TPTP Problem File: SLH0207^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Finite_Fields/0003_Finite_Fields_Preliminary_Results/prob_01002_035621__18094862_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1390 ( 412 unt; 112 typ; 0 def)
% Number of atoms : 4041 (1200 equ; 0 cnn)
% Maximal formula atoms : 17 ( 3 avg)
% Number of connectives : 14790 ( 167 ~; 55 |; 125 &;12375 @)
% ( 0 <=>;2068 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 7 avg)
% Number of types : 9 ( 8 usr)
% Number of type conns : 240 ( 240 >; 0 *; 0 +; 0 <<)
% Number of symbols : 105 ( 104 usr; 10 con; 0-4 aty)
% Number of variables : 3145 ( 117 ^;2981 !; 47 ?;3145 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 13:20:50.033
%------------------------------------------------------------------------------
% Could-be-implicit typings (8)
thf(ty_n_t__Congruence__Opartial____object__Opartial____object____ext_Itf__a_Mt__Group__Omonoid__Omonoid____ext_Itf__a_Mt__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J_J_J,type,
partia2175431115845679010xt_a_b: $tType ).
thf(ty_n_t__Congruence__Opartial____object__Opartial____object____ext_Itf__a_Mt__Group__Omonoid__Omonoid____ext_Itf__a_Mt__Product____Type__Ounit_J_J,type,
partia8223610829204095565t_unit: $tType ).
thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
set_set_a: $tType ).
thf(ty_n_t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
set_a_a: $tType ).
thf(ty_n_t__Set__Oset_Itf__a_J,type,
set_a: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
thf(ty_n_tf__a,type,
a: $tType ).
% Explicit typings (104)
thf(sy_c_AbelCoset_OA__RCOSETS_001tf__a_001tf__b,type,
a_RCOSETS_a_b: partia2175431115845679010xt_a_b > set_a > set_set_a ).
thf(sy_c_AbelCoset_Oa__l__coset_001tf__a_001tf__b,type,
a_l_coset_a_b: partia2175431115845679010xt_a_b > a > set_a > set_a ).
thf(sy_c_AbelCoset_Oa__r__coset_001tf__a_001tf__b,type,
a_r_coset_a_b: partia2175431115845679010xt_a_b > set_a > a > set_a ).
thf(sy_c_AbelCoset_Oadditive__subgroup_001tf__a_001tf__b,type,
additi2834746164131130830up_a_b: set_a > partia2175431115845679010xt_a_b > $o ).
thf(sy_c_AbelCoset_Oset__add_001tf__a_001tf__b,type,
set_add_a_b: partia2175431115845679010xt_a_b > set_a > set_a > set_a ).
thf(sy_c_Congruence_Opartial__object_Ocarrier_001tf__a_001t__Group__Omonoid__Omonoid____ext_Itf__a_Mt__Product____Type__Ounit_J,type,
partia6735698275553448452t_unit: partia8223610829204095565t_unit > set_a ).
thf(sy_c_Congruence_Opartial__object_Ocarrier_001tf__a_001t__Group__Omonoid__Omonoid____ext_Itf__a_Mt__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J_J,type,
partia707051561876973205xt_a_b: partia2175431115845679010xt_a_b > set_a ).
thf(sy_c_Coset_Oset__mult_001tf__a_001t__Product____Type__Ounit,type,
set_mu9095145553939800791t_unit: partia8223610829204095565t_unit > set_a > set_a > set_a ).
thf(sy_c_Coset_Oset__mult_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
set_mu8047982887099575916xt_a_b: partia2175431115845679010xt_a_b > set_a > set_a > set_a ).
thf(sy_c_Divisibility_Oassociated_001tf__a_001t__Product____Type__Ounit,type,
associ6879500422977059064t_unit: partia8223610829204095565t_unit > a > a > $o ).
thf(sy_c_Divisibility_Oassociated_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
associ5860276527279195403xt_a_b: partia2175431115845679010xt_a_b > a > a > $o ).
thf(sy_c_Divisibility_Ofactor_001tf__a_001t__Product____Type__Ounit,type,
factor3040189038382604065t_unit: partia8223610829204095565t_unit > a > a > $o ).
thf(sy_c_Divisibility_Ofactor_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
factor8216151070175719842xt_a_b: partia2175431115845679010xt_a_b > a > a > $o ).
thf(sy_c_Divisibility_Oirreducible_001tf__a_001t__Product____Type__Ounit,type,
irredu4023057619401689684t_unit: partia8223610829204095565t_unit > a > $o ).
thf(sy_c_Divisibility_Oirreducible_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
irredu6211895646901577903xt_a_b: partia2175431115845679010xt_a_b > a > $o ).
thf(sy_c_Divisibility_Oisgcd_001tf__a_001t__Product____Type__Ounit,type,
isgcd_a_Product_unit: partia8223610829204095565t_unit > a > a > a > $o ).
thf(sy_c_Divisibility_Oisgcd_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
isgcd_a_ring_ext_a_b: partia2175431115845679010xt_a_b > a > a > a > $o ).
thf(sy_c_Divisibility_Omonoid__cancel_001tf__a_001t__Product____Type__Ounit,type,
monoid1999574367301118026t_unit: partia8223610829204095565t_unit > $o ).
thf(sy_c_Divisibility_Omonoid__cancel_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
monoid5798828371819920185xt_a_b: partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Divisibility_Oprime_001tf__a_001t__Product____Type__Ounit,type,
prime_a_Product_unit: partia8223610829204095565t_unit > a > $o ).
thf(sy_c_Divisibility_Oprime_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
prime_a_ring_ext_a_b: partia2175431115845679010xt_a_b > a > $o ).
thf(sy_c_Divisibility_Oproperfactor_001tf__a_001t__Product____Type__Ounit,type,
proper6663671550266415409t_unit: partia8223610829204095565t_unit > a > a > $o ).
thf(sy_c_Divisibility_Oproperfactor_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
proper19828929941537682xt_a_b: partia2175431115845679010xt_a_b > a > a > $o ).
thf(sy_c_Embedded__Algebras_Oring_Odimension_001tf__a_001tf__b,type,
embedd2795209813406577254on_a_b: partia2175431115845679010xt_a_b > nat > set_a > set_a > $o ).
thf(sy_c_Embedded__Algebras_Oring_Ofinite__dimension_001tf__a_001tf__b,type,
embedd8708762675212832759on_a_b: partia2175431115845679010xt_a_b > set_a > set_a > $o ).
thf(sy_c_Embedded__Algebras_Oring_Oline__extension_001tf__a_001tf__b,type,
embedd971793762689825387on_a_b: partia2175431115845679010xt_a_b > set_a > a > set_a > set_a ).
thf(sy_c_Embedded__Algebras_Osubalgebra_001tf__a_001tf__b,type,
embedd9027525575939734154ra_a_b: set_a > set_a > partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Group_OUnits_001tf__a_001t__Product____Type__Ounit,type,
units_a_Product_unit: partia8223610829204095565t_unit > set_a ).
thf(sy_c_Group_OUnits_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
units_a_ring_ext_a_b: partia2175431115845679010xt_a_b > set_a ).
thf(sy_c_Group_Ocomm__group_001tf__a_001t__Product____Type__Ounit,type,
comm_g1850867397131805039t_unit: partia8223610829204095565t_unit > $o ).
thf(sy_c_Group_Ocomm__group_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
comm_g837948081586602452xt_a_b: partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Group_Ogroup_001tf__a_001t__Product____Type__Ounit,type,
group_a_Product_unit: partia8223610829204095565t_unit > $o ).
thf(sy_c_Group_Ogroup_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
group_a_ring_ext_a_b: partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Group_Om__inv_001tf__a_001t__Product____Type__Ounit,type,
m_inv_a_Product_unit: partia8223610829204095565t_unit > a > a ).
thf(sy_c_Group_Om__inv_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
m_inv_a_ring_ext_a_b: partia2175431115845679010xt_a_b > a > a ).
thf(sy_c_Group_Omonoid_Omult_001tf__a_001t__Product____Type__Ounit,type,
mult_a_Product_unit: partia8223610829204095565t_unit > a > a > a ).
thf(sy_c_Group_Omonoid_Omult_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
mult_a_ring_ext_a_b: partia2175431115845679010xt_a_b > a > a > a ).
thf(sy_c_Group_Omonoid_Oone_001tf__a_001t__Product____Type__Ounit,type,
one_a_Product_unit: partia8223610829204095565t_unit > a ).
thf(sy_c_Group_Omonoid_Oone_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
one_a_ring_ext_a_b: partia2175431115845679010xt_a_b > a ).
thf(sy_c_Group_Opow_001tf__a_001t__Product____Type__Ounit_001t__Nat__Onat,type,
pow_a_1875594501834816709it_nat: partia8223610829204095565t_unit > a > nat > a ).
thf(sy_c_Group_Opow_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J_001t__Nat__Onat,type,
pow_a_1026414303147256608_b_nat: partia2175431115845679010xt_a_b > a > nat > a ).
thf(sy_c_Group_Ounits__of_001tf__a_001t__Product____Type__Ounit,type,
units_7501539392726747778t_unit: partia8223610829204095565t_unit > partia8223610829204095565t_unit ).
thf(sy_c_Group_Ounits__of_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
units_8174867845824275201xt_a_b: partia2175431115845679010xt_a_b > partia8223610829204095565t_unit ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
minus_5736297505244876581_set_a: set_set_a > set_set_a > set_set_a ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
minus_minus_set_a: set_a > set_a > set_a ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
uminus6103902357914783669_set_a: set_set_a > set_set_a ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_Itf__a_J,type,
uminus_uminus_set_a: set_a > set_a ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Ideal_Ocgenideal_001tf__a_001t__Ring__Oring__Oring____ext_Itf__a_Mtf__b_J,type,
cgenid547466209912283029xt_a_b: partia2175431115845679010xt_a_b > a > set_a ).
thf(sy_c_Ideal_Ogenideal_001tf__a_001tf__b,type,
genideal_a_b: partia2175431115845679010xt_a_b > set_a > set_a ).
thf(sy_c_Ideal_Oideal_001tf__a_001tf__b,type,
ideal_a_b: set_a > partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Ideal_Omaximalideal_001tf__a_001tf__b,type,
maximalideal_a_b: set_a > partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Ideal_Oprimeideal_001tf__a_001tf__b,type,
primeideal_a_b: set_a > partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Ideal_Oprincipalideal_001tf__a_001tf__b,type,
principalideal_a_b: set_a > partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Int__Oint,type,
inf_inf_int: int > int > int ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
inf_inf_nat: nat > nat > nat ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
inf_inf_set_set_a: set_set_a > set_set_a > set_set_a ).
thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
inf_inf_set_a: set_a > set_a > set_a ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
bot_bot_set_set_a: set_set_a ).
thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
bot_bot_set_a: set_a ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
ord_le3724670747650509150_set_a: set_set_a > set_set_a > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
ord_less_eq_set_a: set_a > set_a > $o ).
thf(sy_c_QuotRing_Oring__iso_001tf__a_001tf__b_001tf__a_001tf__b,type,
ring_iso_a_b_a_b: partia2175431115845679010xt_a_b > partia2175431115845679010xt_a_b > set_a_a ).
thf(sy_c_Ring_Oa__inv_001tf__a_001tf__b,type,
a_inv_a_b: partia2175431115845679010xt_a_b > a > a ).
thf(sy_c_Ring_Oa__minus_001tf__a_001tf__b,type,
a_minus_a_b: partia2175431115845679010xt_a_b > a > a > a ).
thf(sy_c_Ring_Oadd__pow_001tf__a_001tf__b_001t__Int__Oint,type,
add_pow_a_b_int: partia2175431115845679010xt_a_b > int > a > a ).
thf(sy_c_Ring_Odomain_001tf__a_001tf__b,type,
domain_a_b: partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Ring_Ofield_001tf__a_001tf__b,type,
field_a_b: partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Ring_Ofield__axioms_001tf__a_001tf__b,type,
field_axioms_a_b: partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Ring_Oring_Oadd_001tf__a_001tf__b,type,
add_a_b: partia2175431115845679010xt_a_b > a > a > a ).
thf(sy_c_Ring_Oring_Ozero_001tf__a_001tf__b,type,
zero_a_b: partia2175431115845679010xt_a_b > a ).
thf(sy_c_Ring__Divisibility_Omult__of_001tf__a_001tf__b,type,
ring_mult_of_a_b: partia2175431115845679010xt_a_b > partia8223610829204095565t_unit ).
thf(sy_c_Ring__Divisibility_Onoetherian__domain_001tf__a_001tf__b,type,
ring_n4045954140777738665in_a_b: partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Ring__Divisibility_Oring__irreducible_001tf__a_001tf__b,type,
ring_r999134135267193926le_a_b: partia2175431115845679010xt_a_b > a > $o ).
thf(sy_c_Ring__Divisibility_Oring__prime_001tf__a_001tf__b,type,
ring_ring_prime_a_b: partia2175431115845679010xt_a_b > a > $o ).
thf(sy_c_Set_OCollect_001t__Set__Oset_Itf__a_J,type,
collect_set_a: ( set_a > $o ) > set_set_a ).
thf(sy_c_Set_OCollect_001tf__a,type,
collect_a: ( a > $o ) > set_a ).
thf(sy_c_Set_OPow_001tf__a,type,
pow_a: set_a > set_set_a ).
thf(sy_c_Set_Oinsert_001t__Set__Oset_Itf__a_J,type,
insert_set_a: set_a > set_set_a > set_set_a ).
thf(sy_c_Set_Oinsert_001tf__a,type,
insert_a: a > set_a > set_a ).
thf(sy_c_Subrings_Osubcring_001tf__a_001tf__b,type,
subcring_a_b: set_a > partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Subrings_Osubdomain_001tf__a_001tf__b,type,
subdomain_a_b: set_a > partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Subrings_Osubfield_001tf__a_001tf__b,type,
subfield_a_b: set_a > partia2175431115845679010xt_a_b > $o ).
thf(sy_c_Subrings_Osubring_001tf__a_001tf__b,type,
subring_a_b: set_a > partia2175431115845679010xt_a_b > $o ).
thf(sy_c_member_001_062_Itf__a_Mtf__a_J,type,
member_a_a: ( a > a ) > set_a_a > $o ).
thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
member_set_a: set_a > set_set_a > $o ).
thf(sy_c_member_001tf__a,type,
member_a: a > set_a > $o ).
thf(sy_v_R,type,
r: partia2175431115845679010xt_a_b ).
thf(sy_v_a,type,
a2: a ).
thf(sy_v_b,type,
b: a ).
thf(sy_v_c,type,
c: a ).
% Relevant facts (1277)
thf(fact_0_domain__axioms,axiom,
domain_a_b @ r ).
% domain_axioms
thf(fact_1_assms_I2_J,axiom,
member_a @ b @ ( partia707051561876973205xt_a_b @ r ) ).
% assms(2)
thf(fact_2_assms_I3_J,axiom,
member_a @ c @ ( partia707051561876973205xt_a_b @ r ) ).
% assms(3)
thf(fact_3_minus__eq,axiom,
! [X: a,Y: a] :
( ( a_minus_a_b @ r @ X @ Y )
= ( add_a_b @ r @ X @ ( a_inv_a_b @ r @ Y ) ) ) ).
% minus_eq
thf(fact_4__092_060open_062a_Adivides_A_Ib_A_092_060oplus_062_Ac_J_092_060close_062,axiom,
factor8216151070175719842xt_a_b @ r @ a2 @ ( add_a_b @ r @ b @ c ) ).
% \<open>a divides (b \<oplus> c)\<close>
thf(fact_5_add_Oinv__mult__group,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( a_inv_a_b @ r @ ( add_a_b @ r @ X @ Y ) )
= ( add_a_b @ r @ ( a_inv_a_b @ r @ Y ) @ ( a_inv_a_b @ r @ X ) ) ) ) ) ).
% add.inv_mult_group
thf(fact_6_add_Oinv__solve__left,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( A
= ( add_a_b @ r @ ( a_inv_a_b @ r @ B ) @ C ) )
= ( C
= ( add_a_b @ r @ B @ A ) ) ) ) ) ) ).
% add.inv_solve_left
thf(fact_7_add_Oinv__solve__left_H,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( add_a_b @ r @ ( a_inv_a_b @ r @ B ) @ C )
= A )
= ( C
= ( add_a_b @ r @ B @ A ) ) ) ) ) ) ).
% add.inv_solve_left'
thf(fact_8_add_Oinv__solve__right,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( A
= ( add_a_b @ r @ B @ ( a_inv_a_b @ r @ C ) ) )
= ( B
= ( add_a_b @ r @ A @ C ) ) ) ) ) ) ).
% add.inv_solve_right
thf(fact_9_add_Oinv__solve__right_H,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( add_a_b @ r @ B @ ( a_inv_a_b @ r @ C ) )
= A )
= ( B
= ( add_a_b @ r @ A @ C ) ) ) ) ) ) ).
% add.inv_solve_right'
thf(fact_10_a__transpose__inv,axiom,
! [X: a,Y: a,Z: a] :
( ( ( add_a_b @ r @ X @ Y )
= Z )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ Z )
= Y ) ) ) ) ) ).
% a_transpose_inv
thf(fact_11_local_Ominus__add,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( a_inv_a_b @ r @ ( add_a_b @ r @ X @ Y ) )
= ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ ( a_inv_a_b @ r @ Y ) ) ) ) ) ).
% local.minus_add
thf(fact_12_r__neg1,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ ( add_a_b @ r @ X @ Y ) )
= Y ) ) ) ).
% r_neg1
thf(fact_13_r__neg2,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ X @ ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ Y ) )
= Y ) ) ) ).
% r_neg2
thf(fact_14_calculation,axiom,
factor8216151070175719842xt_a_b @ r @ a2 @ ( add_a_b @ r @ ( add_a_b @ r @ b @ c ) @ ( a_inv_a_b @ r @ b ) ) ).
% calculation
thf(fact_15_assms_I1_J,axiom,
member_a @ a2 @ ( partia707051561876973205xt_a_b @ r ) ).
% assms(1)
thf(fact_16_a__lcomm,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ X @ ( add_a_b @ r @ Y @ Z ) )
= ( add_a_b @ r @ Y @ ( add_a_b @ r @ X @ Z ) ) ) ) ) ) ).
% a_lcomm
thf(fact_17_a__comm,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ X @ Y )
= ( add_a_b @ r @ Y @ X ) ) ) ) ).
% a_comm
thf(fact_18_a__assoc,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ ( add_a_b @ r @ X @ Y ) @ Z )
= ( add_a_b @ r @ X @ ( add_a_b @ r @ Y @ Z ) ) ) ) ) ) ).
% a_assoc
thf(fact_19_add_Or__cancel,axiom,
! [A: a,C: a,B: a] :
( ( ( add_a_b @ r @ A @ C )
= ( add_a_b @ r @ B @ C ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( A = B ) ) ) ) ) ).
% add.r_cancel
thf(fact_20_add_Ol__cancel,axiom,
! [C: a,A: a,B: a] :
( ( ( add_a_b @ r @ C @ A )
= ( add_a_b @ r @ C @ B ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( A = B ) ) ) ) ) ).
% add.l_cancel
thf(fact_21_divides__trans,axiom,
! [A: a,B: a,C: a] :
( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( ( factor8216151070175719842xt_a_b @ r @ B @ C )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( factor8216151070175719842xt_a_b @ r @ A @ C ) ) ) ) ).
% divides_trans
thf(fact_22_assms_I4_J,axiom,
factor8216151070175719842xt_a_b @ r @ a2 @ b ).
% assms(4)
thf(fact_23_div__sum,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( ( factor8216151070175719842xt_a_b @ r @ A @ C )
=> ( factor8216151070175719842xt_a_b @ r @ A @ ( add_a_b @ r @ B @ C ) ) ) ) ) ) ) ).
