TPTP Problem File: SLH0232^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Pluennecke_Ruzsa_Inequality/0003_Pluennecke_Ruzsa_Inequality/prob_00180_005897__12098646_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1398 ( 611 unt; 120 typ;   0 def)
%            Number of atoms       : 3640 (1348 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 11972 ( 370   ~;  68   |; 347   &;9631   @)
%                                         (   0 <=>;1556  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   19 (   7 avg)
%            Number of types       :    9 (   8 usr)
%            Number of type conns  :  831 ( 831   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  115 ( 112 usr;  14 con; 0-5 aty)
%            Number of variables   : 3778 ( 323   ^;3309   !; 146   ?;3778   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-18 16:19:54.787
%------------------------------------------------------------------------------
% Could-be-implicit typings (8)
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
    set_num: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (112)
thf(sy_c_Binomial_Obinomial,type,
    binomial: nat > nat > nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Nat__Onat,type,
    complete_Sup_Sup_nat: set_nat > nat ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_Itf__a_J,type,
    comple2307003609928055243_set_a: set_set_a > set_a ).

thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Nat__Onat_J,type,
    finite_card_set_nat: set_set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_Itf__a_J,type,
    finite_card_set_a: set_set_a > nat ).

thf(sy_c_Finite__Set_Ocard_001tf__a,type,
    finite_card_a: set_a > nat ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Num__Onum,type,
    finite_finite_num: set_num > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
    finite1152437895449049373et_nat: set_set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_Itf__a_J,type,
    finite_finite_set_a: set_set_a > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
    finite_finite_a: set_a > $o ).

thf(sy_c_Group__Theory_Oabelian__group_001tf__a,type,
    group_201663378560352916roup_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Ocommutative__monoid_001tf__a,type,
    group_4866109990395492029noid_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Ogroup_001tf__a,type,
    group_group_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Omonoid_001t__Nat__Onat,type,
    group_monoid_nat: set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Group__Theory_Omonoid_001tf__a,type,
    group_monoid_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Omonoid_OUnits_001tf__a,type,
    group_Units_a: set_a > ( a > a > a ) > a > set_a ).

thf(sy_c_Group__Theory_Omonoid_Oinverse_001t__Nat__Onat,type,
    group_inverse_nat: set_nat > ( nat > nat > nat ) > nat > nat > nat ).

thf(sy_c_Group__Theory_Omonoid_Oinverse_001tf__a,type,
    group_inverse_a: set_a > ( a > a > a ) > a > a > a ).

thf(sy_c_Group__Theory_Omonoid_Oinvertible_001t__Nat__Onat,type,
    group_invertible_nat: set_nat > ( nat > nat > nat ) > nat > nat > $o ).

thf(sy_c_Group__Theory_Omonoid_Oinvertible_001tf__a,type,
    group_invertible_a: set_a > ( a > a > a ) > a > a > $o ).

thf(sy_c_Group__Theory_Osubgroup_001t__Nat__Onat,type,
    group_subgroup_nat: set_nat > set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Group__Theory_Osubgroup_001tf__a,type,
    group_subgroup_a: set_a > set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_It__Nat__Onat_M_Eo_J,type,
    minus_minus_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001_062_Itf__a_M_Eo_J,type,
    minus_minus_a_o: ( a > $o ) > ( a > $o ) > a > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    minus_5736297505244876581_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
    times_times_num: num > num > num ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_HOL_ONO__MATCH_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    nO_MAT2475032472373502585et_nat: set_nat > set_nat > $o ).

thf(sy_c_HOL_ONO__MATCH_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_Itf__a_J,type,
    nO_MAT2968510229921005611_set_a: set_nat > set_a > $o ).

thf(sy_c_HOL_ONO__MATCH_001t__Set__Oset_Itf__a_J_001t__Set__Oset_It__Nat__Onat_J,type,
    nO_MAT4391312325019038905et_nat: set_a > set_nat > $o ).

thf(sy_c_HOL_ONO__MATCH_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    nO_MATCH_set_a_set_a: set_a > set_a > $o ).

thf(sy_c_HOL_Oundefined_001tf__a,type,
    undefined_a: a ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Set__Oset_Itf__a_J,type,
    if_set_a: $o > set_a > set_a > set_a ).

thf(sy_c_If_001tf__a,type,
    if_a: $o > a > a > a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001_062_It__Nat__Onat_M_Eo_J,type,
    inf_inf_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001_062_Itf__a_M_Eo_J,type,
    inf_inf_a_o: ( a > $o ) > ( a > $o ) > a > $o ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Nat__Onat_J,type,
    inf_inf_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    inf_inf_set_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
    inf_inf_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_It__Nat__Onat_M_Eo_J,type,
    sup_sup_nat_o: ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001_062_Itf__a_M_Eo_J,type,
    sup_sup_a_o: ( a > $o ) > ( a > $o ) > a > $o ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    sup_sup_set_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
    sup_sup_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Nat__Onat,type,
    lattic7446932960582359483at_nat: ( nat > nat ) > set_nat > nat ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001t__Nat__Onat_001t__Num__Onum,type,
    lattic4004264746738138117at_num: ( nat > num ) > set_nat > nat ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001tf__a_001t__Nat__Onat,type,
    lattic6340287419671400565_a_nat: ( a > nat ) > set_a > a ).

thf(sy_c_Lattices__Big_Oord__class_Oarg__min__on_001tf__a_001t__Num__Onum,type,
    lattic2897619205827179199_a_num: ( a > num ) > set_a > a ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Num_Onum_OBit0,type,
    bit0: num > num ).

thf(sy_c_Num_Onum_OOne,type,
    one: num ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Nat__Onat_M_Eo_J,type,
    bot_bot_nat_o: nat > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
    bot_bot_a_o: a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Num__Onum_J,type,
    bot_bot_set_num: set_num ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    bot_bot_set_set_a: set_set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Nat__Onat_M_Eo_J,type,
    ord_less_eq_nat_o: ( nat > $o ) > ( nat > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_Itf__a_M_Eo_J,type,
    ord_less_eq_a_o: ( a > $o ) > ( a > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    ord_le3724670747650509150_set_a: set_set_a > set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001t__Nat__Onat,type,
    pluenn2073725187428264546up_nat: set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001tf__a,type,
    pluenn1164192988769422572roup_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001t__Nat__Onat,type,
    pluenn3669378163024332905et_nat: set_nat > ( nat > nat > nat ) > set_nat > set_nat > set_nat ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001tf__a,type,
    pluenn3038260743871226533mset_a: set_a > ( a > a > a ) > set_a > set_a > set_a ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumsetp_001t__Nat__Onat,type,
    pluenn5670965976768739049tp_nat: set_nat > ( nat > nat > nat ) > ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumsetp_001tf__a,type,
    pluenn895083305082786853setp_a: set_a > ( a > a > a ) > ( a > $o ) > ( a > $o ) > a > $o ).

thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
    dvd_dvd_nat: nat > nat > $o ).

thf(sy_c_Set_OBex_001t__Nat__Onat,type,
    bex_nat: set_nat > ( nat > $o ) > $o ).

thf(sy_c_Set_OBex_001tf__a,type,
    bex_a: set_a > ( a > $o ) > $o ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_Itf__a_J,type,
    collect_set_a: ( set_a > $o ) > set_set_a ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001tf__a,type,
    image_nat_a: ( nat > a ) > set_nat > set_a ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    image_set_a_set_a: ( set_a > set_a ) > set_set_a > set_set_a ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__a_J_001tf__a,type,
    image_set_a_a: ( set_a > a ) > set_set_a > set_a ).

thf(sy_c_Set_Oimage_001tf__a_001t__Nat__Onat,type,
    image_a_nat: ( a > nat ) > set_a > set_nat ).

thf(sy_c_Set_Oimage_001tf__a_001t__Set__Oset_Itf__a_J,type,
    image_a_set_a: ( a > set_a ) > set_a > set_set_a ).

thf(sy_c_Set_Oimage_001tf__a_001tf__a,type,
    image_a_a: ( a > a ) > set_a > set_a ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_Itf__a_J,type,
    insert_set_a: set_a > set_set_a > set_set_a ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set_Ois__singleton_001t__Nat__Onat,type,
    is_singleton_nat: set_nat > $o ).

thf(sy_c_Set_Ois__singleton_001tf__a,type,
    is_singleton_a: set_a > $o ).

thf(sy_c_Set_Othe__elem_001t__Nat__Onat,type,
    the_elem_nat: set_nat > nat ).

thf(sy_c_Set_Othe__elem_001t__Set__Oset_Itf__a_J,type,
    the_elem_set_a: set_set_a > set_a ).

thf(sy_c_Set_Othe__elem_001tf__a,type,
    the_elem_a: set_a > a ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Num__Onum,type,
    member_num: num > set_num > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
    member_set_a: set_a > set_set_a > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_A,type,
    a2: set_a ).

thf(sy_v_Aa____,type,
    aa: set_a ).

thf(sy_v_G,type,
    g: set_a ).

thf(sy_v_addition,type,
    addition: a > a > a ).

thf(sy_v_zero,type,
    zero: a ).

% Relevant facts (1270)
thf(fact_0_assms,axiom,
    ord_less_eq_set_a @ a2 @ g ).

% assms
thf(fact_1__C0_Ohyps_C,axiom,
    ( zero_zero_nat
    = ( finite_card_a @ aa ) ) ).

% "0.hyps"
thf(fact_2__C0_Oprems_C,axiom,
    ord_less_eq_set_a @ aa @ g ).

% "0.prems"
thf(fact_3_commutative,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ g )
     => ( ( member_a @ Y @ g )
       => ( ( addition @ X @ Y )
          = ( addition @ Y @ X ) ) ) ) ).

% commutative
thf(fact_4_sumset_Ocases,axiom,
    ! [A: a,A2: set_a,B: set_a] :
      ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
     => ~ ! [A3: a,B2: a] :
            ( ( A
              = ( addition @ A3 @ B2 ) )
           => ( ( member_a @ A3 @ A2 )
             => ( ( member_a @ A3 @ g )
               => ( ( member_a @ B2 @ B )
                 => ~ ( member_a @ B2 @ g ) ) ) ) ) ) ).

% sumset.cases
thf(fact_5_sumset_Osimps,axiom,
    ! [A: a,A2: set_a,B: set_a] :
      ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
      = ( ? [A4: a,B3: a] :
            ( ( A
              = ( addition @ A4 @ B3 ) )
            & ( member_a @ A4 @ A2 )
            & ( member_a @ A4 @ g )
            & ( member_a @ B3 @ B )
            & ( member_a @ B3 @ g ) ) ) ) ).

% sumset.simps
thf(fact_6_sumset_OsumsetI,axiom,
    ! [A: a,A2: set_a,B4: a,B: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( member_a @ A @ g )
       => ( ( member_a @ B4 @ B )
         => ( ( member_a @ B4 @ g )
           => ( member_a @ ( addition @ A @ B4 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ) ) ).

% sumset.sumsetI
thf(fact_7_sumset__assoc,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ C )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn3038260743871226533mset_a @ g @ addition @ B @ C ) ) ) ).

% sumset_assoc
thf(fact_8_sumset__commute,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ B @ A2 ) ) ).

% sumset_commute
thf(fact_9_sumset__mono,axiom,
    ! [A5: set_a,A2: set_a,B5: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A5 @ A2 )
     => ( ( ord_less_eq_set_a @ B5 @ B )
       => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ B5 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).

% sumset_mono
thf(fact_10_sumset__subset__carrier,axiom,
    ! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ g ) ).

% sumset_subset_carrier
thf(fact_11_associative,axiom,
    ! [A: a,B4: a,C2: a] :
      ( ( member_a @ A @ g )
     => ( ( member_a @ B4 @ g )
       => ( ( member_a @ C2 @ g )
         => ( ( addition @ ( addition @ A @ B4 ) @ C2 )
            = ( addition @ A @ ( addition @ B4 @ C2 ) ) ) ) ) ) ).

% associative
thf(fact_12_composition__closed,axiom,
    ! [A: a,B4: a] :
      ( ( member_a @ A @ g )
     => ( ( member_a @ B4 @ g )
       => ( member_a @ ( addition @ A @ B4 ) @ g ) ) ) ).

% composition_closed
thf(fact_13_card__sumset__0__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ g )
     => ( ( ord_less_eq_set_a @ B @ g )
       => ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
            = zero_zero_nat )
          = ( ( ( finite_card_a @ A2 )
              = zero_zero_nat )
            | ( ( finite_card_a @ B )
              = zero_zero_nat ) ) ) ) ) ).

% card_sumset_0_iff
thf(fact_14_additive__abelian__group_Osumset_Ocong,axiom,
    pluenn3038260743871226533mset_a = pluenn3038260743871226533mset_a ).

% additive_abelian_group.sumset.cong
thf(fact_15_sumset__def,axiom,
    ( ( pluenn3038260743871226533mset_a @ g @ addition )
    = ( ^ [A6: set_a,B6: set_a] :
          ( collect_a
          @ ( pluenn895083305082786853setp_a @ g @ addition
            @ ^ [X2: a] : ( member_a @ X2 @ A6 )
            @ ^ [X2: a] : ( member_a @ X2 @ B6 ) ) ) ) ) ).

% sumset_def
thf(fact_16_sumsetp__sumset__eq,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( pluenn895083305082786853setp_a @ g @ addition
        @ ^ [X2: a] : ( member_a @ X2 @ A2 )
        @ ^ [X2: a] : ( member_a @ X2 @ B ) )
      = ( ^ [X2: a] : ( member_a @ X2 @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).

% sumsetp_sumset_eq
thf(fact_17_sumsetp_Ocases,axiom,
    ! [A2: a > $o,B: a > $o,A: a] :
      ( ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B @ A )
     => ~ ! [A3: a,B2: a] :
            ( ( A
              = ( addition @ A3 @ B2 ) )
           => ( ( A2 @ A3 )
             => ( ( member_a @ A3 @ g )
               => ( ( B @ B2 )
                 => ~ ( member_a @ B2 @ g ) ) ) ) ) ) ).

% sumsetp.cases
thf(fact_18_sumsetp_Osimps,axiom,
    ! [A2: a > $o,B: a > $o,A: a] :
      ( ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B @ A )
      = ( ? [A4: a,B3: a] :
            ( ( A
              = ( addition @ A4 @ B3 ) )
            & ( A2 @ A4 )
            & ( member_a @ A4 @ g )
            & ( B @ B3 )
            & ( member_a @ B3 @ g ) ) ) ) ).

% sumsetp.simps
thf(fact_19_sumsetp_OsumsetI,axiom,
    ! [A2: a > $o,A: a,B: a > $o,B4: a] :
      ( ( A2 @ A )
     => ( ( member_a @ A @ g )
       => ( ( B @ B4 )
         => ( ( member_a @ B4 @ g )
           => ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B @ ( addition @ A @ B4 ) ) ) ) ) ) ).

% sumsetp.sumsetI
thf(fact_20_binomial__Suc__n,axiom,
    ! [N: nat] :
      ( ( binomial @ ( suc @ N ) @ N )
      = ( suc @ N ) ) ).

% binomial_Suc_n
thf(fact_21_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_22_semiring__norm_I85_J,axiom,
    ! [M: num] :
      ( ( bit0 @ M )
     != one ) ).

% semiring_norm(85)
thf(fact_23_semiring__norm_I83_J,axiom,
    ! [N: num] :
      ( one
     != ( bit0 @ N ) ) ).

% semiring_norm(83)
thf(fact_24_numeral__le__iff,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% numeral_le_iff
thf(fact_25_card__2__iff_H,axiom,
    ! [S: set_a] :
      ( ( ( finite_card_a @ S )
        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ? [X2: a] :
            ( ( member_a @ X2 @ S )
            & ? [Y2: a] :
                ( ( member_a @ Y2 @ S )
                & ( X2 != Y2 )
                & ! [Z: a] :
                    ( ( member_a @ Z @ S )
                   => ( ( Z = X2 )
                      | ( Z = Y2 ) ) ) ) ) ) ) ).

% card_2_iff'
thf(fact_26_card__2__iff_H,axiom,
    ! [S: set_nat] :
      ( ( ( finite_card_nat @ S )
        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ? [X2: nat] :
            ( ( member_nat @ X2 @ S )
            & ? [Y2: nat] :
                ( ( member_nat @ Y2 @ S )
                & ( X2 != Y2 )
                & ! [Z: nat] :
                    ( ( member_nat @ Z @ S )
                   => ( ( Z = X2 )
                      | ( Z = Y2 ) ) ) ) ) ) ) ).

% card_2_iff'
thf(fact_27_numeral__eq__iff,axiom,
    ! [M: num,N: num] :
      ( ( ( numeral_numeral_nat @ M )
        = ( numeral_numeral_nat @ N ) )
      = ( M = N ) ) ).

% numeral_eq_iff
thf(fact_28_semiring__norm_I87_J,axiom,
    ! [M: num,N: num] :
      ( ( ( bit0 @ M )
        = ( bit0 @ N ) )
      = ( M = N ) ) ).

% semiring_norm(87)
thf(fact_29_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_30_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_31_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_32_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_33_semiring__norm_I71_J,axiom,
    ! [M: num,N: num] :
      ( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( ord_less_eq_num @ M @ N ) ) ).

% semiring_norm(71)
thf(fact_34_semiring__norm_I68_J,axiom,
    ! [N: num] : ( ord_less_eq_num @ one @ N ) ).

% semiring_norm(68)
thf(fact_35_binomial__0__Suc,axiom,
    ! [K: nat] :
      ( ( binomial @ zero_zero_nat @ ( suc @ K ) )
      = zero_zero_nat ) ).

% binomial_0_Suc
thf(fact_36_binomial__1,axiom,
    ! [N: nat] :
      ( ( binomial @ N @ ( suc @ zero_zero_nat ) )
      = N ) ).

% binomial_1
thf(fact_37_semiring__norm_I69_J,axiom,
    ! [M: num] :
      ~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).

% semiring_norm(69)
thf(fact_38_additive__abelian__group_Osumsetp_Ocong,axiom,
    pluenn895083305082786853setp_a = pluenn895083305082786853setp_a ).

% additive_abelian_group.sumsetp.cong
thf(fact_39_le__num__One__iff,axiom,
    ! [X: num] :
      ( ( ord_less_eq_num @ X @ one )
      = ( X = one ) ) ).

% le_num_One_iff
thf(fact_40_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_41_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_42_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_43_Collect__mem__eq,axiom,
    ! [A2: set_a] :
      ( ( collect_a
        @ ^ [X2: a] : ( member_a @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_44_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X2: nat] : ( member_nat @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_45_Collect__cong,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_a @ P )
        = ( collect_a @ Q ) ) ) ).

% Collect_cong
thf(fact_46_Collect__cong,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_nat @ P )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_47_zero__neq__numeral,axiom,
    ! [N: num] :
      ( zero_zero_nat
     != ( numeral_numeral_nat @ N ) ) ).

% zero_neq_numeral
thf(fact_48_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% not0_implies_Suc
thf(fact_49_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_50_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_51_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_52_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_53_diff__induct,axiom,
    ! [P: nat > nat > $o,M: nat,N: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X3: nat,Y3: nat] :
              ( ( P @ X3 @ Y3 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
         => ( P @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_54_nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N2: nat] :
            ( ( P @ N2 )
           => ( P @ ( suc @ N2 ) ) )
       => ( P @ N ) ) ) ).

% nat_induct
thf(fact_55_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_56_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_57_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_58_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_59_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_60_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_61_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_62_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_63_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_64_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_65_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_66_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M3: nat] :
      ( ( P @ X )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M3 ) )
       => ~ ! [M2: nat] :
              ( ( P @ M2 )
             => ~ ! [X4: nat] :
                    ( ( P @ X4 )
                   => ( ord_less_eq_nat @ X4 @ M2 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_67_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B4: nat] :
      ( ( P @ K )
     => ( ! [Y3: nat] :
            ( ( P @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B4 ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y4: nat] :
                ( ( P @ Y4 )
               => ( ord_less_eq_nat @ Y4 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_68_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_69_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_70_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_71_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_72_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_73_not__numeral__le__zero,axiom,
    ! [N: num] :
      ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ zero_zero_nat ) ).

% not_numeral_le_zero
thf(fact_74_zero__le__numeral,axiom,
    ! [N: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N ) ) ).

% zero_le_numeral
thf(fact_75_numeral__1__eq__Suc__0,axiom,
    ( ( numeral_numeral_nat @ one )
    = ( suc @ zero_zero_nat ) ) ).

% numeral_1_eq_Suc_0
thf(fact_76_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R @ X3 @ X3 )
       => ( ! [X3: nat,Y3: nat,Z2: nat] :
              ( ( R @ X3 @ Y3 )
             => ( ( R @ Y3 @ Z2 )
               => ( R @ X3 @ Z2 ) ) )
         => ( ! [N2: nat] : ( R @ N2 @ ( suc @ N2 ) )
           => ( R @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_77_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P @ M )
       => ( ! [N2: nat] :
              ( ( ord_less_eq_nat @ M @ N2 )
             => ( ( P @ N2 )
               => ( P @ ( suc @ N2 ) ) ) )
         => ( P @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_78_full__nat__induct,axiom,
    ! [P: nat > $o,N: nat] :
      ( ! [N2: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M4 ) @ N2 )
             => ( P @ M4 ) )
         => ( P @ N2 ) )
     => ( P @ N ) ) ).

% full_nat_induct
thf(fact_79_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_80_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_81_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_82_Suc__le__D,axiom,
    ! [N: nat,M5: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M5 )
     => ? [M2: nat] :
          ( M5
          = ( suc @ M2 ) ) ) ).

% Suc_le_D
thf(fact_83_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_84_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_85_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_86_numeral__2__eq__2,axiom,
    ( ( numeral_numeral_nat @ ( bit0 @ one ) )
    = ( suc @ ( suc @ zero_zero_nat ) ) ) ).

% numeral_2_eq_2
thf(fact_87_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_nat @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_88_lift__Suc__antimono__le,axiom,
    ! [F: nat > set_a,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_set_a @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_set_a @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_89_lift__Suc__antimono__le,axiom,
    ! [F: nat > num,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N2 ) ) @ ( F @ N2 ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_num @ ( F @ N3 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_90_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_91_lift__Suc__mono__le,axiom,
    ! [F: nat > set_a,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_set_a @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_set_a @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_92_lift__Suc__mono__le,axiom,
    ! [F: nat > num,N: nat,N3: nat] :
      ( ! [N2: nat] : ( ord_less_eq_num @ ( F @ N2 ) @ ( F @ ( suc @ N2 ) ) )
     => ( ( ord_less_eq_nat @ N @ N3 )
       => ( ord_less_eq_num @ ( F @ N ) @ ( F @ N3 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_93_card__le__sumset,axiom,
    ! [A2: set_a,A: a,B: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ A @ A2 )
       => ( ( member_a @ A @ g )
         => ( ( finite_finite_a @ B )
           => ( ( ord_less_eq_set_a @ B @ g )
             => ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ) ) ) ) ).

% card_le_sumset
thf(fact_94_card__Collect__le__nat,axiom,
    ! [N: nat] :
      ( ( finite_card_nat
        @ ( collect_nat
          @ ^ [I2: nat] : ( ord_less_eq_nat @ I2 @ N ) ) )
      = ( suc @ N ) ) ).

% card_Collect_le_nat
thf(fact_95_card__sumset__0__iff_H,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) )
        = zero_zero_nat )
      = ( ( ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) )
          = zero_zero_nat )
        | ( ( finite_card_a @ ( inf_inf_set_a @ B @ g ) )
          = zero_zero_nat ) ) ) ).

% card_sumset_0_iff'
thf(fact_96_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_97_sumset__subset__insert_I1_J,axiom,
    ! [A2: set_a,B: set_a,X: a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ B ) ) ) ).

% sumset_subset_insert(1)
thf(fact_98_sumset__subset__insert_I2_J,axiom,
    ! [A2: set_a,B: set_a,X: a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ A2 ) @ B ) ) ).

% sumset_subset_insert(2)
thf(fact_99_sumset__subset__Un_I1_J,axiom,
    ! [A2: set_a,B: set_a,C: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).

% sumset_subset_Un(1)
thf(fact_100_sumset__subset__Un_I2_J,axiom,
    ! [A2: set_a,B: set_a,C: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( sup_sup_set_a @ A2 @ C ) @ B ) ) ).

% sumset_subset_Un(2)
thf(fact_101_finite__sumset,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B )
       => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).

% finite_sumset
thf(fact_102_sumset__subset__Un2,axiom,
    ! [A2: set_a,B: set_a,B5: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( sup_sup_set_a @ B @ B5 ) )
      = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B5 ) ) ) ).

% sumset_subset_Un2
thf(fact_103_sumset__subset__Un1,axiom,
    ! [A2: set_a,A5: set_a,B: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( sup_sup_set_a @ A2 @ A5 ) @ B )
      = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ B ) ) ) ).

% sumset_subset_Un1
thf(fact_104_finite__Collect__disjI,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( finite_finite_a
        @ ( collect_a
          @ ^ [X2: a] :
              ( ( P @ X2 )
              | ( Q @ X2 ) ) ) )
      = ( ( finite_finite_a @ ( collect_a @ P ) )
        & ( finite_finite_a @ ( collect_a @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_105_finite__Collect__disjI,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( finite_finite_nat
        @ ( collect_nat
          @ ^ [X2: nat] :
              ( ( P @ X2 )
              | ( Q @ X2 ) ) ) )
      = ( ( finite_finite_nat @ ( collect_nat @ P ) )
        & ( finite_finite_nat @ ( collect_nat @ Q ) ) ) ) ).

% finite_Collect_disjI
thf(fact_106_finite__Collect__conjI,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ( finite_finite_a @ ( collect_a @ P ) )
        | ( finite_finite_a @ ( collect_a @ Q ) ) )
     => ( finite_finite_a
        @ ( collect_a
          @ ^ [X2: a] :
              ( ( P @ X2 )
              & ( Q @ X2 ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_107_finite__Collect__conjI,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( ( finite_finite_nat @ ( collect_nat @ P ) )
        | ( finite_finite_nat @ ( collect_nat @ Q ) ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [X2: nat] :
              ( ( P @ X2 )
              & ( Q @ X2 ) ) ) ) ) ).

% finite_Collect_conjI
thf(fact_108_finite__sumset_H,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
     => ( ( finite_finite_a @ ( inf_inf_set_a @ B @ g ) )
       => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).

% finite_sumset'
thf(fact_109_finite__insert,axiom,
    ! [A: a,A2: set_a] :
      ( ( finite_finite_a @ ( insert_a @ A @ A2 ) )
      = ( finite_finite_a @ A2 ) ) ).

% finite_insert
thf(fact_110_finite__insert,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( finite_finite_nat @ ( insert_nat @ A @ A2 ) )
      = ( finite_finite_nat @ A2 ) ) ).

% finite_insert
thf(fact_111_finite__Int,axiom,
    ! [F2: set_nat,G: set_nat] :
      ( ( ( finite_finite_nat @ F2 )
        | ( finite_finite_nat @ G ) )
     => ( finite_finite_nat @ ( inf_inf_set_nat @ F2 @ G ) ) ) ).

% finite_Int
thf(fact_112_finite__Int,axiom,
    ! [F2: set_a,G: set_a] :
      ( ( ( finite_finite_a @ F2 )
        | ( finite_finite_a @ G ) )
     => ( finite_finite_a @ ( inf_inf_set_a @ F2 @ G ) ) ) ).

% finite_Int
thf(fact_113_finite__Un,axiom,
    ! [F2: set_nat,G: set_nat] :
      ( ( finite_finite_nat @ ( sup_sup_set_nat @ F2 @ G ) )
      = ( ( finite_finite_nat @ F2 )
        & ( finite_finite_nat @ G ) ) ) ).

% finite_Un
thf(fact_114_finite__Un,axiom,
    ! [F2: set_a,G: set_a] :
      ( ( finite_finite_a @ ( sup_sup_set_a @ F2 @ G ) )
      = ( ( finite_finite_a @ F2 )
        & ( finite_finite_a @ G ) ) ) ).

% finite_Un
thf(fact_115_finite__Collect__subsets,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite1152437895449049373et_nat
        @ ( collect_set_nat
          @ ^ [B6: set_nat] : ( ord_less_eq_set_nat @ B6 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_116_finite__Collect__subsets,axiom,
    ! [A2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_set_a
        @ ( collect_set_a
          @ ^ [B6: set_a] : ( ord_less_eq_set_a @ B6 @ A2 ) ) ) ) ).

% finite_Collect_subsets
thf(fact_117_card_Oinfinite,axiom,
    ! [A2: set_a] :
      ( ~ ( finite_finite_a @ A2 )
     => ( ( finite_card_a @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_118_card_Oinfinite,axiom,
    ! [A2: set_nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_card_nat @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_119_card__insert__disjoint,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ~ ( member_a @ X @ A2 )
       => ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
          = ( suc @ ( finite_card_a @ A2 ) ) ) ) ) ).

% card_insert_disjoint
thf(fact_120_card__insert__disjoint,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ~ ( member_nat @ X @ A2 )
       => ( ( finite_card_nat @ ( insert_nat @ X @ A2 ) )
          = ( suc @ ( finite_card_nat @ A2 ) ) ) ) ) ).

% card_insert_disjoint
thf(fact_121_sumset__Int__carrier__eq_I2_J,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( inf_inf_set_a @ A2 @ g ) @ B )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ).

% sumset_Int_carrier_eq(2)
thf(fact_122_sumset__Int__carrier__eq_I1_J,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( inf_inf_set_a @ B @ g ) )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ).

% sumset_Int_carrier_eq(1)
thf(fact_123_sumset__Int__carrier,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) @ g )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ).

% sumset_Int_carrier
thf(fact_124_pigeonhole__infinite__rel,axiom,
    ! [A2: set_a,B: set_a,R: a > a > $o] :
      ( ~ ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B )
       => ( ! [X3: a] :
              ( ( member_a @ X3 @ A2 )
             => ? [Xa: a] :
                  ( ( member_a @ Xa @ B )
                  & ( R @ X3 @ Xa ) ) )
         => ? [X3: a] :
              ( ( member_a @ X3 @ B )
              & ~ ( finite_finite_a
                  @ ( collect_a
                    @ ^ [A4: a] :
                        ( ( member_a @ A4 @ A2 )
                        & ( R @ A4 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_125_pigeonhole__infinite__rel,axiom,
    ! [A2: set_a,B: set_nat,R: a > nat > $o] :
      ( ~ ( finite_finite_a @ A2 )
     => ( ( finite_finite_nat @ B )
       => ( ! [X3: a] :
              ( ( member_a @ X3 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B )
                  & ( R @ X3 @ Xa ) ) )
         => ? [X3: nat] :
              ( ( member_nat @ X3 @ B )
              & ~ ( finite_finite_a
                  @ ( collect_a
                    @ ^ [A4: a] :
                        ( ( member_a @ A4 @ A2 )
                        & ( R @ A4 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_126_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B: set_a,R: nat > a > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_a @ B )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
             => ? [Xa: a] :
                  ( ( member_a @ Xa @ B )
                  & ( R @ X3 @ Xa ) ) )
         => ? [X3: a] :
              ( ( member_a @ X3 @ B )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A4: nat] :
                        ( ( member_nat @ A4 @ A2 )
                        & ( R @ A4 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_127_pigeonhole__infinite__rel,axiom,
    ! [A2: set_nat,B: set_nat,R: nat > nat > $o] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B )
       => ( ! [X3: nat] :
              ( ( member_nat @ X3 @ A2 )
             => ? [Xa: nat] :
                  ( ( member_nat @ Xa @ B )
                  & ( R @ X3 @ Xa ) ) )
         => ? [X3: nat] :
              ( ( member_nat @ X3 @ B )
              & ~ ( finite_finite_nat
                  @ ( collect_nat
                    @ ^ [A4: nat] :
                        ( ( member_nat @ A4 @ A2 )
                        & ( R @ A4 @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite_rel
thf(fact_128_not__finite__existsD,axiom,
    ! [P: a > $o] :
      ( ~ ( finite_finite_a @ ( collect_a @ P ) )
     => ? [X_1: a] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_129_not__finite__existsD,axiom,
    ! [P: nat > $o] :
      ( ~ ( finite_finite_nat @ ( collect_nat @ P ) )
     => ? [X_1: nat] : ( P @ X_1 ) ) ).

% not_finite_existsD
thf(fact_130_infinite__Un,axiom,
    ! [S: set_nat,T: set_nat] :
      ( ( ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T ) ) )
      = ( ~ ( finite_finite_nat @ S )
        | ~ ( finite_finite_nat @ T ) ) ) ).

% infinite_Un
thf(fact_131_infinite__Un,axiom,
    ! [S: set_a,T: set_a] :
      ( ( ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T ) ) )
      = ( ~ ( finite_finite_a @ S )
        | ~ ( finite_finite_a @ T ) ) ) ).

% infinite_Un
thf(fact_132_Un__infinite,axiom,
    ! [S: set_nat,T: set_nat] :
      ( ~ ( finite_finite_nat @ S )
     => ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T ) ) ) ).

% Un_infinite
thf(fact_133_Un__infinite,axiom,
    ! [S: set_a,T: set_a] :
      ( ~ ( finite_finite_a @ S )
     => ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T ) ) ) ).

% Un_infinite
thf(fact_134_finite__UnI,axiom,
    ! [F2: set_nat,G: set_nat] :
      ( ( finite_finite_nat @ F2 )
     => ( ( finite_finite_nat @ G )
       => ( finite_finite_nat @ ( sup_sup_set_nat @ F2 @ G ) ) ) ) ).

% finite_UnI
thf(fact_135_finite__UnI,axiom,
    ! [F2: set_a,G: set_a] :
      ( ( finite_finite_a @ F2 )
     => ( ( finite_finite_a @ G )
       => ( finite_finite_a @ ( sup_sup_set_a @ F2 @ G ) ) ) ) ).

% finite_UnI
thf(fact_136_finite_OinsertI,axiom,
    ! [A2: set_a,A: a] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_a @ ( insert_a @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_137_finite_OinsertI,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite_finite_nat @ ( insert_nat @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_138_finite__has__maximal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ( ord_less_eq_nat @ A @ X3 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_139_finite__has__maximal2,axiom,
    ! [A2: set_set_a,A: set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( member_set_a @ A @ A2 )
       => ? [X3: set_a] :
            ( ( member_set_a @ X3 @ A2 )
            & ( ord_less_eq_set_a @ A @ X3 )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_140_finite__has__maximal2,axiom,
    ! [A2: set_num,A: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( member_num @ A @ A2 )
       => ? [X3: num] :
            ( ( member_num @ X3 @ A2 )
            & ( ord_less_eq_num @ A @ X3 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_141_finite__has__minimal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ( ord_less_eq_nat @ X3 @ A )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_142_finite__has__minimal2,axiom,
    ! [A2: set_set_a,A: set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( member_set_a @ A @ A2 )
       => ? [X3: set_a] :
            ( ( member_set_a @ X3 @ A2 )
            & ( ord_less_eq_set_a @ X3 @ A )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_143_finite__has__minimal2,axiom,
    ! [A2: set_num,A: num] :
      ( ( finite_finite_num @ A2 )
     => ( ( member_num @ A @ A2 )
       => ? [X3: num] :
            ( ( member_num @ X3 @ A2 )
            & ( ord_less_eq_num @ X3 @ A )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_144_rev__finite__subset,axiom,
    ! [B: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B )
     => ( ( ord_less_eq_set_nat @ A2 @ B )
       => ( finite_finite_nat @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_145_rev__finite__subset,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( finite_finite_a @ B )
     => ( ( ord_less_eq_set_a @ A2 @ B )
       => ( finite_finite_a @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_146_infinite__super,axiom,
    ! [S: set_nat,T: set_nat] :
      ( ( ord_less_eq_set_nat @ S @ T )
     => ( ~ ( finite_finite_nat @ S )
       => ~ ( finite_finite_nat @ T ) ) ) ).

% infinite_super
thf(fact_147_infinite__super,axiom,
    ! [S: set_a,T: set_a] :
      ( ( ord_less_eq_set_a @ S @ T )
     => ( ~ ( finite_finite_a @ S )
       => ~ ( finite_finite_a @ T ) ) ) ).

% infinite_super
thf(fact_148_finite__subset,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B )
     => ( ( finite_finite_nat @ B )
       => ( finite_finite_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_149_finite__subset,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( finite_finite_a @ B )
       => ( finite_finite_a @ A2 ) ) ) ).

% finite_subset
thf(fact_150_card__insert__if,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( member_a @ X @ A2 )
         => ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
            = ( finite_card_a @ A2 ) ) )
        & ( ~ ( member_a @ X @ A2 )
         => ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
            = ( suc @ ( finite_card_a @ A2 ) ) ) ) ) ) ).

% card_insert_if
thf(fact_151_card__insert__if,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( member_nat @ X @ A2 )
         => ( ( finite_card_nat @ ( insert_nat @ X @ A2 ) )
            = ( finite_card_nat @ A2 ) ) )
        & ( ~ ( member_nat @ X @ A2 )
         => ( ( finite_card_nat @ ( insert_nat @ X @ A2 ) )
            = ( suc @ ( finite_card_nat @ A2 ) ) ) ) ) ) ).

% card_insert_if
thf(fact_152_card__Suc__eq__finite,axiom,
    ! [A2: set_a,K: nat] :
      ( ( ( finite_card_a @ A2 )
        = ( suc @ K ) )
      = ( ? [B3: a,B6: set_a] :
            ( ( A2
              = ( insert_a @ B3 @ B6 ) )
            & ~ ( member_a @ B3 @ B6 )
            & ( ( finite_card_a @ B6 )
              = K )
            & ( finite_finite_a @ B6 ) ) ) ) ).

% card_Suc_eq_finite
thf(fact_153_card__Suc__eq__finite,axiom,
    ! [A2: set_nat,K: nat] :
      ( ( ( finite_card_nat @ A2 )
        = ( suc @ K ) )
      = ( ? [B3: nat,B6: set_nat] :
            ( ( A2
              = ( insert_nat @ B3 @ B6 ) )
            & ~ ( member_nat @ B3 @ B6 )
            & ( ( finite_card_nat @ B6 )
              = K )
            & ( finite_finite_nat @ B6 ) ) ) ) ).

% card_Suc_eq_finite
thf(fact_154_card__le__Suc__iff,axiom,
    ! [N: nat,A2: set_a] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( finite_card_a @ A2 ) )
      = ( ? [A4: a,B6: set_a] :
            ( ( A2
              = ( insert_a @ A4 @ B6 ) )
            & ~ ( member_a @ A4 @ B6 )
            & ( ord_less_eq_nat @ N @ ( finite_card_a @ B6 ) )
            & ( finite_finite_a @ B6 ) ) ) ) ).

% card_le_Suc_iff
thf(fact_155_card__le__Suc__iff,axiom,
    ! [N: nat,A2: set_nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( finite_card_nat @ A2 ) )
      = ( ? [A4: nat,B6: set_nat] :
            ( ( A2
              = ( insert_nat @ A4 @ B6 ) )
            & ~ ( member_nat @ A4 @ B6 )
            & ( ord_less_eq_nat @ N @ ( finite_card_nat @ B6 ) )
            & ( finite_finite_nat @ B6 ) ) ) ) ).

