,B5: set_a] :
          ( ( ord_less_eq_set_a @ A5 @ B5 )
          & ( ord_less_eq_set_a @ B5 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_379_set__eq__subset,axiom,
    ( ( ^ [Y3: set_set_a,Z2: set_set_a] : ( Y3 = Z2 ) )
    = ( ^ [A5: set_set_a,B5: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ A5 @ B5 )
          & ( ord_le3724670747650509150_set_a @ B5 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_380_subset__trans,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ord_less_eq_set_a @ A2 @ C2 ) ) ) ).

% subset_trans
thf(fact_381_subset__trans,axiom,
    ! [A2: set_set_a,B2: set_set_a,C2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B2 )
     => ( ( ord_le3724670747650509150_set_a @ B2 @ C2 )
       => ( ord_le3724670747650509150_set_a @ A2 @ C2 ) ) ) ).

% subset_trans
thf(fact_382_Collect__mono,axiom,
    ! [P2: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P2 @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P2 ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_383_Collect__mono,axiom,
    ! [P2: set_a > $o,Q: set_a > $o] :
      ( ! [X3: set_a] :
          ( ( P2 @ X3 )
         => ( Q @ X3 ) )
     => ( ord_le3724670747650509150_set_a @ ( collect_set_a @ P2 ) @ ( collect_set_a @ Q ) ) ) ).

% Collect_mono
thf(fact_384_subset__refl,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).

% subset_refl
thf(fact_385_subset__refl,axiom,
    ! [A2: set_set_a] : ( ord_le3724670747650509150_set_a @ A2 @ A2 ) ).

% subset_refl
thf(fact_386_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B5: set_a] :
        ! [T: a] :
          ( ( member_a @ T @ A5 )
         => ( member_a @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_387_subset__iff,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A5: set_set_a,B5: set_set_a] :
        ! [T: set_a] :
          ( ( member_set_a @ T @ A5 )
         => ( member_set_a @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_388_equalityD2,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_a @ B2 @ A2 ) ) ).

% equalityD2
thf(fact_389_equalityD2,axiom,
    ! [A2: set_set_a,B2: set_set_a] :
      ( ( A2 = B2 )
     => ( ord_le3724670747650509150_set_a @ B2 @ A2 ) ) ).

% equalityD2
thf(fact_390_equalityD1,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% equalityD1
thf(fact_391_equalityD1,axiom,
    ! [A2: set_set_a,B2: set_set_a] :
      ( ( A2 = B2 )
     => ( ord_le3724670747650509150_set_a @ A2 @ B2 ) ) ).

% equalityD1
thf(fact_392_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A5: set_a,B5: set_a] :
        ! [X2: a] :
          ( ( member_a @ X2 @ A5 )
         => ( member_a @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_393_subset__eq,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A5: set_set_a,B5: set_set_a] :
        ! [X2: set_a] :
          ( ( member_set_a @ X2 @ A5 )
         => ( member_set_a @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_394_equalityE,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ~ ( ( ord_less_eq_set_a @ A2 @ B2 )
         => ~ ( ord_less_eq_set_a @ B2 @ A2 ) ) ) ).

% equalityE
thf(fact_395_equalityE,axiom,
    ! [A2: set_set_a,B2: set_set_a] :
      ( ( A2 = B2 )
     => ~ ( ( ord_le3724670747650509150_set_a @ A2 @ B2 )
         => ~ ( ord_le3724670747650509150_set_a @ B2 @ A2 ) ) ) ).

% equalityE
thf(fact_396_subsetD,axiom,
    ! [A2: set_a,B2: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( member_a @ C @ A2 )
       => ( member_a @ C @ B2 ) ) ) ).

% subsetD
thf(fact_397_subsetD,axiom,
    ! [A2: set_set_a,B2: set_set_a,C: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B2 )
     => ( ( member_set_a @ C @ A2 )
       => ( member_set_a @ C @ B2 ) ) ) ).

% subsetD
thf(fact_398_in__mono,axiom,
    ! [A2: set_a,B2: set_a,X4: a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( member_a @ X4 @ A2 )
       => ( member_a @ X4 @ B2 ) ) ) ).

% in_mono
thf(fact_399_in__mono,axiom,
    ! [A2: set_set_a,B2: set_set_a,X4: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B2 )
     => ( ( member_set_a @ X4 @ A2 )
       => ( member_set_a @ X4 @ B2 ) ) ) ).

% in_mono
thf(fact_400_graph__system_Oinduced__edges__ss,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,V3: set_set_a] :
      ( ( undire7159349782766787846_set_a @ Vertices @ Edges )
     => ( ( ord_le3724670747650509150_set_a @ V3 @ Vertices )
       => ( ord_le5722252365846178494_set_a @ ( undire7854589003810675244_set_a @ Edges @ V3 ) @ Edges ) ) ) ).

% graph_system.induced_edges_ss
thf(fact_401_graph__system_Oinduced__edges__ss,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V3: set_a] :
      ( ( undire2554140024507503526stem_a @ Vertices @ Edges )
     => ( ( ord_less_eq_set_a @ V3 @ Vertices )
       => ( ord_le3724670747650509150_set_a @ ( undire7777452895879145676dges_a @ Edges @ V3 ) @ Edges ) ) ) ).

% graph_system.induced_edges_ss
thf(fact_402_graph__system_Oinduced__is__subgraph,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,V3: set_set_a] :
      ( ( undire7159349782766787846_set_a @ Vertices @ Edges )
     => ( ( ord_le3724670747650509150_set_a @ V3 @ Vertices )
       => ( undire1186139521737116585_set_a @ V3 @ ( undire7854589003810675244_set_a @ Edges @ V3 ) @ Vertices @ Edges ) ) ) ).

% graph_system.induced_is_subgraph
thf(fact_403_graph__system_Oinduced__is__subgraph,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V3: set_a] :
      ( ( undire2554140024507503526stem_a @ Vertices @ Edges )
     => ( ( ord_less_eq_set_a @ V3 @ Vertices )
       => ( undire7103218114511261257raph_a @ V3 @ ( undire7777452895879145676dges_a @ Edges @ V3 ) @ Vertices @ Edges ) ) ) ).

% graph_system.induced_is_subgraph
thf(fact_404_is__gen__path__options,axiom,
    ! [P: list_a] :
      ( ( undire3562951555376170320path_a @ vertices @ edges @ P )
      = ( ( undire2407311113669455967ycle_a @ vertices @ edges @ P )
        | ( undire427332500224447920path_a @ vertices @ edges @ P )
        | ? [X2: a] :
            ( ( member_a @ X2 @ vertices )
            & ( P
              = ( cons_a @ X2 @ nil_a ) ) ) ) ) ).

% is_gen_path_options
thf(fact_405_is__walk__decomp,axiom,
    ! [Xs: list_a,Y: a,Ys: list_a,Zs: list_a] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ ( append_a @ Ys @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) )
     => ( undire6133010728901294956walk_a @ vertices @ edges @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) ).

% is_walk_decomp
thf(fact_406_connecting__path__split,axiom,
    ! [U: a,V: a,Xs: list_a,Z: a,Ys: list_a] :
      ( ( connecting_path_a @ vertices @ edges @ U @ V @ Xs )
     => ( ( connecting_path_a @ vertices @ edges @ V @ Z @ Ys )
       => ~ ! [P3: list_a] :
              ( ( connecting_path_a @ vertices @ edges @ U @ Z @ P3 )
             => ~ ( ord_less_eq_nat @ ( undire8849074589633906640ngth_a @ P3 ) @ ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ ( tl_a @ Ys ) ) ) ) ) ) ) ).

% connecting_path_split
thf(fact_407_connecting__walk__self,axiom,
    ! [U: a] :
      ( ( member_a @ U @ vertices )
     => ( connecting_walk_a @ vertices @ edges @ U @ U @ ( cons_a @ U @ nil_a ) ) ) ).

% connecting_walk_self
thf(fact_408_is__gen__path__trivial,axiom,
    ! [X4: a] :
      ( ( member_a @ X4 @ vertices )
     => ( undire3562951555376170320path_a @ vertices @ edges @ ( cons_a @ X4 @ nil_a ) ) ) ).

% is_gen_path_trivial
thf(fact_409_connecting__path__self,axiom,
    ! [U: a] :
      ( ( member_a @ U @ vertices )
     => ( connecting_path_a @ vertices @ edges @ U @ U @ ( cons_a @ U @ nil_a ) ) ) ).

% connecting_path_self
thf(fact_410_is__walk__drop__hd,axiom,
    ! [Ys: list_a,Y: a] :
      ( ( Ys != nil_a )
     => ( ( undire6133010728901294956walk_a @ vertices @ edges @ ( cons_a @ Y @ Ys ) )
       => ( undire6133010728901294956walk_a @ vertices @ edges @ Ys ) ) ) ).

% is_walk_drop_hd
thf(fact_411_is__walk__singleton,axiom,
    ! [U: a] :
      ( ( member_a @ U @ vertices )
     => ( undire6133010728901294956walk_a @ vertices @ edges @ ( cons_a @ U @ nil_a ) ) ) ).

% is_walk_singleton
thf(fact_412_connecting__walk__path,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connecting_walk_a @ vertices @ edges @ U @ V @ Xs )
     => ? [Ys3: list_a] :
          ( ( connecting_path_a @ vertices @ edges @ U @ V @ Ys3 )
          & ( ord_less_eq_nat @ ( undire8849074589633906640ngth_a @ Ys3 ) @ ( undire8849074589633906640ngth_a @ Xs ) ) ) ) ).

% connecting_walk_path
thf(fact_413_is__trail__def,axiom,
    ! [Xs: list_a] :
      ( ( undire7142031287334043199rail_a @ vertices @ edges @ Xs )
      = ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
        & ( distinct_set_a @ ( undire7337870655677353998dges_a @ Xs ) ) ) ) ).

% is_trail_def
thf(fact_414_walk__edges_Ocases,axiom,
    ! [X4: list_a] :
      ( ( X4 != nil_a )
     => ( ! [X3: a] :
            ( X4
           != ( cons_a @ X3 @ nil_a ) )
       => ~ ! [X3: a,Y2: a,Ys3: list_a] :
              ( X4
             != ( cons_a @ X3 @ ( cons_a @ Y2 @ Ys3 ) ) ) ) ) ).

% walk_edges.cases
thf(fact_415_walk__edges_Osimps_I1_J,axiom,
    ( ( undire7337870655677353998dges_a @ nil_a )
    = nil_set_a ) ).

% walk_edges.simps(1)
thf(fact_416_walk__edges__rev,axiom,
    ! [Xs: list_a] :
      ( ( rev_set_a @ ( undire7337870655677353998dges_a @ Xs ) )
      = ( undire7337870655677353998dges_a @ ( rev_a @ Xs ) ) ) ).

% walk_edges_rev
thf(fact_417_walk__length__rev,axiom,
    ( undire8849074589633906640ngth_a
    = ( ^ [P4: list_a] : ( undire8849074589633906640ngth_a @ ( rev_a @ P4 ) ) ) ) ).

% walk_length_rev
thf(fact_418_walk__edges_Osimps_I2_J,axiom,
    ! [X4: a] :
      ( ( undire7337870655677353998dges_a @ ( cons_a @ X4 @ nil_a ) )
      = nil_set_a ) ).

% walk_edges.simps(2)
thf(fact_419_walk__edges__append__ss2,axiom,
    ! [Xs: list_a,Ys: list_a] : ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ Ys ) ) ) ) ).

% walk_edges_append_ss2
thf(fact_420_walk__edges__append__ss1,axiom,
    ! [Ys: list_a,Xs: list_a] : ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Ys ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ Ys ) ) ) ) ).

% walk_edges_append_ss1
thf(fact_421_walk__edges__tl__ss,axiom,
    ! [Xs: list_a] : ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( tl_a @ Xs ) ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) ) ).

% walk_edges_tl_ss
thf(fact_422_distinct__edgesI,axiom,
    ! [P: list_a] :
      ( ( distinct_a @ P )
     => ( distinct_set_a @ ( undire7337870655677353998dges_a @ P ) ) ) ).

% distinct_edgesI
thf(fact_423_list_Oinject,axiom,
    ! [X21: a,X22: list_a,Y21: a,Y22: list_a] :
      ( ( ( cons_a @ X21 @ X22 )
        = ( cons_a @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_424_list_Oinject,axiom,
    ! [X21: set_a,X22: list_set_a,Y21: set_a,Y22: list_set_a] :
      ( ( ( cons_set_a @ X21 @ X22 )
        = ( cons_set_a @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X22 = Y22 ) ) ) ).

% list.inject
thf(fact_425_walk__edges__decomp__ss,axiom,
    ! [Xs: list_a,Y: a,Zs: list_a,Ys: list_a] : ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ ( append_a @ Ys @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) ) ) ) ).

% walk_edges_decomp_ss
thf(fact_426_is__walkI,axiom,
    ! [Xs: list_a] :
      ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ vertices )
     => ( ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) @ edges )
       => ( ( Xs != nil_a )
         => ( undire6133010728901294956walk_a @ vertices @ edges @ Xs ) ) ) ) ).

% is_walkI
thf(fact_427_is__walk__def,axiom,
    ! [Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
      = ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ vertices )
        & ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) @ edges )
        & ( Xs != nil_a ) ) ) ).

% is_walk_def
thf(fact_428_append1__eq__conv,axiom,
    ! [Xs: list_a,X4: a,Ys: list_a,Y: a] :
      ( ( ( append_a @ Xs @ ( cons_a @ X4 @ nil_a ) )
        = ( append_a @ Ys @ ( cons_a @ Y @ nil_a ) ) )
      = ( ( Xs = Ys )
        & ( X4 = Y ) ) ) ).

% append1_eq_conv
thf(fact_429_append1__eq__conv,axiom,
    ! [Xs: list_set_a,X4: set_a,Ys: list_set_a,Y: set_a] :
      ( ( ( append_set_a @ Xs @ ( cons_set_a @ X4 @ nil_set_a ) )
        = ( append_set_a @ Ys @ ( cons_set_a @ Y @ nil_set_a ) ) )
      = ( ( Xs = Ys )
        & ( X4 = Y ) ) ) ).

% append1_eq_conv
thf(fact_430_rev__singleton__conv,axiom,
    ! [Xs: list_a,X4: a] :
      ( ( ( rev_a @ Xs )
        = ( cons_a @ X4 @ nil_a ) )
      = ( Xs
        = ( cons_a @ X4 @ nil_a ) ) ) ).

% rev_singleton_conv
thf(fact_431_rev__singleton__conv,axiom,
    ! [Xs: list_set_a,X4: set_a] :
      ( ( ( rev_set_a @ Xs )
        = ( cons_set_a @ X4 @ nil_set_a ) )
      = ( Xs
        = ( cons_set_a @ X4 @ nil_set_a ) ) ) ).

% rev_singleton_conv
thf(fact_432_singleton__rev__conv,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( ( cons_a @ X4 @ nil_a )
        = ( rev_a @ Xs ) )
      = ( ( cons_a @ X4 @ nil_a )
        = Xs ) ) ).

% singleton_rev_conv
thf(fact_433_singleton__rev__conv,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( ( cons_set_a @ X4 @ nil_set_a )
        = ( rev_set_a @ Xs ) )
      = ( ( cons_set_a @ X4 @ nil_set_a )
        = Xs ) ) ).

% singleton_rev_conv
thf(fact_434_rev__eq__Cons__iff,axiom,
    ! [Xs: list_a,Y: a,Ys: list_a] :
      ( ( ( rev_a @ Xs )
        = ( cons_a @ Y @ Ys ) )
      = ( Xs
        = ( append_a @ ( rev_a @ Ys ) @ ( cons_a @ Y @ nil_a ) ) ) ) ).

% rev_eq_Cons_iff
thf(fact_435_rev__eq__Cons__iff,axiom,
    ! [Xs: list_set_a,Y: set_a,Ys: list_set_a] :
      ( ( ( rev_set_a @ Xs )
        = ( cons_set_a @ Y @ Ys ) )
      = ( Xs
        = ( append_set_a @ ( rev_set_a @ Ys ) @ ( cons_set_a @ Y @ nil_set_a ) ) ) ) ).

% rev_eq_Cons_iff
thf(fact_436_last__snoc,axiom,
    ! [Xs: list_a,X4: a] :
      ( ( last_a @ ( append_a @ Xs @ ( cons_a @ X4 @ nil_a ) ) )
      = X4 ) ).

% last_snoc
thf(fact_437_last__snoc,axiom,
    ! [Xs: list_set_a,X4: set_a] :
      ( ( last_set_a @ ( append_set_a @ Xs @ ( cons_set_a @ X4 @ nil_set_a ) ) )
      = X4 ) ).

% last_snoc
thf(fact_438_list_Ocollapse,axiom,
    ! [List: list_a] :
      ( ( List != nil_a )
     => ( ( cons_a @ ( hd_a @ List ) @ ( tl_a @ List ) )
        = List ) ) ).

% list.collapse
thf(fact_439_list_Ocollapse,axiom,
    ! [List: list_set_a] :
      ( ( List != nil_set_a )
     => ( ( cons_set_a @ ( hd_set_a @ List ) @ ( tl_set_a @ List ) )
        = List ) ) ).

% list.collapse
thf(fact_440_hd__Cons__tl,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( cons_a @ ( hd_a @ Xs ) @ ( tl_a @ Xs ) )
        = Xs ) ) ).

% hd_Cons_tl
thf(fact_441_hd__Cons__tl,axiom,
    ! [Xs: list_set_a] :
      ( ( Xs != nil_set_a )
     => ( ( cons_set_a @ ( hd_set_a @ Xs ) @ ( tl_set_a @ Xs ) )
        = Xs ) ) ).

% hd_Cons_tl
thf(fact_442_comp__sgraph_Owalk__edges_Osimps_I2_J,axiom,
    ! [X4: set_a] :
      ( ( undire6234387080713648494_set_a @ ( cons_set_a @ X4 @ nil_set_a ) )
      = nil_set_set_a ) ).

% comp_sgraph.walk_edges.simps(2)
thf(fact_443_comp__sgraph_Owalk__edges_Osimps_I2_J,axiom,
    ! [X4: a] :
      ( ( undire7337870655677353998dges_a @ ( cons_a @ X4 @ nil_a ) )
      = nil_set_a ) ).

% comp_sgraph.walk_edges.simps(2)
thf(fact_444_transpose_Ocases,axiom,
    ! [X4: list_list_a] :
      ( ( X4 != nil_list_a )
     => ( ! [Xss: list_list_a] :
            ( X4
           != ( cons_list_a @ nil_a @ Xss ) )
       => ~ ! [X3: a,Xs3: list_a,Xss: list_list_a] :
              ( X4
             != ( cons_list_a @ ( cons_a @ X3 @ Xs3 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_445_transpose_Ocases,axiom,
    ! [X4: list_list_set_a] :
      ( ( X4 != nil_list_set_a )
     => ( ! [Xss: list_list_set_a] :
            ( X4
           != ( cons_list_set_a @ nil_set_a @ Xss ) )
       => ~ ! [X3: set_a,Xs3: list_set_a,Xss: list_list_set_a] :
              ( X4
             != ( cons_list_set_a @ ( cons_set_a @ X3 @ Xs3 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_446_not__Cons__self2,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( cons_a @ X4 @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_447_not__Cons__self2,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( cons_set_a @ X4 @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_448_comp__sgraph_Owalk__edges__decomp__ss,axiom,
    ! [Xs: list_set_a,Y: set_a,Zs: list_set_a,Ys: list_set_a] : ( ord_le5722252365846178494_set_a @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ ( append_set_a @ Xs @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ Zs ) ) ) ) @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ ( append_set_a @ Xs @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ ( append_set_a @ Ys @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ Zs ) ) ) ) ) ) ) ).

% comp_sgraph.walk_edges_decomp_ss
thf(fact_449_comp__sgraph_Owalk__edges__decomp__ss,axiom,
    ! [Xs: list_a,Y: a,Zs: list_a,Ys: list_a] : ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ ( append_a @ Ys @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) ) ) ) ).

% comp_sgraph.walk_edges_decomp_ss
thf(fact_450_ulgraph_Owalk__edges_Osimps_I2_J,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,X4: set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire6234387080713648494_set_a @ ( cons_set_a @ X4 @ nil_set_a ) )
        = nil_set_set_a ) ) ).

% ulgraph.walk_edges.simps(2)
thf(fact_451_ulgraph_Owalk__edges_Osimps_I2_J,axiom,
    ! [Vertices: set_a,Edges: set_set_a,X4: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire7337870655677353998dges_a @ ( cons_a @ X4 @ nil_a ) )
        = nil_set_a ) ) ).

% ulgraph.walk_edges.simps(2)
thf(fact_452_comp__sgraph_Owalk__edges__append__ss2,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] : ( ord_le5722252365846178494_set_a @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ Xs ) ) @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ ( append_set_a @ Xs @ Ys ) ) ) ) ).

% comp_sgraph.walk_edges_append_ss2
thf(fact_453_comp__sgraph_Owalk__edges__append__ss2,axiom,
    ! [Xs: list_a,Ys: list_a] : ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ Ys ) ) ) ) ).

% comp_sgraph.walk_edges_append_ss2
thf(fact_454_comp__sgraph_Owalk__edges__append__ss1,axiom,
    ! [Ys: list_set_a,Xs: list_set_a] : ( ord_le5722252365846178494_set_a @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ Ys ) ) @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ ( append_set_a @ Xs @ Ys ) ) ) ) ).

% comp_sgraph.walk_edges_append_ss1
thf(fact_455_comp__sgraph_Owalk__edges__append__ss1,axiom,
    ! [Ys: list_a,Xs: list_a] : ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Ys ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ Ys ) ) ) ) ).

% comp_sgraph.walk_edges_append_ss1
thf(fact_456_comp__sgraph_Owalk__edges__tl__ss,axiom,
    ! [Xs: list_a] : ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( tl_a @ Xs ) ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) ) ).

% comp_sgraph.walk_edges_tl_ss
thf(fact_457_comp__sgraph_Owalk__edges_Osimps_I1_J,axiom,
    ( ( undire6234387080713648494_set_a @ nil_set_a )
    = nil_set_set_a ) ).

% comp_sgraph.walk_edges.simps(1)
thf(fact_458_comp__sgraph_Owalk__edges_Osimps_I1_J,axiom,
    ( ( undire7337870655677353998dges_a @ nil_a )
    = nil_set_a ) ).

% comp_sgraph.walk_edges.simps(1)
thf(fact_459_list__nonempty__induct,axiom,
    ! [Xs: list_a,P2: list_a > $o] :
      ( ( Xs != nil_a )
     => ( ! [X3: a] : ( P2 @ ( cons_a @ X3 @ nil_a ) )
       => ( ! [X3: a,Xs3: list_a] :
              ( ( Xs3 != nil_a )
             => ( ( P2 @ Xs3 )
               => ( P2 @ ( cons_a @ X3 @ Xs3 ) ) ) )
         => ( P2 @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_460_list__nonempty__induct,axiom,
    ! [Xs: list_set_a,P2: list_set_a > $o] :
      ( ( Xs != nil_set_a )
     => ( ! [X3: set_a] : ( P2 @ ( cons_set_a @ X3 @ nil_set_a ) )
       => ( ! [X3: set_a,Xs3: list_set_a] :
              ( ( Xs3 != nil_set_a )
             => ( ( P2 @ Xs3 )
               => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) ) ) )
         => ( P2 @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_461_list__induct2_H,axiom,
    ! [P2: list_a > list_a > $o,Xs: list_a,Ys: list_a] :
      ( ( P2 @ nil_a @ nil_a )
     => ( ! [X3: a,Xs3: list_a] : ( P2 @ ( cons_a @ X3 @ Xs3 ) @ nil_a )
       => ( ! [Y2: a,Ys3: list_a] : ( P2 @ nil_a @ ( cons_a @ Y2 @ Ys3 ) )
         => ( ! [X3: a,Xs3: list_a,Y2: a,Ys3: list_a] :
                ( ( P2 @ Xs3 @ Ys3 )
               => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) )
           => ( P2 @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_462_list__induct2_H,axiom,
    ! [P2: list_a > list_set_a > $o,Xs: list_a,Ys: list_set_a] :
      ( ( P2 @ nil_a @ nil_set_a )
     => ( ! [X3: a,Xs3: list_a] : ( P2 @ ( cons_a @ X3 @ Xs3 ) @ nil_set_a )
       => ( ! [Y2: set_a,Ys3: list_set_a] : ( P2 @ nil_a @ ( cons_set_a @ Y2 @ Ys3 ) )
         => ( ! [X3: a,Xs3: list_a,Y2: set_a,Ys3: list_set_a] :
                ( ( P2 @ Xs3 @ Ys3 )
               => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) ) )
           => ( P2 @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_463_list__induct2_H,axiom,
    ! [P2: list_set_a > list_a > $o,Xs: list_set_a,Ys: list_a] :
      ( ( P2 @ nil_set_a @ nil_a )
     => ( ! [X3: set_a,Xs3: list_set_a] : ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ nil_a )
       => ( ! [Y2: a,Ys3: list_a] : ( P2 @ nil_set_a @ ( cons_a @ Y2 @ Ys3 ) )
         => ( ! [X3: set_a,Xs3: list_set_a,Y2: a,Ys3: list_a] :
                ( ( P2 @ Xs3 @ Ys3 )
               => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) )
           => ( P2 @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_464_list__induct2_H,axiom,
    ! [P2: list_set_a > list_set_a > $o,Xs: list_set_a,Ys: list_set_a] :
      ( ( P2 @ nil_set_a @ nil_set_a )
     => ( ! [X3: set_a,Xs3: list_set_a] : ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ nil_set_a )
       => ( ! [Y2: set_a,Ys3: list_set_a] : ( P2 @ nil_set_a @ ( cons_set_a @ Y2 @ Ys3 ) )
         => ( ! [X3: set_a,Xs3: list_set_a,Y2: set_a,Ys3: list_set_a] :
                ( ( P2 @ Xs3 @ Ys3 )
               => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) ) )
           => ( P2 @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_465_neq__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
      = ( ? [Y4: a,Ys4: list_a] :
            ( Xs
            = ( cons_a @ Y4 @ Ys4 ) ) ) ) ).

% neq_Nil_conv
thf(fact_466_neq__Nil__conv,axiom,
    ! [Xs: list_set_a] :
      ( ( Xs != nil_set_a )
      = ( ? [Y4: set_a,Ys4: list_set_a] :
            ( Xs
            = ( cons_set_a @ Y4 @ Ys4 ) ) ) ) ).

% neq_Nil_conv
thf(fact_467_min__list_Ocases,axiom,
    ! [X4: list_set_a] :
      ( ! [X3: set_a,Xs3: list_set_a] :
          ( X4
         != ( cons_set_a @ X3 @ Xs3 ) )
     => ( X4 = nil_set_a ) ) ).

% min_list.cases
thf(fact_468_list_Oexhaust,axiom,
    ! [Y: list_a] :
      ( ( Y != nil_a )
     => ~ ! [X212: a,X222: list_a] :
            ( Y
           != ( cons_a @ X212 @ X222 ) ) ) ).

% list.exhaust
thf(fact_469_list_Oexhaust,axiom,
    ! [Y: list_set_a] :
      ( ( Y != nil_set_a )
     => ~ ! [X212: set_a,X222: list_set_a] :
            ( Y
           != ( cons_set_a @ X212 @ X222 ) ) ) ).

% list.exhaust
thf(fact_470_list_OdiscI,axiom,
    ! [List: list_a,X21: a,X22: list_a] :
      ( ( List
        = ( cons_a @ X21 @ X22 ) )
     => ( List != nil_a ) ) ).

% list.discI
thf(fact_471_list_OdiscI,axiom,
    ! [List: list_set_a,X21: set_a,X22: list_set_a] :
      ( ( List
        = ( cons_set_a @ X21 @ X22 ) )
     => ( List != nil_set_a ) ) ).

% list.discI
thf(fact_472_list_Odistinct_I1_J,axiom,
    ! [X21: a,X22: list_a] :
      ( nil_a
     != ( cons_a @ X21 @ X22 ) ) ).

% list.distinct(1)
thf(fact_473_list_Odistinct_I1_J,axiom,
    ! [X21: set_a,X22: list_set_a] :
      ( nil_set_a
     != ( cons_set_a @ X21 @ X22 ) ) ).

% list.distinct(1)
thf(fact_474_comp__sgraph_Owalk__edges_Ocases,axiom,
    ! [X4: list_a] :
      ( ( X4 != nil_a )
     => ( ! [X3: a] :
            ( X4
           != ( cons_a @ X3 @ nil_a ) )
       => ~ ! [X3: a,Y2: a,Ys3: list_a] :
              ( X4
             != ( cons_a @ X3 @ ( cons_a @ Y2 @ Ys3 ) ) ) ) ) ).