% div_sum
thf(fact_24_div__neg,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( factor8216151070175719842xt_a_b @ r @ A @ ( a_inv_a_b @ r @ B ) ) ) ) ) ).
% div_neg
thf(fact_25__092_060open_062a_Adivides_A_092_060ominus_062_Ab_092_060close_062,axiom,
factor8216151070175719842xt_a_b @ r @ a2 @ ( a_inv_a_b @ r @ b ) ).
% \<open>a divides \<ominus> b\<close>
thf(fact_26_a__closed,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ ( add_a_b @ r @ X @ Y ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% a_closed
thf(fact_27_local_Oadd_Oright__cancel,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( add_a_b @ r @ Y @ X )
= ( add_a_b @ r @ Z @ X ) )
= ( Y = Z ) ) ) ) ) ).
% local.add.right_cancel
thf(fact_28_local_Ominus__minus,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( a_inv_a_b @ r @ ( a_inv_a_b @ r @ X ) )
= X ) ) ).
% local.minus_minus
thf(fact_29_a__inv__closed,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ ( a_inv_a_b @ r @ X ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ).
% a_inv_closed
thf(fact_30_divides__refl,axiom,
! [A: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( factor8216151070175719842xt_a_b @ r @ A @ A ) ) ).
% divides_refl
thf(fact_31_minus__closed,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ ( a_minus_a_b @ r @ X @ Y ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% minus_closed
thf(fact_32_domain_Odiv__neg,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( factor8216151070175719842xt_a_b @ R @ A @ B )
=> ( factor8216151070175719842xt_a_b @ R @ A @ ( a_inv_a_b @ R @ B ) ) ) ) ) ) ).
% domain.div_neg
thf(fact_33_domain_Odiv__sum,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( factor8216151070175719842xt_a_b @ R @ A @ B )
=> ( ( factor8216151070175719842xt_a_b @ R @ A @ C )
=> ( factor8216151070175719842xt_a_b @ R @ A @ ( add_a_b @ R @ B @ C ) ) ) ) ) ) ) ) ).
% domain.div_sum
thf(fact_34_isgcd__divides__r,axiom,
! [B: a,A: a] :
( ( factor8216151070175719842xt_a_b @ r @ B @ A )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( isgcd_a_ring_ext_a_b @ r @ B @ A @ B ) ) ) ) ).
% isgcd_divides_r
thf(fact_35_isgcd__divides__l,axiom,
! [A: a,B: a] :
( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( isgcd_a_ring_ext_a_b @ r @ A @ A @ B ) ) ) ) ).
% isgcd_divides_l
thf(fact_36_onepideal,axiom,
principalideal_a_b @ ( partia707051561876973205xt_a_b @ r ) @ r ).
% onepideal
thf(fact_37_sum__zero__eq__neg,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( add_a_b @ r @ X @ Y )
= ( zero_a_b @ r ) )
=> ( X
= ( a_inv_a_b @ r @ Y ) ) ) ) ) ).
% sum_zero_eq_neg
thf(fact_38_r__neg,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ X @ ( a_inv_a_b @ r @ X ) )
= ( zero_a_b @ r ) ) ) ).
% r_neg
thf(fact_39_minus__equality,axiom,
! [Y: a,X: a] :
( ( ( add_a_b @ r @ Y @ X )
= ( zero_a_b @ r ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( a_inv_a_b @ r @ X )
= Y ) ) ) ) ).
% minus_equality
thf(fact_40_l__neg,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ ( a_inv_a_b @ r @ X ) @ X )
= ( zero_a_b @ r ) ) ) ).
% l_neg
thf(fact_41_add_Oint__pow__inv,axiom,
! [X: a,I: int] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_pow_a_b_int @ r @ I @ ( a_inv_a_b @ r @ X ) )
= ( a_inv_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) ) ) ) ).
% add.int_pow_inv
thf(fact_42_add_Oint__pow__mult__distrib,axiom,
! [X: a,Y: a,I: int] :
( ( ( add_a_b @ r @ X @ Y )
= ( add_a_b @ r @ Y @ X ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_pow_a_b_int @ r @ I @ ( add_a_b @ r @ X @ Y ) )
= ( add_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) @ ( add_pow_a_b_int @ r @ I @ Y ) ) ) ) ) ) ).
% add.int_pow_mult_distrib
thf(fact_43_add_Oint__pow__distrib,axiom,
! [X: a,Y: a,I: int] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_pow_a_b_int @ r @ I @ ( add_a_b @ r @ X @ Y ) )
= ( add_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) @ ( add_pow_a_b_int @ r @ I @ Y ) ) ) ) ) ).
% add.int_pow_distrib
thf(fact_44_a__minus__def,axiom,
( a_minus_a_b
= ( ^ [R2: partia2175431115845679010xt_a_b,X2: a,Y2: a] : ( add_a_b @ R2 @ X2 @ ( a_inv_a_b @ R2 @ Y2 ) ) ) ) ).
% a_minus_def
thf(fact_45_mem__Collect__eq,axiom,
! [A: a,P: a > $o] :
( ( member_a @ A @ ( collect_a @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_46_mem__Collect__eq,axiom,
! [A: set_a,P: set_a > $o] :
( ( member_set_a @ A @ ( collect_set_a @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_47_Collect__mem__eq,axiom,
! [A2: set_a] :
( ( collect_a
@ ^ [X2: a] : ( member_a @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_48_Collect__mem__eq,axiom,
! [A2: set_set_a] :
( ( collect_set_a
@ ^ [X2: set_a] : ( member_set_a @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_49_zero__divides,axiom,
! [A: a] :
( ( factor8216151070175719842xt_a_b @ r @ ( zero_a_b @ r ) @ A )
= ( A
= ( zero_a_b @ r ) ) ) ).
% zero_divides
thf(fact_50_add_Oinv__comm,axiom,
! [X: a,Y: a] :
( ( ( add_a_b @ r @ X @ Y )
= ( zero_a_b @ r ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ Y @ X )
= ( zero_a_b @ r ) ) ) ) ) ).
% add.inv_comm
thf(fact_51_add_Ol__inv__ex,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ r ) )
& ( ( add_a_b @ r @ X3 @ X )
= ( zero_a_b @ r ) ) ) ) ).
% add.l_inv_ex
thf(fact_52_add_Oone__unique,axiom,
! [U: a] :
( ( member_a @ U @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ U @ X3 )
= X3 ) )
=> ( U
= ( zero_a_b @ r ) ) ) ) ).
% add.one_unique
thf(fact_53_add_Or__inv__ex,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ r ) )
& ( ( add_a_b @ r @ X @ X3 )
= ( zero_a_b @ r ) ) ) ) ).
% add.r_inv_ex
thf(fact_54_local_Ominus__unique,axiom,
! [Y: a,X: a,Y3: a] :
( ( ( add_a_b @ r @ Y @ X )
= ( zero_a_b @ r ) )
=> ( ( ( add_a_b @ r @ X @ Y3 )
= ( zero_a_b @ r ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( Y = Y3 ) ) ) ) ) ) ).
% local.minus_unique
thf(fact_55_divides__zero,axiom,
! [A: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( factor8216151070175719842xt_a_b @ r @ A @ ( zero_a_b @ r ) ) ) ).
% divides_zero
thf(fact_56_zero__closed,axiom,
member_a @ ( zero_a_b @ r ) @ ( partia707051561876973205xt_a_b @ r ) ).
% zero_closed
thf(fact_57_local_Ominus__zero,axiom,
( ( a_inv_a_b @ r @ ( zero_a_b @ r ) )
= ( zero_a_b @ r ) ) ).
% local.minus_zero
thf(fact_58_add_Oint__pow__closed,axiom,
! [X: a,I: int] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ ( add_pow_a_b_int @ r @ I @ X ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ).
% add.int_pow_closed
thf(fact_59_add_Oint__pow__one,axiom,
! [Z: int] :
( ( add_pow_a_b_int @ r @ Z @ ( zero_a_b @ r ) )
= ( zero_a_b @ r ) ) ).
% add.int_pow_one
thf(fact_60_add_Ol__cancel__one,axiom,
! [X: a,A: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( add_a_b @ r @ X @ A )
= X )
= ( A
= ( zero_a_b @ r ) ) ) ) ) ).
% add.l_cancel_one
thf(fact_61_add_Ol__cancel__one_H,axiom,
! [X: a,A: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( X
= ( add_a_b @ r @ X @ A ) )
= ( A
= ( zero_a_b @ r ) ) ) ) ) ).
% add.l_cancel_one'
thf(fact_62_add_Or__cancel__one,axiom,
! [X: a,A: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( add_a_b @ r @ A @ X )
= X )
= ( A
= ( zero_a_b @ r ) ) ) ) ) ).
% add.r_cancel_one
thf(fact_63_add_Or__cancel__one_H,axiom,
! [X: a,A: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( X
= ( add_a_b @ r @ A @ X ) )
= ( A
= ( zero_a_b @ r ) ) ) ) ) ).
% add.r_cancel_one'
thf(fact_64_l__zero,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ ( zero_a_b @ r ) @ X )
= X ) ) ).
% l_zero
thf(fact_65_r__zero,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_a_b @ r @ X @ ( zero_a_b @ r ) )
= X ) ) ).
% r_zero
thf(fact_66_add_Oinv__eq__1__iff,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( a_inv_a_b @ r @ X )
= ( zero_a_b @ r ) )
= ( X
= ( zero_a_b @ r ) ) ) ) ).
% add.inv_eq_1_iff
thf(fact_67_r__right__minus__eq,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( a_minus_a_b @ r @ A @ B )
= ( zero_a_b @ r ) )
= ( A = B ) ) ) ) ).
% r_right_minus_eq
thf(fact_68_divides__hom,axiom,
! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a,Y: a] :
( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
=> ( ( domain_a_b @ R )
=> ( ( domain_a_b @ S )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( factor8216151070175719842xt_a_b @ R @ X @ Y )
= ( factor8216151070175719842xt_a_b @ S @ ( H @ X ) @ ( H @ Y ) ) ) ) ) ) ) ) ).
% divides_hom
thf(fact_69_ring__primeE_I1_J,axiom,
! [P2: a] :
( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ring_ring_prime_a_b @ r @ P2 )
=> ( P2
!= ( zero_a_b @ r ) ) ) ) ).
% ring_primeE(1)
thf(fact_70_ring__irreducibleE_I1_J,axiom,
! [R3: a] :
( ( member_a @ R3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ring_r999134135267193926le_a_b @ r @ R3 )
=> ( R3
!= ( zero_a_b @ r ) ) ) ) ).
% ring_irreducibleE(1)
thf(fact_71_zero__is__prime_I1_J,axiom,
prime_a_ring_ext_a_b @ r @ ( zero_a_b @ r ) ).
% zero_is_prime(1)
thf(fact_72_cgenideal__is__principalideal,axiom,
! [I: a] :
( ( member_a @ I @ ( partia707051561876973205xt_a_b @ r ) )
=> ( principalideal_a_b @ ( cgenid547466209912283029xt_a_b @ r @ I ) @ r ) ) ).
% cgenideal_is_principalideal
thf(fact_73_add_Oint__pow__diff,axiom,
! [X: a,N: int,M: int] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_pow_a_b_int @ r @ ( minus_minus_int @ N @ M ) @ X )
= ( add_a_b @ r @ ( add_pow_a_b_int @ r @ N @ X ) @ ( a_inv_a_b @ r @ ( add_pow_a_b_int @ r @ M @ X ) ) ) ) ) ).
% add.int_pow_diff
thf(fact_74_add_Oint__pow__neg,axiom,
! [X: a,I: int] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_pow_a_b_int @ r @ ( uminus_uminus_int @ I ) @ X )
= ( a_inv_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) ) ) ) ).
% add.int_pow_neg
thf(fact_75_add_Oint__pow__mult,axiom,
! [X: a,I: int,J: int] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_pow_a_b_int @ r @ ( plus_plus_int @ I @ J ) @ X )
= ( add_a_b @ r @ ( add_pow_a_b_int @ r @ I @ X ) @ ( add_pow_a_b_int @ r @ J @ X ) ) ) ) ).
% add.int_pow_mult
thf(fact_76_isgcd__def,axiom,
( isgcd_a_ring_ext_a_b
= ( ^ [G: partia2175431115845679010xt_a_b,X2: a,A3: a,B2: a] :
( ( factor8216151070175719842xt_a_b @ G @ X2 @ A3 )
& ( factor8216151070175719842xt_a_b @ G @ X2 @ B2 )
& ! [Y2: a] :
( ( member_a @ Y2 @ ( partia707051561876973205xt_a_b @ G ) )
=> ( ( ( factor8216151070175719842xt_a_b @ G @ Y2 @ A3 )
& ( factor8216151070175719842xt_a_b @ G @ Y2 @ B2 ) )
=> ( factor8216151070175719842xt_a_b @ G @ Y2 @ X2 ) ) ) ) ) ) ).
% isgcd_def
thf(fact_77_isgcd__def,axiom,
( isgcd_a_Product_unit
= ( ^ [G: partia8223610829204095565t_unit,X2: a,A3: a,B2: a] :
( ( factor3040189038382604065t_unit @ G @ X2 @ A3 )
& ( factor3040189038382604065t_unit @ G @ X2 @ B2 )
& ! [Y2: a] :
( ( member_a @ Y2 @ ( partia6735698275553448452t_unit @ G ) )
=> ( ( ( factor3040189038382604065t_unit @ G @ Y2 @ A3 )
& ( factor3040189038382604065t_unit @ G @ Y2 @ B2 ) )
=> ( factor3040189038382604065t_unit @ G @ Y2 @ X2 ) ) ) ) ) ) ).
% isgcd_def
thf(fact_78_ring__iso__memE_I3_J,axiom,
! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a,Y: a] :
( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( H @ ( add_a_b @ R @ X @ Y ) )
= ( add_a_b @ S @ ( H @ X ) @ ( H @ Y ) ) ) ) ) ) ).
% ring_iso_memE(3)
thf(fact_79_add_Oint__pow__pow,axiom,
! [X: a,M: int,N: int] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_pow_a_b_int @ r @ M @ ( add_pow_a_b_int @ r @ N @ X ) )
= ( add_pow_a_b_int @ r @ ( times_times_int @ N @ M ) @ X ) ) ) ).
% add.int_pow_pow
thf(fact_80_add__pow__ldistr__int,axiom,
! [A: a,B: a,K: int] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( add_pow_a_b_int @ r @ K @ A ) @ B )
= ( add_pow_a_b_int @ r @ K @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ).
% add_pow_ldistr_int
thf(fact_81_m__lcomm,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ X @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) )
= ( mult_a_ring_ext_a_b @ r @ Y @ ( mult_a_ring_ext_a_b @ r @ X @ Z ) ) ) ) ) ) ).
% m_lcomm
thf(fact_82_m__comm,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( mult_a_ring_ext_a_b @ r @ Y @ X ) ) ) ) ).
% m_comm
thf(fact_83_m__assoc,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ Z )
= ( mult_a_ring_ext_a_b @ r @ X @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) ) ) ) ) ) ).
% m_assoc
thf(fact_84_cgenideal__self,axiom,
! [I: a] :
( ( member_a @ I @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ I @ ( cgenid547466209912283029xt_a_b @ r @ I ) ) ) ).
% cgenideal_self
thf(fact_85_m__rcancel,axiom,
! [A: a,B: a,C: a] :
( ( A
!= ( zero_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ B @ A )
= ( mult_a_ring_ext_a_b @ r @ C @ A ) )
= ( B = C ) ) ) ) ) ) ).
% m_rcancel
thf(fact_86_m__lcancel,axiom,
! [A: a,B: a,C: a] :
( ( A
!= ( zero_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ A @ B )
= ( mult_a_ring_ext_a_b @ r @ A @ C ) )
= ( B = C ) ) ) ) ) ) ).
% m_lcancel
thf(fact_87_integral__iff,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ A @ B )
= ( zero_a_b @ r ) )
= ( ( A
= ( zero_a_b @ r ) )
| ( B
= ( zero_a_b @ r ) ) ) ) ) ) ).
% integral_iff
thf(fact_88_local_Ointegral,axiom,
! [A: a,B: a] :
( ( ( mult_a_ring_ext_a_b @ r @ A @ B )
= ( zero_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( A
= ( zero_a_b @ r ) )
| ( B
= ( zero_a_b @ r ) ) ) ) ) ) ).
% local.integral
thf(fact_89_r__distr,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ Z @ ( add_a_b @ r @ X @ Y ) )
= ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ Z @ X ) @ ( mult_a_ring_ext_a_b @ r @ Z @ Y ) ) ) ) ) ) ).
% r_distr
thf(fact_90_l__distr,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( add_a_b @ r @ X @ Y ) @ Z )
= ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Z ) @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) ) ) ) ) ) ).
% l_distr
thf(fact_91_r__minus,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ X @ ( a_inv_a_b @ r @ Y ) )
= ( a_inv_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) ) ) ) ) ).
% r_minus
thf(fact_92_l__minus,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( a_inv_a_b @ r @ X ) @ Y )
= ( a_inv_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) ) ) ) ) ).
% l_minus
thf(fact_93_divides__prod__r,axiom,
! [A: a,B: a,C: a] :
( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( factor8216151070175719842xt_a_b @ r @ A @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ).
% divides_prod_r
thf(fact_94_divides__prod__l,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( factor8216151070175719842xt_a_b @ r @ A @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ) ).
% divides_prod_l
thf(fact_95_local_Odivides__mult,axiom,
! [A: a,C: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( factor8216151070175719842xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ).
% local.divides_mult
thf(fact_96_add__pow__rdistr__int,axiom,
! [A: a,B: a,K: int] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ A @ ( add_pow_a_b_int @ r @ K @ B ) )
= ( add_pow_a_b_int @ r @ K @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ).
% add_pow_rdistr_int
thf(fact_97_ring__primeE_I3_J,axiom,
! [P2: a] :
( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ring_ring_prime_a_b @ r @ P2 )
=> ( prime_a_ring_ext_a_b @ r @ P2 ) ) ) ).
% ring_primeE(3)
thf(fact_98_ring__primeI,axiom,
! [P2: a] :
( ( P2
!= ( zero_a_b @ r ) )
=> ( ( prime_a_ring_ext_a_b @ r @ P2 )
=> ( ring_ring_prime_a_b @ r @ P2 ) ) ) ).
% ring_primeI
thf(fact_99_dividesI_H,axiom,
! [B: a,G2: partia2175431115845679010xt_a_b,A: a,C: a] :
( ( B
= ( mult_a_ring_ext_a_b @ G2 @ A @ C ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( factor8216151070175719842xt_a_b @ G2 @ A @ B ) ) ) ).
% dividesI'
thf(fact_100_dividesI_H,axiom,
! [B: a,G2: partia8223610829204095565t_unit,A: a,C: a] :
( ( B
= ( mult_a_Product_unit @ G2 @ A @ C ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( factor3040189038382604065t_unit @ G2 @ A @ B ) ) ) ).
% dividesI'
thf(fact_101_m__closed,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% m_closed
thf(fact_102_r__null,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ X @ ( zero_a_b @ r ) )
= ( zero_a_b @ r ) ) ) ).
% r_null
thf(fact_103_l__null,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( zero_a_b @ r ) @ X )
= ( zero_a_b @ r ) ) ) ).
% l_null
thf(fact_104_divides__mult__rI,axiom,
! [A: a,B: a,C: a] :
( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( factor8216151070175719842xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ C ) @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ) ).
% divides_mult_rI
thf(fact_105_divides__mult__lI,axiom,
! [A: a,B: a,C: a] :
( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( factor8216151070175719842xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ).
% divides_mult_lI
thf(fact_106_dividesD,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( factor8216151070175719842xt_a_b @ G2 @ A @ B )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
& ( B
= ( mult_a_ring_ext_a_b @ G2 @ A @ X3 ) ) ) ) ).