% card_le_Suc_iff
thf(fact_156_card__insert__le,axiom,
    ! [A2: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ ( insert_a @ X @ A2 ) ) ) ).

% card_insert_le
thf(fact_157_card__insert__le,axiom,
    ! [A2: set_nat,X: nat] : ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ ( insert_nat @ X @ A2 ) ) ) ).

% card_insert_le
thf(fact_158_card__subset__eq,axiom,
    ! [B: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B )
     => ( ( ord_less_eq_set_nat @ A2 @ B )
       => ( ( ( finite_card_nat @ A2 )
            = ( finite_card_nat @ B ) )
         => ( A2 = B ) ) ) ) ).

% card_subset_eq
thf(fact_159_card__subset__eq,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( finite_finite_a @ B )
     => ( ( ord_less_eq_set_a @ A2 @ B )
       => ( ( ( finite_card_a @ A2 )
            = ( finite_card_a @ B ) )
         => ( A2 = B ) ) ) ) ).

% card_subset_eq
thf(fact_160_infinite__arbitrarily__large,axiom,
    ! [A2: set_nat,N: nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ? [B7: set_nat] :
          ( ( finite_finite_nat @ B7 )
          & ( ( finite_card_nat @ B7 )
            = N )
          & ( ord_less_eq_set_nat @ B7 @ A2 ) ) ) ).

% infinite_arbitrarily_large
thf(fact_161_infinite__arbitrarily__large,axiom,
    ! [A2: set_a,N: nat] :
      ( ~ ( finite_finite_a @ A2 )
     => ? [B7: set_a] :
          ( ( finite_finite_a @ B7 )
          & ( ( finite_card_a @ B7 )
            = N )
          & ( ord_less_eq_set_a @ B7 @ A2 ) ) ) ).

% infinite_arbitrarily_large
thf(fact_162_card__mono,axiom,
    ! [B: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B )
     => ( ( ord_less_eq_set_nat @ A2 @ B )
       => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) ) ) ) ).

% card_mono
thf(fact_163_card__mono,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( finite_finite_a @ B )
     => ( ( ord_less_eq_set_a @ A2 @ B )
       => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) ) ) ).

% card_mono
thf(fact_164_card__seteq,axiom,
    ! [B: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B )
     => ( ( ord_less_eq_set_nat @ A2 @ B )
       => ( ( ord_less_eq_nat @ ( finite_card_nat @ B ) @ ( finite_card_nat @ A2 ) )
         => ( A2 = B ) ) ) ) ).

% card_seteq
thf(fact_165_card__seteq,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( finite_finite_a @ B )
     => ( ( ord_less_eq_set_a @ A2 @ B )
       => ( ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite_card_a @ A2 ) )
         => ( A2 = B ) ) ) ) ).

% card_seteq
thf(fact_166_exists__subset__between,axiom,
    ! [A2: set_nat,N: nat,C: set_nat] :
      ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( finite_card_nat @ C ) )
       => ( ( ord_less_eq_set_nat @ A2 @ C )
         => ( ( finite_finite_nat @ C )
           => ? [B7: set_nat] :
                ( ( ord_less_eq_set_nat @ A2 @ B7 )
                & ( ord_less_eq_set_nat @ B7 @ C )
                & ( ( finite_card_nat @ B7 )
                  = N ) ) ) ) ) ) ).

% exists_subset_between
thf(fact_167_exists__subset__between,axiom,
    ! [A2: set_a,N: nat,C: set_a] :
      ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( finite_card_a @ C ) )
       => ( ( ord_less_eq_set_a @ A2 @ C )
         => ( ( finite_finite_a @ C )
           => ? [B7: set_a] :
                ( ( ord_less_eq_set_a @ A2 @ B7 )
                & ( ord_less_eq_set_a @ B7 @ C )
                & ( ( finite_card_a @ B7 )
                  = N ) ) ) ) ) ) ).

% exists_subset_between
thf(fact_168_obtain__subset__with__card__n,axiom,
    ! [N: nat,S: set_nat] :
      ( ( ord_less_eq_nat @ N @ ( finite_card_nat @ S ) )
     => ~ ! [T2: set_nat] :
            ( ( ord_less_eq_set_nat @ T2 @ S )
           => ( ( ( finite_card_nat @ T2 )
                = N )
             => ~ ( finite_finite_nat @ T2 ) ) ) ) ).

% obtain_subset_with_card_n
thf(fact_169_obtain__subset__with__card__n,axiom,
    ! [N: nat,S: set_a] :
      ( ( ord_less_eq_nat @ N @ ( finite_card_a @ S ) )
     => ~ ! [T2: set_a] :
            ( ( ord_less_eq_set_a @ T2 @ S )
           => ( ( ( finite_card_a @ T2 )
                = N )
             => ~ ( finite_finite_a @ T2 ) ) ) ) ).

% obtain_subset_with_card_n
thf(fact_170_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_nat,C: nat] :
      ( ! [G2: set_nat] :
          ( ( ord_less_eq_set_nat @ G2 @ F2 )
         => ( ( finite_finite_nat @ G2 )
           => ( ord_less_eq_nat @ ( finite_card_nat @ G2 ) @ C ) ) )
     => ( ( finite_finite_nat @ F2 )
        & ( ord_less_eq_nat @ ( finite_card_nat @ F2 ) @ C ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_171_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_a,C: nat] :
      ( ! [G2: set_a] :
          ( ( ord_less_eq_set_a @ G2 @ F2 )
         => ( ( finite_finite_a @ G2 )
           => ( ord_less_eq_nat @ ( finite_card_a @ G2 ) @ C ) ) )
     => ( ( finite_finite_a @ F2 )
        & ( ord_less_eq_nat @ ( finite_card_a @ F2 ) @ C ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_172_card__le__if__inj__on__rel,axiom,
    ! [B: set_a,A2: set_a,R2: a > a > $o] :
      ( ( finite_finite_a @ B )
     => ( ! [A3: a] :
            ( ( member_a @ A3 @ A2 )
           => ? [B8: a] :
                ( ( member_a @ B8 @ B )
                & ( R2 @ A3 @ B8 ) ) )
       => ( ! [A1: a,A22: a,B2: a] :
              ( ( member_a @ A1 @ A2 )
             => ( ( member_a @ A22 @ A2 )
               => ( ( member_a @ B2 @ B )
                 => ( ( R2 @ A1 @ B2 )
                   => ( ( R2 @ A22 @ B2 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_173_card__le__if__inj__on__rel,axiom,
    ! [B: set_a,A2: set_nat,R2: nat > a > $o] :
      ( ( finite_finite_a @ B )
     => ( ! [A3: nat] :
            ( ( member_nat @ A3 @ A2 )
           => ? [B8: a] :
                ( ( member_a @ B8 @ B )
                & ( R2 @ A3 @ B8 ) ) )
       => ( ! [A1: nat,A22: nat,B2: a] :
              ( ( member_nat @ A1 @ A2 )
             => ( ( member_nat @ A22 @ A2 )
               => ( ( member_a @ B2 @ B )
                 => ( ( R2 @ A1 @ B2 )
                   => ( ( R2 @ A22 @ B2 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_a @ B ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_174_card__le__if__inj__on__rel,axiom,
    ! [B: set_nat,A2: set_a,R2: a > nat > $o] :
      ( ( finite_finite_nat @ B )
     => ( ! [A3: a] :
            ( ( member_a @ A3 @ A2 )
           => ? [B8: nat] :
                ( ( member_nat @ B8 @ B )
                & ( R2 @ A3 @ B8 ) ) )
       => ( ! [A1: a,A22: a,B2: nat] :
              ( ( member_a @ A1 @ A2 )
             => ( ( member_a @ A22 @ A2 )
               => ( ( member_nat @ B2 @ B )
                 => ( ( R2 @ A1 @ B2 )
                   => ( ( R2 @ A22 @ B2 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_nat @ B ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_175_card__le__if__inj__on__rel,axiom,
    ! [B: set_nat,A2: set_nat,R2: nat > nat > $o] :
      ( ( finite_finite_nat @ B )
     => ( ! [A3: nat] :
            ( ( member_nat @ A3 @ A2 )
           => ? [B8: nat] :
                ( ( member_nat @ B8 @ B )
                & ( R2 @ A3 @ B8 ) ) )
       => ( ! [A1: nat,A22: nat,B2: nat] :
              ( ( member_nat @ A1 @ A2 )
             => ( ( member_nat @ A22 @ A2 )
               => ( ( member_nat @ B2 @ B )
                 => ( ( R2 @ A1 @ B2 )
                   => ( ( R2 @ A22 @ B2 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_176_card__le__Suc0__iff__eq,axiom,
    ! [A2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( suc @ zero_zero_nat ) )
        = ( ! [X2: a] :
              ( ( member_a @ X2 @ A2 )
             => ! [Y2: a] :
                  ( ( member_a @ Y2 @ A2 )
                 => ( X2 = Y2 ) ) ) ) ) ) ).

% card_le_Suc0_iff_eq
thf(fact_177_card__le__Suc0__iff__eq,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( suc @ zero_zero_nat ) )
        = ( ! [X2: nat] :
              ( ( member_nat @ X2 @ A2 )
             => ! [Y2: nat] :
                  ( ( member_nat @ Y2 @ A2 )
                 => ( X2 = Y2 ) ) ) ) ) ) ).

% card_le_Suc0_iff_eq
thf(fact_178_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_179_n__subsets,axiom,
    ! [A2: set_nat,K: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_card_set_nat
          @ ( collect_set_nat
            @ ^ [B6: set_nat] :
                ( ( ord_less_eq_set_nat @ B6 @ A2 )
                & ( ( finite_card_nat @ B6 )
                  = K ) ) ) )
        = ( binomial @ ( finite_card_nat @ A2 ) @ K ) ) ) ).

% n_subsets
thf(fact_180_n__subsets,axiom,
    ! [A2: set_a,K: nat] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_card_set_a
          @ ( collect_set_a
            @ ^ [B6: set_a] :
                ( ( ord_less_eq_set_a @ B6 @ A2 )
                & ( ( finite_card_a @ B6 )
                  = K ) ) ) )
        = ( binomial @ ( finite_card_a @ A2 ) @ K ) ) ) ).

% n_subsets
thf(fact_181_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_182_card__sumset__singleton__eq,axiom,
    ! [A2: set_a,A: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( member_a @ A @ g )
         => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
            = ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) ) ) )
        & ( ~ ( member_a @ A @ g )
         => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
            = zero_zero_nat ) ) ) ) ).

% card_sumset_singleton_eq
thf(fact_183_card__sumset__le,axiom,
    ! [A2: set_a,A: a] :
      ( ( finite_finite_a @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ).

% card_sumset_le
thf(fact_184_infinite__sumset__aux,axiom,
    ! [A2: set_a,B: set_a] :
      ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
     => ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) )
        = ( ( inf_inf_set_a @ B @ g )
         != bot_bot_set_a ) ) ) ).

% infinite_sumset_aux
thf(fact_185_infinite__sumset__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) )
      = ( ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
          & ( ( inf_inf_set_a @ B @ g )
           != bot_bot_set_a ) )
        | ( ( ( inf_inf_set_a @ A2 @ g )
           != bot_bot_set_a )
          & ~ ( finite_finite_a @ ( inf_inf_set_a @ B @ g ) ) ) ) ) ).

% infinite_sumset_iff
thf(fact_186_Un__Int__eq_I1_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T ) @ S )
      = S ) ).

% Un_Int_eq(1)
thf(fact_187_Un__Int__eq_I2_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T ) @ T )
      = T ) ).

% Un_Int_eq(2)
thf(fact_188_Un__Int__eq_I3_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( inf_inf_set_a @ S @ ( sup_sup_set_a @ S @ T ) )
      = S ) ).

% Un_Int_eq(3)
thf(fact_189_Un__Int__eq_I4_J,axiom,
    ! [T: set_a,S: set_a] :
      ( ( inf_inf_set_a @ T @ ( sup_sup_set_a @ S @ T ) )
      = T ) ).

% Un_Int_eq(4)
thf(fact_190_Int__Un__eq_I1_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T ) @ S )
      = S ) ).

% Int_Un_eq(1)
thf(fact_191_Int__Un__eq_I2_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T ) @ T )
      = T ) ).

% Int_Un_eq(2)
thf(fact_192_empty__iff,axiom,
    ! [C2: a] :
      ~ ( member_a @ C2 @ bot_bot_set_a ) ).

% empty_iff
thf(fact_193_empty__iff,axiom,
    ! [C2: nat] :
      ~ ( member_nat @ C2 @ bot_bot_set_nat ) ).

% empty_iff
thf(fact_194_all__not__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ! [X2: a] :
            ~ ( member_a @ X2 @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_195_all__not__in__conv,axiom,
    ! [A2: set_nat] :
      ( ( ! [X2: nat] :
            ~ ( member_nat @ X2 @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_196_Collect__empty__eq,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( ! [X2: a] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_197_Collect__empty__eq,axiom,
    ! [P: nat > $o] :
      ( ( ( collect_nat @ P )
        = bot_bot_set_nat )
      = ( ! [X2: nat] :
            ~ ( P @ X2 ) ) ) ).

% Collect_empty_eq
thf(fact_198_empty__Collect__eq,axiom,
    ! [P: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P ) )
      = ( ! [X2: a] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_199_empty__Collect__eq,axiom,
    ! [P: nat > $o] :
      ( ( bot_bot_set_nat
        = ( collect_nat @ P ) )
      = ( ! [X2: nat] :
            ~ ( P @ X2 ) ) ) ).

% empty_Collect_eq
thf(fact_200_subsetI,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( member_nat @ X3 @ B ) )
     => ( ord_less_eq_set_nat @ A2 @ B ) ) ).

% subsetI
thf(fact_201_subsetI,axiom,
    ! [A2: set_a,B: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ( member_a @ X3 @ B ) )
     => ( ord_less_eq_set_a @ A2 @ B ) ) ).

% subsetI
thf(fact_202_subset__antisym,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( ord_less_eq_set_a @ B @ A2 )
       => ( A2 = B ) ) ) ).

% subset_antisym
thf(fact_203_insertCI,axiom,
    ! [A: a,B: set_a,B4: a] :
      ( ( ~ ( member_a @ A @ B )
       => ( A = B4 ) )
     => ( member_a @ A @ ( insert_a @ B4 @ B ) ) ) ).

% insertCI
thf(fact_204_insertCI,axiom,
    ! [A: nat,B: set_nat,B4: nat] :
      ( ( ~ ( member_nat @ A @ B )
       => ( A = B4 ) )
     => ( member_nat @ A @ ( insert_nat @ B4 @ B ) ) ) ).

% insertCI
thf(fact_205_insert__iff,axiom,
    ! [A: a,B4: a,A2: set_a] :
      ( ( member_a @ A @ ( insert_a @ B4 @ A2 ) )
      = ( ( A = B4 )
        | ( member_a @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_206_insert__iff,axiom,
    ! [A: nat,B4: nat,A2: set_nat] :
      ( ( member_nat @ A @ ( insert_nat @ B4 @ A2 ) )
      = ( ( A = B4 )
        | ( member_nat @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_207_insert__absorb2,axiom,
    ! [X: a,A2: set_a] :
      ( ( insert_a @ X @ ( insert_a @ X @ A2 ) )
      = ( insert_a @ X @ A2 ) ) ).

% insert_absorb2
thf(fact_208_IntI,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ A2 )
     => ( ( member_nat @ C2 @ B )
       => ( member_nat @ C2 @ ( inf_inf_set_nat @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_209_IntI,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ A2 )
     => ( ( member_a @ C2 @ B )
       => ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).

% IntI
thf(fact_210_Int__iff,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A2 @ B ) )
      = ( ( member_nat @ C2 @ A2 )
        & ( member_nat @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_211_Int__iff,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
      = ( ( member_a @ C2 @ A2 )
        & ( member_a @ C2 @ B ) ) ) ).

% Int_iff
thf(fact_212_UnCI,axiom,
    ! [C2: nat,B: set_nat,A2: set_nat] :
      ( ( ~ ( member_nat @ C2 @ B )
       => ( member_nat @ C2 @ A2 ) )
     => ( member_nat @ C2 @ ( sup_sup_set_nat @ A2 @ B ) ) ) ).

% UnCI
thf(fact_213_UnCI,axiom,
    ! [C2: a,B: set_a,A2: set_a] :
      ( ( ~ ( member_a @ C2 @ B )
       => ( member_a @ C2 @ A2 ) )
     => ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) ) ) ).

% UnCI
thf(fact_214_Un__iff,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( sup_sup_set_nat @ A2 @ B ) )
      = ( ( member_nat @ C2 @ A2 )
        | ( member_nat @ C2 @ B ) ) ) ).

% Un_iff
thf(fact_215_Un__iff,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) )
      = ( ( member_a @ C2 @ A2 )
        | ( member_a @ C2 @ B ) ) ) ).

% Un_iff
thf(fact_216_finite__Collect__le__nat,axiom,
    ! [K: nat] :
      ( finite_finite_nat
      @ ( collect_nat
        @ ^ [N4: nat] : ( ord_less_eq_nat @ N4 @ K ) ) ) ).

% finite_Collect_le_nat
thf(fact_217_sumset__empty_H_I1_J,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ g )
        = bot_bot_set_a )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ B @ A2 )
        = bot_bot_set_a ) ) ).

% sumset_empty'(1)
thf(fact_218_sumset__empty_H_I2_J,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ g )
        = bot_bot_set_a )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
        = bot_bot_set_a ) ) ).

% sumset_empty'(2)
thf(fact_219_subset__empty,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat )
      = ( A2 = bot_bot_set_nat ) ) ).

% subset_empty
thf(fact_220_subset__empty,axiom,
    ! [A2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
      = ( A2 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_221_empty__subsetI,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A2 ) ).

% empty_subsetI
thf(fact_222_empty__subsetI,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A2 ) ).

% empty_subsetI
thf(fact_223_singletonI,axiom,
    ! [A: a] : ( member_a @ A @ ( insert_a @ A @ bot_bot_set_a ) ) ).

% singletonI
thf(fact_224_singletonI,axiom,
    ! [A: nat] : ( member_nat @ A @ ( insert_nat @ A @ bot_bot_set_nat ) ) ).

% singletonI
thf(fact_225_insert__subset,axiom,
    ! [X: nat,A2: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ ( insert_nat @ X @ A2 ) @ B )
      = ( ( member_nat @ X @ B )
        & ( ord_less_eq_set_nat @ A2 @ B ) ) ) ).

% insert_subset
thf(fact_226_insert__subset,axiom,
    ! [X: a,A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ ( insert_a @ X @ A2 ) @ B )
      = ( ( member_a @ X @ B )
        & ( ord_less_eq_set_a @ A2 @ B ) ) ) ).

% insert_subset
thf(fact_227_Int__subset__iff,axiom,
    ! [C: set_a,A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ C @ ( inf_inf_set_a @ A2 @ B ) )
      = ( ( ord_less_eq_set_a @ C @ A2 )
        & ( ord_less_eq_set_a @ C @ B ) ) ) ).

% Int_subset_iff
thf(fact_228_Un__empty,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( sup_sup_set_a @ A2 @ B )
        = bot_bot_set_a )
      = ( ( A2 = bot_bot_set_a )
        & ( B = bot_bot_set_a ) ) ) ).

% Un_empty
thf(fact_229_Un__empty,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( ( sup_sup_set_nat @ A2 @ B )
        = bot_bot_set_nat )
      = ( ( A2 = bot_bot_set_nat )
        & ( B = bot_bot_set_nat ) ) ) ).

% Un_empty
thf(fact_230_Int__insert__left__if0,axiom,
    ! [A: nat,C: set_nat,B: set_nat] :
      ( ~ ( member_nat @ A @ C )
     => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B ) @ C )
        = ( inf_inf_set_nat @ B @ C ) ) ) ).

% Int_insert_left_if0
thf(fact_231_Int__insert__left__if0,axiom,
    ! [A: a,C: set_a,B: set_a] :
      ( ~ ( member_a @ A @ C )
     => ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
        = ( inf_inf_set_a @ B @ C ) ) ) ).

% Int_insert_left_if0
thf(fact_232_Int__insert__left__if1,axiom,
    ! [A: nat,C: set_nat,B: set_nat] :
      ( ( member_nat @ A @ C )
     => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B ) @ C )
        = ( insert_nat @ A @ ( inf_inf_set_nat @ B @ C ) ) ) ) ).

% Int_insert_left_if1
thf(fact_233_Int__insert__left__if1,axiom,
    ! [A: a,C: set_a,B: set_a] :
      ( ( member_a @ A @ C )
     => ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
        = ( insert_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ) ).

% Int_insert_left_if1
thf(fact_234_insert__inter__insert,axiom,
    ! [A: a,A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ ( insert_a @ A @ B ) )
      = ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B ) ) ) ).

% insert_inter_insert
thf(fact_235_Int__insert__right__if0,axiom,
    ! [A: nat,A2: set_nat,B: set_nat] :
      ( ~ ( member_nat @ A @ A2 )
     => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B ) )
        = ( inf_inf_set_nat @ A2 @ B ) ) ) ).

% Int_insert_right_if0
thf(fact_236_Int__insert__right__if0,axiom,
    ! [A: a,A2: set_a,B: set_a] :
      ( ~ ( member_a @ A @ A2 )
     => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
        = ( inf_inf_set_a @ A2 @ B ) ) ) ).

% Int_insert_right_if0
thf(fact_237_Int__insert__right__if1,axiom,
    ! [A: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B ) )
        = ( insert_nat @ A @ ( inf_inf_set_nat @ A2 @ B ) ) ) ) ).

% Int_insert_right_if1
thf(fact_238_Int__insert__right__if1,axiom,
    ! [A: a,A2: set_a,B: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
        = ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).

% Int_insert_right_if1
thf(fact_239_Un__subset__iff,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C )
      = ( ( ord_less_eq_set_a @ A2 @ C )
        & ( ord_less_eq_set_a @ B @ C ) ) ) ).

% Un_subset_iff
thf(fact_240_Un__insert__left,axiom,
    ! [A: a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ ( insert_a @ A @ B ) @ C )
      = ( insert_a @ A @ ( sup_sup_set_a @ B @ C ) ) ) ).

% Un_insert_left
thf(fact_241_Un__insert__right,axiom,
    ! [A2: set_a,A: a,B: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( insert_a @ A @ B ) )
      = ( insert_a @ A @ ( sup_sup_set_a @ A2 @ B ) ) ) ).

% Un_insert_right
thf(fact_242_Int__Un__eq_I4_J,axiom,
    ! [T: set_a,S: set_a] :
      ( ( sup_sup_set_a @ T @ ( inf_inf_set_a @ S @ T ) )
      = T ) ).

% Int_Un_eq(4)
thf(fact_243_Int__Un__eq_I3_J,axiom,
    ! [S: set_a,T: set_a] :
      ( ( sup_sup_set_a @ S @ ( inf_inf_set_a @ S @ T ) )
      = S ) ).

% Int_Un_eq(3)
thf(fact_244_singleton__conv,axiom,
    ! [A: a] :
      ( ( collect_a
        @ ^ [X2: a] : ( X2 = A ) )
      = ( insert_a @ A @ bot_bot_set_a ) ) ).

% singleton_conv
thf(fact_245_singleton__conv,axiom,
    ! [A: nat] :
      ( ( collect_nat
        @ ^ [X2: nat] : ( X2 = A ) )
      = ( insert_nat @ A @ bot_bot_set_nat ) ) ).

% singleton_conv
thf(fact_246_singleton__conv2,axiom,
    ! [A: a] :
      ( ( collect_a
        @ ( ^ [Y5: a,Z3: a] : ( Y5 = Z3 )
          @ A ) )
      = ( insert_a @ A @ bot_bot_set_a ) ) ).

% singleton_conv2
thf(fact_247_singleton__conv2,axiom,
    ! [A: nat] :
      ( ( collect_nat
        @ ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 )
          @ A ) )
      = ( insert_nat @ A @ bot_bot_set_nat ) ) ).

% singleton_conv2
thf(fact_248_singleton__insert__inj__eq_H,axiom,
    ! [A: nat,A2: set_nat,B4: nat] :
      ( ( ( insert_nat @ A @ A2 )
        = ( insert_nat @ B4 @ bot_bot_set_nat ) )
      = ( ( A = B4 )
        & ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ B4 @ bot_bot_set_nat ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_249_singleton__insert__inj__eq_H,axiom,
    ! [A: a,A2: set_a,B4: a] :
      ( ( ( insert_a @ A @ A2 )
        = ( insert_a @ B4 @ bot_bot_set_a ) )
      = ( ( A = B4 )
        & ( ord_less_eq_set_a @ A2 @ ( insert_a @ B4 @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_250_singleton__insert__inj__eq,axiom,
    ! [B4: nat,A: nat,A2: set_nat] :
      ( ( ( insert_nat @ B4 @ bot_bot_set_nat )
        = ( insert_nat @ A @ A2 ) )
      = ( ( A = B4 )
        & ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ B4 @ bot_bot_set_nat ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_251_singleton__insert__inj__eq,axiom,
    ! [B4: a,A: a,A2: set_a] :
      ( ( ( insert_a @ B4 @ bot_bot_set_a )
        = ( insert_a @ A @ A2 ) )
      = ( ( A = B4 )
        & ( ord_less_eq_set_a @ A2 @ ( insert_a @ B4 @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_252_disjoint__insert_I2_J,axiom,
    ! [A2: set_a,B4: a,B: set_a] :
      ( ( bot_bot_set_a
        = ( inf_inf_set_a @ A2 @ ( insert_a @ B4 @ B ) ) )
      = ( ~ ( member_a @ B4 @ A2 )
        & ( bot_bot_set_a
          = ( inf_inf_set_a @ A2 @ B ) ) ) ) ).

% disjoint_insert(2)
thf(fact_253_disjoint__insert_I2_J,axiom,
    ! [A2: set_nat,B4: nat,B: set_nat] :
      ( ( bot_bot_set_nat
        = ( inf_inf_set_nat @ A2 @ ( insert_nat @ B4 @ B ) ) )
      = ( ~ ( member_nat @ B4 @ A2 )
        & ( bot_bot_set_nat
          = ( inf_inf_set_nat @ A2 @ B ) ) ) ) ).

% disjoint_insert(2)
thf(fact_254_disjoint__insert_I1_J,axiom,
    ! [B: set_a,A: a,A2: set_a] :
      ( ( ( inf_inf_set_a @ B @ ( insert_a @ A @ A2 ) )
        = bot_bot_set_a )
      = ( ~ ( member_a @ A @ B )
        & ( ( inf_inf_set_a @ B @ A2 )
          = bot_bot_set_a ) ) ) ).

% disjoint_insert(1)
thf(fact_255_disjoint__insert_I1_J,axiom,
    ! [B: set_nat,A: nat,A2: set_nat] :
      ( ( ( inf_inf_set_nat @ B @ ( insert_nat @ A @ A2 ) )
        = bot_bot_set_nat )
      = ( ~ ( member_nat @ A @ B )
        & ( ( inf_inf_set_nat @ B @ A2 )
          = bot_bot_set_nat ) ) ) ).

% disjoint_insert(1)
thf(fact_256_insert__disjoint_I2_J,axiom,
    ! [A: a,A2: set_a,B: set_a] :
      ( ( bot_bot_set_a
        = ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ B ) )
      = ( ~ ( member_a @ A @ B )
        & ( bot_bot_set_a
          = ( inf_inf_set_a @ A2 @ B ) ) ) ) ).

% insert_disjoint(2)
thf(fact_257_insert__disjoint_I2_J,axiom,
    ! [A: nat,A2: set_nat,B: set_nat] :
      ( ( bot_bot_set_nat
        = ( inf_inf_set_nat @ ( insert_nat @ A @ A2 ) @ B ) )
      = ( ~ ( member_nat @ A @ B )
        & ( bot_bot_set_nat
          = ( inf_inf_set_nat @ A2 @ B ) ) ) ) ).

% insert_disjoint(2)
thf(fact_258_insert__disjoint_I1_J,axiom,
    ! [A: a,A2: set_a,B: set_a] :
      ( ( ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ B )
        = bot_bot_set_a )
      = ( ~ ( member_a @ A @ B )
        & ( ( inf_inf_set_a @ A2 @ B )
          = bot_bot_set_a ) ) ) ).

% insert_disjoint(1)
thf(fact_259_insert__disjoint_I1_J,axiom,
    ! [A: nat,A2: set_nat,B: set_nat] :
      ( ( ( inf_inf_set_nat @ ( insert_nat @ A @ A2 ) @ B )
        = bot_bot_set_nat )
      = ( ~ ( member_nat @ A @ B )
        & ( ( inf_inf_set_nat @ A2 @ B )
          = bot_bot_set_nat ) ) ) ).

% insert_disjoint(1)
thf(fact_260_card_Oempty,axiom,
    ( ( finite_card_a @ bot_bot_set_a )
    = zero_zero_nat ) ).

% card.empty
thf(fact_261_card_Oempty,axiom,
    ( ( finite_card_nat @ bot_bot_set_nat )
    = zero_zero_nat ) ).

% card.empty
thf(fact_262_card__0__eq,axiom,
    ! [A2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( finite_card_a @ A2 )
          = zero_zero_nat )
        = ( A2 = bot_bot_set_a ) ) ) ).

% card_0_eq
thf(fact_263_card__0__eq,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( finite_card_nat @ A2 )
          = zero_zero_nat )
        = ( A2 = bot_bot_set_nat ) ) ) ).

% card_0_eq
thf(fact_264_sumset__empty_I1_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% sumset_empty(1)
thf(fact_265_sumset__empty_I2_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ bot_bot_set_a @ A2 )
      = bot_bot_set_a ) ).

% sumset_empty(2)
thf(fact_266_sumset__is__empty__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
        = bot_bot_set_a )
      = ( ( ( inf_inf_set_a @ A2 @ g )
          = bot_bot_set_a )
        | ( ( inf_inf_set_a @ B @ g )
          = bot_bot_set_a ) ) ) ).

% sumset_is_empty_iff
thf(fact_267_emptyE,axiom,
    ! [A: a] :
      ~ ( member_a @ A @ bot_bot_set_a ) ).

% emptyE
thf(fact_268_emptyE,axiom,
    ! [A: nat] :
      ~ ( member_nat @ A @ bot_bot_set_nat ) ).

% emptyE
thf(fact_269_equals0D,axiom,
    ! [A2: set_a,A: a] :
      ( ( A2 = bot_bot_set_a )
     => ~ ( member_a @ A @ A2 ) ) ).

% equals0D
thf(fact_270_equals0D,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( A2 = bot_bot_set_nat )
     => ~ ( member_nat @ A @ A2 ) ) ).

% equals0D
thf(fact_271_equals0I,axiom,
    ! [A2: set_a] :
      ( ! [Y3: a] :
          ~ ( member_a @ Y3 @ A2 )
     => ( A2 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_272_equals0I,axiom,
    ! [A2: set_nat] :
      ( ! [Y3: nat] :
          ~ ( member_nat @ Y3 @ A2 )
     => ( A2 = bot_bot_set_nat ) ) ).

% equals0I
thf(fact_273_empty__def,axiom,
    ( bot_bot_set_a
    = ( collect_a
      @ ^ [X2: a] : $false ) ) ).

% empty_def
thf(fact_274_empty__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat
      @ ^ [X2: nat] : $false ) ) ).

% empty_def
thf(fact_275_ex__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ? [X2: a] : ( member_a @ X2 @ A2 ) )
      = ( A2 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_276_ex__in__conv,axiom,
    ! [A2: set_nat] :
      ( ( ? [X2: nat] : ( member_nat @ X2 @ A2 ) )
      = ( A2 != bot_bot_set_nat ) ) ).

% ex_in_conv
thf(fact_277_singletonD,axiom,
    ! [B4: a,A: a] :
      ( ( member_a @ B4 @ ( insert_a @ A @ bot_bot_set_a ) )
     => ( B4 = A ) ) ).

% singletonD
thf(fact_278_singletonD,axiom,
    ! [B4: nat,A: nat] :
      ( ( member_nat @ B4 @ ( insert_nat @ A @ bot_bot_set_nat ) )
     => ( B4 = A ) ) ).

% singletonD
thf(fact_279_singleton__iff,axiom,
    ! [B4: a,A: a] :
      ( ( member_a @ B4 @ ( insert_a @ A @ bot_bot_set_a ) )
      = ( B4 = A ) ) ).

% singleton_iff
thf(fact_280_singleton__iff,axiom,
    ! [B4: nat,A: nat] :
      ( ( member_nat @ B4 @ ( insert_nat @ A @ bot_bot_set_nat ) )
      = ( B4 = A ) ) ).

% singleton_iff
thf(fact_281_doubleton__eq__iff,axiom,
    ! [A: a,B4: a,C2: a,D: a] :
      ( ( ( insert_a @ A @ ( insert_a @ B4 @ bot_bot_set_a ) )
        = ( insert_a @ C2 @ ( insert_a @ D @ bot_bot_set_a ) ) )
      = ( ( ( A = C2 )
          & ( B4 = D ) )
        | ( ( A = D )
          & ( B4 = C2 ) ) ) ) ).

% doubleton_eq_iff
thf(fact_282_doubleton__eq__iff,axiom,
    ! [A: nat,B4: nat,C2: nat,D: nat] :
      ( ( ( insert_nat @ A @ ( insert_nat @ B4 @ bot_bot_set_nat ) )
        = ( insert_nat @ C2 @ ( insert_nat @ D @ bot_bot_set_nat ) ) )
      = ( ( ( A = C2 )
          & ( B4 = D ) )
        | ( ( A = D )
          & ( B4 = C2 ) ) ) ) ).

% doubleton_eq_iff
thf(fact_283_insert__not__empty,axiom,
    ! [A: a,A2: set_a] :
      ( ( insert_a @ A @ A2 )
     != bot_bot_set_a ) ).

% insert_not_empty
thf(fact_284_insert__not__empty,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( insert_nat @ A @ A2 )
     != bot_bot_set_nat ) ).

% insert_not_empty
thf(fact_285_singleton__inject,axiom,
    ! [A: a,B4: a] :
      ( ( ( insert_a @ A @ bot_bot_set_a )
        = ( insert_a @ B4 @ bot_bot_set_a ) )
     => ( A = B4 ) ) ).

% singleton_inject
thf(fact_286_singleton__inject,axiom,
    ! [A: nat,B4: nat] :
      ( ( ( insert_nat @ A @ bot_bot_set_nat )
        = ( insert_nat @ B4 @ bot_bot_set_nat ) )
     => ( A = B4 ) ) ).

% singleton_inject
thf(fact_287_Int__emptyI,axiom,
    ! [A2: set_a,B: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ~ ( member_a @ X3 @ B ) )
     => ( ( inf_inf_set_a @ A2 @ B )
        = bot_bot_set_a ) ) ).

% Int_emptyI
thf(fact_288_Int__emptyI,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ~ ( member_nat @ X3 @ B ) )
     => ( ( inf_inf_set_nat @ A2 @ B )
        = bot_bot_set_nat ) ) ).

% Int_emptyI
thf(fact_289_disjoint__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B )
        = bot_bot_set_a )
      = ( ! [X2: a] :
            ( ( member_a @ X2 @ A2 )
           => ~ ( member_a @ X2 @ B ) ) ) ) ).

% disjoint_iff
thf(fact_290_disjoint__iff,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( ( inf_inf_set_nat @ A2 @ B )
        = bot_bot_set_nat )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A2 )
           => ~ ( member_nat @ X2 @ B ) ) ) ) ).

% disjoint_iff
thf(fact_291_Int__empty__left,axiom,
    ! [B: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ B )
      = bot_bot_set_a ) ).

% Int_empty_left
thf(fact_292_Int__empty__left,axiom,
    ! [B: set_nat] :
      ( ( inf_inf_set_nat @ bot_bot_set_nat @ B )
      = bot_bot_set_nat ) ).

% Int_empty_left
thf(fact_293_Int__empty__right,axiom,
    ! [A2: set_a] :
      ( ( inf_inf_set_a @ A2 @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% Int_empty_right
thf(fact_294_Int__empty__right,axiom,
    ! [A2: set_nat] :
      ( ( inf_inf_set_nat @ A2 @ bot_bot_set_nat )
      = bot_bot_set_nat ) ).

% Int_empty_right
thf(fact_295_disjoint__iff__not__equal,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B )
        = bot_bot_set_a )
      = ( ! [X2: a] :
            ( ( member_a @ X2 @ A2 )
           => ! [Y2: a] :
                ( ( member_a @ Y2 @ B )
               => ( X2 != Y2 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_296_disjoint__iff__not__equal,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( ( inf_inf_set_nat @ A2 @ B )
        = bot_bot_set_nat )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A2 )
           => ! [Y2: nat] :
                ( ( member_nat @ Y2 @ B )
               => ( X2 != Y2 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_297_Un__empty__left,axiom,
    ! [B: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ B )
      = B ) ).

% Un_empty_left
thf(fact_298_Un__empty__left,axiom,
    ! [B: set_nat] :
      ( ( sup_sup_set_nat @ bot_bot_set_nat @ B )
      = B ) ).

% Un_empty_left
thf(fact_299_Un__empty__right,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Un_empty_right
thf(fact_300_Un__empty__right,axiom,
    ! [A2: set_nat] :
      ( ( sup_sup_set_nat @ A2 @ bot_bot_set_nat )
      = A2 ) ).

% Un_empty_right
thf(fact_301_Collect__conv__if,axiom,
    ! [P: a > $o,A: a] :
      ( ( ( P @ A )
       => ( ( collect_a
            @ ^ [X2: a] :
                ( ( X2 = A )
                & ( P @ X2 ) ) )
          = ( insert_a @ A @ bot_bot_set_a ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_a
            @ ^ [X2: a] :
                ( ( X2 = A )
                & ( P @ X2 ) ) )
          = bot_bot_set_a ) ) ) ).

% Collect_conv_if
thf(fact_302_Collect__conv__if,axiom,
    ! [P: nat > $o,A: nat] :
      ( ( ( P @ A )
       => ( ( collect_nat
            @ ^ [X2: nat] :
                ( ( X2 = A )
                & ( P @ X2 ) ) )
          = ( insert_nat @ A @ bot_bot_set_nat ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_nat
            @ ^ [X2: nat] :
                ( ( X2 = A )
                & ( P @ X2 ) ) )
          = bot_bot_set_nat ) ) ) ).

% Collect_conv_if
thf(fact_303_Collect__conv__if2,axiom,
    ! [P: a > $o,A: a] :
      ( ( ( P @ A )
       => ( ( collect_a
            @ ^ [X2: a] :
                ( ( A = X2 )
                & ( P @ X2 ) ) )
          = ( insert_a @ A @ bot_bot_set_a ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_a
            @ ^ [X2: a] :
                ( ( A = X2 )
                & ( P @ X2 ) ) )
          = bot_bot_set_a ) ) ) ).