% comp_sgraph.walk_edges.cases
thf(fact_475_comp__sgraph_Owalk__edges_Ocases,axiom,
    ! [X4: list_set_a] :
      ( ( X4 != nil_set_a )
     => ( ! [X3: set_a] :
            ( X4
           != ( cons_set_a @ X3 @ nil_set_a ) )
       => ~ ! [X3: set_a,Y2: set_a,Ys3: list_set_a] :
              ( X4
             != ( cons_set_a @ X3 @ ( cons_set_a @ Y2 @ Ys3 ) ) ) ) ) ).

% comp_sgraph.walk_edges.cases
thf(fact_476_set__ConsD,axiom,
    ! [Y: a,X4: a,Xs: list_a] :
      ( ( member_a @ Y @ ( set_a2 @ ( cons_a @ X4 @ Xs ) ) )
     => ( ( Y = X4 )
        | ( member_a @ Y @ ( set_a2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_477_set__ConsD,axiom,
    ! [Y: set_a,X4: set_a,Xs: list_set_a] :
      ( ( member_set_a @ Y @ ( set_set_a2 @ ( cons_set_a @ X4 @ Xs ) ) )
     => ( ( Y = X4 )
        | ( member_set_a @ Y @ ( set_set_a2 @ Xs ) ) ) ) ).

% set_ConsD
thf(fact_478_list_Oset__cases,axiom,
    ! [E: a,A: list_a] :
      ( ( member_a @ E @ ( set_a2 @ A ) )
     => ( ! [Z22: list_a] :
            ( A
           != ( cons_a @ E @ Z22 ) )
       => ~ ! [Z1: a,Z22: list_a] :
              ( ( A
                = ( cons_a @ Z1 @ Z22 ) )
             => ~ ( member_a @ E @ ( set_a2 @ Z22 ) ) ) ) ) ).

% list.set_cases
thf(fact_479_list_Oset__cases,axiom,
    ! [E: set_a,A: list_set_a] :
      ( ( member_set_a @ E @ ( set_set_a2 @ A ) )
     => ( ! [Z22: list_set_a] :
            ( A
           != ( cons_set_a @ E @ Z22 ) )
       => ~ ! [Z1: set_a,Z22: list_set_a] :
              ( ( A
                = ( cons_set_a @ Z1 @ Z22 ) )
             => ~ ( member_set_a @ E @ ( set_set_a2 @ Z22 ) ) ) ) ) ).

% list.set_cases
thf(fact_480_list_Oset__intros_I1_J,axiom,
    ! [X21: a,X22: list_a] : ( member_a @ X21 @ ( set_a2 @ ( cons_a @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_481_list_Oset__intros_I1_J,axiom,
    ! [X21: set_a,X22: list_set_a] : ( member_set_a @ X21 @ ( set_set_a2 @ ( cons_set_a @ X21 @ X22 ) ) ) ).

% list.set_intros(1)
thf(fact_482_list_Oset__intros_I2_J,axiom,
    ! [Y: a,X22: list_a,X21: a] :
      ( ( member_a @ Y @ ( set_a2 @ X22 ) )
     => ( member_a @ Y @ ( set_a2 @ ( cons_a @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_483_list_Oset__intros_I2_J,axiom,
    ! [Y: set_a,X22: list_set_a,X21: set_a] :
      ( ( member_set_a @ Y @ ( set_set_a2 @ X22 ) )
     => ( member_set_a @ Y @ ( set_set_a2 @ ( cons_set_a @ X21 @ X22 ) ) ) ) ).

% list.set_intros(2)
thf(fact_484_Cons__eq__appendI,axiom,
    ! [X4: a,Xs1: list_a,Ys: list_a,Xs: list_a,Zs: list_a] :
      ( ( ( cons_a @ X4 @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_a @ Xs1 @ Zs ) )
       => ( ( cons_a @ X4 @ Xs )
          = ( append_a @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_485_Cons__eq__appendI,axiom,
    ! [X4: set_a,Xs1: list_set_a,Ys: list_set_a,Xs: list_set_a,Zs: list_set_a] :
      ( ( ( cons_set_a @ X4 @ Xs1 )
        = Ys )
     => ( ( Xs
          = ( append_set_a @ Xs1 @ Zs ) )
       => ( ( cons_set_a @ X4 @ Xs )
          = ( append_set_a @ Ys @ Zs ) ) ) ) ).

% Cons_eq_appendI
thf(fact_486_append__Cons,axiom,
    ! [X4: a,Xs: list_a,Ys: list_a] :
      ( ( append_a @ ( cons_a @ X4 @ Xs ) @ Ys )
      = ( cons_a @ X4 @ ( append_a @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_487_append__Cons,axiom,
    ! [X4: set_a,Xs: list_set_a,Ys: list_set_a] :
      ( ( append_set_a @ ( cons_set_a @ X4 @ Xs ) @ Ys )
      = ( cons_set_a @ X4 @ ( append_set_a @ Xs @ Ys ) ) ) ).

% append_Cons
thf(fact_488_comp__sgraph_Odistinct__edgesI,axiom,
    ! [P: list_set_a] :
      ( ( distinct_set_a @ P )
     => ( distinct_set_set_a @ ( undire6234387080713648494_set_a @ P ) ) ) ).

% comp_sgraph.distinct_edgesI
thf(fact_489_comp__sgraph_Odistinct__edgesI,axiom,
    ! [P: list_a] :
      ( ( distinct_a @ P )
     => ( distinct_set_a @ ( undire7337870655677353998dges_a @ P ) ) ) ).

% comp_sgraph.distinct_edgesI
thf(fact_490_distinct__length__2__or__more,axiom,
    ! [A: a,B: a,Xs: list_a] :
      ( ( distinct_a @ ( cons_a @ A @ ( cons_a @ B @ Xs ) ) )
      = ( ( A != B )
        & ( distinct_a @ ( cons_a @ A @ Xs ) )
        & ( distinct_a @ ( cons_a @ B @ Xs ) ) ) ) ).

% distinct_length_2_or_more
thf(fact_491_distinct__length__2__or__more,axiom,
    ! [A: set_a,B: set_a,Xs: list_set_a] :
      ( ( distinct_set_a @ ( cons_set_a @ A @ ( cons_set_a @ B @ Xs ) ) )
      = ( ( A != B )
        & ( distinct_set_a @ ( cons_set_a @ A @ Xs ) )
        & ( distinct_set_a @ ( cons_set_a @ B @ Xs ) ) ) ) ).

% distinct_length_2_or_more
thf(fact_492_comp__sgraph_Owalk__edges__rev,axiom,
    ! [Xs: list_set_a] :
      ( ( rev_set_set_a @ ( undire6234387080713648494_set_a @ Xs ) )
      = ( undire6234387080713648494_set_a @ ( rev_set_a @ Xs ) ) ) ).

% comp_sgraph.walk_edges_rev
thf(fact_493_comp__sgraph_Owalk__edges__rev,axiom,
    ! [Xs: list_a] :
      ( ( rev_set_a @ ( undire7337870655677353998dges_a @ Xs ) )
      = ( undire7337870655677353998dges_a @ ( rev_a @ Xs ) ) ) ).

% comp_sgraph.walk_edges_rev
thf(fact_494_list_Osel_I1_J,axiom,
    ! [X21: a,X22: list_a] :
      ( ( hd_a @ ( cons_a @ X21 @ X22 ) )
      = X21 ) ).

% list.sel(1)
thf(fact_495_list_Osel_I1_J,axiom,
    ! [X21: set_a,X22: list_set_a] :
      ( ( hd_set_a @ ( cons_set_a @ X21 @ X22 ) )
      = X21 ) ).

% list.sel(1)
thf(fact_496_list_Osel_I3_J,axiom,
    ! [X21: a,X22: list_a] :
      ( ( tl_a @ ( cons_a @ X21 @ X22 ) )
      = X22 ) ).

% list.sel(3)
thf(fact_497_list_Osel_I3_J,axiom,
    ! [X21: set_a,X22: list_set_a] :
      ( ( tl_set_a @ ( cons_set_a @ X21 @ X22 ) )
      = X22 ) ).

% list.sel(3)
thf(fact_498_ulgraph_Owalk__edges__decomp__ss,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a,Y: set_a,Zs: list_set_a,Ys: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ord_le5722252365846178494_set_a @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ ( append_set_a @ Xs @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ Zs ) ) ) ) @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ ( append_set_a @ Xs @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ ( append_set_a @ Ys @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ Zs ) ) ) ) ) ) ) ) ).

% ulgraph.walk_edges_decomp_ss
thf(fact_499_ulgraph_Owalk__edges__decomp__ss,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a,Y: a,Zs: list_a,Ys: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ ( append_a @ Ys @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) ) ) ) ) ).

% ulgraph.walk_edges_decomp_ss
thf(fact_500_comp__sgraph_Owalk__length__rev,axiom,
    ( undire4424681683220949296_set_a
    = ( ^ [P4: list_set_a] : ( undire4424681683220949296_set_a @ ( rev_set_a @ P4 ) ) ) ) ).

% comp_sgraph.walk_length_rev
thf(fact_501_comp__sgraph_Owalk__length__rev,axiom,
    ( undire8849074589633906640ngth_a
    = ( ^ [P4: list_a] : ( undire8849074589633906640ngth_a @ ( rev_a @ P4 ) ) ) ) ).

% comp_sgraph.walk_length_rev
thf(fact_502_ulgraph_Owalk__edges__append__ss2,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a,Ys: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ord_le5722252365846178494_set_a @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ Xs ) ) @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ ( append_set_a @ Xs @ Ys ) ) ) ) ) ).

% ulgraph.walk_edges_append_ss2
thf(fact_503_ulgraph_Owalk__edges__append__ss2,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a,Ys: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ Ys ) ) ) ) ) ).

% ulgraph.walk_edges_append_ss2
thf(fact_504_ulgraph_Owalk__edges__append__ss1,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Ys: list_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ord_le5722252365846178494_set_a @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ Ys ) ) @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ ( append_set_a @ Xs @ Ys ) ) ) ) ) ).

% ulgraph.walk_edges_append_ss1
thf(fact_505_ulgraph_Owalk__edges__append__ss1,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Ys: list_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Ys ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ Ys ) ) ) ) ) ).

% ulgraph.walk_edges_append_ss1
thf(fact_506_ulgraph_Owalk__edges__tl__ss,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( tl_a @ Xs ) ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) ) ) ).

% ulgraph.walk_edges_tl_ss
thf(fact_507_set__subset__Cons,axiom,
    ! [Xs: list_a,X4: a] : ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ ( set_a2 @ ( cons_a @ X4 @ Xs ) ) ) ).

% set_subset_Cons
thf(fact_508_set__subset__Cons,axiom,
    ! [Xs: list_set_a,X4: set_a] : ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ Xs ) @ ( set_set_a2 @ ( cons_set_a @ X4 @ Xs ) ) ) ).

% set_subset_Cons
thf(fact_509_rev__induct,axiom,
    ! [P2: list_a > $o,Xs: list_a] :
      ( ( P2 @ nil_a )
     => ( ! [X3: a,Xs3: list_a] :
            ( ( P2 @ Xs3 )
           => ( P2 @ ( append_a @ Xs3 @ ( cons_a @ X3 @ nil_a ) ) ) )
       => ( P2 @ Xs ) ) ) ).

% rev_induct
thf(fact_510_rev__induct,axiom,
    ! [P2: list_set_a > $o,Xs: list_set_a] :
      ( ( P2 @ nil_set_a )
     => ( ! [X3: set_a,Xs3: list_set_a] :
            ( ( P2 @ Xs3 )
           => ( P2 @ ( append_set_a @ Xs3 @ ( cons_set_a @ X3 @ nil_set_a ) ) ) )
       => ( P2 @ Xs ) ) ) ).

% rev_induct
thf(fact_511_rev__exhaust,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ~ ! [Ys3: list_a,Y2: a] :
            ( Xs
           != ( append_a @ Ys3 @ ( cons_a @ Y2 @ nil_a ) ) ) ) ).

% rev_exhaust
thf(fact_512_rev__exhaust,axiom,
    ! [Xs: list_set_a] :
      ( ( Xs != nil_set_a )
     => ~ ! [Ys3: list_set_a,Y2: set_a] :
            ( Xs
           != ( append_set_a @ Ys3 @ ( cons_set_a @ Y2 @ nil_set_a ) ) ) ) ).

% rev_exhaust
thf(fact_513_Cons__eq__append__conv,axiom,
    ! [X4: a,Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( cons_a @ X4 @ Xs )
        = ( append_a @ Ys @ Zs ) )
      = ( ( ( Ys = nil_a )
          & ( ( cons_a @ X4 @ Xs )
            = Zs ) )
        | ? [Ys5: list_a] :
            ( ( ( cons_a @ X4 @ Ys5 )
              = Ys )
            & ( Xs
              = ( append_a @ Ys5 @ Zs ) ) ) ) ) ).

% Cons_eq_append_conv
thf(fact_514_Cons__eq__append__conv,axiom,
    ! [X4: set_a,Xs: list_set_a,Ys: list_set_a,Zs: list_set_a] :
      ( ( ( cons_set_a @ X4 @ Xs )
        = ( append_set_a @ Ys @ Zs ) )
      = ( ( ( Ys = nil_set_a )
          & ( ( cons_set_a @ X4 @ Xs )
            = Zs ) )
        | ? [Ys5: list_set_a] :
            ( ( ( cons_set_a @ X4 @ Ys5 )
              = Ys )
            & ( Xs
              = ( append_set_a @ Ys5 @ Zs ) ) ) ) ) ).

% Cons_eq_append_conv
thf(fact_515_append__eq__Cons__conv,axiom,
    ! [Ys: list_a,Zs: list_a,X4: a,Xs: list_a] :
      ( ( ( append_a @ Ys @ Zs )
        = ( cons_a @ X4 @ Xs ) )
      = ( ( ( Ys = nil_a )
          & ( Zs
            = ( cons_a @ X4 @ Xs ) ) )
        | ? [Ys5: list_a] :
            ( ( Ys
              = ( cons_a @ X4 @ Ys5 ) )
            & ( ( append_a @ Ys5 @ Zs )
              = Xs ) ) ) ) ).

% append_eq_Cons_conv
thf(fact_516_append__eq__Cons__conv,axiom,
    ! [Ys: list_set_a,Zs: list_set_a,X4: set_a,Xs: list_set_a] :
      ( ( ( append_set_a @ Ys @ Zs )
        = ( cons_set_a @ X4 @ Xs ) )
      = ( ( ( Ys = nil_set_a )
          & ( Zs
            = ( cons_set_a @ X4 @ Xs ) ) )
        | ? [Ys5: list_set_a] :
            ( ( Ys
              = ( cons_set_a @ X4 @ Ys5 ) )
            & ( ( append_set_a @ Ys5 @ Zs )
              = Xs ) ) ) ) ).

% append_eq_Cons_conv
thf(fact_517_rev__nonempty__induct,axiom,
    ! [Xs: list_a,P2: list_a > $o] :
      ( ( Xs != nil_a )
     => ( ! [X3: a] : ( P2 @ ( cons_a @ X3 @ nil_a ) )
       => ( ! [X3: a,Xs3: list_a] :
              ( ( Xs3 != nil_a )
             => ( ( P2 @ Xs3 )
               => ( P2 @ ( append_a @ Xs3 @ ( cons_a @ X3 @ nil_a ) ) ) ) )
         => ( P2 @ Xs ) ) ) ) ).

% rev_nonempty_induct
thf(fact_518_rev__nonempty__induct,axiom,
    ! [Xs: list_set_a,P2: list_set_a > $o] :
      ( ( Xs != nil_set_a )
     => ( ! [X3: set_a] : ( P2 @ ( cons_set_a @ X3 @ nil_set_a ) )
       => ( ! [X3: set_a,Xs3: list_set_a] :
              ( ( Xs3 != nil_set_a )
             => ( ( P2 @ Xs3 )
               => ( P2 @ ( append_set_a @ Xs3 @ ( cons_set_a @ X3 @ nil_set_a ) ) ) ) )
         => ( P2 @ Xs ) ) ) ) ).

% rev_nonempty_induct
thf(fact_519_split__list__first__prop__iff,axiom,
    ! [Xs: list_a,P2: a > $o] :
      ( ( ? [X2: a] :
            ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
            & ( P2 @ X2 ) ) )
      = ( ? [Ys4: list_a,X2: a] :
            ( ? [Zs2: list_a] :
                ( Xs
                = ( append_a @ Ys4 @ ( cons_a @ X2 @ Zs2 ) ) )
            & ( P2 @ X2 )
            & ! [Y4: a] :
                ( ( member_a @ Y4 @ ( set_a2 @ Ys4 ) )
               => ~ ( P2 @ Y4 ) ) ) ) ) ).

% split_list_first_prop_iff
thf(fact_520_split__list__first__prop__iff,axiom,
    ! [Xs: list_set_a,P2: set_a > $o] :
      ( ( ? [X2: set_a] :
            ( ( member_set_a @ X2 @ ( set_set_a2 @ Xs ) )
            & ( P2 @ X2 ) ) )
      = ( ? [Ys4: list_set_a,X2: set_a] :
            ( ? [Zs2: list_set_a] :
                ( Xs
                = ( append_set_a @ Ys4 @ ( cons_set_a @ X2 @ Zs2 ) ) )
            & ( P2 @ X2 )
            & ! [Y4: set_a] :
                ( ( member_set_a @ Y4 @ ( set_set_a2 @ Ys4 ) )
               => ~ ( P2 @ Y4 ) ) ) ) ) ).

% split_list_first_prop_iff
thf(fact_521_split__list__last__prop__iff,axiom,
    ! [Xs: list_a,P2: a > $o] :
      ( ( ? [X2: a] :
            ( ( member_a @ X2 @ ( set_a2 @ Xs ) )
            & ( P2 @ X2 ) ) )
      = ( ? [Ys4: list_a,X2: a,Zs2: list_a] :
            ( ( Xs
              = ( append_a @ Ys4 @ ( cons_a @ X2 @ Zs2 ) ) )
            & ( P2 @ X2 )
            & ! [Y4: a] :
                ( ( member_a @ Y4 @ ( set_a2 @ Zs2 ) )
               => ~ ( P2 @ Y4 ) ) ) ) ) ).

% split_list_last_prop_iff
thf(fact_522_split__list__last__prop__iff,axiom,
    ! [Xs: list_set_a,P2: set_a > $o] :
      ( ( ? [X2: set_a] :
            ( ( member_set_a @ X2 @ ( set_set_a2 @ Xs ) )
            & ( P2 @ X2 ) ) )
      = ( ? [Ys4: list_set_a,X2: set_a,Zs2: list_set_a] :
            ( ( Xs
              = ( append_set_a @ Ys4 @ ( cons_set_a @ X2 @ Zs2 ) ) )
            & ( P2 @ X2 )
            & ! [Y4: set_a] :
                ( ( member_set_a @ Y4 @ ( set_set_a2 @ Zs2 ) )
               => ~ ( P2 @ Y4 ) ) ) ) ) ).

% split_list_last_prop_iff
thf(fact_523_in__set__conv__decomp__first,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
      = ( ? [Ys4: list_a,Zs2: list_a] :
            ( ( Xs
              = ( append_a @ Ys4 @ ( cons_a @ X4 @ Zs2 ) ) )
            & ~ ( member_a @ X4 @ ( set_a2 @ Ys4 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_524_in__set__conv__decomp__first,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X4 @ ( set_set_a2 @ Xs ) )
      = ( ? [Ys4: list_set_a,Zs2: list_set_a] :
            ( ( Xs
              = ( append_set_a @ Ys4 @ ( cons_set_a @ X4 @ Zs2 ) ) )
            & ~ ( member_set_a @ X4 @ ( set_set_a2 @ Ys4 ) ) ) ) ) ).

% in_set_conv_decomp_first
thf(fact_525_in__set__conv__decomp__last,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
      = ( ? [Ys4: list_a,Zs2: list_a] :
            ( ( Xs
              = ( append_a @ Ys4 @ ( cons_a @ X4 @ Zs2 ) ) )
            & ~ ( member_a @ X4 @ ( set_a2 @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_526_in__set__conv__decomp__last,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X4 @ ( set_set_a2 @ Xs ) )
      = ( ? [Ys4: list_set_a,Zs2: list_set_a] :
            ( ( Xs
              = ( append_set_a @ Ys4 @ ( cons_set_a @ X4 @ Zs2 ) ) )
            & ~ ( member_set_a @ X4 @ ( set_set_a2 @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp_last
thf(fact_527_split__list__first__propE,axiom,
    ! [Xs: list_a,P2: a > $o] :
      ( ? [X: a] :
          ( ( member_a @ X @ ( set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ~ ! [Ys3: list_a,X3: a] :
            ( ? [Zs3: list_a] :
                ( Xs
                = ( append_a @ Ys3 @ ( cons_a @ X3 @ Zs3 ) ) )
           => ( ( P2 @ X3 )
             => ~ ! [Xa: a] :
                    ( ( member_a @ Xa @ ( set_a2 @ Ys3 ) )
                   => ~ ( P2 @ Xa ) ) ) ) ) ).

% split_list_first_propE
thf(fact_528_split__list__first__propE,axiom,
    ! [Xs: list_set_a,P2: set_a > $o] :
      ( ? [X: set_a] :
          ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ~ ! [Ys3: list_set_a,X3: set_a] :
            ( ? [Zs3: list_set_a] :
                ( Xs
                = ( append_set_a @ Ys3 @ ( cons_set_a @ X3 @ Zs3 ) ) )
           => ( ( P2 @ X3 )
             => ~ ! [Xa: set_a] :
                    ( ( member_set_a @ Xa @ ( set_set_a2 @ Ys3 ) )
                   => ~ ( P2 @ Xa ) ) ) ) ) ).

% split_list_first_propE
thf(fact_529_split__list__last__propE,axiom,
    ! [Xs: list_a,P2: a > $o] :
      ( ? [X: a] :
          ( ( member_a @ X @ ( set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ~ ! [Ys3: list_a,X3: a,Zs3: list_a] :
            ( ( Xs
              = ( append_a @ Ys3 @ ( cons_a @ X3 @ Zs3 ) ) )
           => ( ( P2 @ X3 )
             => ~ ! [Xa: a] :
                    ( ( member_a @ Xa @ ( set_a2 @ Zs3 ) )
                   => ~ ( P2 @ Xa ) ) ) ) ) ).

% split_list_last_propE
thf(fact_530_split__list__last__propE,axiom,
    ! [Xs: list_set_a,P2: set_a > $o] :
      ( ? [X: set_a] :
          ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ~ ! [Ys3: list_set_a,X3: set_a,Zs3: list_set_a] :
            ( ( Xs
              = ( append_set_a @ Ys3 @ ( cons_set_a @ X3 @ Zs3 ) ) )
           => ( ( P2 @ X3 )
             => ~ ! [Xa: set_a] :
                    ( ( member_set_a @ Xa @ ( set_set_a2 @ Zs3 ) )
                   => ~ ( P2 @ Xa ) ) ) ) ) ).

% split_list_last_propE
thf(fact_531_split__list__first__prop,axiom,
    ! [Xs: list_a,P2: a > $o] :
      ( ? [X: a] :
          ( ( member_a @ X @ ( set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ? [Ys3: list_a,X3: a] :
          ( ? [Zs3: list_a] :
              ( Xs
              = ( append_a @ Ys3 @ ( cons_a @ X3 @ Zs3 ) ) )
          & ( P2 @ X3 )
          & ! [Xa: a] :
              ( ( member_a @ Xa @ ( set_a2 @ Ys3 ) )
             => ~ ( P2 @ Xa ) ) ) ) ).

% split_list_first_prop
thf(fact_532_split__list__first__prop,axiom,
    ! [Xs: list_set_a,P2: set_a > $o] :
      ( ? [X: set_a] :
          ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ? [Ys3: list_set_a,X3: set_a] :
          ( ? [Zs3: list_set_a] :
              ( Xs
              = ( append_set_a @ Ys3 @ ( cons_set_a @ X3 @ Zs3 ) ) )
          & ( P2 @ X3 )
          & ! [Xa: set_a] :
              ( ( member_set_a @ Xa @ ( set_set_a2 @ Ys3 ) )
             => ~ ( P2 @ Xa ) ) ) ) ).

% split_list_first_prop
thf(fact_533_split__list__last__prop,axiom,
    ! [Xs: list_a,P2: a > $o] :
      ( ? [X: a] :
          ( ( member_a @ X @ ( set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ? [Ys3: list_a,X3: a,Zs3: list_a] :
          ( ( Xs
            = ( append_a @ Ys3 @ ( cons_a @ X3 @ Zs3 ) ) )
          & ( P2 @ X3 )
          & ! [Xa: a] :
              ( ( member_a @ Xa @ ( set_a2 @ Zs3 ) )
             => ~ ( P2 @ Xa ) ) ) ) ).

% split_list_last_prop
thf(fact_534_split__list__last__prop,axiom,
    ! [Xs: list_set_a,P2: set_a > $o] :
      ( ? [X: set_a] :
          ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ? [Ys3: list_set_a,X3: set_a,Zs3: list_set_a] :
          ( ( Xs
            = ( append_set_a @ Ys3 @ ( cons_set_a @ X3 @ Zs3 ) ) )
          & ( P2 @ X3 )
          & ! [Xa: set_a] :
              ( ( member_set_a @ Xa @ ( set_set_a2 @ Zs3 ) )
             => ~ ( P2 @ Xa ) ) ) ) ).

% split_list_last_prop
thf(fact_535_in__set__conv__decomp,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
      = ( ? [Ys4: list_a,Zs2: list_a] :
            ( Xs
            = ( append_a @ Ys4 @ ( cons_a @ X4 @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_536_in__set__conv__decomp,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X4 @ ( set_set_a2 @ Xs ) )
      = ( ? [Ys4: list_set_a,Zs2: list_set_a] :
            ( Xs
            = ( append_set_a @ Ys4 @ ( cons_set_a @ X4 @ Zs2 ) ) ) ) ) ).

% in_set_conv_decomp
thf(fact_537_append__Cons__eq__iff,axiom,
    ! [X4: a,Xs: list_a,Ys: list_a,Xs4: list_a,Ys6: list_a] :
      ( ~ ( member_a @ X4 @ ( set_a2 @ Xs ) )
     => ( ~ ( member_a @ X4 @ ( set_a2 @ Ys ) )
       => ( ( ( append_a @ Xs @ ( cons_a @ X4 @ Ys ) )
            = ( append_a @ Xs4 @ ( cons_a @ X4 @ Ys6 ) ) )
          = ( ( Xs = Xs4 )
            & ( Ys = Ys6 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_538_append__Cons__eq__iff,axiom,
    ! [X4: set_a,Xs: list_set_a,Ys: list_set_a,Xs4: list_set_a,Ys6: list_set_a] :
      ( ~ ( member_set_a @ X4 @ ( set_set_a2 @ Xs ) )
     => ( ~ ( member_set_a @ X4 @ ( set_set_a2 @ Ys ) )
       => ( ( ( append_set_a @ Xs @ ( cons_set_a @ X4 @ Ys ) )
            = ( append_set_a @ Xs4 @ ( cons_set_a @ X4 @ Ys6 ) ) )
          = ( ( Xs = Xs4 )
            & ( Ys = Ys6 ) ) ) ) ) ).

% append_Cons_eq_iff
thf(fact_539_split__list__propE,axiom,
    ! [Xs: list_a,P2: a > $o] :
      ( ? [X: a] :
          ( ( member_a @ X @ ( set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ~ ! [Ys3: list_a,X3: a] :
            ( ? [Zs3: list_a] :
                ( Xs
                = ( append_a @ Ys3 @ ( cons_a @ X3 @ Zs3 ) ) )
           => ~ ( P2 @ X3 ) ) ) ).

% split_list_propE
thf(fact_540_split__list__propE,axiom,
    ! [Xs: list_set_a,P2: set_a > $o] :
      ( ? [X: set_a] :
          ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ~ ! [Ys3: list_set_a,X3: set_a] :
            ( ? [Zs3: list_set_a] :
                ( Xs
                = ( append_set_a @ Ys3 @ ( cons_set_a @ X3 @ Zs3 ) ) )
           => ~ ( P2 @ X3 ) ) ) ).

% split_list_propE
thf(fact_541_split__list__first,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
     => ? [Ys3: list_a,Zs3: list_a] :
          ( ( Xs
            = ( append_a @ Ys3 @ ( cons_a @ X4 @ Zs3 ) ) )
          & ~ ( member_a @ X4 @ ( set_a2 @ Ys3 ) ) ) ) ).

% split_list_first
thf(fact_542_split__list__first,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X4 @ ( set_set_a2 @ Xs ) )
     => ? [Ys3: list_set_a,Zs3: list_set_a] :
          ( ( Xs
            = ( append_set_a @ Ys3 @ ( cons_set_a @ X4 @ Zs3 ) ) )
          & ~ ( member_set_a @ X4 @ ( set_set_a2 @ Ys3 ) ) ) ) ).

% split_list_first
thf(fact_543_split__list__prop,axiom,
    ! [Xs: list_a,P2: a > $o] :
      ( ? [X: a] :
          ( ( member_a @ X @ ( set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ? [Ys3: list_a,X3: a] :
          ( ? [Zs3: list_a] :
              ( Xs
              = ( append_a @ Ys3 @ ( cons_a @ X3 @ Zs3 ) ) )
          & ( P2 @ X3 ) ) ) ).