% dividesD
thf(fact_107_dividesD,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( factor3040189038382604065t_unit @ G2 @ A @ B )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
& ( B
= ( mult_a_Product_unit @ G2 @ A @ X3 ) ) ) ) ).
% dividesD
thf(fact_108_dividesE,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( factor8216151070175719842xt_a_b @ G2 @ A @ B )
=> ~ ! [C2: a] :
( ( B
= ( mult_a_ring_ext_a_b @ G2 @ A @ C2 ) )
=> ~ ( member_a @ C2 @ ( partia707051561876973205xt_a_b @ G2 ) ) ) ) ).
% dividesE
thf(fact_109_dividesE,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( factor3040189038382604065t_unit @ G2 @ A @ B )
=> ~ ! [C2: a] :
( ( B
= ( mult_a_Product_unit @ G2 @ A @ C2 ) )
=> ~ ( member_a @ C2 @ ( partia6735698275553448452t_unit @ G2 ) ) ) ) ).
% dividesE
thf(fact_110_dividesI,axiom,
! [C: a,G2: partia2175431115845679010xt_a_b,B: a,A: a] :
( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( B
= ( mult_a_ring_ext_a_b @ G2 @ A @ C ) )
=> ( factor8216151070175719842xt_a_b @ G2 @ A @ B ) ) ) ).
% dividesI
thf(fact_111_dividesI,axiom,
! [C: a,G2: partia8223610829204095565t_unit,B: a,A: a] :
( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( B
= ( mult_a_Product_unit @ G2 @ A @ C ) )
=> ( factor3040189038382604065t_unit @ G2 @ A @ B ) ) ) ).
% dividesI
thf(fact_112_factor__def,axiom,
( factor8216151070175719842xt_a_b
= ( ^ [G: partia2175431115845679010xt_a_b,A3: a,B2: a] :
? [X2: a] :
( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ G ) )
& ( B2
= ( mult_a_ring_ext_a_b @ G @ A3 @ X2 ) ) ) ) ) ).
% factor_def
thf(fact_113_factor__def,axiom,
( factor3040189038382604065t_unit
= ( ^ [G: partia8223610829204095565t_unit,A3: a,B2: a] :
? [X2: a] :
( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ G ) )
& ( B2
= ( mult_a_Product_unit @ G @ A3 @ X2 ) ) ) ) ) ).
% factor_def
thf(fact_114_ring__iso__memE_I2_J,axiom,
! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a,Y: a] :
( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( H @ ( mult_a_ring_ext_a_b @ R @ X @ Y ) )
= ( mult_a_ring_ext_a_b @ S @ ( H @ X ) @ ( H @ Y ) ) ) ) ) ) ).
% ring_iso_memE(2)
thf(fact_115_domain_Ointegral,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( domain_a_b @ R )
=> ( ( ( mult_a_ring_ext_a_b @ R @ A @ B )
= ( zero_a_b @ R ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( A
= ( zero_a_b @ R ) )
| ( B
= ( zero_a_b @ R ) ) ) ) ) ) ) ).
% domain.integral
thf(fact_116_domain_Om__lcancel,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( domain_a_b @ R )
=> ( ( A
!= ( zero_a_b @ R ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ( mult_a_ring_ext_a_b @ R @ A @ B )
= ( mult_a_ring_ext_a_b @ R @ A @ C ) )
= ( B = C ) ) ) ) ) ) ) ).
% domain.m_lcancel
thf(fact_117_domain_Om__rcancel,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( domain_a_b @ R )
=> ( ( A
!= ( zero_a_b @ R ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ( mult_a_ring_ext_a_b @ R @ B @ A )
= ( mult_a_ring_ext_a_b @ R @ C @ A ) )
= ( B = C ) ) ) ) ) ) ) ).
% domain.m_rcancel
thf(fact_118_domain_Ointegral__iff,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ( mult_a_ring_ext_a_b @ R @ A @ B )
= ( zero_a_b @ R ) )
= ( ( A
= ( zero_a_b @ R ) )
| ( B
= ( zero_a_b @ R ) ) ) ) ) ) ) ).
% domain.integral_iff
thf(fact_119_ring__iso__memE_I1_J,axiom,
! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a] :
( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( member_a @ ( H @ X ) @ ( partia707051561876973205xt_a_b @ S ) ) ) ) ).
% ring_iso_memE(1)
thf(fact_120_diff__minus__eq__add,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
= ( plus_plus_int @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_121_uminus__add__conv__diff,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_122_monoid__cancelI,axiom,
( ! [A4: a,B3: a,C2: a] :
( ( ( mult_a_ring_ext_a_b @ r @ C2 @ A4 )
= ( mult_a_ring_ext_a_b @ r @ C2 @ B3 ) )
=> ( ( member_a @ A4 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( A4 = B3 ) ) ) ) )
=> ( ! [A4: a,B3: a,C2: a] :
( ( ( mult_a_ring_ext_a_b @ r @ A4 @ C2 )
= ( mult_a_ring_ext_a_b @ r @ B3 @ C2 ) )
=> ( ( member_a @ A4 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( A4 = B3 ) ) ) ) )
=> ( monoid5798828371819920185xt_a_b @ r ) ) ) ).
% monoid_cancelI
thf(fact_123_minus__diff__eq,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
= ( minus_minus_int @ B @ A ) ) ).
% minus_diff_eq
thf(fact_124_add__minus__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_125_minus__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_126_minus__add__distrib,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).
% minus_add_distrib
thf(fact_127_mult__minus__left,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_128_minus__mult__minus,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( times_times_int @ A @ B ) ) ).
% minus_mult_minus
thf(fact_129_mult__minus__right,axiom,
! [A: int,B: int] :
( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_130_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_131_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_132_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_133_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_134_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_135_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_136_add__diff__cancel__right_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_137_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_138_add__diff__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_139_add__diff__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_140_add__diff__cancel__left_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_141_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_142_add__diff__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_143_add__diff__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_144_diff__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_145_add__diff__cancel,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_146_monoid__cancel_Ois__monoid__cancel,axiom,
! [G2: partia2175431115845679010xt_a_b] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( monoid5798828371819920185xt_a_b @ G2 ) ) ).
% monoid_cancel.is_monoid_cancel
thf(fact_147_monoid__cancel_Ois__monoid__cancel,axiom,
! [G2: partia8223610829204095565t_unit] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( monoid1999574367301118026t_unit @ G2 ) ) ).
% monoid_cancel.is_monoid_cancel
thf(fact_148_monoid__cancel_Or__cancel,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,C: a,B: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( ( mult_a_ring_ext_a_b @ G2 @ A @ C )
= ( mult_a_ring_ext_a_b @ G2 @ B @ C ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( A = B ) ) ) ) ) ) ).
% monoid_cancel.r_cancel
thf(fact_149_monoid__cancel_Or__cancel,axiom,
! [G2: partia8223610829204095565t_unit,A: a,C: a,B: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( ( mult_a_Product_unit @ G2 @ A @ C )
= ( mult_a_Product_unit @ G2 @ B @ C ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( A = B ) ) ) ) ) ) ).
% monoid_cancel.r_cancel
thf(fact_150_monoid__cancel_Ol__cancel,axiom,
! [G2: partia2175431115845679010xt_a_b,C: a,A: a,B: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( ( mult_a_ring_ext_a_b @ G2 @ C @ A )
= ( mult_a_ring_ext_a_b @ G2 @ C @ B ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( A = B ) ) ) ) ) ) ).
% monoid_cancel.l_cancel
thf(fact_151_monoid__cancel_Ol__cancel,axiom,
! [G2: partia8223610829204095565t_unit,C: a,A: a,B: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( ( mult_a_Product_unit @ G2 @ C @ A )
= ( mult_a_Product_unit @ G2 @ C @ B ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( A = B ) ) ) ) ) ) ).
% monoid_cancel.l_cancel
thf(fact_152_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_153_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_154_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_155_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_156_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_157_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_158_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_159_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_160_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_161_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_162_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_163_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_164_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_165_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_166_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_167_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_168_group__add__class_Oadd_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% group_add_class.add.right_cancel
thf(fact_169_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_170_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_171_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_172_group__cancel_Oadd2,axiom,
! [B4: int,K: int,B: int,A: int] :
( ( B4
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B4 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_173_group__cancel_Oadd2,axiom,
! [B4: nat,K: nat,B: nat,A: nat] :
( ( B4
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B4 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_174_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_175_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_176_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_177_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_178_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_179_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_180_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_181_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_182_diff__eq__diff__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_183_minus__equation__iff,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( uminus_uminus_int @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_184_equation__minus__iff,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% equation_minus_iff
thf(fact_185_monoid__cancel_Odivides__mult__l,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( factor8216151070175719842xt_a_b @ G2 @ ( mult_a_ring_ext_a_b @ G2 @ C @ A ) @ ( mult_a_ring_ext_a_b @ G2 @ C @ B ) )
= ( factor8216151070175719842xt_a_b @ G2 @ A @ B ) ) ) ) ) ) ).
% monoid_cancel.divides_mult_l
thf(fact_186_monoid__cancel_Odivides__mult__l,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a,C: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( factor3040189038382604065t_unit @ G2 @ ( mult_a_Product_unit @ G2 @ C @ A ) @ ( mult_a_Product_unit @ G2 @ C @ B ) )
= ( factor3040189038382604065t_unit @ G2 @ A @ B ) ) ) ) ) ) ).
% monoid_cancel.divides_mult_l
thf(fact_187_combine__common__factor,axiom,
! [A: int,E: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_188_combine__common__factor,axiom,
! [A: nat,E: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_189_distrib__right,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_190_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_191_distrib__left,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% distrib_left
thf(fact_192_distrib__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% distrib_left
thf(fact_193_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_194_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_195_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_196_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_197_right__diff__distrib_H,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_198_right__diff__distrib_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_199_left__diff__distrib_H,axiom,
! [B: int,C: int,A: int] :
( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
= ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_200_left__diff__distrib_H,axiom,
! [B: nat,C: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_201_right__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_202_left__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_203_diff__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_204_diff__diff__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
= ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_205_add__implies__diff,axiom,
! [C: int,B: int,A: int] :
( ( ( plus_plus_int @ C @ B )
= A )
=> ( C
= ( minus_minus_int @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_206_add__implies__diff,axiom,
! [C: nat,B: nat,A: nat] :
( ( ( plus_plus_nat @ C @ B )
= A )
=> ( C
= ( minus_minus_nat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_207_diff__add__eq__diff__diff__swap,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_208_diff__add__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_209_diff__diff__eq2,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_210_add__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_211_eq__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( A
= ( minus_minus_int @ C @ B ) )
= ( ( plus_plus_int @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_212_diff__eq__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( minus_minus_int @ A @ B )
= C )
= ( A
= ( plus_plus_int @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_213_group__cancel_Osub1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( minus_minus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_214_minus__mult__commute,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).
% minus_mult_commute
thf(fact_215_square__eq__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ A )
= ( times_times_int @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ).
% square_eq_iff
thf(fact_216_add_Oinverse__distrib__swap,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_217_group__cancel_Oneg1,axiom,
! [A2: int,K: int,A: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( uminus_uminus_int @ A2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_218_minus__diff__commute,axiom,
! [B: int,A: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
= ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_219_square__diff__square__factored,axiom,
! [X: int,Y: int] :
( ( minus_minus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
= ( times_times_int @ ( plus_plus_int @ X @ Y ) @ ( minus_minus_int @ X @ Y ) ) ) ).
% square_diff_square_factored
thf(fact_220_eq__add__iff2,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
= ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( C
= ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).
% eq_add_iff2
thf(fact_221_eq__add__iff1,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ( plus_plus_int @ ( times_times_int @ A @ E ) @ C )
= ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C )
= D ) ) ).
% eq_add_iff1
thf(fact_222_ab__group__add__class_Oab__diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).
% ab_group_add_class.ab_diff_conv_add_uminus
thf(fact_223_diff__conv__add__uminus,axiom,
( minus_minus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ A3 @ ( uminus_uminus_int @ B2 ) ) ) ) ).
% diff_conv_add_uminus
thf(fact_224_group__cancel_Osub2,axiom,
! [B4: int,K: int,B: int,A: int] :
( ( B4
= ( plus_plus_int @ K @ B ) )
=> ( ( minus_minus_int @ A @ B4 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub2
thf(fact_225_domain_Oring__primeE_I3_J,axiom,
! [R: partia2175431115845679010xt_a_b,P2: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ring_ring_prime_a_b @ R @ P2 )
=> ( prime_a_ring_ext_a_b @ R @ P2 ) ) ) ) ).
% domain.ring_primeE(3)
thf(fact_226_domain_Oring__primeE_I1_J,axiom,
! [R: partia2175431115845679010xt_a_b,P2: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ring_ring_prime_a_b @ R @ P2 )
=> ( P2
!= ( zero_a_b @ R ) ) ) ) ) ).
% domain.ring_primeE(1)
thf(fact_227_to__contain__is__to__divide,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ ( cgenid547466209912283029xt_a_b @ r @ B ) @ ( cgenid547466209912283029xt_a_b @ r @ A ) )
= ( factor8216151070175719842xt_a_b @ r @ A @ B ) ) ) ) ).
% to_contain_is_to_divide
thf(fact_228_domain_Oring__irreducibleE_I1_J,axiom,
! [R: partia2175431115845679010xt_a_b,R3: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ R3 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ring_r999134135267193926le_a_b @ R @ R3 )
=> ( R3
!= ( zero_a_b @ R ) ) ) ) ) ).
% domain.ring_irreducibleE(1)
thf(fact_229_line__extension__mem__iff,axiom,
! [U: a,K2: set_a,A: a,E2: set_a] :
( ( member_a @ U @ ( embedd971793762689825387on_a_b @ r @ K2 @ A @ E2 ) )
= ( ? [X2: a] :
( ( member_a @ X2 @ K2 )
& ? [Y2: a] :
( ( member_a @ Y2 @ E2 )
& ( U
= ( add_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X2 @ A ) @ Y2 ) ) ) ) ) ) ).
% line_extension_mem_iff
thf(fact_230_ring__prime__def,axiom,
( ring_ring_prime_a_b
= ( ^ [R2: partia2175431115845679010xt_a_b,A3: a] :
( ( A3
!= ( zero_a_b @ R2 ) )
& ( prime_a_ring_ext_a_b @ R2 @ A3 ) ) ) ) ).
% ring_prime_def
thf(fact_231_cgenideal__prod,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( set_mu8047982887099575916xt_a_b @ r @ ( cgenid547466209912283029xt_a_b @ r @ A ) @ ( cgenid547466209912283029xt_a_b @ r @ B ) )
= ( cgenid547466209912283029xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ).
% cgenideal_prod
thf(fact_232_domain_Ozero__is__prime_I1_J,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( domain_a_b @ R )
=> ( prime_a_ring_ext_a_b @ R @ ( zero_a_b @ R ) ) ) ).
% domain.zero_is_prime(1)
thf(fact_233_ring__irreducibleE_I2_J,axiom,
! [R3: a] :
( ( member_a @ R3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ring_r999134135267193926le_a_b @ r @ R3 )
=> ( irredu6211895646901577903xt_a_b @ r @ R3 ) ) ) ).
% ring_irreducibleE(2)
thf(fact_234_line__extension__in__carrier,axiom,
! [K2: set_a,A: a,E2: set_a] :
( ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ E2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ord_less_eq_set_a @ ( embedd971793762689825387on_a_b @ r @ K2 @ A @ E2 ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ) ).
% line_extension_in_carrier
thf(fact_235_set__mult__closed,axiom,
! [H2: set_a,K2: set_a] :
( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ord_less_eq_set_a @ ( set_mu8047982887099575916xt_a_b @ r @ H2 @ K2 ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% set_mult_closed
thf(fact_236_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_237_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_238_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_239_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_240_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_241_le__add__diff__inverse,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_242_le__add__diff__inverse,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_243_le__add__diff__inverse2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_244_le__add__diff__inverse2,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_245_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_246_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( K = L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_247_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_248_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_249_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( ord_less_eq_nat @ I @ J )
& ( ord_less_eq_nat @ K @ L ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_250_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( ord_less_eq_int @ I @ J )
& ( ord_less_eq_int @ K @ L ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_251_add__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_252_add__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_mono
thf(fact_253_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_254_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_255_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C2: nat] :
( B
!= ( plus_plus_nat @ A @ C2 ) ) ) ).
% less_eqE
thf(fact_256_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_257_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_258_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] :
? [C3: nat] :
( B2
= ( plus_plus_nat @ A3 @ C3 ) ) ) ) ).
% le_iff_add
thf(fact_259_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_260_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_261_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_262_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_263_diff__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D @ C )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_264_diff__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_265_diff__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_266_diff__eq__diff__less__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_eq_int @ A @ B )
= ( ord_less_eq_int @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_267_le__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% le_minus_iff
thf(fact_268_minus__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_269_le__imp__neg__le,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% le_imp_neg_le
thf(fact_270_ring__irreducible__def,axiom,
( ring_r999134135267193926le_a_b
= ( ^ [R2: partia2175431115845679010xt_a_b,A3: a] :
( ( A3
!= ( zero_a_b @ R2 ) )
& ( irredu6211895646901577903xt_a_b @ R2 @ A3 ) ) ) ) ).
% ring_irreducible_def
thf(fact_271_diff__le__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_272_le__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_273_add__le__imp__le__diff,axiom,
! [I: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_274_add__le__imp__le__diff,axiom,
! [I: int,K: int,N: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ord_less_eq_int @ I @ ( minus_minus_int @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_275_ordered__cancel__comm__monoid__diff__class_Odiff__add,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add
thf(fact_276_add__le__add__imp__diff__le,axiom,
! [I: nat,K: nat,N: nat,J: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J @ K ) )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_277_add__le__add__imp__diff__le,axiom,
! [I: int,K: int,N: int,J: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ I @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J @ K ) )
=> ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_278_le__add__diff,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% le_add_diff
thf(fact_279_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_280_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_281_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
= ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_282_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
= ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_283_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
= ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_284_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_285_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_286_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ( ( minus_minus_nat @ B @ A )
= C )
= ( B
= ( plus_plus_nat @ C @ A ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_287_domain_Oring__irreducibleE_I2_J,axiom,
! [R: partia2175431115845679010xt_a_b,R3: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ R3 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ring_r999134135267193926le_a_b @ R @ R3 )
=> ( irredu6211895646901577903xt_a_b @ R @ R3 ) ) ) ) ).
% domain.ring_irreducibleE(2)
thf(fact_288_ordered__ring__class_Ole__add__iff1,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_289_ordered__ring__class_Ole__add__iff2,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_290_irreducible__hom,axiom,
! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a] :
( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
=> ( ( domain_a_b @ R )
=> ( ( domain_a_b @ S )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( irredu6211895646901577903xt_a_b @ R @ X )
= ( irredu6211895646901577903xt_a_b @ S @ ( H @ X ) ) ) ) ) ) ) ).
% irreducible_hom
thf(fact_291_add_Oone__in__subset,axiom,
! [H2: set_a] :
( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( H2 != bot_bot_set_a )
=> ( ! [X3: a] :
( ( member_a @ X3 @ H2 )
=> ( member_a @ ( a_inv_a_b @ r @ X3 ) @ H2 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ H2 )
=> ! [Xa: a] :
( ( member_a @ Xa @ H2 )
=> ( member_a @ ( add_a_b @ r @ X3 @ Xa ) @ H2 ) ) )
=> ( member_a @ ( zero_a_b @ r ) @ H2 ) ) ) ) ) ).
% add.one_in_subset
thf(fact_292_a__lcos__m__assoc,axiom,
! [M2: set_a,G3: a,H: a] :
( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ G3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ H @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( a_l_coset_a_b @ r @ G3 @ ( a_l_coset_a_b @ r @ H @ M2 ) )
= ( a_l_coset_a_b @ r @ ( add_a_b @ r @ G3 @ H ) @ M2 ) ) ) ) ) ).