% Collect_conv_if2
thf(fact_304_Collect__conv__if2,axiom,
    ! [P: nat > $o,A: nat] :
      ( ( ( P @ A )
       => ( ( collect_nat
            @ ^ [X2: nat] :
                ( ( A = X2 )
                & ( P @ X2 ) ) )
          = ( insert_nat @ A @ bot_bot_set_nat ) ) )
      & ( ~ ( P @ A )
       => ( ( collect_nat
            @ ^ [X2: nat] :
                ( ( A = X2 )
                & ( P @ X2 ) ) )
          = bot_bot_set_nat ) ) ) ).

% Collect_conv_if2
thf(fact_305_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N5: set_nat] :
        ? [M6: nat] :
        ! [X2: nat] :
          ( ( member_nat @ X2 @ N5 )
         => ( ord_less_eq_nat @ X2 @ M6 ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_306_finite_OemptyI,axiom,
    finite_finite_a @ bot_bot_set_a ).

% finite.emptyI
thf(fact_307_finite_OemptyI,axiom,
    finite_finite_nat @ bot_bot_set_nat ).

% finite.emptyI
thf(fact_308_infinite__imp__nonempty,axiom,
    ! [S: set_a] :
      ( ~ ( finite_finite_a @ S )
     => ( S != bot_bot_set_a ) ) ).

% infinite_imp_nonempty
thf(fact_309_infinite__imp__nonempty,axiom,
    ! [S: set_nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( S != bot_bot_set_nat ) ) ).

% infinite_imp_nonempty
thf(fact_310_subset__singleton__iff,axiom,
    ! [X5: set_nat,A: nat] :
      ( ( ord_less_eq_set_nat @ X5 @ ( insert_nat @ A @ bot_bot_set_nat ) )
      = ( ( X5 = bot_bot_set_nat )
        | ( X5
          = ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ).

% subset_singleton_iff
thf(fact_311_subset__singleton__iff,axiom,
    ! [X5: set_a,A: a] :
      ( ( ord_less_eq_set_a @ X5 @ ( insert_a @ A @ bot_bot_set_a ) )
      = ( ( X5 = bot_bot_set_a )
        | ( X5
          = ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).

% subset_singleton_iff
thf(fact_312_subset__singletonD,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) )
     => ( ( A2 = bot_bot_set_nat )
        | ( A2
          = ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ).

% subset_singletonD
thf(fact_313_subset__singletonD,axiom,
    ! [A2: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) )
     => ( ( A2 = bot_bot_set_a )
        | ( A2
          = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).

% subset_singletonD
thf(fact_314_insert__is__Un,axiom,
    ( insert_a
    = ( ^ [A4: a] : ( sup_sup_set_a @ ( insert_a @ A4 @ bot_bot_set_a ) ) ) ) ).

% insert_is_Un
thf(fact_315_insert__is__Un,axiom,
    ( insert_nat
    = ( ^ [A4: nat] : ( sup_sup_set_nat @ ( insert_nat @ A4 @ bot_bot_set_nat ) ) ) ) ).

% insert_is_Un
thf(fact_316_Un__singleton__iff,axiom,
    ! [A2: set_a,B: set_a,X: a] :
      ( ( ( sup_sup_set_a @ A2 @ B )
        = ( insert_a @ X @ bot_bot_set_a ) )
      = ( ( ( A2 = bot_bot_set_a )
          & ( B
            = ( insert_a @ X @ bot_bot_set_a ) ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B = bot_bot_set_a ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B
            = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_317_Un__singleton__iff,axiom,
    ! [A2: set_nat,B: set_nat,X: nat] :
      ( ( ( sup_sup_set_nat @ A2 @ B )
        = ( insert_nat @ X @ bot_bot_set_nat ) )
      = ( ( ( A2 = bot_bot_set_nat )
          & ( B
            = ( insert_nat @ X @ bot_bot_set_nat ) ) )
        | ( ( A2
            = ( insert_nat @ X @ bot_bot_set_nat ) )
          & ( B = bot_bot_set_nat ) )
        | ( ( A2
            = ( insert_nat @ X @ bot_bot_set_nat ) )
          & ( B
            = ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_318_singleton__Un__iff,axiom,
    ! [X: a,A2: set_a,B: set_a] :
      ( ( ( insert_a @ X @ bot_bot_set_a )
        = ( sup_sup_set_a @ A2 @ B ) )
      = ( ( ( A2 = bot_bot_set_a )
          & ( B
            = ( insert_a @ X @ bot_bot_set_a ) ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B = bot_bot_set_a ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B
            = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_319_singleton__Un__iff,axiom,
    ! [X: nat,A2: set_nat,B: set_nat] :
      ( ( ( insert_nat @ X @ bot_bot_set_nat )
        = ( sup_sup_set_nat @ A2 @ B ) )
      = ( ( ( A2 = bot_bot_set_nat )
          & ( B
            = ( insert_nat @ X @ bot_bot_set_nat ) ) )
        | ( ( A2
            = ( insert_nat @ X @ bot_bot_set_nat ) )
          & ( B = bot_bot_set_nat ) )
        | ( ( A2
            = ( insert_nat @ X @ bot_bot_set_nat ) )
          & ( B
            = ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_320_finite__less__ub,axiom,
    ! [F: nat > nat,U: nat] :
      ( ! [N2: nat] : ( ord_less_eq_nat @ N2 @ ( F @ N2 ) )
     => ( finite_finite_nat
        @ ( collect_nat
          @ ^ [N4: nat] : ( ord_less_eq_nat @ ( F @ N4 ) @ U ) ) ) ) ).

% finite_less_ub
thf(fact_321_finite__has__minimal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_322_finite__has__minimal,axiom,
    ! [A2: set_set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( A2 != bot_bot_set_set_a )
       => ? [X3: set_a] :
            ( ( member_set_a @ X3 @ A2 )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_323_finite__has__minimal,axiom,
    ! [A2: set_num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ? [X3: num] :
            ( ( member_num @ X3 @ A2 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_324_finite__has__maximal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_325_finite__has__maximal,axiom,
    ! [A2: set_set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( A2 != bot_bot_set_set_a )
       => ? [X3: set_a] :
            ( ( member_set_a @ X3 @ A2 )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_326_finite__has__maximal,axiom,
    ! [A2: set_num] :
      ( ( finite_finite_num @ A2 )
     => ( ( A2 != bot_bot_set_num )
       => ? [X3: num] :
            ( ( member_num @ X3 @ A2 )
            & ! [Xa: num] :
                ( ( member_num @ Xa @ A2 )
               => ( ( ord_less_eq_num @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_327_finite_Ocases,axiom,
    ! [A: set_a] :
      ( ( finite_finite_a @ A )
     => ( ( A != bot_bot_set_a )
       => ~ ! [A7: set_a] :
              ( ? [A3: a] :
                  ( A
                  = ( insert_a @ A3 @ A7 ) )
             => ~ ( finite_finite_a @ A7 ) ) ) ) ).

% finite.cases
thf(fact_328_finite_Ocases,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ~ ! [A7: set_nat] :
              ( ? [A3: nat] :
                  ( A
                  = ( insert_nat @ A3 @ A7 ) )
             => ~ ( finite_finite_nat @ A7 ) ) ) ) ).

% finite.cases
thf(fact_329_finite_Osimps,axiom,
    ( finite_finite_a
    = ( ^ [A4: set_a] :
          ( ( A4 = bot_bot_set_a )
          | ? [A6: set_a,B3: a] :
              ( ( A4
                = ( insert_a @ B3 @ A6 ) )
              & ( finite_finite_a @ A6 ) ) ) ) ) ).

% finite.simps
thf(fact_330_finite_Osimps,axiom,
    ( finite_finite_nat
    = ( ^ [A4: set_nat] :
          ( ( A4 = bot_bot_set_nat )
          | ? [A6: set_nat,B3: nat] :
              ( ( A4
                = ( insert_nat @ B3 @ A6 ) )
              & ( finite_finite_nat @ A6 ) ) ) ) ) ).

% finite.simps
thf(fact_331_finite__induct,axiom,
    ! [F2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X3: a,F3: set_a] :
              ( ( finite_finite_a @ F3 )
             => ( ~ ( member_a @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_a @ X3 @ F3 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_332_finite__induct,axiom,
    ! [F2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,F3: set_nat] :
              ( ( finite_finite_nat @ F3 )
             => ( ~ ( member_nat @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_nat @ X3 @ F3 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_333_finite__ne__induct,axiom,
    ! [F2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( F2 != bot_bot_set_a )
       => ( ! [X3: a] : ( P @ ( insert_a @ X3 @ bot_bot_set_a ) )
         => ( ! [X3: a,F3: set_a] :
                ( ( finite_finite_a @ F3 )
               => ( ( F3 != bot_bot_set_a )
                 => ( ~ ( member_a @ X3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_a @ X3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_334_finite__ne__induct,axiom,
    ! [F2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( F2 != bot_bot_set_nat )
       => ( ! [X3: nat] : ( P @ ( insert_nat @ X3 @ bot_bot_set_nat ) )
         => ( ! [X3: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( F3 != bot_bot_set_nat )
                 => ( ~ ( member_nat @ X3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_nat @ X3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_335_infinite__finite__induct,axiom,
    ! [P: set_a > $o,A2: set_a] :
      ( ! [A7: set_a] :
          ( ~ ( finite_finite_a @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X3: a,F3: set_a] :
              ( ( finite_finite_a @ F3 )
             => ( ~ ( member_a @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_a @ X3 @ F3 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_336_infinite__finite__induct,axiom,
    ! [P: set_nat > $o,A2: set_nat] :
      ( ! [A7: set_nat] :
          ( ~ ( finite_finite_nat @ A7 )
         => ( P @ A7 ) )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,F3: set_nat] :
              ( ( finite_finite_nat @ F3 )
             => ( ~ ( member_nat @ X3 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_nat @ X3 @ F3 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_337_finite__subset__induct_H,axiom,
    ! [F2: set_nat,A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ord_less_eq_set_nat @ F2 @ A2 )
       => ( ( P @ bot_bot_set_nat )
         => ( ! [A3: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( member_nat @ A3 @ A2 )
                 => ( ( ord_less_eq_set_nat @ F3 @ A2 )
                   => ( ~ ( member_nat @ A3 @ F3 )
                     => ( ( P @ F3 )
                       => ( P @ ( insert_nat @ A3 @ F3 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_338_finite__subset__induct_H,axiom,
    ! [F2: set_a,A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( ord_less_eq_set_a @ F2 @ A2 )
       => ( ( P @ bot_bot_set_a )
         => ( ! [A3: a,F3: set_a] :
                ( ( finite_finite_a @ F3 )
               => ( ( member_a @ A3 @ A2 )
                 => ( ( ord_less_eq_set_a @ F3 @ A2 )
                   => ( ~ ( member_a @ A3 @ F3 )
                     => ( ( P @ F3 )
                       => ( P @ ( insert_a @ A3 @ F3 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_339_finite__subset__induct,axiom,
    ! [F2: set_nat,A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ord_less_eq_set_nat @ F2 @ A2 )
       => ( ( P @ bot_bot_set_nat )
         => ( ! [A3: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( member_nat @ A3 @ A2 )
                 => ( ~ ( member_nat @ A3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_nat @ A3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_340_finite__subset__induct,axiom,
    ! [F2: set_a,A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( ord_less_eq_set_a @ F2 @ A2 )
       => ( ( P @ bot_bot_set_a )
         => ( ! [A3: a,F3: set_a] :
                ( ( finite_finite_a @ F3 )
               => ( ( member_a @ A3 @ A2 )
                 => ( ~ ( member_a @ A3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_a @ A3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_341_in__mono,axiom,
    ! [A2: set_nat,B: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B )
     => ( ( member_nat @ X @ A2 )
       => ( member_nat @ X @ B ) ) ) ).

% in_mono
thf(fact_342_in__mono,axiom,
    ! [A2: set_a,B: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( member_a @ X @ A2 )
       => ( member_a @ X @ B ) ) ) ).

% in_mono
thf(fact_343_subsetD,axiom,
    ! [A2: set_nat,B: set_nat,C2: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B )
     => ( ( member_nat @ C2 @ A2 )
       => ( member_nat @ C2 @ B ) ) ) ).

% subsetD
thf(fact_344_subsetD,axiom,
    ! [A2: set_a,B: set_a,C2: a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( member_a @ C2 @ A2 )
       => ( member_a @ C2 @ B ) ) ) ).

% subsetD
thf(fact_345_equalityE,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( A2 = B )
     => ~ ( ( ord_less_eq_set_a @ A2 @ B )
         => ~ ( ord_less_eq_set_a @ B @ A2 ) ) ) ).

% equalityE
thf(fact_346_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
        ! [X2: nat] :
          ( ( member_nat @ X2 @ A6 )
         => ( member_nat @ X2 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_347_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
        ! [X2: a] :
          ( ( member_a @ X2 @ A6 )
         => ( member_a @ X2 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_348_equalityD1,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( A2 = B )
     => ( ord_less_eq_set_a @ A2 @ B ) ) ).

% equalityD1
thf(fact_349_equalityD2,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( A2 = B )
     => ( ord_less_eq_set_a @ B @ A2 ) ) ).

% equalityD2
thf(fact_350_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
        ! [T3: nat] :
          ( ( member_nat @ T3 @ A6 )
         => ( member_nat @ T3 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_351_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
        ! [T3: a] :
          ( ( member_a @ T3 @ A6 )
         => ( member_a @ T3 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_352_subset__refl,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).

% subset_refl
thf(fact_353_Collect__mono,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_354_Collect__mono,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_355_subset__trans,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A2 @ C ) ) ) ).

% subset_trans
thf(fact_356_set__eq__subset,axiom,
    ( ( ^ [Y5: set_a,Z3: set_a] : ( Y5 = Z3 ) )
    = ( ^ [A6: set_a,B6: set_a] :
          ( ( ord_less_eq_set_a @ A6 @ B6 )
          & ( ord_less_eq_set_a @ B6 @ A6 ) ) ) ) ).

% set_eq_subset
thf(fact_357_Collect__mono__iff,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) )
      = ( ! [X2: nat] :
            ( ( P @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_358_Collect__mono__iff,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
      = ( ! [X2: a] :
            ( ( P @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_359_card__eq__0__iff,axiom,
    ! [A2: set_a] :
      ( ( ( finite_card_a @ A2 )
        = zero_zero_nat )
      = ( ( A2 = bot_bot_set_a )
        | ~ ( finite_finite_a @ A2 ) ) ) ).

% card_eq_0_iff
thf(fact_360_card__eq__0__iff,axiom,
    ! [A2: set_nat] :
      ( ( ( finite_card_nat @ A2 )
        = zero_zero_nat )
      = ( ( A2 = bot_bot_set_nat )
        | ~ ( finite_finite_nat @ A2 ) ) ) ).

% card_eq_0_iff
thf(fact_361_insertE,axiom,
    ! [A: a,B4: a,A2: set_a] :
      ( ( member_a @ A @ ( insert_a @ B4 @ A2 ) )
     => ( ( A != B4 )
       => ( member_a @ A @ A2 ) ) ) ).

% insertE
thf(fact_362_insertE,axiom,
    ! [A: nat,B4: nat,A2: set_nat] :
      ( ( member_nat @ A @ ( insert_nat @ B4 @ A2 ) )
     => ( ( A != B4 )
       => ( member_nat @ A @ A2 ) ) ) ).

% insertE
thf(fact_363_insertI1,axiom,
    ! [A: a,B: set_a] : ( member_a @ A @ ( insert_a @ A @ B ) ) ).

% insertI1
thf(fact_364_insertI1,axiom,
    ! [A: nat,B: set_nat] : ( member_nat @ A @ ( insert_nat @ A @ B ) ) ).

% insertI1
thf(fact_365_insertI2,axiom,
    ! [A: a,B: set_a,B4: a] :
      ( ( member_a @ A @ B )
     => ( member_a @ A @ ( insert_a @ B4 @ B ) ) ) ).

% insertI2
thf(fact_366_insertI2,axiom,
    ! [A: nat,B: set_nat,B4: nat] :
      ( ( member_nat @ A @ B )
     => ( member_nat @ A @ ( insert_nat @ B4 @ B ) ) ) ).

% insertI2
thf(fact_367_Set_Oset__insert,axiom,
    ! [X: a,A2: set_a] :
      ( ( member_a @ X @ A2 )
     => ~ ! [B7: set_a] :
            ( ( A2
              = ( insert_a @ X @ B7 ) )
           => ( member_a @ X @ B7 ) ) ) ).

% Set.set_insert
thf(fact_368_Set_Oset__insert,axiom,
    ! [X: nat,A2: set_nat] :
      ( ( member_nat @ X @ A2 )
     => ~ ! [B7: set_nat] :
            ( ( A2
              = ( insert_nat @ X @ B7 ) )
           => ( member_nat @ X @ B7 ) ) ) ).

% Set.set_insert
thf(fact_369_insert__ident,axiom,
    ! [X: a,A2: set_a,B: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ~ ( member_a @ X @ B )
       => ( ( ( insert_a @ X @ A2 )
            = ( insert_a @ X @ B ) )
          = ( A2 = B ) ) ) ) ).

% insert_ident
thf(fact_370_insert__ident,axiom,
    ! [X: nat,A2: set_nat,B: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ~ ( member_nat @ X @ B )
       => ( ( ( insert_nat @ X @ A2 )
            = ( insert_nat @ X @ B ) )
          = ( A2 = B ) ) ) ) ).

% insert_ident
thf(fact_371_insert__absorb,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( insert_a @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_372_insert__absorb,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( insert_nat @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_373_insert__eq__iff,axiom,
    ! [A: a,A2: set_a,B4: a,B: set_a] :
      ( ~ ( member_a @ A @ A2 )
     => ( ~ ( member_a @ B4 @ B )
       => ( ( ( insert_a @ A @ A2 )
            = ( insert_a @ B4 @ B ) )
          = ( ( ( A = B4 )
             => ( A2 = B ) )
            & ( ( A != B4 )
             => ? [C3: set_a] :
                  ( ( A2
                    = ( insert_a @ B4 @ C3 ) )
                  & ~ ( member_a @ B4 @ C3 )
                  & ( B
                    = ( insert_a @ A @ C3 ) )
                  & ~ ( member_a @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_374_insert__eq__iff,axiom,
    ! [A: nat,A2: set_nat,B4: nat,B: set_nat] :
      ( ~ ( member_nat @ A @ A2 )
     => ( ~ ( member_nat @ B4 @ B )
       => ( ( ( insert_nat @ A @ A2 )
            = ( insert_nat @ B4 @ B ) )
          = ( ( ( A = B4 )
             => ( A2 = B ) )
            & ( ( A != B4 )
             => ? [C3: set_nat] :
                  ( ( A2
                    = ( insert_nat @ B4 @ C3 ) )
                  & ~ ( member_nat @ B4 @ C3 )
                  & ( B
                    = ( insert_nat @ A @ C3 ) )
                  & ~ ( member_nat @ A @ C3 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_375_insert__commute,axiom,
    ! [X: a,Y: a,A2: set_a] :
      ( ( insert_a @ X @ ( insert_a @ Y @ A2 ) )
      = ( insert_a @ Y @ ( insert_a @ X @ A2 ) ) ) ).

% insert_commute
thf(fact_376_mk__disjoint__insert,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ? [B7: set_a] :
          ( ( A2
            = ( insert_a @ A @ B7 ) )
          & ~ ( member_a @ A @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_377_mk__disjoint__insert,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ? [B7: set_nat] :
          ( ( A2
            = ( insert_nat @ A @ B7 ) )
          & ~ ( member_nat @ A @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_378_IntE,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A2 @ B ) )
     => ~ ( ( member_nat @ C2 @ A2 )
         => ~ ( member_nat @ C2 @ B ) ) ) ).

% IntE
thf(fact_379_IntE,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
     => ~ ( ( member_a @ C2 @ A2 )
         => ~ ( member_a @ C2 @ B ) ) ) ).

% IntE
thf(fact_380_IntD1,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A2 @ B ) )
     => ( member_nat @ C2 @ A2 ) ) ).

% IntD1
thf(fact_381_IntD1,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
     => ( member_a @ C2 @ A2 ) ) ).

% IntD1
thf(fact_382_IntD2,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( inf_inf_set_nat @ A2 @ B ) )
     => ( member_nat @ C2 @ B ) ) ).

% IntD2
thf(fact_383_IntD2,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( inf_inf_set_a @ A2 @ B ) )
     => ( member_a @ C2 @ B ) ) ).

% IntD2
thf(fact_384_Int__assoc,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
      = ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) ) ) ).

% Int_assoc
thf(fact_385_Int__absorb,axiom,
    ! [A2: set_a] :
      ( ( inf_inf_set_a @ A2 @ A2 )
      = A2 ) ).

% Int_absorb
thf(fact_386_Int__commute,axiom,
    ( inf_inf_set_a
    = ( ^ [A6: set_a,B6: set_a] : ( inf_inf_set_a @ B6 @ A6 ) ) ) ).

% Int_commute
thf(fact_387_Int__left__absorb,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ A2 @ B ) )
      = ( inf_inf_set_a @ A2 @ B ) ) ).

% Int_left_absorb
thf(fact_388_Int__left__commute,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) )
      = ( inf_inf_set_a @ B @ ( inf_inf_set_a @ A2 @ C ) ) ) ).

% Int_left_commute
thf(fact_389_UnE,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( sup_sup_set_nat @ A2 @ B ) )
     => ( ~ ( member_nat @ C2 @ A2 )
       => ( member_nat @ C2 @ B ) ) ) ).

% UnE
thf(fact_390_UnE,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) )
     => ( ~ ( member_a @ C2 @ A2 )
       => ( member_a @ C2 @ B ) ) ) ).

% UnE
thf(fact_391_UnI1,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ A2 )
     => ( member_nat @ C2 @ ( sup_sup_set_nat @ A2 @ B ) ) ) ).

% UnI1
thf(fact_392_UnI1,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ A2 )
     => ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) ) ) ).

% UnI1
thf(fact_393_UnI2,axiom,
    ! [C2: nat,B: set_nat,A2: set_nat] :
      ( ( member_nat @ C2 @ B )
     => ( member_nat @ C2 @ ( sup_sup_set_nat @ A2 @ B ) ) ) ).

% UnI2
thf(fact_394_UnI2,axiom,
    ! [C2: a,B: set_a,A2: set_a] :
      ( ( member_a @ C2 @ B )
     => ( member_a @ C2 @ ( sup_sup_set_a @ A2 @ B ) ) ) ).

% UnI2
thf(fact_395_bex__Un,axiom,
    ! [A2: set_a,B: set_a,P: a > $o] :
      ( ( ? [X2: a] :
            ( ( member_a @ X2 @ ( sup_sup_set_a @ A2 @ B ) )
            & ( P @ X2 ) ) )
      = ( ? [X2: a] :
            ( ( member_a @ X2 @ A2 )
            & ( P @ X2 ) )
        | ? [X2: a] :
            ( ( member_a @ X2 @ B )
            & ( P @ X2 ) ) ) ) ).

% bex_Un
thf(fact_396_ball__Un,axiom,
    ! [A2: set_a,B: set_a,P: a > $o] :
      ( ( ! [X2: a] :
            ( ( member_a @ X2 @ ( sup_sup_set_a @ A2 @ B ) )
           => ( P @ X2 ) ) )
      = ( ! [X2: a] :
            ( ( member_a @ X2 @ A2 )
           => ( P @ X2 ) )
        & ! [X2: a] :
            ( ( member_a @ X2 @ B )
           => ( P @ X2 ) ) ) ) ).

% ball_Un
thf(fact_397_Un__assoc,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C )
      = ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).

% Un_assoc
thf(fact_398_Un__absorb,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ A2 )
      = A2 ) ).

% Un_absorb
thf(fact_399_Un__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [A6: set_a,B6: set_a] : ( sup_sup_set_a @ B6 @ A6 ) ) ) ).

% Un_commute
thf(fact_400_Un__left__absorb,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B ) )
      = ( sup_sup_set_a @ A2 @ B ) ) ).

% Un_left_absorb
thf(fact_401_Un__left__commute,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) )
      = ( sup_sup_set_a @ B @ ( sup_sup_set_a @ A2 @ C ) ) ) ).

% Un_left_commute
thf(fact_402_card__1__singleton__iff,axiom,
    ! [A2: set_a] :
      ( ( ( finite_card_a @ A2 )
        = ( suc @ zero_zero_nat ) )
      = ( ? [X2: a] :
            ( A2
            = ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ).

% card_1_singleton_iff
thf(fact_403_card__1__singleton__iff,axiom,
    ! [A2: set_nat] :
      ( ( ( finite_card_nat @ A2 )
        = ( suc @ zero_zero_nat ) )
      = ( ? [X2: nat] :
            ( A2
            = ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ) ).

% card_1_singleton_iff
thf(fact_404_card__eq__SucD,axiom,
    ! [A2: set_a,K: nat] :
      ( ( ( finite_card_a @ A2 )
        = ( suc @ K ) )
     => ? [B2: a,B7: set_a] :
          ( ( A2
            = ( insert_a @ B2 @ B7 ) )
          & ~ ( member_a @ B2 @ B7 )
          & ( ( finite_card_a @ B7 )
            = K )
          & ( ( K = zero_zero_nat )
           => ( B7 = bot_bot_set_a ) ) ) ) ).

% card_eq_SucD
thf(fact_405_card__eq__SucD,axiom,
    ! [A2: set_nat,K: nat] :
      ( ( ( finite_card_nat @ A2 )
        = ( suc @ K ) )
     => ? [B2: nat,B7: set_nat] :
          ( ( A2
            = ( insert_nat @ B2 @ B7 ) )
          & ~ ( member_nat @ B2 @ B7 )
          & ( ( finite_card_nat @ B7 )
            = K )
          & ( ( K = zero_zero_nat )
           => ( B7 = bot_bot_set_nat ) ) ) ) ).

% card_eq_SucD
thf(fact_406_card__Suc__eq,axiom,
    ! [A2: set_a,K: nat] :
      ( ( ( finite_card_a @ A2 )
        = ( suc @ K ) )
      = ( ? [B3: a,B6: set_a] :
            ( ( A2
              = ( insert_a @ B3 @ B6 ) )
            & ~ ( member_a @ B3 @ B6 )
            & ( ( finite_card_a @ B6 )
              = K )
            & ( ( K = zero_zero_nat )
             => ( B6 = bot_bot_set_a ) ) ) ) ) ).

% card_Suc_eq
thf(fact_407_card__Suc__eq,axiom,
    ! [A2: set_nat,K: nat] :
      ( ( ( finite_card_nat @ A2 )
        = ( suc @ K ) )
      = ( ? [B3: nat,B6: set_nat] :
            ( ( A2
              = ( insert_nat @ B3 @ B6 ) )
            & ~ ( member_nat @ B3 @ B6 )
            & ( ( finite_card_nat @ B6 )
              = K )
            & ( ( K = zero_zero_nat )
             => ( B6 = bot_bot_set_nat ) ) ) ) ) ).

% card_Suc_eq
thf(fact_408_less__eq__set__def,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( ord_less_eq_nat_o
          @ ^ [X2: nat] : ( member_nat @ X2 @ A6 )
          @ ^ [X2: nat] : ( member_nat @ X2 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_409_less__eq__set__def,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( ord_less_eq_a_o
          @ ^ [X2: a] : ( member_a @ X2 @ A6 )
          @ ^ [X2: a] : ( member_a @ X2 @ B6 ) ) ) ) ).

% less_eq_set_def
thf(fact_410_Collect__subset,axiom,
    ! [A2: set_nat,P: nat > $o] :
      ( ord_less_eq_set_nat
      @ ( collect_nat
        @ ^ [X2: nat] :
            ( ( member_nat @ X2 @ A2 )
            & ( P @ X2 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_411_Collect__subset,axiom,
    ! [A2: set_a,P: a > $o] :
      ( ord_less_eq_set_a
      @ ( collect_a
        @ ^ [X2: a] :
            ( ( member_a @ X2 @ A2 )
            & ( P @ X2 ) ) )
      @ A2 ) ).

% Collect_subset
thf(fact_412_insert__compr,axiom,
    ( insert_a
    = ( ^ [A4: a,B6: set_a] :
          ( collect_a
          @ ^ [X2: a] :
              ( ( X2 = A4 )
              | ( member_a @ X2 @ B6 ) ) ) ) ) ).

% insert_compr
thf(fact_413_insert__compr,axiom,
    ( insert_nat
    = ( ^ [A4: nat,B6: set_nat] :
          ( collect_nat
          @ ^ [X2: nat] :
              ( ( X2 = A4 )
              | ( member_nat @ X2 @ B6 ) ) ) ) ) ).

% insert_compr
thf(fact_414_insert__Collect,axiom,
    ! [A: a,P: a > $o] :
      ( ( insert_a @ A @ ( collect_a @ P ) )
      = ( collect_a
        @ ^ [U2: a] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_415_insert__Collect,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( insert_nat @ A @ ( collect_nat @ P ) )
      = ( collect_nat
        @ ^ [U2: nat] :
            ( ( U2 != A )
           => ( P @ U2 ) ) ) ) ).

% insert_Collect
thf(fact_416_Int__def,axiom,
    ( inf_inf_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( collect_nat
          @ ^ [X2: nat] :
              ( ( member_nat @ X2 @ A6 )
              & ( member_nat @ X2 @ B6 ) ) ) ) ) ).

% Int_def
thf(fact_417_Int__def,axiom,
    ( inf_inf_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( collect_a
          @ ^ [X2: a] :
              ( ( member_a @ X2 @ A6 )
              & ( member_a @ X2 @ B6 ) ) ) ) ) ).

% Int_def
thf(fact_418_Int__Collect,axiom,
    ! [X: nat,A2: set_nat,P: nat > $o] :
      ( ( member_nat @ X @ ( inf_inf_set_nat @ A2 @ ( collect_nat @ P ) ) )
      = ( ( member_nat @ X @ A2 )
        & ( P @ X ) ) ) ).

% Int_Collect
thf(fact_419_Int__Collect,axiom,
    ! [X: a,A2: set_a,P: a > $o] :
      ( ( member_a @ X @ ( inf_inf_set_a @ A2 @ ( collect_a @ P ) ) )
      = ( ( member_a @ X @ A2 )
        & ( P @ X ) ) ) ).

% Int_Collect
thf(fact_420_Collect__conj__eq,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( collect_nat
        @ ^ [X2: nat] :
            ( ( P @ X2 )
            & ( Q @ X2 ) ) )
      = ( inf_inf_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).

% Collect_conj_eq
thf(fact_421_Collect__conj__eq,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( collect_a
        @ ^ [X2: a] :
            ( ( P @ X2 )
            & ( Q @ X2 ) ) )
      = ( inf_inf_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_conj_eq
thf(fact_422_Un__def,axiom,
    ( sup_sup_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( collect_nat
          @ ^ [X2: nat] :
              ( ( member_nat @ X2 @ A6 )
              | ( member_nat @ X2 @ B6 ) ) ) ) ) ).

% Un_def
thf(fact_423_Un__def,axiom,
    ( sup_sup_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( collect_a
          @ ^ [X2: a] :
              ( ( member_a @ X2 @ A6 )
              | ( member_a @ X2 @ B6 ) ) ) ) ) ).

% Un_def
thf(fact_424_Collect__disj__eq,axiom,
    ! [P: nat > $o,Q: nat > $o] :
      ( ( collect_nat
        @ ^ [X2: nat] :
            ( ( P @ X2 )
            | ( Q @ X2 ) ) )
      = ( sup_sup_set_nat @ ( collect_nat @ P ) @ ( collect_nat @ Q ) ) ) ).

% Collect_disj_eq
thf(fact_425_Collect__disj__eq,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( collect_a
        @ ^ [X2: a] :
            ( ( P @ X2 )
            | ( Q @ X2 ) ) )
      = ( sup_sup_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_disj_eq
thf(fact_426_card__2__iff,axiom,
    ! [S: set_a] :
      ( ( ( finite_card_a @ S )
        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ? [X2: a,Y2: a] :
            ( ( S
              = ( insert_a @ X2 @ ( insert_a @ Y2 @ bot_bot_set_a ) ) )
            & ( X2 != Y2 ) ) ) ) ).

% card_2_iff
thf(fact_427_card__2__iff,axiom,
    ! [S: set_nat] :
      ( ( ( finite_card_nat @ S )
        = ( numeral_numeral_nat @ ( bit0 @ one ) ) )
      = ( ? [X2: nat,Y2: nat] :
            ( ( S
              = ( insert_nat @ X2 @ ( insert_nat @ Y2 @ bot_bot_set_nat ) ) )
            & ( X2 != Y2 ) ) ) ) ).

% card_2_iff
thf(fact_428_insert__mono,axiom,
    ! [C: set_a,D2: set_a,A: a] :
      ( ( ord_less_eq_set_a @ C @ D2 )
     => ( ord_less_eq_set_a @ ( insert_a @ A @ C ) @ ( insert_a @ A @ D2 ) ) ) ).

% insert_mono
thf(fact_429_subset__insert,axiom,
    ! [X: nat,A2: set_nat,B: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X @ B ) )
        = ( ord_less_eq_set_nat @ A2 @ B ) ) ) ).

% subset_insert
thf(fact_430_subset__insert,axiom,
    ! [X: a,A2: set_a,B: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B ) )
        = ( ord_less_eq_set_a @ A2 @ B ) ) ) ).

% subset_insert
thf(fact_431_subset__insertI,axiom,
    ! [B: set_a,A: a] : ( ord_less_eq_set_a @ B @ ( insert_a @ A @ B ) ) ).

% subset_insertI
thf(fact_432_subset__insertI2,axiom,
    ! [A2: set_a,B: set_a,B4: a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ord_less_eq_set_a @ A2 @ ( insert_a @ B4 @ B ) ) ) ).

% subset_insertI2
thf(fact_433_Int__mono,axiom,
    ! [A2: set_a,C: set_a,B: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ( ord_less_eq_set_a @ B @ D2 )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( inf_inf_set_a @ C @ D2 ) ) ) ) ).

% Int_mono
thf(fact_434_Int__lower1,axiom,
    ! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ A2 ) ).

% Int_lower1
thf(fact_435_Int__lower2,axiom,
    ! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B ) @ B ) ).

% Int_lower2
thf(fact_436_Int__absorb1,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B @ A2 )
     => ( ( inf_inf_set_a @ A2 @ B )
        = B ) ) ).

% Int_absorb1
thf(fact_437_Int__absorb2,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( inf_inf_set_a @ A2 @ B )
        = A2 ) ) ).

% Int_absorb2
thf(fact_438_Int__greatest,axiom,
    ! [C: set_a,A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ C @ A2 )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_eq_set_a @ C @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ).

% Int_greatest
thf(fact_439_Int__Collect__mono,axiom,
    ! [A2: set_nat,B: set_nat,P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ A2 @ B )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ( P @ X3 )
             => ( Q @ X3 ) ) )
       => ( ord_less_eq_set_nat @ ( inf_inf_set_nat @ A2 @ ( collect_nat @ P ) ) @ ( inf_inf_set_nat @ B @ ( collect_nat @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_440_Int__Collect__mono,axiom,
    ! [A2: set_a,B: set_a,P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ! [X3: a] :
            ( ( member_a @ X3 @ A2 )
           => ( ( P @ X3 )
             => ( Q @ X3 ) ) )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B @ ( collect_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_441_Int__insert__left,axiom,
    ! [A: nat,C: set_nat,B: set_nat] :
      ( ( ( member_nat @ A @ C )
       => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B ) @ C )
          = ( insert_nat @ A @ ( inf_inf_set_nat @ B @ C ) ) ) )
      & ( ~ ( member_nat @ A @ C )
       => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B ) @ C )
          = ( inf_inf_set_nat @ B @ C ) ) ) ) ).

% Int_insert_left
thf(fact_442_Int__insert__left,axiom,
    ! [A: a,C: set_a,B: set_a] :
      ( ( ( member_a @ A @ C )
       => ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
          = ( insert_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) )
      & ( ~ ( member_a @ A @ C )
       => ( ( inf_inf_set_a @ ( insert_a @ A @ B ) @ C )
          = ( inf_inf_set_a @ B @ C ) ) ) ) ).

% Int_insert_left
thf(fact_443_Int__insert__right,axiom,
    ! [A: nat,A2: set_nat,B: set_nat] :
      ( ( ( member_nat @ A @ A2 )
       => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B ) )
          = ( insert_nat @ A @ ( inf_inf_set_nat @ A2 @ B ) ) ) )
      & ( ~ ( member_nat @ A @ A2 )
       => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B ) )
          = ( inf_inf_set_nat @ A2 @ B ) ) ) ) ).

% Int_insert_right
thf(fact_444_Int__insert__right,axiom,
    ! [A: a,A2: set_a,B: set_a] :
      ( ( ( member_a @ A @ A2 )
       => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
          = ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B ) ) ) )
      & ( ~ ( member_a @ A @ A2 )
       => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B ) )
          = ( inf_inf_set_a @ A2 @ B ) ) ) ) ).

% Int_insert_right
thf(fact_445_Un__mono,axiom,
    ! [A2: set_a,C: set_a,B: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ( ord_less_eq_set_a @ B @ D2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B ) @ ( sup_sup_set_a @ C @ D2 ) ) ) ) ).

% Un_mono
thf(fact_446_Un__least,axiom,
    ! [A2: set_a,C: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C ) ) ) ).

% Un_least
thf(fact_447_Un__upper1,axiom,
    ! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B ) ) ).

% Un_upper1
thf(fact_448_Un__upper2,axiom,
    ! [B: set_a,A2: set_a] : ( ord_less_eq_set_a @ B @ ( sup_sup_set_a @ A2 @ B ) ) ).

% Un_upper2
thf(fact_449_Un__absorb1,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( sup_sup_set_a @ A2 @ B )
        = B ) ) ).

% Un_absorb1
thf(fact_450_Un__absorb2,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B @ A2 )
     => ( ( sup_sup_set_a @ A2 @ B )
        = A2 ) ) ).

% Un_absorb2
thf(fact_451_subset__UnE,axiom,
    ! [C: set_a,A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A2 @ B ) )
     => ~ ! [A8: set_a] :
            ( ( ord_less_eq_set_a @ A8 @ A2 )
           => ! [B9: set_a] :
                ( ( ord_less_eq_set_a @ B9 @ B )
               => ( C
                 != ( sup_sup_set_a @ A8 @ B9 ) ) ) ) ) ).

% subset_UnE
thf(fact_452_subset__Un__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( ( sup_sup_set_a @ A6 @ B6 )
          = B6 ) ) ) ).

% subset_Un_eq
thf(fact_453_Un__Int__crazy,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( inf_inf_set_a @ B @ C ) ) @ ( inf_inf_set_a @ C @ A2 ) )
      = ( inf_inf_set_a @ ( inf_inf_set_a @ ( sup_sup_set_a @ A2 @ B ) @ ( sup_sup_set_a @ B @ C ) ) @ ( sup_sup_set_a @ C @ A2 ) ) ) ).

% Un_Int_crazy
thf(fact_454_Int__Un__distrib,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( inf_inf_set_a @ A2 @ C ) ) ) ).