% split_list_prop
thf(fact_544_split__list__prop,axiom,
    ! [Xs: list_set_a,P2: set_a > $o] :
      ( ? [X: set_a] :
          ( ( member_set_a @ X @ ( set_set_a2 @ Xs ) )
          & ( P2 @ X ) )
     => ? [Ys3: list_set_a,X3: set_a] :
          ( ? [Zs3: list_set_a] :
              ( Xs
              = ( append_set_a @ Ys3 @ ( cons_set_a @ X3 @ Zs3 ) ) )
          & ( P2 @ X3 ) ) ) ).

% split_list_prop
thf(fact_545_split__list__last,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
     => ? [Ys3: list_a,Zs3: list_a] :
          ( ( Xs
            = ( append_a @ Ys3 @ ( cons_a @ X4 @ Zs3 ) ) )
          & ~ ( member_a @ X4 @ ( set_a2 @ Zs3 ) ) ) ) ).

% split_list_last
thf(fact_546_split__list__last,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X4 @ ( set_set_a2 @ Xs ) )
     => ? [Ys3: list_set_a,Zs3: list_set_a] :
          ( ( Xs
            = ( append_set_a @ Ys3 @ ( cons_set_a @ X4 @ Zs3 ) ) )
          & ~ ( member_set_a @ X4 @ ( set_set_a2 @ Zs3 ) ) ) ) ).

% split_list_last
thf(fact_547_split__list,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( member_a @ X4 @ ( set_a2 @ Xs ) )
     => ? [Ys3: list_a,Zs3: list_a] :
          ( Xs
          = ( append_a @ Ys3 @ ( cons_a @ X4 @ Zs3 ) ) ) ) ).

% split_list
thf(fact_548_split__list,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X4 @ ( set_set_a2 @ Xs ) )
     => ? [Ys3: list_set_a,Zs3: list_set_a] :
          ( Xs
          = ( append_set_a @ Ys3 @ ( cons_set_a @ X4 @ Zs3 ) ) ) ) ).

% split_list
thf(fact_549_ulgraph_Owalk__edges_Osimps_I1_J,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire6234387080713648494_set_a @ nil_set_a )
        = nil_set_set_a ) ) ).

% ulgraph.walk_edges.simps(1)
thf(fact_550_ulgraph_Owalk__edges_Osimps_I1_J,axiom,
    ! [Vertices: set_a,Edges: set_set_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire7337870655677353998dges_a @ nil_a )
        = nil_set_a ) ) ).

% ulgraph.walk_edges.simps(1)
thf(fact_551_distinct__singleton,axiom,
    ! [X4: a] : ( distinct_a @ ( cons_a @ X4 @ nil_a ) ) ).

% distinct_singleton
thf(fact_552_distinct__singleton,axiom,
    ! [X4: set_a] : ( distinct_set_a @ ( cons_set_a @ X4 @ nil_set_a ) ) ).

% distinct_singleton
thf(fact_553_ulgraph_Owalk__edges_Ocases,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,X4: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( X4 != nil_set_a )
       => ( ! [X3: set_a] :
              ( X4
             != ( cons_set_a @ X3 @ nil_set_a ) )
         => ~ ! [X3: set_a,Y2: set_a,Ys3: list_set_a] :
                ( X4
               != ( cons_set_a @ X3 @ ( cons_set_a @ Y2 @ Ys3 ) ) ) ) ) ) ).

% ulgraph.walk_edges.cases
thf(fact_554_ulgraph_Owalk__edges_Ocases,axiom,
    ! [Vertices: set_a,Edges: set_set_a,X4: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( X4 != nil_a )
       => ( ! [X3: a] :
              ( X4
             != ( cons_a @ X3 @ nil_a ) )
         => ~ ! [X3: a,Y2: a,Ys3: list_a] :
                ( X4
               != ( cons_a @ X3 @ ( cons_a @ Y2 @ Ys3 ) ) ) ) ) ) ).

% ulgraph.walk_edges.cases
thf(fact_555_distinct_Osimps_I2_J,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( distinct_a @ ( cons_a @ X4 @ Xs ) )
      = ( ~ ( member_a @ X4 @ ( set_a2 @ Xs ) )
        & ( distinct_a @ Xs ) ) ) ).

% distinct.simps(2)
thf(fact_556_distinct_Osimps_I2_J,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( distinct_set_a @ ( cons_set_a @ X4 @ Xs ) )
      = ( ~ ( member_set_a @ X4 @ ( set_set_a2 @ Xs ) )
        & ( distinct_set_a @ Xs ) ) ) ).

% distinct.simps(2)
thf(fact_557_Nil__tl,axiom,
    ! [Xs: list_a] :
      ( ( nil_a
        = ( tl_a @ Xs ) )
      = ( ( Xs = nil_a )
        | ? [X2: a] :
            ( Xs
            = ( cons_a @ X2 @ nil_a ) ) ) ) ).

% Nil_tl
thf(fact_558_Nil__tl,axiom,
    ! [Xs: list_set_a] :
      ( ( nil_set_a
        = ( tl_set_a @ Xs ) )
      = ( ( Xs = nil_set_a )
        | ? [X2: set_a] :
            ( Xs
            = ( cons_set_a @ X2 @ nil_set_a ) ) ) ) ).

% Nil_tl
thf(fact_559_tl__Nil,axiom,
    ! [Xs: list_a] :
      ( ( ( tl_a @ Xs )
        = nil_a )
      = ( ( Xs = nil_a )
        | ? [X2: a] :
            ( Xs
            = ( cons_a @ X2 @ nil_a ) ) ) ) ).

% tl_Nil
thf(fact_560_tl__Nil,axiom,
    ! [Xs: list_set_a] :
      ( ( ( tl_set_a @ Xs )
        = nil_set_a )
      = ( ( Xs = nil_set_a )
        | ? [X2: set_a] :
            ( Xs
            = ( cons_set_a @ X2 @ nil_set_a ) ) ) ) ).

% tl_Nil
thf(fact_561_last__ConsR,axiom,
    ! [Xs: list_a,X4: a] :
      ( ( Xs != nil_a )
     => ( ( last_a @ ( cons_a @ X4 @ Xs ) )
        = ( last_a @ Xs ) ) ) ).

% last_ConsR
thf(fact_562_last__ConsR,axiom,
    ! [Xs: list_set_a,X4: set_a] :
      ( ( Xs != nil_set_a )
     => ( ( last_set_a @ ( cons_set_a @ X4 @ Xs ) )
        = ( last_set_a @ Xs ) ) ) ).

% last_ConsR
thf(fact_563_last__ConsL,axiom,
    ! [Xs: list_a,X4: a] :
      ( ( Xs = nil_a )
     => ( ( last_a @ ( cons_a @ X4 @ Xs ) )
        = X4 ) ) ).

% last_ConsL
thf(fact_564_last__ConsL,axiom,
    ! [Xs: list_set_a,X4: set_a] :
      ( ( Xs = nil_set_a )
     => ( ( last_set_a @ ( cons_set_a @ X4 @ Xs ) )
        = X4 ) ) ).

% last_ConsL
thf(fact_565_last_Osimps,axiom,
    ! [Xs: list_a,X4: a] :
      ( ( ( Xs = nil_a )
       => ( ( last_a @ ( cons_a @ X4 @ Xs ) )
          = X4 ) )
      & ( ( Xs != nil_a )
       => ( ( last_a @ ( cons_a @ X4 @ Xs ) )
          = ( last_a @ Xs ) ) ) ) ).

% last.simps
thf(fact_566_last_Osimps,axiom,
    ! [Xs: list_set_a,X4: set_a] :
      ( ( ( Xs = nil_set_a )
       => ( ( last_set_a @ ( cons_set_a @ X4 @ Xs ) )
          = X4 ) )
      & ( ( Xs != nil_set_a )
       => ( ( last_set_a @ ( cons_set_a @ X4 @ Xs ) )
          = ( last_set_a @ Xs ) ) ) ) ).

% last.simps
thf(fact_567_ulgraph_Odistinct__edgesI,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,P: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( distinct_set_a @ P )
       => ( distinct_set_set_a @ ( undire6234387080713648494_set_a @ P ) ) ) ) ).

% ulgraph.distinct_edgesI
thf(fact_568_ulgraph_Odistinct__edgesI,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( distinct_a @ P )
       => ( distinct_set_a @ ( undire7337870655677353998dges_a @ P ) ) ) ) ).

% ulgraph.distinct_edgesI
thf(fact_569_ulgraph_Owalk__edges__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( rev_set_set_a @ ( undire6234387080713648494_set_a @ Xs ) )
        = ( undire6234387080713648494_set_a @ ( rev_set_a @ Xs ) ) ) ) ).

% ulgraph.walk_edges_rev
thf(fact_570_ulgraph_Owalk__edges__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( rev_set_a @ ( undire7337870655677353998dges_a @ Xs ) )
        = ( undire7337870655677353998dges_a @ ( rev_a @ Xs ) ) ) ) ).

% ulgraph.walk_edges_rev
thf(fact_571_ulgraph_Owalk__length__rev,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,P: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire4424681683220949296_set_a @ P )
        = ( undire4424681683220949296_set_a @ ( rev_set_a @ P ) ) ) ) ).

% ulgraph.walk_length_rev
thf(fact_572_ulgraph_Owalk__length__rev,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire8849074589633906640ngth_a @ P )
        = ( undire8849074589633906640ngth_a @ ( rev_a @ P ) ) ) ) ).

% ulgraph.walk_length_rev
thf(fact_573_not__distinct__decomp,axiom,
    ! [Ws: list_a] :
      ( ~ ( distinct_a @ Ws )
     => ? [Xs3: list_a,Ys3: list_a,Zs3: list_a,Y2: a] :
          ( Ws
          = ( append_a @ Xs3 @ ( append_a @ ( cons_a @ Y2 @ nil_a ) @ ( append_a @ Ys3 @ ( append_a @ ( cons_a @ Y2 @ nil_a ) @ Zs3 ) ) ) ) ) ) ).

% not_distinct_decomp
thf(fact_574_not__distinct__decomp,axiom,
    ! [Ws: list_set_a] :
      ( ~ ( distinct_set_a @ Ws )
     => ? [Xs3: list_set_a,Ys3: list_set_a,Zs3: list_set_a,Y2: set_a] :
          ( Ws
          = ( append_set_a @ Xs3 @ ( append_set_a @ ( cons_set_a @ Y2 @ nil_set_a ) @ ( append_set_a @ Ys3 @ ( append_set_a @ ( cons_set_a @ Y2 @ nil_set_a ) @ Zs3 ) ) ) ) ) ) ).

% not_distinct_decomp
thf(fact_575_not__distinct__conv__prefix,axiom,
    ! [As: list_a] :
      ( ( ~ ( distinct_a @ As ) )
      = ( ? [Xs5: list_a,Y4: a,Ys4: list_a] :
            ( ( member_a @ Y4 @ ( set_a2 @ Xs5 ) )
            & ( distinct_a @ Xs5 )
            & ( As
              = ( append_a @ Xs5 @ ( cons_a @ Y4 @ Ys4 ) ) ) ) ) ) ).

% not_distinct_conv_prefix
thf(fact_576_not__distinct__conv__prefix,axiom,
    ! [As: list_set_a] :
      ( ( ~ ( distinct_set_a @ As ) )
      = ( ? [Xs5: list_set_a,Y4: set_a,Ys4: list_set_a] :
            ( ( member_set_a @ Y4 @ ( set_set_a2 @ Xs5 ) )
            & ( distinct_set_a @ Xs5 )
            & ( As
              = ( append_set_a @ Xs5 @ ( cons_set_a @ Y4 @ Ys4 ) ) ) ) ) ) ).

% not_distinct_conv_prefix
thf(fact_577_rev_Osimps_I2_J,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( rev_a @ ( cons_a @ X4 @ Xs ) )
      = ( append_a @ ( rev_a @ Xs ) @ ( cons_a @ X4 @ nil_a ) ) ) ).

% rev.simps(2)
thf(fact_578_rev_Osimps_I2_J,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( rev_set_a @ ( cons_set_a @ X4 @ Xs ) )
      = ( append_set_a @ ( rev_set_a @ Xs ) @ ( cons_set_a @ X4 @ nil_set_a ) ) ) ).

% rev.simps(2)
thf(fact_579_ulgraph_Ois__walk__drop__hd,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Ys: list_set_a,Y: set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( Ys != nil_set_a )
       => ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ ( cons_set_a @ Y @ Ys ) )
         => ( undire3014741414213135564_set_a @ Vertices @ Edges @ Ys ) ) ) ) ).

% ulgraph.is_walk_drop_hd
thf(fact_580_ulgraph_Ois__walk__drop__hd,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Ys: list_a,Y: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( Ys != nil_a )
       => ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ ( cons_a @ Y @ Ys ) )
         => ( undire6133010728901294956walk_a @ Vertices @ Edges @ Ys ) ) ) ) ).

% ulgraph.is_walk_drop_hd
thf(fact_581_ulgraph_Ois__walk__singleton,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,U: set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( member_set_a @ U @ Vertices )
       => ( undire3014741414213135564_set_a @ Vertices @ Edges @ ( cons_set_a @ U @ nil_set_a ) ) ) ) ).

% ulgraph.is_walk_singleton
thf(fact_582_ulgraph_Ois__walk__singleton,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( member_a @ U @ Vertices )
       => ( undire6133010728901294956walk_a @ Vertices @ Edges @ ( cons_a @ U @ nil_a ) ) ) ) ).

% ulgraph.is_walk_singleton
thf(fact_583_list_Oexhaust__sel,axiom,
    ! [List: list_a] :
      ( ( List != nil_a )
     => ( List
        = ( cons_a @ ( hd_a @ List ) @ ( tl_a @ List ) ) ) ) ).

% list.exhaust_sel
thf(fact_584_list_Oexhaust__sel,axiom,
    ! [List: list_set_a] :
      ( ( List != nil_set_a )
     => ( List
        = ( cons_set_a @ ( hd_set_a @ List ) @ ( tl_set_a @ List ) ) ) ) ).

% list.exhaust_sel
thf(fact_585_ulgraph_Oconnecting__path__self,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,U: set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( member_set_a @ U @ Vertices )
       => ( connec7350987497872064604_set_a @ Vertices @ Edges @ U @ U @ ( cons_set_a @ U @ nil_set_a ) ) ) ) ).

% ulgraph.connecting_path_self
thf(fact_586_ulgraph_Oconnecting__path__self,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( member_a @ U @ Vertices )
       => ( connecting_path_a @ Vertices @ Edges @ U @ U @ ( cons_a @ U @ nil_a ) ) ) ) ).

% ulgraph.connecting_path_self
thf(fact_587_ulgraph_Ois__gen__path__trivial,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,X4: set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( member_set_a @ X4 @ Vertices )
       => ( undire7201326534205417136_set_a @ Vertices @ Edges @ ( cons_set_a @ X4 @ nil_set_a ) ) ) ) ).

% ulgraph.is_gen_path_trivial
thf(fact_588_ulgraph_Ois__gen__path__trivial,axiom,
    ! [Vertices: set_a,Edges: set_set_a,X4: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( member_a @ X4 @ Vertices )
       => ( undire3562951555376170320path_a @ Vertices @ Edges @ ( cons_a @ X4 @ nil_a ) ) ) ) ).

% ulgraph.is_gen_path_trivial
thf(fact_589_ulgraph_Oconnecting__walk__self,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,U: set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( member_set_a @ U @ Vertices )
       => ( connec1530789871921280536_set_a @ Vertices @ Edges @ U @ U @ ( cons_set_a @ U @ nil_set_a ) ) ) ) ).

% ulgraph.connecting_walk_self
thf(fact_590_ulgraph_Oconnecting__walk__self,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( member_a @ U @ Vertices )
       => ( connecting_walk_a @ Vertices @ Edges @ U @ U @ ( cons_a @ U @ nil_a ) ) ) ) ).

% ulgraph.connecting_walk_self
thf(fact_591_ulgraph_Ois__trail__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire7142031287334043199rail_a @ Vertices @ Edges @ Xs )
        = ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
          & ( distinct_set_a @ ( undire7337870655677353998dges_a @ Xs ) ) ) ) ) ).

% ulgraph.is_trail_def
thf(fact_592_ulgraph_Oconnecting__walk__path,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_walk_a @ Vertices @ Edges @ U @ V @ Xs )
       => ? [Ys3: list_a] :
            ( ( connecting_path_a @ Vertices @ Edges @ U @ V @ Ys3 )
            & ( ord_less_eq_nat @ ( undire8849074589633906640ngth_a @ Ys3 ) @ ( undire8849074589633906640ngth_a @ Xs ) ) ) ) ) ).

% ulgraph.connecting_walk_path
thf(fact_593_ulgraph_Ois__walk__decomp,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a,Y: set_a,Ys: list_set_a,Zs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ ( append_set_a @ Xs @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ ( append_set_a @ Ys @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ Zs ) ) ) ) )
       => ( undire3014741414213135564_set_a @ Vertices @ Edges @ ( append_set_a @ Xs @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ Zs ) ) ) ) ) ).

% ulgraph.is_walk_decomp
thf(fact_594_ulgraph_Ois__walk__decomp,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a,Y: a,Ys: list_a,Zs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ ( append_a @ Ys @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) )
       => ( undire6133010728901294956walk_a @ Vertices @ Edges @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) ) ).

% ulgraph.is_walk_decomp
thf(fact_595_ulgraph_Oconnecting__path__split,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,U: set_a,V: set_a,Xs: list_set_a,Z: set_a,Ys: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( connec7350987497872064604_set_a @ Vertices @ Edges @ U @ V @ Xs )
       => ( ( connec7350987497872064604_set_a @ Vertices @ Edges @ V @ Z @ Ys )
         => ~ ! [P3: list_set_a] :
                ( ( connec7350987497872064604_set_a @ Vertices @ Edges @ U @ Z @ P3 )
               => ~ ( ord_less_eq_nat @ ( undire4424681683220949296_set_a @ P3 ) @ ( undire4424681683220949296_set_a @ ( append_set_a @ Xs @ ( tl_set_a @ Ys ) ) ) ) ) ) ) ) ).

% ulgraph.connecting_path_split
thf(fact_596_ulgraph_Oconnecting__path__split,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a,Z: a,Ys: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_path_a @ Vertices @ Edges @ U @ V @ Xs )
       => ( ( connecting_path_a @ Vertices @ Edges @ V @ Z @ Ys )
         => ~ ! [P3: list_a] :
                ( ( connecting_path_a @ Vertices @ Edges @ U @ Z @ P3 )
               => ~ ( ord_less_eq_nat @ ( undire8849074589633906640ngth_a @ P3 ) @ ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ ( tl_a @ Ys ) ) ) ) ) ) ) ) ).

% ulgraph.connecting_path_split
thf(fact_597_ulgraph_Ois__gen__path__options,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,P: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire7201326534205417136_set_a @ Vertices @ Edges @ P )
        = ( ( undire797940137672299967_set_a @ Vertices @ Edges @ P )
          | ( undire8834939040163919632_set_a @ Vertices @ Edges @ P )
          | ? [X2: set_a] :
              ( ( member_set_a @ X2 @ Vertices )
              & ( P
                = ( cons_set_a @ X2 @ nil_set_a ) ) ) ) ) ) ).

% ulgraph.is_gen_path_options
thf(fact_598_ulgraph_Ois__gen__path__options,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire3562951555376170320path_a @ Vertices @ Edges @ P )
        = ( ( undire2407311113669455967ycle_a @ Vertices @ Edges @ P )
          | ( undire427332500224447920path_a @ Vertices @ Edges @ P )
          | ? [X2: a] :
              ( ( member_a @ X2 @ Vertices )
              & ( P
                = ( cons_a @ X2 @ nil_a ) ) ) ) ) ) ).

% ulgraph.is_gen_path_options
thf(fact_599_ulgraph_Ois__walkI,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ Xs ) @ Vertices )
       => ( ( ord_le5722252365846178494_set_a @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ Xs ) ) @ Edges )
         => ( ( Xs != nil_set_a )
           => ( undire3014741414213135564_set_a @ Vertices @ Edges @ Xs ) ) ) ) ) ).

% ulgraph.is_walkI
thf(fact_600_ulgraph_Ois__walkI,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ Vertices )
       => ( ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) @ Edges )
         => ( ( Xs != nil_a )
           => ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs ) ) ) ) ) ).

% ulgraph.is_walkI
thf(fact_601_ulgraph_Ois__walk__def,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ Xs )
        = ( ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ Xs ) @ Vertices )
          & ( ord_le5722252365846178494_set_a @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ Xs ) ) @ Edges )
          & ( Xs != nil_set_a ) ) ) ) ).

% ulgraph.is_walk_def
thf(fact_602_ulgraph_Ois__walk__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
        = ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ Vertices )
          & ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) @ Edges )
          & ( Xs != nil_a ) ) ) ) ).

% ulgraph.is_walk_def
thf(fact_603_is__cycle__alt,axiom,
    ! [Xs: list_a] :
      ( ( undire2407311113669455967ycle_a @ vertices @ edges @ Xs )
      = ( ( undire6133010728901294956walk_a @ vertices @ edges @ Xs )
        & ( distinct_a @ ( tl_a @ Xs ) )
        & ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ Xs ) )
        & ( ( hd_a @ Xs )
          = ( last_a @ Xs ) ) ) ) ).

% is_cycle_alt
thf(fact_604_is__cycle__def,axiom,
    ! [Xs: list_a] :
      ( ( undire2407311113669455967ycle_a @ vertices @ edges @ Xs )
      = ( ( undire3370724456595283424walk_a @ vertices @ edges @ Xs )
        & ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ Xs ) )
        & ( distinct_a @ ( tl_a @ Xs ) ) ) ) ).

% is_cycle_def
thf(fact_605_is__cycle__alt__gen__path,axiom,
    ! [Xs: list_a] :
      ( ( undire2407311113669455967ycle_a @ vertices @ edges @ Xs )
      = ( ( undire3562951555376170320path_a @ vertices @ edges @ Xs )
        & ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ Xs ) )
        & ( ( hd_a @ Xs )
          = ( last_a @ Xs ) ) ) ) ).

% is_cycle_alt_gen_path
thf(fact_606_that,axiom,
    ! [P: list_a] :
      ( ( connecting_path_a @ vertices @ edges @ u @ z @ P )
     => ( ( ord_less_eq_nat @ ( undire8849074589633906640ngth_a @ P ) @ ( plus_plus_nat @ ( undire8849074589633906640ngth_a @ xs ) @ ( undire8849074589633906640ngth_a @ ys ) ) )
       => thesis ) ) ).

% that
thf(fact_607_connecting__path__length__bound,axiom,
    ! [U: a,V: a,P: list_a] :
      ( ( U != V )
     => ( ( connecting_path_a @ vertices @ edges @ U @ V @ P )
       => ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ P ) ) ) ) ).

% connecting_path_length_bound
thf(fact_608_ulgraph_Ois__cycle__alt,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire797940137672299967_set_a @ Vertices @ Edges @ Xs )
        = ( ( undire3014741414213135564_set_a @ Vertices @ Edges @ Xs )
          & ( distinct_set_a @ ( tl_set_a @ Xs ) )
          & ( ord_less_eq_nat @ one_one_nat @ ( undire4424681683220949296_set_a @ Xs ) )
          & ( ( hd_set_a @ Xs )
            = ( last_set_a @ Xs ) ) ) ) ) ).

% ulgraph.is_cycle_alt
thf(fact_609_ulgraph_Ois__cycle__alt,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire2407311113669455967ycle_a @ Vertices @ Edges @ Xs )
        = ( ( undire6133010728901294956walk_a @ Vertices @ Edges @ Xs )
          & ( distinct_a @ ( tl_a @ Xs ) )
          & ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ Xs ) )
          & ( ( hd_a @ Xs )
            = ( last_a @ Xs ) ) ) ) ) ).

% ulgraph.is_cycle_alt
thf(fact_610_ulgraph_Ois__cycle__def,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire797940137672299967_set_a @ Vertices @ Edges @ Xs )
        = ( ( undire4100213446647512896_set_a @ Vertices @ Edges @ Xs )
          & ( ord_less_eq_nat @ one_one_nat @ ( undire4424681683220949296_set_a @ Xs ) )
          & ( distinct_set_a @ ( tl_set_a @ Xs ) ) ) ) ) ).

% ulgraph.is_cycle_def
thf(fact_611_ulgraph_Ois__cycle__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire2407311113669455967ycle_a @ Vertices @ Edges @ Xs )
        = ( ( undire3370724456595283424walk_a @ Vertices @ Edges @ Xs )
          & ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ Xs ) )
          & ( distinct_a @ ( tl_a @ Xs ) ) ) ) ) ).

% ulgraph.is_cycle_def
thf(fact_612_walk__length__app__ineq,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( undire8849074589633906640ngth_a @ Xs ) @ ( undire8849074589633906640ngth_a @ Ys ) ) @ ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ Ys ) ) )
      & ( ord_less_eq_nat @ ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ Ys ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( undire8849074589633906640ngth_a @ Xs ) @ ( undire8849074589633906640ngth_a @ Ys ) ) @ one_one_nat ) ) ) ).

% walk_length_app_ineq
thf(fact_613_walk__length__app,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( Ys != nil_a )
       => ( ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ Ys ) )
          = ( plus_plus_nat @ ( plus_plus_nat @ ( undire8849074589633906640ngth_a @ Xs ) @ ( undire8849074589633906640ngth_a @ Ys ) ) @ one_one_nat ) ) ) ) ).

% walk_length_app
thf(fact_614_comp__sgraph_Owalk__length__app,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( Xs != nil_set_a )
     => ( ( Ys != nil_set_a )
       => ( ( undire4424681683220949296_set_a @ ( append_set_a @ Xs @ Ys ) )
          = ( plus_plus_nat @ ( plus_plus_nat @ ( undire4424681683220949296_set_a @ Xs ) @ ( undire4424681683220949296_set_a @ Ys ) ) @ one_one_nat ) ) ) ) ).

% comp_sgraph.walk_length_app
thf(fact_615_comp__sgraph_Owalk__length__app,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( Ys != nil_a )
       => ( ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ Ys ) )
          = ( plus_plus_nat @ ( plus_plus_nat @ ( undire8849074589633906640ngth_a @ Xs ) @ ( undire8849074589633906640ngth_a @ Ys ) ) @ one_one_nat ) ) ) ) ).

% comp_sgraph.walk_length_app
thf(fact_616_comp__sgraph_Owalk__length__app__ineq,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( undire4424681683220949296_set_a @ Xs ) @ ( undire4424681683220949296_set_a @ Ys ) ) @ ( undire4424681683220949296_set_a @ ( append_set_a @ Xs @ Ys ) ) )
      & ( ord_less_eq_nat @ ( undire4424681683220949296_set_a @ ( append_set_a @ Xs @ Ys ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( undire4424681683220949296_set_a @ Xs ) @ ( undire4424681683220949296_set_a @ Ys ) ) @ one_one_nat ) ) ) ).

% comp_sgraph.walk_length_app_ineq
thf(fact_617_comp__sgraph_Owalk__length__app__ineq,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( undire8849074589633906640ngth_a @ Xs ) @ ( undire8849074589633906640ngth_a @ Ys ) ) @ ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ Ys ) ) )
      & ( ord_less_eq_nat @ ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ Ys ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( undire8849074589633906640ngth_a @ Xs ) @ ( undire8849074589633906640ngth_a @ Ys ) ) @ one_one_nat ) ) ) ).

% comp_sgraph.walk_length_app_ineq
thf(fact_618_ulgraph_Owalk__length__app,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a,Ys: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( Xs != nil_set_a )
       => ( ( Ys != nil_set_a )
         => ( ( undire4424681683220949296_set_a @ ( append_set_a @ Xs @ Ys ) )
            = ( plus_plus_nat @ ( plus_plus_nat @ ( undire4424681683220949296_set_a @ Xs ) @ ( undire4424681683220949296_set_a @ Ys ) ) @ one_one_nat ) ) ) ) ) ).

% ulgraph.walk_length_app
thf(fact_619_ulgraph_Owalk__length__app,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a,Ys: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( Xs != nil_a )
       => ( ( Ys != nil_a )
         => ( ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ Ys ) )
            = ( plus_plus_nat @ ( plus_plus_nat @ ( undire8849074589633906640ngth_a @ Xs ) @ ( undire8849074589633906640ngth_a @ Ys ) ) @ one_one_nat ) ) ) ) ) ).

% ulgraph.walk_length_app
thf(fact_620_ulgraph_Owalk__length__app__ineq,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Xs: list_set_a,Ys: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( undire4424681683220949296_set_a @ Xs ) @ ( undire4424681683220949296_set_a @ Ys ) ) @ ( undire4424681683220949296_set_a @ ( append_set_a @ Xs @ Ys ) ) )
        & ( ord_less_eq_nat @ ( undire4424681683220949296_set_a @ ( append_set_a @ Xs @ Ys ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( undire4424681683220949296_set_a @ Xs ) @ ( undire4424681683220949296_set_a @ Ys ) ) @ one_one_nat ) ) ) ) ).