% a_lcos_m_assoc
thf(fact_293_a__lcos__mult__one,axiom,
! [M2: set_a] :
( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( a_l_coset_a_b @ r @ ( zero_a_b @ r ) @ M2 )
= M2 ) ) ).
% a_lcos_mult_one
thf(fact_294_compl__le__compl__iff,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ X ) @ ( uminus_uminus_set_a @ Y ) )
= ( ord_less_eq_set_a @ Y @ X ) ) ).
% compl_le_compl_iff
thf(fact_295_compl__le__compl__iff,axiom,
! [X: set_set_a,Y: set_set_a] :
( ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ X ) @ ( uminus6103902357914783669_set_a @ Y ) )
= ( ord_le3724670747650509150_set_a @ Y @ X ) ) ).
% compl_le_compl_iff
thf(fact_296_subalgebra__in__carrier,axiom,
! [K2: set_a,V: set_a] :
( ( embedd9027525575939734154ra_a_b @ K2 @ V @ r )
=> ( ord_less_eq_set_a @ V @ ( partia707051561876973205xt_a_b @ r ) ) ) ).
% subalgebra_in_carrier
thf(fact_297_carrier__is__subalgebra,axiom,
! [K2: set_a] :
( ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( embedd9027525575939734154ra_a_b @ K2 @ ( partia707051561876973205xt_a_b @ r ) @ r ) ) ).
% carrier_is_subalgebra
thf(fact_298_a__l__coset__subset__G,axiom,
! [H2: set_a,X: a] :
( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ord_less_eq_set_a @ ( a_l_coset_a_b @ r @ X @ H2 ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% a_l_coset_subset_G
thf(fact_299_line__extension__smult__closed,axiom,
! [K2: set_a,E2: set_a,A: a,K: a,U: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ! [K3: a,V2: a] :
( ( member_a @ K3 @ K2 )
=> ( ( member_a @ V2 @ E2 )
=> ( member_a @ ( mult_a_ring_ext_a_b @ r @ K3 @ V2 ) @ E2 ) ) )
=> ( ( ord_less_eq_set_a @ E2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ K @ K2 )
=> ( ( member_a @ U @ ( embedd971793762689825387on_a_b @ r @ K2 @ A @ E2 ) )
=> ( member_a @ ( mult_a_ring_ext_a_b @ r @ K @ U ) @ ( embedd971793762689825387on_a_b @ r @ K2 @ A @ E2 ) ) ) ) ) ) ) ) ).
% line_extension_smult_closed
thf(fact_300_carrier__not__empty,axiom,
( ( partia707051561876973205xt_a_b @ r )
!= bot_bot_set_a ) ).
% carrier_not_empty
thf(fact_301_subring__props_I2_J,axiom,
! [K2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( member_a @ ( zero_a_b @ r ) @ K2 ) ) ).
% subring_props(2)
thf(fact_302_subring__props_I7_J,axiom,
! [K2: set_a,H1: a,H22: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( member_a @ H1 @ K2 )
=> ( ( member_a @ H22 @ K2 )
=> ( member_a @ ( add_a_b @ r @ H1 @ H22 ) @ K2 ) ) ) ) ).
% subring_props(7)
thf(fact_303_subring__props_I6_J,axiom,
! [K2: set_a,H1: a,H22: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( member_a @ H1 @ K2 )
=> ( ( member_a @ H22 @ K2 )
=> ( member_a @ ( mult_a_ring_ext_a_b @ r @ H1 @ H22 ) @ K2 ) ) ) ) ).
% subring_props(6)
thf(fact_304_subring__props_I4_J,axiom,
! [K2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( K2 != bot_bot_set_a ) ) ).
% subring_props(4)
thf(fact_305_subring__props_I5_J,axiom,
! [K2: set_a,H: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( member_a @ H @ K2 )
=> ( member_a @ ( a_inv_a_b @ r @ H ) @ K2 ) ) ) ).
% subring_props(5)
thf(fact_306_subring__props_I1_J,axiom,
! [K2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ r ) ) ) ).
% subring_props(1)
thf(fact_307_diff__shunt__var,axiom,
! [X: set_a,Y: set_a] :
( ( ( minus_minus_set_a @ X @ Y )
= bot_bot_set_a )
= ( ord_less_eq_set_a @ X @ Y ) ) ).
% diff_shunt_var
thf(fact_308_diff__shunt__var,axiom,
! [X: set_set_a,Y: set_set_a] :
( ( ( minus_5736297505244876581_set_a @ X @ Y )
= bot_bot_set_set_a )
= ( ord_le3724670747650509150_set_a @ X @ Y ) ) ).
% diff_shunt_var
thf(fact_309_compl__le__swap2,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ Y ) @ X )
=> ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ X ) @ Y ) ) ).
% compl_le_swap2
thf(fact_310_compl__le__swap2,axiom,
! [Y: set_set_a,X: set_set_a] :
( ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ Y ) @ X )
=> ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ X ) @ Y ) ) ).
% compl_le_swap2
thf(fact_311_compl__le__swap1,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ ( uminus_uminus_set_a @ X ) )
=> ( ord_less_eq_set_a @ X @ ( uminus_uminus_set_a @ Y ) ) ) ).
% compl_le_swap1
thf(fact_312_compl__le__swap1,axiom,
! [Y: set_set_a,X: set_set_a] :
( ( ord_le3724670747650509150_set_a @ Y @ ( uminus6103902357914783669_set_a @ X ) )
=> ( ord_le3724670747650509150_set_a @ X @ ( uminus6103902357914783669_set_a @ Y ) ) ) ).
% compl_le_swap1
thf(fact_313_compl__mono,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ Y ) @ ( uminus_uminus_set_a @ X ) ) ) ).
% compl_mono
thf(fact_314_compl__mono,axiom,
! [X: set_set_a,Y: set_set_a] :
( ( ord_le3724670747650509150_set_a @ X @ Y )
=> ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ Y ) @ ( uminus6103902357914783669_set_a @ X ) ) ) ).
% compl_mono
thf(fact_315_mult__divides,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( factor8216151070175719842xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) )
=> ( factor8216151070175719842xt_a_b @ r @ A @ B ) ) ) ) ) ).
% mult_divides
thf(fact_316_subfield__m__inv__simprule,axiom,
! [K2: set_a,K: a,A: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( member_a @ K @ ( minus_minus_set_a @ K2 @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ K @ A ) @ K2 )
=> ( member_a @ A @ K2 ) ) ) ) ) ).
% subfield_m_inv_simprule
thf(fact_317_subalbegra__incl__imp__finite__dimension,axiom,
! [K2: set_a,E2: set_a,V: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd8708762675212832759on_a_b @ r @ K2 @ E2 )
=> ( ( embedd9027525575939734154ra_a_b @ K2 @ V @ r )
=> ( ( ord_less_eq_set_a @ V @ E2 )
=> ( embedd8708762675212832759on_a_b @ r @ K2 @ V ) ) ) ) ) ).
% subalbegra_incl_imp_finite_dimension
thf(fact_318_empty__subsetI,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A2 ) ).
% empty_subsetI
thf(fact_319_empty__subsetI,axiom,
! [A2: set_set_a] : ( ord_le3724670747650509150_set_a @ bot_bot_set_set_a @ A2 ) ).
% empty_subsetI
thf(fact_320_subset__empty,axiom,
! [A2: set_a] :
( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
= ( A2 = bot_bot_set_a ) ) ).
% subset_empty
thf(fact_321_subset__empty,axiom,
! [A2: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ bot_bot_set_set_a )
= ( A2 = bot_bot_set_set_a ) ) ).
% subset_empty
thf(fact_322_Diff__eq__empty__iff,axiom,
! [A2: set_a,B4: set_a] :
( ( ( minus_minus_set_a @ A2 @ B4 )
= bot_bot_set_a )
= ( ord_less_eq_set_a @ A2 @ B4 ) ) ).
% Diff_eq_empty_iff
thf(fact_323_Diff__eq__empty__iff,axiom,
! [A2: set_set_a,B4: set_set_a] :
( ( ( minus_5736297505244876581_set_a @ A2 @ B4 )
= bot_bot_set_set_a )
= ( ord_le3724670747650509150_set_a @ A2 @ B4 ) ) ).
% Diff_eq_empty_iff
thf(fact_324_zeropideal,axiom,
principalideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r ).
% zeropideal
thf(fact_325_telescopic__base__dim_I1_J,axiom,
! [K2: set_a,F: set_a,E2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( subfield_a_b @ F @ r )
=> ( ( embedd8708762675212832759on_a_b @ r @ K2 @ F )
=> ( ( embedd8708762675212832759on_a_b @ r @ F @ E2 )
=> ( embedd8708762675212832759on_a_b @ r @ K2 @ E2 ) ) ) ) ) ).
% telescopic_base_dim(1)
thf(fact_326_Compl__anti__mono,axiom,
! [A2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A2 @ B4 )
=> ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ B4 ) @ ( uminus_uminus_set_a @ A2 ) ) ) ).
% Compl_anti_mono
thf(fact_327_Compl__anti__mono,axiom,
! [A2: set_set_a,B4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ B4 )
=> ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ B4 ) @ ( uminus6103902357914783669_set_a @ A2 ) ) ) ).
% Compl_anti_mono
thf(fact_328_Compl__subset__Compl__iff,axiom,
! [A2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ A2 ) @ ( uminus_uminus_set_a @ B4 ) )
= ( ord_less_eq_set_a @ B4 @ A2 ) ) ).
% Compl_subset_Compl_iff
thf(fact_329_Compl__subset__Compl__iff,axiom,
! [A2: set_set_a,B4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ ( uminus6103902357914783669_set_a @ A2 ) @ ( uminus6103902357914783669_set_a @ B4 ) )
= ( ord_le3724670747650509150_set_a @ B4 @ A2 ) ) ).
% Compl_subset_Compl_iff
thf(fact_330_subsetI,axiom,
! [A2: set_a,B4: set_a] :
( ! [X3: a] :
( ( member_a @ X3 @ A2 )
=> ( member_a @ X3 @ B4 ) )
=> ( ord_less_eq_set_a @ A2 @ B4 ) ) ).
% subsetI
thf(fact_331_subsetI,axiom,
! [A2: set_set_a,B4: set_set_a] :
( ! [X3: set_a] :
( ( member_set_a @ X3 @ A2 )
=> ( member_set_a @ X3 @ B4 ) )
=> ( ord_le3724670747650509150_set_a @ A2 @ B4 ) ) ).
% subsetI
thf(fact_332_subset__antisym,axiom,
! [A2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A2 @ B4 )
=> ( ( ord_less_eq_set_a @ B4 @ A2 )
=> ( A2 = B4 ) ) ) ).
% subset_antisym
thf(fact_333_subset__antisym,axiom,
! [A2: set_set_a,B4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ B4 )
=> ( ( ord_le3724670747650509150_set_a @ B4 @ A2 )
=> ( A2 = B4 ) ) ) ).
% subset_antisym
thf(fact_334_finite__dimension__imp__subalgebra,axiom,
! [K2: set_a,E2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd8708762675212832759on_a_b @ r @ K2 @ E2 )
=> ( embedd9027525575939734154ra_a_b @ K2 @ E2 @ r ) ) ) ).
% finite_dimension_imp_subalgebra
thf(fact_335_insert__subset,axiom,
! [X: a,A2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ ( insert_a @ X @ A2 ) @ B4 )
= ( ( member_a @ X @ B4 )
& ( ord_less_eq_set_a @ A2 @ B4 ) ) ) ).
% insert_subset
thf(fact_336_insert__subset,axiom,
! [X: set_a,A2: set_set_a,B4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ ( insert_set_a @ X @ A2 ) @ B4 )
= ( ( member_set_a @ X @ B4 )
& ( ord_le3724670747650509150_set_a @ A2 @ B4 ) ) ) ).
% insert_subset
thf(fact_337_singleton__insert__inj__eq_H,axiom,
! [A: a,A2: set_a,B: a] :
( ( ( insert_a @ A @ A2 )
= ( insert_a @ B @ bot_bot_set_a ) )
= ( ( A = B )
& ( ord_less_eq_set_a @ A2 @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ).
% singleton_insert_inj_eq'
thf(fact_338_singleton__insert__inj__eq_H,axiom,
! [A: set_a,A2: set_set_a,B: set_a] :
( ( ( insert_set_a @ A @ A2 )
= ( insert_set_a @ B @ bot_bot_set_set_a ) )
= ( ( A = B )
& ( ord_le3724670747650509150_set_a @ A2 @ ( insert_set_a @ B @ bot_bot_set_set_a ) ) ) ) ).
% singleton_insert_inj_eq'
thf(fact_339_singleton__insert__inj__eq,axiom,
! [B: a,A: a,A2: set_a] :
( ( ( insert_a @ B @ bot_bot_set_a )
= ( insert_a @ A @ A2 ) )
= ( ( A = B )
& ( ord_less_eq_set_a @ A2 @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ).
% singleton_insert_inj_eq
thf(fact_340_singleton__insert__inj__eq,axiom,
! [B: set_a,A: set_a,A2: set_set_a] :
( ( ( insert_set_a @ B @ bot_bot_set_set_a )
= ( insert_set_a @ A @ A2 ) )
= ( ( A = B )
& ( ord_le3724670747650509150_set_a @ A2 @ ( insert_set_a @ B @ bot_bot_set_set_a ) ) ) ) ).
% singleton_insert_inj_eq
thf(fact_341_subset__Compl__singleton,axiom,
! [A2: set_a,B: a] :
( ( ord_less_eq_set_a @ A2 @ ( uminus_uminus_set_a @ ( insert_a @ B @ bot_bot_set_a ) ) )
= ( ~ ( member_a @ B @ A2 ) ) ) ).
% subset_Compl_singleton
thf(fact_342_subset__Compl__singleton,axiom,
! [A2: set_set_a,B: set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ ( uminus6103902357914783669_set_a @ ( insert_set_a @ B @ bot_bot_set_set_a ) ) )
= ( ~ ( member_set_a @ B @ A2 ) ) ) ).
% subset_Compl_singleton
thf(fact_343_subset__Diff__insert,axiom,
! [A2: set_a,B4: set_a,X: a,C4: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B4 @ ( insert_a @ X @ C4 ) ) )
= ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B4 @ C4 ) )
& ~ ( member_a @ X @ A2 ) ) ) ).
% subset_Diff_insert
thf(fact_344_subset__Diff__insert,axiom,
! [A2: set_set_a,B4: set_set_a,X: set_a,C4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ ( minus_5736297505244876581_set_a @ B4 @ ( insert_set_a @ X @ C4 ) ) )
= ( ( ord_le3724670747650509150_set_a @ A2 @ ( minus_5736297505244876581_set_a @ B4 @ C4 ) )
& ~ ( member_set_a @ X @ A2 ) ) ) ).
% subset_Diff_insert
thf(fact_345_insert__mono,axiom,
! [C4: set_a,D2: set_a,A: a] :
( ( ord_less_eq_set_a @ C4 @ D2 )
=> ( ord_less_eq_set_a @ ( insert_a @ A @ C4 ) @ ( insert_a @ A @ D2 ) ) ) ).
% insert_mono
thf(fact_346_insert__mono,axiom,
! [C4: set_set_a,D2: set_set_a,A: set_a] :
( ( ord_le3724670747650509150_set_a @ C4 @ D2 )
=> ( ord_le3724670747650509150_set_a @ ( insert_set_a @ A @ C4 ) @ ( insert_set_a @ A @ D2 ) ) ) ).
% insert_mono
thf(fact_347_subset__insert,axiom,
! [X: a,A2: set_a,B4: set_a] :
( ~ ( member_a @ X @ A2 )
=> ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B4 ) )
= ( ord_less_eq_set_a @ A2 @ B4 ) ) ) ).
% subset_insert
thf(fact_348_subset__insert,axiom,
! [X: set_a,A2: set_set_a,B4: set_set_a] :
( ~ ( member_set_a @ X @ A2 )
=> ( ( ord_le3724670747650509150_set_a @ A2 @ ( insert_set_a @ X @ B4 ) )
= ( ord_le3724670747650509150_set_a @ A2 @ B4 ) ) ) ).
% subset_insert
thf(fact_349_subset__insertI,axiom,
! [B4: set_a,A: a] : ( ord_less_eq_set_a @ B4 @ ( insert_a @ A @ B4 ) ) ).
% subset_insertI
thf(fact_350_subset__insertI,axiom,
! [B4: set_set_a,A: set_a] : ( ord_le3724670747650509150_set_a @ B4 @ ( insert_set_a @ A @ B4 ) ) ).
% subset_insertI
thf(fact_351_subset__insertI2,axiom,
! [A2: set_a,B4: set_a,B: a] :
( ( ord_less_eq_set_a @ A2 @ B4 )
=> ( ord_less_eq_set_a @ A2 @ ( insert_a @ B @ B4 ) ) ) ).
% subset_insertI2
thf(fact_352_subset__insertI2,axiom,
! [A2: set_set_a,B4: set_set_a,B: set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ B4 )
=> ( ord_le3724670747650509150_set_a @ A2 @ ( insert_set_a @ B @ B4 ) ) ) ).
% subset_insertI2
thf(fact_353_subset__singleton__iff,axiom,
! [X4: set_a,A: a] :
( ( ord_less_eq_set_a @ X4 @ ( insert_a @ A @ bot_bot_set_a ) )
= ( ( X4 = bot_bot_set_a )
| ( X4
= ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).
% subset_singleton_iff
thf(fact_354_subset__singleton__iff,axiom,
! [X4: set_set_a,A: set_a] :
( ( ord_le3724670747650509150_set_a @ X4 @ ( insert_set_a @ A @ bot_bot_set_set_a ) )
= ( ( X4 = bot_bot_set_set_a )
| ( X4
= ( insert_set_a @ A @ bot_bot_set_set_a ) ) ) ) ).
% subset_singleton_iff
thf(fact_355_subset__singletonD,axiom,
! [A2: set_a,X: a] :
( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) )
=> ( ( A2 = bot_bot_set_a )
| ( A2
= ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).
% subset_singletonD
thf(fact_356_subset__singletonD,axiom,
! [A2: set_set_a,X: set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) )
=> ( ( A2 = bot_bot_set_set_a )
| ( A2
= ( insert_set_a @ X @ bot_bot_set_set_a ) ) ) ) ).
% subset_singletonD
thf(fact_357_Diff__single__insert,axiom,
! [A2: set_a,X: a,B4: set_a] :
( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B4 )
=> ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B4 ) ) ) ).
% Diff_single_insert
thf(fact_358_Diff__single__insert,axiom,
! [A2: set_set_a,X: set_a,B4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) ) @ B4 )
=> ( ord_le3724670747650509150_set_a @ A2 @ ( insert_set_a @ X @ B4 ) ) ) ).
% Diff_single_insert
thf(fact_359_subset__insert__iff,axiom,
! [A2: set_a,X: a,B4: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B4 ) )
= ( ( ( member_a @ X @ A2 )
=> ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B4 ) )
& ( ~ ( member_a @ X @ A2 )
=> ( ord_less_eq_set_a @ A2 @ B4 ) ) ) ) ).
% subset_insert_iff
thf(fact_360_subset__insert__iff,axiom,
! [A2: set_set_a,X: set_a,B4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ ( insert_set_a @ X @ B4 ) )
= ( ( ( member_set_a @ X @ A2 )
=> ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A2 @ ( insert_set_a @ X @ bot_bot_set_set_a ) ) @ B4 ) )
& ( ~ ( member_set_a @ X @ A2 )
=> ( ord_le3724670747650509150_set_a @ A2 @ B4 ) ) ) ) ).
% subset_insert_iff
thf(fact_361_Diff__mono,axiom,
! [A2: set_a,C4: set_a,D2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A2 @ C4 )
=> ( ( ord_less_eq_set_a @ D2 @ B4 )
=> ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B4 ) @ ( minus_minus_set_a @ C4 @ D2 ) ) ) ) ).