% Int_Un_distrib
thf(fact_455_Un__Int__distrib,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ A2 @ B ) @ ( sup_sup_set_a @ A2 @ C ) ) ) ).

% Un_Int_distrib
thf(fact_456_Int__Un__distrib2,axiom,
    ! [B: set_a,C: set_a,A2: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ B @ C ) @ A2 )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ B @ A2 ) @ ( inf_inf_set_a @ C @ A2 ) ) ) ).

% Int_Un_distrib2
thf(fact_457_Un__Int__distrib2,axiom,
    ! [B: set_a,C: set_a,A2: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ B @ C ) @ A2 )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ B @ A2 ) @ ( sup_sup_set_a @ C @ A2 ) ) ) ).

% Un_Int_distrib2
thf(fact_458_insert__def,axiom,
    ( insert_nat
    = ( ^ [A4: nat] :
          ( sup_sup_set_nat
          @ ( collect_nat
            @ ^ [X2: nat] : ( X2 = A4 ) ) ) ) ) ).

% insert_def
thf(fact_459_insert__def,axiom,
    ( insert_a
    = ( ^ [A4: a] :
          ( sup_sup_set_a
          @ ( collect_a
            @ ^ [X2: a] : ( X2 = A4 ) ) ) ) ) ).

% insert_def
thf(fact_460_Un__Int__assoc__eq,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
        = ( inf_inf_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) )
      = ( ord_less_eq_set_a @ C @ A2 ) ) ).

% Un_Int_assoc_eq
thf(fact_461_sumset__insert2,axiom,
    ! [B: set_a,A2: set_a,X: a] :
      ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ B )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ B ) )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).

% sumset_insert2
thf(fact_462_sumset__insert2,axiom,
    ! [B: set_a,A2: set_a,X: a] :
      ( ( nO_MAT2968510229921005611_set_a @ bot_bot_set_nat @ B )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ B ) )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).

% sumset_insert2
thf(fact_463_sumset__insert1,axiom,
    ! [A2: set_a,X: a,B: set_a] :
      ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ A2 )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ A2 ) @ B )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ bot_bot_set_a ) @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).

% sumset_insert1
thf(fact_464_sumset__insert1,axiom,
    ! [A2: set_a,X: a,B: set_a] :
      ( ( nO_MAT2968510229921005611_set_a @ bot_bot_set_nat @ A2 )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ A2 ) @ B )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ bot_bot_set_a ) @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B ) ) ) ) ).

% sumset_insert1
thf(fact_465_sumsetdiff__sing,axiom,
    ! [A2: set_a,B: set_a,X: a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( minus_minus_set_a @ A2 @ B ) @ ( insert_a @ X @ bot_bot_set_a ) )
      = ( minus_minus_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ B @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).

% sumsetdiff_sing
thf(fact_466_inf__sup__absorb,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = X ) ).

% inf_sup_absorb
thf(fact_467_sup__inf__absorb,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
      = X ) ).

% sup_inf_absorb
thf(fact_468_sup__bot__left,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ X )
      = X ) ).

% sup_bot_left
thf(fact_469_sup__bot__left,axiom,
    ! [X: set_nat] :
      ( ( sup_sup_set_nat @ bot_bot_set_nat @ X )
      = X ) ).

% sup_bot_left
thf(fact_470_sup__bot__right,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ bot_bot_set_a )
      = X ) ).

% sup_bot_right
thf(fact_471_sup__bot__right,axiom,
    ! [X: set_nat] :
      ( ( sup_sup_set_nat @ X @ bot_bot_set_nat )
      = X ) ).

% sup_bot_right
thf(fact_472_bot__eq__sup__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ X @ Y ) )
      = ( ( X = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% bot_eq_sup_iff
thf(fact_473_bot__eq__sup__iff,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( bot_bot_set_nat
        = ( sup_sup_set_nat @ X @ Y ) )
      = ( ( X = bot_bot_set_nat )
        & ( Y = bot_bot_set_nat ) ) ) ).

% bot_eq_sup_iff
thf(fact_474_sup__eq__bot__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ( sup_sup_set_a @ X @ Y )
        = bot_bot_set_a )
      = ( ( X = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% sup_eq_bot_iff
thf(fact_475_sup__eq__bot__iff,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( ( sup_sup_set_nat @ X @ Y )
        = bot_bot_set_nat )
      = ( ( X = bot_bot_set_nat )
        & ( Y = bot_bot_set_nat ) ) ) ).

% sup_eq_bot_iff
thf(fact_476_inf__right__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% inf_right_idem
thf(fact_477_inf_Oright__idem,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B4 ) @ B4 )
      = ( inf_inf_set_a @ A @ B4 ) ) ).

% inf.right_idem
thf(fact_478_inf__left__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% inf_left_idem
thf(fact_479_inf_Oleft__idem,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( inf_inf_set_a @ A @ ( inf_inf_set_a @ A @ B4 ) )
      = ( inf_inf_set_a @ A @ B4 ) ) ).

% inf.left_idem
thf(fact_480_inf__idem,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ X )
      = X ) ).

% inf_idem
thf(fact_481_inf_Oidem,axiom,
    ! [A: set_a] :
      ( ( inf_inf_set_a @ A @ A )
      = A ) ).

% inf.idem
thf(fact_482_sup_Oright__idem,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B4 ) @ B4 )
      = ( sup_sup_set_a @ A @ B4 ) ) ).

% sup.right_idem
thf(fact_483_sup__left__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = ( sup_sup_set_a @ X @ Y ) ) ).

% sup_left_idem
thf(fact_484_sup_Oleft__idem,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( sup_sup_set_a @ A @ ( sup_sup_set_a @ A @ B4 ) )
      = ( sup_sup_set_a @ A @ B4 ) ) ).

% sup.left_idem
thf(fact_485_sup__idem,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ X )
      = X ) ).

% sup_idem
thf(fact_486_sup_Oidem,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ A @ A )
      = A ) ).

% sup.idem
thf(fact_487_DiffI,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ A2 )
     => ( ~ ( member_nat @ C2 @ B )
       => ( member_nat @ C2 @ ( minus_minus_set_nat @ A2 @ B ) ) ) ) ).

% DiffI
thf(fact_488_DiffI,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ A2 )
     => ( ~ ( member_a @ C2 @ B )
       => ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) ) ) ) ).

% DiffI
thf(fact_489_Diff__iff,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A2 @ B ) )
      = ( ( member_nat @ C2 @ A2 )
        & ~ ( member_nat @ C2 @ B ) ) ) ).

% Diff_iff
thf(fact_490_Diff__iff,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
      = ( ( member_a @ C2 @ A2 )
        & ~ ( member_a @ C2 @ B ) ) ) ).

% Diff_iff
thf(fact_491_Diff__idemp,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B ) @ B )
      = ( minus_minus_set_a @ A2 @ B ) ) ).

% Diff_idemp
thf(fact_492_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_493_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_494_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_495_le__inf__iff,axiom,
    ! [X: nat,Y: nat,Z4: nat] :
      ( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z4 ) )
      = ( ( ord_less_eq_nat @ X @ Y )
        & ( ord_less_eq_nat @ X @ Z4 ) ) ) ).

% le_inf_iff
thf(fact_496_le__inf__iff,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) )
      = ( ( ord_less_eq_set_a @ X @ Y )
        & ( ord_less_eq_set_a @ X @ Z4 ) ) ) ).

% le_inf_iff
thf(fact_497_inf_Obounded__iff,axiom,
    ! [A: nat,B4: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) )
      = ( ( ord_less_eq_nat @ A @ B4 )
        & ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% inf.bounded_iff
thf(fact_498_inf_Obounded__iff,axiom,
    ! [A: set_a,B4: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) )
      = ( ( ord_less_eq_set_a @ A @ B4 )
        & ( ord_less_eq_set_a @ A @ C2 ) ) ) ).

% inf.bounded_iff
thf(fact_499_le__sup__iff,axiom,
    ! [X: nat,Y: nat,Z4: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ X @ Y ) @ Z4 )
      = ( ( ord_less_eq_nat @ X @ Z4 )
        & ( ord_less_eq_nat @ Y @ Z4 ) ) ) ).

% le_sup_iff
thf(fact_500_le__sup__iff,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z4 )
      = ( ( ord_less_eq_set_a @ X @ Z4 )
        & ( ord_less_eq_set_a @ Y @ Z4 ) ) ) ).

% le_sup_iff
thf(fact_501_sup_Obounded__iff,axiom,
    ! [B4: nat,C2: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B4 @ C2 ) @ A )
      = ( ( ord_less_eq_nat @ B4 @ A )
        & ( ord_less_eq_nat @ C2 @ A ) ) ) ).

% sup.bounded_iff
thf(fact_502_sup_Obounded__iff,axiom,
    ! [B4: set_a,C2: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B4 @ C2 ) @ A )
      = ( ( ord_less_eq_set_a @ B4 @ A )
        & ( ord_less_eq_set_a @ C2 @ A ) ) ) ).

% sup.bounded_iff
thf(fact_503_inf__bot__right,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% inf_bot_right
thf(fact_504_inf__bot__right,axiom,
    ! [X: set_nat] :
      ( ( inf_inf_set_nat @ X @ bot_bot_set_nat )
      = bot_bot_set_nat ) ).

% inf_bot_right
thf(fact_505_inf__bot__left,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ X )
      = bot_bot_set_a ) ).

% inf_bot_left
thf(fact_506_inf__bot__left,axiom,
    ! [X: set_nat] :
      ( ( inf_inf_set_nat @ bot_bot_set_nat @ X )
      = bot_bot_set_nat ) ).

% inf_bot_left
thf(fact_507_sup__bot_Oright__neutral,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ A @ bot_bot_set_a )
      = A ) ).

% sup_bot.right_neutral
thf(fact_508_sup__bot_Oright__neutral,axiom,
    ! [A: set_nat] :
      ( ( sup_sup_set_nat @ A @ bot_bot_set_nat )
      = A ) ).

% sup_bot.right_neutral
thf(fact_509_sup__bot_Oneutr__eq__iff,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ A @ B4 ) )
      = ( ( A = bot_bot_set_a )
        & ( B4 = bot_bot_set_a ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_510_sup__bot_Oneutr__eq__iff,axiom,
    ! [A: set_nat,B4: set_nat] :
      ( ( bot_bot_set_nat
        = ( sup_sup_set_nat @ A @ B4 ) )
      = ( ( A = bot_bot_set_nat )
        & ( B4 = bot_bot_set_nat ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_511_sup__bot_Oleft__neutral,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ A )
      = A ) ).

% sup_bot.left_neutral
thf(fact_512_sup__bot_Oleft__neutral,axiom,
    ! [A: set_nat] :
      ( ( sup_sup_set_nat @ bot_bot_set_nat @ A )
      = A ) ).

% sup_bot.left_neutral
thf(fact_513_sup__bot_Oeq__neutr__iff,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( ( sup_sup_set_a @ A @ B4 )
        = bot_bot_set_a )
      = ( ( A = bot_bot_set_a )
        & ( B4 = bot_bot_set_a ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_514_sup__bot_Oeq__neutr__iff,axiom,
    ! [A: set_nat,B4: set_nat] :
      ( ( ( sup_sup_set_nat @ A @ B4 )
        = bot_bot_set_nat )
      = ( ( A = bot_bot_set_nat )
        & ( B4 = bot_bot_set_nat ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_515_Diff__cancel,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ A2 )
      = bot_bot_set_nat ) ).

% Diff_cancel
thf(fact_516_Diff__cancel,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ A2 )
      = bot_bot_set_a ) ).

% Diff_cancel
thf(fact_517_empty__Diff,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ bot_bot_set_nat @ A2 )
      = bot_bot_set_nat ) ).

% empty_Diff
thf(fact_518_empty__Diff,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ bot_bot_set_a @ A2 )
      = bot_bot_set_a ) ).

% empty_Diff
thf(fact_519_Diff__empty,axiom,
    ! [A2: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ bot_bot_set_nat )
      = A2 ) ).

% Diff_empty
thf(fact_520_Diff__empty,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Diff_empty
thf(fact_521_finite__Diff2,axiom,
    ! [B: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B )
     => ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B ) )
        = ( finite_finite_nat @ A2 ) ) ) ).

% finite_Diff2
thf(fact_522_finite__Diff2,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( finite_finite_a @ B )
     => ( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B ) )
        = ( finite_finite_a @ A2 ) ) ) ).

% finite_Diff2
thf(fact_523_finite__Diff,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B ) ) ) ).

% finite_Diff
thf(fact_524_finite__Diff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B ) ) ) ).

% finite_Diff
thf(fact_525_insert__Diff1,axiom,
    ! [X: nat,B: set_nat,A2: set_nat] :
      ( ( member_nat @ X @ B )
     => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ B )
        = ( minus_minus_set_nat @ A2 @ B ) ) ) ).

% insert_Diff1
thf(fact_526_insert__Diff1,axiom,
    ! [X: a,B: set_a,A2: set_a] :
      ( ( member_a @ X @ B )
     => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B )
        = ( minus_minus_set_a @ A2 @ B ) ) ) ).

% insert_Diff1
thf(fact_527_Diff__insert0,axiom,
    ! [X: nat,A2: set_nat,B: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ B ) )
        = ( minus_minus_set_nat @ A2 @ B ) ) ) ).

% Diff_insert0
thf(fact_528_Diff__insert0,axiom,
    ! [X: a,A2: set_a,B: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( minus_minus_set_a @ A2 @ ( insert_a @ X @ B ) )
        = ( minus_minus_set_a @ A2 @ B ) ) ) ).

% Diff_insert0
thf(fact_529_Un__Diff__cancel2,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( sup_sup_set_a @ ( minus_minus_set_a @ B @ A2 ) @ A2 )
      = ( sup_sup_set_a @ B @ A2 ) ) ).

% Un_Diff_cancel2
thf(fact_530_Un__Diff__cancel,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( minus_minus_set_a @ B @ A2 ) )
      = ( sup_sup_set_a @ A2 @ B ) ) ).

% Un_Diff_cancel
thf(fact_531_Diff__eq__empty__iff,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( ( minus_minus_set_nat @ A2 @ B )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ A2 @ B ) ) ).

% Diff_eq_empty_iff
thf(fact_532_Diff__eq__empty__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( minus_minus_set_a @ A2 @ B )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ A2 @ B ) ) ).

% Diff_eq_empty_iff
thf(fact_533_insert__Diff__single,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( insert_nat @ A @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
      = ( insert_nat @ A @ A2 ) ) ).

% insert_Diff_single
thf(fact_534_insert__Diff__single,axiom,
    ! [A: a,A2: set_a] :
      ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
      = ( insert_a @ A @ A2 ) ) ).

% insert_Diff_single
thf(fact_535_finite__Diff__insert,axiom,
    ! [A2: set_nat,A: nat,B: set_nat] :
      ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B ) ) )
      = ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B ) ) ) ).

% finite_Diff_insert
thf(fact_536_finite__Diff__insert,axiom,
    ! [A2: set_a,A: a,B: set_a] :
      ( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) ) )
      = ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B ) ) ) ).

% finite_Diff_insert
thf(fact_537_Diff__disjoint,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( inf_inf_set_nat @ A2 @ ( minus_minus_set_nat @ B @ A2 ) )
      = bot_bot_set_nat ) ).

% Diff_disjoint
thf(fact_538_Diff__disjoint,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B @ A2 ) )
      = bot_bot_set_a ) ).

% Diff_disjoint
thf(fact_539_DiffE,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A2 @ B ) )
     => ~ ( ( member_nat @ C2 @ A2 )
         => ( member_nat @ C2 @ B ) ) ) ).

% DiffE
thf(fact_540_DiffE,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
     => ~ ( ( member_a @ C2 @ A2 )
         => ( member_a @ C2 @ B ) ) ) ).

% DiffE
thf(fact_541_DiffD1,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A2 @ B ) )
     => ( member_nat @ C2 @ A2 ) ) ).

% DiffD1
thf(fact_542_DiffD1,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
     => ( member_a @ C2 @ A2 ) ) ).

% DiffD1
thf(fact_543_DiffD2,axiom,
    ! [C2: nat,A2: set_nat,B: set_nat] :
      ( ( member_nat @ C2 @ ( minus_minus_set_nat @ A2 @ B ) )
     => ~ ( member_nat @ C2 @ B ) ) ).

% DiffD2
thf(fact_544_DiffD2,axiom,
    ! [C2: a,A2: set_a,B: set_a] :
      ( ( member_a @ C2 @ ( minus_minus_set_a @ A2 @ B ) )
     => ~ ( member_a @ C2 @ B ) ) ).

% DiffD2
thf(fact_545_set__diff__eq,axiom,
    ( minus_minus_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( collect_nat
          @ ^ [X2: nat] :
              ( ( member_nat @ X2 @ A6 )
              & ~ ( member_nat @ X2 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_546_set__diff__eq,axiom,
    ( minus_minus_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( collect_a
          @ ^ [X2: a] :
              ( ( member_a @ X2 @ A6 )
              & ~ ( member_a @ X2 @ B6 ) ) ) ) ) ).

% set_diff_eq
thf(fact_547_diff__right__commute,axiom,
    ! [A: nat,C2: nat,B4: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C2 ) @ B4 )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B4 ) @ C2 ) ) ).

% diff_right_commute
thf(fact_548_bot__set__def,axiom,
    ( bot_bot_set_a
    = ( collect_a @ bot_bot_a_o ) ) ).

% bot_set_def
thf(fact_549_bot__set__def,axiom,
    ( bot_bot_set_nat
    = ( collect_nat @ bot_bot_nat_o ) ) ).

% bot_set_def
thf(fact_550_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_551_Diff__infinite__finite,axiom,
    ! [T: set_nat,S: set_nat] :
      ( ( finite_finite_nat @ T )
     => ( ~ ( finite_finite_nat @ S )
       => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ T ) ) ) ) ).

% Diff_infinite_finite
thf(fact_552_Diff__infinite__finite,axiom,
    ! [T: set_a,S: set_a] :
      ( ( finite_finite_a @ T )
     => ( ~ ( finite_finite_a @ S )
       => ~ ( finite_finite_a @ ( minus_minus_set_a @ S @ T ) ) ) ) ).

% Diff_infinite_finite
thf(fact_553_double__diff,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ( minus_minus_set_a @ B @ ( minus_minus_set_a @ C @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_554_Diff__subset,axiom,
    ! [A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ A2 ) ).

% Diff_subset
thf(fact_555_Diff__mono,axiom,
    ! [A2: set_a,C: set_a,D2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C )
     => ( ( ord_less_eq_set_a @ D2 @ B )
       => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( minus_minus_set_a @ C @ D2 ) ) ) ) ).

% Diff_mono
thf(fact_556_insert__Diff__if,axiom,
    ! [X: nat,B: set_nat,A2: set_nat] :
      ( ( ( member_nat @ X @ B )
       => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ B )
          = ( minus_minus_set_nat @ A2 @ B ) ) )
      & ( ~ ( member_nat @ X @ B )
       => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ B )
          = ( insert_nat @ X @ ( minus_minus_set_nat @ A2 @ B ) ) ) ) ) ).

% insert_Diff_if
thf(fact_557_insert__Diff__if,axiom,
    ! [X: a,B: set_a,A2: set_a] :
      ( ( ( member_a @ X @ B )
       => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B )
          = ( minus_minus_set_a @ A2 @ B ) ) )
      & ( ~ ( member_a @ X @ B )
       => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B )
          = ( insert_a @ X @ ( minus_minus_set_a @ A2 @ B ) ) ) ) ) ).

% insert_Diff_if
thf(fact_558_Diff__Int__distrib2,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B ) @ C )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ ( inf_inf_set_a @ B @ C ) ) ) ).

% Diff_Int_distrib2
thf(fact_559_Diff__Int__distrib,axiom,
    ! [C: set_a,A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ C @ ( minus_minus_set_a @ A2 @ B ) )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ C @ A2 ) @ ( inf_inf_set_a @ C @ B ) ) ) ).

% Diff_Int_distrib
thf(fact_560_Diff__Diff__Int,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( minus_minus_set_a @ A2 @ B ) )
      = ( inf_inf_set_a @ A2 @ B ) ) ).

% Diff_Diff_Int
thf(fact_561_Diff__Int2,axiom,
    ! [A2: set_a,C: set_a,B: set_a] :
      ( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ ( inf_inf_set_a @ B @ C ) )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C ) @ B ) ) ).

% Diff_Int2
thf(fact_562_Int__Diff,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ B ) @ C )
      = ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B @ C ) ) ) ).

% Int_Diff
thf(fact_563_Un__Diff,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( minus_minus_set_a @ ( sup_sup_set_a @ A2 @ B ) @ C )
      = ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ C ) @ ( minus_minus_set_a @ B @ C ) ) ) ).

% Un_Diff
thf(fact_564_inf__set__def,axiom,
    ( inf_inf_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( collect_nat
          @ ( inf_inf_nat_o
            @ ^ [X2: nat] : ( member_nat @ X2 @ A6 )
            @ ^ [X2: nat] : ( member_nat @ X2 @ B6 ) ) ) ) ) ).

% inf_set_def
thf(fact_565_inf__set__def,axiom,
    ( inf_inf_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( collect_a
          @ ( inf_inf_a_o
            @ ^ [X2: a] : ( member_a @ X2 @ A6 )
            @ ^ [X2: a] : ( member_a @ X2 @ B6 ) ) ) ) ) ).

% inf_set_def
thf(fact_566_sup__set__def,axiom,
    ( sup_sup_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( collect_nat
          @ ( sup_sup_nat_o
            @ ^ [X2: nat] : ( member_nat @ X2 @ A6 )
            @ ^ [X2: nat] : ( member_nat @ X2 @ B6 ) ) ) ) ) ).

% sup_set_def
thf(fact_567_sup__set__def,axiom,
    ( sup_sup_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( collect_a
          @ ( sup_sup_a_o
            @ ^ [X2: a] : ( member_a @ X2 @ A6 )
            @ ^ [X2: a] : ( member_a @ X2 @ B6 ) ) ) ) ) ).

% sup_set_def
thf(fact_568_Diff__insert,axiom,
    ! [A2: set_nat,A: nat,B: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B ) )
      = ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ B ) @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ).

% Diff_insert
thf(fact_569_Diff__insert,axiom,
    ! [A2: set_a,A: a,B: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) )
      = ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( insert_a @ A @ bot_bot_set_a ) ) ) ).

% Diff_insert
thf(fact_570_insert__Diff,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( insert_nat @ A @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_571_insert__Diff,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_572_Diff__insert2,axiom,
    ! [A2: set_nat,A: nat,B: set_nat] :
      ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B ) )
      = ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) @ B ) ) ).

% Diff_insert2
thf(fact_573_Diff__insert2,axiom,
    ! [A2: set_a,A: a,B: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B ) )
      = ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) @ B ) ) ).

% Diff_insert2
thf(fact_574_Diff__insert__absorb,axiom,
    ! [X: nat,A2: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ ( insert_nat @ X @ bot_bot_set_nat ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_575_Diff__insert__absorb,axiom,
    ! [X: a,A2: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ ( insert_a @ X @ bot_bot_set_a ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_576_subset__Diff__insert,axiom,
    ! [A2: set_nat,B: set_nat,X: nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( minus_minus_set_nat @ B @ ( insert_nat @ X @ C ) ) )
      = ( ( ord_less_eq_set_nat @ A2 @ ( minus_minus_set_nat @ B @ C ) )
        & ~ ( member_nat @ X @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_577_subset__Diff__insert,axiom,
    ! [A2: set_a,B: set_a,X: a,C: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B @ ( insert_a @ X @ C ) ) )
      = ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B @ C ) )
        & ~ ( member_a @ X @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_578_Diff__triv,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( ( inf_inf_set_nat @ A2 @ B )
        = bot_bot_set_nat )
     => ( ( minus_minus_set_nat @ A2 @ B )
        = A2 ) ) ).

% Diff_triv
thf(fact_579_Diff__triv,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B )
        = bot_bot_set_a )
     => ( ( minus_minus_set_a @ A2 @ B )
        = A2 ) ) ).

% Diff_triv
thf(fact_580_Int__Diff__disjoint,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( inf_inf_set_nat @ ( inf_inf_set_nat @ A2 @ B ) @ ( minus_minus_set_nat @ A2 @ B ) )
      = bot_bot_set_nat ) ).

% Int_Diff_disjoint
thf(fact_581_Int__Diff__disjoint,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ B ) )
      = bot_bot_set_a ) ).

% Int_Diff_disjoint
thf(fact_582_Diff__partition,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( sup_sup_set_a @ A2 @ ( minus_minus_set_a @ B @ A2 ) )
        = B ) ) ).

% Diff_partition
thf(fact_583_Diff__subset__conv,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B ) @ C )
      = ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ).

% Diff_subset_conv
thf(fact_584_Un__Diff__Int,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( inf_inf_set_a @ A2 @ B ) )
      = A2 ) ).

% Un_Diff_Int
thf(fact_585_Int__Diff__Un,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ B ) )
      = A2 ) ).

% Int_Diff_Un
thf(fact_586_Diff__Int,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( inf_inf_set_a @ B @ C ) )
      = ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ C ) ) ) ).

% Diff_Int
thf(fact_587_Diff__Un,axiom,
    ! [A2: set_a,B: set_a,C: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( sup_sup_set_a @ B @ C ) )
      = ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( minus_minus_set_a @ A2 @ C ) ) ) ).

% Diff_Un
thf(fact_588_finite__empty__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( P @ A2 )
       => ( ! [A3: nat,A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ( member_nat @ A3 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ A3 @ bot_bot_set_nat ) ) ) ) ) )
         => ( P @ bot_bot_set_nat ) ) ) ) ).

% finite_empty_induct
thf(fact_589_finite__empty__induct,axiom,
    ! [A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ( P @ A2 )
       => ( ! [A3: a,A7: set_a] :
              ( ( finite_finite_a @ A7 )
             => ( ( member_a @ A3 @ A7 )
               => ( ( P @ A7 )
                 => ( P @ ( minus_minus_set_a @ A7 @ ( insert_a @ A3 @ bot_bot_set_a ) ) ) ) ) )
         => ( P @ bot_bot_set_a ) ) ) ) ).

% finite_empty_induct
thf(fact_590_infinite__coinduct,axiom,
    ! [X5: set_nat > $o,A2: set_nat] :
      ( ( X5 @ A2 )
     => ( ! [A7: set_nat] :
            ( ( X5 @ A7 )
           => ? [X4: nat] :
                ( ( member_nat @ X4 @ A7 )
                & ( ( X5 @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X4 @ bot_bot_set_nat ) ) )
                  | ~ ( finite_finite_nat @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X4 @ bot_bot_set_nat ) ) ) ) ) )
       => ~ ( finite_finite_nat @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_591_infinite__coinduct,axiom,
    ! [X5: set_a > $o,A2: set_a] :
      ( ( X5 @ A2 )
     => ( ! [A7: set_a] :
            ( ( X5 @ A7 )
           => ? [X4: a] :
                ( ( member_a @ X4 @ A7 )
                & ( ( X5 @ ( minus_minus_set_a @ A7 @ ( insert_a @ X4 @ bot_bot_set_a ) ) )
                  | ~ ( finite_finite_a @ ( minus_minus_set_a @ A7 @ ( insert_a @ X4 @ bot_bot_set_a ) ) ) ) ) )
       => ~ ( finite_finite_a @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_592_infinite__remove,axiom,
    ! [S: set_nat,A: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ).

% infinite_remove
thf(fact_593_infinite__remove,axiom,
    ! [S: set_a,A: a] :
      ( ~ ( finite_finite_a @ S )
     => ~ ( finite_finite_a @ ( minus_minus_set_a @ S @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).

% infinite_remove
thf(fact_594_subset__insert__iff,axiom,
    ! [A2: set_nat,X: nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X @ B ) )
      = ( ( ( member_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ B ) )
        & ( ~ ( member_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ A2 @ B ) ) ) ) ).

% subset_insert_iff
thf(fact_595_subset__insert__iff,axiom,
    ! [A2: set_a,X: a,B: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B ) )
      = ( ( ( member_a @ X @ A2 )
         => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B ) )
        & ( ~ ( member_a @ X @ A2 )
         => ( ord_less_eq_set_a @ A2 @ B ) ) ) ) ).

% subset_insert_iff
thf(fact_596_Diff__single__insert,axiom,
    ! [A2: set_nat,X: nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ B )
     => ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X @ B ) ) ) ).

% Diff_single_insert
thf(fact_597_Diff__single__insert,axiom,
    ! [A2: set_a,X: a,B: set_a] :
      ( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B )
     => ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B ) ) ) ).

% Diff_single_insert
thf(fact_598_card__le__sym__Diff,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B )
       => ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ B @ A2 ) ) ) ) ) ) ).

% card_le_sym_Diff
thf(fact_599_card__le__sym__Diff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B )
       => ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) ) @ ( finite_card_a @ ( minus_minus_set_a @ B @ A2 ) ) ) ) ) ) ).

% card_le_sym_Diff
thf(fact_600_inf__left__commute,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) )
      = ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z4 ) ) ) ).

% inf_left_commute
thf(fact_601_inf_Oleft__commute,axiom,
    ! [B4: set_a,A: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ B4 @ ( inf_inf_set_a @ A @ C2 ) )
      = ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) ) ) ).

% inf.left_commute
thf(fact_602_inf__commute,axiom,
    ( inf_inf_set_a
    = ( ^ [X2: set_a,Y2: set_a] : ( inf_inf_set_a @ Y2 @ X2 ) ) ) ).

% inf_commute
thf(fact_603_inf_Ocommute,axiom,
    ( inf_inf_set_a
    = ( ^ [A4: set_a,B3: set_a] : ( inf_inf_set_a @ B3 @ A4 ) ) ) ).

% inf.commute
thf(fact_604_inf__assoc,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z4 )
      = ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) ) ) ).

% inf_assoc
thf(fact_605_inf_Oassoc,axiom,
    ! [A: set_a,B4: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 )
      = ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) ) ) ).

% inf.assoc
thf(fact_606_inf__sup__aci_I1_J,axiom,
    ( inf_inf_set_a
    = ( ^ [X2: set_a,Y2: set_a] : ( inf_inf_set_a @ Y2 @ X2 ) ) ) ).

% inf_sup_aci(1)
thf(fact_607_inf__sup__aci_I2_J,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z4 )
      = ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) ) ) ).

% inf_sup_aci(2)
thf(fact_608_inf__sup__aci_I3_J,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) )
      = ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z4 ) ) ) ).

% inf_sup_aci(3)
thf(fact_609_inf__sup__aci_I4_J,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% inf_sup_aci(4)
thf(fact_610_sup__left__commute,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) )
      = ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z4 ) ) ) ).

% sup_left_commute
thf(fact_611_sup_Oleft__commute,axiom,
    ! [B4: set_a,A: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ B4 @ ( sup_sup_set_a @ A @ C2 ) )
      = ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B4 @ C2 ) ) ) ).

% sup.left_commute
thf(fact_612_sup__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [X2: set_a,Y2: set_a] : ( sup_sup_set_a @ Y2 @ X2 ) ) ) ).

% sup_commute
thf(fact_613_sup_Ocommute,axiom,
    ( sup_sup_set_a
    = ( ^ [A4: set_a,B3: set_a] : ( sup_sup_set_a @ B3 @ A4 ) ) ) ).

% sup.commute
thf(fact_614_sup__assoc,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z4 )
      = ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) ) ) ).

% sup_assoc
thf(fact_615_sup_Oassoc,axiom,
    ! [A: set_a,B4: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B4 ) @ C2 )
      = ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B4 @ C2 ) ) ) ).

% sup.assoc
thf(fact_616_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_a
    = ( ^ [X2: set_a,Y2: set_a] : ( sup_sup_set_a @ Y2 @ X2 ) ) ) ).

% inf_sup_aci(5)
thf(fact_617_inf__sup__aci_I6_J,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z4 )
      = ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) ) ) ).

% inf_sup_aci(6)
thf(fact_618_inf__sup__aci_I7_J,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) )
      = ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z4 ) ) ) ).

% inf_sup_aci(7)
thf(fact_619_inf__sup__aci_I8_J,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_620_remove__induct,axiom,
    ! [P: set_nat > $o,B: set_nat] :
      ( ( P @ bot_bot_set_nat )
     => ( ( ~ ( finite_finite_nat @ B )
         => ( P @ B ) )
       => ( ! [A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ( A7 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A7 @ B )
                 => ( ! [X4: nat] :
                        ( ( member_nat @ X4 @ A7 )
                       => ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X4 @ bot_bot_set_nat ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B ) ) ) ) ).

% remove_induct
thf(fact_621_remove__induct,axiom,
    ! [P: set_a > $o,B: set_a] :
      ( ( P @ bot_bot_set_a )
     => ( ( ~ ( finite_finite_a @ B )
         => ( P @ B ) )
       => ( ! [A7: set_a] :
              ( ( finite_finite_a @ A7 )
             => ( ( A7 != bot_bot_set_a )
               => ( ( ord_less_eq_set_a @ A7 @ B )
                 => ( ! [X4: a] :
                        ( ( member_a @ X4 @ A7 )
                       => ( P @ ( minus_minus_set_a @ A7 @ ( insert_a @ X4 @ bot_bot_set_a ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B ) ) ) ) ).

% remove_induct
thf(fact_622_finite__remove__induct,axiom,
    ! [B: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ B )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [A7: set_nat] :
              ( ( finite_finite_nat @ A7 )
             => ( ( A7 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A7 @ B )
                 => ( ! [X4: nat] :
                        ( ( member_nat @ X4 @ A7 )
                       => ( P @ ( minus_minus_set_nat @ A7 @ ( insert_nat @ X4 @ bot_bot_set_nat ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B ) ) ) ) ).

% finite_remove_induct
thf(fact_623_finite__remove__induct,axiom,
    ! [B: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ B )
     => ( ( P @ bot_bot_set_a )
       => ( ! [A7: set_a] :
              ( ( finite_finite_a @ A7 )
             => ( ( A7 != bot_bot_set_a )
               => ( ( ord_less_eq_set_a @ A7 @ B )
                 => ( ! [X4: a] :
                        ( ( member_a @ X4 @ A7 )
                       => ( P @ ( minus_minus_set_a @ A7 @ ( insert_a @ X4 @ bot_bot_set_a ) ) ) )
                   => ( P @ A7 ) ) ) ) )
         => ( P @ B ) ) ) ) ).

% finite_remove_induct
thf(fact_624_card__Diff1__le,axiom,
    ! [A2: set_nat,X: nat] : ( ord_less_eq_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ).

% card_Diff1_le
thf(fact_625_card__Diff1__le,axiom,
    ! [A2: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ).

% card_Diff1_le
thf(fact_626_card_Oremove,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X @ A2 )
       => ( ( finite_card_nat @ A2 )
          = ( suc @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ) ) ).

% card.remove
thf(fact_627_card_Oremove,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ X @ A2 )
       => ( ( finite_card_a @ A2 )
          = ( suc @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ) ) ).

% card.remove
thf(fact_628_card_Oinsert__remove,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_card_nat @ ( insert_nat @ X @ A2 ) )
        = ( suc @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ) ).

% card.insert_remove
thf(fact_629_card_Oinsert__remove,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_card_a @ ( insert_a @ X @ A2 ) )
        = ( suc @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ) ).

% card.insert_remove
thf(fact_630_card__Suc__Diff1,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X @ A2 )
       => ( ( suc @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) )
          = ( finite_card_nat @ A2 ) ) ) ) ).

% card_Suc_Diff1
thf(fact_631_card__Suc__Diff1,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ X @ A2 )
       => ( ( suc @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) )
          = ( finite_card_a @ A2 ) ) ) ) ).

% card_Suc_Diff1
thf(fact_632_inf__sup__ord_I2_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_633_inf__sup__ord_I2_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_634_inf__sup__ord_I1_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_635_inf__sup__ord_I1_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_636_inf__le1,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_637_inf__le1,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_638_inf__le2,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_639_inf__le2,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_640_le__infE,axiom,
    ! [X: nat,A: nat,B4: nat] :
      ( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B4 ) )
     => ~ ( ( ord_less_eq_nat @ X @ A )
         => ~ ( ord_less_eq_nat @ X @ B4 ) ) ) ).

% le_infE
thf(fact_641_le__infE,axiom,
    ! [X: set_a,A: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B4 ) )
     => ~ ( ( ord_less_eq_set_a @ X @ A )
         => ~ ( ord_less_eq_set_a @ X @ B4 ) ) ) ).

% le_infE
thf(fact_642_le__infI,axiom,
    ! [X: nat,A: nat,B4: nat] :
      ( ( ord_less_eq_nat @ X @ A )
     => ( ( ord_less_eq_nat @ X @ B4 )
       => ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B4 ) ) ) ) ).

% le_infI
thf(fact_643_le__infI,axiom,
    ! [X: set_a,A: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ X @ A )
     => ( ( ord_less_eq_set_a @ X @ B4 )
       => ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B4 ) ) ) ) ).

% le_infI
thf(fact_644_inf__mono,axiom,
    ! [A: nat,C2: nat,B4: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ C2 )
     => ( ( ord_less_eq_nat @ B4 @ D )
       => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ ( inf_inf_nat @ C2 @ D ) ) ) ) ).

% inf_mono
thf(fact_645_inf__mono,axiom,
    ! [A: set_a,C2: set_a,B4: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A @ C2 )
     => ( ( ord_less_eq_set_a @ B4 @ D )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ ( inf_inf_set_a @ C2 @ D ) ) ) ) ).

% inf_mono
thf(fact_646_le__infI1,axiom,
    ! [A: nat,X: nat,B4: nat] :
      ( ( ord_less_eq_nat @ A @ X )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ X ) ) ).

% le_infI1
thf(fact_647_le__infI1,axiom,
    ! [A: set_a,X: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A @ X )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ X ) ) ).

% le_infI1
thf(fact_648_le__infI2,axiom,
    ! [B4: nat,X: nat,A: nat] :
      ( ( ord_less_eq_nat @ B4 @ X )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ X ) ) ).

% le_infI2
thf(fact_649_le__infI2,axiom,
    ! [B4: set_a,X: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B4 @ X )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ X ) ) ).

% le_infI2
thf(fact_650_inf_OorderE,axiom,
    ! [A: nat,B4: nat] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( A
        = ( inf_inf_nat @ A @ B4 ) ) ) ).

% inf.orderE
thf(fact_651_inf_OorderE,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( A
        = ( inf_inf_set_a @ A @ B4 ) ) ) ).

% inf.orderE
thf(fact_652_inf_OorderI,axiom,
    ! [A: nat,B4: nat] :
      ( ( A
        = ( inf_inf_nat @ A @ B4 ) )
     => ( ord_less_eq_nat @ A @ B4 ) ) ).

% inf.orderI
thf(fact_653_inf_OorderI,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( A
        = ( inf_inf_set_a @ A @ B4 ) )
     => ( ord_less_eq_set_a @ A @ B4 ) ) ).