% ulgraph.walk_length_app_ineq
thf(fact_621_ulgraph_Owalk__length__app__ineq,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a,Ys: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( undire8849074589633906640ngth_a @ Xs ) @ ( undire8849074589633906640ngth_a @ Ys ) ) @ ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ Ys ) ) )
        & ( ord_less_eq_nat @ ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ Ys ) ) @ ( plus_plus_nat @ ( plus_plus_nat @ ( undire8849074589633906640ngth_a @ Xs ) @ ( undire8849074589633906640ngth_a @ Ys ) ) @ one_one_nat ) ) ) ) ).

% ulgraph.walk_length_app_ineq
thf(fact_622_ulgraph_Oconnecting__path__length__bound,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( U != V )
       => ( ( connecting_path_a @ Vertices @ Edges @ U @ V @ P )
         => ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ P ) ) ) ) ) ).

% ulgraph.connecting_path_length_bound
thf(fact_623_ulgraph_Ois__cycle__alt__gen__path,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire2407311113669455967ycle_a @ Vertices @ Edges @ Xs )
        = ( ( undire3562951555376170320path_a @ Vertices @ Edges @ Xs )
          & ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ Xs ) )
          & ( ( hd_a @ Xs )
            = ( last_a @ Xs ) ) ) ) ) ).

% ulgraph.is_cycle_alt_gen_path
thf(fact_624_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_625_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_626_add__le__cancel__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_627_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_628_add__le__cancel__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
      = ( ord_less_eq_real @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_629_connecting__path__singleton,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ vertices @ edges @ U @ V @ Xs )
     => ( ( ( size_size_list_a @ Xs )
          = one_one_nat )
       => ( U = V ) ) ) ).

% connecting_path_singleton
thf(fact_630_comp__sgraph_Ois__cycle__alt,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire797940137672299967_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
      = ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
        & ( distinct_set_a @ ( tl_set_a @ Xs ) )
        & ( ord_less_eq_nat @ one_one_nat @ ( undire4424681683220949296_set_a @ Xs ) )
        & ( ( hd_set_a @ Xs )
          = ( last_set_a @ Xs ) ) ) ) ).

% comp_sgraph.is_cycle_alt
thf(fact_631_comp__sgraph_Ois__cycle__alt,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire2407311113669455967ycle_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
        & ( distinct_a @ ( tl_a @ Xs ) )
        & ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ Xs ) )
        & ( ( hd_a @ Xs )
          = ( last_a @ Xs ) ) ) ) ).

% comp_sgraph.is_cycle_alt
thf(fact_632_edge__density__commute,axiom,
    ! [X5: set_a,Y5: set_a] :
      ( ( undire297304480579013331sity_a @ edges @ X5 @ Y5 )
      = ( undire297304480579013331sity_a @ edges @ Y5 @ X5 ) ) ).

% edge_density_commute
thf(fact_633_append__eq__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a,Us2: list_a,Vs: list_a] :
      ( ( ( ( size_size_list_a @ Xs )
          = ( size_size_list_a @ Ys ) )
        | ( ( size_size_list_a @ Us2 )
          = ( size_size_list_a @ Vs ) ) )
     => ( ( ( append_a @ Xs @ Us2 )
          = ( append_a @ Ys @ Vs ) )
        = ( ( Xs = Ys )
          & ( Us2 = Vs ) ) ) ) ).

% append_eq_append_conv
thf(fact_634_append__eq__append__conv,axiom,
    ! [Xs: list_set_a,Ys: list_set_a,Us2: list_set_a,Vs: list_set_a] :
      ( ( ( ( size_size_list_set_a @ Xs )
          = ( size_size_list_set_a @ Ys ) )
        | ( ( size_size_list_set_a @ Us2 )
          = ( size_size_list_set_a @ Vs ) ) )
     => ( ( ( append_set_a @ Xs @ Us2 )
          = ( append_set_a @ Ys @ Vs ) )
        = ( ( Xs = Ys )
          & ( Us2 = Vs ) ) ) ) ).

% append_eq_append_conv
thf(fact_635_length__rev,axiom,
    ! [Xs: list_a] :
      ( ( size_size_list_a @ ( rev_a @ Xs ) )
      = ( size_size_list_a @ Xs ) ) ).

% length_rev
thf(fact_636_length__rev,axiom,
    ! [Xs: list_set_a] :
      ( ( size_size_list_set_a @ ( rev_set_a @ Xs ) )
      = ( size_size_list_set_a @ Xs ) ) ).

% length_rev
thf(fact_637_length__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( size_size_list_a @ ( append_a @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) ) ) ).

% length_append
thf(fact_638_length__append,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( size_size_list_set_a @ ( append_set_a @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_size_list_set_a @ Xs ) @ ( size_size_list_set_a @ Ys ) ) ) ).

% length_append
thf(fact_639_comp__sgraph_Oconnecting__path__singleton,axiom,
    ! [S: set_set_a,U: set_a,V: set_a,Xs: list_set_a] :
      ( ( connec7350987497872064604_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ U @ V @ Xs )
     => ( ( ( size_size_list_set_a @ Xs )
          = one_one_nat )
       => ( U = V ) ) ) ).

% comp_sgraph.connecting_path_singleton
thf(fact_640_comp__sgraph_Oconnecting__path__singleton,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
     => ( ( ( size_size_list_a @ Xs )
          = one_one_nat )
       => ( U = V ) ) ) ).

% comp_sgraph.connecting_path_singleton
thf(fact_641_comp__sgraph_Oedge__density__commute,axiom,
    ! [S: set_a,X5: set_a,Y5: set_a] :
      ( ( undire297304480579013331sity_a @ ( undire2918257014606996450dges_a @ S ) @ X5 @ Y5 )
      = ( undire297304480579013331sity_a @ ( undire2918257014606996450dges_a @ S ) @ Y5 @ X5 ) ) ).

% comp_sgraph.edge_density_commute
thf(fact_642_comp__sgraph_Oe__in__all__edges,axiom,
    ! [E: set_a,S: set_a] :
      ( ( member_set_a @ E @ ( undire2918257014606996450dges_a @ S ) )
     => ( member_set_a @ E @ ( undire2918257014606996450dges_a @ S ) ) ) ).

% comp_sgraph.e_in_all_edges
thf(fact_643_ulgraph_Oedge__density_Ocong,axiom,
    undire297304480579013331sity_a = undire297304480579013331sity_a ).

% ulgraph.edge_density.cong
thf(fact_644_neq__if__length__neq,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( size_size_list_a @ Xs )
       != ( size_size_list_a @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_645_neq__if__length__neq,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( ( size_size_list_set_a @ Xs )
       != ( size_size_list_set_a @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_646_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_a] :
      ( ( size_size_list_a @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_647_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_set_a] :
      ( ( size_size_list_set_a @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_648_comp__sgraph_Owellformed,axiom,
    ! [E: set_a,S: set_a] :
      ( ( member_set_a @ E @ ( undire2918257014606996450dges_a @ S ) )
     => ( ord_less_eq_set_a @ E @ S ) ) ).

% comp_sgraph.wellformed
thf(fact_649_comp__sgraph_Owellformed,axiom,
    ! [E: set_set_a,S: set_set_a] :
      ( ( member_set_set_a @ E @ ( undire8247866692393712962_set_a @ S ) )
     => ( ord_le3724670747650509150_set_a @ E @ S ) ) ).

% comp_sgraph.wellformed
thf(fact_650_comp__sgraph_Oe__in__all__edges__ss,axiom,
    ! [E: set_a,S: set_a,V3: set_a] :
      ( ( member_set_a @ E @ ( undire2918257014606996450dges_a @ S ) )
     => ( ( ord_less_eq_set_a @ E @ V3 )
       => ( ( ord_less_eq_set_a @ V3 @ S )
         => ( member_set_a @ E @ ( undire2918257014606996450dges_a @ V3 ) ) ) ) ) ).

% comp_sgraph.e_in_all_edges_ss
thf(fact_651_comp__sgraph_Oe__in__all__edges__ss,axiom,
    ! [E: set_set_a,S: set_set_a,V3: set_set_a] :
      ( ( member_set_set_a @ E @ ( undire8247866692393712962_set_a @ S ) )
     => ( ( ord_le3724670747650509150_set_a @ E @ V3 )
       => ( ( ord_le3724670747650509150_set_a @ V3 @ S )
         => ( member_set_set_a @ E @ ( undire8247866692393712962_set_a @ V3 ) ) ) ) ) ).

% comp_sgraph.e_in_all_edges_ss
thf(fact_652_comp__sgraph_Oulgraph__axioms,axiom,
    ! [S: set_a] : ( undire7251896706689453996raph_a @ S @ ( undire2918257014606996450dges_a @ S ) ) ).

% comp_sgraph.ulgraph_axioms
thf(fact_653_comp__sgraph_Owellformed__all__edges,axiom,
    ! [S: set_a] : ( ord_le3724670747650509150_set_a @ ( undire2918257014606996450dges_a @ S ) @ ( undire2918257014606996450dges_a @ S ) ) ).

% comp_sgraph.wellformed_all_edges
thf(fact_654_comp__sgraph_Ograph__system__axioms,axiom,
    ! [S: set_a] : ( undire2554140024507503526stem_a @ S @ ( undire2918257014606996450dges_a @ S ) ) ).

% comp_sgraph.graph_system_axioms
thf(fact_655_comp__sgraph_Osubgraph__complete,axiom,
    ! [S: set_a] : ( undire7103218114511261257raph_a @ S @ ( undire2918257014606996450dges_a @ S ) @ S @ ( undire2918257014606996450dges_a @ S ) ) ).

% comp_sgraph.subgraph_complete
thf(fact_656_comp__sgraph_Oinduced__edges__self,axiom,
    ! [S: set_a] :
      ( ( undire7777452895879145676dges_a @ ( undire2918257014606996450dges_a @ S ) @ S )
      = ( undire2918257014606996450dges_a @ S ) ) ).

% comp_sgraph.induced_edges_self
thf(fact_657_comp__sgraph_Oconnecting__walk__wf,axiom,
    ! [S: set_set_a,U: set_a,V: set_a,Xs: list_set_a] :
      ( ( connec1530789871921280536_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ U @ V @ Xs )
     => ( ( member_set_a @ U @ S )
        & ( member_set_a @ V @ S ) ) ) ).

% comp_sgraph.connecting_walk_wf
thf(fact_658_comp__sgraph_Oconnecting__walk__wf,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
     => ( ( member_a @ U @ S )
        & ( member_a @ V @ S ) ) ) ).

% comp_sgraph.connecting_walk_wf
thf(fact_659_comp__sgraph_Overt__adj__sym,axiom,
    ! [S: set_a,V1: a,V2: a] :
      ( ( undire397441198561214472_adj_a @ ( undire2918257014606996450dges_a @ S ) @ V1 @ V2 )
      = ( undire397441198561214472_adj_a @ ( undire2918257014606996450dges_a @ S ) @ V2 @ V1 ) ) ).

% comp_sgraph.vert_adj_sym
thf(fact_660_comp__sgraph_Overt__adj__imp__inV,axiom,
    ! [S: set_set_a,V1: set_a,V2: set_a] :
      ( ( undire3510646817838285160_set_a @ ( undire8247866692393712962_set_a @ S ) @ V1 @ V2 )
     => ( ( member_set_a @ V1 @ S )
        & ( member_set_a @ V2 @ S ) ) ) ).

% comp_sgraph.vert_adj_imp_inV
thf(fact_661_comp__sgraph_Overt__adj__imp__inV,axiom,
    ! [S: set_a,V1: a,V2: a] :
      ( ( undire397441198561214472_adj_a @ ( undire2918257014606996450dges_a @ S ) @ V1 @ V2 )
     => ( ( member_a @ V1 @ S )
        & ( member_a @ V2 @ S ) ) ) ).

% comp_sgraph.vert_adj_imp_inV
thf(fact_662_comp__sgraph_Oincident__edge__in__wf,axiom,
    ! [E: set_set_a,S: set_set_a,V: set_a] :
      ( ( member_set_set_a @ E @ ( undire8247866692393712962_set_a @ S ) )
     => ( ( undire2320338297334612420_set_a @ V @ E )
       => ( member_set_a @ V @ S ) ) ) ).

% comp_sgraph.incident_edge_in_wf
thf(fact_663_comp__sgraph_Oincident__edge__in__wf,axiom,
    ! [E: set_a,S: set_a,V: a] :
      ( ( member_set_a @ E @ ( undire2918257014606996450dges_a @ S ) )
     => ( ( undire1521409233611534436dent_a @ V @ E )
       => ( member_a @ V @ S ) ) ) ).

% comp_sgraph.incident_edge_in_wf
thf(fact_664_comp__sgraph_Ono__loops,axiom,
    ! [V: set_a,S: set_set_a] :
      ( ( member_set_a @ V @ S )
     => ~ ( undire5774735625301615776_set_a @ ( undire8247866692393712962_set_a @ S ) @ V ) ) ).

% comp_sgraph.no_loops
thf(fact_665_comp__sgraph_Ono__loops,axiom,
    ! [V: a,S: set_a] :
      ( ( member_a @ V @ S )
     => ~ ( undire3617971648856834880loop_a @ ( undire2918257014606996450dges_a @ S ) @ V ) ) ).

% comp_sgraph.no_loops
thf(fact_666_comp__sgraph_Ohas__loop__in__verts,axiom,
    ! [S: set_set_a,V: set_a] :
      ( ( undire5774735625301615776_set_a @ ( undire8247866692393712962_set_a @ S ) @ V )
     => ( member_set_a @ V @ S ) ) ).

% comp_sgraph.has_loop_in_verts
thf(fact_667_comp__sgraph_Ohas__loop__in__verts,axiom,
    ! [S: set_a,V: a] :
      ( ( undire3617971648856834880loop_a @ ( undire2918257014606996450dges_a @ S ) @ V )
     => ( member_a @ V @ S ) ) ).

% comp_sgraph.has_loop_in_verts
thf(fact_668_comp__sgraph_Oedge__adj__inE,axiom,
    ! [S: set_a,E1: set_a,E2: set_a] :
      ( ( undire4022703626023482010_adj_a @ ( undire2918257014606996450dges_a @ S ) @ E1 @ E2 )
     => ( ( member_set_a @ E1 @ ( undire2918257014606996450dges_a @ S ) )
        & ( member_set_a @ E2 @ ( undire2918257014606996450dges_a @ S ) ) ) ) ).

% comp_sgraph.edge_adj_inE
thf(fact_669_comp__sgraph_Oedge__adjacent__alt__def,axiom,
    ! [E1: set_set_a,S: set_set_a,E2: set_set_a] :
      ( ( member_set_set_a @ E1 @ ( undire8247866692393712962_set_a @ S ) )
     => ( ( member_set_set_a @ E2 @ ( undire8247866692393712962_set_a @ S ) )
       => ( ? [X: set_a] :
              ( ( member_set_a @ X @ S )
              & ( member_set_a @ X @ E1 )
              & ( member_set_a @ X @ E2 ) )
         => ( undire3485422320110889978_set_a @ ( undire8247866692393712962_set_a @ S ) @ E1 @ E2 ) ) ) ) ).

% comp_sgraph.edge_adjacent_alt_def
thf(fact_670_comp__sgraph_Oedge__adjacent__alt__def,axiom,
    ! [E1: set_a,S: set_a,E2: set_a] :
      ( ( member_set_a @ E1 @ ( undire2918257014606996450dges_a @ S ) )
     => ( ( member_set_a @ E2 @ ( undire2918257014606996450dges_a @ S ) )
       => ( ? [X: a] :
              ( ( member_a @ X @ S )
              & ( member_a @ X @ E1 )
              & ( member_a @ X @ E2 ) )
         => ( undire4022703626023482010_adj_a @ ( undire2918257014606996450dges_a @ S ) @ E1 @ E2 ) ) ) ) ).

% comp_sgraph.edge_adjacent_alt_def
thf(fact_671_ulgraph_Oedge__density__commute,axiom,
    ! [Vertices: set_a,Edges: set_set_a,X5: set_a,Y5: set_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire297304480579013331sity_a @ Edges @ X5 @ Y5 )
        = ( undire297304480579013331sity_a @ Edges @ Y5 @ X5 ) ) ) ).

% ulgraph.edge_density_commute
thf(fact_672_list__induct2,axiom,
    ! [Xs: list_a,Ys: list_a,P2: list_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( P2 @ nil_a @ nil_a )
       => ( ! [X3: a,Xs3: list_a,Y2: a,Ys3: list_a] :
              ( ( ( size_size_list_a @ Xs3 )
                = ( size_size_list_a @ Ys3 ) )
             => ( ( P2 @ Xs3 @ Ys3 )
               => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) ) )
         => ( P2 @ Xs @ Ys ) ) ) ) ).

% list_induct2
thf(fact_673_list__induct2,axiom,
    ! [Xs: list_a,Ys: list_set_a,P2: list_a > list_set_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_set_a @ Ys ) )
     => ( ( P2 @ nil_a @ nil_set_a )
       => ( ! [X3: a,Xs3: list_a,Y2: set_a,Ys3: list_set_a] :
              ( ( ( size_size_list_a @ Xs3 )
                = ( size_size_list_set_a @ Ys3 ) )
             => ( ( P2 @ Xs3 @ Ys3 )
               => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) ) ) )
         => ( P2 @ Xs @ Ys ) ) ) ) ).

% list_induct2
thf(fact_674_list__induct2,axiom,
    ! [Xs: list_set_a,Ys: list_a,P2: list_set_a > list_a > $o] :
      ( ( ( size_size_list_set_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( P2 @ nil_set_a @ nil_a )
       => ( ! [X3: set_a,Xs3: list_set_a,Y2: a,Ys3: list_a] :
              ( ( ( size_size_list_set_a @ Xs3 )
                = ( size_size_list_a @ Ys3 ) )
             => ( ( P2 @ Xs3 @ Ys3 )
               => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) ) ) )
         => ( P2 @ Xs @ Ys ) ) ) ) ).

% list_induct2
thf(fact_675_list__induct2,axiom,
    ! [Xs: list_set_a,Ys: list_set_a,P2: list_set_a > list_set_a > $o] :
      ( ( ( size_size_list_set_a @ Xs )
        = ( size_size_list_set_a @ Ys ) )
     => ( ( P2 @ nil_set_a @ nil_set_a )
       => ( ! [X3: set_a,Xs3: list_set_a,Y2: set_a,Ys3: list_set_a] :
              ( ( ( size_size_list_set_a @ Xs3 )
                = ( size_size_list_set_a @ Ys3 ) )
             => ( ( P2 @ Xs3 @ Ys3 )
               => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) ) ) )
         => ( P2 @ Xs @ Ys ) ) ) ) ).

% list_induct2
thf(fact_676_list__induct3,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,P2: list_a > list_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( P2 @ nil_a @ nil_a @ nil_a )
         => ( ! [X3: a,Xs3: list_a,Y2: a,Ys3: list_a,Z3: a,Zs3: list_a] :
                ( ( ( size_size_list_a @ Xs3 )
                  = ( size_size_list_a @ Ys3 ) )
               => ( ( ( size_size_list_a @ Ys3 )
                    = ( size_size_list_a @ Zs3 ) )
                 => ( ( P2 @ Xs3 @ Ys3 @ Zs3 )
                   => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_a @ Z3 @ Zs3 ) ) ) ) )
           => ( P2 @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_677_list__induct3,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_set_a,P2: list_a > list_a > list_set_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_set_a @ Zs ) )
       => ( ( P2 @ nil_a @ nil_a @ nil_set_a )
         => ( ! [X3: a,Xs3: list_a,Y2: a,Ys3: list_a,Z3: set_a,Zs3: list_set_a] :
                ( ( ( size_size_list_a @ Xs3 )
                  = ( size_size_list_a @ Ys3 ) )
               => ( ( ( size_size_list_a @ Ys3 )
                    = ( size_size_list_set_a @ Zs3 ) )
                 => ( ( P2 @ Xs3 @ Ys3 @ Zs3 )
                   => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_set_a @ Z3 @ Zs3 ) ) ) ) )
           => ( P2 @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_678_list__induct3,axiom,
    ! [Xs: list_a,Ys: list_set_a,Zs: list_a,P2: list_a > list_set_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_set_a @ Ys ) )
     => ( ( ( size_size_list_set_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( P2 @ nil_a @ nil_set_a @ nil_a )
         => ( ! [X3: a,Xs3: list_a,Y2: set_a,Ys3: list_set_a,Z3: a,Zs3: list_a] :
                ( ( ( size_size_list_a @ Xs3 )
                  = ( size_size_list_set_a @ Ys3 ) )
               => ( ( ( size_size_list_set_a @ Ys3 )
                    = ( size_size_list_a @ Zs3 ) )
                 => ( ( P2 @ Xs3 @ Ys3 @ Zs3 )
                   => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) @ ( cons_a @ Z3 @ Zs3 ) ) ) ) )
           => ( P2 @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_679_list__induct3,axiom,
    ! [Xs: list_a,Ys: list_set_a,Zs: list_set_a,P2: list_a > list_set_a > list_set_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_set_a @ Ys ) )
     => ( ( ( size_size_list_set_a @ Ys )
          = ( size_size_list_set_a @ Zs ) )
       => ( ( P2 @ nil_a @ nil_set_a @ nil_set_a )
         => ( ! [X3: a,Xs3: list_a,Y2: set_a,Ys3: list_set_a,Z3: set_a,Zs3: list_set_a] :
                ( ( ( size_size_list_a @ Xs3 )
                  = ( size_size_list_set_a @ Ys3 ) )
               => ( ( ( size_size_list_set_a @ Ys3 )
                    = ( size_size_list_set_a @ Zs3 ) )
                 => ( ( P2 @ Xs3 @ Ys3 @ Zs3 )
                   => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) @ ( cons_set_a @ Z3 @ Zs3 ) ) ) ) )
           => ( P2 @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_680_list__induct3,axiom,
    ! [Xs: list_set_a,Ys: list_a,Zs: list_a,P2: list_set_a > list_a > list_a > $o] :
      ( ( ( size_size_list_set_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( P2 @ nil_set_a @ nil_a @ nil_a )
         => ( ! [X3: set_a,Xs3: list_set_a,Y2: a,Ys3: list_a,Z3: a,Zs3: list_a] :
                ( ( ( size_size_list_set_a @ Xs3 )
                  = ( size_size_list_a @ Ys3 ) )
               => ( ( ( size_size_list_a @ Ys3 )
                    = ( size_size_list_a @ Zs3 ) )
                 => ( ( P2 @ Xs3 @ Ys3 @ Zs3 )
                   => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_a @ Z3 @ Zs3 ) ) ) ) )
           => ( P2 @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_681_list__induct3,axiom,
    ! [Xs: list_set_a,Ys: list_a,Zs: list_set_a,P2: list_set_a > list_a > list_set_a > $o] :
      ( ( ( size_size_list_set_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_set_a @ Zs ) )
       => ( ( P2 @ nil_set_a @ nil_a @ nil_set_a )
         => ( ! [X3: set_a,Xs3: list_set_a,Y2: a,Ys3: list_a,Z3: set_a,Zs3: list_set_a] :
                ( ( ( size_size_list_set_a @ Xs3 )
                  = ( size_size_list_a @ Ys3 ) )
               => ( ( ( size_size_list_a @ Ys3 )
                    = ( size_size_list_set_a @ Zs3 ) )
                 => ( ( P2 @ Xs3 @ Ys3 @ Zs3 )
                   => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_set_a @ Z3 @ Zs3 ) ) ) ) )
           => ( P2 @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_682_list__induct3,axiom,
    ! [Xs: list_set_a,Ys: list_set_a,Zs: list_a,P2: list_set_a > list_set_a > list_a > $o] :
      ( ( ( size_size_list_set_a @ Xs )
        = ( size_size_list_set_a @ Ys ) )
     => ( ( ( size_size_list_set_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( P2 @ nil_set_a @ nil_set_a @ nil_a )
         => ( ! [X3: set_a,Xs3: list_set_a,Y2: set_a,Ys3: list_set_a,Z3: a,Zs3: list_a] :
                ( ( ( size_size_list_set_a @ Xs3 )
                  = ( size_size_list_set_a @ Ys3 ) )
               => ( ( ( size_size_list_set_a @ Ys3 )
                    = ( size_size_list_a @ Zs3 ) )
                 => ( ( P2 @ Xs3 @ Ys3 @ Zs3 )
                   => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) @ ( cons_a @ Z3 @ Zs3 ) ) ) ) )
           => ( P2 @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_683_list__induct3,axiom,
    ! [Xs: list_set_a,Ys: list_set_a,Zs: list_set_a,P2: list_set_a > list_set_a > list_set_a > $o] :
      ( ( ( size_size_list_set_a @ Xs )
        = ( size_size_list_set_a @ Ys ) )
     => ( ( ( size_size_list_set_a @ Ys )
          = ( size_size_list_set_a @ Zs ) )
       => ( ( P2 @ nil_set_a @ nil_set_a @ nil_set_a )
         => ( ! [X3: set_a,Xs3: list_set_a,Y2: set_a,Ys3: list_set_a,Z3: set_a,Zs3: list_set_a] :
                ( ( ( size_size_list_set_a @ Xs3 )
                  = ( size_size_list_set_a @ Ys3 ) )
               => ( ( ( size_size_list_set_a @ Ys3 )
                    = ( size_size_list_set_a @ Zs3 ) )
                 => ( ( P2 @ Xs3 @ Ys3 @ Zs3 )
                   => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) @ ( cons_set_a @ Z3 @ Zs3 ) ) ) ) )
           => ( P2 @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_684_list__induct4,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,Ws: list_a,P2: list_a > list_a > list_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( ( size_size_list_a @ Zs )
            = ( size_size_list_a @ Ws ) )
         => ( ( P2 @ nil_a @ nil_a @ nil_a @ nil_a )
           => ( ! [X3: a,Xs3: list_a,Y2: a,Ys3: list_a,Z3: a,Zs3: list_a,W: a,Ws2: list_a] :
                  ( ( ( size_size_list_a @ Xs3 )
                    = ( size_size_list_a @ Ys3 ) )
                 => ( ( ( size_size_list_a @ Ys3 )
                      = ( size_size_list_a @ Zs3 ) )
                   => ( ( ( size_size_list_a @ Zs3 )
                        = ( size_size_list_a @ Ws2 ) )
                     => ( ( P2 @ Xs3 @ Ys3 @ Zs3 @ Ws2 )
                       => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_a @ Z3 @ Zs3 ) @ ( cons_a @ W @ Ws2 ) ) ) ) ) )
             => ( P2 @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_685_list__induct4,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,Ws: list_set_a,P2: list_a > list_a > list_a > list_set_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( ( size_size_list_a @ Zs )
            = ( size_size_list_set_a @ Ws ) )
         => ( ( P2 @ nil_a @ nil_a @ nil_a @ nil_set_a )
           => ( ! [X3: a,Xs3: list_a,Y2: a,Ys3: list_a,Z3: a,Zs3: list_a,W: set_a,Ws2: list_set_a] :
                  ( ( ( size_size_list_a @ Xs3 )
                    = ( size_size_list_a @ Ys3 ) )
                 => ( ( ( size_size_list_a @ Ys3 )
                      = ( size_size_list_a @ Zs3 ) )
                   => ( ( ( size_size_list_a @ Zs3 )
                        = ( size_size_list_set_a @ Ws2 ) )
                     => ( ( P2 @ Xs3 @ Ys3 @ Zs3 @ Ws2 )
                       => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_a @ Z3 @ Zs3 ) @ ( cons_set_a @ W @ Ws2 ) ) ) ) ) )
             => ( P2 @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_686_list__induct4,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_set_a,Ws: list_a,P2: list_a > list_a > list_set_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_set_a @ Zs ) )
       => ( ( ( size_size_list_set_a @ Zs )
            = ( size_size_list_a @ Ws ) )
         => ( ( P2 @ nil_a @ nil_a @ nil_set_a @ nil_a )
           => ( ! [X3: a,Xs3: list_a,Y2: a,Ys3: list_a,Z3: set_a,Zs3: list_set_a,W: a,Ws2: list_a] :
                  ( ( ( size_size_list_a @ Xs3 )
                    = ( size_size_list_a @ Ys3 ) )
                 => ( ( ( size_size_list_a @ Ys3 )
                      = ( size_size_list_set_a @ Zs3 ) )
                   => ( ( ( size_size_list_set_a @ Zs3 )
                        = ( size_size_list_a @ Ws2 ) )
                     => ( ( P2 @ Xs3 @ Ys3 @ Zs3 @ Ws2 )
                       => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_set_a @ Z3 @ Zs3 ) @ ( cons_a @ W @ Ws2 ) ) ) ) ) )
             => ( P2 @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_687_list__induct4,axiom,
    ! [Xs: list_a,Ys: list_set_a,Zs: list_a,Ws: list_a,P2: list_a > list_set_a > list_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_set_a @ Ys ) )
     => ( ( ( size_size_list_set_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( ( size_size_list_a @ Zs )
            = ( size_size_list_a @ Ws ) )
         => ( ( P2 @ nil_a @ nil_set_a @ nil_a @ nil_a )
           => ( ! [X3: a,Xs3: list_a,Y2: set_a,Ys3: list_set_a,Z3: a,Zs3: list_a,W: a,Ws2: list_a] :
                  ( ( ( size_size_list_a @ Xs3 )
                    = ( size_size_list_set_a @ Ys3 ) )
                 => ( ( ( size_size_list_set_a @ Ys3 )
                      = ( size_size_list_a @ Zs3 ) )
                   => ( ( ( size_size_list_a @ Zs3 )
                        = ( size_size_list_a @ Ws2 ) )
                     => ( ( P2 @ Xs3 @ Ys3 @ Zs3 @ Ws2 )
                       => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) @ ( cons_a @ Z3 @ Zs3 ) @ ( cons_a @ W @ Ws2 ) ) ) ) ) )
             => ( P2 @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_688_list__induct4,axiom,
    ! [Xs: list_set_a,Ys: list_a,Zs: list_a,Ws: list_a,P2: list_set_a > list_a > list_a > list_a > $o] :
      ( ( ( size_size_list_set_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( ( size_size_list_a @ Zs )
            = ( size_size_list_a @ Ws ) )
         => ( ( P2 @ nil_set_a @ nil_a @ nil_a @ nil_a )
           => ( ! [X3: set_a,Xs3: list_set_a,Y2: a,Ys3: list_a,Z3: a,Zs3: list_a,W: a,Ws2: list_a] :
                  ( ( ( size_size_list_set_a @ Xs3 )
                    = ( size_size_list_a @ Ys3 ) )
                 => ( ( ( size_size_list_a @ Ys3 )
                      = ( size_size_list_a @ Zs3 ) )
                   => ( ( ( size_size_list_a @ Zs3 )
                        = ( size_size_list_a @ Ws2 ) )
                     => ( ( P2 @ Xs3 @ Ys3 @ Zs3 @ Ws2 )
                       => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_a @ Z3 @ Zs3 ) @ ( cons_a @ W @ Ws2 ) ) ) ) ) )
             => ( P2 @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_689_list__induct4,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_set_a,Ws: list_set_a,P2: list_a > list_a > list_set_a > list_set_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_set_a @ Zs ) )
       => ( ( ( size_size_list_set_a @ Zs )
            = ( size_size_list_set_a @ Ws ) )
         => ( ( P2 @ nil_a @ nil_a @ nil_set_a @ nil_set_a )
           => ( ! [X3: a,Xs3: list_a,Y2: a,Ys3: list_a,Z3: set_a,Zs3: list_set_a,W: set_a,Ws2: list_set_a] :
                  ( ( ( size_size_list_a @ Xs3 )
                    = ( size_size_list_a @ Ys3 ) )
                 => ( ( ( size_size_list_a @ Ys3 )
                      = ( size_size_list_set_a @ Zs3 ) )
                   => ( ( ( size_size_list_set_a @ Zs3 )
                        = ( size_size_list_set_a @ Ws2 ) )
                     => ( ( P2 @ Xs3 @ Ys3 @ Zs3 @ Ws2 )
                       => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_set_a @ Z3 @ Zs3 ) @ ( cons_set_a @ W @ Ws2 ) ) ) ) ) )
             => ( P2 @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_690_list__induct4,axiom,
    ! [Xs: list_a,Ys: list_set_a,Zs: list_a,Ws: list_set_a,P2: list_a > list_set_a > list_a > list_set_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_set_a @ Ys ) )
     => ( ( ( size_size_list_set_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( ( size_size_list_a @ Zs )
            = ( size_size_list_set_a @ Ws ) )
         => ( ( P2 @ nil_a @ nil_set_a @ nil_a @ nil_set_a )
           => ( ! [X3: a,Xs3: list_a,Y2: set_a,Ys3: list_set_a,Z3: a,Zs3: list_a,W: set_a,Ws2: list_set_a] :
                  ( ( ( size_size_list_a @ Xs3 )
                    = ( size_size_list_set_a @ Ys3 ) )
                 => ( ( ( size_size_list_set_a @ Ys3 )
                      = ( size_size_list_a @ Zs3 ) )
                   => ( ( ( size_size_list_a @ Zs3 )
                        = ( size_size_list_set_a @ Ws2 ) )
                     => ( ( P2 @ Xs3 @ Ys3 @ Zs3 @ Ws2 )
                       => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) @ ( cons_a @ Z3 @ Zs3 ) @ ( cons_set_a @ W @ Ws2 ) ) ) ) ) )
             => ( P2 @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_691_list__induct4,axiom,
    ! [Xs: list_a,Ys: list_set_a,Zs: list_set_a,Ws: list_a,P2: list_a > list_set_a > list_set_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_set_a @ Ys ) )
     => ( ( ( size_size_list_set_a @ Ys )
          = ( size_size_list_set_a @ Zs ) )
       => ( ( ( size_size_list_set_a @ Zs )
            = ( size_size_list_a @ Ws ) )
         => ( ( P2 @ nil_a @ nil_set_a @ nil_set_a @ nil_a )
           => ( ! [X3: a,Xs3: list_a,Y2: set_a,Ys3: list_set_a,Z3: set_a,Zs3: list_set_a,W: a,Ws2: list_a] :
                  ( ( ( size_size_list_a @ Xs3 )
                    = ( size_size_list_set_a @ Ys3 ) )
                 => ( ( ( size_size_list_set_a @ Ys3 )
                      = ( size_size_list_set_a @ Zs3 ) )
                   => ( ( ( size_size_list_set_a @ Zs3 )
                        = ( size_size_list_a @ Ws2 ) )
                     => ( ( P2 @ Xs3 @ Ys3 @ Zs3 @ Ws2 )
                       => ( P2 @ ( cons_a @ X3 @ Xs3 ) @ ( cons_set_a @ Y2 @ Ys3 ) @ ( cons_set_a @ Z3 @ Zs3 ) @ ( cons_a @ W @ Ws2 ) ) ) ) ) )
             => ( P2 @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_692_list__induct4,axiom,
    ! [Xs: list_set_a,Ys: list_a,Zs: list_a,Ws: list_set_a,P2: list_set_a > list_a > list_a > list_set_a > $o] :
      ( ( ( size_size_list_set_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( ( size_size_list_a @ Zs )
            = ( size_size_list_set_a @ Ws ) )
         => ( ( P2 @ nil_set_a @ nil_a @ nil_a @ nil_set_a )
           => ( ! [X3: set_a,Xs3: list_set_a,Y2: a,Ys3: list_a,Z3: a,Zs3: list_a,W: set_a,Ws2: list_set_a] :
                  ( ( ( size_size_list_set_a @ Xs3 )
                    = ( size_size_list_a @ Ys3 ) )
                 => ( ( ( size_size_list_a @ Ys3 )
                      = ( size_size_list_a @ Zs3 ) )
                   => ( ( ( size_size_list_a @ Zs3 )
                        = ( size_size_list_set_a @ Ws2 ) )
                     => ( ( P2 @ Xs3 @ Ys3 @ Zs3 @ Ws2 )
                       => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_a @ Z3 @ Zs3 ) @ ( cons_set_a @ W @ Ws2 ) ) ) ) ) )
             => ( P2 @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_693_list__induct4,axiom,
    ! [Xs: list_set_a,Ys: list_a,Zs: list_set_a,Ws: list_a,P2: list_set_a > list_a > list_set_a > list_a > $o] :
      ( ( ( size_size_list_set_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_set_a @ Zs ) )
       => ( ( ( size_size_list_set_a @ Zs )
            = ( size_size_list_a @ Ws ) )
         => ( ( P2 @ nil_set_a @ nil_a @ nil_set_a @ nil_a )
           => ( ! [X3: set_a,Xs3: list_set_a,Y2: a,Ys3: list_a,Z3: set_a,Zs3: list_set_a,W: a,Ws2: list_a] :
                  ( ( ( size_size_list_set_a @ Xs3 )
                    = ( size_size_list_a @ Ys3 ) )
                 => ( ( ( size_size_list_a @ Ys3 )
                      = ( size_size_list_set_a @ Zs3 ) )
                   => ( ( ( size_size_list_set_a @ Zs3 )
                        = ( size_size_list_a @ Ws2 ) )
                     => ( ( P2 @ Xs3 @ Ys3 @ Zs3 @ Ws2 )
                       => ( P2 @ ( cons_set_a @ X3 @ Xs3 ) @ ( cons_a @ Y2 @ Ys3 ) @ ( cons_set_a @ Z3 @ Zs3 ) @ ( cons_a @ W @ Ws2 ) ) ) ) ) )
             => ( P2 @ Xs @ Ys @ Zs @ Ws ) ) ) ) ) ) ).