% Diff_mono
thf(fact_362_Diff__mono,axiom,
! [A2: set_set_a,C4: set_set_a,D2: set_set_a,B4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ C4 )
=> ( ( ord_le3724670747650509150_set_a @ D2 @ B4 )
=> ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A2 @ B4 ) @ ( minus_5736297505244876581_set_a @ C4 @ D2 ) ) ) ) ).
% Diff_mono
thf(fact_363_Diff__subset,axiom,
! [A2: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B4 ) @ A2 ) ).
% Diff_subset
thf(fact_364_Diff__subset,axiom,
! [A2: set_set_a,B4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A2 @ B4 ) @ A2 ) ).
% Diff_subset
thf(fact_365_double__diff,axiom,
! [A2: set_a,B4: set_a,C4: set_a] :
( ( ord_less_eq_set_a @ A2 @ B4 )
=> ( ( ord_less_eq_set_a @ B4 @ C4 )
=> ( ( minus_minus_set_a @ B4 @ ( minus_minus_set_a @ C4 @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_366_double__diff,axiom,
! [A2: set_set_a,B4: set_set_a,C4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ B4 )
=> ( ( ord_le3724670747650509150_set_a @ B4 @ C4 )
=> ( ( minus_5736297505244876581_set_a @ B4 @ ( minus_5736297505244876581_set_a @ C4 @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_367_in__mono,axiom,
! [A2: set_a,B4: set_a,X: a] :
( ( ord_less_eq_set_a @ A2 @ B4 )
=> ( ( member_a @ X @ A2 )
=> ( member_a @ X @ B4 ) ) ) ).
% in_mono
thf(fact_368_in__mono,axiom,
! [A2: set_set_a,B4: set_set_a,X: set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ B4 )
=> ( ( member_set_a @ X @ A2 )
=> ( member_set_a @ X @ B4 ) ) ) ).
% in_mono
thf(fact_369_subsetD,axiom,
! [A2: set_a,B4: set_a,C: a] :
( ( ord_less_eq_set_a @ A2 @ B4 )
=> ( ( member_a @ C @ A2 )
=> ( member_a @ C @ B4 ) ) ) ).
% subsetD
thf(fact_370_subsetD,axiom,
! [A2: set_set_a,B4: set_set_a,C: set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ B4 )
=> ( ( member_set_a @ C @ A2 )
=> ( member_set_a @ C @ B4 ) ) ) ).
% subsetD
thf(fact_371_equalityE,axiom,
! [A2: set_a,B4: set_a] :
( ( A2 = B4 )
=> ~ ( ( ord_less_eq_set_a @ A2 @ B4 )
=> ~ ( ord_less_eq_set_a @ B4 @ A2 ) ) ) ).
% equalityE
thf(fact_372_equalityE,axiom,
! [A2: set_set_a,B4: set_set_a] :
( ( A2 = B4 )
=> ~ ( ( ord_le3724670747650509150_set_a @ A2 @ B4 )
=> ~ ( ord_le3724670747650509150_set_a @ B4 @ A2 ) ) ) ).
% equalityE
thf(fact_373_subset__eq,axiom,
( ord_less_eq_set_a
= ( ^ [A5: set_a,B5: set_a] :
! [X2: a] :
( ( member_a @ X2 @ A5 )
=> ( member_a @ X2 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_374_subset__eq,axiom,
( ord_le3724670747650509150_set_a
= ( ^ [A5: set_set_a,B5: set_set_a] :
! [X2: set_a] :
( ( member_set_a @ X2 @ A5 )
=> ( member_set_a @ X2 @ B5 ) ) ) ) ).
% subset_eq
thf(fact_375_equalityD1,axiom,
! [A2: set_a,B4: set_a] :
( ( A2 = B4 )
=> ( ord_less_eq_set_a @ A2 @ B4 ) ) ).
% equalityD1
thf(fact_376_equalityD1,axiom,
! [A2: set_set_a,B4: set_set_a] :
( ( A2 = B4 )
=> ( ord_le3724670747650509150_set_a @ A2 @ B4 ) ) ).
% equalityD1
thf(fact_377_equalityD2,axiom,
! [A2: set_a,B4: set_a] :
( ( A2 = B4 )
=> ( ord_less_eq_set_a @ B4 @ A2 ) ) ).
% equalityD2
thf(fact_378_equalityD2,axiom,
! [A2: set_set_a,B4: set_set_a] :
( ( A2 = B4 )
=> ( ord_le3724670747650509150_set_a @ B4 @ A2 ) ) ).
% equalityD2
thf(fact_379_subset__iff,axiom,
( ord_less_eq_set_a
= ( ^ [A5: set_a,B5: set_a] :
! [T: a] :
( ( member_a @ T @ A5 )
=> ( member_a @ T @ B5 ) ) ) ) ).
% subset_iff
thf(fact_380_subset__iff,axiom,
( ord_le3724670747650509150_set_a
= ( ^ [A5: set_set_a,B5: set_set_a] :
! [T: set_a] :
( ( member_set_a @ T @ A5 )
=> ( member_set_a @ T @ B5 ) ) ) ) ).
% subset_iff
thf(fact_381_subset__refl,axiom,
! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).
% subset_refl
thf(fact_382_subset__refl,axiom,
! [A2: set_set_a] : ( ord_le3724670747650509150_set_a @ A2 @ A2 ) ).
% subset_refl
thf(fact_383_Collect__mono,axiom,
! [P: a > $o,Q: a > $o] :
( ! [X3: a] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).
% Collect_mono
thf(fact_384_Collect__mono,axiom,
! [P: set_a > $o,Q: set_a > $o] :
( ! [X3: set_a] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_le3724670747650509150_set_a @ ( collect_set_a @ P ) @ ( collect_set_a @ Q ) ) ) ).
% Collect_mono
thf(fact_385_subset__trans,axiom,
! [A2: set_a,B4: set_a,C4: set_a] :
( ( ord_less_eq_set_a @ A2 @ B4 )
=> ( ( ord_less_eq_set_a @ B4 @ C4 )
=> ( ord_less_eq_set_a @ A2 @ C4 ) ) ) ).
% subset_trans
thf(fact_386_subset__trans,axiom,
! [A2: set_set_a,B4: set_set_a,C4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ B4 )
=> ( ( ord_le3724670747650509150_set_a @ B4 @ C4 )
=> ( ord_le3724670747650509150_set_a @ A2 @ C4 ) ) ) ).
% subset_trans
thf(fact_387_set__eq__subset,axiom,
( ( ^ [Y4: set_a,Z2: set_a] : ( Y4 = Z2 ) )
= ( ^ [A5: set_a,B5: set_a] :
( ( ord_less_eq_set_a @ A5 @ B5 )
& ( ord_less_eq_set_a @ B5 @ A5 ) ) ) ) ).
% set_eq_subset
thf(fact_388_set__eq__subset,axiom,
( ( ^ [Y4: set_set_a,Z2: set_set_a] : ( Y4 = Z2 ) )
= ( ^ [A5: set_set_a,B5: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A5 @ B5 )
& ( ord_le3724670747650509150_set_a @ B5 @ A5 ) ) ) ) ).
% set_eq_subset
thf(fact_389_Collect__mono__iff,axiom,
! [P: a > $o,Q: a > $o] :
( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
= ( ! [X2: a] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_390_Collect__mono__iff,axiom,
! [P: set_a > $o,Q: set_a > $o] :
( ( ord_le3724670747650509150_set_a @ ( collect_set_a @ P ) @ ( collect_set_a @ Q ) )
= ( ! [X2: set_a] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_391_domain_Omult__divides,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ C @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( ( factor8216151070175719842xt_a_b @ R @ ( mult_a_ring_ext_a_b @ R @ C @ A ) @ ( mult_a_ring_ext_a_b @ R @ C @ B ) )
=> ( factor8216151070175719842xt_a_b @ R @ A @ B ) ) ) ) ) ) ).
% domain.mult_divides
thf(fact_392_subset__Compl__self__eq,axiom,
! [A2: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( uminus_uminus_set_a @ A2 ) )
= ( A2 = bot_bot_set_a ) ) ).
% subset_Compl_self_eq
thf(fact_393_subset__Compl__self__eq,axiom,
! [A2: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ ( uminus6103902357914783669_set_a @ A2 ) )
= ( A2 = bot_bot_set_set_a ) ) ).
% subset_Compl_self_eq
thf(fact_394_primeideal__iff__prime,axiom,
! [P2: a] :
( ( member_a @ P2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( primeideal_a_b @ ( cgenid547466209912283029xt_a_b @ r @ P2 ) @ r )
= ( ring_ring_prime_a_b @ r @ P2 ) ) ) ).
% primeideal_iff_prime
thf(fact_395_domain__eq__zeroprimeideal,axiom,
( ( domain_a_b @ r )
= ( primeideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r ) ) ).
% domain_eq_zeroprimeideal
thf(fact_396_zeroprimeideal__domainI,axiom,
( ( primeideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r )
=> ( domain_a_b @ r ) ) ).
% zeroprimeideal_domainI
thf(fact_397_cgenideal__eq__genideal,axiom,
! [I: a] :
( ( member_a @ I @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( cgenid547466209912283029xt_a_b @ r @ I )
= ( genideal_a_b @ r @ ( insert_a @ I @ bot_bot_set_a ) ) ) ) ).
% cgenideal_eq_genideal
thf(fact_398_zeroprimeideal,axiom,
primeideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r ).
% zeroprimeideal
thf(fact_399_Idl__subset__ideal_H,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ ( genideal_a_b @ r @ ( insert_a @ A @ bot_bot_set_a ) ) @ ( genideal_a_b @ r @ ( insert_a @ B @ bot_bot_set_a ) ) )
= ( member_a @ A @ ( genideal_a_b @ r @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ) ) ).
% Idl_subset_ideal'
thf(fact_400_ring__irreducibleI,axiom,
! [R3: a] :
( ( member_a @ R3 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ~ ( member_a @ R3 @ ( units_a_ring_ext_a_b @ r ) )
=> ( ! [A4: a,B3: a] :
( ( member_a @ A4 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( R3
= ( mult_a_ring_ext_a_b @ r @ A4 @ B3 ) )
=> ( ( member_a @ A4 @ ( units_a_ring_ext_a_b @ r ) )
| ( member_a @ B3 @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) )
=> ( ring_r999134135267193926le_a_b @ r @ R3 ) ) ) ) ).
% ring_irreducibleI
thf(fact_401_Units__closed,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) ) ) ).
% Units_closed
thf(fact_402_prod__unit__l,axiom,
! [A: a,B: a] :
( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ) ).
% prod_unit_l
thf(fact_403_prod__unit__r,axiom,
! [A: a,B: a] :
( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ) ).
% prod_unit_r
thf(fact_404_unit__factor,axiom,
! [A: a,B: a] :
( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ).
% unit_factor
thf(fact_405_divides__unit,axiom,
! [A: a,U: a] :
( ( factor8216151070175719842xt_a_b @ r @ A @ U )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
=> ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ).
% divides_unit
thf(fact_406_unit__divides,axiom,
! [U: a,A: a] :
( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( factor8216151070175719842xt_a_b @ r @ U @ A ) ) ) ).
% unit_divides
thf(fact_407_genideal__self,axiom,
! [S: set_a] :
( ( ord_less_eq_set_a @ S @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ord_less_eq_set_a @ S @ ( genideal_a_b @ r @ S ) ) ) ).
% genideal_self
thf(fact_408_subset__Idl__subset,axiom,
! [I2: set_a,H2: set_a] :
( ( ord_less_eq_set_a @ I2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ H2 @ I2 )
=> ( ord_less_eq_set_a @ ( genideal_a_b @ r @ H2 ) @ ( genideal_a_b @ r @ I2 ) ) ) ) ).
% subset_Idl_subset
thf(fact_409_ideal__eq__carrier__iff,axiom,
! [A: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( partia707051561876973205xt_a_b @ r )
= ( cgenid547466209912283029xt_a_b @ r @ A ) )
= ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) ) ) ) ).
% ideal_eq_carrier_iff
thf(fact_410_ring__irreducibleE_I4_J,axiom,
! [R3: a] :
( ( member_a @ R3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ring_r999134135267193926le_a_b @ r @ R3 )
=> ~ ( member_a @ R3 @ ( units_a_ring_ext_a_b @ r ) ) ) ) ).
% ring_irreducibleE(4)
thf(fact_411_genideal__self_H,axiom,
! [I: a] :
( ( member_a @ I @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ I @ ( genideal_a_b @ r @ ( insert_a @ I @ bot_bot_set_a ) ) ) ) ).
% genideal_self'
thf(fact_412_genideal__zero,axiom,
( ( genideal_a_b @ r @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) )
= ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) ).
% genideal_zero
thf(fact_413_irreducible__prod__rI,axiom,
! [A: a,B: a] :
( ( irredu6211895646901577903xt_a_b @ r @ A )
=> ( ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( irredu6211895646901577903xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ) ).
% irreducible_prod_rI
thf(fact_414_irreducible__prod__lI,axiom,
! [B: a,A: a] :
( ( irredu6211895646901577903xt_a_b @ r @ B )
=> ( ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( irredu6211895646901577903xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ) ).
% irreducible_prod_lI
thf(fact_415_ring__irreducibleE_I5_J,axiom,
! [R3: a,A: a,B: a] :
( ( member_a @ R3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ring_r999134135267193926le_a_b @ r @ R3 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( R3
= ( mult_a_ring_ext_a_b @ r @ A @ B ) )
=> ( ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) )
| ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ) ) ) ).
% ring_irreducibleE(5)
thf(fact_416_Units__m__closed,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ Y @ ( units_a_ring_ext_a_b @ r ) )
=> ( member_a @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ ( units_a_ring_ext_a_b @ r ) ) ) ) ).
% Units_m_closed
thf(fact_417_Units__l__cancel,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( mult_a_ring_ext_a_b @ r @ X @ Z ) )
= ( Y = Z ) ) ) ) ) ).
% Units_l_cancel
thf(fact_418_domain_Oring__irreducibleE_I4_J,axiom,
! [R: partia2175431115845679010xt_a_b,R3: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ R3 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ring_r999134135267193926le_a_b @ R @ R3 )
=> ~ ( member_a @ R3 @ ( units_a_ring_ext_a_b @ R ) ) ) ) ) ).
% domain.ring_irreducibleE(4)
thf(fact_419_Units__hom,axiom,
! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a] :
( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
=> ( ( domain_a_b @ R )
=> ( ( domain_a_b @ S )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ X @ ( units_a_ring_ext_a_b @ R ) )
= ( member_a @ ( H @ X ) @ ( units_a_ring_ext_a_b @ S ) ) ) ) ) ) ) ).
% Units_hom
thf(fact_420_domain_Oring__irreducibleE_I5_J,axiom,
! [R: partia2175431115845679010xt_a_b,R3: a,A: a,B: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ R3 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ring_r999134135267193926le_a_b @ R @ R3 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( R3
= ( mult_a_ring_ext_a_b @ R @ A @ B ) )
=> ( ( member_a @ A @ ( units_a_ring_ext_a_b @ R ) )
| ( member_a @ B @ ( units_a_ring_ext_a_b @ R ) ) ) ) ) ) ) ) ) ).
% domain.ring_irreducibleE(5)
thf(fact_421_prime__def,axiom,
( prime_a_ring_ext_a_b
= ( ^ [G: partia2175431115845679010xt_a_b,P3: a] :
( ~ ( member_a @ P3 @ ( units_a_ring_ext_a_b @ G ) )
& ! [X2: a] :
( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ G ) )
=> ! [Y2: a] :
( ( member_a @ Y2 @ ( partia707051561876973205xt_a_b @ G ) )
=> ( ( factor8216151070175719842xt_a_b @ G @ P3 @ ( mult_a_ring_ext_a_b @ G @ X2 @ Y2 ) )
=> ( ( factor8216151070175719842xt_a_b @ G @ P3 @ X2 )
| ( factor8216151070175719842xt_a_b @ G @ P3 @ Y2 ) ) ) ) ) ) ) ) ).
% prime_def
thf(fact_422_prime__def,axiom,
( prime_a_Product_unit
= ( ^ [G: partia8223610829204095565t_unit,P3: a] :
( ~ ( member_a @ P3 @ ( units_a_Product_unit @ G ) )
& ! [X2: a] :
( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ G ) )
=> ! [Y2: a] :
( ( member_a @ Y2 @ ( partia6735698275553448452t_unit @ G ) )
=> ( ( factor3040189038382604065t_unit @ G @ P3 @ ( mult_a_Product_unit @ G @ X2 @ Y2 ) )
=> ( ( factor3040189038382604065t_unit @ G @ P3 @ X2 )
| ( factor3040189038382604065t_unit @ G @ P3 @ Y2 ) ) ) ) ) ) ) ) ).
% prime_def
thf(fact_423_primeI,axiom,
! [P2: a,G2: partia2175431115845679010xt_a_b] :
( ~ ( member_a @ P2 @ ( units_a_ring_ext_a_b @ G2 ) )
=> ( ! [A4: a,B3: a] :
( ( member_a @ A4 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( factor8216151070175719842xt_a_b @ G2 @ P2 @ ( mult_a_ring_ext_a_b @ G2 @ A4 @ B3 ) )
=> ( ( factor8216151070175719842xt_a_b @ G2 @ P2 @ A4 )
| ( factor8216151070175719842xt_a_b @ G2 @ P2 @ B3 ) ) ) ) )
=> ( prime_a_ring_ext_a_b @ G2 @ P2 ) ) ) ).
% primeI
thf(fact_424_primeI,axiom,
! [P2: a,G2: partia8223610829204095565t_unit] :
( ~ ( member_a @ P2 @ ( units_a_Product_unit @ G2 ) )
=> ( ! [A4: a,B3: a] :
( ( member_a @ A4 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( factor3040189038382604065t_unit @ G2 @ P2 @ ( mult_a_Product_unit @ G2 @ A4 @ B3 ) )
=> ( ( factor3040189038382604065t_unit @ G2 @ P2 @ A4 )
| ( factor3040189038382604065t_unit @ G2 @ P2 @ B3 ) ) ) ) )
=> ( prime_a_Product_unit @ G2 @ P2 ) ) ) ).
% primeI
thf(fact_425_primeE,axiom,
! [G2: partia2175431115845679010xt_a_b,P2: a] :
( ( prime_a_ring_ext_a_b @ G2 @ P2 )
=> ~ ( ~ ( member_a @ P2 @ ( units_a_ring_ext_a_b @ G2 ) )
=> ~ ! [X5: a] :
( ( member_a @ X5 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ! [Xa2: a] :
( ( member_a @ Xa2 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( factor8216151070175719842xt_a_b @ G2 @ P2 @ ( mult_a_ring_ext_a_b @ G2 @ X5 @ Xa2 ) )
=> ( ( factor8216151070175719842xt_a_b @ G2 @ P2 @ X5 )
| ( factor8216151070175719842xt_a_b @ G2 @ P2 @ Xa2 ) ) ) ) ) ) ) ).
% primeE
thf(fact_426_primeE,axiom,
! [G2: partia8223610829204095565t_unit,P2: a] :
( ( prime_a_Product_unit @ G2 @ P2 )
=> ~ ( ~ ( member_a @ P2 @ ( units_a_Product_unit @ G2 ) )
=> ~ ! [X5: a] :
( ( member_a @ X5 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ! [Xa2: a] :
( ( member_a @ Xa2 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( factor3040189038382604065t_unit @ G2 @ P2 @ ( mult_a_Product_unit @ G2 @ X5 @ Xa2 ) )
=> ( ( factor3040189038382604065t_unit @ G2 @ P2 @ X5 )
| ( factor3040189038382604065t_unit @ G2 @ P2 @ Xa2 ) ) ) ) ) ) ) ).