% inf.orderI
thf(fact_654_inf__unique,axiom,
    ! [F: nat > nat > nat,X: nat,Y: nat] :
      ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ ( F @ X3 @ Y3 ) @ X3 )
     => ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ ( F @ X3 @ Y3 ) @ Y3 )
       => ( ! [X3: nat,Y3: nat,Z2: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ( ord_less_eq_nat @ X3 @ Z2 )
               => ( ord_less_eq_nat @ X3 @ ( F @ Y3 @ Z2 ) ) ) )
         => ( ( inf_inf_nat @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_655_inf__unique,axiom,
    ! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
      ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ ( F @ X3 @ Y3 ) @ X3 )
     => ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ ( F @ X3 @ Y3 ) @ Y3 )
       => ( ! [X3: set_a,Y3: set_a,Z2: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ( ord_less_eq_set_a @ X3 @ Z2 )
               => ( ord_less_eq_set_a @ X3 @ ( F @ Y3 @ Z2 ) ) ) )
         => ( ( inf_inf_set_a @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_656_le__iff__inf,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y2: nat] :
          ( ( inf_inf_nat @ X2 @ Y2 )
          = X2 ) ) ) ).

% le_iff_inf
thf(fact_657_le__iff__inf,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X2: set_a,Y2: set_a] :
          ( ( inf_inf_set_a @ X2 @ Y2 )
          = X2 ) ) ) ).

% le_iff_inf
thf(fact_658_inf_Oabsorb1,axiom,
    ! [A: nat,B4: nat] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( inf_inf_nat @ A @ B4 )
        = A ) ) ).

% inf.absorb1
thf(fact_659_inf_Oabsorb1,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( inf_inf_set_a @ A @ B4 )
        = A ) ) ).

% inf.absorb1
thf(fact_660_inf_Oabsorb2,axiom,
    ! [B4: nat,A: nat] :
      ( ( ord_less_eq_nat @ B4 @ A )
     => ( ( inf_inf_nat @ A @ B4 )
        = B4 ) ) ).

% inf.absorb2
thf(fact_661_inf_Oabsorb2,axiom,
    ! [B4: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B4 @ A )
     => ( ( inf_inf_set_a @ A @ B4 )
        = B4 ) ) ).

% inf.absorb2
thf(fact_662_inf__absorb1,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( inf_inf_nat @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_663_inf__absorb1,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( inf_inf_set_a @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_664_inf__absorb2,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( inf_inf_nat @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_665_inf__absorb2,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( inf_inf_set_a @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_666_inf_OboundedE,axiom,
    ! [A: nat,B4: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) )
     => ~ ( ( ord_less_eq_nat @ A @ B4 )
         => ~ ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% inf.boundedE
thf(fact_667_inf_OboundedE,axiom,
    ! [A: set_a,B4: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) )
     => ~ ( ( ord_less_eq_set_a @ A @ B4 )
         => ~ ( ord_less_eq_set_a @ A @ C2 ) ) ) ).

% inf.boundedE
thf(fact_668_inf_OboundedI,axiom,
    ! [A: nat,B4: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( ord_less_eq_nat @ A @ C2 )
       => ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B4 @ C2 ) ) ) ) ).

% inf.boundedI
thf(fact_669_inf_OboundedI,axiom,
    ! [A: set_a,B4: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( ord_less_eq_set_a @ A @ C2 )
       => ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B4 @ C2 ) ) ) ) ).

% inf.boundedI
thf(fact_670_inf__greatest,axiom,
    ! [X: nat,Y: nat,Z4: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Z4 )
       => ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z4 ) ) ) ) ).

% inf_greatest
thf(fact_671_inf__greatest,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ X @ Z4 )
       => ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) ) ) ) ).

% inf_greatest
thf(fact_672_inf_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( A4
          = ( inf_inf_nat @ A4 @ B3 ) ) ) ) ).

% inf.order_iff
thf(fact_673_inf_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( A4
          = ( inf_inf_set_a @ A4 @ B3 ) ) ) ) ).

% inf.order_iff
thf(fact_674_inf_Ocobounded1,axiom,
    ! [A: nat,B4: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ A ) ).

% inf.cobounded1
thf(fact_675_inf_Ocobounded1,axiom,
    ! [A: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ A ) ).

% inf.cobounded1
thf(fact_676_inf_Ocobounded2,axiom,
    ! [A: nat,B4: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ B4 ) ).

% inf.cobounded2
thf(fact_677_inf_Ocobounded2,axiom,
    ! [A: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ B4 ) ).

% inf.cobounded2
thf(fact_678_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( inf_inf_nat @ A4 @ B3 )
          = A4 ) ) ) ).

% inf.absorb_iff1
thf(fact_679_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( inf_inf_set_a @ A4 @ B3 )
          = A4 ) ) ) ).

% inf.absorb_iff1
thf(fact_680_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( inf_inf_nat @ A4 @ B3 )
          = B3 ) ) ) ).

% inf.absorb_iff2
thf(fact_681_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B3: set_a,A4: set_a] :
          ( ( inf_inf_set_a @ A4 @ B3 )
          = B3 ) ) ) ).

% inf.absorb_iff2
thf(fact_682_inf_OcoboundedI1,axiom,
    ! [A: nat,C2: nat,B4: nat] :
      ( ( ord_less_eq_nat @ A @ C2 )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ C2 ) ) ).

% inf.coboundedI1
thf(fact_683_inf_OcoboundedI1,axiom,
    ! [A: set_a,C2: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A @ C2 )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 ) ) ).

% inf.coboundedI1
thf(fact_684_inf_OcoboundedI2,axiom,
    ! [B4: nat,C2: nat,A: nat] :
      ( ( ord_less_eq_nat @ B4 @ C2 )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B4 ) @ C2 ) ) ).

% inf.coboundedI2
thf(fact_685_inf_OcoboundedI2,axiom,
    ! [B4: set_a,C2: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B4 @ C2 )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B4 ) @ C2 ) ) ).

% inf.coboundedI2
thf(fact_686_inf__sup__ord_I4_J,axiom,
    ! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_687_inf__sup__ord_I4_J,axiom,
    ! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_688_inf__sup__ord_I3_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_689_inf__sup__ord_I3_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_690_le__supE,axiom,
    ! [A: nat,B4: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B4 ) @ X )
     => ~ ( ( ord_less_eq_nat @ A @ X )
         => ~ ( ord_less_eq_nat @ B4 @ X ) ) ) ).

% le_supE
thf(fact_691_le__supE,axiom,
    ! [A: set_a,B4: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B4 ) @ X )
     => ~ ( ( ord_less_eq_set_a @ A @ X )
         => ~ ( ord_less_eq_set_a @ B4 @ X ) ) ) ).

% le_supE
thf(fact_692_le__supI,axiom,
    ! [A: nat,X: nat,B4: nat] :
      ( ( ord_less_eq_nat @ A @ X )
     => ( ( ord_less_eq_nat @ B4 @ X )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B4 ) @ X ) ) ) ).

% le_supI
thf(fact_693_le__supI,axiom,
    ! [A: set_a,X: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A @ X )
     => ( ( ord_less_eq_set_a @ B4 @ X )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B4 ) @ X ) ) ) ).

% le_supI
thf(fact_694_sup__ge1,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).

% sup_ge1
thf(fact_695_sup__ge1,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).

% sup_ge1
thf(fact_696_sup__ge2,axiom,
    ! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).

% sup_ge2
thf(fact_697_sup__ge2,axiom,
    ! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).

% sup_ge2
thf(fact_698_le__supI1,axiom,
    ! [X: nat,A: nat,B4: nat] :
      ( ( ord_less_eq_nat @ X @ A )
     => ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A @ B4 ) ) ) ).

% le_supI1
thf(fact_699_le__supI1,axiom,
    ! [X: set_a,A: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ X @ A )
     => ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A @ B4 ) ) ) ).

% le_supI1
thf(fact_700_le__supI2,axiom,
    ! [X: nat,B4: nat,A: nat] :
      ( ( ord_less_eq_nat @ X @ B4 )
     => ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A @ B4 ) ) ) ).

% le_supI2
thf(fact_701_le__supI2,axiom,
    ! [X: set_a,B4: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ X @ B4 )
     => ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A @ B4 ) ) ) ).

% le_supI2
thf(fact_702_sup_Omono,axiom,
    ! [C2: nat,A: nat,D: nat,B4: nat] :
      ( ( ord_less_eq_nat @ C2 @ A )
     => ( ( ord_less_eq_nat @ D @ B4 )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ C2 @ D ) @ ( sup_sup_nat @ A @ B4 ) ) ) ) ).

% sup.mono
thf(fact_703_sup_Omono,axiom,
    ! [C2: set_a,A: set_a,D: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ A )
     => ( ( ord_less_eq_set_a @ D @ B4 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ C2 @ D ) @ ( sup_sup_set_a @ A @ B4 ) ) ) ) ).

% sup.mono
thf(fact_704_sup__mono,axiom,
    ! [A: nat,C2: nat,B4: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ C2 )
     => ( ( ord_less_eq_nat @ B4 @ D )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B4 ) @ ( sup_sup_nat @ C2 @ D ) ) ) ) ).

% sup_mono
thf(fact_705_sup__mono,axiom,
    ! [A: set_a,C2: set_a,B4: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A @ C2 )
     => ( ( ord_less_eq_set_a @ B4 @ D )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B4 ) @ ( sup_sup_set_a @ C2 @ D ) ) ) ) ).

% sup_mono
thf(fact_706_sup__least,axiom,
    ! [Y: nat,X: nat,Z4: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ Z4 @ X )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ Y @ Z4 ) @ X ) ) ) ).

% sup_least
thf(fact_707_sup__least,axiom,
    ! [Y: set_a,X: set_a,Z4: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( ord_less_eq_set_a @ Z4 @ X )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ Y @ Z4 ) @ X ) ) ) ).

% sup_least
thf(fact_708_le__iff__sup,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y2: nat] :
          ( ( sup_sup_nat @ X2 @ Y2 )
          = Y2 ) ) ) ).

% le_iff_sup
thf(fact_709_le__iff__sup,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X2: set_a,Y2: set_a] :
          ( ( sup_sup_set_a @ X2 @ Y2 )
          = Y2 ) ) ) ).

% le_iff_sup
thf(fact_710_sup_OorderE,axiom,
    ! [B4: nat,A: nat] :
      ( ( ord_less_eq_nat @ B4 @ A )
     => ( A
        = ( sup_sup_nat @ A @ B4 ) ) ) ).

% sup.orderE
thf(fact_711_sup_OorderE,axiom,
    ! [B4: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B4 @ A )
     => ( A
        = ( sup_sup_set_a @ A @ B4 ) ) ) ).

% sup.orderE
thf(fact_712_sup_OorderI,axiom,
    ! [A: nat,B4: nat] :
      ( ( A
        = ( sup_sup_nat @ A @ B4 ) )
     => ( ord_less_eq_nat @ B4 @ A ) ) ).

% sup.orderI
thf(fact_713_sup_OorderI,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( A
        = ( sup_sup_set_a @ A @ B4 ) )
     => ( ord_less_eq_set_a @ B4 @ A ) ) ).

% sup.orderI
thf(fact_714_sup__unique,axiom,
    ! [F: nat > nat > nat,X: nat,Y: nat] :
      ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ X3 @ ( F @ X3 @ Y3 ) )
     => ( ! [X3: nat,Y3: nat] : ( ord_less_eq_nat @ Y3 @ ( F @ X3 @ Y3 ) )
       => ( ! [X3: nat,Y3: nat,Z2: nat] :
              ( ( ord_less_eq_nat @ Y3 @ X3 )
             => ( ( ord_less_eq_nat @ Z2 @ X3 )
               => ( ord_less_eq_nat @ ( F @ Y3 @ Z2 ) @ X3 ) ) )
         => ( ( sup_sup_nat @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_715_sup__unique,axiom,
    ! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
      ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ X3 @ ( F @ X3 @ Y3 ) )
     => ( ! [X3: set_a,Y3: set_a] : ( ord_less_eq_set_a @ Y3 @ ( F @ X3 @ Y3 ) )
       => ( ! [X3: set_a,Y3: set_a,Z2: set_a] :
              ( ( ord_less_eq_set_a @ Y3 @ X3 )
             => ( ( ord_less_eq_set_a @ Z2 @ X3 )
               => ( ord_less_eq_set_a @ ( F @ Y3 @ Z2 ) @ X3 ) ) )
         => ( ( sup_sup_set_a @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_716_sup_Oabsorb1,axiom,
    ! [B4: nat,A: nat] :
      ( ( ord_less_eq_nat @ B4 @ A )
     => ( ( sup_sup_nat @ A @ B4 )
        = A ) ) ).

% sup.absorb1
thf(fact_717_sup_Oabsorb1,axiom,
    ! [B4: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B4 @ A )
     => ( ( sup_sup_set_a @ A @ B4 )
        = A ) ) ).

% sup.absorb1
thf(fact_718_sup_Oabsorb2,axiom,
    ! [A: nat,B4: nat] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( sup_sup_nat @ A @ B4 )
        = B4 ) ) ).

% sup.absorb2
thf(fact_719_sup_Oabsorb2,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( sup_sup_set_a @ A @ B4 )
        = B4 ) ) ).

% sup.absorb2
thf(fact_720_sup__absorb1,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( sup_sup_nat @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_721_sup__absorb1,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( sup_sup_set_a @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_722_sup__absorb2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( sup_sup_nat @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_723_sup__absorb2,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( sup_sup_set_a @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_724_sup_OboundedE,axiom,
    ! [B4: nat,C2: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B4 @ C2 ) @ A )
     => ~ ( ( ord_less_eq_nat @ B4 @ A )
         => ~ ( ord_less_eq_nat @ C2 @ A ) ) ) ).

% sup.boundedE
thf(fact_725_sup_OboundedE,axiom,
    ! [B4: set_a,C2: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B4 @ C2 ) @ A )
     => ~ ( ( ord_less_eq_set_a @ B4 @ A )
         => ~ ( ord_less_eq_set_a @ C2 @ A ) ) ) ).

% sup.boundedE
thf(fact_726_sup_OboundedI,axiom,
    ! [B4: nat,A: nat,C2: nat] :
      ( ( ord_less_eq_nat @ B4 @ A )
     => ( ( ord_less_eq_nat @ C2 @ A )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ B4 @ C2 ) @ A ) ) ) ).

% sup.boundedI
thf(fact_727_sup_OboundedI,axiom,
    ! [B4: set_a,A: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ B4 @ A )
     => ( ( ord_less_eq_set_a @ C2 @ A )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ B4 @ C2 ) @ A ) ) ) ).

% sup.boundedI
thf(fact_728_sup_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( A4
          = ( sup_sup_nat @ A4 @ B3 ) ) ) ) ).

% sup.order_iff
thf(fact_729_sup_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B3: set_a,A4: set_a] :
          ( A4
          = ( sup_sup_set_a @ A4 @ B3 ) ) ) ) ).

% sup.order_iff
thf(fact_730_sup_Ocobounded1,axiom,
    ! [A: nat,B4: nat] : ( ord_less_eq_nat @ A @ ( sup_sup_nat @ A @ B4 ) ) ).

% sup.cobounded1
thf(fact_731_sup_Ocobounded1,axiom,
    ! [A: set_a,B4: set_a] : ( ord_less_eq_set_a @ A @ ( sup_sup_set_a @ A @ B4 ) ) ).

% sup.cobounded1
thf(fact_732_sup_Ocobounded2,axiom,
    ! [B4: nat,A: nat] : ( ord_less_eq_nat @ B4 @ ( sup_sup_nat @ A @ B4 ) ) ).

% sup.cobounded2
thf(fact_733_sup_Ocobounded2,axiom,
    ! [B4: set_a,A: set_a] : ( ord_less_eq_set_a @ B4 @ ( sup_sup_set_a @ A @ B4 ) ) ).

% sup.cobounded2
thf(fact_734_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( sup_sup_nat @ A4 @ B3 )
          = A4 ) ) ) ).

% sup.absorb_iff1
thf(fact_735_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B3: set_a,A4: set_a] :
          ( ( sup_sup_set_a @ A4 @ B3 )
          = A4 ) ) ) ).

% sup.absorb_iff1
thf(fact_736_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( sup_sup_nat @ A4 @ B3 )
          = B3 ) ) ) ).

% sup.absorb_iff2
thf(fact_737_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( sup_sup_set_a @ A4 @ B3 )
          = B3 ) ) ) ).

% sup.absorb_iff2
thf(fact_738_sup_OcoboundedI1,axiom,
    ! [C2: nat,A: nat,B4: nat] :
      ( ( ord_less_eq_nat @ C2 @ A )
     => ( ord_less_eq_nat @ C2 @ ( sup_sup_nat @ A @ B4 ) ) ) ).

% sup.coboundedI1
thf(fact_739_sup_OcoboundedI1,axiom,
    ! [C2: set_a,A: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ A )
     => ( ord_less_eq_set_a @ C2 @ ( sup_sup_set_a @ A @ B4 ) ) ) ).

% sup.coboundedI1
thf(fact_740_sup_OcoboundedI2,axiom,
    ! [C2: nat,B4: nat,A: nat] :
      ( ( ord_less_eq_nat @ C2 @ B4 )
     => ( ord_less_eq_nat @ C2 @ ( sup_sup_nat @ A @ B4 ) ) ) ).

% sup.coboundedI2
thf(fact_741_sup_OcoboundedI2,axiom,
    ! [C2: set_a,B4: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ B4 )
     => ( ord_less_eq_set_a @ C2 @ ( sup_sup_set_a @ A @ B4 ) ) ) ).

% sup.coboundedI2
thf(fact_742_sup__inf__distrib2,axiom,
    ! [Y: set_a,Z4: set_a,X: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ Z4 ) @ X )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ X ) @ ( sup_sup_set_a @ Z4 @ X ) ) ) ).

% sup_inf_distrib2
thf(fact_743_sup__inf__distrib1,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z4 ) ) ) ).

% sup_inf_distrib1
thf(fact_744_inf__sup__distrib2,axiom,
    ! [Y: set_a,Z4: set_a,X: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ Z4 ) @ X )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ X ) @ ( inf_inf_set_a @ Z4 @ X ) ) ) ).

% inf_sup_distrib2
thf(fact_745_inf__sup__distrib1,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z4 ) ) ) ).

% inf_sup_distrib1
thf(fact_746_distrib__imp2,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ! [X3: set_a,Y3: set_a,Z2: set_a] :
          ( ( sup_sup_set_a @ X3 @ ( inf_inf_set_a @ Y3 @ Z2 ) )
          = ( inf_inf_set_a @ ( sup_sup_set_a @ X3 @ Y3 ) @ ( sup_sup_set_a @ X3 @ Z2 ) ) )
     => ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) )
        = ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z4 ) ) ) ) ).

% distrib_imp2
thf(fact_747_distrib__imp1,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ! [X3: set_a,Y3: set_a,Z2: set_a] :
          ( ( inf_inf_set_a @ X3 @ ( sup_sup_set_a @ Y3 @ Z2 ) )
          = ( sup_sup_set_a @ ( inf_inf_set_a @ X3 @ Y3 ) @ ( inf_inf_set_a @ X3 @ Z2 ) ) )
     => ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) )
        = ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z4 ) ) ) ) ).

% distrib_imp1
thf(fact_748_distrib__inf__le,axiom,
    ! [X: nat,Y: nat,Z4: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ ( inf_inf_nat @ X @ Y ) @ ( inf_inf_nat @ X @ Z4 ) ) @ ( inf_inf_nat @ X @ ( sup_sup_nat @ Y @ Z4 ) ) ) ).

% distrib_inf_le
thf(fact_749_distrib__inf__le,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z4 ) ) @ ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) ) ) ).

% distrib_inf_le
thf(fact_750_distrib__sup__le,axiom,
    ! [X: nat,Y: nat,Z4: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ X @ ( inf_inf_nat @ Y @ Z4 ) ) @ ( inf_inf_nat @ ( sup_sup_nat @ X @ Y ) @ ( sup_sup_nat @ X @ Z4 ) ) ) ).

% distrib_sup_le
thf(fact_751_distrib__sup__le,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) ) @ ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z4 ) ) ) ).

% distrib_sup_le
thf(fact_752_boolean__algebra_Oconj__zero__right,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_zero_right
thf(fact_753_boolean__algebra_Oconj__zero__right,axiom,
    ! [X: set_nat] :
      ( ( inf_inf_set_nat @ X @ bot_bot_set_nat )
      = bot_bot_set_nat ) ).

% boolean_algebra.conj_zero_right
thf(fact_754_boolean__algebra_Oconj__zero__left,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ X )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_zero_left
thf(fact_755_boolean__algebra_Oconj__zero__left,axiom,
    ! [X: set_nat] :
      ( ( inf_inf_set_nat @ bot_bot_set_nat @ X )
      = bot_bot_set_nat ) ).

% boolean_algebra.conj_zero_left
thf(fact_756_finite__ranking__induct,axiom,
    ! [S: set_a,P: set_a > $o,F: a > nat] :
      ( ( finite_finite_a @ S )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X3: a,S2: set_a] :
              ( ( finite_finite_a @ S2 )
             => ( ! [Y4: a] :
                    ( ( member_a @ Y4 @ S2 )
                   => ( ord_less_eq_nat @ ( F @ Y4 ) @ ( F @ X3 ) ) )
               => ( ( P @ S2 )
                 => ( P @ ( insert_a @ X3 @ S2 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_757_finite__ranking__induct,axiom,
    ! [S: set_nat,P: set_nat > $o,F: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,S2: set_nat] :
              ( ( finite_finite_nat @ S2 )
             => ( ! [Y4: nat] :
                    ( ( member_nat @ Y4 @ S2 )
                   => ( ord_less_eq_nat @ ( F @ Y4 ) @ ( F @ X3 ) ) )
               => ( ( P @ S2 )
                 => ( P @ ( insert_nat @ X3 @ S2 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_758_finite__ranking__induct,axiom,
    ! [S: set_a,P: set_a > $o,F: a > num] :
      ( ( finite_finite_a @ S )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X3: a,S2: set_a] :
              ( ( finite_finite_a @ S2 )
             => ( ! [Y4: a] :
                    ( ( member_a @ Y4 @ S2 )
                   => ( ord_less_eq_num @ ( F @ Y4 ) @ ( F @ X3 ) ) )
               => ( ( P @ S2 )
                 => ( P @ ( insert_a @ X3 @ S2 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_759_finite__ranking__induct,axiom,
    ! [S: set_nat,P: set_nat > $o,F: nat > num] :
      ( ( finite_finite_nat @ S )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X3: nat,S2: set_nat] :
              ( ( finite_finite_nat @ S2 )
             => ( ! [Y4: nat] :
                    ( ( member_nat @ Y4 @ S2 )
                   => ( ord_less_eq_num @ ( F @ Y4 ) @ ( F @ X3 ) ) )
               => ( ( P @ S2 )
                 => ( P @ ( insert_nat @ X3 @ S2 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_760_sumset__eq,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
      = ( collect_a
        @ ^ [C4: a] :
          ? [X2: a] :
            ( ( member_a @ X2 @ ( inf_inf_set_a @ A2 @ g ) )
            & ? [Y2: a] :
                ( ( member_a @ Y2 @ ( inf_inf_set_a @ B @ g ) )
                & ( C4
                  = ( addition @ X2 @ Y2 ) ) ) ) ) ) ).

% sumset_eq
thf(fact_761_diff__shunt__var,axiom,
    ! [X: set_nat,Y: set_nat] :
      ( ( ( minus_minus_set_nat @ X @ Y )
        = bot_bot_set_nat )
      = ( ord_less_eq_set_nat @ X @ Y ) ) ).

% diff_shunt_var
thf(fact_762_diff__shunt__var,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ( minus_minus_set_a @ X @ Y )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ X @ Y ) ) ).

% diff_shunt_var
thf(fact_763_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_764_dual__order_Orefl,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% dual_order.refl
thf(fact_765_dual__order_Orefl,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% dual_order.refl
thf(fact_766_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_767_order__refl,axiom,
    ! [X: set_a] : ( ord_less_eq_set_a @ X @ X ) ).

% order_refl
thf(fact_768_order__refl,axiom,
    ! [X: num] : ( ord_less_eq_num @ X @ X ) ).

% order_refl
thf(fact_769_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_770_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ M )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_771_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_772_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus_nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_773_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq_nat @ I @ N )
     => ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_774_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_775_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_776_bex__empty,axiom,
    ! [P: a > $o] :
      ~ ? [X4: a] :
          ( ( member_a @ X4 @ bot_bot_set_a )
          & ( P @ X4 ) ) ).

% bex_empty
thf(fact_777_bex__empty,axiom,
    ! [P: nat > $o] :
      ~ ? [X4: nat] :
          ( ( member_nat @ X4 @ bot_bot_set_nat )
          & ( P @ X4 ) ) ).

% bex_empty
thf(fact_778_finite__Collect__bex,axiom,
    ! [A2: set_a,Q: a > a > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a
          @ ( collect_a
            @ ^ [X2: a] :
              ? [Y2: a] :
                ( ( member_a @ Y2 @ A2 )
                & ( Q @ X2 @ Y2 ) ) ) )
        = ( ! [X2: a] :
              ( ( member_a @ X2 @ A2 )
             => ( finite_finite_a
                @ ( collect_a
                  @ ^ [Y2: a] : ( Q @ Y2 @ X2 ) ) ) ) ) ) ) ).

% finite_Collect_bex
thf(fact_779_finite__Collect__bex,axiom,
    ! [A2: set_a,Q: nat > a > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [X2: nat] :
              ? [Y2: a] :
                ( ( member_a @ Y2 @ A2 )
                & ( Q @ X2 @ Y2 ) ) ) )
        = ( ! [X2: a] :
              ( ( member_a @ X2 @ A2 )
             => ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [Y2: nat] : ( Q @ Y2 @ X2 ) ) ) ) ) ) ) ).

% finite_Collect_bex
thf(fact_780_finite__Collect__bex,axiom,
    ! [A2: set_nat,Q: a > nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_a
          @ ( collect_a
            @ ^ [X2: a] :
              ? [Y2: nat] :
                ( ( member_nat @ Y2 @ A2 )
                & ( Q @ X2 @ Y2 ) ) ) )
        = ( ! [X2: nat] :
              ( ( member_nat @ X2 @ A2 )
             => ( finite_finite_a
                @ ( collect_a
                  @ ^ [Y2: a] : ( Q @ Y2 @ X2 ) ) ) ) ) ) ) ).

% finite_Collect_bex
thf(fact_781_finite__Collect__bex,axiom,
    ! [A2: set_nat,Q: nat > nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat
          @ ( collect_nat
            @ ^ [X2: nat] :
              ? [Y2: nat] :
                ( ( member_nat @ Y2 @ A2 )
                & ( Q @ X2 @ Y2 ) ) ) )
        = ( ! [X2: nat] :
              ( ( member_nat @ X2 @ A2 )
             => ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [Y2: nat] : ( Q @ Y2 @ X2 ) ) ) ) ) ) ) ).

% finite_Collect_bex
thf(fact_782_Bex__def,axiom,
    ( bex_a
    = ( ^ [A6: set_a,P2: a > $o] :
        ? [X2: a] :
          ( ( member_a @ X2 @ A6 )
          & ( P2 @ X2 ) ) ) ) ).

% Bex_def
thf(fact_783_Bex__def,axiom,
    ( bex_nat
    = ( ^ [A6: set_nat,P2: nat > $o] :
        ? [X2: nat] :
          ( ( member_nat @ X2 @ A6 )
          & ( P2 @ X2 ) ) ) ) ).

% Bex_def
thf(fact_784_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus_nat @ M @ zero_zero_nat )
      = M ) ).

% minus_nat.diff_0
thf(fact_785_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus_nat @ M @ N )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N @ M )
          = zero_zero_nat )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_786_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N2: nat] :
            ( ( P @ ( suc @ N2 ) )
           => ( P @ N2 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_787_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_788_le__diff__iff_H,axiom,
    ! [A: nat,C2: nat,B4: nat] :
      ( ( ord_less_eq_nat @ A @ C2 )
     => ( ( ord_less_eq_nat @ B4 @ C2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C2 @ A ) @ ( minus_minus_nat @ C2 @ B4 ) )
          = ( ord_less_eq_nat @ B4 @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_789_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_790_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_791_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( minus_minus_nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_792_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
          = ( ord_less_eq_nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_793_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ K @ N )
       => ( ( ( minus_minus_nat @ M @ K )
            = ( minus_minus_nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_794_minus__set__def,axiom,
    ( minus_minus_set_nat
    = ( ^ [A6: set_nat,B6: set_nat] :
          ( collect_nat
          @ ( minus_minus_nat_o
            @ ^ [X2: nat] : ( member_nat @ X2 @ A6 )
            @ ^ [X2: nat] : ( member_nat @ X2 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_795_minus__set__def,axiom,
    ( minus_minus_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( collect_a
          @ ( minus_minus_a_o
            @ ^ [X2: a] : ( member_a @ X2 @ A6 )
            @ ^ [X2: a] : ( member_a @ X2 @ B6 ) ) ) ) ) ).

% minus_set_def
thf(fact_796_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ( minus_minus_nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_797_binomial__symmetric,axiom,
    ! [K: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ N )
     => ( ( binomial @ N @ K )
        = ( binomial @ N @ ( minus_minus_nat @ N @ K ) ) ) ) ).

% binomial_symmetric
thf(fact_798_order__antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_799_order__antisym__conv,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( ord_less_eq_set_a @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_800_order__antisym__conv,axiom,
    ! [Y: num,X: num] :
      ( ( ord_less_eq_num @ Y @ X )
     => ( ( ord_less_eq_num @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_801_linorder__le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_802_linorder__le__cases,axiom,
    ! [X: num,Y: num] :
      ( ~ ( ord_less_eq_num @ X @ Y )
     => ( ord_less_eq_num @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_803_ord__le__eq__subst,axiom,
    ! [A: nat,B4: nat,F: nat > nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( ( F @ B4 )
          = C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_804_ord__le__eq__subst,axiom,
    ! [A: nat,B4: nat,F: nat > set_a,C2: set_a] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( ( F @ B4 )
          = C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_805_ord__le__eq__subst,axiom,
    ! [A: nat,B4: nat,F: nat > num,C2: num] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( ( F @ B4 )
          = C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_806_ord__le__eq__subst,axiom,
    ! [A: set_a,B4: set_a,F: set_a > nat,C2: nat] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( ( F @ B4 )
          = C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_807_ord__le__eq__subst,axiom,
    ! [A: set_a,B4: set_a,F: set_a > set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( ( F @ B4 )
          = C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_808_ord__le__eq__subst,axiom,
    ! [A: set_a,B4: set_a,F: set_a > num,C2: num] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( ( F @ B4 )
          = C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_809_ord__le__eq__subst,axiom,
    ! [A: num,B4: num,F: num > nat,C2: nat] :
      ( ( ord_less_eq_num @ A @ B4 )
     => ( ( ( F @ B4 )
          = C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_810_ord__le__eq__subst,axiom,
    ! [A: num,B4: num,F: num > set_a,C2: set_a] :
      ( ( ord_less_eq_num @ A @ B4 )
     => ( ( ( F @ B4 )
          = C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_811_ord__le__eq__subst,axiom,
    ! [A: num,B4: num,F: num > num,C2: num] :
      ( ( ord_less_eq_num @ A @ B4 )
     => ( ( ( F @ B4 )
          = C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C2 ) ) ) ) ).

% ord_le_eq_subst
thf(fact_812_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B4: nat,C2: nat] :
      ( ( A
        = ( F @ B4 ) )
     => ( ( ord_less_eq_nat @ B4 @ C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_813_ord__eq__le__subst,axiom,
    ! [A: set_a,F: nat > set_a,B4: nat,C2: nat] :
      ( ( A
        = ( F @ B4 ) )
     => ( ( ord_less_eq_nat @ B4 @ C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_814_ord__eq__le__subst,axiom,
    ! [A: num,F: nat > num,B4: nat,C2: nat] :
      ( ( A
        = ( F @ B4 ) )
     => ( ( ord_less_eq_nat @ B4 @ C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_815_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_a > nat,B4: set_a,C2: set_a] :
      ( ( A
        = ( F @ B4 ) )
     => ( ( ord_less_eq_set_a @ B4 @ C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_816_ord__eq__le__subst,axiom,
    ! [A: set_a,F: set_a > set_a,B4: set_a,C2: set_a] :
      ( ( A
        = ( F @ B4 ) )
     => ( ( ord_less_eq_set_a @ B4 @ C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_817_ord__eq__le__subst,axiom,
    ! [A: num,F: set_a > num,B4: set_a,C2: set_a] :
      ( ( A
        = ( F @ B4 ) )
     => ( ( ord_less_eq_set_a @ B4 @ C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_818_ord__eq__le__subst,axiom,
    ! [A: nat,F: num > nat,B4: num,C2: num] :
      ( ( A
        = ( F @ B4 ) )
     => ( ( ord_less_eq_num @ B4 @ C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_819_ord__eq__le__subst,axiom,
    ! [A: set_a,F: num > set_a,B4: num,C2: num] :
      ( ( A
        = ( F @ B4 ) )
     => ( ( ord_less_eq_num @ B4 @ C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_820_ord__eq__le__subst,axiom,
    ! [A: num,F: num > num,B4: num,C2: num] :
      ( ( A
        = ( F @ B4 ) )
     => ( ( ord_less_eq_num @ B4 @ C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C2 ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_821_linorder__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_linear
thf(fact_822_linorder__linear,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_eq_num @ X @ Y )
      | ( ord_less_eq_num @ Y @ X ) ) ).

% linorder_linear
thf(fact_823_order__eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_824_order__eq__refl,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( X = Y )
     => ( ord_less_eq_set_a @ X @ Y ) ) ).

% order_eq_refl
thf(fact_825_order__eq__refl,axiom,
    ! [X: num,Y: num] :
      ( ( X = Y )
     => ( ord_less_eq_num @ X @ Y ) ) ).

% order_eq_refl
thf(fact_826_order__subst2,axiom,
    ! [A: nat,B4: nat,F: nat > nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( ord_less_eq_nat @ ( F @ B4 ) @ C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_827_order__subst2,axiom,
    ! [A: nat,B4: nat,F: nat > set_a,C2: set_a] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( ord_less_eq_set_a @ ( F @ B4 ) @ C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_828_order__subst2,axiom,
    ! [A: nat,B4: nat,F: nat > num,C2: num] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( ord_less_eq_num @ ( F @ B4 ) @ C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_829_order__subst2,axiom,
    ! [A: set_a,B4: set_a,F: set_a > nat,C2: nat] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( ord_less_eq_nat @ ( F @ B4 ) @ C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_830_order__subst2,axiom,
    ! [A: set_a,B4: set_a,F: set_a > set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( ord_less_eq_set_a @ ( F @ B4 ) @ C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_831_order__subst2,axiom,
    ! [A: set_a,B4: set_a,F: set_a > num,C2: num] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( ord_less_eq_num @ ( F @ B4 ) @ C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_832_order__subst2,axiom,
    ! [A: num,B4: num,F: num > nat,C2: nat] :
      ( ( ord_less_eq_num @ A @ B4 )
     => ( ( ord_less_eq_nat @ ( F @ B4 ) @ C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_833_order__subst2,axiom,
    ! [A: num,B4: num,F: num > set_a,C2: set_a] :
      ( ( ord_less_eq_num @ A @ B4 )
     => ( ( ord_less_eq_set_a @ ( F @ B4 ) @ C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_834_order__subst2,axiom,
    ! [A: num,B4: num,F: num > num,C2: num] :
      ( ( ord_less_eq_num @ A @ B4 )
     => ( ( ord_less_eq_num @ ( F @ B4 ) @ C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C2 ) ) ) ) ).

% order_subst2
thf(fact_835_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B4: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B4 ) )
     => ( ( ord_less_eq_nat @ B4 @ C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_836_order__subst1,axiom,
    ! [A: nat,F: set_a > nat,B4: set_a,C2: set_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B4 ) )
     => ( ( ord_less_eq_set_a @ B4 @ C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_837_order__subst1,axiom,
    ! [A: nat,F: num > nat,B4: num,C2: num] :
      ( ( ord_less_eq_nat @ A @ ( F @ B4 ) )
     => ( ( ord_less_eq_num @ B4 @ C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_838_order__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B4: nat,C2: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B4 ) )
     => ( ( ord_less_eq_nat @ B4 @ C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_839_order__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B4: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B4 ) )
     => ( ( ord_less_eq_set_a @ B4 @ C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_840_order__subst1,axiom,
    ! [A: set_a,F: num > set_a,B4: num,C2: num] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B4 ) )
     => ( ( ord_less_eq_num @ B4 @ C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_841_order__subst1,axiom,
    ! [A: num,F: nat > num,B4: nat,C2: nat] :
      ( ( ord_less_eq_num @ A @ ( F @ B4 ) )
     => ( ( ord_less_eq_nat @ B4 @ C2 )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_842_order__subst1,axiom,
    ! [A: num,F: set_a > num,B4: set_a,C2: set_a] :
      ( ( ord_less_eq_num @ A @ ( F @ B4 ) )
     => ( ( ord_less_eq_set_a @ B4 @ C2 )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_843_order__subst1,axiom,
    ! [A: num,F: num > num,B4: num,C2: num] :
      ( ( ord_less_eq_num @ A @ ( F @ B4 ) )
     => ( ( ord_less_eq_num @ B4 @ C2 )
       => ( ! [X3: num,Y3: num] :
              ( ( ord_less_eq_num @ X3 @ Y3 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C2 ) ) ) ) ) ).

% order_subst1
thf(fact_844_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_845_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_a,Z3: set_a] : ( Y5 = Z3 ) )
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B3 )
          & ( ord_less_eq_set_a @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_846_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: num,Z3: num] : ( Y5 = Z3 ) )
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ A4 @ B3 )
          & ( ord_less_eq_num @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_847_antisym,axiom,
    ! [A: nat,B4: nat] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( ord_less_eq_nat @ B4 @ A )
       => ( A = B4 ) ) ) ).

% antisym
thf(fact_848_antisym,axiom,
    ! [A: set_a,B4: set_a] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( ord_less_eq_set_a @ B4 @ A )
       => ( A = B4 ) ) ) ).

% antisym
thf(fact_849_antisym,axiom,
    ! [A: num,B4: num] :
      ( ( ord_less_eq_num @ A @ B4 )
     => ( ( ord_less_eq_num @ B4 @ A )
       => ( A = B4 ) ) ) ).

% antisym
thf(fact_850_dual__order_Otrans,axiom,
    ! [B4: nat,A: nat,C2: nat] :
      ( ( ord_less_eq_nat @ B4 @ A )
     => ( ( ord_less_eq_nat @ C2 @ B4 )
       => ( ord_less_eq_nat @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_851_dual__order_Otrans,axiom,
    ! [B4: set_a,A: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ B4 @ A )
     => ( ( ord_less_eq_set_a @ C2 @ B4 )
       => ( ord_less_eq_set_a @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_852_dual__order_Otrans,axiom,
    ! [B4: num,A: num,C2: num] :
      ( ( ord_less_eq_num @ B4 @ A )
     => ( ( ord_less_eq_num @ C2 @ B4 )
       => ( ord_less_eq_num @ C2 @ A ) ) ) ).