% list_induct4
thf(fact_694_impossible__Cons,axiom,
    ! [Xs: list_a,Ys: list_a,X4: a] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) )
     => ( Xs
       != ( cons_a @ X4 @ Ys ) ) ) ).

% impossible_Cons
thf(fact_695_impossible__Cons,axiom,
    ! [Xs: list_set_a,Ys: list_set_a,X4: set_a] :
      ( ( ord_less_eq_nat @ ( size_size_list_set_a @ Xs ) @ ( size_size_list_set_a @ Ys ) )
     => ( Xs
       != ( cons_set_a @ X4 @ Ys ) ) ) ).

% impossible_Cons
thf(fact_696_all__edges__mono,axiom,
    ! [Vs: set_a,Ws: set_a] :
      ( ( ord_less_eq_set_a @ Vs @ Ws )
     => ( ord_le3724670747650509150_set_a @ ( undire2918257014606996450dges_a @ Vs ) @ ( undire2918257014606996450dges_a @ Ws ) ) ) ).

% all_edges_mono
thf(fact_697_all__edges__mono,axiom,
    ! [Vs: set_set_a,Ws: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ Vs @ Ws )
     => ( ord_le5722252365846178494_set_a @ ( undire8247866692393712962_set_a @ Vs ) @ ( undire8247866692393712962_set_a @ Ws ) ) ) ).

% all_edges_mono
thf(fact_698_comp__sgraph_Ois__walk__not__empty,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
     => ( Xs != nil_set_a ) ) ).

% comp_sgraph.is_walk_not_empty
thf(fact_699_comp__sgraph_Ois__walk__not__empty,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
     => ( Xs != nil_a ) ) ).

% comp_sgraph.is_walk_not_empty
thf(fact_700_comp__sgraph_Ois__walk__not__empty2,axiom,
    ! [S: set_set_a] :
      ~ ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ nil_set_a ) ).

% comp_sgraph.is_walk_not_empty2
thf(fact_701_comp__sgraph_Ois__walk__not__empty2,axiom,
    ! [S: set_a] :
      ~ ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ nil_a ) ).

% comp_sgraph.is_walk_not_empty2
thf(fact_702_comp__sgraph_Ois__walk__rev,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
      = ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( rev_set_a @ Xs ) ) ) ).

% comp_sgraph.is_walk_rev
thf(fact_703_comp__sgraph_Ois__walk__rev,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( rev_a @ Xs ) ) ) ).

% comp_sgraph.is_walk_rev
thf(fact_704_comp__sgraph_Ois__walk__wf__hd,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
     => ( member_set_a @ ( hd_set_a @ Xs ) @ S ) ) ).

% comp_sgraph.is_walk_wf_hd
thf(fact_705_comp__sgraph_Ois__walk__wf__hd,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
     => ( member_a @ ( hd_a @ Xs ) @ S ) ) ).

% comp_sgraph.is_walk_wf_hd
thf(fact_706_comp__sgraph_Ois__walk__wf__last,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
     => ( member_set_a @ ( last_set_a @ Xs ) @ S ) ) ).

% comp_sgraph.is_walk_wf_last
thf(fact_707_comp__sgraph_Ois__walk__wf__last,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
     => ( member_a @ ( last_a @ Xs ) @ S ) ) ).

% comp_sgraph.is_walk_wf_last
thf(fact_708_comp__sgraph_Oconnecting__path__rev,axiom,
    ! [S: set_set_a,U: set_a,V: set_a,Xs: list_set_a] :
      ( ( connec7350987497872064604_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ U @ V @ Xs )
      = ( connec7350987497872064604_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ V @ U @ ( rev_set_a @ Xs ) ) ) ).

% comp_sgraph.connecting_path_rev
thf(fact_709_comp__sgraph_Oconnecting__path__rev,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
      = ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ V @ U @ ( rev_a @ Xs ) ) ) ).

% comp_sgraph.connecting_path_rev
thf(fact_710_comp__sgraph_Ois__gen__path__rev,axiom,
    ! [S: set_set_a,P: list_set_a] :
      ( ( undire7201326534205417136_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ P )
      = ( undire7201326534205417136_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( rev_set_a @ P ) ) ) ).

% comp_sgraph.is_gen_path_rev
thf(fact_711_comp__sgraph_Ois__gen__path__rev,axiom,
    ! [S: set_a,P: list_a] :
      ( ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P )
      = ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( rev_a @ P ) ) ) ).

% comp_sgraph.is_gen_path_rev
thf(fact_712_comp__sgraph_Ois__cycle__rev,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire797940137672299967_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
      = ( undire797940137672299967_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( rev_set_a @ Xs ) ) ) ).

% comp_sgraph.is_cycle_rev
thf(fact_713_comp__sgraph_Ois__cycle__rev,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire2407311113669455967ycle_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( undire2407311113669455967ycle_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( rev_a @ Xs ) ) ) ).

% comp_sgraph.is_cycle_rev
thf(fact_714_comp__sgraph_Oconnecting__walk__rev,axiom,
    ! [S: set_set_a,U: set_a,V: set_a,Xs: list_set_a] :
      ( ( connec1530789871921280536_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ U @ V @ Xs )
      = ( connec1530789871921280536_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ V @ U @ ( rev_set_a @ Xs ) ) ) ).

% comp_sgraph.connecting_walk_rev
thf(fact_715_comp__sgraph_Oconnecting__walk__rev,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
      = ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ V @ U @ ( rev_a @ Xs ) ) ) ).

% comp_sgraph.connecting_walk_rev
thf(fact_716_comp__sgraph_Ois__path__rev,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire8834939040163919632_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
      = ( undire8834939040163919632_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( rev_set_a @ Xs ) ) ) ).

% comp_sgraph.is_path_rev
thf(fact_717_comp__sgraph_Ois__path__rev,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire427332500224447920path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( undire427332500224447920path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( rev_a @ Xs ) ) ) ).

% comp_sgraph.is_path_rev
thf(fact_718_comp__sgraph_Ois__path__walk,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire427332500224447920path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
     => ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs ) ) ).

% comp_sgraph.is_path_walk
thf(fact_719_comp__sgraph_Oinduced__is__graph__sys,axiom,
    ! [V3: set_a,S: set_a] : ( undire2554140024507503526stem_a @ V3 @ ( undire7777452895879145676dges_a @ ( undire2918257014606996450dges_a @ S ) @ V3 ) ) ).

% comp_sgraph.induced_is_graph_sys
thf(fact_720_comp__sgraph_Oconnecting__path__walk,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
     => ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs ) ) ).

% comp_sgraph.connecting_path_walk
thf(fact_721_comp__sgraph_Ois__gen__path__cycle,axiom,
    ! [S: set_a,P: list_a] :
      ( ( undire2407311113669455967ycle_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P )
     => ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P ) ) ).

% comp_sgraph.is_gen_path_cycle
thf(fact_722_comp__sgraph_Ois__path__gen__path,axiom,
    ! [S: set_a,P: list_a] :
      ( ( undire427332500224447920path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P )
     => ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P ) ) ).

% comp_sgraph.is_path_gen_path
thf(fact_723_comp__sgraph_Overt__adj__edge__iff2,axiom,
    ! [V1: a,V2: a,S: set_a] :
      ( ( V1 != V2 )
     => ( ( undire397441198561214472_adj_a @ ( undire2918257014606996450dges_a @ S ) @ V1 @ V2 )
        = ( ? [X2: set_a] :
              ( ( member_set_a @ X2 @ ( undire2918257014606996450dges_a @ S ) )
              & ( undire1521409233611534436dent_a @ V1 @ X2 )
              & ( undire1521409233611534436dent_a @ V2 @ X2 ) ) ) ) ) ).

% comp_sgraph.vert_adj_edge_iff2
thf(fact_724_comp__sgraph_Ois__closed__walk__rev,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire4100213446647512896_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
      = ( undire4100213446647512896_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( rev_set_a @ Xs ) ) ) ).

% comp_sgraph.is_closed_walk_rev
thf(fact_725_comp__sgraph_Ois__closed__walk__rev,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire3370724456595283424walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( undire3370724456595283424walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( rev_a @ Xs ) ) ) ).

% comp_sgraph.is_closed_walk_rev
thf(fact_726_comp__sgraph_Ois__open__walk__rev,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire526879649183275522_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
      = ( undire526879649183275522_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( rev_set_a @ Xs ) ) ) ).

% comp_sgraph.is_open_walk_rev
thf(fact_727_comp__sgraph_Ois__open__walk__rev,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire2427028224930250914walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( undire2427028224930250914walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( rev_a @ Xs ) ) ) ).

% comp_sgraph.is_open_walk_rev
thf(fact_728_comp__sgraph_Ois__trail__rev,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire1224551742100448159_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
      = ( undire1224551742100448159_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( rev_set_a @ Xs ) ) ) ).

% comp_sgraph.is_trail_rev
thf(fact_729_comp__sgraph_Ois__trail__rev,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire7142031287334043199rail_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( undire7142031287334043199rail_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( rev_a @ Xs ) ) ) ).

% comp_sgraph.is_trail_rev
thf(fact_730_comp__sgraph_Ois__isolated__vertex__def,axiom,
    ! [S: set_set_a,V: set_a] :
      ( ( undire6879241558604981877_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ V )
      = ( ( member_set_a @ V @ S )
        & ! [X2: set_a] :
            ( ( member_set_a @ X2 @ S )
           => ~ ( undire3510646817838285160_set_a @ ( undire8247866692393712962_set_a @ S ) @ X2 @ V ) ) ) ) ).

% comp_sgraph.is_isolated_vertex_def
thf(fact_731_comp__sgraph_Ois__isolated__vertex__def,axiom,
    ! [S: set_a,V: a] :
      ( ( undire8931668460104145173rtex_a @ S @ ( undire2918257014606996450dges_a @ S ) @ V )
      = ( ( member_a @ V @ S )
        & ! [X2: a] :
            ( ( member_a @ X2 @ S )
           => ~ ( undire397441198561214472_adj_a @ ( undire2918257014606996450dges_a @ S ) @ X2 @ V ) ) ) ) ).

% comp_sgraph.is_isolated_vertex_def
thf(fact_732_comp__sgraph_Ois__isolated__vertex__edge,axiom,
    ! [S: set_a,V: a,E: set_a] :
      ( ( undire8931668460104145173rtex_a @ S @ ( undire2918257014606996450dges_a @ S ) @ V )
     => ( ( member_set_a @ E @ ( undire2918257014606996450dges_a @ S ) )
       => ~ ( undire1521409233611534436dent_a @ V @ E ) ) ) ).

% comp_sgraph.is_isolated_vertex_edge
thf(fact_733_comp__sgraph_Ois__isolated__vertex__no__loop,axiom,
    ! [S: set_a,V: a] :
      ( ( undire8931668460104145173rtex_a @ S @ ( undire2918257014606996450dges_a @ S ) @ V )
     => ~ ( undire3617971648856834880loop_a @ ( undire2918257014606996450dges_a @ S ) @ V ) ) ).

% comp_sgraph.is_isolated_vertex_no_loop
thf(fact_734_comp__sgraph_Oconnecting__path__str__gen,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connec3015921205769380621_str_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
     => ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs ) ) ).

% comp_sgraph.connecting_path_str_gen
thf(fact_735_same__length__different,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != Ys )
     => ( ( ( size_size_list_a @ Xs )
          = ( size_size_list_a @ Ys ) )
       => ? [Pre: list_a,X3: a,Xs2: list_a,Y2: a,Ys2: list_a] :
            ( ( X3 != Y2 )
            & ( Xs
              = ( append_a @ Pre @ ( append_a @ ( cons_a @ X3 @ nil_a ) @ Xs2 ) ) )
            & ( Ys
              = ( append_a @ Pre @ ( append_a @ ( cons_a @ Y2 @ nil_a ) @ Ys2 ) ) ) ) ) ) ).

% same_length_different
thf(fact_736_same__length__different,axiom,
    ! [Xs: list_set_a,Ys: list_set_a] :
      ( ( Xs != Ys )
     => ( ( ( size_size_list_set_a @ Xs )
          = ( size_size_list_set_a @ Ys ) )
       => ? [Pre: list_set_a,X3: set_a,Xs2: list_set_a,Y2: set_a,Ys2: list_set_a] :
            ( ( X3 != Y2 )
            & ( Xs
              = ( append_set_a @ Pre @ ( append_set_a @ ( cons_set_a @ X3 @ nil_set_a ) @ Xs2 ) ) )
            & ( Ys
              = ( append_set_a @ Pre @ ( append_set_a @ ( cons_set_a @ Y2 @ nil_set_a ) @ Ys2 ) ) ) ) ) ) ).

% same_length_different
thf(fact_737_comp__sgraph_Ois__walk__singleton,axiom,
    ! [U: set_a,S: set_set_a] :
      ( ( member_set_a @ U @ S )
     => ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( cons_set_a @ U @ nil_set_a ) ) ) ).

% comp_sgraph.is_walk_singleton
thf(fact_738_comp__sgraph_Ois__walk__singleton,axiom,
    ! [U: a,S: set_a] :
      ( ( member_a @ U @ S )
     => ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( cons_a @ U @ nil_a ) ) ) ).

% comp_sgraph.is_walk_singleton
thf(fact_739_comp__sgraph_Ois__walk__drop__hd,axiom,
    ! [Ys: list_set_a,S: set_set_a,Y: set_a] :
      ( ( Ys != nil_set_a )
     => ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( cons_set_a @ Y @ Ys ) )
       => ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Ys ) ) ) ).

% comp_sgraph.is_walk_drop_hd
thf(fact_740_comp__sgraph_Ois__walk__drop__hd,axiom,
    ! [Ys: list_a,S: set_a,Y: a] :
      ( ( Ys != nil_a )
     => ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( cons_a @ Y @ Ys ) )
       => ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Ys ) ) ) ).

% comp_sgraph.is_walk_drop_hd
thf(fact_741_comp__sgraph_Ois__walk__wf,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
     => ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ Xs ) @ S ) ) ).

% comp_sgraph.is_walk_wf
thf(fact_742_comp__sgraph_Ois__walk__wf,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
     => ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ S ) ) ).

% comp_sgraph.is_walk_wf
thf(fact_743_comp__sgraph_Oconnecting__path__self,axiom,
    ! [U: set_a,S: set_set_a] :
      ( ( member_set_a @ U @ S )
     => ( connec7350987497872064604_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ U @ U @ ( cons_set_a @ U @ nil_set_a ) ) ) ).

% comp_sgraph.connecting_path_self
thf(fact_744_comp__sgraph_Oconnecting__path__self,axiom,
    ! [U: a,S: set_a] :
      ( ( member_a @ U @ S )
     => ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ U @ ( cons_a @ U @ nil_a ) ) ) ).

% comp_sgraph.connecting_path_self
thf(fact_745_comp__sgraph_Ois__gen__path__trivial,axiom,
    ! [X4: set_a,S: set_set_a] :
      ( ( member_set_a @ X4 @ S )
     => ( undire7201326534205417136_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( cons_set_a @ X4 @ nil_set_a ) ) ) ).

% comp_sgraph.is_gen_path_trivial
thf(fact_746_comp__sgraph_Ois__gen__path__trivial,axiom,
    ! [X4: a,S: set_a] :
      ( ( member_a @ X4 @ S )
     => ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( cons_a @ X4 @ nil_a ) ) ) ).

% comp_sgraph.is_gen_path_trivial
thf(fact_747_comp__sgraph_Oconnecting__walk__self,axiom,
    ! [U: set_a,S: set_set_a] :
      ( ( member_set_a @ U @ S )
     => ( connec1530789871921280536_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ U @ U @ ( cons_set_a @ U @ nil_set_a ) ) ) ).

% comp_sgraph.connecting_walk_self
thf(fact_748_comp__sgraph_Oconnecting__walk__self,axiom,
    ! [U: a,S: set_a] :
      ( ( member_a @ U @ S )
     => ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ U @ ( cons_a @ U @ nil_a ) ) ) ).

% comp_sgraph.connecting_walk_self
thf(fact_749_comp__sgraph_Oinduced__edges__ss,axiom,
    ! [V3: set_set_a,S: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ V3 @ S )
     => ( ord_le5722252365846178494_set_a @ ( undire7854589003810675244_set_a @ ( undire8247866692393712962_set_a @ S ) @ V3 ) @ ( undire8247866692393712962_set_a @ S ) ) ) ).

% comp_sgraph.induced_edges_ss
thf(fact_750_comp__sgraph_Oinduced__edges__ss,axiom,
    ! [V3: set_a,S: set_a] :
      ( ( ord_less_eq_set_a @ V3 @ S )
     => ( ord_le3724670747650509150_set_a @ ( undire7777452895879145676dges_a @ ( undire2918257014606996450dges_a @ S ) @ V3 ) @ ( undire2918257014606996450dges_a @ S ) ) ) ).

% comp_sgraph.induced_edges_ss
thf(fact_751_ulgraph_Oconnecting__path__singleton,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,U: set_a,V: set_a,Xs: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( connec7350987497872064604_set_a @ Vertices @ Edges @ U @ V @ Xs )
       => ( ( ( size_size_list_set_a @ Xs )
            = one_one_nat )
         => ( U = V ) ) ) ) ).

% ulgraph.connecting_path_singleton
thf(fact_752_ulgraph_Oconnecting__path__singleton,axiom,
    ! [Vertices: set_a,Edges: set_set_a,U: a,V: a,Xs: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( connecting_path_a @ Vertices @ Edges @ U @ V @ Xs )
       => ( ( ( size_size_list_a @ Xs )
            = one_one_nat )
         => ( U = V ) ) ) ) ).

% ulgraph.connecting_path_singleton
thf(fact_753_comp__sgraph_Oconnecting__walk__split,axiom,
    ! [S: set_set_a,U: set_a,V: set_a,Xs: list_set_a,Z: set_a,Ys: list_set_a] :
      ( ( connec1530789871921280536_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ U @ V @ Xs )
     => ( ( connec1530789871921280536_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ V @ Z @ Ys )
       => ( connec1530789871921280536_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ U @ Z @ ( append_set_a @ Xs @ ( tl_set_a @ Ys ) ) ) ) ) ).

% comp_sgraph.connecting_walk_split
thf(fact_754_comp__sgraph_Oconnecting__walk__split,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a,Z: a,Ys: list_a] :
      ( ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
     => ( ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ V @ Z @ Ys )
       => ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ Z @ ( append_a @ Xs @ ( tl_a @ Ys ) ) ) ) ) ).

% comp_sgraph.connecting_walk_split
thf(fact_755_Nat_Oex__has__greatest__nat,axiom,
    ! [P2: nat > $o,K: nat,B: nat] :
      ( ( P2 @ K )
     => ( ! [Y2: nat] :
            ( ( P2 @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B ) )
       => ? [X3: nat] :
            ( ( P2 @ X3 )
            & ! [Y6: nat] :
                ( ( P2 @ Y6 )
               => ( ord_less_eq_nat @ Y6 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_756_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_757_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_758_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_759_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_760_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_761_comp__sgraph_Oinduced__is__subgraph,axiom,
    ! [V3: set_set_a,S: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ V3 @ S )
     => ( undire1186139521737116585_set_a @ V3 @ ( undire7854589003810675244_set_a @ ( undire8247866692393712962_set_a @ S ) @ V3 ) @ S @ ( undire8247866692393712962_set_a @ S ) ) ) ).

% comp_sgraph.induced_is_subgraph
thf(fact_762_comp__sgraph_Oinduced__is__subgraph,axiom,
    ! [V3: set_a,S: set_a] :
      ( ( ord_less_eq_set_a @ V3 @ S )
     => ( undire7103218114511261257raph_a @ V3 @ ( undire7777452895879145676dges_a @ ( undire2918257014606996450dges_a @ S ) @ V3 ) @ S @ ( undire2918257014606996450dges_a @ S ) ) ) ).

% comp_sgraph.induced_is_subgraph
thf(fact_763_comp__sgraph_Oconnecting__path__alt__def,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
      = ( ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
        & ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs ) ) ) ).

% comp_sgraph.connecting_path_alt_def
thf(fact_764_comp__sgraph_Ois__path__def,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire8834939040163919632_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
      = ( ( undire526879649183275522_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
        & ( distinct_set_a @ Xs ) ) ) ).

% comp_sgraph.is_path_def
thf(fact_765_comp__sgraph_Ois__path__def,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire427332500224447920path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( ( undire2427028224930250914walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
        & ( distinct_a @ Xs ) ) ) ).