% primeE
thf(fact_427_domain_Oring__irreducibleI,axiom,
! [R: partia2175431115845679010xt_a_b,R3: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ R3 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( ~ ( member_a @ R3 @ ( units_a_ring_ext_a_b @ R ) )
=> ( ! [A4: a,B3: a] :
( ( member_a @ A4 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B3 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( R3
= ( mult_a_ring_ext_a_b @ R @ A4 @ B3 ) )
=> ( ( member_a @ A4 @ ( units_a_ring_ext_a_b @ R ) )
| ( member_a @ B3 @ ( units_a_ring_ext_a_b @ R ) ) ) ) ) )
=> ( ring_r999134135267193926le_a_b @ R @ R3 ) ) ) ) ) ).
% domain.ring_irreducibleI
thf(fact_428_domain_Oprimeideal__iff__prime,axiom,
! [R: partia2175431115845679010xt_a_b,P2: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ P2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( ( primeideal_a_b @ ( cgenid547466209912283029xt_a_b @ R @ P2 ) @ R )
= ( ring_ring_prime_a_b @ R @ P2 ) ) ) ) ).
% domain.primeideal_iff_prime
thf(fact_429_maximalideal__prime,axiom,
! [I2: set_a] :
( ( maximalideal_a_b @ I2 @ r )
=> ( primeideal_a_b @ I2 @ r ) ) ).
% maximalideal_prime
thf(fact_430_cring__fieldI,axiom,
( ( ( units_a_ring_ext_a_b @ r )
= ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( field_a_b @ r ) ) ).
% cring_fieldI
thf(fact_431_divides__imp__divides__mult,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ).
% divides_imp_divides_mult
thf(fact_432_principalideal_Ogenerate,axiom,
! [I2: set_a,R: partia2175431115845679010xt_a_b] :
( ( principalideal_a_b @ I2 @ R )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ R ) )
& ( I2
= ( genideal_a_b @ R @ ( insert_a @ X3 @ bot_bot_set_a ) ) ) ) ) ).
% principalideal.generate
thf(fact_433_domain_Ozeroprimeideal,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( domain_a_b @ R )
=> ( primeideal_a_b @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) @ R ) ) ).
% domain.zeroprimeideal
thf(fact_434_space__subgroup__props_I6_J,axiom,
! [K2: set_a,N: nat,E2: set_a,K: a,A: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( ( member_a @ K @ ( minus_minus_set_a @ K2 @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ ( mult_a_ring_ext_a_b @ r @ K @ A ) @ E2 )
=> ( member_a @ A @ E2 ) ) ) ) ) ) ).
% space_subgroup_props(6)
thf(fact_435_mult__of_OUnits__closed,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).
% mult_of.Units_closed
thf(fact_436_mult__of_Omonoid__cancel__axioms,axiom,
monoid1999574367301118026t_unit @ ( ring_mult_of_a_b @ r ) ).
% mult_of.monoid_cancel_axioms
thf(fact_437_zero__is__prime_I2_J,axiom,
prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ ( zero_a_b @ r ) ).
% zero_is_prime(2)
thf(fact_438_mult__of_Oprod__unit__l,axiom,
! [A: a,B: a] :
( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ) ).
% mult_of.prod_unit_l
thf(fact_439_mult__of_Oprod__unit__r,axiom,
! [A: a,B: a] :
( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ) ).
% mult_of.prod_unit_r
thf(fact_440_mult__of_Ounit__factor,axiom,
! [A: a,B: a] :
( ( member_a @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ).
% mult_of.unit_factor
thf(fact_441_mult__of_Omonoid__cancelI,axiom,
( ! [A4: a,B3: a,C2: a] :
( ( ( mult_a_ring_ext_a_b @ r @ C2 @ A4 )
= ( mult_a_ring_ext_a_b @ r @ C2 @ B3 ) )
=> ( ( member_a @ A4 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B3 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( A4 = B3 ) ) ) ) )
=> ( ! [A4: a,B3: a,C2: a] :
( ( ( mult_a_ring_ext_a_b @ r @ A4 @ C2 )
= ( mult_a_ring_ext_a_b @ r @ B3 @ C2 ) )
=> ( ( member_a @ A4 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B3 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( A4 = B3 ) ) ) ) )
=> ( monoid1999574367301118026t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).
% mult_of.monoid_cancelI
thf(fact_442_mult__of_Or__cancel,axiom,
! [A: a,C: a,B: a] :
( ( ( mult_a_ring_ext_a_b @ r @ A @ C )
= ( mult_a_ring_ext_a_b @ r @ B @ C ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( A = B ) ) ) ) ) ).
% mult_of.r_cancel
thf(fact_443_mult__of_Om__lcomm,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Z @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ X @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) )
= ( mult_a_ring_ext_a_b @ r @ Y @ ( mult_a_ring_ext_a_b @ r @ X @ Z ) ) ) ) ) ) ).
% mult_of.m_lcomm
thf(fact_444_mult__of_Om__comm,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( mult_a_ring_ext_a_b @ r @ Y @ X ) ) ) ) ).
% mult_of.m_comm
thf(fact_445_mult__of_Om__assoc,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Z @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ Z )
= ( mult_a_ring_ext_a_b @ r @ X @ ( mult_a_ring_ext_a_b @ r @ Y @ Z ) ) ) ) ) ) ).
% mult_of.m_assoc
thf(fact_446_mult__of_Ol__cancel,axiom,
! [C: a,A: a,B: a] :
( ( ( mult_a_ring_ext_a_b @ r @ C @ A )
= ( mult_a_ring_ext_a_b @ r @ C @ B ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( A = B ) ) ) ) ) ).
% mult_of.l_cancel
thf(fact_447_mult__of_Ocarrier__not__empty,axiom,
( ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) )
!= bot_bot_set_a ) ).
% mult_of.carrier_not_empty
thf(fact_448_mult__of_Odivides__unit,axiom,
! [A: a,U: a] :
( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ U )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ).
% mult_of.divides_unit
thf(fact_449_mult__of_Ounit__divides,axiom,
! [U: a,A: a] :
( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ U @ A ) ) ) ).
% mult_of.unit_divides
thf(fact_450_mult__of_Oisgcd__divides__r,axiom,
! [B: a,A: a] :
( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ B @ A )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( isgcd_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ B @ A @ B ) ) ) ) ).
% mult_of.isgcd_divides_r
thf(fact_451_mult__of_Oisgcd__divides__l,axiom,
! [A: a,B: a] :
( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( isgcd_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ A @ A @ B ) ) ) ) ).
% mult_of.isgcd_divides_l
thf(fact_452_mult__of_Odivides__trans,axiom,
! [A: a,B: a,C: a] :
( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ B @ C )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ C ) ) ) ) ).
% mult_of.divides_trans
thf(fact_453_dimension__is__inj,axiom,
! [K2: set_a,N: nat,E2: set_a,M: nat] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( ( embedd2795209813406577254on_a_b @ r @ M @ K2 @ E2 )
=> ( N = M ) ) ) ) ).
% dimension_is_inj
thf(fact_454_telescopic__base,axiom,
! [K2: set_a,F: set_a,N: nat,M: nat,E2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( subfield_a_b @ F @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ F )
=> ( ( embedd2795209813406577254on_a_b @ r @ M @ F @ E2 )
=> ( embedd2795209813406577254on_a_b @ r @ ( times_times_nat @ N @ M ) @ K2 @ E2 ) ) ) ) ) ).
% telescopic_base
thf(fact_455_finite__dimension__def,axiom,
! [K2: set_a,E2: set_a] :
( ( embedd8708762675212832759on_a_b @ r @ K2 @ E2 )
= ( ? [N2: nat] : ( embedd2795209813406577254on_a_b @ r @ N2 @ K2 @ E2 ) ) ) ).
% finite_dimension_def
thf(fact_456_finite__dimensionI,axiom,
! [N: nat,K2: set_a,E2: set_a] :
( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( embedd8708762675212832759on_a_b @ r @ K2 @ E2 ) ) ).
% finite_dimensionI
thf(fact_457_finite__dimensionE_H,axiom,
! [K2: set_a,E2: set_a] :
( ( embedd8708762675212832759on_a_b @ r @ K2 @ E2 )
=> ~ ! [N3: nat] :
~ ( embedd2795209813406577254on_a_b @ r @ N3 @ K2 @ E2 ) ) ).
% finite_dimensionE'
thf(fact_458_mult__of_Oprime__divides,axiom,
! [A: a,B: a,P2: a] :
( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ P2 @ ( mult_a_ring_ext_a_b @ r @ A @ B ) )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ P2 @ A )
| ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ P2 @ B ) ) ) ) ) ) ).
% mult_of.prime_divides
thf(fact_459_mult__of_Odivides__prod__l,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ) ).
% mult_of.divides_prod_l
thf(fact_460_mult__of_Odivides__prod__r,axiom,
! [A: a,B: a,C: a] :
( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ).
% mult_of.divides_prod_r
thf(fact_461_space__subgroup__props_I2_J,axiom,
! [K2: set_a,N: nat,E2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( member_a @ ( zero_a_b @ r ) @ E2 ) ) ) ).
% space_subgroup_props(2)
thf(fact_462_space__subgroup__props_I3_J,axiom,
! [K2: set_a,N: nat,E2: set_a,V1: a,V22: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( ( member_a @ V1 @ E2 )
=> ( ( member_a @ V22 @ E2 )
=> ( member_a @ ( add_a_b @ r @ V1 @ V22 ) @ E2 ) ) ) ) ) ).
% space_subgroup_props(3)
thf(fact_463_space__subgroup__props_I5_J,axiom,
! [K2: set_a,N: nat,E2: set_a,K: a,V3: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( ( member_a @ K @ K2 )
=> ( ( member_a @ V3 @ E2 )
=> ( member_a @ ( mult_a_ring_ext_a_b @ r @ K @ V3 ) @ E2 ) ) ) ) ) ).
% space_subgroup_props(5)
thf(fact_464_space__subgroup__props_I4_J,axiom,
! [K2: set_a,N: nat,E2: set_a,V3: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( ( member_a @ V3 @ E2 )
=> ( member_a @ ( a_inv_a_b @ r @ V3 ) @ E2 ) ) ) ) ).
% space_subgroup_props(4)
thf(fact_465_unique__dimension,axiom,
! [K2: set_a,E2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd8708762675212832759on_a_b @ r @ K2 @ E2 )
=> ? [X3: nat] :
( ( embedd2795209813406577254on_a_b @ r @ X3 @ K2 @ E2 )
& ! [Y5: nat] :
( ( embedd2795209813406577254on_a_b @ r @ Y5 @ K2 @ E2 )
=> ( Y5 = X3 ) ) ) ) ) ).
% unique_dimension
thf(fact_466_ring__primeE_I2_J,axiom,
! [P2: a] :
( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ring_ring_prime_a_b @ r @ P2 )
=> ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 ) ) ) ).
% ring_primeE(2)
thf(fact_467_prime__eq__prime__mult,axiom,
! [P2: a] :
( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( prime_a_ring_ext_a_b @ r @ P2 )
= ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 ) ) ) ).
% prime_eq_prime_mult
thf(fact_468_zero__is__irreducible__iff__field,axiom,
( ( irredu6211895646901577903xt_a_b @ r @ ( zero_a_b @ r ) )
= ( field_a_b @ r ) ) ).
% zero_is_irreducible_iff_field
thf(fact_469_divides__mult__zero,axiom,
! [A: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ ( zero_a_b @ r ) )
=> ( A
= ( zero_a_b @ r ) ) ) ) ).
% divides_mult_zero
thf(fact_470_space__subgroup__props_I1_J,axiom,
! [K2: set_a,N: nat,E2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( ord_less_eq_set_a @ E2 @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% space_subgroup_props(1)
thf(fact_471_zeromaximalideal__eq__field,axiom,
( ( maximalideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r )
= ( field_a_b @ r ) ) ).
% zeromaximalideal_eq_field
thf(fact_472_zeromaximalideal__fieldI,axiom,
( ( maximalideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r )
=> ( field_a_b @ r ) ) ).
% zeromaximalideal_fieldI
thf(fact_473_Ring__Divisibility_Omult__mult__of,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( mult_a_Product_unit @ ( ring_mult_of_a_b @ R ) )
= ( mult_a_ring_ext_a_b @ R ) ) ).
% Ring_Divisibility.mult_mult_of
thf(fact_474_ring__primeI_H,axiom,
! [P2: a] :
( ( member_a @ P2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 )
=> ( ring_ring_prime_a_b @ r @ P2 ) ) ) ).
% ring_primeI'
thf(fact_475_mult__of_OUnits__l__cancel,axiom,
! [X: a,Y: a,Z: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Z @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( mult_a_ring_ext_a_b @ r @ X @ Z ) )
= ( Y = Z ) ) ) ) ) ).
% mult_of.Units_l_cancel
thf(fact_476_mult__of_OUnits__m__closed,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ).
% mult_of.Units_m_closed
thf(fact_477_mult__of_Om__closed,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ).
% mult_of.m_closed
thf(fact_478_Units__mult__eq__Units,axiom,
( ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) )
= ( units_a_ring_ext_a_b @ r ) ) ).
% Units_mult_eq_Units
thf(fact_479_mult__of_Odivides__refl,axiom,
! [A: a] :
( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ A ) ) ).
% mult_of.divides_refl
thf(fact_480_mult__of_Odivides__mult__l,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) )
= ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ) ).
% mult_of.divides_mult_l
thf(fact_481_mult__of_Odivides__mult__lI,axiom,
! [A: a,B: a,C: a] :
( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ).
% mult_of.divides_mult_lI
thf(fact_482_mult__of_Odivides__mult__r,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ C ) @ ( mult_a_ring_ext_a_b @ r @ B @ C ) )
= ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ) ).
% mult_of.divides_mult_r
thf(fact_483_mult__of_Odivides__mult__rI,axiom,
! [A: a,B: a,C: a] :
( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ C ) @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ) ).
% mult_of.divides_mult_rI
thf(fact_484_Ring__Divisibility_Ocarrier__mult__of,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ R ) )
= ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) ) ).
% Ring_Divisibility.carrier_mult_of
thf(fact_485_maximalideal_OI__notcarr,axiom,
! [I2: set_a,R: partia2175431115845679010xt_a_b] :
( ( maximalideal_a_b @ I2 @ R )
=> ( ( partia707051561876973205xt_a_b @ R )
!= I2 ) ) ).
% maximalideal.I_notcarr
thf(fact_486_domain_OUnits__mult__eq__Units,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( domain_a_b @ R )
=> ( ( units_a_Product_unit @ ( ring_mult_of_a_b @ R ) )
= ( units_a_ring_ext_a_b @ R ) ) ) ).
% domain.Units_mult_eq_Units
thf(fact_487_field_Oaxioms_I1_J,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( field_a_b @ R )
=> ( domain_a_b @ R ) ) ).
% field.axioms(1)
thf(fact_488_field_Ozeromaximalideal,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( field_a_b @ R )
=> ( maximalideal_a_b @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) @ R ) ) ).
% field.zeromaximalideal
thf(fact_489_domain_Ozero__is__prime_I2_J,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( domain_a_b @ R )
=> ( prime_a_Product_unit @ ( ring_mult_of_a_b @ R ) @ ( zero_a_b @ R ) ) ) ).
% domain.zero_is_prime(2)
thf(fact_490_divides__mult__imp__divides,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ R ) @ A @ B )
=> ( factor8216151070175719842xt_a_b @ R @ A @ B ) ) ).
% divides_mult_imp_divides
thf(fact_491_domain_Oring__primeE_I2_J,axiom,
! [R: partia2175431115845679010xt_a_b,P2: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ring_ring_prime_a_b @ R @ P2 )
=> ( prime_a_Product_unit @ ( ring_mult_of_a_b @ R ) @ P2 ) ) ) ) ).
% domain.ring_primeE(2)
thf(fact_492_domain_Oprime__eq__prime__mult,axiom,
! [R: partia2175431115845679010xt_a_b,P2: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( prime_a_ring_ext_a_b @ R @ P2 )
= ( prime_a_Product_unit @ ( ring_mult_of_a_b @ R ) @ P2 ) ) ) ) ).
% domain.prime_eq_prime_mult
thf(fact_493_Ring_Ointegral,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( field_a_b @ R )
=> ( ( ( mult_a_ring_ext_a_b @ R @ A @ B )
= ( zero_a_b @ R ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( A
= ( zero_a_b @ R ) )
| ( B
= ( zero_a_b @ R ) ) ) ) ) ) ) ).
% Ring.integral
thf(fact_494_field_Of__comm__group__1,axiom,
! [R: partia2175431115845679010xt_a_b,X: a,Y: a] :
( ( field_a_b @ R )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( X
!= ( zero_a_b @ R ) )
=> ( ( Y
!= ( zero_a_b @ R ) )
=> ( ( mult_a_ring_ext_a_b @ R @ X @ Y )
!= ( zero_a_b @ R ) ) ) ) ) ) ) ).
% field.f_comm_group_1
thf(fact_495_domain_Ozero__is__irreducible__iff__field,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( domain_a_b @ R )
=> ( ( irredu6211895646901577903xt_a_b @ R @ ( zero_a_b @ R ) )
= ( field_a_b @ R ) ) ) ).
% domain.zero_is_irreducible_iff_field
thf(fact_496_domain_Odivides__mult__zero,axiom,
! [R: partia2175431115845679010xt_a_b,A: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ R ) @ A @ ( zero_a_b @ R ) )
=> ( A
= ( zero_a_b @ R ) ) ) ) ) ).
% domain.divides_mult_zero
thf(fact_497_principalideal_Ois__principalideal,axiom,
! [I2: set_a,R: partia2175431115845679010xt_a_b] :
( ( principalideal_a_b @ I2 @ R )
=> ( principalideal_a_b @ I2 @ R ) ) ).
% principalideal.is_principalideal
thf(fact_498_domain_Oring__primeI_H,axiom,
! [R: partia2175431115845679010xt_a_b,P2: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ P2 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ R ) @ P2 )
=> ( ring_ring_prime_a_b @ R @ P2 ) ) ) ) ).
% domain.ring_primeI'
thf(fact_499_field__Units,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( field_a_b @ R )
=> ( ( units_a_ring_ext_a_b @ R )
= ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) ) ) ).
% field_Units
thf(fact_500_primeideal_OI__notcarr,axiom,
! [I2: set_a,R: partia2175431115845679010xt_a_b] :
( ( primeideal_a_b @ I2 @ R )
=> ( ( partia707051561876973205xt_a_b @ R )
!= I2 ) ) ).
% primeideal.I_notcarr
thf(fact_501_domain_Odivides__imp__divides__mult,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( ( factor8216151070175719842xt_a_b @ R @ A @ B )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ R ) @ A @ B ) ) ) ) ) ).
% domain.divides_imp_divides_mult
thf(fact_502_primeideal_OI__prime,axiom,
! [I2: set_a,R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( primeideal_a_b @ I2 @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ ( mult_a_ring_ext_a_b @ R @ A @ B ) @ I2 )
=> ( ( member_a @ A @ I2 )
| ( member_a @ B @ I2 ) ) ) ) ) ) ).
% primeideal.I_prime
thf(fact_503_ring__irreducibleI_H,axiom,
! [R3: a] :
( ( member_a @ R3 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ R3 )
=> ( ring_r999134135267193926le_a_b @ r @ R3 ) ) ) ).
% ring_irreducibleI'
thf(fact_504_irreducible__mult__imp__irreducible,axiom,
! [A: a] :
( ( member_a @ A @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A )
=> ( irredu6211895646901577903xt_a_b @ r @ A ) ) ) ).
% irreducible_mult_imp_irreducible
thf(fact_505_field__intro2,axiom,
( ( ( zero_a_b @ r )
!= ( one_a_ring_ext_a_b @ r ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( member_a @ X3 @ ( units_a_ring_ext_a_b @ r ) ) )
=> ( field_a_b @ r ) ) ) ).
% field_intro2
thf(fact_506_dimension__zero,axiom,
! [K2: set_a,E2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ zero_zero_nat @ K2 @ E2 )
=> ( E2
= ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) ) ) ).