% dual_order.trans
thf(fact_853_dual__order_Oantisym,axiom,
    ! [B4: nat,A: nat] :
      ( ( ord_less_eq_nat @ B4 @ A )
     => ( ( ord_less_eq_nat @ A @ B4 )
       => ( A = B4 ) ) ) ).

% dual_order.antisym
thf(fact_854_dual__order_Oantisym,axiom,
    ! [B4: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B4 @ A )
     => ( ( ord_less_eq_set_a @ A @ B4 )
       => ( A = B4 ) ) ) ).

% dual_order.antisym
thf(fact_855_dual__order_Oantisym,axiom,
    ! [B4: num,A: num] :
      ( ( ord_less_eq_num @ B4 @ A )
     => ( ( ord_less_eq_num @ A @ B4 )
       => ( A = B4 ) ) ) ).

% dual_order.antisym
thf(fact_856_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_857_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_a,Z3: set_a] : ( Y5 = Z3 ) )
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A4 )
          & ( ord_less_eq_set_a @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_858_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: num,Z3: num] : ( Y5 = Z3 ) )
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ B3 @ A4 )
          & ( ord_less_eq_num @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_859_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B4: nat] :
      ( ! [A3: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: nat,B2: nat] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B4 ) ) ) ).

% linorder_wlog
thf(fact_860_linorder__wlog,axiom,
    ! [P: num > num > $o,A: num,B4: num] :
      ( ! [A3: num,B2: num] :
          ( ( ord_less_eq_num @ A3 @ B2 )
         => ( P @ A3 @ B2 ) )
     => ( ! [A3: num,B2: num] :
            ( ( P @ B2 @ A3 )
           => ( P @ A3 @ B2 ) )
       => ( P @ A @ B4 ) ) ) ).

% linorder_wlog
thf(fact_861_order__trans,axiom,
    ! [X: nat,Y: nat,Z4: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z4 )
       => ( ord_less_eq_nat @ X @ Z4 ) ) ) ).

% order_trans
thf(fact_862_order__trans,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ Y @ Z4 )
       => ( ord_less_eq_set_a @ X @ Z4 ) ) ) ).

% order_trans
thf(fact_863_order__trans,axiom,
    ! [X: num,Y: num,Z4: num] :
      ( ( ord_less_eq_num @ X @ Y )
     => ( ( ord_less_eq_num @ Y @ Z4 )
       => ( ord_less_eq_num @ X @ Z4 ) ) ) ).

% order_trans
thf(fact_864_order_Otrans,axiom,
    ! [A: nat,B4: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( ord_less_eq_nat @ B4 @ C2 )
       => ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% order.trans
thf(fact_865_order_Otrans,axiom,
    ! [A: set_a,B4: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( ord_less_eq_set_a @ B4 @ C2 )
       => ( ord_less_eq_set_a @ A @ C2 ) ) ) ).

% order.trans
thf(fact_866_order_Otrans,axiom,
    ! [A: num,B4: num,C2: num] :
      ( ( ord_less_eq_num @ A @ B4 )
     => ( ( ord_less_eq_num @ B4 @ C2 )
       => ( ord_less_eq_num @ A @ C2 ) ) ) ).

% order.trans
thf(fact_867_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_868_order__antisym,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_869_order__antisym,axiom,
    ! [X: num,Y: num] :
      ( ( ord_less_eq_num @ X @ Y )
     => ( ( ord_less_eq_num @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_870_ord__le__eq__trans,axiom,
    ! [A: nat,B4: nat,C2: nat] :
      ( ( ord_less_eq_nat @ A @ B4 )
     => ( ( B4 = C2 )
       => ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_871_ord__le__eq__trans,axiom,
    ! [A: set_a,B4: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B4 )
     => ( ( B4 = C2 )
       => ( ord_less_eq_set_a @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_872_ord__le__eq__trans,axiom,
    ! [A: num,B4: num,C2: num] :
      ( ( ord_less_eq_num @ A @ B4 )
     => ( ( B4 = C2 )
       => ( ord_less_eq_num @ A @ C2 ) ) ) ).

% ord_le_eq_trans
thf(fact_873_ord__eq__le__trans,axiom,
    ! [A: nat,B4: nat,C2: nat] :
      ( ( A = B4 )
     => ( ( ord_less_eq_nat @ B4 @ C2 )
       => ( ord_less_eq_nat @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_874_ord__eq__le__trans,axiom,
    ! [A: set_a,B4: set_a,C2: set_a] :
      ( ( A = B4 )
     => ( ( ord_less_eq_set_a @ B4 @ C2 )
       => ( ord_less_eq_set_a @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_875_ord__eq__le__trans,axiom,
    ! [A: num,B4: num,C2: num] :
      ( ( A = B4 )
     => ( ( ord_less_eq_num @ B4 @ C2 )
       => ( ord_less_eq_num @ A @ C2 ) ) ) ).

% ord_eq_le_trans
thf(fact_876_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z3: nat] : ( Y5 = Z3 ) )
    = ( ^ [X2: nat,Y2: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y2 )
          & ( ord_less_eq_nat @ Y2 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_877_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_a,Z3: set_a] : ( Y5 = Z3 ) )
    = ( ^ [X2: set_a,Y2: set_a] :
          ( ( ord_less_eq_set_a @ X2 @ Y2 )
          & ( ord_less_eq_set_a @ Y2 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_878_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: num,Z3: num] : ( Y5 = Z3 ) )
    = ( ^ [X2: num,Y2: num] :
          ( ( ord_less_eq_num @ X2 @ Y2 )
          & ( ord_less_eq_num @ Y2 @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_879_le__cases3,axiom,
    ! [X: nat,Y: nat,Z4: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z4 ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z4 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z4 )
           => ~ ( ord_less_eq_nat @ Z4 @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z4 @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z4 )
               => ~ ( ord_less_eq_nat @ Z4 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z4 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_880_le__cases3,axiom,
    ! [X: num,Y: num,Z4: num] :
      ( ( ( ord_less_eq_num @ X @ Y )
       => ~ ( ord_less_eq_num @ Y @ Z4 ) )
     => ( ( ( ord_less_eq_num @ Y @ X )
         => ~ ( ord_less_eq_num @ X @ Z4 ) )
       => ( ( ( ord_less_eq_num @ X @ Z4 )
           => ~ ( ord_less_eq_num @ Z4 @ Y ) )
         => ( ( ( ord_less_eq_num @ Z4 @ Y )
             => ~ ( ord_less_eq_num @ Y @ X ) )
           => ( ( ( ord_less_eq_num @ Y @ Z4 )
               => ~ ( ord_less_eq_num @ Z4 @ X ) )
             => ~ ( ( ord_less_eq_num @ Z4 @ X )
                 => ~ ( ord_less_eq_num @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_881_nle__le,axiom,
    ! [A: nat,B4: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B4 ) )
      = ( ( ord_less_eq_nat @ B4 @ A )
        & ( B4 != A ) ) ) ).

% nle_le
thf(fact_882_nle__le,axiom,
    ! [A: num,B4: num] :
      ( ( ~ ( ord_less_eq_num @ A @ B4 ) )
      = ( ( ord_less_eq_num @ B4 @ A )
        & ( B4 != A ) ) ) ).

% nle_le
thf(fact_883_boolean__algebra__cancel_Oinf1,axiom,
    ! [A2: set_a,K: set_a,A: set_a,B4: set_a] :
      ( ( A2
        = ( inf_inf_set_a @ K @ A ) )
     => ( ( inf_inf_set_a @ A2 @ B4 )
        = ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B4 ) ) ) ) ).

% boolean_algebra_cancel.inf1
thf(fact_884_boolean__algebra__cancel_Oinf2,axiom,
    ! [B: set_a,K: set_a,B4: set_a,A: set_a] :
      ( ( B
        = ( inf_inf_set_a @ K @ B4 ) )
     => ( ( inf_inf_set_a @ A @ B )
        = ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B4 ) ) ) ) ).

% boolean_algebra_cancel.inf2
thf(fact_885_boolean__algebra__cancel_Osup1,axiom,
    ! [A2: set_a,K: set_a,A: set_a,B4: set_a] :
      ( ( A2
        = ( sup_sup_set_a @ K @ A ) )
     => ( ( sup_sup_set_a @ A2 @ B4 )
        = ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A @ B4 ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_886_boolean__algebra__cancel_Osup2,axiom,
    ! [B: set_a,K: set_a,B4: set_a,A: set_a] :
      ( ( B
        = ( sup_sup_set_a @ K @ B4 ) )
     => ( ( sup_sup_set_a @ A @ B )
        = ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A @ B4 ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_887_card__Diff__subset,axiom,
    ! [B: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B )
     => ( ( ord_less_eq_set_nat @ B @ A2 )
       => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B ) )
          = ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) ) ) ) ) ).

% card_Diff_subset
thf(fact_888_card__Diff__subset,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( finite_finite_a @ B )
     => ( ( ord_less_eq_set_a @ B @ A2 )
       => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) )
          = ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) ) ) ) ).

% card_Diff_subset
thf(fact_889_diff__card__le__card__Diff,axiom,
    ! [B: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B ) ) ) ) ).

% diff_card_le_card_Diff
thf(fact_890_diff__card__le__card__Diff,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( finite_finite_a @ B )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B ) ) @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) ) ) ) ).

% diff_card_le_card_Diff
thf(fact_891_card__Diff__subset__Int,axiom,
    ! [A2: set_nat,B: set_nat] :
      ( ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ B ) )
     => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B ) )
        = ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ ( inf_inf_set_nat @ A2 @ B ) ) ) ) ) ).

% card_Diff_subset_Int
thf(fact_892_card__Diff__subset__Int,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ B ) )
     => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ B ) )
        = ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ ( inf_inf_set_a @ A2 @ B ) ) ) ) ) ).

% card_Diff_subset_Int
thf(fact_893_bot_Oextremum,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ bot_bot_set_nat @ A ) ).

% bot.extremum
thf(fact_894_bot_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).

% bot.extremum
thf(fact_895_bot_Oextremum,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A ) ).

% bot.extremum
thf(fact_896_bot_Oextremum__unique,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
      = ( A = bot_bot_set_nat ) ) ).

% bot.extremum_unique
thf(fact_897_bot_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
      = ( A = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_898_bot_Oextremum__unique,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
      = ( A = bot_bot_set_a ) ) ).

% bot.extremum_unique
thf(fact_899_bot_Oextremum__uniqueI,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ bot_bot_set_nat )
     => ( A = bot_bot_set_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_900_bot_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
     => ( A = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_901_bot_Oextremum__uniqueI,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
     => ( A = bot_bot_set_a ) ) ).

% bot.extremum_uniqueI
thf(fact_902_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ bot_bot_set_a )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_903_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_nat] :
      ( ( sup_sup_set_nat @ X @ bot_bot_set_nat )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_904_boolean__algebra_Oconj__disj__distrib,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z4 ) )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z4 ) ) ) ).

% boolean_algebra.conj_disj_distrib
thf(fact_905_boolean__algebra_Odisj__conj__distrib,axiom,
    ! [X: set_a,Y: set_a,Z4: set_a] :
      ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z4 ) )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z4 ) ) ) ).

% boolean_algebra.disj_conj_distrib
thf(fact_906_boolean__algebra_Oconj__disj__distrib2,axiom,
    ! [Y: set_a,Z4: set_a,X: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ Z4 ) @ X )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ X ) @ ( inf_inf_set_a @ Z4 @ X ) ) ) ).

% boolean_algebra.conj_disj_distrib2
thf(fact_907_boolean__algebra_Odisj__conj__distrib2,axiom,
    ! [Y: set_a,Z4: set_a,X: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ Z4 ) @ X )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ X ) @ ( sup_sup_set_a @ Z4 @ X ) ) ) ).

% boolean_algebra.disj_conj_distrib2
thf(fact_908_sup__Un__eq,axiom,
    ! [R: set_nat,S: set_nat] :
      ( ( sup_sup_nat_o
        @ ^ [X2: nat] : ( member_nat @ X2 @ R )
        @ ^ [X2: nat] : ( member_nat @ X2 @ S ) )
      = ( ^ [X2: nat] : ( member_nat @ X2 @ ( sup_sup_set_nat @ R @ S ) ) ) ) ).

% sup_Un_eq
thf(fact_909_sup__Un__eq,axiom,
    ! [R: set_a,S: set_a] :
      ( ( sup_sup_a_o
        @ ^ [X2: a] : ( member_a @ X2 @ R )
        @ ^ [X2: a] : ( member_a @ X2 @ S ) )
      = ( ^ [X2: a] : ( member_a @ X2 @ ( sup_sup_set_a @ R @ S ) ) ) ) ).

% sup_Un_eq
thf(fact_910_inf__Int__eq,axiom,
    ! [R: set_nat,S: set_nat] :
      ( ( inf_inf_nat_o
        @ ^ [X2: nat] : ( member_nat @ X2 @ R )
        @ ^ [X2: nat] : ( member_nat @ X2 @ S ) )
      = ( ^ [X2: nat] : ( member_nat @ X2 @ ( inf_inf_set_nat @ R @ S ) ) ) ) ).

% inf_Int_eq
thf(fact_911_inf__Int__eq,axiom,
    ! [R: set_a,S: set_a] :
      ( ( inf_inf_a_o
        @ ^ [X2: a] : ( member_a @ X2 @ R )
        @ ^ [X2: a] : ( member_a @ X2 @ S ) )
      = ( ^ [X2: a] : ( member_a @ X2 @ ( inf_inf_set_a @ R @ S ) ) ) ) ).

% inf_Int_eq
thf(fact_912_pred__subset__eq,axiom,
    ! [R: set_nat,S: set_nat] :
      ( ( ord_less_eq_nat_o
        @ ^ [X2: nat] : ( member_nat @ X2 @ R )
        @ ^ [X2: nat] : ( member_nat @ X2 @ S ) )
      = ( ord_less_eq_set_nat @ R @ S ) ) ).

% pred_subset_eq
thf(fact_913_pred__subset__eq,axiom,
    ! [R: set_a,S: set_a] :
      ( ( ord_less_eq_a_o
        @ ^ [X2: a] : ( member_a @ X2 @ R )
        @ ^ [X2: a] : ( member_a @ X2 @ S ) )
      = ( ord_less_eq_set_a @ R @ S ) ) ).

% pred_subset_eq
thf(fact_914_the__elem__eq,axiom,
    ! [X: a] :
      ( ( the_elem_a @ ( insert_a @ X @ bot_bot_set_a ) )
      = X ) ).

% the_elem_eq
thf(fact_915_the__elem__eq,axiom,
    ! [X: nat] :
      ( ( the_elem_nat @ ( insert_nat @ X @ bot_bot_set_nat ) )
      = X ) ).

% the_elem_eq
thf(fact_916_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_917_bot__empty__eq,axiom,
    ( bot_bot_a_o
    = ( ^ [X2: a] : ( member_a @ X2 @ bot_bot_set_a ) ) ) ).

% bot_empty_eq
thf(fact_918_bot__empty__eq,axiom,
    ( bot_bot_nat_o
    = ( ^ [X2: nat] : ( member_nat @ X2 @ bot_bot_set_nat ) ) ) ).

% bot_empty_eq
thf(fact_919_verit__eq__simplify_I8_J,axiom,
    ! [X22: num,Y22: num] :
      ( ( ( bit0 @ X22 )
        = ( bit0 @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% verit_eq_simplify(8)
thf(fact_920_Collect__empty__eq__bot,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( P = bot_bot_a_o ) ) ).

% Collect_empty_eq_bot
thf(fact_921_Collect__empty__eq__bot,axiom,
    ! [P: nat > $o] :
      ( ( ( collect_nat @ P )
        = bot_bot_set_nat )
      = ( P = bot_bot_nat_o ) ) ).

% Collect_empty_eq_bot
thf(fact_922_is__singleton__the__elem,axiom,
    ( is_singleton_a
    = ( ^ [A6: set_a] :
          ( A6
          = ( insert_a @ ( the_elem_a @ A6 ) @ bot_bot_set_a ) ) ) ) ).

% is_singleton_the_elem
thf(fact_923_is__singleton__the__elem,axiom,
    ( is_singleton_nat
    = ( ^ [A6: set_nat] :
          ( A6
          = ( insert_nat @ ( the_elem_nat @ A6 ) @ bot_bot_set_nat ) ) ) ) ).

% is_singleton_the_elem
thf(fact_924_is__singletonI,axiom,
    ! [X: a] : ( is_singleton_a @ ( insert_a @ X @ bot_bot_set_a ) ) ).

% is_singletonI
thf(fact_925_is__singletonI,axiom,
    ! [X: nat] : ( is_singleton_nat @ ( insert_nat @ X @ bot_bot_set_nat ) ) ).

% is_singletonI
thf(fact_926_is__singletonI_H,axiom,
    ! [A2: set_a] :
      ( ( A2 != bot_bot_set_a )
     => ( ! [X3: a,Y3: a] :
            ( ( member_a @ X3 @ A2 )
           => ( ( member_a @ Y3 @ A2 )
             => ( X3 = Y3 ) ) )
       => ( is_singleton_a @ A2 ) ) ) ).

% is_singletonI'
thf(fact_927_is__singletonI_H,axiom,
    ! [A2: set_nat] :
      ( ( A2 != bot_bot_set_nat )
     => ( ! [X3: nat,Y3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( ( member_nat @ Y3 @ A2 )
             => ( X3 = Y3 ) ) )
       => ( is_singleton_nat @ A2 ) ) ) ).

% is_singletonI'
thf(fact_928_verit__la__disequality,axiom,
    ! [A: nat,B4: nat] :
      ( ( A = B4 )
      | ~ ( ord_less_eq_nat @ A @ B4 )
      | ~ ( ord_less_eq_nat @ B4 @ A ) ) ).

% verit_la_disequality
thf(fact_929_verit__la__disequality,axiom,
    ! [A: num,B4: num] :
      ( ( A = B4 )
      | ~ ( ord_less_eq_num @ A @ B4 )
      | ~ ( ord_less_eq_num @ B4 @ A ) ) ).

% verit_la_disequality
thf(fact_930_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_931_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_932_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_933_is__singleton__def,axiom,
    ( is_singleton_a
    = ( ^ [A6: set_a] :
        ? [X2: a] :
          ( A6
          = ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ).

% is_singleton_def
thf(fact_934_is__singleton__def,axiom,
    ( is_singleton_nat
    = ( ^ [A6: set_nat] :
        ? [X2: nat] :
          ( A6
          = ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ) ).

% is_singleton_def
thf(fact_935_is__singletonE,axiom,
    ! [A2: set_a] :
      ( ( is_singleton_a @ A2 )
     => ~ ! [X3: a] :
            ( A2
           != ( insert_a @ X3 @ bot_bot_set_a ) ) ) ).

% is_singletonE
thf(fact_936_is__singletonE,axiom,
    ! [A2: set_nat] :
      ( ( is_singleton_nat @ A2 )
     => ~ ! [X3: nat] :
            ( A2
           != ( insert_nat @ X3 @ bot_bot_set_nat ) ) ) ).

% is_singletonE
thf(fact_937_verit__eq__simplify_I10_J,axiom,
    ! [X22: num] :
      ( one
     != ( bit0 @ X22 ) ) ).

% verit_eq_simplify(10)
thf(fact_938_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ( ( member_nat @ A @ G )
           => ( ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
              = ( finite_card_nat @ ( inf_inf_set_nat @ A2 @ G ) ) ) )
          & ( ~ ( member_nat @ A @ G )
           => ( ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
              = zero_zero_nat ) ) ) ) ) ).

% additive_abelian_group.card_sumset_singleton_eq
thf(fact_939_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ( ( member_a @ A @ G )
           => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
              = ( finite_card_a @ ( inf_inf_set_a @ A2 @ G ) ) ) )
          & ( ~ ( member_a @ A @ G )
           => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
              = zero_zero_nat ) ) ) ) ) ).

% additive_abelian_group.card_sumset_singleton_eq
thf(fact_940_arg__min__least,axiom,
    ! [S: set_a,Y: a,F: a > nat] :
      ( ( finite_finite_a @ S )
     => ( ( S != bot_bot_set_a )
       => ( ( member_a @ Y @ S )
         => ( ord_less_eq_nat @ ( F @ ( lattic6340287419671400565_a_nat @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).

% arg_min_least
thf(fact_941_arg__min__least,axiom,
    ! [S: set_nat,Y: nat,F: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ( ( member_nat @ Y @ S )
         => ( ord_less_eq_nat @ ( F @ ( lattic7446932960582359483at_nat @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).

% arg_min_least
thf(fact_942_arg__min__least,axiom,
    ! [S: set_a,Y: a,F: a > num] :
      ( ( finite_finite_a @ S )
     => ( ( S != bot_bot_set_a )
       => ( ( member_a @ Y @ S )
         => ( ord_less_eq_num @ ( F @ ( lattic2897619205827179199_a_num @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).

% arg_min_least
thf(fact_943_arg__min__least,axiom,
    ! [S: set_nat,Y: nat,F: nat > num] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ( ( member_nat @ Y @ S )
         => ( ord_less_eq_num @ ( F @ ( lattic4004264746738138117at_num @ F @ S ) ) @ ( F @ Y ) ) ) ) ) ).

% arg_min_least
thf(fact_944_insert__subsetI,axiom,
    ! [X: nat,A2: set_nat,X5: set_nat] :
      ( ( member_nat @ X @ A2 )
     => ( ( ord_less_eq_set_nat @ X5 @ A2 )
       => ( ord_less_eq_set_nat @ ( insert_nat @ X @ X5 ) @ A2 ) ) ) ).

% insert_subsetI
thf(fact_945_insert__subsetI,axiom,
    ! [X: a,A2: set_a,X5: set_a] :
      ( ( member_a @ X @ A2 )
     => ( ( ord_less_eq_set_a @ X5 @ A2 )
       => ( ord_less_eq_set_a @ ( insert_a @ X @ X5 ) @ A2 ) ) ) ).

% insert_subsetI
thf(fact_946_additive__abelian__group_Osumset__commute,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ A2 ) ) ) ).

% additive_abelian_group.sumset_commute
thf(fact_947_additive__abelian__group_Osumset_OsumsetI,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat,B4: nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ A2 )
       => ( ( member_nat @ A @ G )
         => ( ( member_nat @ B4 @ B )
           => ( ( member_nat @ B4 @ G )
             => ( member_nat @ ( Addition @ A @ B4 ) @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.sumsetI
thf(fact_948_additive__abelian__group_Osumset_OsumsetI,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B4: a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ A2 )
       => ( ( member_a @ A @ G )
         => ( ( member_a @ B4 @ B )
           => ( ( member_a @ B4 @ G )
             => ( member_a @ ( Addition @ A @ B4 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.sumsetI
thf(fact_949_additive__abelian__group_Osumset__assoc,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,C: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ C )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ C ) ) ) ) ).

% additive_abelian_group.sumset_assoc
thf(fact_950_additive__abelian__group_Osumset_Osimps,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) )
        = ( ? [A4: nat,B3: nat] :
              ( ( A
                = ( Addition @ A4 @ B3 ) )
              & ( member_nat @ A4 @ A2 )
              & ( member_nat @ A4 @ G )
              & ( member_nat @ B3 @ B )
              & ( member_nat @ B3 @ G ) ) ) ) ) ).

% additive_abelian_group.sumset.simps
thf(fact_951_additive__abelian__group_Osumset_Osimps,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) )
        = ( ? [A4: a,B3: a] :
              ( ( A
                = ( Addition @ A4 @ B3 ) )
              & ( member_a @ A4 @ A2 )
              & ( member_a @ A4 @ G )
              & ( member_a @ B3 @ B )
              & ( member_a @ B3 @ G ) ) ) ) ) ).

% additive_abelian_group.sumset.simps
thf(fact_952_additive__abelian__group_Osumset_Ocases,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) )
       => ~ ! [A3: nat,B2: nat] :
              ( ( A
                = ( Addition @ A3 @ B2 ) )
             => ( ( member_nat @ A3 @ A2 )
               => ( ( member_nat @ A3 @ G )
                 => ( ( member_nat @ B2 @ B )
                   => ~ ( member_nat @ B2 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.cases
thf(fact_953_additive__abelian__group_Osumset_Ocases,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) )
       => ~ ! [A3: a,B2: a] :
              ( ( A
                = ( Addition @ A3 @ B2 ) )
             => ( ( member_a @ A3 @ A2 )
               => ( ( member_a @ A3 @ G )
                 => ( ( member_a @ B2 @ B )
                   => ~ ( member_a @ B2 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.cases
thf(fact_954_additive__abelian__group_Osumsetp_Ocases,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,B: nat > $o,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn5670965976768739049tp_nat @ G @ Addition @ A2 @ B @ A )
       => ~ ! [A3: nat,B2: nat] :
              ( ( A
                = ( Addition @ A3 @ B2 ) )
             => ( ( A2 @ A3 )
               => ( ( member_nat @ A3 @ G )
                 => ( ( B @ B2 )
                   => ~ ( member_nat @ B2 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.cases
thf(fact_955_additive__abelian__group_Osumsetp_Ocases,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,B: a > $o,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B @ A )
       => ~ ! [A3: a,B2: a] :
              ( ( A
                = ( Addition @ A3 @ B2 ) )
             => ( ( A2 @ A3 )
               => ( ( member_a @ A3 @ G )
                 => ( ( B @ B2 )
                   => ~ ( member_a @ B2 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.cases
thf(fact_956_additive__abelian__group_Osumsetp_Osimps,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,B: nat > $o,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn5670965976768739049tp_nat @ G @ Addition @ A2 @ B @ A )
        = ( ? [A4: nat,B3: nat] :
              ( ( A
                = ( Addition @ A4 @ B3 ) )
              & ( A2 @ A4 )
              & ( member_nat @ A4 @ G )
              & ( B @ B3 )
              & ( member_nat @ B3 @ G ) ) ) ) ) ).

% additive_abelian_group.sumsetp.simps
thf(fact_957_additive__abelian__group_Osumsetp_Osimps,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,B: a > $o,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B @ A )
        = ( ? [A4: a,B3: a] :
              ( ( A
                = ( Addition @ A4 @ B3 ) )
              & ( A2 @ A4 )
              & ( member_a @ A4 @ G )
              & ( B @ B3 )
              & ( member_a @ B3 @ G ) ) ) ) ) ).

% additive_abelian_group.sumsetp.simps
thf(fact_958_additive__abelian__group_Osumsetp_OsumsetI,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,A: nat,B: nat > $o,B4: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( A2 @ A )
       => ( ( member_nat @ A @ G )
         => ( ( B @ B4 )
           => ( ( member_nat @ B4 @ G )
             => ( pluenn5670965976768739049tp_nat @ G @ Addition @ A2 @ B @ ( Addition @ A @ B4 ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.sumsetI
thf(fact_959_additive__abelian__group_Osumsetp_OsumsetI,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,A: a,B: a > $o,B4: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( A2 @ A )
       => ( ( member_a @ A @ G )
         => ( ( B @ B4 )
           => ( ( member_a @ B4 @ G )
             => ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B @ ( Addition @ A @ B4 ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.sumsetI
thf(fact_960_additive__abelian__group_Osumset__empty_I2_J,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ bot_bot_set_nat @ A2 )
        = bot_bot_set_nat ) ) ).

% additive_abelian_group.sumset_empty(2)
thf(fact_961_additive__abelian__group_Osumset__empty_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ bot_bot_set_a @ A2 )
        = bot_bot_set_a ) ) ).

% additive_abelian_group.sumset_empty(2)
thf(fact_962_additive__abelian__group_Osumset__empty_I1_J,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ bot_bot_set_nat )
        = bot_bot_set_nat ) ) ).

% additive_abelian_group.sumset_empty(1)
thf(fact_963_additive__abelian__group_Osumset__empty_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ bot_bot_set_a )
        = bot_bot_set_a ) ) ).

% additive_abelian_group.sumset_empty(1)
thf(fact_964_additive__abelian__group_Ofinite__sumset,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ( finite_finite_nat @ B )
         => ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.finite_sumset
thf(fact_965_additive__abelian__group_Ofinite__sumset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ( finite_finite_a @ B )
         => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.finite_sumset
thf(fact_966_additive__abelian__group_Osumset__mono,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A5: set_a,A2: set_a,B5: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ord_less_eq_set_a @ A5 @ A2 )
       => ( ( ord_less_eq_set_a @ B5 @ B )
         => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A5 @ B5 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumset_mono
thf(fact_967_additive__abelian__group_Osumset__subset__carrier,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ G ) ) ).

% additive_abelian_group.sumset_subset_carrier
thf(fact_968_additive__abelian__group_Osumset__Int__carrier__eq_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( inf_inf_set_a @ A2 @ G ) @ B )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ).

% additive_abelian_group.sumset_Int_carrier_eq(2)
thf(fact_969_additive__abelian__group_Osumset__Int__carrier__eq_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( inf_inf_set_a @ B @ G ) )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ).

% additive_abelian_group.sumset_Int_carrier_eq(1)
thf(fact_970_additive__abelian__group_Osumset__Int__carrier,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( inf_inf_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ G )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ).

% additive_abelian_group.sumset_Int_carrier
thf(fact_971_additive__abelian__group_Osumset__subset__Un1,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A5: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( sup_sup_set_a @ A2 @ A5 ) @ B )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A5 @ B ) ) ) ) ).

% additive_abelian_group.sumset_subset_Un1
thf(fact_972_additive__abelian__group_Osumset__subset__Un2,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,B5: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( sup_sup_set_a @ B @ B5 ) )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B5 ) ) ) ) ).

% additive_abelian_group.sumset_subset_Un2
thf(fact_973_additive__abelian__group_Osumset__def,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn3669378163024332905et_nat @ G @ Addition )
        = ( ^ [A6: set_nat,B6: set_nat] :
              ( collect_nat
              @ ( pluenn5670965976768739049tp_nat @ G @ Addition
                @ ^ [X2: nat] : ( member_nat @ X2 @ A6 )
                @ ^ [X2: nat] : ( member_nat @ X2 @ B6 ) ) ) ) ) ) ).

% additive_abelian_group.sumset_def
thf(fact_974_additive__abelian__group_Osumset__def,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition )
        = ( ^ [A6: set_a,B6: set_a] :
              ( collect_a
              @ ( pluenn895083305082786853setp_a @ G @ Addition
                @ ^ [X2: a] : ( member_a @ X2 @ A6 )
                @ ^ [X2: a] : ( member_a @ X2 @ B6 ) ) ) ) ) ) ).

% additive_abelian_group.sumset_def
thf(fact_975_additive__abelian__group_Osumsetp__sumset__eq,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn5670965976768739049tp_nat @ G @ Addition
          @ ^ [X2: nat] : ( member_nat @ X2 @ A2 )
          @ ^ [X2: nat] : ( member_nat @ X2 @ B ) )
        = ( ^ [X2: nat] : ( member_nat @ X2 @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumsetp_sumset_eq
thf(fact_976_additive__abelian__group_Osumsetp__sumset__eq,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn895083305082786853setp_a @ G @ Addition
          @ ^ [X2: a] : ( member_a @ X2 @ A2 )
          @ ^ [X2: a] : ( member_a @ X2 @ B ) )
        = ( ^ [X2: a] : ( member_a @ X2 @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumsetp_sumset_eq
thf(fact_977_additive__abelian__group_Osumset__subset__insert_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ A2 ) @ B ) ) ) ).

% additive_abelian_group.sumset_subset_insert(2)
thf(fact_978_additive__abelian__group_Osumset__subset__insert_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ B ) ) ) ) ).

% additive_abelian_group.sumset_subset_insert(1)
thf(fact_979_additive__abelian__group_Osumset__empty_H_I2_J,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( ( inf_inf_set_nat @ A2 @ G )
          = bot_bot_set_nat )
       => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B )
          = bot_bot_set_nat ) ) ) ).

% additive_abelian_group.sumset_empty'(2)
thf(fact_980_additive__abelian__group_Osumset__empty_H_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( inf_inf_set_a @ A2 @ G )
          = bot_bot_set_a )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B )
          = bot_bot_set_a ) ) ) ).

% additive_abelian_group.sumset_empty'(2)
thf(fact_981_additive__abelian__group_Osumset__empty_H_I1_J,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( ( inf_inf_set_nat @ A2 @ G )
          = bot_bot_set_nat )
       => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ B @ A2 )
          = bot_bot_set_nat ) ) ) ).

% additive_abelian_group.sumset_empty'(1)
thf(fact_982_additive__abelian__group_Osumset__empty_H_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( inf_inf_set_a @ A2 @ G )
          = bot_bot_set_a )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ A2 )
          = bot_bot_set_a ) ) ) ).

% additive_abelian_group.sumset_empty'(1)
thf(fact_983_additive__abelian__group_Osumset__is__empty__iff,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B )
          = bot_bot_set_nat )
        = ( ( ( inf_inf_set_nat @ A2 @ G )
            = bot_bot_set_nat )
          | ( ( inf_inf_set_nat @ B @ G )
            = bot_bot_set_nat ) ) ) ) ).

% additive_abelian_group.sumset_is_empty_iff
thf(fact_984_additive__abelian__group_Osumset__is__empty__iff,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B )
          = bot_bot_set_a )
        = ( ( ( inf_inf_set_a @ A2 @ G )
            = bot_bot_set_a )
          | ( ( inf_inf_set_a @ B @ G )
            = bot_bot_set_a ) ) ) ) ).

% additive_abelian_group.sumset_is_empty_iff
thf(fact_985_additive__abelian__group_Ofinite__sumset_H,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ G ) )
       => ( ( finite_finite_nat @ ( inf_inf_set_nat @ B @ G ) )
         => ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.finite_sumset'
thf(fact_986_additive__abelian__group_Ofinite__sumset_H,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
       => ( ( finite_finite_a @ ( inf_inf_set_a @ B @ G ) )
         => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.finite_sumset'
thf(fact_987_additive__abelian__group_Osumset__subset__Un_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,C: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( sup_sup_set_a @ A2 @ C ) @ B ) ) ) ).

% additive_abelian_group.sumset_subset_Un(2)
thf(fact_988_additive__abelian__group_Osumset__subset__Un_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,C: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( sup_sup_set_a @ B @ C ) ) ) ) ).

% additive_abelian_group.sumset_subset_Un(1)
thf(fact_989_additive__abelian__group_Osumset__eq,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B )
        = ( collect_nat
          @ ^ [C4: nat] :
            ? [X2: nat] :
              ( ( member_nat @ X2 @ ( inf_inf_set_nat @ A2 @ G ) )
              & ? [Y2: nat] :
                  ( ( member_nat @ Y2 @ ( inf_inf_set_nat @ B @ G ) )
                  & ( C4
                    = ( Addition @ X2 @ Y2 ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset_eq
thf(fact_990_additive__abelian__group_Osumset__eq,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B )
        = ( collect_a
          @ ^ [C4: a] :
            ? [X2: a] :
              ( ( member_a @ X2 @ ( inf_inf_set_a @ A2 @ G ) )
              & ? [Y2: a] :
                  ( ( member_a @ Y2 @ ( inf_inf_set_a @ B @ G ) )
                  & ( C4
                    = ( Addition @ X2 @ Y2 ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset_eq
thf(fact_991_additive__abelian__group_Oinfinite__sumset__aux,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ~ ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ G ) )
       => ( ( ~ ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) )
          = ( ( inf_inf_set_nat @ B @ G )
           != bot_bot_set_nat ) ) ) ) ).

% additive_abelian_group.infinite_sumset_aux
thf(fact_992_additive__abelian__group_Oinfinite__sumset__aux,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
       => ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) )
          = ( ( inf_inf_set_a @ B @ G )
           != bot_bot_set_a ) ) ) ) ).

% additive_abelian_group.infinite_sumset_aux
thf(fact_993_additive__abelian__group_Oinfinite__sumset__iff,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( ~ ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) )
        = ( ( ~ ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ G ) )
            & ( ( inf_inf_set_nat @ B @ G )
             != bot_bot_set_nat ) )
          | ( ( ( inf_inf_set_nat @ A2 @ G )
             != bot_bot_set_nat )
            & ~ ( finite_finite_nat @ ( inf_inf_set_nat @ B @ G ) ) ) ) ) ) ).

% additive_abelian_group.infinite_sumset_iff
thf(fact_994_additive__abelian__group_Oinfinite__sumset__iff,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) )
        = ( ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
            & ( ( inf_inf_set_a @ B @ G )
             != bot_bot_set_a ) )
          | ( ( ( inf_inf_set_a @ A2 @ G )
             != bot_bot_set_a )
            & ~ ( finite_finite_a @ ( inf_inf_set_a @ B @ G ) ) ) ) ) ) ).

% additive_abelian_group.infinite_sumset_iff
thf(fact_995_additive__abelian__group_Osumset__D_I2_J,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ ( insert_nat @ Zero @ bot_bot_set_nat ) @ A2 )
        = ( inf_inf_set_nat @ A2 @ G ) ) ) ).

% additive_abelian_group.sumset_D(2)
thf(fact_996_additive__abelian__group_Osumset__D_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ Zero @ bot_bot_set_a ) @ A2 )
        = ( inf_inf_set_a @ A2 @ G ) ) ) ).

% additive_abelian_group.sumset_D(2)
thf(fact_997_additive__abelian__group_Osumset__D_I1_J,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ Zero @ bot_bot_set_nat ) )
        = ( inf_inf_set_nat @ A2 @ G ) ) ) ).

% additive_abelian_group.sumset_D(1)
thf(fact_998_additive__abelian__group_Osumset__D_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ Zero @ bot_bot_set_a ) )
        = ( inf_inf_set_a @ A2 @ G ) ) ) ).

% additive_abelian_group.sumset_D(1)
thf(fact_999_additive__abelian__group_Ocard__sumset__0__iff,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( ord_less_eq_set_nat @ A2 @ G )
       => ( ( ord_less_eq_set_nat @ B @ G )
         => ( ( ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) )
              = zero_zero_nat )
            = ( ( ( finite_card_nat @ A2 )
                = zero_zero_nat )
              | ( ( finite_card_nat @ B )
                = zero_zero_nat ) ) ) ) ) ) ).

% additive_abelian_group.card_sumset_0_iff
thf(fact_1000_additive__abelian__group_Ocard__sumset__0__iff,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ord_less_eq_set_a @ A2 @ G )
       => ( ( ord_less_eq_set_a @ B @ G )
         => ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) )
              = zero_zero_nat )
            = ( ( ( finite_card_a @ A2 )
                = zero_zero_nat )
              | ( ( finite_card_a @ B )
                = zero_zero_nat ) ) ) ) ) ) ).

% additive_abelian_group.card_sumset_0_iff
thf(fact_1001_additive__abelian__group_Osumsetdiff__sing,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat,X: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ ( minus_minus_set_nat @ A2 @ B ) @ ( insert_nat @ X @ bot_bot_set_nat ) )
        = ( minus_minus_set_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ ( pluenn3669378163024332905et_nat @ G @ Addition @ B @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) ) ) ).