% comp_sgraph.is_path_def
thf(fact_766_comp__sgraph_Ois__walk__decomp,axiom,
    ! [S: set_set_a,Xs: list_set_a,Y: set_a,Ys: list_set_a,Zs: list_set_a] :
      ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( append_set_a @ Xs @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ ( append_set_a @ Ys @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ Zs ) ) ) ) )
     => ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( append_set_a @ Xs @ ( append_set_a @ ( cons_set_a @ Y @ nil_set_a ) @ Zs ) ) ) ) ).

% comp_sgraph.is_walk_decomp
thf(fact_767_comp__sgraph_Ois__walk__decomp,axiom,
    ! [S: set_a,Xs: list_a,Y: a,Ys: list_a,Zs: list_a] :
      ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ ( append_a @ Ys @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) )
     => ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( append_a @ Xs @ ( append_a @ ( cons_a @ Y @ nil_a ) @ Zs ) ) ) ) ).

% comp_sgraph.is_walk_decomp
thf(fact_768_last__in__list__set,axiom,
    ! [Xs: list_a] :
      ( ( ord_less_eq_nat @ one_one_nat @ ( size_size_list_a @ Xs ) )
     => ( member_a @ ( last_a @ Xs ) @ ( set_a2 @ Xs ) ) ) ).

% last_in_list_set
thf(fact_769_last__in__list__set,axiom,
    ! [Xs: list_set_a] :
      ( ( ord_less_eq_nat @ one_one_nat @ ( size_size_list_set_a @ Xs ) )
     => ( member_set_a @ ( last_set_a @ Xs ) @ ( set_set_a2 @ Xs ) ) ) ).

% last_in_list_set
thf(fact_770_comp__sgraph_Oconnecting__path__length__bound,axiom,
    ! [U: a,V: a,S: set_a,P: list_a] :
      ( ( U != V )
     => ( ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ P )
       => ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ P ) ) ) ) ).

% comp_sgraph.connecting_path_length_bound
thf(fact_771_comp__sgraph_Ois__gen__path__distinct,axiom,
    ! [S: set_set_a,P: list_set_a] :
      ( ( undire7201326534205417136_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ P )
     => ( ( ( hd_set_a @ P )
         != ( last_set_a @ P ) )
       => ( distinct_set_a @ P ) ) ) ).

% comp_sgraph.is_gen_path_distinct
thf(fact_772_comp__sgraph_Ois__gen__path__distinct,axiom,
    ! [S: set_a,P: list_a] :
      ( ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P )
     => ( ( ( hd_a @ P )
         != ( last_a @ P ) )
       => ( distinct_a @ P ) ) ) ).

% comp_sgraph.is_gen_path_distinct
thf(fact_773_comp__sgraph_Oconnecting__walk__path,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
     => ? [Ys3: list_a] :
          ( ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Ys3 )
          & ( ord_less_eq_nat @ ( undire8849074589633906640ngth_a @ Ys3 ) @ ( undire8849074589633906640ngth_a @ Xs ) ) ) ) ).

% comp_sgraph.connecting_walk_path
thf(fact_774_comp__sgraph_Oconnecting__walk__def,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connecting_walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
      = ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
        & ( ( hd_a @ Xs )
          = U )
        & ( ( last_a @ Xs )
          = V ) ) ) ).

% comp_sgraph.connecting_walk_def
thf(fact_775_comp__sgraph_Oconnecting__path__def,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
      = ( ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
        & ( ( hd_a @ Xs )
          = U )
        & ( ( last_a @ Xs )
          = V ) ) ) ).

% comp_sgraph.connecting_path_def
thf(fact_776_comp__sgraph_Ois__closed__walk__def,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire3370724456595283424walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
        & ( ( hd_a @ Xs )
          = ( last_a @ Xs ) ) ) ) ).

% comp_sgraph.is_closed_walk_def
thf(fact_777_comp__sgraph_Ois__open__walk__def,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire2427028224930250914walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
        & ( ( hd_a @ Xs )
         != ( last_a @ Xs ) ) ) ) ).

% comp_sgraph.is_open_walk_def
thf(fact_778_comp__sgraph_Oconnecting__path__str__def,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a] :
      ( ( connec3015921205769380621_str_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
      = ( ( undire427332500224447920path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
        & ( ( hd_a @ Xs )
          = U )
        & ( ( last_a @ Xs )
          = V ) ) ) ).

% comp_sgraph.connecting_path_str_def
thf(fact_779_comp__sgraph_Ois__trail__def,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire7142031287334043199rail_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
        & ( distinct_set_a @ ( undire7337870655677353998dges_a @ Xs ) ) ) ) ).

% comp_sgraph.is_trail_def
thf(fact_780_comp__sgraph_Oconnecting__path__split,axiom,
    ! [S: set_set_a,U: set_a,V: set_a,Xs: list_set_a,Z: set_a,Ys: list_set_a] :
      ( ( connec7350987497872064604_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ U @ V @ Xs )
     => ( ( connec7350987497872064604_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ V @ Z @ Ys )
       => ~ ! [P3: list_set_a] :
              ( ( connec7350987497872064604_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ U @ Z @ P3 )
             => ~ ( ord_less_eq_nat @ ( undire4424681683220949296_set_a @ P3 ) @ ( undire4424681683220949296_set_a @ ( append_set_a @ Xs @ ( tl_set_a @ Ys ) ) ) ) ) ) ) ).

% comp_sgraph.connecting_path_split
thf(fact_781_comp__sgraph_Oconnecting__path__split,axiom,
    ! [S: set_a,U: a,V: a,Xs: list_a,Z: a,Ys: list_a] :
      ( ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ V @ Xs )
     => ( ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ V @ Z @ Ys )
       => ~ ! [P3: list_a] :
              ( ( connecting_path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ U @ Z @ P3 )
             => ~ ( ord_less_eq_nat @ ( undire8849074589633906640ngth_a @ P3 ) @ ( undire8849074589633906640ngth_a @ ( append_a @ Xs @ ( tl_a @ Ys ) ) ) ) ) ) ) ).

% comp_sgraph.connecting_path_split
thf(fact_782_comp__sgraph_Ois__walk__append,axiom,
    ! [S: set_set_a,Xs: list_set_a,Ys: list_set_a] :
      ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
     => ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Ys )
       => ( ( ( last_set_a @ Xs )
            = ( hd_set_a @ Ys ) )
         => ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ ( append_set_a @ Xs @ ( tl_set_a @ Ys ) ) ) ) ) ) ).

% comp_sgraph.is_walk_append
thf(fact_783_comp__sgraph_Ois__walk__append,axiom,
    ! [S: set_a,Xs: list_a,Ys: list_a] :
      ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
     => ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Ys )
       => ( ( ( last_a @ Xs )
            = ( hd_a @ Ys ) )
         => ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ ( append_a @ Xs @ ( tl_a @ Ys ) ) ) ) ) ) ).

% comp_sgraph.is_walk_append
thf(fact_784_comp__sgraph_Ois__gen__path__distinct__tl,axiom,
    ! [S: set_set_a,P: list_set_a] :
      ( ( undire7201326534205417136_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ P )
     => ( ( ( hd_set_a @ P )
          = ( last_set_a @ P ) )
       => ( distinct_set_a @ ( tl_set_a @ P ) ) ) ) ).

% comp_sgraph.is_gen_path_distinct_tl
thf(fact_785_comp__sgraph_Ois__gen__path__distinct__tl,axiom,
    ! [S: set_a,P: list_a] :
      ( ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P )
     => ( ( ( hd_a @ P )
          = ( last_a @ P ) )
       => ( distinct_a @ ( tl_a @ P ) ) ) ) ).

% comp_sgraph.is_gen_path_distinct_tl
thf(fact_786_comp__sgraph_Ois__gen__path__options,axiom,
    ! [S: set_set_a,P: list_set_a] :
      ( ( undire7201326534205417136_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ P )
      = ( ( undire797940137672299967_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ P )
        | ( undire8834939040163919632_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ P )
        | ? [X2: set_a] :
            ( ( member_set_a @ X2 @ S )
            & ( P
              = ( cons_set_a @ X2 @ nil_set_a ) ) ) ) ) ).

% comp_sgraph.is_gen_path_options
thf(fact_787_comp__sgraph_Ois__gen__path__options,axiom,
    ! [S: set_a,P: list_a] :
      ( ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P )
      = ( ( undire2407311113669455967ycle_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P )
        | ( undire427332500224447920path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P )
        | ? [X2: a] :
            ( ( member_a @ X2 @ S )
            & ( P
              = ( cons_a @ X2 @ nil_a ) ) ) ) ) ).

% comp_sgraph.is_gen_path_options
thf(fact_788_comp__sgraph_Ois__gen__path__def,axiom,
    ! [S: set_set_a,P: list_set_a] :
      ( ( undire7201326534205417136_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ P )
      = ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ P )
        & ( ( ( distinct_set_a @ ( tl_set_a @ P ) )
            & ( ( hd_set_a @ P )
              = ( last_set_a @ P ) ) )
          | ( distinct_set_a @ P ) ) ) ) ).

% comp_sgraph.is_gen_path_def
thf(fact_789_comp__sgraph_Ois__gen__path__def,axiom,
    ! [S: set_a,P: list_a] :
      ( ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P )
      = ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ P )
        & ( ( ( distinct_a @ ( tl_a @ P ) )
            & ( ( hd_a @ P )
              = ( last_a @ P ) ) )
          | ( distinct_a @ P ) ) ) ) ).

% comp_sgraph.is_gen_path_def
thf(fact_790_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_791_add__le__imp__le__right,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_792_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_793_add__le__imp__le__left,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
     => ( ord_less_eq_real @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_794_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
        ? [C3: nat] :
          ( B3
          = ( plus_plus_nat @ A3 @ C3 ) ) ) ) ).

% le_iff_add
thf(fact_795_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_796_add__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).

% add_right_mono
thf(fact_797_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C4: nat] :
            ( B
           != ( plus_plus_nat @ A @ C4 ) ) ) ).

% less_eqE
thf(fact_798_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_799_add__left__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).

% add_left_mono
thf(fact_800_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_801_add__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_mono
thf(fact_802_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_803_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_804_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_805_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( I = J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_806_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_807_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_808_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_809_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_810_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_811_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_812_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_813_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N2: nat] :
          ( L
          = ( plus_plus_nat @ K @ N2 ) ) ) ).

% le_Suc_ex
thf(fact_814_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_815_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_816_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_817_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_818_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N3: nat] :
        ? [K2: nat] :
          ( N3
          = ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).

% nat_le_iff_add
thf(fact_819_comp__sgraph_Ois__walk__def,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
      = ( ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ Xs ) @ S )
        & ( ord_le5722252365846178494_set_a @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ Xs ) ) @ ( undire8247866692393712962_set_a @ S ) )
        & ( Xs != nil_set_a ) ) ) ).

% comp_sgraph.is_walk_def
thf(fact_820_comp__sgraph_Ois__walk__def,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ S )
        & ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) @ ( undire2918257014606996450dges_a @ S ) )
        & ( Xs != nil_a ) ) ) ).

% comp_sgraph.is_walk_def
thf(fact_821_comp__sgraph_Ois__walkI,axiom,
    ! [Xs: list_set_a,S: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ Xs ) @ S )
     => ( ( ord_le5722252365846178494_set_a @ ( set_set_set_a2 @ ( undire6234387080713648494_set_a @ Xs ) ) @ ( undire8247866692393712962_set_a @ S ) )
       => ( ( Xs != nil_set_a )
         => ( undire3014741414213135564_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs ) ) ) ) ).

% comp_sgraph.is_walkI
thf(fact_822_comp__sgraph_Ois__walkI,axiom,
    ! [Xs: list_a,S: set_a] :
      ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ S )
     => ( ( ord_le3724670747650509150_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) @ ( undire2918257014606996450dges_a @ S ) )
       => ( ( Xs != nil_a )
         => ( undire6133010728901294956walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs ) ) ) ) ).

% comp_sgraph.is_walkI
thf(fact_823_comp__sgraph_Ois__cycle__alt__gen__path,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire2407311113669455967ycle_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( ( undire3562951555376170320path_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
        & ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ Xs ) )
        & ( ( hd_a @ Xs )
          = ( last_a @ Xs ) ) ) ) ).

% comp_sgraph.is_cycle_alt_gen_path
thf(fact_824_comp__sgraph_Ois__cycle__def,axiom,
    ! [S: set_set_a,Xs: list_set_a] :
      ( ( undire797940137672299967_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
      = ( ( undire4100213446647512896_set_a @ S @ ( undire8247866692393712962_set_a @ S ) @ Xs )
        & ( ord_less_eq_nat @ one_one_nat @ ( undire4424681683220949296_set_a @ Xs ) )
        & ( distinct_set_a @ ( tl_set_a @ Xs ) ) ) ) ).

% comp_sgraph.is_cycle_def
thf(fact_825_comp__sgraph_Ois__cycle__def,axiom,
    ! [S: set_a,Xs: list_a] :
      ( ( undire2407311113669455967ycle_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
      = ( ( undire3370724456595283424walk_a @ S @ ( undire2918257014606996450dges_a @ S ) @ Xs )
        & ( ord_less_eq_nat @ one_one_nat @ ( undire8849074589633906640ngth_a @ Xs ) )
        & ( distinct_a @ ( tl_a @ Xs ) ) ) ) ).

% comp_sgraph.is_cycle_def
thf(fact_826_walk__length__conv,axiom,
    ( undire8849074589633906640ngth_a
    = ( ^ [P4: list_a] : ( minus_minus_nat @ ( size_size_list_a @ P4 ) @ one_one_nat ) ) ) ).

% walk_length_conv
thf(fact_827_edge__density__ge0,axiom,
    ! [X5: set_a,Y5: set_a] : ( ord_less_eq_real @ zero_zero_real @ ( undire297304480579013331sity_a @ edges @ X5 @ Y5 ) ) ).

% edge_density_ge0
thf(fact_828_edge__density__le1,axiom,
    ! [X5: set_a,Y5: set_a] : ( ord_less_eq_real @ ( undire297304480579013331sity_a @ edges @ X5 @ Y5 ) @ one_one_real ) ).

% edge_density_le1
thf(fact_829_the__elem__set,axiom,
    ! [X4: a] :
      ( ( the_elem_a @ ( set_a2 @ ( cons_a @ X4 @ nil_a ) ) )
      = X4 ) ).

% the_elem_set
thf(fact_830_the__elem__set,axiom,
    ! [X4: set_a] :
      ( ( the_elem_set_a @ ( set_set_a2 @ ( cons_set_a @ X4 @ nil_set_a ) ) )
      = X4 ) ).

% the_elem_set
thf(fact_831_list__set__tl,axiom,
    ! [X4: a,Xs: list_a] :
      ( ( member_a @ X4 @ ( set_a2 @ ( tl_a @ Xs ) ) )
     => ( member_a @ X4 @ ( set_a2 @ Xs ) ) ) ).

% list_set_tl
thf(fact_832_list__set__tl,axiom,
    ! [X4: set_a,Xs: list_set_a] :
      ( ( member_set_a @ X4 @ ( set_set_a2 @ ( tl_set_a @ Xs ) ) )
     => ( member_set_a @ X4 @ ( set_set_a2 @ Xs ) ) ) ).

% list_set_tl
thf(fact_833_walk__length__def,axiom,
    ( undire8849074589633906640ngth_a
    = ( ^ [P4: list_a] : ( size_size_list_set_a @ ( undire7337870655677353998dges_a @ P4 ) ) ) ) ).

% walk_length_def
thf(fact_834_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_835_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_836_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ A ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_837_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_838_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_839_le__add__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel2
thf(fact_840_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_841_le__add__same__cancel1,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
      = ( ord_less_eq_real @ zero_zero_real @ B ) ) ).

% le_add_same_cancel1
thf(fact_842_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_843_add__le__same__cancel2,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel2
thf(fact_844_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_845_add__le__same__cancel1,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
      = ( ord_less_eq_real @ A @ zero_zero_real ) ) ).

% add_le_same_cancel1
thf(fact_846_diff__ge__0__iff__ge,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
      = ( ord_less_eq_real @ B @ A ) ) ).

% diff_ge_0_iff_ge
thf(fact_847_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_848_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_849_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_850_length__tl,axiom,
    ! [Xs: list_a] :
      ( ( size_size_list_a @ ( tl_a @ Xs ) )
      = ( minus_minus_nat @ ( size_size_list_a @ Xs ) @ one_one_nat ) ) ).

% length_tl
thf(fact_851_length__tl,axiom,
    ! [Xs: list_set_a] :
      ( ( size_size_list_set_a @ ( tl_set_a @ Xs ) )
      = ( minus_minus_nat @ ( size_size_list_set_a @ Xs ) @ one_one_nat ) ) ).

% length_tl
thf(fact_852_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B3: real] : ( ord_less_eq_real @ ( minus_minus_real @ A3 @ B3 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_853_diff__eq__diff__less__eq,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_eq_real @ A @ B )
        = ( ord_less_eq_real @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_854_diff__right__mono,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_855_diff__left__mono,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_856_diff__mono,axiom,
    ! [A: real,B: real,D: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_eq_real @ D @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_857_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_858_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_859_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_860_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_861_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_862_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_863_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_864_zero__le,axiom,
    ! [X4: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X4 ) ).

% zero_le
thf(fact_865_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_866_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_867_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_868_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_869_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_870_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_871_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_872_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_873_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_874_ordered__cancel__comm__monoid__diff__class_Odiff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add
thf(fact_875_le__diff__eq,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
      = ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).

% le_diff_eq
thf(fact_876_diff__le__eq,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
      = ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).

% diff_le_eq
thf(fact_877_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_878_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_879_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_880_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_881_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_882_add__nonpos__eq__0__iff,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X4 @ Y )
            = zero_zero_nat )
          = ( ( X4 = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_883_add__nonpos__eq__0__iff,axiom,
    ! [X4: real,Y: real] :
      ( ( ord_less_eq_real @ X4 @ zero_zero_real )
     => ( ( ord_less_eq_real @ Y @ zero_zero_real )
       => ( ( ( plus_plus_real @ X4 @ Y )
            = zero_zero_real )
          = ( ( X4 = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_884_add__nonneg__eq__0__iff,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X4 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X4 @ Y )
            = zero_zero_nat )
          = ( ( X4 = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_885_add__nonneg__eq__0__iff,axiom,
    ! [X4: real,Y: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ X4 )
     => ( ( ord_less_eq_real @ zero_zero_real @ Y )
       => ( ( ( plus_plus_real @ X4 @ Y )
            = zero_zero_real )
          = ( ( X4 = zero_zero_real )
            & ( Y = zero_zero_real ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_886_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_887_add__nonpos__nonpos,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ B @ zero_zero_real )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).

% add_nonpos_nonpos
thf(fact_888_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_889_add__nonneg__nonneg,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ zero_zero_real @ B )
       => ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_890_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_891_add__increasing2,axiom,
    ! [C: real,B: real,A: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ C )
     => ( ( ord_less_eq_real @ B @ A )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_892_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_893_add__decreasing2,axiom,
    ! [C: real,A: real,B: real] :
      ( ( ord_less_eq_real @ C @ zero_zero_real )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_894_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_895_add__increasing,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ A )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_896_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_897_add__decreasing,axiom,
    ! [A: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A @ zero_zero_real )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_898_comp__sgraph_Owalk__length__def,axiom,
    ( undire8849074589633906640ngth_a
    = ( ^ [P4: list_a] : ( size_size_list_set_a @ ( undire7337870655677353998dges_a @ P4 ) ) ) ) ).

% comp_sgraph.walk_length_def
thf(fact_899_comp__sgraph_Oedge__density__le1,axiom,
    ! [S: set_a,X5: set_a,Y5: set_a] : ( ord_less_eq_real @ ( undire297304480579013331sity_a @ ( undire2918257014606996450dges_a @ S ) @ X5 @ Y5 ) @ one_one_real ) ).

% comp_sgraph.edge_density_le1
thf(fact_900_ulgraph_Oedge__density__le1,axiom,
    ! [Vertices: set_a,Edges: set_set_a,X5: set_a,Y5: set_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ord_less_eq_real @ ( undire297304480579013331sity_a @ Edges @ X5 @ Y5 ) @ one_one_real ) ) ).

% ulgraph.edge_density_le1
thf(fact_901_comp__sgraph_Oedge__density__ge0,axiom,
    ! [S: set_a,X5: set_a,Y5: set_a] : ( ord_less_eq_real @ zero_zero_real @ ( undire297304480579013331sity_a @ ( undire2918257014606996450dges_a @ S ) @ X5 @ Y5 ) ) ).

% comp_sgraph.edge_density_ge0
thf(fact_902_ulgraph_Oedge__density__ge0,axiom,
    ! [Vertices: set_a,Edges: set_set_a,X5: set_a,Y5: set_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ord_less_eq_real @ zero_zero_real @ ( undire297304480579013331sity_a @ Edges @ X5 @ Y5 ) ) ) ).

% ulgraph.edge_density_ge0
thf(fact_903_comp__sgraph_Owalk__length__conv,axiom,
    ( undire4424681683220949296_set_a
    = ( ^ [P4: list_set_a] : ( minus_minus_nat @ ( size_size_list_set_a @ P4 ) @ one_one_nat ) ) ) ).

% comp_sgraph.walk_length_conv
thf(fact_904_comp__sgraph_Owalk__length__conv,axiom,
    ( undire8849074589633906640ngth_a
    = ( ^ [P4: list_a] : ( minus_minus_nat @ ( size_size_list_a @ P4 ) @ one_one_nat ) ) ) ).

% comp_sgraph.walk_length_conv
thf(fact_905_ulgraph_Owalk__length__def,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire8849074589633906640ngth_a @ P )
        = ( size_size_list_set_a @ ( undire7337870655677353998dges_a @ P ) ) ) ) ).

% ulgraph.walk_length_def
thf(fact_906_ulgraph_Owalk__length__conv,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,P: list_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( undire4424681683220949296_set_a @ P )
        = ( minus_minus_nat @ ( size_size_list_set_a @ P ) @ one_one_nat ) ) ) ).

% ulgraph.walk_length_conv
thf(fact_907_ulgraph_Owalk__length__conv,axiom,
    ! [Vertices: set_a,Edges: set_set_a,P: list_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( undire8849074589633906640ngth_a @ P )
        = ( minus_minus_nat @ ( size_size_list_a @ P ) @ one_one_nat ) ) ) ).

% ulgraph.walk_length_conv
thf(fact_908_list__exhaust3,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ! [X3: a] :
            ( Xs
           != ( cons_a @ X3 @ nil_a ) )
       => ~ ! [X3: a,Y2: a,Ys3: list_a] :
              ( Xs
             != ( cons_a @ X3 @ ( cons_a @ Y2 @ Ys3 ) ) ) ) ) ).

% list_exhaust3
thf(fact_909_list__exhaust3,axiom,
    ! [Xs: list_set_a] :
      ( ( Xs != nil_set_a )
     => ( ! [X3: set_a] :
            ( Xs
           != ( cons_set_a @ X3 @ nil_set_a ) )
       => ~ ! [X3: set_a,Y2: set_a,Ys3: list_set_a] :
              ( Xs
             != ( cons_set_a @ X3 @ ( cons_set_a @ Y2 @ Ys3 ) ) ) ) ) ).

% list_exhaust3
thf(fact_910_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_911_le__add__diff__inverse2,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_912_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_913_le__add__diff__inverse,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_914_edge__density__zero,axiom,
    ! [Y5: set_a,X5: set_a] :
      ( ( Y5 = bot_bot_set_a )
     => ( ( undire297304480579013331sity_a @ edges @ X5 @ Y5 )
        = zero_zero_real ) ) ).

% edge_density_zero
thf(fact_915_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K: nat,N: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
         => ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_916_add__le__add__imp__diff__le,axiom,
    ! [I: real,K: real,N: real,J: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
     => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
       => ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
         => ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J @ K ) )
           => ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_917_empty__not__edge,axiom,
    ~ ( member_set_a @ bot_bot_set_a @ edges ) ).

% empty_not_edge
thf(fact_918_Diff__empty,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Diff_empty
thf(fact_919_Diff__empty,axiom,
    ! [A2: set_set_a] :
      ( ( minus_5736297505244876581_set_a @ A2 @ bot_bot_set_set_a )
      = A2 ) ).

% Diff_empty
thf(fact_920_empty__Diff,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ bot_bot_set_a @ A2 )
      = bot_bot_set_a ) ).

% empty_Diff
thf(fact_921_empty__Diff,axiom,
    ! [A2: set_set_a] :
      ( ( minus_5736297505244876581_set_a @ bot_bot_set_set_a @ A2 )
      = bot_bot_set_set_a ) ).

% empty_Diff
thf(fact_922_Diff__cancel,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ A2 )
      = bot_bot_set_a ) ).

% Diff_cancel
thf(fact_923_Diff__cancel,axiom,
    ! [A2: set_set_a] :
      ( ( minus_5736297505244876581_set_a @ A2 @ A2 )
      = bot_bot_set_set_a ) ).

% Diff_cancel
thf(fact_924_empty__Collect__eq,axiom,
    ! [P2: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P2 ) )
      = ( ! [X2: a] :
            ~ ( P2 @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_925_empty__Collect__eq,axiom,
    ! [P2: set_a > $o] :
      ( ( bot_bot_set_set_a
        = ( collect_set_a @ P2 ) )
      = ( ! [X2: set_a] :
            ~ ( P2 @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_926_Collect__empty__eq,axiom,
    ! [P2: a > $o] :
      ( ( ( collect_a @ P2 )
        = bot_bot_set_a )
      = ( ! [X2: a] :
            ~ ( P2 @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_927_Collect__empty__eq,axiom,
    ! [P2: set_a > $o] :
      ( ( ( collect_set_a @ P2 )
        = bot_bot_set_set_a )
      = ( ! [X2: set_a] :
            ~ ( P2 @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_928_all__not__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ! [X2: a] :
            ~ ( member_a @ X2 @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_929_all__not__in__conv,axiom,
    ! [A2: set_set_a] :
      ( ( ! [X2: set_a] :
            ~ ( member_set_a @ X2 @ A2 ) )
      = ( A2 = bot_bot_set_set_a ) ) ).

% all_not_in_conv
thf(fact_930_empty__iff,axiom,
    ! [C: a] :
      ~ ( member_a @ C @ bot_bot_set_a ) ).

% empty_iff
thf(fact_931_empty__iff,axiom,
    ! [C: set_a] :
      ~ ( member_set_a @ C @ bot_bot_set_set_a ) ).

% empty_iff
thf(fact_932_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_933_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_934_Diff__eq__empty__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( minus_minus_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% Diff_eq_empty_iff
thf(fact_935_Diff__eq__empty__iff,axiom,
    ! [A2: set_set_a,B2: set_set_a] :
      ( ( ( minus_5736297505244876581_set_a @ A2 @ B2 )
        = bot_bot_set_set_a )
      = ( ord_le3724670747650509150_set_a @ A2 @ B2 ) ) ).

% Diff_eq_empty_iff
thf(fact_936_subset__empty,axiom,
    ! [A2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
      = ( A2 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_937_subset__empty,axiom,
    ! [A2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ bot_bot_set_set_a )
      = ( A2 = bot_bot_set_set_a ) ) ).

% subset_empty
thf(fact_938_empty__subsetI,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A2 ) ).

% empty_subsetI
thf(fact_939_empty__subsetI,axiom,
    ! [A2: set_set_a] : ( ord_le3724670747650509150_set_a @ bot_bot_set_set_a @ A2 ) ).

% empty_subsetI
thf(fact_940_length__0__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( size_size_list_a @ Xs )
        = zero_zero_nat )
      = ( Xs = nil_a ) ) ).

% length_0_conv
thf(fact_941_length__0__conv,axiom,
    ! [Xs: list_set_a] :
      ( ( ( size_size_list_set_a @ Xs )
        = zero_zero_nat )
      = ( Xs = nil_set_a ) ) ).

% length_0_conv
thf(fact_942_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_943_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_944_set__empty2,axiom,
    ! [Xs: list_a] :
      ( ( bot_bot_set_a
        = ( set_a2 @ Xs ) )
      = ( Xs = nil_a ) ) ).

% set_empty2
thf(fact_945_set__empty2,axiom,
    ! [Xs: list_set_a] :
      ( ( bot_bot_set_set_a
        = ( set_set_a2 @ Xs ) )
      = ( Xs = nil_set_a ) ) ).

% set_empty2
thf(fact_946_set__empty,axiom,
    ! [Xs: list_a] :
      ( ( ( set_a2 @ Xs )
        = bot_bot_set_a )
      = ( Xs = nil_a ) ) ).

% set_empty
thf(fact_947_set__empty,axiom,
    ! [Xs: list_set_a] :
      ( ( ( set_set_a2 @ Xs )
        = bot_bot_set_set_a )
      = ( Xs = nil_set_a ) ) ).

% set_empty
thf(fact_948_bot_Oextremum,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A ) ).

% bot.extremum
thf(fact_949_bot_Oextremum,axiom,
    ! [A: set_set_a] : ( ord_le3724670747650509150_set_a @ bot_bot_set_set_a @ A ) ).