% dimension_zero
thf(fact_507_zero__dim,axiom,
! [K2: set_a] : ( embedd2795209813406577254on_a_b @ r @ zero_zero_nat @ K2 @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) ).
% zero_dim
thf(fact_508_noetherian__domain_Oexists__irreducible__divisor,axiom,
! [R: partia2175431115845679010xt_a_b,A: a] :
( ( ring_n4045954140777738665in_a_b @ R )
=> ( ( member_a @ A @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( ~ ( member_a @ A @ ( units_a_ring_ext_a_b @ R ) )
=> ~ ! [B3: a] :
( ( member_a @ B3 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ring_r999134135267193926le_a_b @ R @ B3 )
=> ~ ( factor8216151070175719842xt_a_b @ R @ B3 @ A ) ) ) ) ) ) ).
% noetherian_domain.exists_irreducible_divisor
thf(fact_509_zero__not__one,axiom,
( ( zero_a_b @ r )
!= ( one_a_ring_ext_a_b @ r ) ) ).
% zero_not_one
thf(fact_510_subring__props_I3_J,axiom,
! [K2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( member_a @ ( one_a_ring_ext_a_b @ r ) @ K2 ) ) ).
% subring_props(3)
thf(fact_511_inv__unique,axiom,
! [Y: a,X: a,Y3: a] :
( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y3 )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( Y = Y3 ) ) ) ) ) ) ).
% inv_unique
thf(fact_512_one__unique,axiom,
! [U: a] :
( ( member_a @ U @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ U @ X3 )
= X3 ) )
=> ( U
= ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% one_unique
thf(fact_513_one__divides,axiom,
! [A: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( factor8216151070175719842xt_a_b @ r @ ( one_a_ring_ext_a_b @ r ) @ A ) ) ).
% one_divides
thf(fact_514_zero__is__irreducible__mult,axiom,
irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ ( zero_a_b @ r ) ).
% zero_is_irreducible_mult
thf(fact_515_Units__inv__comm,axiom,
! [X: a,Y: a] :
( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ Y @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
= ( one_a_ring_ext_a_b @ r ) ) ) ) ) ).
% Units_inv_comm
thf(fact_516_mult__of_Oprime__irreducible,axiom,
! [P2: a] :
( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 )
=> ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ P2 ) ) ).
% mult_of.prime_irreducible
thf(fact_517_mult__of_Oone__unique,axiom,
! [U: a] :
( ( member_a @ U @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ U @ X3 )
= X3 ) )
=> ( U
= ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% mult_of.one_unique
thf(fact_518_mult__of_Oinv__unique,axiom,
! [Y: a,X: a,Y3: a] :
( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y3 )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y3 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( Y = Y3 ) ) ) ) ) ) ).
% mult_of.inv_unique
thf(fact_519_square__eq__one,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ X )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( X
= ( one_a_ring_ext_a_b @ r ) )
| ( X
= ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) ) ) ) ) ).
% square_eq_one
thf(fact_520_Units__r__inv__ex,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ r ) )
& ( ( mult_a_ring_ext_a_b @ r @ X @ X3 )
= ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% Units_r_inv_ex
thf(fact_521_Units__l__inv__ex,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ r ) )
& ( ( mult_a_ring_ext_a_b @ r @ X3 @ X )
= ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% Units_l_inv_ex
thf(fact_522_mult__of_OUnits__inv__comm,axiom,
! [X: a,Y: a] :
( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
= ( one_a_ring_ext_a_b @ r ) ) ) ) ) ).
% mult_of.Units_inv_comm
thf(fact_523_divides__one,axiom,
! [A: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( factor8216151070175719842xt_a_b @ r @ A @ ( one_a_ring_ext_a_b @ r ) )
= ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) ) ) ) ).
% divides_one
thf(fact_524_Unit__eq__dividesone,axiom,
! [U: a] :
( ( member_a @ U @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
= ( factor8216151070175719842xt_a_b @ r @ U @ ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% Unit_eq_dividesone
thf(fact_525_irreducible__imp__irreducible__mult,axiom,
! [A: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( irredu6211895646901577903xt_a_b @ r @ A )
=> ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A ) ) ) ).
% irreducible_imp_irreducible_mult
thf(fact_526_ring__irreducibleE_I3_J,axiom,
! [R3: a] :
( ( member_a @ R3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ring_r999134135267193926le_a_b @ r @ R3 )
=> ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ R3 ) ) ) ).
% ring_irreducibleE(3)
thf(fact_527_one__zeroI,axiom,
( ( ( partia707051561876973205xt_a_b @ r )
= ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) )
=> ( ( one_a_ring_ext_a_b @ r )
= ( zero_a_b @ r ) ) ) ).
% one_zeroI
thf(fact_528_one__zeroD,axiom,
( ( ( one_a_ring_ext_a_b @ r )
= ( zero_a_b @ r ) )
=> ( ( partia707051561876973205xt_a_b @ r )
= ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) ) ).
% one_zeroD
thf(fact_529_carrier__one__zero,axiom,
( ( ( partia707051561876973205xt_a_b @ r )
= ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) )
= ( ( one_a_ring_ext_a_b @ r )
= ( zero_a_b @ r ) ) ) ).
% carrier_one_zero
thf(fact_530_carrier__one__not__zero,axiom,
( ( ( partia707051561876973205xt_a_b @ r )
!= ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) )
= ( ( one_a_ring_ext_a_b @ r )
!= ( zero_a_b @ r ) ) ) ).
% carrier_one_not_zero
thf(fact_531_mult__of_OUnits__l__inv__ex,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
& ( ( mult_a_ring_ext_a_b @ r @ X3 @ X )
= ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% mult_of.Units_l_inv_ex
thf(fact_532_mult__of_OUnits__r__inv__ex,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
& ( ( mult_a_ring_ext_a_b @ r @ X @ X3 )
= ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% mult_of.Units_r_inv_ex
thf(fact_533_mult__of_OUnit__eq__dividesone,axiom,
! [U: a] :
( ( member_a @ U @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
= ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ U @ ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% mult_of.Unit_eq_dividesone
thf(fact_534_mult__of_Oirreducible__prodE,axiom,
! [A: a,B: a] :
( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A )
=> ~ ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) )
=> ~ ( ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ~ ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ B ) ) ) ) ) ) ).
% mult_of.irreducible_prodE
thf(fact_535_mult__of_Oirreducible__prod__lI,axiom,
! [B: a,A: a] :
( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ B )
=> ( ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ) ).
% mult_of.irreducible_prod_lI
thf(fact_536_mult__of_Oirreducible__prod__rI,axiom,
! [A: a,B: a] :
( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A )
=> ( ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) ) ) ) ) ) ).
% mult_of.irreducible_prod_rI
thf(fact_537_cring__fieldI2,axiom,
( ( ( zero_a_b @ r )
!= ( one_a_ring_ext_a_b @ r ) )
=> ( ! [A4: a] :
( ( member_a @ A4 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( A4
!= ( zero_a_b @ r ) )
=> ? [X5: a] :
( ( member_a @ X5 @ ( partia707051561876973205xt_a_b @ r ) )
& ( ( mult_a_ring_ext_a_b @ r @ A4 @ X5 )
= ( one_a_ring_ext_a_b @ r ) ) ) ) )
=> ( field_a_b @ r ) ) ) ).
% cring_fieldI2
thf(fact_538_genideal__one,axiom,
( ( genideal_a_b @ r @ ( insert_a @ ( one_a_ring_ext_a_b @ r ) @ bot_bot_set_a ) )
= ( partia707051561876973205xt_a_b @ r ) ) ).
% genideal_one
thf(fact_539_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_540_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_541_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_542_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_543_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_544_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_545_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_546_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_547_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_548_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_549_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_550_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_551_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_552_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y ) )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_553_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_554_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_555_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_556_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_557_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_558_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_559_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_560_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_561_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_562_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_563_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_564_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_565_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_566_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_567_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_568_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_569_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_570_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_571_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_572_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_573_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_574_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_575_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_576_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_577_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_578_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_579_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_580_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_581_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_582_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_583_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_584_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_585_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_586_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_587_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_588_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_589_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_590_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_591_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_592_diff__add__zero,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_593_ab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_left_minus
thf(fact_594_add_Oright__inverse,axiom,
! [A: int] :
( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
= zero_zero_int ) ).
% add.right_inverse
thf(fact_595_diff__0,axiom,
! [A: int] :
( ( minus_minus_int @ zero_zero_int @ A )
= ( uminus_uminus_int @ A ) ) ).
% diff_0
thf(fact_596_one__closed,axiom,
member_a @ ( one_a_ring_ext_a_b @ r ) @ ( partia707051561876973205xt_a_b @ r ) ).
% one_closed
thf(fact_597_Units__one__closed,axiom,
member_a @ ( one_a_ring_ext_a_b @ r ) @ ( units_a_ring_ext_a_b @ r ) ).
% Units_one_closed
thf(fact_598_l__one,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( one_a_ring_ext_a_b @ r ) @ X )
= X ) ) ).
% l_one
thf(fact_599_r__one,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ X @ ( one_a_ring_ext_a_b @ r ) )
= X ) ) ).
% r_one
thf(fact_600_mult__of_Oone__closed,axiom,
member_a @ ( one_a_ring_ext_a_b @ r ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ).
% mult_of.one_closed
thf(fact_601_mult__of_OUnits__one__closed,axiom,
member_a @ ( one_a_ring_ext_a_b @ r ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ).
% mult_of.Units_one_closed
thf(fact_602_Units__minus__one__closed,axiom,
member_a @ ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) @ ( units_a_ring_ext_a_b @ r ) ).
% Units_minus_one_closed
thf(fact_603_mult__of_Or__one,axiom,
! [X: a] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ X @ ( one_a_ring_ext_a_b @ r ) )
= X ) ) ).
% mult_of.r_one
thf(fact_604_mult__of_Ol__one,axiom,
! [X: a] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( one_a_ring_ext_a_b @ r ) @ X )
= X ) ) ).
% mult_of.l_one
thf(fact_605_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_606_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_607_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_608_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_609_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_610_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_611_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_612_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_613_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_614_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_615_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_616_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_617_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_618_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_619_add_Ocomm__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.comm_neutral
thf(fact_620_add_Ocomm__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.comm_neutral
thf(fact_621_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_622_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_623_eq__iff__diff__eq__0,axiom,
( ( ^ [Y4: int,Z2: int] : ( Y4 = Z2 ) )
= ( ^ [A3: int,B2: int] :
( ( minus_minus_int @ A3 @ B2 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_624_ring__iso__memE_I4_J,axiom,
! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b] :
( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
=> ( ( H @ ( one_a_ring_ext_a_b @ R ) )
= ( one_a_ring_ext_a_b @ S ) ) ) ).
% ring_iso_memE(4)
thf(fact_625_domain_Oone__not__zero,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( domain_a_b @ R )
=> ( ( one_a_ring_ext_a_b @ R )
!= ( zero_a_b @ R ) ) ) ).
% domain.one_not_zero
thf(fact_626_domain_Ozero__not__one,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( domain_a_b @ R )
=> ( ( zero_a_b @ R )
!= ( one_a_ring_ext_a_b @ R ) ) ) ).
% domain.zero_not_one
thf(fact_627_Ring_Oone__not__zero,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( field_a_b @ R )
=> ( ( one_a_ring_ext_a_b @ R )
!= ( zero_a_b @ R ) ) ) ).
% Ring.one_not_zero
thf(fact_628_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_629_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_630_zero__le__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).
% zero_le_mult_iff
thf(fact_631_mult__nonneg__nonpos2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_632_mult__nonneg__nonpos2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_633_mult__nonpos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_634_mult__nonpos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonpos_nonneg
thf(fact_635_mult__nonneg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_636_mult__nonneg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos
thf(fact_637_mult__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_638_mult__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_639_split__mult__neg__le,axiom,
! [A: nat,B: nat] :
( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
& ( ord_less_eq_nat @ B @ zero_zero_nat ) )
| ( ( ord_less_eq_nat @ A @ zero_zero_nat )
& ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).
% split_mult_neg_le
thf(fact_640_split__mult__neg__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).
% split_mult_neg_le
thf(fact_641_mult__le__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_642_mult__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_643_mult__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_644_mult__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_645_mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_646_mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_647_mult__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_648_mult__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_649_split__mult__pos__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_650_zero__le__square,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).
% zero_le_square
thf(fact_651_mult__mono_H,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_652_mult__mono_H,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_653_mult__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_654_mult__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_655_add__nonpos__eq__0__iff,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_656_add__nonpos__eq__0__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y @ zero_zero_int )
=> ( ( ( plus_plus_int @ X @ Y )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_657_add__nonneg__eq__0__iff,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_658_add__nonneg__eq__0__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ( plus_plus_int @ X @ Y )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_659_add__nonpos__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_nonpos
thf(fact_660_add__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_nonpos
thf(fact_661_add__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_662_add__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_663_add__increasing2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_664_add__increasing2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_665_add__decreasing2,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_666_add__decreasing2,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_667_add__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_668_add__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_669_add__decreasing,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_670_add__decreasing,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_671_le__iff__diff__le__0,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B2: int] : ( ord_less_eq_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).
% le_iff_diff_le_0
thf(fact_672_neg__eq__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% neg_eq_iff_add_eq_0
thf(fact_673_eq__neg__iff__add__eq__0,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( ( plus_plus_int @ A @ B )
= zero_zero_int ) ) ).
% eq_neg_iff_add_eq_0
thf(fact_674_add_Oinverse__unique,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
=> ( ( uminus_uminus_int @ A )
= B ) ) ).
% add.inverse_unique
thf(fact_675_ab__group__add__class_Oab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_group_add_class.ab_left_minus
thf(fact_676_add__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= zero_zero_int )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% add_eq_0_iff
thf(fact_677_noetherian__domain_Oaxioms_I2_J,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( ring_n4045954140777738665in_a_b @ R )
=> ( domain_a_b @ R ) ) ).
% noetherian_domain.axioms(2)
thf(fact_678_sum__squares__ge__zero,axiom,
! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) ) ).
% sum_squares_ge_zero
thf(fact_679_domain_Ozero__is__irreducible__mult,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( domain_a_b @ R )
=> ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ R ) @ ( zero_a_b @ R ) ) ) ).
% domain.zero_is_irreducible_mult
thf(fact_680_domain_Osquare__eq__one,axiom,
! [R: partia2175431115845679010xt_a_b,X: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ( mult_a_ring_ext_a_b @ R @ X @ X )
= ( one_a_ring_ext_a_b @ R ) )
=> ( ( X
= ( one_a_ring_ext_a_b @ R ) )
| ( X
= ( a_inv_a_b @ R @ ( one_a_ring_ext_a_b @ R ) ) ) ) ) ) ) ).
% domain.square_eq_one
thf(fact_681_domain_Oring__irreducibleE_I3_J,axiom,
! [R: partia2175431115845679010xt_a_b,R3: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ R3 @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( ring_r999134135267193926le_a_b @ R @ R3 )
=> ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ R ) @ R3 ) ) ) ) ).
% domain.ring_irreducibleE(3)
thf(fact_682_domain_Oirreducible__imp__irreducible__mult,axiom,
! [R: partia2175431115845679010xt_a_b,A: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( irredu6211895646901577903xt_a_b @ R @ A )
=> ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ R ) @ A ) ) ) ) ).
% domain.irreducible_imp_irreducible_mult
thf(fact_683_field_Of__comm__group__2,axiom,
! [R: partia2175431115845679010xt_a_b,X: a] :
( ( field_a_b @ R )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( X
!= ( zero_a_b @ R ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
& ( ( mult_a_ring_ext_a_b @ R @ X3 @ X )
= ( one_a_ring_ext_a_b @ R ) ) ) ) ) ) ).
% field.f_comm_group_2
thf(fact_684_domain_Oring__irreducibleI_H,axiom,
! [R: partia2175431115845679010xt_a_b,R3: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ R3 @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ R ) @ R3 )
=> ( ring_r999134135267193926le_a_b @ R @ R3 ) ) ) ) ).
% domain.ring_irreducibleI'
thf(fact_685_domain_Oirreducible__mult__imp__irreducible,axiom,
! [R: partia2175431115845679010xt_a_b,A: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ R ) @ A )
=> ( irredu6211895646901577903xt_a_b @ R @ A ) ) ) ) ).
% domain.irreducible_mult_imp_irreducible
thf(fact_686_verit__minus__simplify_I3_J,axiom,
! [B: int] :
( ( minus_minus_int @ zero_zero_int @ B )
= ( uminus_uminus_int @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_687_sum__squares__eq__zero__iff,axiom,
! [X: int,Y: int] :
( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_688_dimension_Osimps,axiom,
! [A1: nat,A22: set_a,A32: set_a] :
( ( embedd2795209813406577254on_a_b @ r @ A1 @ A22 @ A32 )
= ( ? [K4: set_a] :
( ( A1 = zero_zero_nat )
& ( A22 = K4 )
& ( A32
= ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
| ? [V4: a,E3: set_a,N2: nat,K4: set_a] :
( ( A1
= ( suc @ N2 ) )
& ( A22 = K4 )
& ( A32
= ( embedd971793762689825387on_a_b @ r @ K4 @ V4 @ E3 ) )
& ( member_a @ V4 @ ( partia707051561876973205xt_a_b @ r ) )
& ~ ( member_a @ V4 @ E3 )
& ( embedd2795209813406577254on_a_b @ r @ N2 @ K4 @ E3 ) ) ) ) ).
% dimension.simps
thf(fact_689_dimension_Ocases,axiom,
! [A1: nat,A22: set_a,A32: set_a] :
( ( embedd2795209813406577254on_a_b @ r @ A1 @ A22 @ A32 )
=> ( ( ( A1 = zero_zero_nat )
=> ( A32
!= ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ~ ! [V2: a,E4: set_a,N3: nat] :
( ( A1
= ( suc @ N3 ) )
=> ( ( A32
= ( embedd971793762689825387on_a_b @ r @ A22 @ V2 @ E4 ) )
=> ( ( member_a @ V2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ~ ( member_a @ V2 @ E4 )
=> ~ ( embedd2795209813406577254on_a_b @ r @ N3 @ A22 @ E4 ) ) ) ) ) ) ) ).
% dimension.cases
thf(fact_690_verit__minus__simplify_I4_J,axiom,
! [B: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_691_Suc__dim,axiom,
! [V3: a,E2: set_a,N: nat,K2: set_a] :
( ( member_a @ V3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ~ ( member_a @ V3 @ E2 )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( embedd2795209813406577254on_a_b @ r @ ( suc @ N ) @ K2 @ ( embedd971793762689825387on_a_b @ r @ K2 @ V3 @ E2 ) ) ) ) ) ).
% Suc_dim
thf(fact_692_dimension__backwards,axiom,
! [K2: set_a,N: nat,E2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ ( suc @ N ) @ K2 @ E2 )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ r ) )
& ? [E5: set_a] :
( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E5 )
& ~ ( member_a @ X3 @ E5 )
& ( E2
= ( embedd971793762689825387on_a_b @ r @ K2 @ X3 @ E5 ) ) ) ) ) ) ).
% dimension_backwards
thf(fact_693_verit__comp__simplify1_I2_J,axiom,
! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_694_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_695_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_696_verit__comp__simplify1_I2_J,axiom,
! [A: set_set_a] : ( ord_le3724670747650509150_set_a @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_697_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_698_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_699_verit__negate__coefficient_I3_J,axiom,
! [A: int,B: int] :
( ( A = B )
=> ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_700_verit__sum__simplify,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% verit_sum_simplify
thf(fact_701_verit__sum__simplify,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% verit_sum_simplify
thf(fact_702_sum__squares__le__zero__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_703_one__le__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).