% additive_abelian_group.sumsetdiff_sing
thf(fact_1002_additive__abelian__group_Osumsetdiff__sing,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( minus_minus_set_a @ A2 @ B ) @ ( insert_a @ X @ bot_bot_set_a ) )
        = ( minus_minus_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% additive_abelian_group.sumsetdiff_sing
thf(fact_1003_additive__abelian__group_Ocard__sumset__0__iff_H,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) )
          = zero_zero_nat )
        = ( ( ( finite_card_nat @ ( inf_inf_set_nat @ A2 @ G ) )
            = zero_zero_nat )
          | ( ( finite_card_nat @ ( inf_inf_set_nat @ B @ G ) )
            = zero_zero_nat ) ) ) ) ).

% additive_abelian_group.card_sumset_0_iff'
thf(fact_1004_additive__abelian__group_Ocard__sumset__0__iff_H,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) )
          = zero_zero_nat )
        = ( ( ( finite_card_a @ ( inf_inf_set_a @ A2 @ G ) )
            = zero_zero_nat )
          | ( ( finite_card_a @ ( inf_inf_set_a @ B @ G ) )
            = zero_zero_nat ) ) ) ) ).

% additive_abelian_group.card_sumset_0_iff'
thf(fact_1005_prop__restrict,axiom,
    ! [X: nat,Z5: set_nat,X5: set_nat,P: nat > $o] :
      ( ( member_nat @ X @ Z5 )
     => ( ( ord_less_eq_set_nat @ Z5
          @ ( collect_nat
            @ ^ [X2: nat] :
                ( ( member_nat @ X2 @ X5 )
                & ( P @ X2 ) ) ) )
       => ( P @ X ) ) ) ).

% prop_restrict
thf(fact_1006_prop__restrict,axiom,
    ! [X: a,Z5: set_a,X5: set_a,P: a > $o] :
      ( ( member_a @ X @ Z5 )
     => ( ( ord_less_eq_set_a @ Z5
          @ ( collect_a
            @ ^ [X2: a] :
                ( ( member_a @ X2 @ X5 )
                & ( P @ X2 ) ) ) )
       => ( P @ X ) ) ) ).

% prop_restrict
thf(fact_1007_Collect__restrict,axiom,
    ! [X5: set_nat,P: nat > $o] :
      ( ord_less_eq_set_nat
      @ ( collect_nat
        @ ^ [X2: nat] :
            ( ( member_nat @ X2 @ X5 )
            & ( P @ X2 ) ) )
      @ X5 ) ).

% Collect_restrict
thf(fact_1008_Collect__restrict,axiom,
    ! [X5: set_a,P: a > $o] :
      ( ord_less_eq_set_a
      @ ( collect_a
        @ ^ [X2: a] :
            ( ( member_a @ X2 @ X5 )
            & ( P @ X2 ) ) )
      @ X5 ) ).

% Collect_restrict
thf(fact_1009_additive__abelian__group_Ocard__le__sumset,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ( member_nat @ A @ A2 )
         => ( ( member_nat @ A @ G )
           => ( ( finite_finite_nat @ B )
             => ( ( ord_less_eq_set_nat @ B @ G )
               => ( ord_less_eq_nat @ ( finite_card_nat @ B ) @ ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) ) ) ) ) ) ) ) ).

% additive_abelian_group.card_le_sumset
thf(fact_1010_additive__abelian__group_Ocard__le__sumset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ( member_a @ A @ A2 )
         => ( ( member_a @ A @ G )
           => ( ( finite_finite_a @ B )
             => ( ( ord_less_eq_set_a @ B @ G )
               => ( ord_less_eq_nat @ ( finite_card_a @ B ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ) ) ) ) ).

% additive_abelian_group.card_le_sumset
thf(fact_1011_additive__abelian__group_Osumset__insert1,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,X: nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( nO_MAT4391312325019038905et_nat @ bot_bot_set_a @ A2 )
       => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ ( insert_nat @ X @ A2 ) @ B )
          = ( sup_sup_set_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ ( insert_nat @ X @ bot_bot_set_nat ) @ B ) @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumset_insert1
thf(fact_1012_additive__abelian__group_Osumset__insert1,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,X: nat,B: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( nO_MAT2475032472373502585et_nat @ bot_bot_set_nat @ A2 )
       => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ ( insert_nat @ X @ A2 ) @ B )
          = ( sup_sup_set_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ ( insert_nat @ X @ bot_bot_set_nat ) @ B ) @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumset_insert1
thf(fact_1013_additive__abelian__group_Osumset__insert1,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,X: a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ A2 )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ A2 ) @ B )
          = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ bot_bot_set_a ) @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumset_insert1
thf(fact_1014_additive__abelian__group_Osumset__insert1,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,X: a,B: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( nO_MAT2968510229921005611_set_a @ bot_bot_set_nat @ A2 )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ A2 ) @ B )
          = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ bot_bot_set_a ) @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumset_insert1
thf(fact_1015_additive__abelian__group_Osumset__insert2,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,B: set_nat,A2: set_nat,X: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( nO_MAT4391312325019038905et_nat @ bot_bot_set_a @ B )
       => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ X @ B ) )
          = ( sup_sup_set_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumset_insert2
thf(fact_1016_additive__abelian__group_Osumset__insert2,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,B: set_nat,A2: set_nat,X: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( nO_MAT2475032472373502585et_nat @ bot_bot_set_nat @ B )
       => ( ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ X @ B ) )
          = ( sup_sup_set_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumset_insert2
thf(fact_1017_additive__abelian__group_Osumset__insert2,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,B: set_a,A2: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ B )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ B ) )
          = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumset_insert2
thf(fact_1018_additive__abelian__group_Osumset__insert2,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,B: set_a,A2: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( nO_MAT2968510229921005611_set_a @ bot_bot_set_nat @ B )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ B ) )
          = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B ) ) ) ) ) ).

% additive_abelian_group.sumset_insert2
thf(fact_1019_additive__abelian__group_Ocard__sumset__le,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ord_less_eq_nat @ ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ) ) ).

% additive_abelian_group.card_sumset_le
thf(fact_1020_additive__abelian__group_Ocard__sumset__le,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ).

% additive_abelian_group.card_sumset_le
thf(fact_1021_subset__emptyI,axiom,
    ! [A2: set_nat] :
      ( ! [X3: nat] :
          ~ ( member_nat @ X3 @ A2 )
     => ( ord_less_eq_set_nat @ A2 @ bot_bot_set_nat ) ) ).

% subset_emptyI
thf(fact_1022_subset__emptyI,axiom,
    ! [A2: set_a] :
      ( ! [X3: a] :
          ~ ( member_a @ X3 @ A2 )
     => ( ord_less_eq_set_a @ A2 @ bot_bot_set_a ) ) ).

% subset_emptyI
thf(fact_1023_additive__abelian__group__axioms,axiom,
    pluenn1164192988769422572roup_a @ g @ addition @ zero ).

% additive_abelian_group_axioms
thf(fact_1024_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_12: nat] : ( P @ X_12 )
       => ? [N2: nat] :
            ( ~ ( P @ N2 )
            & ( P @ ( suc @ N2 ) ) ) ) ) ).

% exists_least_lemma
thf(fact_1025_local_Oinverse__unique,axiom,
    ! [U: a,V: a,V2: a] :
      ( ( ( addition @ U @ V )
        = zero )
     => ( ( ( addition @ V2 @ U )
          = zero )
       => ( ( member_a @ U @ g )
         => ( ( member_a @ V2 @ g )
           => ( ( member_a @ V @ g )
             => ( V2 = V ) ) ) ) ) ) ).

% local.inverse_unique
thf(fact_1026_unit__closed,axiom,
    member_a @ zero @ g ).

% unit_closed
thf(fact_1027_right__unit,axiom,
    ! [A: a] :
      ( ( member_a @ A @ g )
     => ( ( addition @ A @ zero )
        = A ) ) ).

% right_unit
thf(fact_1028_left__unit,axiom,
    ! [A: a] :
      ( ( member_a @ A @ g )
     => ( ( addition @ zero @ A )
        = A ) ) ).

% left_unit
thf(fact_1029_sumset__D_I1_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ zero @ bot_bot_set_a ) )
      = ( inf_inf_set_a @ A2 @ g ) ) ).

% sumset_D(1)
thf(fact_1030_sumset__D_I2_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ zero @ bot_bot_set_a ) @ A2 )
      = ( inf_inf_set_a @ A2 @ g ) ) ).

% sumset_D(2)
thf(fact_1031_commutative__monoid__axioms,axiom,
    group_4866109990395492029noid_a @ g @ addition @ zero ).

% commutative_monoid_axioms
thf(fact_1032_abelian__group__axioms,axiom,
    group_201663378560352916roup_a @ g @ addition @ zero ).

% abelian_group_axioms
thf(fact_1033_group__axioms,axiom,
    group_group_a @ g @ addition @ zero ).

% group_axioms
thf(fact_1034_invertibleE,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ! [V3: a] :
            ( ( ( ( addition @ U @ V3 )
                = zero )
              & ( ( addition @ V3 @ U )
                = zero ) )
           => ~ ( member_a @ V3 @ g ) )
       => ~ ( member_a @ U @ g ) ) ) ).

% invertibleE
thf(fact_1035_unit__invertible,axiom,
    group_invertible_a @ g @ addition @ zero @ zero ).

% unit_invertible
thf(fact_1036_invertible__def,axiom,
    ! [U: a] :
      ( ( member_a @ U @ g )
     => ( ( group_invertible_a @ g @ addition @ zero @ U )
        = ( ? [X2: a] :
              ( ( member_a @ X2 @ g )
              & ( ( addition @ U @ X2 )
                = zero )
              & ( ( addition @ X2 @ U )
                = zero ) ) ) ) ) ).

% invertible_def
thf(fact_1037_invertible__right__cancel,axiom,
    ! [X: a,Y: a,Z4: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( member_a @ X @ g )
       => ( ( member_a @ Y @ g )
         => ( ( member_a @ Z4 @ g )
           => ( ( ( addition @ Y @ X )
                = ( addition @ Z4 @ X ) )
              = ( Y = Z4 ) ) ) ) ) ) ).

% invertible_right_cancel
thf(fact_1038_invertible__left__cancel,axiom,
    ! [X: a,Y: a,Z4: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( member_a @ X @ g )
       => ( ( member_a @ Y @ g )
         => ( ( member_a @ Z4 @ g )
           => ( ( ( addition @ X @ Y )
                = ( addition @ X @ Z4 ) )
              = ( Y = Z4 ) ) ) ) ) ) ).

% invertible_left_cancel
thf(fact_1039_invertibleI,axiom,
    ! [U: a,V2: a] :
      ( ( ( addition @ U @ V2 )
        = zero )
     => ( ( ( addition @ V2 @ U )
          = zero )
       => ( ( member_a @ U @ g )
         => ( ( member_a @ V2 @ g )
           => ( group_invertible_a @ g @ addition @ zero @ U ) ) ) ) ) ).

% invertibleI
thf(fact_1040_invertible,axiom,
    ! [U: a] :
      ( ( member_a @ U @ g )
     => ( group_invertible_a @ g @ addition @ zero @ U ) ) ).

% invertible
thf(fact_1041_composition__invertible,axiom,
    ! [X: a,Y: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( group_invertible_a @ g @ addition @ zero @ Y )
       => ( ( member_a @ X @ g )
         => ( ( member_a @ Y @ g )
           => ( group_invertible_a @ g @ addition @ zero @ ( addition @ X @ Y ) ) ) ) ) ) ).

% composition_invertible
thf(fact_1042_additive__abelian__group__def,axiom,
    pluenn1164192988769422572roup_a = group_201663378560352916roup_a ).

% additive_abelian_group_def
thf(fact_1043_additive__abelian__group_Oaxioms,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( group_201663378560352916roup_a @ G @ Addition @ Zero ) ) ).

% additive_abelian_group.axioms
thf(fact_1044_additive__abelian__group_Ointro,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a] :
      ( ( group_201663378560352916roup_a @ G @ Addition @ Zero )
     => ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero ) ) ).

% additive_abelian_group.intro
thf(fact_1045_Units__def,axiom,
    ( ( group_Units_a @ g @ addition @ zero )
    = ( collect_a
      @ ^ [U2: a] :
          ( ( member_a @ U2 @ g )
          & ( group_invertible_a @ g @ addition @ zero @ U2 ) ) ) ) ).

% Units_def
thf(fact_1046_mem__UnitsI,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( member_a @ U @ ( group_Units_a @ g @ addition @ zero ) ) ) ) ).

% mem_UnitsI
thf(fact_1047_mem__UnitsD,axiom,
    ! [U: a] :
      ( ( member_a @ U @ ( group_Units_a @ g @ addition @ zero ) )
     => ( ( group_invertible_a @ g @ addition @ zero @ U )
        & ( member_a @ U @ g ) ) ) ).

% mem_UnitsD
thf(fact_1048_group__of__Units,axiom,
    group_group_a @ ( group_Units_a @ g @ addition @ zero ) @ addition @ zero ).

% group_of_Units
thf(fact_1049_inverse__composition__commute,axiom,
    ! [X: a,Y: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( group_invertible_a @ g @ addition @ zero @ Y )
       => ( ( member_a @ X @ g )
         => ( ( member_a @ Y @ g )
           => ( ( group_inverse_a @ g @ addition @ zero @ ( addition @ X @ Y ) )
              = ( addition @ ( group_inverse_a @ g @ addition @ zero @ Y ) @ ( group_inverse_a @ g @ addition @ zero @ X ) ) ) ) ) ) ) ).

% inverse_composition_commute
thf(fact_1050_invertible__left__inverse2,axiom,
    ! [U: a,V2: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( member_a @ V2 @ g )
         => ( ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ ( addition @ U @ V2 ) )
            = V2 ) ) ) ) ).

% invertible_left_inverse2
thf(fact_1051_invertible__right__inverse2,axiom,
    ! [U: a,V2: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( member_a @ V2 @ g )
         => ( ( addition @ U @ ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ V2 ) )
            = V2 ) ) ) ) ).

% invertible_right_inverse2
thf(fact_1052_inverse__equality,axiom,
    ! [U: a,V2: a] :
      ( ( ( addition @ U @ V2 )
        = zero )
     => ( ( ( addition @ V2 @ U )
          = zero )
       => ( ( member_a @ U @ g )
         => ( ( member_a @ V2 @ g )
           => ( ( group_inverse_a @ g @ addition @ zero @ U )
              = V2 ) ) ) ) ) ).

% inverse_equality
thf(fact_1053_inverse__closed,axiom,
    ! [X: a] :
      ( ( member_a @ X @ g )
     => ( member_a @ ( group_inverse_a @ g @ addition @ zero @ X ) @ g ) ) ).

% inverse_closed
thf(fact_1054_inverse__unit,axiom,
    ( ( group_inverse_a @ g @ addition @ zero @ zero )
    = zero ) ).

% inverse_unit
thf(fact_1055_invertible__right__inverse,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( addition @ U @ ( group_inverse_a @ g @ addition @ zero @ U ) )
          = zero ) ) ) ).

% invertible_right_inverse
thf(fact_1056_invertible__left__inverse,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ U )
          = zero ) ) ) ).

% invertible_left_inverse
thf(fact_1057_invertible__inverse__invertible,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( group_invertible_a @ g @ addition @ zero @ ( group_inverse_a @ g @ addition @ zero @ U ) ) ) ) ).

% invertible_inverse_invertible
thf(fact_1058_invertible__inverse__inverse,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( group_inverse_a @ g @ addition @ zero @ ( group_inverse_a @ g @ addition @ zero @ U ) )
          = U ) ) ) ).

% invertible_inverse_inverse
thf(fact_1059_invertible__inverse__closed,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( member_a @ ( group_inverse_a @ g @ addition @ zero @ U ) @ g ) ) ) ).

% invertible_inverse_closed
thf(fact_1060_additive__abelian__group_Oinverse__closed,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,X: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ X @ G )
       => ( member_nat @ ( group_inverse_nat @ G @ Addition @ Zero @ X ) @ G ) ) ) ).

% additive_abelian_group.inverse_closed
thf(fact_1061_additive__abelian__group_Oinverse__closed,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ X @ G )
       => ( member_a @ ( group_inverse_a @ G @ Addition @ Zero @ X ) @ G ) ) ) ).

% additive_abelian_group.inverse_closed
thf(fact_1062_subgroupI,axiom,
    ! [G: set_a] :
      ( ( ord_less_eq_set_a @ G @ g )
     => ( ( member_a @ zero @ G )
       => ( ! [G3: a,H: a] :
              ( ( member_a @ G3 @ G )
             => ( ( member_a @ H @ G )
               => ( member_a @ ( addition @ G3 @ H ) @ G ) ) )
         => ( ! [G3: a] :
                ( ( member_a @ G3 @ G )
               => ( group_invertible_a @ g @ addition @ zero @ G3 ) )
           => ( ! [G3: a] :
                  ( ( member_a @ G3 @ G )
                 => ( member_a @ ( group_inverse_a @ g @ addition @ zero @ G3 ) @ G ) )
             => ( group_subgroup_a @ G @ g @ addition @ zero ) ) ) ) ) ) ).

% subgroupI
thf(fact_1063_monoid__axioms,axiom,
    group_monoid_a @ g @ addition @ zero ).

% monoid_axioms
thf(fact_1064_inverse__undefined,axiom,
    ! [U: a] :
      ( ~ ( member_a @ U @ g )
     => ( ( group_inverse_a @ g @ addition @ zero @ U )
        = undefined_a ) ) ).

% inverse_undefined
thf(fact_1065_inverse__subgroupD,axiom,
    ! [H2: set_a] :
      ( ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ g @ addition @ zero ) @ H2 ) @ g @ addition @ zero )
     => ( ( ord_less_eq_set_a @ H2 @ ( group_Units_a @ g @ addition @ zero ) )
       => ( group_subgroup_a @ H2 @ g @ addition @ zero ) ) ) ).

% inverse_subgroupD
thf(fact_1066_monoid_OsubgroupI,axiom,
    ! [M3: set_nat,Composition: nat > nat > nat,Unit: nat,G: set_nat] :
      ( ( group_monoid_nat @ M3 @ Composition @ Unit )
     => ( ( ord_less_eq_set_nat @ G @ M3 )
       => ( ( member_nat @ Unit @ G )
         => ( ! [G3: nat,H: nat] :
                ( ( member_nat @ G3 @ G )
               => ( ( member_nat @ H @ G )
                 => ( member_nat @ ( Composition @ G3 @ H ) @ G ) ) )
           => ( ! [G3: nat] :
                  ( ( member_nat @ G3 @ G )
                 => ( group_invertible_nat @ M3 @ Composition @ Unit @ G3 ) )
             => ( ! [G3: nat] :
                    ( ( member_nat @ G3 @ G )
                   => ( member_nat @ ( group_inverse_nat @ M3 @ Composition @ Unit @ G3 ) @ G ) )
               => ( group_subgroup_nat @ G @ M3 @ Composition @ Unit ) ) ) ) ) ) ) ).

% monoid.subgroupI
thf(fact_1067_monoid_OsubgroupI,axiom,
    ! [M3: set_a,Composition: a > a > a,Unit: a,G: set_a] :
      ( ( group_monoid_a @ M3 @ Composition @ Unit )
     => ( ( ord_less_eq_set_a @ G @ M3 )
       => ( ( member_a @ Unit @ G )
         => ( ! [G3: a,H: a] :
                ( ( member_a @ G3 @ G )
               => ( ( member_a @ H @ G )
                 => ( member_a @ ( Composition @ G3 @ H ) @ G ) ) )
           => ( ! [G3: a] :
                  ( ( member_a @ G3 @ G )
                 => ( group_invertible_a @ M3 @ Composition @ Unit @ G3 ) )
             => ( ! [G3: a] :
                    ( ( member_a @ G3 @ G )
                   => ( member_a @ ( group_inverse_a @ M3 @ Composition @ Unit @ G3 ) @ G ) )
               => ( group_subgroup_a @ G @ M3 @ Composition @ Unit ) ) ) ) ) ) ) ).

% monoid.subgroupI
thf(fact_1068_inverse__subgroupI,axiom,
    ! [H2: set_a] :
      ( ( group_subgroup_a @ H2 @ g @ addition @ zero )
     => ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ g @ addition @ zero ) @ H2 ) @ g @ addition @ zero ) ) ).

% inverse_subgroupI
thf(fact_1069_image__eqI,axiom,
    ! [B4: set_a,F: a > set_a,X: a,A2: set_a] :
      ( ( B4
        = ( F @ X ) )
     => ( ( member_a @ X @ A2 )
       => ( member_set_a @ B4 @ ( image_a_set_a @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_1070_image__eqI,axiom,
    ! [B4: a,F: a > a,X: a,A2: set_a] :
      ( ( B4
        = ( F @ X ) )
     => ( ( member_a @ X @ A2 )
       => ( member_a @ B4 @ ( image_a_a @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_1071_image__eqI,axiom,
    ! [B4: nat,F: a > nat,X: a,A2: set_a] :
      ( ( B4
        = ( F @ X ) )
     => ( ( member_a @ X @ A2 )
       => ( member_nat @ B4 @ ( image_a_nat @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_1072_image__eqI,axiom,
    ! [B4: a,F: nat > a,X: nat,A2: set_nat] :
      ( ( B4
        = ( F @ X ) )
     => ( ( member_nat @ X @ A2 )
       => ( member_a @ B4 @ ( image_nat_a @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_1073_image__eqI,axiom,
    ! [B4: nat,F: nat > nat,X: nat,A2: set_nat] :
      ( ( B4
        = ( F @ X ) )
     => ( ( member_nat @ X @ A2 )
       => ( member_nat @ B4 @ ( image_nat_nat @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_1074_image__ident,axiom,
    ! [Y6: set_a] :
      ( ( image_a_a
        @ ^ [X2: a] : X2
        @ Y6 )
      = Y6 ) ).

% image_ident
thf(fact_1075_image__ident,axiom,
    ! [Y6: set_nat] :
      ( ( image_nat_nat
        @ ^ [X2: nat] : X2
        @ Y6 )
      = Y6 ) ).

% image_ident
thf(fact_1076_image__is__empty,axiom,
    ! [F: a > set_a,A2: set_a] :
      ( ( ( image_a_set_a @ F @ A2 )
        = bot_bot_set_set_a )
      = ( A2 = bot_bot_set_a ) ) ).

% image_is_empty
thf(fact_1077_image__is__empty,axiom,
    ! [F: a > a,A2: set_a] :
      ( ( ( image_a_a @ F @ A2 )
        = bot_bot_set_a )
      = ( A2 = bot_bot_set_a ) ) ).

% image_is_empty
thf(fact_1078_image__is__empty,axiom,
    ! [F: nat > a,A2: set_nat] :
      ( ( ( image_nat_a @ F @ A2 )
        = bot_bot_set_a )
      = ( A2 = bot_bot_set_nat ) ) ).

% image_is_empty
thf(fact_1079_image__is__empty,axiom,
    ! [F: a > nat,A2: set_a] :
      ( ( ( image_a_nat @ F @ A2 )
        = bot_bot_set_nat )
      = ( A2 = bot_bot_set_a ) ) ).

% image_is_empty
thf(fact_1080_image__is__empty,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( ( image_nat_nat @ F @ A2 )
        = bot_bot_set_nat )
      = ( A2 = bot_bot_set_nat ) ) ).

% image_is_empty
thf(fact_1081_empty__is__image,axiom,
    ! [F: a > set_a,A2: set_a] :
      ( ( bot_bot_set_set_a
        = ( image_a_set_a @ F @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% empty_is_image
thf(fact_1082_empty__is__image,axiom,
    ! [F: a > a,A2: set_a] :
      ( ( bot_bot_set_a
        = ( image_a_a @ F @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% empty_is_image
thf(fact_1083_empty__is__image,axiom,
    ! [F: nat > a,A2: set_nat] :
      ( ( bot_bot_set_a
        = ( image_nat_a @ F @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% empty_is_image
thf(fact_1084_empty__is__image,axiom,
    ! [F: a > nat,A2: set_a] :
      ( ( bot_bot_set_nat
        = ( image_a_nat @ F @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% empty_is_image
thf(fact_1085_empty__is__image,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( bot_bot_set_nat
        = ( image_nat_nat @ F @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% empty_is_image
thf(fact_1086_image__empty,axiom,
    ! [F: a > set_a] :
      ( ( image_a_set_a @ F @ bot_bot_set_a )
      = bot_bot_set_set_a ) ).

% image_empty
thf(fact_1087_image__empty,axiom,
    ! [F: a > a] :
      ( ( image_a_a @ F @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% image_empty
thf(fact_1088_image__empty,axiom,
    ! [F: a > nat] :
      ( ( image_a_nat @ F @ bot_bot_set_a )
      = bot_bot_set_nat ) ).

% image_empty
thf(fact_1089_image__empty,axiom,
    ! [F: nat > a] :
      ( ( image_nat_a @ F @ bot_bot_set_nat )
      = bot_bot_set_a ) ).

% image_empty
thf(fact_1090_image__empty,axiom,
    ! [F: nat > nat] :
      ( ( image_nat_nat @ F @ bot_bot_set_nat )
      = bot_bot_set_nat ) ).

% image_empty
thf(fact_1091_finite__imageI,axiom,
    ! [F2: set_a,H3: a > set_a] :
      ( ( finite_finite_a @ F2 )
     => ( finite_finite_set_a @ ( image_a_set_a @ H3 @ F2 ) ) ) ).

% finite_imageI
thf(fact_1092_finite__imageI,axiom,
    ! [F2: set_a,H3: a > a] :
      ( ( finite_finite_a @ F2 )
     => ( finite_finite_a @ ( image_a_a @ H3 @ F2 ) ) ) ).

% finite_imageI
thf(fact_1093_finite__imageI,axiom,
    ! [F2: set_a,H3: a > nat] :
      ( ( finite_finite_a @ F2 )
     => ( finite_finite_nat @ ( image_a_nat @ H3 @ F2 ) ) ) ).

% finite_imageI
thf(fact_1094_finite__imageI,axiom,
    ! [F2: set_nat,H3: nat > a] :
      ( ( finite_finite_nat @ F2 )
     => ( finite_finite_a @ ( image_nat_a @ H3 @ F2 ) ) ) ).

% finite_imageI
thf(fact_1095_finite__imageI,axiom,
    ! [F2: set_nat,H3: nat > nat] :
      ( ( finite_finite_nat @ F2 )
     => ( finite_finite_nat @ ( image_nat_nat @ H3 @ F2 ) ) ) ).

% finite_imageI
thf(fact_1096_image__insert,axiom,
    ! [F: nat > nat,A: nat,B: set_nat] :
      ( ( image_nat_nat @ F @ ( insert_nat @ A @ B ) )
      = ( insert_nat @ ( F @ A ) @ ( image_nat_nat @ F @ B ) ) ) ).

% image_insert
thf(fact_1097_image__insert,axiom,
    ! [F: a > set_a,A: a,B: set_a] :
      ( ( image_a_set_a @ F @ ( insert_a @ A @ B ) )
      = ( insert_set_a @ ( F @ A ) @ ( image_a_set_a @ F @ B ) ) ) ).

% image_insert
thf(fact_1098_image__insert,axiom,
    ! [F: a > a,A: a,B: set_a] :
      ( ( image_a_a @ F @ ( insert_a @ A @ B ) )
      = ( insert_a @ ( F @ A ) @ ( image_a_a @ F @ B ) ) ) ).

% image_insert
thf(fact_1099_insert__image,axiom,
    ! [X: a,A2: set_a,F: a > set_a] :
      ( ( member_a @ X @ A2 )
     => ( ( insert_set_a @ ( F @ X ) @ ( image_a_set_a @ F @ A2 ) )
        = ( image_a_set_a @ F @ A2 ) ) ) ).

% insert_image
thf(fact_1100_insert__image,axiom,
    ! [X: a,A2: set_a,F: a > a] :
      ( ( member_a @ X @ A2 )
     => ( ( insert_a @ ( F @ X ) @ ( image_a_a @ F @ A2 ) )
        = ( image_a_a @ F @ A2 ) ) ) ).

% insert_image
thf(fact_1101_insert__image,axiom,
    ! [X: nat,A2: set_nat,F: nat > nat] :
      ( ( member_nat @ X @ A2 )
     => ( ( insert_nat @ ( F @ X ) @ ( image_nat_nat @ F @ A2 ) )
        = ( image_nat_nat @ F @ A2 ) ) ) ).

% insert_image
thf(fact_1102_insert__image,axiom,
    ! [X: nat,A2: set_nat,F: nat > a] :
      ( ( member_nat @ X @ A2 )
     => ( ( insert_a @ ( F @ X ) @ ( image_nat_a @ F @ A2 ) )
        = ( image_nat_a @ F @ A2 ) ) ) ).

% insert_image
thf(fact_1103_if__image__distrib,axiom,
    ! [P: nat > $o,F: nat > nat,G4: nat > nat,S: set_nat] :
      ( ( image_nat_nat
        @ ^ [X2: nat] : ( if_nat @ ( P @ X2 ) @ ( F @ X2 ) @ ( G4 @ X2 ) )
        @ S )
      = ( sup_sup_set_nat @ ( image_nat_nat @ F @ ( inf_inf_set_nat @ S @ ( collect_nat @ P ) ) )
        @ ( image_nat_nat @ G4
          @ ( inf_inf_set_nat @ S
            @ ( collect_nat
              @ ^ [X2: nat] :
                  ~ ( P @ X2 ) ) ) ) ) ) ).

% if_image_distrib
thf(fact_1104_if__image__distrib,axiom,
    ! [P: a > $o,F: a > set_a,G4: a > set_a,S: set_a] :
      ( ( image_a_set_a
        @ ^ [X2: a] : ( if_set_a @ ( P @ X2 ) @ ( F @ X2 ) @ ( G4 @ X2 ) )
        @ S )
      = ( sup_sup_set_set_a @ ( image_a_set_a @ F @ ( inf_inf_set_a @ S @ ( collect_a @ P ) ) )
        @ ( image_a_set_a @ G4
          @ ( inf_inf_set_a @ S
            @ ( collect_a
              @ ^ [X2: a] :
                  ~ ( P @ X2 ) ) ) ) ) ) ).

% if_image_distrib
thf(fact_1105_if__image__distrib,axiom,
    ! [P: nat > $o,F: nat > a,G4: nat > a,S: set_nat] :
      ( ( image_nat_a
        @ ^ [X2: nat] : ( if_a @ ( P @ X2 ) @ ( F @ X2 ) @ ( G4 @ X2 ) )
        @ S )
      = ( sup_sup_set_a @ ( image_nat_a @ F @ ( inf_inf_set_nat @ S @ ( collect_nat @ P ) ) )
        @ ( image_nat_a @ G4
          @ ( inf_inf_set_nat @ S
            @ ( collect_nat
              @ ^ [X2: nat] :
                  ~ ( P @ X2 ) ) ) ) ) ) ).

% if_image_distrib
thf(fact_1106_if__image__distrib,axiom,
    ! [P: a > $o,F: a > a,G4: a > a,S: set_a] :
      ( ( image_a_a
        @ ^ [X2: a] : ( if_a @ ( P @ X2 ) @ ( F @ X2 ) @ ( G4 @ X2 ) )
        @ S )
      = ( sup_sup_set_a @ ( image_a_a @ F @ ( inf_inf_set_a @ S @ ( collect_a @ P ) ) )
        @ ( image_a_a @ G4
          @ ( inf_inf_set_a @ S
            @ ( collect_a
              @ ^ [X2: a] :
                  ~ ( P @ X2 ) ) ) ) ) ) ).

% if_image_distrib
thf(fact_1107_image__diff__subset,axiom,
    ! [F: nat > nat,A2: set_nat,B: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B ) ) @ ( image_nat_nat @ F @ ( minus_minus_set_nat @ A2 @ B ) ) ) ).

% image_diff_subset
thf(fact_1108_image__diff__subset,axiom,
    ! [F: a > set_a,A2: set_a,B: set_a] : ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ ( image_a_set_a @ F @ A2 ) @ ( image_a_set_a @ F @ B ) ) @ ( image_a_set_a @ F @ ( minus_minus_set_a @ A2 @ B ) ) ) ).

% image_diff_subset
thf(fact_1109_image__diff__subset,axiom,
    ! [F: a > a,A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B ) ) @ ( image_a_a @ F @ ( minus_minus_set_a @ A2 @ B ) ) ) ).

% image_diff_subset
thf(fact_1110_all__finite__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ A2 ) )
           => ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_1111_all__finite__subset__image,axiom,
    ! [F: a > set_a,A2: set_a,P: set_set_a > $o] :
      ( ( ! [B6: set_set_a] :
            ( ( ( finite_finite_set_a @ B6 )
              & ( ord_le3724670747650509150_set_a @ B6 @ ( image_a_set_a @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ A2 ) )
           => ( P @ ( image_a_set_a @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_1112_all__finite__subset__image,axiom,
    ! [F: a > nat,A2: set_a,P: set_nat > $o] :
      ( ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ ( image_a_nat @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ A2 ) )
           => ( P @ ( image_a_nat @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_1113_all__finite__subset__image,axiom,
    ! [F: nat > a,A2: set_nat,P: set_a > $o] :
      ( ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ ( image_nat_a @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ A2 ) )
           => ( P @ ( image_nat_a @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_1114_all__finite__subset__image,axiom,
    ! [F: a > a,A2: set_a,P: set_a > $o] :
      ( ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ A2 ) )
           => ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_1115_ex__finite__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ A2 )
            & ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_1116_ex__finite__subset__image,axiom,
    ! [F: a > set_a,A2: set_a,P: set_set_a > $o] :
      ( ( ? [B6: set_set_a] :
            ( ( finite_finite_set_a @ B6 )
            & ( ord_le3724670747650509150_set_a @ B6 @ ( image_a_set_a @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ A2 )
            & ( P @ ( image_a_set_a @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_1117_ex__finite__subset__image,axiom,
    ! [F: a > nat,A2: set_a,P: set_nat > $o] :
      ( ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ ( image_a_nat @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ A2 )
            & ( P @ ( image_a_nat @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_1118_ex__finite__subset__image,axiom,
    ! [F: nat > a,A2: set_nat,P: set_a > $o] :
      ( ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ ( image_nat_a @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ A2 )
            & ( P @ ( image_nat_a @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_1119_ex__finite__subset__image,axiom,
    ! [F: a > a,A2: set_a,P: set_a > $o] :
      ( ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ A2 )
            & ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_1120_finite__subset__image,axiom,
    ! [B: set_nat,F: nat > nat,A2: set_nat] :
      ( ( finite_finite_nat @ B )
     => ( ( ord_less_eq_set_nat @ B @ ( image_nat_nat @ F @ A2 ) )
       => ? [C5: set_nat] :
            ( ( ord_less_eq_set_nat @ C5 @ A2 )
            & ( finite_finite_nat @ C5 )
            & ( B
              = ( image_nat_nat @ F @ C5 ) ) ) ) ) ).

% finite_subset_image
thf(fact_1121_finite__subset__image,axiom,
    ! [B: set_set_a,F: a > set_a,A2: set_a] :
      ( ( finite_finite_set_a @ B )
     => ( ( ord_le3724670747650509150_set_a @ B @ ( image_a_set_a @ F @ A2 ) )
       => ? [C5: set_a] :
            ( ( ord_less_eq_set_a @ C5 @ A2 )
            & ( finite_finite_a @ C5 )
            & ( B
              = ( image_a_set_a @ F @ C5 ) ) ) ) ) ).

% finite_subset_image
thf(fact_1122_finite__subset__image,axiom,
    ! [B: set_nat,F: a > nat,A2: set_a] :
      ( ( finite_finite_nat @ B )
     => ( ( ord_less_eq_set_nat @ B @ ( image_a_nat @ F @ A2 ) )
       => ? [C5: set_a] :
            ( ( ord_less_eq_set_a @ C5 @ A2 )
            & ( finite_finite_a @ C5 )
            & ( B
              = ( image_a_nat @ F @ C5 ) ) ) ) ) ).

% finite_subset_image
thf(fact_1123_finite__subset__image,axiom,
    ! [B: set_a,F: nat > a,A2: set_nat] :
      ( ( finite_finite_a @ B )
     => ( ( ord_less_eq_set_a @ B @ ( image_nat_a @ F @ A2 ) )
       => ? [C5: set_nat] :
            ( ( ord_less_eq_set_nat @ C5 @ A2 )
            & ( finite_finite_nat @ C5 )
            & ( B
              = ( image_nat_a @ F @ C5 ) ) ) ) ) ).

% finite_subset_image
thf(fact_1124_finite__subset__image,axiom,
    ! [B: set_a,F: a > a,A2: set_a] :
      ( ( finite_finite_a @ B )
     => ( ( ord_less_eq_set_a @ B @ ( image_a_a @ F @ A2 ) )
       => ? [C5: set_a] :
            ( ( ord_less_eq_set_a @ C5 @ A2 )
            & ( finite_finite_a @ C5 )
            & ( B
              = ( image_a_a @ F @ C5 ) ) ) ) ) ).

% finite_subset_image
thf(fact_1125_finite__surj,axiom,
    ! [A2: set_a,B: set_set_a,F: a > set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_le3724670747650509150_set_a @ B @ ( image_a_set_a @ F @ A2 ) )
       => ( finite_finite_set_a @ B ) ) ) ).

% finite_surj
thf(fact_1126_finite__surj,axiom,
    ! [A2: set_a,B: set_nat,F: a > nat] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_less_eq_set_nat @ B @ ( image_a_nat @ F @ A2 ) )
       => ( finite_finite_nat @ B ) ) ) ).

% finite_surj
thf(fact_1127_finite__surj,axiom,
    ! [A2: set_nat,B: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B @ ( image_nat_nat @ F @ A2 ) )
       => ( finite_finite_nat @ B ) ) ) ).

% finite_surj
thf(fact_1128_finite__surj,axiom,
    ! [A2: set_a,B: set_a,F: a > a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_less_eq_set_a @ B @ ( image_a_a @ F @ A2 ) )
       => ( finite_finite_a @ B ) ) ) ).

% finite_surj
thf(fact_1129_finite__surj,axiom,
    ! [A2: set_nat,B: set_a,F: nat > a] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_a @ B @ ( image_nat_a @ F @ A2 ) )
       => ( finite_finite_a @ B ) ) ) ).

% finite_surj
thf(fact_1130_image__Un,axiom,
    ! [F: nat > nat,A2: set_nat,B: set_nat] :
      ( ( image_nat_nat @ F @ ( sup_sup_set_nat @ A2 @ B ) )
      = ( sup_sup_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B ) ) ) ).

% image_Un
thf(fact_1131_image__Un,axiom,
    ! [F: a > set_a,A2: set_a,B: set_a] :
      ( ( image_a_set_a @ F @ ( sup_sup_set_a @ A2 @ B ) )
      = ( sup_sup_set_set_a @ ( image_a_set_a @ F @ A2 ) @ ( image_a_set_a @ F @ B ) ) ) ).

% image_Un
thf(fact_1132_image__Un,axiom,
    ! [F: a > a,A2: set_a,B: set_a] :
      ( ( image_a_a @ F @ ( sup_sup_set_a @ A2 @ B ) )
      = ( sup_sup_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B ) ) ) ).