% bot.extremum
thf(fact_950_bot_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).

% bot.extremum
thf(fact_951_bot_Oextremum__unique,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
      = ( A = bot_bot_set_a ) ) ).

% bot.extremum_unique
thf(fact_952_bot_Oextremum__unique,axiom,
    ! [A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ bot_bot_set_set_a )
      = ( A = bot_bot_set_set_a ) ) ).

% bot.extremum_unique
thf(fact_953_bot_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
      = ( A = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_954_bot_Oextremum__uniqueI,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
     => ( A = bot_bot_set_a ) ) ).

% bot.extremum_uniqueI
thf(fact_955_bot_Oextremum__uniqueI,axiom,
    ! [A: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ bot_bot_set_set_a )
     => ( A = bot_bot_set_set_a ) ) ).

% bot.extremum_uniqueI
thf(fact_956_bot_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
     => ( A = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_957_double__diff,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ( minus_minus_set_a @ B2 @ ( minus_minus_set_a @ C2 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_958_double__diff,axiom,
    ! [A2: set_set_a,B2: set_set_a,C2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ B2 )
     => ( ( ord_le3724670747650509150_set_a @ B2 @ C2 )
       => ( ( minus_5736297505244876581_set_a @ B2 @ ( minus_5736297505244876581_set_a @ C2 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_959_Diff__subset,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ A2 ) ).

% Diff_subset
thf(fact_960_Diff__subset,axiom,
    ! [A2: set_set_a,B2: set_set_a] : ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A2 @ B2 ) @ A2 ) ).

% Diff_subset
thf(fact_961_Diff__mono,axiom,
    ! [A2: set_a,C2: set_a,D2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C2 )
     => ( ( ord_less_eq_set_a @ D2 @ B2 )
       => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ C2 @ D2 ) ) ) ) ).

% Diff_mono
thf(fact_962_Diff__mono,axiom,
    ! [A2: set_set_a,C2: set_set_a,D2: set_set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A2 @ C2 )
     => ( ( ord_le3724670747650509150_set_a @ D2 @ B2 )
       => ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A2 @ B2 ) @ ( minus_5736297505244876581_set_a @ C2 @ D2 ) ) ) ) ).

% Diff_mono
thf(fact_963_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_964_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_965_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_966_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_967_comp__sgraph_Oempty__not__edge,axiom,
    ! [S: set_a] :
      ~ ( member_set_a @ bot_bot_set_a @ ( undire2918257014606996450dges_a @ S ) ) ).

% comp_sgraph.empty_not_edge
thf(fact_968_comp__sgraph_Oempty__not__edge,axiom,
    ! [S: set_set_a] :
      ~ ( member_set_set_a @ bot_bot_set_set_a @ ( undire8247866692393712962_set_a @ S ) ) ).

% comp_sgraph.empty_not_edge
thf(fact_969_ulgraph_Oempty__not__edge,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ~ ( member_set_set_a @ bot_bot_set_set_a @ Edges ) ) ).

% ulgraph.empty_not_edge
thf(fact_970_ulgraph_Oempty__not__edge,axiom,
    ! [Vertices: set_a,Edges: set_set_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ~ ( member_set_a @ bot_bot_set_a @ Edges ) ) ).

% ulgraph.empty_not_edge
thf(fact_971_ex__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ? [X2: a] : ( member_a @ X2 @ A2 ) )
      = ( A2 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_972_ex__in__conv,axiom,
    ! [A2: set_set_a] :
      ( ( ? [X2: set_a] : ( member_set_a @ X2 @ A2 ) )
      = ( A2 != bot_bot_set_set_a ) ) ).

% ex_in_conv
thf(fact_973_equals0I,axiom,
    ! [A2: set_a] :
      ( ! [Y2: a] :
          ~ ( member_a @ Y2 @ A2 )
     => ( A2 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_974_equals0I,axiom,
    ! [A2: set_set_a] :
      ( ! [Y2: set_a] :
          ~ ( member_set_a @ Y2 @ A2 )
     => ( A2 = bot_bot_set_set_a ) ) ).

% equals0I
thf(fact_975_equals0D,axiom,
    ! [A2: set_a,A: a] :
      ( ( A2 = bot_bot_set_a )
     => ~ ( member_a @ A @ A2 ) ) ).

% equals0D
thf(fact_976_equals0D,axiom,
    ! [A2: set_set_a,A: set_a] :
      ( ( A2 = bot_bot_set_set_a )
     => ~ ( member_set_a @ A @ A2 ) ) ).

% equals0D
thf(fact_977_emptyE,axiom,
    ! [A: a] :
      ~ ( member_a @ A @ bot_bot_set_a ) ).

% emptyE
thf(fact_978_emptyE,axiom,
    ! [A: set_a] :
      ~ ( member_set_a @ A @ bot_bot_set_set_a ) ).

% emptyE
thf(fact_979_empty__set,axiom,
    ( bot_bot_set_a
    = ( set_a2 @ nil_a ) ) ).

% empty_set
thf(fact_980_empty__set,axiom,
    ( bot_bot_set_set_a
    = ( set_set_a2 @ nil_set_a ) ) ).

% empty_set
thf(fact_981_list_Osize_I3_J,axiom,
    ( ( size_size_list_a @ nil_a )
    = zero_zero_nat ) ).

% list.size(3)
thf(fact_982_list_Osize_I3_J,axiom,
    ( ( size_size_list_set_a @ nil_set_a )
    = zero_zero_nat ) ).

% list.size(3)
thf(fact_983_comp__sgraph_Oedge__density__zero,axiom,
    ! [Y5: set_set_a,S: set_set_a,X5: set_set_a] :
      ( ( Y5 = bot_bot_set_set_a )
     => ( ( undire8927637694342045747_set_a @ ( undire8247866692393712962_set_a @ S ) @ X5 @ Y5 )
        = zero_zero_real ) ) ).

% comp_sgraph.edge_density_zero
thf(fact_984_comp__sgraph_Oedge__density__zero,axiom,
    ! [Y5: set_a,S: set_a,X5: set_a] :
      ( ( Y5 = bot_bot_set_a )
     => ( ( undire297304480579013331sity_a @ ( undire2918257014606996450dges_a @ S ) @ X5 @ Y5 )
        = zero_zero_real ) ) ).

% comp_sgraph.edge_density_zero
thf(fact_985_ulgraph_Oedge__density__zero,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,Y5: set_set_a,X5: set_set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ( Y5 = bot_bot_set_set_a )
       => ( ( undire8927637694342045747_set_a @ Edges @ X5 @ Y5 )
          = zero_zero_real ) ) ) ).

% ulgraph.edge_density_zero
thf(fact_986_ulgraph_Oedge__density__zero,axiom,
    ! [Vertices: set_a,Edges: set_set_a,Y5: set_a,X5: set_a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ( Y5 = bot_bot_set_a )
       => ( ( undire297304480579013331sity_a @ Edges @ X5 @ Y5 )
          = zero_zero_real ) ) ) ).

% ulgraph.edge_density_zero
thf(fact_987_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_988_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% zero_less_one_class.zero_le_one
thf(fact_989_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_990_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_real @ zero_zero_real @ one_one_real ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_991_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_992_not__one__le__zero,axiom,
    ~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).

% not_one_le_zero
thf(fact_993_add__le__imp__le__diff,axiom,
    ! [I: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_994_add__le__imp__le__diff,axiom,
    ! [I: real,K: real,N: real] :
      ( ( ord_less_eq_real @ ( plus_plus_real @ I @ K ) @ N )
     => ( ord_less_eq_real @ I @ ( minus_minus_real @ N @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_995_iso__vertex__empty__neighborhood,axiom,
    ! [V: a] :
      ( ( undire8931668460104145173rtex_a @ vertices @ edges @ V )
     => ( ( undire8504279938402040014hood_a @ vertices @ edges @ V )
        = bot_bot_set_a ) ) ).

% iso_vertex_empty_neighborhood
thf(fact_996_connecting__path__gen__str,axiom,
    ! [U: a,V: a,Xs: list_a] :
      ( ( connecting_path_a @ vertices @ edges @ U @ V @ Xs )
     => ( ~ ( undire2407311113669455967ycle_a @ vertices @ edges @ Xs )
       => ( ( ord_less_nat @ zero_zero_nat @ ( undire8849074589633906640ngth_a @ Xs ) )
         => ( connec3015921205769380621_str_a @ vertices @ edges @ U @ V @ Xs ) ) ) ) ).

% connecting_path_gen_str
thf(fact_997_is__gen__path__path,axiom,
    ! [P: list_a] :
      ( ( undire3562951555376170320path_a @ vertices @ edges @ P )
     => ( ( ord_less_nat @ zero_zero_nat @ ( undire8849074589633906640ngth_a @ P ) )
       => ( ~ ( undire2407311113669455967ycle_a @ vertices @ edges @ P )
         => ( undire427332500224447920path_a @ vertices @ edges @ P ) ) ) ) ).

% is_gen_path_path
thf(fact_998_is__isolated__vertex__degree0,axiom,
    ! [V: a] :
      ( ( undire8931668460104145173rtex_a @ vertices @ edges @ V )
     => ( ( undire8867928226783802224gree_a @ edges @ V )
        = zero_zero_nat ) ) ).

% is_isolated_vertex_degree0
thf(fact_999_DiffI,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ A2 )
     => ( ~ ( member_a @ C @ B2 )
       => ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_1000_DiffI,axiom,
    ! [C: set_a,A2: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ A2 )
     => ( ~ ( member_set_a @ C @ B2 )
       => ( member_set_a @ C @ ( minus_5736297505244876581_set_a @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_1001_Diff__iff,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
      = ( ( member_a @ C @ A2 )
        & ~ ( member_a @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_1002_Diff__iff,axiom,
    ! [C: set_a,A2: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( minus_5736297505244876581_set_a @ A2 @ B2 ) )
      = ( ( member_set_a @ C @ A2 )
        & ~ ( member_set_a @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_1003_comp__sgraph_Odegree__none,axiom,
    ! [V: set_a,S: set_set_a] :
      ( ~ ( member_set_a @ V @ S )
     => ( ( undire8939077443744732368_set_a @ ( undire8247866692393712962_set_a @ S ) @ V )
        = zero_zero_nat ) ) ).

% comp_sgraph.degree_none
thf(fact_1004_comp__sgraph_Odegree__none,axiom,
    ! [V: a,S: set_a] :
      ( ~ ( member_a @ V @ S )
     => ( ( undire8867928226783802224gree_a @ ( undire2918257014606996450dges_a @ S ) @ V )
        = zero_zero_nat ) ) ).

% comp_sgraph.degree_none
thf(fact_1005_length__greater__0__conv,axiom,
    ! [Xs: list_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_a @ Xs ) )
      = ( Xs != nil_a ) ) ).

% length_greater_0_conv
thf(fact_1006_length__greater__0__conv,axiom,
    ! [Xs: list_set_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_set_a @ Xs ) )
      = ( Xs != nil_set_a ) ) ).

% length_greater_0_conv
thf(fact_1007_degree__none,axiom,
    ! [V: a] :
      ( ~ ( member_a @ V @ vertices )
     => ( ( undire8867928226783802224gree_a @ edges @ V )
        = zero_zero_nat ) ) ).

% degree_none
thf(fact_1008_ex__least__nat__le,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ N )
     => ( ~ ( P2 @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_eq_nat @ K3 @ N )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K3 )
               => ~ ( P2 @ I2 ) )
            & ( P2 @ K3 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1009_DiffE,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ~ ( ( member_a @ C @ A2 )
         => ( member_a @ C @ B2 ) ) ) ).

% DiffE
thf(fact_1010_DiffE,axiom,
    ! [C: set_a,A2: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( minus_5736297505244876581_set_a @ A2 @ B2 ) )
     => ~ ( ( member_set_a @ C @ A2 )
         => ( member_set_a @ C @ B2 ) ) ) ).

% DiffE
thf(fact_1011_DiffD1,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ( member_a @ C @ A2 ) ) ).

% DiffD1
thf(fact_1012_DiffD1,axiom,
    ! [C: set_a,A2: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( minus_5736297505244876581_set_a @ A2 @ B2 ) )
     => ( member_set_a @ C @ A2 ) ) ).

% DiffD1
thf(fact_1013_DiffD2,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ~ ( member_a @ C @ B2 ) ) ).

% DiffD2
thf(fact_1014_DiffD2,axiom,
    ! [C: set_a,A2: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( minus_5736297505244876581_set_a @ A2 @ B2 ) )
     => ~ ( member_set_a @ C @ B2 ) ) ).

% DiffD2
thf(fact_1015_length__induct,axiom,
    ! [P2: list_a > $o,Xs: list_a] :
      ( ! [Xs3: list_a] :
          ( ! [Ys7: list_a] :
              ( ( ord_less_nat @ ( size_size_list_a @ Ys7 ) @ ( size_size_list_a @ Xs3 ) )
             => ( P2 @ Ys7 ) )
         => ( P2 @ Xs3 ) )
     => ( P2 @ Xs ) ) ).

% length_induct
thf(fact_1016_length__induct,axiom,
    ! [P2: list_set_a > $o,Xs: list_set_a] :
      ( ! [Xs3: list_set_a] :
          ( ! [Ys7: list_set_a] :
              ( ( ord_less_nat @ ( size_size_list_set_a @ Ys7 ) @ ( size_size_list_set_a @ Xs3 ) )
             => ( P2 @ Ys7 ) )
         => ( P2 @ Xs3 ) )
     => ( P2 @ Xs ) ) ).

% length_induct
thf(fact_1017_bot__set__def,axiom,
    ( bot_bot_set_a
    = ( collect_a @ bot_bot_a_o ) ) ).

% bot_set_def
thf(fact_1018_bot__set__def,axiom,
    ( bot_bot_set_set_a
    = ( collect_set_a @ bot_bot_set_a_o ) ) ).

% bot_set_def
thf(fact_1019_bot_Onot__eq__extremum,axiom,
    ! [A: set_a] :
      ( ( A != bot_bot_set_a )
      = ( ord_less_set_a @ bot_bot_set_a @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1020_bot_Onot__eq__extremum,axiom,
    ! [A: set_set_a] :
      ( ( A != bot_bot_set_set_a )
      = ( ord_less_set_set_a @ bot_bot_set_set_a @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1021_bot_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != bot_bot_nat )
      = ( ord_less_nat @ bot_bot_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1022_bot_Oextremum__strict,axiom,
    ! [A: set_a] :
      ~ ( ord_less_set_a @ A @ bot_bot_set_a ) ).

% bot.extremum_strict
thf(fact_1023_bot_Oextremum__strict,axiom,
    ! [A: set_set_a] :
      ~ ( ord_less_set_set_a @ A @ bot_bot_set_set_a ) ).

% bot.extremum_strict
thf(fact_1024_bot_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ bot_bot_nat ) ).

% bot.extremum_strict
thf(fact_1025_ulgraph_Odegree_Ocong,axiom,
    undire8867928226783802224gree_a = undire8867928226783802224gree_a ).

% ulgraph.degree.cong
thf(fact_1026_ulgraph_Oneighborhood_Ocong,axiom,
    undire8504279938402040014hood_a = undire8504279938402040014hood_a ).

% ulgraph.neighborhood.cong
thf(fact_1027_gt__ex,axiom,
    ! [X4: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X4 @ X_1 ) ).

% gt_ex
thf(fact_1028_less__imp__neq,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( X4 != Y ) ) ).

% less_imp_neq
thf(fact_1029_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_1030_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1031_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1032_less__induct,axiom,
    ! [P2: nat > $o,A: nat] :
      ( ! [X3: nat] :
          ( ! [Y6: nat] :
              ( ( ord_less_nat @ Y6 @ X3 )
             => ( P2 @ Y6 ) )
         => ( P2 @ X3 ) )
     => ( P2 @ A ) ) ).

% less_induct
thf(fact_1033_antisym__conv3,axiom,
    ! [Y: nat,X4: nat] :
      ( ~ ( ord_less_nat @ Y @ X4 )
     => ( ( ~ ( ord_less_nat @ X4 @ Y ) )
        = ( X4 = Y ) ) ) ).

% antisym_conv3
thf(fact_1034_linorder__cases,axiom,
    ! [X4: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X4 @ Y )
     => ( ( X4 != Y )
       => ( ord_less_nat @ Y @ X4 ) ) ) ).

% linorder_cases
thf(fact_1035_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_1036_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_1037_exists__least__iff,axiom,
    ( ( ^ [P5: nat > $o] :
        ? [X6: nat] : ( P5 @ X6 ) )
    = ( ^ [P6: nat > $o] :
        ? [N3: nat] :
          ( ( P6 @ N3 )
          & ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
             => ~ ( P6 @ M2 ) ) ) ) ) ).

% exists_least_iff
thf(fact_1038_linorder__less__wlog,axiom,
    ! [P2: nat > nat > $o,A: nat,B: nat] :
      ( ! [A4: nat,B4: nat] :
          ( ( ord_less_nat @ A4 @ B4 )
         => ( P2 @ A4 @ B4 ) )
     => ( ! [A4: nat] : ( P2 @ A4 @ A4 )
       => ( ! [A4: nat,B4: nat] :
              ( ( P2 @ B4 @ A4 )
             => ( P2 @ A4 @ B4 ) )
         => ( P2 @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_1039_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_1040_not__less__iff__gr__or__eq,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X4 @ Y ) )
      = ( ( ord_less_nat @ Y @ X4 )
        | ( X4 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1041_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_1042_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_1043_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_1044_linorder__neqE,axiom,
    ! [X4: nat,Y: nat] :
      ( ( X4 != Y )
     => ( ~ ( ord_less_nat @ X4 @ Y )
       => ( ord_less_nat @ Y @ X4 ) ) ) ).

% linorder_neqE
thf(fact_1045_order__less__asym,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ~ ( ord_less_nat @ Y @ X4 ) ) ).

% order_less_asym
thf(fact_1046_linorder__neq__iff,axiom,
    ! [X4: nat,Y: nat] :
      ( ( X4 != Y )
      = ( ( ord_less_nat @ X4 @ Y )
        | ( ord_less_nat @ Y @ X4 ) ) ) ).

% linorder_neq_iff
thf(fact_1047_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_1048_order__less__trans,axiom,
    ! [X4: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X4 @ Z ) ) ) ).

% order_less_trans
thf(fact_1049_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1050_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1051_order__less__irrefl,axiom,
    ! [X4: nat] :
      ~ ( ord_less_nat @ X4 @ X4 ) ).

% order_less_irrefl
thf(fact_1052_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1053_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1054_order__less__not__sym,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ~ ( ord_less_nat @ Y @ X4 ) ) ).

% order_less_not_sym
thf(fact_1055_order__less__imp__triv,axiom,
    ! [X4: nat,Y: nat,P2: $o] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( ( ord_less_nat @ Y @ X4 )
       => P2 ) ) ).

% order_less_imp_triv
thf(fact_1056_linorder__less__linear,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
      | ( X4 = Y )
      | ( ord_less_nat @ Y @ X4 ) ) ).

% linorder_less_linear
thf(fact_1057_order__less__imp__not__eq,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( X4 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_1058_order__less__imp__not__eq2,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( Y != X4 ) ) ).

% order_less_imp_not_eq2
thf(fact_1059_order__less__imp__not__less,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ~ ( ord_less_nat @ Y @ X4 ) ) ).

% order_less_imp_not_less
thf(fact_1060_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N3: nat] :
          ( ( ord_less_eq_nat @ M2 @ N3 )
          & ( M2 != N3 ) ) ) ) ).

% nat_less_le
thf(fact_1061_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_1062_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N3: nat] :
          ( ( ord_less_nat @ M2 @ N3 )
          | ( M2 = N3 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_1063_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_1064_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_1065_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_1066_leD,axiom,
    ! [Y: set_a,X4: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X4 )
     => ~ ( ord_less_set_a @ X4 @ Y ) ) ).

% leD
thf(fact_1067_leD,axiom,
    ! [Y: set_set_a,X4: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ Y @ X4 )
     => ~ ( ord_less_set_set_a @ X4 @ Y ) ) ).

% leD
thf(fact_1068_leD,axiom,
    ! [Y: nat,X4: nat] :
      ( ( ord_less_eq_nat @ Y @ X4 )
     => ~ ( ord_less_nat @ X4 @ Y ) ) ).

% leD
thf(fact_1069_leD,axiom,
    ! [Y: real,X4: real] :
      ( ( ord_less_eq_real @ Y @ X4 )
     => ~ ( ord_less_real @ X4 @ Y ) ) ).

% leD
thf(fact_1070_leI,axiom,
    ! [X4: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X4 @ Y )
     => ( ord_less_eq_nat @ Y @ X4 ) ) ).

% leI
thf(fact_1071_leI,axiom,
    ! [X4: real,Y: real] :
      ( ~ ( ord_less_real @ X4 @ Y )
     => ( ord_less_eq_real @ Y @ X4 ) ) ).

% leI
thf(fact_1072_nless__le,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ~ ( ord_less_set_a @ A @ B ) )
      = ( ~ ( ord_less_eq_set_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1073_nless__le,axiom,
    ! [A: set_set_a,B: set_set_a] :
      ( ( ~ ( ord_less_set_set_a @ A @ B ) )
      = ( ~ ( ord_le3724670747650509150_set_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1074_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1075_nless__le,axiom,
    ! [A: real,B: real] :
      ( ( ~ ( ord_less_real @ A @ B ) )
      = ( ~ ( ord_less_eq_real @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1076_antisym__conv1,axiom,
    ! [X4: set_a,Y: set_a] :
      ( ~ ( ord_less_set_a @ X4 @ Y )
     => ( ( ord_less_eq_set_a @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% antisym_conv1
thf(fact_1077_antisym__conv1,axiom,
    ! [X4: set_set_a,Y: set_set_a] :
      ( ~ ( ord_less_set_set_a @ X4 @ Y )
     => ( ( ord_le3724670747650509150_set_a @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% antisym_conv1
thf(fact_1078_antisym__conv1,axiom,
    ! [X4: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X4 @ Y )
     => ( ( ord_less_eq_nat @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% antisym_conv1
thf(fact_1079_antisym__conv1,axiom,
    ! [X4: real,Y: real] :
      ( ~ ( ord_less_real @ X4 @ Y )
     => ( ( ord_less_eq_real @ X4 @ Y )
        = ( X4 = Y ) ) ) ).

% antisym_conv1
thf(fact_1080_antisym__conv2,axiom,
    ! [X4: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X4 @ Y )
     => ( ( ~ ( ord_less_set_a @ X4 @ Y ) )
        = ( X4 = Y ) ) ) ).

% antisym_conv2
thf(fact_1081_antisym__conv2,axiom,
    ! [X4: set_set_a,Y: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X4 @ Y )
     => ( ( ~ ( ord_less_set_set_a @ X4 @ Y ) )
        = ( X4 = Y ) ) ) ).

% antisym_conv2
thf(fact_1082_antisym__conv2,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ~ ( ord_less_nat @ X4 @ Y ) )
        = ( X4 = Y ) ) ) ).

% antisym_conv2
thf(fact_1083_antisym__conv2,axiom,
    ! [X4: real,Y: real] :
      ( ( ord_less_eq_real @ X4 @ Y )
     => ( ( ~ ( ord_less_real @ X4 @ Y ) )
        = ( X4 = Y ) ) ) ).

% antisym_conv2
thf(fact_1084_dense__ge,axiom,
    ! [Z: real,Y: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ Z @ X3 )
         => ( ord_less_eq_real @ Y @ X3 ) )
     => ( ord_less_eq_real @ Y @ Z ) ) ).

% dense_ge
thf(fact_1085_dense__le,axiom,
    ! [Y: real,Z: real] :
      ( ! [X3: real] :
          ( ( ord_less_real @ X3 @ Y )
         => ( ord_less_eq_real @ X3 @ Z ) )
     => ( ord_less_eq_real @ Y @ Z ) ) ).

% dense_le
thf(fact_1086_less__le__not__le,axiom,
    ( ord_less_set_a
    = ( ^ [X2: set_a,Y4: set_a] :
          ( ( ord_less_eq_set_a @ X2 @ Y4 )
          & ~ ( ord_less_eq_set_a @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_1087_less__le__not__le,axiom,
    ( ord_less_set_set_a
    = ( ^ [X2: set_set_a,Y4: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ X2 @ Y4 )
          & ~ ( ord_le3724670747650509150_set_a @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_1088_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ~ ( ord_less_eq_nat @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_1089_less__le__not__le,axiom,
    ( ord_less_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ~ ( ord_less_eq_real @ Y4 @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_1090_not__le__imp__less,axiom,
    ! [Y: nat,X4: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X4 )
     => ( ord_less_nat @ X4 @ Y ) ) ).

% not_le_imp_less
thf(fact_1091_not__le__imp__less,axiom,
    ! [Y: real,X4: real] :
      ( ~ ( ord_less_eq_real @ Y @ X4 )
     => ( ord_less_real @ X4 @ Y ) ) ).

% not_le_imp_less
thf(fact_1092_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A3: set_a,B3: set_a] :
          ( ( ord_less_set_a @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1093_order_Oorder__iff__strict,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A3: set_set_a,B3: set_set_a] :
          ( ( ord_less_set_set_a @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1094_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_nat @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1095_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [A3: real,B3: real] :
          ( ( ord_less_real @ A3 @ B3 )
          | ( A3 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1096_order_Ostrict__iff__order,axiom,
    ( ord_less_set_a
    = ( ^ [A3: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1097_order_Ostrict__iff__order,axiom,
    ( ord_less_set_set_a
    = ( ^ [A3: set_set_a,B3: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1098_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1099_order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B3: real] :
          ( ( ord_less_eq_real @ A3 @ B3 )
          & ( A3 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1100_order_Ostrict__trans1,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1101_order_Ostrict__trans1,axiom,
    ! [A: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( ( ord_less_set_set_a @ B @ C )
       => ( ord_less_set_set_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1102_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1103_order_Ostrict__trans1,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1104_order_Ostrict__trans2,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1105_order_Ostrict__trans2,axiom,
    ! [A: set_set_a,B: set_set_a,C: set_set_a] :
      ( ( ord_less_set_set_a @ A @ B )
     => ( ( ord_le3724670747650509150_set_a @ B @ C )
       => ( ord_less_set_set_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1106_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1107_order_Ostrict__trans2,axiom,
    ! [A: real,B: real,C: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_real @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1108_order_Ostrict__iff__not,axiom,
    ( ord_less_set_a
    = ( ^ [A3: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ A3 @ B3 )
          & ~ ( ord_less_eq_set_a @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1109_order_Ostrict__iff__not,axiom,
    ( ord_less_set_set_a
    = ( ^ [A3: set_set_a,B3: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ A3 @ B3 )
          & ~ ( ord_le3724670747650509150_set_a @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1110_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
          & ~ ( ord_less_eq_nat @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1111_order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [A3: real,B3: real] :
          ( ( ord_less_eq_real @ A3 @ B3 )
          & ~ ( ord_less_eq_real @ B3 @ A3 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1112_dense__ge__bounded,axiom,
    ! [Z: real,X4: real,Y: real] :
      ( ( ord_less_real @ Z @ X4 )
     => ( ! [W: real] :
            ( ( ord_less_real @ Z @ W )
           => ( ( ord_less_real @ W @ X4 )
             => ( ord_less_eq_real @ Y @ W ) ) )
       => ( ord_less_eq_real @ Y @ Z ) ) ) ).

% dense_ge_bounded
thf(fact_1113_dense__le__bounded,axiom,
    ! [X4: real,Y: real,Z: real] :
      ( ( ord_less_real @ X4 @ Y )
     => ( ! [W: real] :
            ( ( ord_less_real @ X4 @ W )
           => ( ( ord_less_real @ W @ Y )
             => ( ord_less_eq_real @ W @ Z ) ) )
       => ( ord_less_eq_real @ Y @ Z ) ) ) ).