% image_Un
thf(fact_1133_pigeonhole__infinite,axiom,
    ! [A2: set_a,F: a > set_a] :
      ( ~ ( finite_finite_a @ A2 )
     => ( ( finite_finite_set_a @ ( image_a_set_a @ F @ A2 ) )
       => ? [X3: a] :
            ( ( member_a @ X3 @ A2 )
            & ~ ( finite_finite_a
                @ ( collect_a
                  @ ^ [A4: a] :
                      ( ( member_a @ A4 @ A2 )
                      & ( ( F @ A4 )
                        = ( F @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_1134_pigeonhole__infinite,axiom,
    ! [A2: set_a,F: a > a] :
      ( ~ ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ ( image_a_a @ F @ A2 ) )
       => ? [X3: a] :
            ( ( member_a @ X3 @ A2 )
            & ~ ( finite_finite_a
                @ ( collect_a
                  @ ^ [A4: a] :
                      ( ( member_a @ A4 @ A2 )
                      & ( ( F @ A4 )
                        = ( F @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_1135_pigeonhole__infinite,axiom,
    ! [A2: set_a,F: a > nat] :
      ( ~ ( finite_finite_a @ A2 )
     => ( ( finite_finite_nat @ ( image_a_nat @ F @ A2 ) )
       => ? [X3: a] :
            ( ( member_a @ X3 @ A2 )
            & ~ ( finite_finite_a
                @ ( collect_a
                  @ ^ [A4: a] :
                      ( ( member_a @ A4 @ A2 )
                      & ( ( F @ A4 )
                        = ( F @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_1136_pigeonhole__infinite,axiom,
    ! [A2: set_nat,F: nat > a] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_a @ ( image_nat_a @ F @ A2 ) )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ~ ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [A4: nat] :
                      ( ( member_nat @ A4 @ A2 )
                      & ( ( F @ A4 )
                        = ( F @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_1137_pigeonhole__infinite,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ ( image_nat_nat @ F @ A2 ) )
       => ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ~ ( finite_finite_nat
                @ ( collect_nat
                  @ ^ [A4: nat] :
                      ( ( member_nat @ A4 @ A2 )
                      & ( ( F @ A4 )
                        = ( F @ X3 ) ) ) ) ) ) ) ) ).

% pigeonhole_infinite
thf(fact_1138_imageE,axiom,
    ! [B4: set_a,F: a > set_a,A2: set_a] :
      ( ( member_set_a @ B4 @ ( image_a_set_a @ F @ A2 ) )
     => ~ ! [X3: a] :
            ( ( B4
              = ( F @ X3 ) )
           => ~ ( member_a @ X3 @ A2 ) ) ) ).

% imageE
thf(fact_1139_imageE,axiom,
    ! [B4: a,F: a > a,A2: set_a] :
      ( ( member_a @ B4 @ ( image_a_a @ F @ A2 ) )
     => ~ ! [X3: a] :
            ( ( B4
              = ( F @ X3 ) )
           => ~ ( member_a @ X3 @ A2 ) ) ) ).

% imageE
thf(fact_1140_imageE,axiom,
    ! [B4: a,F: nat > a,A2: set_nat] :
      ( ( member_a @ B4 @ ( image_nat_a @ F @ A2 ) )
     => ~ ! [X3: nat] :
            ( ( B4
              = ( F @ X3 ) )
           => ~ ( member_nat @ X3 @ A2 ) ) ) ).

% imageE
thf(fact_1141_imageE,axiom,
    ! [B4: nat,F: a > nat,A2: set_a] :
      ( ( member_nat @ B4 @ ( image_a_nat @ F @ A2 ) )
     => ~ ! [X3: a] :
            ( ( B4
              = ( F @ X3 ) )
           => ~ ( member_a @ X3 @ A2 ) ) ) ).

% imageE
thf(fact_1142_imageE,axiom,
    ! [B4: nat,F: nat > nat,A2: set_nat] :
      ( ( member_nat @ B4 @ ( image_nat_nat @ F @ A2 ) )
     => ~ ! [X3: nat] :
            ( ( B4
              = ( F @ X3 ) )
           => ~ ( member_nat @ X3 @ A2 ) ) ) ).

% imageE
thf(fact_1143_imageI,axiom,
    ! [X: a,A2: set_a,F: a > set_a] :
      ( ( member_a @ X @ A2 )
     => ( member_set_a @ ( F @ X ) @ ( image_a_set_a @ F @ A2 ) ) ) ).

% imageI
thf(fact_1144_imageI,axiom,
    ! [X: a,A2: set_a,F: a > a] :
      ( ( member_a @ X @ A2 )
     => ( member_a @ ( F @ X ) @ ( image_a_a @ F @ A2 ) ) ) ).

% imageI
thf(fact_1145_imageI,axiom,
    ! [X: a,A2: set_a,F: a > nat] :
      ( ( member_a @ X @ A2 )
     => ( member_nat @ ( F @ X ) @ ( image_a_nat @ F @ A2 ) ) ) ).

% imageI
thf(fact_1146_imageI,axiom,
    ! [X: nat,A2: set_nat,F: nat > a] :
      ( ( member_nat @ X @ A2 )
     => ( member_a @ ( F @ X ) @ ( image_nat_a @ F @ A2 ) ) ) ).

% imageI
thf(fact_1147_imageI,axiom,
    ! [X: nat,A2: set_nat,F: nat > nat] :
      ( ( member_nat @ X @ A2 )
     => ( member_nat @ ( F @ X ) @ ( image_nat_nat @ F @ A2 ) ) ) ).

% imageI
thf(fact_1148_image__iff,axiom,
    ! [Z4: set_a,F: a > set_a,A2: set_a] :
      ( ( member_set_a @ Z4 @ ( image_a_set_a @ F @ A2 ) )
      = ( ? [X2: a] :
            ( ( member_a @ X2 @ A2 )
            & ( Z4
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_1149_image__iff,axiom,
    ! [Z4: a,F: a > a,A2: set_a] :
      ( ( member_a @ Z4 @ ( image_a_a @ F @ A2 ) )
      = ( ? [X2: a] :
            ( ( member_a @ X2 @ A2 )
            & ( Z4
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_1150_image__iff,axiom,
    ! [Z4: nat,F: nat > nat,A2: set_nat] :
      ( ( member_nat @ Z4 @ ( image_nat_nat @ F @ A2 ) )
      = ( ? [X2: nat] :
            ( ( member_nat @ X2 @ A2 )
            & ( Z4
              = ( F @ X2 ) ) ) ) ) ).

% image_iff
thf(fact_1151_bex__imageD,axiom,
    ! [F: a > a,A2: set_a,P: a > $o] :
      ( ? [X4: a] :
          ( ( member_a @ X4 @ ( image_a_a @ F @ A2 ) )
          & ( P @ X4 ) )
     => ? [X3: a] :
          ( ( member_a @ X3 @ A2 )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_1152_bex__imageD,axiom,
    ! [F: nat > nat,A2: set_nat,P: nat > $o] :
      ( ? [X4: nat] :
          ( ( member_nat @ X4 @ ( image_nat_nat @ F @ A2 ) )
          & ( P @ X4 ) )
     => ? [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_1153_bex__imageD,axiom,
    ! [F: a > set_a,A2: set_a,P: set_a > $o] :
      ( ? [X4: set_a] :
          ( ( member_set_a @ X4 @ ( image_a_set_a @ F @ A2 ) )
          & ( P @ X4 ) )
     => ? [X3: a] :
          ( ( member_a @ X3 @ A2 )
          & ( P @ ( F @ X3 ) ) ) ) ).

% bex_imageD
thf(fact_1154_image__cong,axiom,
    ! [M3: set_a,N6: set_a,F: a > a,G4: a > a] :
      ( ( M3 = N6 )
     => ( ! [X3: a] :
            ( ( member_a @ X3 @ N6 )
           => ( ( F @ X3 )
              = ( G4 @ X3 ) ) )
       => ( ( image_a_a @ F @ M3 )
          = ( image_a_a @ G4 @ N6 ) ) ) ) ).

% image_cong
thf(fact_1155_image__cong,axiom,
    ! [M3: set_a,N6: set_a,F: a > set_a,G4: a > set_a] :
      ( ( M3 = N6 )
     => ( ! [X3: a] :
            ( ( member_a @ X3 @ N6 )
           => ( ( F @ X3 )
              = ( G4 @ X3 ) ) )
       => ( ( image_a_set_a @ F @ M3 )
          = ( image_a_set_a @ G4 @ N6 ) ) ) ) ).

% image_cong
thf(fact_1156_image__cong,axiom,
    ! [M3: set_nat,N6: set_nat,F: nat > nat,G4: nat > nat] :
      ( ( M3 = N6 )
     => ( ! [X3: nat] :
            ( ( member_nat @ X3 @ N6 )
           => ( ( F @ X3 )
              = ( G4 @ X3 ) ) )
       => ( ( image_nat_nat @ F @ M3 )
          = ( image_nat_nat @ G4 @ N6 ) ) ) ) ).

% image_cong
thf(fact_1157_ball__imageD,axiom,
    ! [F: a > a,A2: set_a,P: a > $o] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ ( image_a_a @ F @ A2 ) )
         => ( P @ X3 ) )
     => ! [X4: a] :
          ( ( member_a @ X4 @ A2 )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_1158_ball__imageD,axiom,
    ! [F: nat > nat,A2: set_nat,P: nat > $o] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ ( image_nat_nat @ F @ A2 ) )
         => ( P @ X3 ) )
     => ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_1159_ball__imageD,axiom,
    ! [F: a > set_a,A2: set_a,P: set_a > $o] :
      ( ! [X3: set_a] :
          ( ( member_set_a @ X3 @ ( image_a_set_a @ F @ A2 ) )
         => ( P @ X3 ) )
     => ! [X4: a] :
          ( ( member_a @ X4 @ A2 )
         => ( P @ ( F @ X4 ) ) ) ) ).

% ball_imageD
thf(fact_1160_image__image,axiom,
    ! [F: set_a > a,G4: a > set_a,A2: set_a] :
      ( ( image_set_a_a @ F @ ( image_a_set_a @ G4 @ A2 ) )
      = ( image_a_a
        @ ^ [X2: a] : ( F @ ( G4 @ X2 ) )
        @ A2 ) ) ).

% image_image
thf(fact_1161_image__image,axiom,
    ! [F: set_a > set_a,G4: a > set_a,A2: set_a] :
      ( ( image_set_a_set_a @ F @ ( image_a_set_a @ G4 @ A2 ) )
      = ( image_a_set_a
        @ ^ [X2: a] : ( F @ ( G4 @ X2 ) )
        @ A2 ) ) ).

% image_image
thf(fact_1162_image__image,axiom,
    ! [F: a > a,G4: a > a,A2: set_a] :
      ( ( image_a_a @ F @ ( image_a_a @ G4 @ A2 ) )
      = ( image_a_a
        @ ^ [X2: a] : ( F @ ( G4 @ X2 ) )
        @ A2 ) ) ).

% image_image
thf(fact_1163_image__image,axiom,
    ! [F: nat > nat,G4: nat > nat,A2: set_nat] :
      ( ( image_nat_nat @ F @ ( image_nat_nat @ G4 @ A2 ) )
      = ( image_nat_nat
        @ ^ [X2: nat] : ( F @ ( G4 @ X2 ) )
        @ A2 ) ) ).

% image_image
thf(fact_1164_image__image,axiom,
    ! [F: a > set_a,G4: a > a,A2: set_a] :
      ( ( image_a_set_a @ F @ ( image_a_a @ G4 @ A2 ) )
      = ( image_a_set_a
        @ ^ [X2: a] : ( F @ ( G4 @ X2 ) )
        @ A2 ) ) ).

% image_image
thf(fact_1165_rev__image__eqI,axiom,
    ! [X: a,A2: set_a,B4: set_a,F: a > set_a] :
      ( ( member_a @ X @ A2 )
     => ( ( B4
          = ( F @ X ) )
       => ( member_set_a @ B4 @ ( image_a_set_a @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_1166_rev__image__eqI,axiom,
    ! [X: a,A2: set_a,B4: a,F: a > a] :
      ( ( member_a @ X @ A2 )
     => ( ( B4
          = ( F @ X ) )
       => ( member_a @ B4 @ ( image_a_a @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_1167_rev__image__eqI,axiom,
    ! [X: a,A2: set_a,B4: nat,F: a > nat] :
      ( ( member_a @ X @ A2 )
     => ( ( B4
          = ( F @ X ) )
       => ( member_nat @ B4 @ ( image_a_nat @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_1168_rev__image__eqI,axiom,
    ! [X: nat,A2: set_nat,B4: a,F: nat > a] :
      ( ( member_nat @ X @ A2 )
     => ( ( B4
          = ( F @ X ) )
       => ( member_a @ B4 @ ( image_nat_a @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_1169_rev__image__eqI,axiom,
    ! [X: nat,A2: set_nat,B4: nat,F: nat > nat] :
      ( ( member_nat @ X @ A2 )
     => ( ( B4
          = ( F @ X ) )
       => ( member_nat @ B4 @ ( image_nat_nat @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_1170_Compr__image__eq,axiom,
    ! [F: a > set_a,A2: set_a,P: set_a > $o] :
      ( ( collect_set_a
        @ ^ [X2: set_a] :
            ( ( member_set_a @ X2 @ ( image_a_set_a @ F @ A2 ) )
            & ( P @ X2 ) ) )
      = ( image_a_set_a @ F
        @ ( collect_a
          @ ^ [X2: a] :
              ( ( member_a @ X2 @ A2 )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_1171_Compr__image__eq,axiom,
    ! [F: a > a,A2: set_a,P: a > $o] :
      ( ( collect_a
        @ ^ [X2: a] :
            ( ( member_a @ X2 @ ( image_a_a @ F @ A2 ) )
            & ( P @ X2 ) ) )
      = ( image_a_a @ F
        @ ( collect_a
          @ ^ [X2: a] :
              ( ( member_a @ X2 @ A2 )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_1172_Compr__image__eq,axiom,
    ! [F: nat > a,A2: set_nat,P: a > $o] :
      ( ( collect_a
        @ ^ [X2: a] :
            ( ( member_a @ X2 @ ( image_nat_a @ F @ A2 ) )
            & ( P @ X2 ) ) )
      = ( image_nat_a @ F
        @ ( collect_nat
          @ ^ [X2: nat] :
              ( ( member_nat @ X2 @ A2 )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_1173_Compr__image__eq,axiom,
    ! [F: a > nat,A2: set_a,P: nat > $o] :
      ( ( collect_nat
        @ ^ [X2: nat] :
            ( ( member_nat @ X2 @ ( image_a_nat @ F @ A2 ) )
            & ( P @ X2 ) ) )
      = ( image_a_nat @ F
        @ ( collect_a
          @ ^ [X2: a] :
              ( ( member_a @ X2 @ A2 )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_1174_Compr__image__eq,axiom,
    ! [F: nat > nat,A2: set_nat,P: nat > $o] :
      ( ( collect_nat
        @ ^ [X2: nat] :
            ( ( member_nat @ X2 @ ( image_nat_nat @ F @ A2 ) )
            & ( P @ X2 ) ) )
      = ( image_nat_nat @ F
        @ ( collect_nat
          @ ^ [X2: nat] :
              ( ( member_nat @ X2 @ A2 )
              & ( P @ ( F @ X2 ) ) ) ) ) ) ).

% Compr_image_eq
thf(fact_1175_image__def,axiom,
    ( image_a_set_a
    = ( ^ [F4: a > set_a,A6: set_a] :
          ( collect_set_a
          @ ^ [Y2: set_a] :
            ? [X2: a] :
              ( ( member_a @ X2 @ A6 )
              & ( Y2
                = ( F4 @ X2 ) ) ) ) ) ) ).

% image_def
thf(fact_1176_image__def,axiom,
    ( image_a_a
    = ( ^ [F4: a > a,A6: set_a] :
          ( collect_a
          @ ^ [Y2: a] :
            ? [X2: a] :
              ( ( member_a @ X2 @ A6 )
              & ( Y2
                = ( F4 @ X2 ) ) ) ) ) ) ).

% image_def
thf(fact_1177_image__def,axiom,
    ( image_nat_nat
    = ( ^ [F4: nat > nat,A6: set_nat] :
          ( collect_nat
          @ ^ [Y2: nat] :
            ? [X2: nat] :
              ( ( member_nat @ X2 @ A6 )
              & ( Y2
                = ( F4 @ X2 ) ) ) ) ) ) ).

% image_def
thf(fact_1178_all__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ! [B6: set_nat] :
            ( ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_nat] :
            ( ( ord_less_eq_set_nat @ B6 @ A2 )
           => ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).

% all_subset_image
thf(fact_1179_all__subset__image,axiom,
    ! [F: a > set_a,A2: set_a,P: set_set_a > $o] :
      ( ( ! [B6: set_set_a] :
            ( ( ord_le3724670747650509150_set_a @ B6 @ ( image_a_set_a @ F @ A2 ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ord_less_eq_set_a @ B6 @ A2 )
           => ( P @ ( image_a_set_a @ F @ B6 ) ) ) ) ) ).

% all_subset_image
thf(fact_1180_all__subset__image,axiom,
    ! [F: a > a,A2: set_a,P: set_a > $o] :
      ( ( ! [B6: set_a] :
            ( ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ord_less_eq_set_a @ B6 @ A2 )
           => ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).

% all_subset_image
thf(fact_1181_subset__image__iff,axiom,
    ! [B: set_nat,F: nat > nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ ( image_nat_nat @ F @ A2 ) )
      = ( ? [AA: set_nat] :
            ( ( ord_less_eq_set_nat @ AA @ A2 )
            & ( B
              = ( image_nat_nat @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1182_subset__image__iff,axiom,
    ! [B: set_set_a,F: a > set_a,A2: set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ ( image_a_set_a @ F @ A2 ) )
      = ( ? [AA: set_a] :
            ( ( ord_less_eq_set_a @ AA @ A2 )
            & ( B
              = ( image_a_set_a @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1183_subset__image__iff,axiom,
    ! [B: set_a,F: a > a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B @ ( image_a_a @ F @ A2 ) )
      = ( ? [AA: set_a] :
            ( ( ord_less_eq_set_a @ AA @ A2 )
            & ( B
              = ( image_a_a @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_1184_image__subset__iff,axiom,
    ! [F: a > set_a,A2: set_a,B: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( image_a_set_a @ F @ A2 ) @ B )
      = ( ! [X2: a] :
            ( ( member_a @ X2 @ A2 )
           => ( member_set_a @ ( F @ X2 ) @ B ) ) ) ) ).

% image_subset_iff
thf(fact_1185_image__subset__iff,axiom,
    ! [F: nat > nat,A2: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B )
      = ( ! [X2: nat] :
            ( ( member_nat @ X2 @ A2 )
           => ( member_nat @ ( F @ X2 ) @ B ) ) ) ) ).

% image_subset_iff
thf(fact_1186_image__subset__iff,axiom,
    ! [F: a > a,A2: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ B )
      = ( ! [X2: a] :
            ( ( member_a @ X2 @ A2 )
           => ( member_a @ ( F @ X2 ) @ B ) ) ) ) ).

% image_subset_iff
thf(fact_1187_subset__imageE,axiom,
    ! [B: set_nat,F: nat > nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ ( image_nat_nat @ F @ A2 ) )
     => ~ ! [C5: set_nat] :
            ( ( ord_less_eq_set_nat @ C5 @ A2 )
           => ( B
             != ( image_nat_nat @ F @ C5 ) ) ) ) ).

% subset_imageE
thf(fact_1188_subset__imageE,axiom,
    ! [B: set_set_a,F: a > set_a,A2: set_a] :
      ( ( ord_le3724670747650509150_set_a @ B @ ( image_a_set_a @ F @ A2 ) )
     => ~ ! [C5: set_a] :
            ( ( ord_less_eq_set_a @ C5 @ A2 )
           => ( B
             != ( image_a_set_a @ F @ C5 ) ) ) ) ).

% subset_imageE
thf(fact_1189_subset__imageE,axiom,
    ! [B: set_a,F: a > a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B @ ( image_a_a @ F @ A2 ) )
     => ~ ! [C5: set_a] :
            ( ( ord_less_eq_set_a @ C5 @ A2 )
           => ( B
             != ( image_a_a @ F @ C5 ) ) ) ) ).

% subset_imageE
thf(fact_1190_image__subsetI,axiom,
    ! [A2: set_a,F: a > set_a,B: set_set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ( member_set_a @ ( F @ X3 ) @ B ) )
     => ( ord_le3724670747650509150_set_a @ ( image_a_set_a @ F @ A2 ) @ B ) ) ).

% image_subsetI
thf(fact_1191_image__subsetI,axiom,
    ! [A2: set_a,F: a > nat,B: set_nat] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ( member_nat @ ( F @ X3 ) @ B ) )
     => ( ord_less_eq_set_nat @ ( image_a_nat @ F @ A2 ) @ B ) ) ).

% image_subsetI
thf(fact_1192_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > nat,B: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( member_nat @ ( F @ X3 ) @ B ) )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B ) ) ).

% image_subsetI
thf(fact_1193_image__subsetI,axiom,
    ! [A2: set_a,F: a > a,B: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A2 )
         => ( member_a @ ( F @ X3 ) @ B ) )
     => ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ B ) ) ).

% image_subsetI
thf(fact_1194_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > a,B: set_a] :
      ( ! [X3: nat] :
          ( ( member_nat @ X3 @ A2 )
         => ( member_a @ ( F @ X3 ) @ B ) )
     => ( ord_less_eq_set_a @ ( image_nat_a @ F @ A2 ) @ B ) ) ).

% image_subsetI
thf(fact_1195_image__mono,axiom,
    ! [A2: set_nat,B: set_nat,F: nat > nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B ) ) ) ).

% image_mono
thf(fact_1196_image__mono,axiom,
    ! [A2: set_a,B: set_a,F: a > set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ord_le3724670747650509150_set_a @ ( image_a_set_a @ F @ A2 ) @ ( image_a_set_a @ F @ B ) ) ) ).

% image_mono
thf(fact_1197_image__mono,axiom,
    ! [A2: set_a,B: set_a,F: a > a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B ) ) ) ).

% image_mono
thf(fact_1198_image__Collect__subsetI,axiom,
    ! [P: a > $o,F: a > set_a,B: set_set_a] :
      ( ! [X3: a] :
          ( ( P @ X3 )
         => ( member_set_a @ ( F @ X3 ) @ B ) )
     => ( ord_le3724670747650509150_set_a @ ( image_a_set_a @ F @ ( collect_a @ P ) ) @ B ) ) ).

% image_Collect_subsetI
thf(fact_1199_image__Collect__subsetI,axiom,
    ! [P: a > $o,F: a > nat,B: set_nat] :
      ( ! [X3: a] :
          ( ( P @ X3 )
         => ( member_nat @ ( F @ X3 ) @ B ) )
     => ( ord_less_eq_set_nat @ ( image_a_nat @ F @ ( collect_a @ P ) ) @ B ) ) ).

% image_Collect_subsetI
thf(fact_1200_image__Collect__subsetI,axiom,
    ! [P: nat > $o,F: nat > nat,B: set_nat] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
         => ( member_nat @ ( F @ X3 ) @ B ) )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ ( collect_nat @ P ) ) @ B ) ) ).

% image_Collect_subsetI
thf(fact_1201_image__Collect__subsetI,axiom,
    ! [P: a > $o,F: a > a,B: set_a] :
      ( ! [X3: a] :
          ( ( P @ X3 )
         => ( member_a @ ( F @ X3 ) @ B ) )
     => ( ord_less_eq_set_a @ ( image_a_a @ F @ ( collect_a @ P ) ) @ B ) ) ).

% image_Collect_subsetI
thf(fact_1202_image__Collect__subsetI,axiom,
    ! [P: nat > $o,F: nat > a,B: set_a] :
      ( ! [X3: nat] :
          ( ( P @ X3 )
         => ( member_a @ ( F @ X3 ) @ B ) )
     => ( ord_less_eq_set_a @ ( image_nat_a @ F @ ( collect_nat @ P ) ) @ B ) ) ).

% image_Collect_subsetI
thf(fact_1203_image__Int__subset,axiom,
    ! [F: nat > nat,A2: set_nat,B: set_nat] : ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ ( inf_inf_set_nat @ A2 @ B ) ) @ ( inf_inf_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B ) ) ) ).

% image_Int_subset
thf(fact_1204_image__Int__subset,axiom,
    ! [F: a > set_a,A2: set_a,B: set_a] : ( ord_le3724670747650509150_set_a @ ( image_a_set_a @ F @ ( inf_inf_set_a @ A2 @ B ) ) @ ( inf_inf_set_set_a @ ( image_a_set_a @ F @ A2 ) @ ( image_a_set_a @ F @ B ) ) ) ).

% image_Int_subset
thf(fact_1205_image__Int__subset,axiom,
    ! [F: a > a,A2: set_a,B: set_a] : ( ord_less_eq_set_a @ ( image_a_a @ F @ ( inf_inf_set_a @ A2 @ B ) ) @ ( inf_inf_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B ) ) ) ).

% image_Int_subset
thf(fact_1206_image__constant,axiom,
    ! [X: a,A2: set_a,C2: set_a] :
      ( ( member_a @ X @ A2 )
     => ( ( image_a_set_a
          @ ^ [X2: a] : C2
          @ A2 )
        = ( insert_set_a @ C2 @ bot_bot_set_set_a ) ) ) ).

% image_constant
thf(fact_1207_image__constant,axiom,
    ! [X: a,A2: set_a,C2: a] :
      ( ( member_a @ X @ A2 )
     => ( ( image_a_a
          @ ^ [X2: a] : C2
          @ A2 )
        = ( insert_a @ C2 @ bot_bot_set_a ) ) ) ).

% image_constant
thf(fact_1208_image__constant,axiom,
    ! [X: nat,A2: set_nat,C2: a] :
      ( ( member_nat @ X @ A2 )
     => ( ( image_nat_a
          @ ^ [X2: nat] : C2
          @ A2 )
        = ( insert_a @ C2 @ bot_bot_set_a ) ) ) ).

% image_constant
thf(fact_1209_image__constant,axiom,
    ! [X: a,A2: set_a,C2: nat] :
      ( ( member_a @ X @ A2 )
     => ( ( image_a_nat
          @ ^ [X2: a] : C2
          @ A2 )
        = ( insert_nat @ C2 @ bot_bot_set_nat ) ) ) ).

% image_constant
thf(fact_1210_image__constant,axiom,
    ! [X: nat,A2: set_nat,C2: nat] :
      ( ( member_nat @ X @ A2 )
     => ( ( image_nat_nat
          @ ^ [X2: nat] : C2
          @ A2 )
        = ( insert_nat @ C2 @ bot_bot_set_nat ) ) ) ).

% image_constant
thf(fact_1211_image__constant__conv,axiom,
    ! [A2: set_a,C2: set_a] :
      ( ( ( A2 = bot_bot_set_a )
       => ( ( image_a_set_a
            @ ^ [X2: a] : C2
            @ A2 )
          = bot_bot_set_set_a ) )
      & ( ( A2 != bot_bot_set_a )
       => ( ( image_a_set_a
            @ ^ [X2: a] : C2
            @ A2 )
          = ( insert_set_a @ C2 @ bot_bot_set_set_a ) ) ) ) ).

% image_constant_conv
thf(fact_1212_image__constant__conv,axiom,
    ! [A2: set_a,C2: a] :
      ( ( ( A2 = bot_bot_set_a )
       => ( ( image_a_a
            @ ^ [X2: a] : C2
            @ A2 )
          = bot_bot_set_a ) )
      & ( ( A2 != bot_bot_set_a )
       => ( ( image_a_a
            @ ^ [X2: a] : C2
            @ A2 )
          = ( insert_a @ C2 @ bot_bot_set_a ) ) ) ) ).

% image_constant_conv
thf(fact_1213_image__constant__conv,axiom,
    ! [A2: set_a,C2: nat] :
      ( ( ( A2 = bot_bot_set_a )
       => ( ( image_a_nat
            @ ^ [X2: a] : C2
            @ A2 )
          = bot_bot_set_nat ) )
      & ( ( A2 != bot_bot_set_a )
       => ( ( image_a_nat
            @ ^ [X2: a] : C2
            @ A2 )
          = ( insert_nat @ C2 @ bot_bot_set_nat ) ) ) ) ).

% image_constant_conv
thf(fact_1214_image__constant__conv,axiom,
    ! [A2: set_nat,C2: a] :
      ( ( ( A2 = bot_bot_set_nat )
       => ( ( image_nat_a
            @ ^ [X2: nat] : C2
            @ A2 )
          = bot_bot_set_a ) )
      & ( ( A2 != bot_bot_set_nat )
       => ( ( image_nat_a
            @ ^ [X2: nat] : C2
            @ A2 )
          = ( insert_a @ C2 @ bot_bot_set_a ) ) ) ) ).

% image_constant_conv
thf(fact_1215_image__constant__conv,axiom,
    ! [A2: set_nat,C2: nat] :
      ( ( ( A2 = bot_bot_set_nat )
       => ( ( image_nat_nat
            @ ^ [X2: nat] : C2
            @ A2 )
          = bot_bot_set_nat ) )
      & ( ( A2 != bot_bot_set_nat )
       => ( ( image_nat_nat
            @ ^ [X2: nat] : C2
            @ A2 )
          = ( insert_nat @ C2 @ bot_bot_set_nat ) ) ) ) ).

% image_constant_conv
thf(fact_1216_the__elem__image__unique,axiom,
    ! [A2: set_a,F: a > a,X: a] :
      ( ( A2 != bot_bot_set_a )
     => ( ! [Y3: a] :
            ( ( member_a @ Y3 @ A2 )
           => ( ( F @ Y3 )
              = ( F @ X ) ) )
       => ( ( the_elem_a @ ( image_a_a @ F @ A2 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_1217_the__elem__image__unique,axiom,
    ! [A2: set_a,F: a > set_a,X: a] :
      ( ( A2 != bot_bot_set_a )
     => ( ! [Y3: a] :
            ( ( member_a @ Y3 @ A2 )
           => ( ( F @ Y3 )
              = ( F @ X ) ) )
       => ( ( the_elem_set_a @ ( image_a_set_a @ F @ A2 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_1218_the__elem__image__unique,axiom,
    ! [A2: set_nat,F: nat > nat,X: nat] :
      ( ( A2 != bot_bot_set_nat )
     => ( ! [Y3: nat] :
            ( ( member_nat @ Y3 @ A2 )
           => ( ( F @ Y3 )
              = ( F @ X ) ) )
       => ( ( the_elem_nat @ ( image_nat_nat @ F @ A2 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_1219_card__image__le,axiom,
    ! [A2: set_nat,F: nat > a] :
      ( ( finite_finite_nat @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_a @ ( image_nat_a @ F @ A2 ) ) @ ( finite_card_nat @ A2 ) ) ) ).

% card_image_le
thf(fact_1220_card__image__le,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_nat @ ( image_nat_nat @ F @ A2 ) ) @ ( finite_card_nat @ A2 ) ) ) ).

% card_image_le
thf(fact_1221_zero__notin__Suc__image,axiom,
    ! [A2: set_nat] :
      ~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A2 ) ) ).

% zero_notin_Suc_image
thf(fact_1222_sumset,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B )
      = ( comple2307003609928055243_set_a
        @ ( image_a_set_a
          @ ^ [A4: a] :
              ( comple2307003609928055243_set_a
              @ ( image_a_set_a
                @ ^ [B3: a] : ( insert_a @ ( addition @ A4 @ B3 ) @ bot_bot_set_a )
                @ ( inf_inf_set_a @ B @ g ) ) )
          @ ( inf_inf_set_a @ A2 @ g ) ) ) ) ).

% sumset
thf(fact_1223_Sup__nat__empty,axiom,
    ( ( complete_Sup_Sup_nat @ bot_bot_set_nat )
    = zero_zero_nat ) ).

% Sup_nat_empty
thf(fact_1224_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1225_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1226_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1227_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1228_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_1229_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_1230_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_1231_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_1232_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_1233_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_1234_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_1235_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_1236_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_1237_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_1238_nat__mult__eq__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( M = N ) ) ) ).

% nat_mult_eq_cancel_disj
thf(fact_1239_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_1240_diff__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
      = ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% diff_mult_distrib2
thf(fact_1241_diff__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
      = ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% diff_mult_distrib
thf(fact_1242_Suc__times__binomial__eq,axiom,
    ! [N: nat,K: nat] :
      ( ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) )
      = ( times_times_nat @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) @ ( suc @ K ) ) ) ).

% Suc_times_binomial_eq
thf(fact_1243_Suc__times__binomial,axiom,
    ! [K: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ K ) @ ( binomial @ ( suc @ N ) @ ( suc @ K ) ) )
      = ( times_times_nat @ ( suc @ N ) @ ( binomial @ N @ K ) ) ) ).

% Suc_times_binomial
thf(fact_1244_choose__mult,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ( times_times_nat @ ( binomial @ N @ M ) @ ( binomial @ M @ K ) )
          = ( times_times_nat @ ( binomial @ N @ K ) @ ( binomial @ ( minus_minus_nat @ N @ K ) @ ( minus_minus_nat @ M @ K ) ) ) ) ) ) ).

% choose_mult
thf(fact_1245_binomial__mono,axiom,
    ! [K: nat,K2: nat,N: nat] :
      ( ( ord_less_eq_nat @ K @ K2 )
     => ( ( ord_less_eq_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K2 ) @ N )
       => ( ord_less_eq_nat @ ( binomial @ N @ K ) @ ( binomial @ N @ K2 ) ) ) ) ).

% binomial_mono
thf(fact_1246_binomial__maximum_H,axiom,
    ! [N: nat,K: nat] : ( ord_less_eq_nat @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ K ) @ ( binomial @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) @ N ) ) ).

% binomial_maximum'
thf(fact_1247_semiring__norm_I13_J,axiom,
    ! [M: num,N: num] :
      ( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
      = ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).

% semiring_norm(13)
thf(fact_1248_semiring__norm_I11_J,axiom,
    ! [M: num] :
      ( ( times_times_num @ M @ one )
      = M ) ).

% semiring_norm(11)
thf(fact_1249_semiring__norm_I12_J,axiom,
    ! [N: num] :
      ( ( times_times_num @ one @ N )
      = N ) ).

% semiring_norm(12)
thf(fact_1250_num__double,axiom,
    ! [N: num] :
      ( ( times_times_num @ ( bit0 @ one ) @ N )
      = ( bit0 @ N ) ) ).

% num_double
thf(fact_1251_double__not__eq__Suc__double,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
     != ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% double_not_eq_Suc_double
thf(fact_1252_Suc__double__not__eq__double,axiom,
    ! [M: nat,N: nat] :
      ( ( suc @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M ) )
     != ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% Suc_double_not_eq_double
thf(fact_1253_odd__Suc__minus__one,axiom,
    ! [N: nat] :
      ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
     => ( ( suc @ ( minus_minus_nat @ N @ ( suc @ zero_zero_nat ) ) )
        = N ) ) ).

% odd_Suc_minus_one
thf(fact_1254_dvd__1__left,axiom,
    ! [K: nat] : ( dvd_dvd_nat @ ( suc @ zero_zero_nat ) @ K ) ).

% dvd_1_left
thf(fact_1255_dvd__1__iff__1,axiom,
    ! [M: nat] :
      ( ( dvd_dvd_nat @ M @ ( suc @ zero_zero_nat ) )
      = ( M
        = ( suc @ zero_zero_nat ) ) ) ).

% dvd_1_iff_1
thf(fact_1256_nat__mult__dvd__cancel__disj,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
      = ( ( K = zero_zero_nat )
        | ( dvd_dvd_nat @ M @ N ) ) ) ).

% nat_mult_dvd_cancel_disj
thf(fact_1257_even__Suc__Suc__iff,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ ( suc @ N ) ) )
      = ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).

% even_Suc_Suc_iff
thf(fact_1258_even__Suc,axiom,
    ! [N: nat] :
      ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( suc @ N ) )
      = ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).

% even_Suc
thf(fact_1259_dvd__diff__nat,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ M )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) ) ) ) ).

% dvd_diff_nat
thf(fact_1260_dvd__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( dvd_dvd_nat @ M @ N )
     => ( ( dvd_dvd_nat @ N @ M )
       => ( M = N ) ) ) ).

% dvd_antisym
thf(fact_1261_dvd__diffD,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K @ N )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K @ M ) ) ) ) ).

% dvd_diffD
thf(fact_1262_dvd__diffD1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( dvd_dvd_nat @ K @ ( minus_minus_nat @ M @ N ) )
     => ( ( dvd_dvd_nat @ K @ M )
       => ( ( ord_less_eq_nat @ N @ M )
         => ( dvd_dvd_nat @ K @ N ) ) ) ) ).

% dvd_diffD1
thf(fact_1263_less__eq__dvd__minus,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( dvd_dvd_nat @ M @ N )
        = ( dvd_dvd_nat @ M @ ( minus_minus_nat @ N @ M ) ) ) ) ).

% less_eq_dvd_minus
thf(fact_1264_bezout1__nat,axiom,
    ! [A: nat,B4: nat] :
    ? [D3: nat,X3: nat,Y3: nat] :
      ( ( dvd_dvd_nat @ D3 @ A )
      & ( dvd_dvd_nat @ D3 @ B4 )
      & ( ( ( minus_minus_nat @ ( times_times_nat @ A @ X3 ) @ ( times_times_nat @ B4 @ Y3 ) )
          = D3 )
        | ( ( minus_minus_nat @ ( times_times_nat @ B4 @ X3 ) @ ( times_times_nat @ A @ Y3 ) )
          = D3 ) ) ) ).

% bezout1_nat
thf(fact_1265_gcd__nat_Oextremum,axiom,
    ! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).

% gcd_nat.extremum
thf(fact_1266_gcd__nat_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
        & ( zero_zero_nat != A ) ) ).

% gcd_nat.extremum_strict
thf(fact_1267_gcd__nat_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
      = ( A = zero_zero_nat ) ) ).

% gcd_nat.extremum_unique
thf(fact_1268_gcd__nat_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ( dvd_dvd_nat @ A @ zero_zero_nat )
        & ( A != zero_zero_nat ) ) ) ).

% gcd_nat.not_eq_extremum
thf(fact_1269_gcd__nat_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( dvd_dvd_nat @ zero_zero_nat @ A )
     => ( A = zero_zero_nat ) ) ).

% gcd_nat.extremum_uniqueI

% Helper facts (7)
thf(help_If_2_1_If_001tf__a_T,axiom,
    ! [X: a,Y: a] :
      ( ( if_a @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001tf__a_T,axiom,
    ! [X: a,Y: a] :
      ( ( if_a @ $true @ X @ Y )
      = X ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y: nat] :
      ( ( if_nat @ $true @ X @ Y )
      = X ) ).

thf(help_If_3_1_If_001t__Set__Oset_Itf__a_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Set__Oset_Itf__a_J_T,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( if_set_a @ $false @ X @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Set__Oset_Itf__a_J_T,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( if_set_a @ $true @ X @ Y )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ aa @ aa ) ) @ ( binomial @ ( suc @ ( finite_card_a @ aa ) ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).

%------------------------------------------------------------------------------