% dense_le_bounded
thf(fact_1114_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B3: set_a,A3: set_a] :
          ( ( ord_less_set_a @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1115_dual__order_Oorder__iff__strict,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [B3: set_set_a,A3: set_set_a] :
          ( ( ord_less_set_set_a @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1116_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_nat @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1117_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_real
    = ( ^ [B3: real,A3: real] :
          ( ( ord_less_real @ B3 @ A3 )
          | ( A3 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1118_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_a
    = ( ^ [B3: set_a,A3: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1119_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_set_a
    = ( ^ [B3: set_set_a,A3: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1120_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1121_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A3: real] :
          ( ( ord_less_eq_real @ B3 @ A3 )
          & ( A3 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1122_dual__order_Ostrict__trans1,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1123_dual__order_Ostrict__trans1,axiom,
    ! [B: set_set_a,A: set_set_a,C: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ A )
     => ( ( ord_less_set_set_a @ C @ B )
       => ( ord_less_set_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1124_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1125_dual__order_Ostrict__trans1,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_eq_real @ B @ A )
     => ( ( ord_less_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1126_dual__order_Ostrict__trans2,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1127_dual__order_Ostrict__trans2,axiom,
    ! [B: set_set_a,A: set_set_a,C: set_set_a] :
      ( ( ord_less_set_set_a @ B @ A )
     => ( ( ord_le3724670747650509150_set_a @ C @ B )
       => ( ord_less_set_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1128_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1129_dual__order_Ostrict__trans2,axiom,
    ! [B: real,A: real,C: real] :
      ( ( ord_less_real @ B @ A )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_real @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1130_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_a
    = ( ^ [B3: set_a,A3: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A3 )
          & ~ ( ord_less_eq_set_a @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1131_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_set_a
    = ( ^ [B3: set_set_a,A3: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ B3 @ A3 )
          & ~ ( ord_le3724670747650509150_set_a @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1132_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A3 )
          & ~ ( ord_less_eq_nat @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1133_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_real
    = ( ^ [B3: real,A3: real] :
          ( ( ord_less_eq_real @ B3 @ A3 )
          & ~ ( ord_less_eq_real @ A3 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1134_order_Ostrict__implies__order,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ord_less_eq_set_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1135_order_Ostrict__implies__order,axiom,
    ! [A: set_set_a,B: set_set_a] :
      ( ( ord_less_set_set_a @ A @ B )
     => ( ord_le3724670747650509150_set_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1136_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1137_order_Ostrict__implies__order,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_real @ A @ B )
     => ( ord_less_eq_real @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1138_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ord_less_eq_set_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1139_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_set_a,A: set_set_a] :
      ( ( ord_less_set_set_a @ B @ A )
     => ( ord_le3724670747650509150_set_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1140_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1141_dual__order_Ostrict__implies__order,axiom,
    ! [B: real,A: real] :
      ( ( ord_less_real @ B @ A )
     => ( ord_less_eq_real @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1142_order__le__less,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X2: set_a,Y4: set_a] :
          ( ( ord_less_set_a @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_1143_order__le__less,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [X2: set_set_a,Y4: set_set_a] :
          ( ( ord_less_set_set_a @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_1144_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_nat @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_1145_order__le__less,axiom,
    ( ord_less_eq_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_real @ X2 @ Y4 )
          | ( X2 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_1146_order__less__le,axiom,
    ( ord_less_set_a
    = ( ^ [X2: set_a,Y4: set_a] :
          ( ( ord_less_eq_set_a @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_1147_order__less__le,axiom,
    ( ord_less_set_set_a
    = ( ^ [X2: set_set_a,Y4: set_set_a] :
          ( ( ord_le3724670747650509150_set_a @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_1148_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_1149_order__less__le,axiom,
    ( ord_less_real
    = ( ^ [X2: real,Y4: real] :
          ( ( ord_less_eq_real @ X2 @ Y4 )
          & ( X2 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_1150_linorder__not__le,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X4 @ Y ) )
      = ( ord_less_nat @ Y @ X4 ) ) ).

% linorder_not_le
thf(fact_1151_linorder__not__le,axiom,
    ! [X4: real,Y: real] :
      ( ( ~ ( ord_less_eq_real @ X4 @ Y ) )
      = ( ord_less_real @ Y @ X4 ) ) ).

% linorder_not_le
thf(fact_1152_linorder__not__less,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X4 @ Y ) )
      = ( ord_less_eq_nat @ Y @ X4 ) ) ).

% linorder_not_less
thf(fact_1153_linorder__not__less,axiom,
    ! [X4: real,Y: real] :
      ( ( ~ ( ord_less_real @ X4 @ Y ) )
      = ( ord_less_eq_real @ Y @ X4 ) ) ).

% linorder_not_less
thf(fact_1154_order__less__imp__le,axiom,
    ! [X4: set_a,Y: set_a] :
      ( ( ord_less_set_a @ X4 @ Y )
     => ( ord_less_eq_set_a @ X4 @ Y ) ) ).

% order_less_imp_le
thf(fact_1155_order__less__imp__le,axiom,
    ! [X4: set_set_a,Y: set_set_a] :
      ( ( ord_less_set_set_a @ X4 @ Y )
     => ( ord_le3724670747650509150_set_a @ X4 @ Y ) ) ).

% order_less_imp_le
thf(fact_1156_order__less__imp__le,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( ord_less_eq_nat @ X4 @ Y ) ) ).

% order_less_imp_le
thf(fact_1157_order__less__imp__le,axiom,
    ! [X4: real,Y: real] :
      ( ( ord_less_real @ X4 @ Y )
     => ( ord_less_eq_real @ X4 @ Y ) ) ).

% order_less_imp_le
thf(fact_1158_order__le__neq__trans,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1159_order__le__neq__trans,axiom,
    ! [A: set_set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_set_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1160_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1161_order__le__neq__trans,axiom,
    ! [A: real,B: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( A != B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1162_order__neq__le__trans,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A != B )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( ord_less_set_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1163_order__neq__le__trans,axiom,
    ! [A: set_set_a,B: set_set_a] :
      ( ( A != B )
     => ( ( ord_le3724670747650509150_set_a @ A @ B )
       => ( ord_less_set_set_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1164_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1165_order__neq__le__trans,axiom,
    ! [A: real,B: real] :
      ( ( A != B )
     => ( ( ord_less_eq_real @ A @ B )
       => ( ord_less_real @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1166_order__le__less__trans,axiom,
    ! [X4: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X4 @ Y )
     => ( ( ord_less_set_a @ Y @ Z )
       => ( ord_less_set_a @ X4 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1167_order__le__less__trans,axiom,
    ! [X4: set_set_a,Y: set_set_a,Z: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X4 @ Y )
     => ( ( ord_less_set_set_a @ Y @ Z )
       => ( ord_less_set_set_a @ X4 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1168_order__le__less__trans,axiom,
    ! [X4: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X4 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1169_order__le__less__trans,axiom,
    ! [X4: real,Y: real,Z: real] :
      ( ( ord_less_eq_real @ X4 @ Y )
     => ( ( ord_less_real @ Y @ Z )
       => ( ord_less_real @ X4 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1170_order__less__le__trans,axiom,
    ! [X4: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_set_a @ X4 @ Y )
     => ( ( ord_less_eq_set_a @ Y @ Z )
       => ( ord_less_set_a @ X4 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1171_order__less__le__trans,axiom,
    ! [X4: set_set_a,Y: set_set_a,Z: set_set_a] :
      ( ( ord_less_set_set_a @ X4 @ Y )
     => ( ( ord_le3724670747650509150_set_a @ Y @ Z )
       => ( ord_less_set_set_a @ X4 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1172_order__less__le__trans,axiom,
    ! [X4: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X4 @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_nat @ X4 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1173_order__less__le__trans,axiom,
    ! [X4: real,Y: real,Z: real] :
      ( ( ord_less_real @ X4 @ Y )
     => ( ( ord_less_eq_real @ Y @ Z )
       => ( ord_less_real @ X4 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1174_order__le__less__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1175_order__le__less__subst1,axiom,
    ! [A: set_set_a,F: nat > set_set_a,B: nat,C: nat] :
      ( ( ord_le3724670747650509150_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_set_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1176_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1177_order__le__less__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_eq_real @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1178_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1179_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1180_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > nat,C: nat] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1181_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1182_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1183_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > real,C: real] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_real @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1184_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1185_order__le__less__subst2,axiom,
    ! [A: real,B: real,F: real > set_a,C: set_a] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1186_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1187_order__le__less__subst2,axiom,
    ! [A: set_set_a,B: set_set_a,F: set_set_a > nat,C: nat] :
      ( ( ord_le3724670747650509150_set_a @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_set_a,Y2: set_set_a] :
              ( ( ord_le3724670747650509150_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1188_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1189_order__less__le__subst1,axiom,
    ! [A: real,F: nat > real,B: nat,C: nat] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1190_order__less__le__subst1,axiom,
    ! [A: nat,F: real > nat,B: real,C: real] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1191_order__less__le__subst1,axiom,
    ! [A: real,F: real > real,B: real,C: real] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1192_order__less__le__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1193_order__less__le__subst1,axiom,
    ! [A: real,F: set_a > real,B: set_a,C: set_a] :
      ( ( ord_less_real @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1194_order__less__le__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1195_order__less__le__subst1,axiom,
    ! [A: set_a,F: real > set_a,B: real,C: real] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X3: real,Y2: real] :
              ( ( ord_less_eq_real @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1196_order__less__le__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1197_order__less__le__subst1,axiom,
    ! [A: nat,F: set_set_a > nat,B: set_set_a,C: set_set_a] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_le3724670747650509150_set_a @ B @ C )
       => ( ! [X3: set_set_a,Y2: set_set_a] :
              ( ( ord_le3724670747650509150_set_a @ X3 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1198_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1199_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_set_a,C: set_set_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_le3724670747650509150_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_set_set_a @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1200_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1201_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > real,C: real] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y2: nat] :
              ( ( ord_less_nat @ X3 @ Y2 )
             => ( ord_less_real @ ( F @ X3 ) @ ( F @ Y2 ) ) )
         => ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1202_linorder__le__less__linear,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
      | ( ord_less_nat @ Y @ X4 ) ) ).

% linorder_le_less_linear
thf(fact_1203_linorder__le__less__linear,axiom,
    ! [X4: real,Y: real] :
      ( ( ord_less_eq_real @ X4 @ Y )
      | ( ord_less_real @ Y @ X4 ) ) ).

% linorder_le_less_linear
thf(fact_1204_order__le__imp__less__or__eq,axiom,
    ! [X4: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X4 @ Y )
     => ( ( ord_less_set_a @ X4 @ Y )
        | ( X4 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1205_order__le__imp__less__or__eq,axiom,
    ! [X4: set_set_a,Y: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ X4 @ Y )
     => ( ( ord_less_set_set_a @ X4 @ Y )
        | ( X4 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1206_order__le__imp__less__or__eq,axiom,
    ! [X4: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X4 @ Y )
     => ( ( ord_less_nat @ X4 @ Y )
        | ( X4 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1207_order__le__imp__less__or__eq,axiom,
    ! [X4: real,Y: real] :
      ( ( ord_less_eq_real @ X4 @ Y )
     => ( ( ord_less_real @ X4 @ Y )
        | ( X4 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1208_ulgraph_Odegree__none,axiom,
    ! [Vertices: set_set_a,Edges: set_set_set_a,V: set_a] :
      ( ( undire6886684016831807756_set_a @ Vertices @ Edges )
     => ( ~ ( member_set_a @ V @ Vertices )
       => ( ( undire8939077443744732368_set_a @ Edges @ V )
          = zero_zero_nat ) ) ) ).

% ulgraph.degree_none
thf(fact_1209_ulgraph_Odegree__none,axiom,
    ! [Vertices: set_a,Edges: set_set_a,V: a] :
      ( ( undire7251896706689453996raph_a @ Vertices @ Edges )
     => ( ~ ( member_a @ V @ Vertices )
       => ( ( undire8867928226783802224gree_a @ Edges @ V )
          = zero_zero_nat ) ) ) ).

% ulgraph.degree_none
thf(fact_1210_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_1211_add__less__le__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_real @ A @ B )
     => ( ( ord_less_eq_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_1212_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_1213_add__le__less__mono,axiom,
    ! [A: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_real @ A @ B )
     => ( ( ord_less_real @ C @ D )
       => ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_1214_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1215_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_real @ I @ J )
        & ( ord_less_eq_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_1216_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: real,J: real,K: real,L: real] :
      ( ( ( ord_less_eq_real @ I @ J )
        & ( ord_less_real @ K @ L ) )
     => ( ord_less_real @ ( plus_plus_real @ I @ K ) @ ( plus_plus_real @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_1217_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M3: nat,N2: nat] :
          ( ( ord_less_nat @ M3 @ N2 )
         => ( ord_less_nat @ ( F @ M3 ) @ ( F @ N2 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_1218_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_1219_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_1220_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1221_degree0__neighborhood__empt__iff,axiom,
    ! [V: a] :
      ( ( finite_finite_set_a @ edges )
     => ( ( ( undire8867928226783802224gree_a @ edges @ V )
          = zero_zero_nat )
        = ( ( undire8504279938402040014hood_a @ vertices @ edges @ V )
          = bot_bot_set_a ) ) ) ).

% degree0_neighborhood_empt_iff
thf(fact_1222_walk__edges__index,axiom,
    ! [I: nat,W2: list_a] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ I @ ( undire8849074589633906640ngth_a @ W2 ) )
       => ( ( undire6133010728901294956walk_a @ vertices @ edges @ W2 )
         => ( member_set_a @ ( nth_set_a @ ( undire7337870655677353998dges_a @ W2 ) @ I ) @ edges ) ) ) ) ).

% walk_edges_index
thf(fact_1223_walk__edges__app,axiom,
    ! [Xs: list_a,Y: a,X4: a] :
      ( ( undire7337870655677353998dges_a @ ( append_a @ Xs @ ( cons_a @ Y @ ( cons_a @ X4 @ nil_a ) ) ) )
      = ( append_set_a @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ ( cons_a @ Y @ nil_a ) ) ) @ ( cons_set_a @ ( insert_a @ Y @ ( insert_a @ X4 @ bot_bot_set_a ) ) @ nil_set_a ) ) ) ).

% walk_edges_app
thf(fact_1224_vert__adj__def,axiom,
    ! [V1: a,V2: a] :
      ( ( undire397441198561214472_adj_a @ edges @ V1 @ V2 )
      = ( member_set_a @ ( insert_a @ V1 @ ( insert_a @ V2 @ bot_bot_set_a ) ) @ edges ) ) ).

% vert_adj_def
thf(fact_1225_not__vert__adj,axiom,
    ! [V: a,U: a] :
      ( ~ ( undire397441198561214472_adj_a @ edges @ V @ U )
     => ~ ( member_set_a @ ( insert_a @ V @ ( insert_a @ U @ bot_bot_set_a ) ) @ edges ) ) ).

% not_vert_adj
thf(fact_1226_has__loop__def,axiom,
    ! [V: a] :
      ( ( undire3617971648856834880loop_a @ edges @ V )
      = ( member_set_a @ ( insert_a @ V @ bot_bot_set_a ) @ edges ) ) ).

% has_loop_def
thf(fact_1227_wellformed__alt__snd,axiom,
    ! [X4: a,Y: a] :
      ( ( member_set_a @ ( insert_a @ X4 @ ( insert_a @ Y @ bot_bot_set_a ) ) @ edges )
     => ( member_a @ Y @ vertices ) ) ).

% wellformed_alt_snd
thf(fact_1228_wellformed__alt__fst,axiom,
    ! [X4: a,Y: a] :
      ( ( member_set_a @ ( insert_a @ X4 @ ( insert_a @ Y @ bot_bot_set_a ) ) @ edges )
     => ( member_a @ X4 @ vertices ) ) ).

% wellformed_alt_fst
thf(fact_1229_is__edge__between__def,axiom,
    ( undire8544646567961481629ween_a
    = ( ^ [X7: set_a,Y7: set_a,E5: set_a] :
        ? [X2: a,Y4: a] :
          ( ( E5
            = ( insert_a @ X2 @ ( insert_a @ Y4 @ bot_bot_set_a ) ) )
          & ( member_a @ X2 @ X7 )
          & ( member_a @ Y4 @ Y7 ) ) ) ) ).

% is_edge_between_def
thf(fact_1230_walk__edges_Osimps_I3_J,axiom,
    ! [X4: a,Y: a,Ys: list_a] :
      ( ( undire7337870655677353998dges_a @ ( cons_a @ X4 @ ( cons_a @ Y @ Ys ) ) )
      = ( cons_set_a @ ( insert_a @ X4 @ ( insert_a @ Y @ bot_bot_set_a ) ) @ ( undire7337870655677353998dges_a @ ( cons_a @ Y @ Ys ) ) ) ) ).

% walk_edges.simps(3)
thf(fact_1231_vert__adj__inc__edge__iff,axiom,
    ! [V1: a,V2: a] :
      ( ( undire397441198561214472_adj_a @ edges @ V1 @ V2 )
      = ( ( undire1521409233611534436dent_a @ V1 @ ( insert_a @ V1 @ ( insert_a @ V2 @ bot_bot_set_a ) ) )
        & ( undire1521409233611534436dent_a @ V2 @ ( insert_a @ V1 @ ( insert_a @ V2 @ bot_bot_set_a ) ) )
        & ( member_set_a @ ( insert_a @ V1 @ ( insert_a @ V2 @ bot_bot_set_a ) ) @ edges ) ) ) ).

% vert_adj_inc_edge_iff
thf(fact_1232_is__walk__hd__tl,axiom,
    ! [Y: a,Ys: list_a,X4: a] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ ( cons_a @ Y @ Ys ) )
     => ( ( member_set_a @ ( insert_a @ X4 @ ( insert_a @ Y @ bot_bot_set_a ) ) @ edges )
       => ( undire6133010728901294956walk_a @ vertices @ edges @ ( cons_a @ X4 @ ( cons_a @ Y @ Ys ) ) ) ) ) ).

% is_walk_hd_tl
thf(fact_1233_walk__edges_Oelims,axiom,
    ! [X4: list_a,Y: list_set_a] :
      ( ( ( undire7337870655677353998dges_a @ X4 )
        = Y )
     => ( ( ( X4 = nil_a )
         => ( Y != nil_set_a ) )
       => ( ( ? [X3: a] :
                ( X4
                = ( cons_a @ X3 @ nil_a ) )
           => ( Y != nil_set_a ) )
         => ~ ! [X3: a,Y2: a,Ys3: list_a] :
                ( ( X4
                  = ( cons_a @ X3 @ ( cons_a @ Y2 @ Ys3 ) ) )
               => ( Y
                 != ( cons_set_a @ ( insert_a @ X3 @ ( insert_a @ Y2 @ bot_bot_set_a ) ) @ ( undire7337870655677353998dges_a @ ( cons_a @ Y2 @ Ys3 ) ) ) ) ) ) ) ) ).

% walk_edges.elims
thf(fact_1234_walk__edges__singleton__app,axiom,
    ! [Ys: list_a,X4: a] :
      ( ( Ys != nil_a )
     => ( ( undire7337870655677353998dges_a @ ( append_a @ ( cons_a @ X4 @ nil_a ) @ Ys ) )
        = ( cons_set_a @ ( insert_a @ X4 @ ( insert_a @ ( hd_a @ Ys ) @ bot_bot_set_a ) ) @ ( undire7337870655677353998dges_a @ Ys ) ) ) ) ).

% walk_edges_singleton_app
thf(fact_1235_neighborhood__incident,axiom,
    ! [U: a,V: a] :
      ( ( member_a @ U @ ( undire8504279938402040014hood_a @ vertices @ edges @ V ) )
      = ( member_set_a @ ( insert_a @ U @ ( insert_a @ V @ bot_bot_set_a ) ) @ ( undire3231912044278729248dges_a @ edges @ V ) ) ) ).

% neighborhood_incident
thf(fact_1236_degree0__inc__edges__empt__iff,axiom,
    ! [V: a] :
      ( ( finite_finite_set_a @ edges )
     => ( ( ( undire8867928226783802224gree_a @ edges @ V )
          = zero_zero_nat )
        = ( ( undire3231912044278729248dges_a @ edges @ V )
          = bot_bot_set_set_a ) ) ) ).

% degree0_inc_edges_empt_iff
thf(fact_1237_finite__inc__sedges,axiom,
    ! [V: a] :
      ( ( finite_finite_set_a @ edges )
     => ( finite_finite_set_a @ ( undire1270416042309875431dges_a @ edges @ V ) ) ) ).

% finite_inc_sedges
thf(fact_1238_finite__incident__edges,axiom,
    ! [V: a] :
      ( ( finite_finite_set_a @ edges )
     => ( finite_finite_set_a @ ( undire3231912044278729248dges_a @ edges @ V ) ) ) ).

% finite_incident_edges
thf(fact_1239_incident__edges__empty,axiom,
    ! [V: a] :
      ( ~ ( member_a @ V @ vertices )
     => ( ( undire3231912044278729248dges_a @ edges @ V )
        = bot_bot_set_set_a ) ) ).

% incident_edges_empty
thf(fact_1240_incident__edges__sedges,axiom,
    ! [V: a] :
      ( ~ ( undire3617971648856834880loop_a @ edges @ V )
     => ( ( undire3231912044278729248dges_a @ edges @ V )
        = ( undire1270416042309875431dges_a @ edges @ V ) ) ) ).

% incident_edges_sedges
thf(fact_1241_incident__sedges__empty,axiom,
    ! [V: a] :
      ( ~ ( member_a @ V @ vertices )
     => ( ( undire1270416042309875431dges_a @ edges @ V )
        = bot_bot_set_set_a ) ) ).

% incident_sedges_empty
thf(fact_1242_is__walk__index,axiom,
    ! [I: nat,W2: list_a] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ I )
     => ( ( ord_less_nat @ ( suc @ I ) @ ( size_size_list_a @ W2 ) )
       => ( ( undire6133010728901294956walk_a @ vertices @ edges @ W2 )
         => ( member_set_a @ ( insert_a @ ( nth_a @ W2 @ I ) @ ( insert_a @ ( nth_a @ W2 @ ( plus_plus_nat @ I @ one_one_nat ) ) @ bot_bot_set_a ) ) @ edges ) ) ) ) ).

% is_walk_index
thf(fact_1243_incident__loops__simp_I1_J,axiom,
    ! [V: a] :
      ( ( undire3617971648856834880loop_a @ edges @ V )
     => ( ( undire4753905205749729249oops_a @ edges @ V )
        = ( insert_set_a @ ( insert_a @ V @ bot_bot_set_a ) @ bot_bot_set_set_a ) ) ) ).

% incident_loops_simp(1)
thf(fact_1244_finite__incident__loops,axiom,
    ! [V: a] : ( finite_finite_set_a @ ( undire4753905205749729249oops_a @ edges @ V ) ) ).

% finite_incident_loops
thf(fact_1245_incident__loops__simp_I2_J,axiom,
    ! [V: a] :
      ( ~ ( undire3617971648856834880loop_a @ edges @ V )
     => ( ( undire4753905205749729249oops_a @ edges @ V )
        = bot_bot_set_set_a ) ) ).

% incident_loops_simp(2)
thf(fact_1246_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_1247_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_1248_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_1249_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_1250_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_1251_dec__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P2 @ I )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P2 @ N2 )
                 => ( P2 @ ( suc @ N2 ) ) ) ) )
         => ( P2 @ J ) ) ) ) ).

% dec_induct
thf(fact_1252_inc__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P2 @ J )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ I @ N2 )
             => ( ( ord_less_nat @ N2 @ J )
               => ( ( P2 @ ( suc @ N2 ) )
                 => ( P2 @ N2 ) ) ) )
         => ( P2 @ I ) ) ) ) ).

% inc_induct
thf(fact_1253_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_1254_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_1255_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_1256_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N3: nat] : ( ord_less_eq_nat @ ( suc @ N3 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1257_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_1258_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_1259_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R @ X3 @ X3 )
       => ( ! [X3: nat,Y2: nat,Z3: nat] :
              ( ( R @ X3 @ Y2 )
             => ( ( R @ Y2 @ Z3 )
               => ( R @ X3 @ Z3 ) ) )
         => ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
           => ( R @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1260_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P2: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P2 @ M )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ( P2 @ N2 )
               => ( P2 @ ( suc @ N2 ) ) ) )
         => ( P2 @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_1261_full__nat__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M4 ) @ N2 )
             => ( P2 @ M4 ) )
         => ( P2 @ N2 ) )
     => ( P2 @ N ) ) ).

% full_nat_induct
thf(fact_1262_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_1263_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_1264_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_1265_Suc__le__D,axiom,
    ! [N: nat,M5: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M5 )
     => ? [M3: nat] :
          ( M5
          = ( suc @ M3 ) ) ) ).

% Suc_le_D
thf(fact_1266_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_1267_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_1268_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_1269_ex__least__nat__less,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ N )
     => ( ~ ( P2 @ zero_zero_nat )
       => ? [K3: nat] :
            ( ( ord_less_nat @ K3 @ N )
            & ! [I2: nat] :
                ( ( ord_less_eq_nat @ I2 @ K3 )
               => ~ ( P2 @ I2 ) )
            & ( P2 @ ( suc @ K3 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1270_walk__edges__append__union,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( Ys != nil_a )
       => ( ( set_set_a2 @ ( undire7337870655677353998dges_a @ ( append_a @ Xs @ Ys ) ) )
          = ( sup_sup_set_set_a @ ( sup_sup_set_set_a @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Xs ) ) @ ( set_set_a2 @ ( undire7337870655677353998dges_a @ Ys ) ) ) @ ( insert_set_a @ ( insert_a @ ( last_a @ Xs ) @ ( insert_a @ ( hd_a @ Ys ) @ bot_bot_set_a ) ) @ bot_bot_set_set_a ) ) ) ) ) ).

% walk_edges_append_union
thf(fact_1271_is__walk__take,axiom,
    ! [W2: list_a,N: nat] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ W2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ord_less_eq_nat @ N @ ( size_size_list_a @ W2 ) )
         => ( undire6133010728901294956walk_a @ vertices @ edges @ ( take_a @ N @ W2 ) ) ) ) ) ).

% is_walk_take
thf(fact_1272_incident__edges__union,axiom,
    ! [V: a] :
      ( ( undire3231912044278729248dges_a @ edges @ V )
      = ( sup_sup_set_set_a @ ( undire1270416042309875431dges_a @ edges @ V ) @ ( undire4753905205749729249oops_a @ edges @ V ) ) ) ).

% incident_edges_union
thf(fact_1273_induced__union__subgraph,axiom,
    ! [VH1: set_a,S: set_a,VH2: set_a,T2: set_a,EH1: set_set_a,EH2: set_set_a] :
      ( ( ord_less_eq_set_a @ VH1 @ S )
     => ( ( ord_less_eq_set_a @ VH2 @ T2 )
       => ( ( undire2554140024507503526stem_a @ VH1 @ EH1 )
         => ( ( undire2554140024507503526stem_a @ VH2 @ EH2 )
           => ( ( ( undire7103218114511261257raph_a @ VH1 @ EH1 @ S @ ( undire7777452895879145676dges_a @ edges @ S ) )
                & ( undire7103218114511261257raph_a @ VH2 @ EH2 @ T2 @ ( undire7777452895879145676dges_a @ edges @ T2 ) ) )
              = ( undire7103218114511261257raph_a @ ( sup_sup_set_a @ VH1 @ VH2 ) @ ( sup_sup_set_set_a @ EH1 @ EH2 ) @ ( sup_sup_set_a @ S @ T2 ) @ ( undire7777452895879145676dges_a @ edges @ ( sup_sup_set_a @ S @ T2 ) ) ) ) ) ) ) ) ).

% induced_union_subgraph
thf(fact_1274_induced__edges__union__subgraph__single,axiom,
    ! [VH1: set_a,S: set_a,VH2: set_a,T2: set_a,EH1: set_set_a,EH2: set_set_a] :
      ( ( ord_less_eq_set_a @ VH1 @ S )
     => ( ( ord_less_eq_set_a @ VH2 @ T2 )
       => ( ( undire2554140024507503526stem_a @ VH1 @ EH1 )
         => ( ( undire2554140024507503526stem_a @ VH2 @ EH2 )
           => ( ( undire7103218114511261257raph_a @ ( sup_sup_set_a @ VH1 @ VH2 ) @ ( sup_sup_set_set_a @ EH1 @ EH2 ) @ ( sup_sup_set_a @ S @ T2 ) @ ( undire7777452895879145676dges_a @ edges @ ( sup_sup_set_a @ S @ T2 ) ) )
             => ( undire7103218114511261257raph_a @ VH1 @ EH1 @ S @ ( undire7777452895879145676dges_a @ edges @ S ) ) ) ) ) ) ) ).

% induced_edges_union_subgraph_single
thf(fact_1275_induced__edges__union,axiom,
    ! [VH1: set_a,S: set_a,VH2: set_a,T2: set_a,EH1: set_set_a,EH2: set_set_a] :
      ( ( ord_less_eq_set_a @ VH1 @ S )
     => ( ( ord_less_eq_set_a @ VH2 @ T2 )
       => ( ( undire2554140024507503526stem_a @ VH1 @ EH1 )
         => ( ( undire2554140024507503526stem_a @ VH2 @ EH2 )
           => ( ( ord_le3724670747650509150_set_a @ ( sup_sup_set_set_a @ EH1 @ EH2 ) @ ( undire7777452895879145676dges_a @ edges @ ( sup_sup_set_a @ S @ T2 ) ) )
             => ( ord_le3724670747650509150_set_a @ EH1 @ ( undire7777452895879145676dges_a @ edges @ S ) ) ) ) ) ) ) ).

% induced_edges_union
thf(fact_1276_is__walk__drop,axiom,
    ! [W2: list_a,N: nat] :
      ( ( undire6133010728901294956walk_a @ vertices @ edges @ W2 )
     => ( ( ord_less_nat @ N @ ( size_size_list_a @ W2 ) )
       => ( undire6133010728901294956walk_a @ vertices @ edges @ ( drop_a @ N @ W2 ) ) ) ) ).

% is_walk_drop

% Conjectures (1)
thf(conj_0,conjecture,
    connecting_walk_a @ vertices @ edges @ u @ z @ ( append_a @ xs @ ( tl_a @ ys ) ) ).

%------------------------------------------------------------------------------