% one_le_mult_iff
thf(fact_704_subfield__m__inv_I3_J,axiom,
! [K2: set_a,K: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( member_a @ K @ ( minus_minus_set_a @ K2 @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( m_inv_a_ring_ext_a_b @ r @ K ) @ K )
= ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% subfield_m_inv(3)
thf(fact_705_subfield__m__inv_I2_J,axiom,
! [K2: set_a,K: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( member_a @ K @ ( minus_minus_set_a @ K2 @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ K @ ( m_inv_a_ring_ext_a_b @ r @ K ) )
= ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% subfield_m_inv(2)
thf(fact_706_set__add__zero,axiom,
! [A2: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( set_add_a_b @ r @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ A2 )
= A2 ) ) ).
% set_add_zero
thf(fact_707_inv__eq__imp__eq,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ Y @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( ( m_inv_a_ring_ext_a_b @ r @ X )
= ( m_inv_a_ring_ext_a_b @ r @ Y ) )
=> ( X = Y ) ) ) ) ).
% inv_eq_imp_eq
thf(fact_708_set__add__closed,axiom,
! [A2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ B4 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ord_less_eq_set_a @ ( set_add_a_b @ r @ A2 @ B4 ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% set_add_closed
thf(fact_709_set__add__comm,axiom,
! [I2: set_a,J2: set_a] :
( ( ord_less_eq_set_a @ I2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ J2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( set_add_a_b @ r @ I2 @ J2 )
= ( set_add_a_b @ r @ J2 @ I2 ) ) ) ) ).
% set_add_comm
thf(fact_710_setadd__subset__G,axiom,
! [H2: set_a,K2: set_a] :
( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ord_less_eq_set_a @ ( set_add_a_b @ r @ H2 @ K2 ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% setadd_subset_G
thf(fact_711_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_712_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_713_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_714_diff__diff__cancel,axiom,
! [I: nat,N: nat] :
( ( ord_less_eq_nat @ I @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_715_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_716_inv__eq__one__eq,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( ( m_inv_a_ring_ext_a_b @ r @ X )
= ( one_a_ring_ext_a_b @ r ) )
= ( X
= ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% inv_eq_one_eq
thf(fact_717_sum__space__dim_I1_J,axiom,
! [K2: set_a,E2: set_a,F: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd8708762675212832759on_a_b @ r @ K2 @ E2 )
=> ( ( embedd8708762675212832759on_a_b @ r @ K2 @ F )
=> ( embedd8708762675212832759on_a_b @ r @ K2 @ ( set_add_a_b @ r @ E2 @ F ) ) ) ) ) ).
% sum_space_dim(1)
thf(fact_718_inv__unique_H,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
= ( one_a_ring_ext_a_b @ r ) )
=> ( Y
= ( m_inv_a_ring_ext_a_b @ r @ X ) ) ) ) ) ) ).
% inv_unique'
thf(fact_719_inv__char,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( m_inv_a_ring_ext_a_b @ r @ X )
= Y ) ) ) ) ) ).
% inv_char
thf(fact_720_comm__inv__char,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( m_inv_a_ring_ext_a_b @ r @ X )
= Y ) ) ) ) ).
% comm_inv_char
thf(fact_721_inv__eq__neg__one__eq,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( ( m_inv_a_ring_ext_a_b @ r @ X )
= ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) )
= ( X
= ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) ) ) ) ).
% inv_eq_neg_one_eq
thf(fact_722_inv__eq__self,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( X
= ( m_inv_a_ring_ext_a_b @ r @ X ) )
=> ( ( X
= ( one_a_ring_ext_a_b @ r ) )
| ( X
= ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) ) ) ) ) ).
% inv_eq_self
thf(fact_723_subfield__m__inv_I1_J,axiom,
! [K2: set_a,K: a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( member_a @ K @ ( minus_minus_set_a @ K2 @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( member_a @ ( m_inv_a_ring_ext_a_b @ r @ K ) @ ( minus_minus_set_a @ K2 @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) ) ) ) ).
% subfield_m_inv(1)
thf(fact_724_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_725_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_726_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_727_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_728_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_729_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_730_Suc__le__mono,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
= ( ord_less_eq_nat @ N @ M ) ) ).
% Suc_le_mono
thf(fact_731_inv__one,axiom,
( ( m_inv_a_ring_ext_a_b @ r @ ( one_a_ring_ext_a_b @ r ) )
= ( one_a_ring_ext_a_b @ r ) ) ).
% inv_one
thf(fact_732_Units__inv__inv,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( m_inv_a_ring_ext_a_b @ r @ ( m_inv_a_ring_ext_a_b @ r @ X ) )
= X ) ) ).
% Units_inv_inv
thf(fact_733_Units__inv__Units,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( member_a @ ( m_inv_a_ring_ext_a_b @ r @ X ) @ ( units_a_ring_ext_a_b @ r ) ) ) ).
% Units_inv_Units
thf(fact_734_Units__inv__closed,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( member_a @ ( m_inv_a_ring_ext_a_b @ r @ X ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ).
% Units_inv_closed
thf(fact_735_inv__neg__one,axiom,
( ( m_inv_a_ring_ext_a_b @ r @ ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) )
= ( a_inv_a_b @ r @ ( one_a_ring_ext_a_b @ r ) ) ) ).
% inv_neg_one
thf(fact_736_Units__l__inv,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( m_inv_a_ring_ext_a_b @ r @ X ) @ X )
= ( one_a_ring_ext_a_b @ r ) ) ) ).
% Units_l_inv
thf(fact_737_Units__r__inv,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ X @ ( m_inv_a_ring_ext_a_b @ r @ X ) )
= ( one_a_ring_ext_a_b @ r ) ) ) ).
% Units_r_inv
thf(fact_738_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_739_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_740_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_741_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_742_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_743_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N3: nat] :
( L
= ( plus_plus_nat @ K @ N3 ) ) ) ).
% le_Suc_ex
thf(fact_744_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_745_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_746_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_747_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_748_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_749_diff__le__mono,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L ) @ ( minus_minus_nat @ N @ L ) ) ) ).
% diff_le_mono
thf(fact_750_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_751_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_752_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_753_diff__le__mono2,axiom,
! [M: nat,N: nat,L: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N ) @ ( minus_minus_nat @ L @ M ) ) ) ).
% diff_le_mono2
thf(fact_754_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_755_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_756_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_757_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
= ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_758_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M3: nat,N2: nat] :
? [K5: nat] :
( N2
= ( plus_plus_nat @ M3 @ K5 ) ) ) ) ).
% nat_le_iff_add
thf(fact_759_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_760_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_761_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_762_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_763_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_764_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_765_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_766_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y6: nat] :
( ( P @ Y6 )
=> ( ord_less_eq_nat @ Y6 @ B ) )
=> ? [X3: nat] :
( ( P @ X3 )
& ! [Y5: nat] :
( ( P @ Y5 )
=> ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_767_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_768_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_769_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_770_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_771_Suc__diff__le,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( minus_minus_nat @ ( suc @ M ) @ N )
= ( suc @ ( minus_minus_nat @ M @ N ) ) ) ) ).
% Suc_diff_le
thf(fact_772_Suc__leD,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_leD
thf(fact_773_le__SucE,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
=> ( ~ ( ord_less_eq_nat @ M @ N )
=> ( M
= ( suc @ N ) ) ) ) ).
% le_SucE
thf(fact_774_le__SucI,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).
% le_SucI
thf(fact_775_Suc__le__D,axiom,
! [N: nat,M4: nat] :
( ( ord_less_eq_nat @ ( suc @ N ) @ M4 )
=> ? [M5: nat] :
( M4
= ( suc @ M5 ) ) ) ).
% Suc_le_D
thf(fact_776_le__Suc__eq,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ ( suc @ N ) )
= ( ( ord_less_eq_nat @ M @ N )
| ( M
= ( suc @ N ) ) ) ) ).
% le_Suc_eq
thf(fact_777_Suc__n__not__le__n,axiom,
! [N: nat] :
~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).
% Suc_n_not_le_n
thf(fact_778_not__less__eq__eq,axiom,
! [M: nat,N: nat] :
( ( ~ ( ord_less_eq_nat @ M @ N ) )
= ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).
% not_less_eq_eq
thf(fact_779_full__nat__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N3: nat] :
( ! [M6: nat] :
( ( ord_less_eq_nat @ ( suc @ M6 ) @ N3 )
=> ( P @ M6 ) )
=> ( P @ N3 ) )
=> ( P @ N ) ) ).
% full_nat_induct
thf(fact_780_nat__induct__at__least,axiom,
! [M: nat,N: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( P @ M )
=> ( ! [N3: nat] :
( ( ord_less_eq_nat @ M @ N3 )
=> ( ( P @ N3 )
=> ( P @ ( suc @ N3 ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct_at_least
thf(fact_781_transitive__stepwise__le,axiom,
! [M: nat,N: nat,R: nat > nat > $o] :
( ( ord_less_eq_nat @ M @ N )
=> ( ! [X3: nat] : ( R @ X3 @ X3 )
=> ( ! [X3: nat,Y6: nat,Z3: nat] :
( ( R @ X3 @ Y6 )
=> ( ( R @ Y6 @ Z3 )
=> ( R @ X3 @ Z3 ) ) )
=> ( ! [N3: nat] : ( R @ N3 @ ( suc @ N3 ) )
=> ( R @ M @ N ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_782_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_783_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_784_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_785_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_786_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_787_domain_Oinv__eq__self,axiom,
! [R: partia2175431115845679010xt_a_b,X: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ X @ ( units_a_ring_ext_a_b @ R ) )
=> ( ( X
= ( m_inv_a_ring_ext_a_b @ R @ X ) )
=> ( ( X
= ( one_a_ring_ext_a_b @ R ) )
| ( X
= ( a_inv_a_b @ R @ ( one_a_ring_ext_a_b @ R ) ) ) ) ) ) ) ).
% domain.inv_eq_self
thf(fact_788_lift__Suc__mono__le,axiom,
! [F2: nat > set_a,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_set_a @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_set_a @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_789_lift__Suc__mono__le,axiom,
! [F2: nat > nat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_790_lift__Suc__mono__le,axiom,
! [F2: nat > int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_int @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_791_lift__Suc__mono__le,axiom,
! [F2: nat > set_set_a,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_le3724670747650509150_set_a @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_le3724670747650509150_set_a @ ( F2 @ N ) @ ( F2 @ N4 ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_792_lift__Suc__antimono__le,axiom,
! [F2: nat > set_a,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_set_a @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_set_a @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_793_lift__Suc__antimono__le,axiom,
! [F2: nat > nat,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_nat @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_nat @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_794_lift__Suc__antimono__le,axiom,
! [F2: nat > int,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq_int @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_less_eq_int @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_795_lift__Suc__antimono__le,axiom,
! [F2: nat > set_set_a,N: nat,N4: nat] :
( ! [N3: nat] : ( ord_le3724670747650509150_set_a @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
=> ( ( ord_less_eq_nat @ N @ N4 )
=> ( ord_le3724670747650509150_set_a @ ( F2 @ N4 ) @ ( F2 @ N ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_796_Suc__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% Suc_mult_le_cancel1
thf(fact_797_dimension__direct__sum__space,axiom,
! [K2: set_a,N: nat,E2: set_a,M: nat,F: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( ( embedd2795209813406577254on_a_b @ r @ M @ K2 @ F )
=> ( ( ( inf_inf_set_a @ E2 @ F )
= ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) )
=> ( embedd2795209813406577254on_a_b @ r @ ( plus_plus_nat @ N @ M ) @ K2 @ ( set_add_a_b @ r @ E2 @ F ) ) ) ) ) ) ).
% dimension_direct_sum_space
thf(fact_798_subringI,axiom,
! [H2: set_a] :
( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ ( one_a_ring_ext_a_b @ r ) @ H2 )
=> ( ! [H3: a] :
( ( member_a @ H3 @ H2 )
=> ( member_a @ ( a_inv_a_b @ r @ H3 ) @ H2 ) )
=> ( ! [H12: a,H23: a] :
( ( member_a @ H12 @ H2 )
=> ( ( member_a @ H23 @ H2 )
=> ( member_a @ ( mult_a_ring_ext_a_b @ r @ H12 @ H23 ) @ H2 ) ) )
=> ( ! [H12: a,H23: a] :
( ( member_a @ H12 @ H2 )
=> ( ( member_a @ H23 @ H2 )
=> ( member_a @ ( add_a_b @ r @ H12 @ H23 ) @ H2 ) ) )
=> ( subring_a_b @ H2 @ r ) ) ) ) ) ) ).
% subringI
thf(fact_799_double__eq__0__iff,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_eq_0_iff
thf(fact_800_mult__of_Oprime__pow__divides__iff,axiom,
! [P2: a,A: a,B: a,N: nat] :
( ( member_a @ P2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 )
=> ( ~ ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ P2 @ A )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ P2 @ N ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) )
= ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ P2 @ N ) @ B ) ) ) ) ) ) ) ).
% mult_of.prime_pow_divides_iff
thf(fact_801_carrier__is__subring,axiom,
subring_a_b @ ( partia707051561876973205xt_a_b @ r ) @ r ).
% carrier_is_subring
thf(fact_802_subring__inter,axiom,
! [I2: set_a,J2: set_a] :
( ( subring_a_b @ I2 @ r )
=> ( ( subring_a_b @ J2 @ r )
=> ( subring_a_b @ ( inf_inf_set_a @ I2 @ J2 ) @ r ) ) ) ).
% subring_inter
thf(fact_803_subalgebra__inter,axiom,
! [K2: set_a,V: set_a,V5: set_a] :
( ( embedd9027525575939734154ra_a_b @ K2 @ V @ r )
=> ( ( embedd9027525575939734154ra_a_b @ K2 @ V5 @ r )
=> ( embedd9027525575939734154ra_a_b @ K2 @ ( inf_inf_set_a @ V @ V5 ) @ r ) ) ) ).
% subalgebra_inter
thf(fact_804_mult__of_OUnits__pow__closed,axiom,
! [X: a,D: nat] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ D ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).
% mult_of.Units_pow_closed
thf(fact_805_mult__of_Onat__pow__pow,axiom,
! [X: a,N: nat,M: nat] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ M )
= ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ ( times_times_nat @ N @ M ) ) ) ) ).
% mult_of.nat_pow_pow
thf(fact_806_mult__of_Ogroup__commutes__pow,axiom,
! [X: a,Y: a,N: nat] :
( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( mult_a_ring_ext_a_b @ r @ Y @ X ) )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ Y )
= ( mult_a_ring_ext_a_b @ r @ Y @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) ) ) ) ) ) ).
% mult_of.group_commutes_pow
thf(fact_807_mult__of_Onat__pow__comm,axiom,
! [X: a,N: nat,M: nat] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ M ) )
= ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ M ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) ) ) ) ).
% mult_of.nat_pow_comm
thf(fact_808_mult__of_Onat__pow__distrib,axiom,
! [X: a,Y: a,N: nat] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ N )
= ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ Y @ N ) ) ) ) ) ).
% mult_of.nat_pow_distrib
thf(fact_809_mult__of_Opow__mult__distrib,axiom,
! [X: a,Y: a,N: nat] :
( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( mult_a_ring_ext_a_b @ r @ Y @ X ) )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ N )
= ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ Y @ N ) ) ) ) ) ) ).
% mult_of.pow_mult_distrib
thf(fact_810_mult__of_Onat__pow__Suc2,axiom,
! [X: a,N: nat] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ ( suc @ N ) )
= ( mult_a_ring_ext_a_b @ r @ X @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) ) ) ) ).
% mult_of.nat_pow_Suc2
thf(fact_811_mult__of_Onat__pow__mult,axiom,
! [X: a,N: nat,M: nat] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ M ) )
= ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ ( plus_plus_nat @ N @ M ) ) ) ) ).
% mult_of.nat_pow_mult
thf(fact_812_Int__subset__iff,axiom,
! [C4: set_a,A2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ C4 @ ( inf_inf_set_a @ A2 @ B4 ) )
= ( ( ord_less_eq_set_a @ C4 @ A2 )
& ( ord_less_eq_set_a @ C4 @ B4 ) ) ) ).
% Int_subset_iff
thf(fact_813_Int__subset__iff,axiom,
! [C4: set_set_a,A2: set_set_a,B4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ C4 @ ( inf_inf_set_set_a @ A2 @ B4 ) )
= ( ( ord_le3724670747650509150_set_a @ C4 @ A2 )
& ( ord_le3724670747650509150_set_a @ C4 @ B4 ) ) ) ).
% Int_subset_iff
thf(fact_814_dimension__sum__space,axiom,
! [K2: set_a,N: nat,E2: set_a,M: nat,F: set_a,K: nat] :
( ( subfield_a_b @ K2 @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 )
=> ( ( embedd2795209813406577254on_a_b @ r @ M @ K2 @ F )
=> ( ( embedd2795209813406577254on_a_b @ r @ K @ K2 @ ( inf_inf_set_a @ E2 @ F ) )
=> ( embedd2795209813406577254on_a_b @ r @ ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ K ) @ K2 @ ( set_add_a_b @ r @ E2 @ F ) ) ) ) ) ) ).
% dimension_sum_space
thf(fact_815_inf__compl__bot__left1,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ ( uminus_uminus_set_a @ X ) @ ( inf_inf_set_a @ X @ Y ) )
= bot_bot_set_a ) ).
% inf_compl_bot_left1
thf(fact_816_inf__compl__bot__left2,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ ( uminus_uminus_set_a @ X ) @ Y ) )
= bot_bot_set_a ) ).
% inf_compl_bot_left2
thf(fact_817_inf__compl__bot__right,axiom,
! [X: set_a,Y: set_a] :
( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ ( uminus_uminus_set_a @ X ) ) )
= bot_bot_set_a ) ).
% inf_compl_bot_right
thf(fact_818_boolean__algebra_Oconj__cancel__left,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ ( uminus_uminus_set_a @ X ) @ X )
= bot_bot_set_a ) ).
% boolean_algebra.conj_cancel_left
thf(fact_819_boolean__algebra_Oconj__cancel__right,axiom,
! [X: set_a] :
( ( inf_inf_set_a @ X @ ( uminus_uminus_set_a @ X ) )
= bot_bot_set_a ) ).
% boolean_algebra.conj_cancel_right
thf(fact_820_mult__of_Onat__pow__closed,axiom,
! [X: a,N: nat] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).
% mult_of.nat_pow_closed
thf(fact_821_mult__of_Onat__pow__one,axiom,
! [N: nat] :
( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ ( one_a_ring_ext_a_b @ r ) @ N )
= ( one_a_ring_ext_a_b @ r ) ) ).
% mult_of.nat_pow_one
thf(fact_822_mult__of_Onat__pow__Suc,axiom,
! [X: a,N: nat] :
( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ ( suc @ N ) )
= ( mult_a_ring_ext_a_b @ r @ ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) @ X ) ) ).
% mult_of.nat_pow_Suc
thf(fact_823_mult__of_Onat__pow__0,axiom,
! [X: a] :
( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ zero_zero_nat )
= ( one_a_ring_ext_a_b @ r ) ) ).
% mult_of.nat_pow_0
thf(fact_824_Int__mono,axiom,
! [A2: set_a,C4: set_a,B4: set_a,D2: set_a] :
( ( ord_less_eq_set_a @ A2 @ C4 )
=> ( ( ord_less_eq_set_a @ B4 @ D2 )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B4 ) @ ( inf_inf_set_a @ C4 @ D2 ) ) ) ) ).
% Int_mono
thf(fact_825_Int__mono,axiom,
! [A2: set_set_a,C4: set_set_a,B4: set_set_a,D2: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ C4 )
=> ( ( ord_le3724670747650509150_set_a @ B4 @ D2 )
=> ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A2 @ B4 ) @ ( inf_inf_set_set_a @ C4 @ D2 ) ) ) ) ).
% Int_mono
thf(fact_826_Int__lower1,axiom,
! [A2: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B4 ) @ A2 ) ).
% Int_lower1
thf(fact_827_Int__lower1,axiom,
! [A2: set_set_a,B4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A2 @ B4 ) @ A2 ) ).
% Int_lower1
thf(fact_828_Int__lower2,axiom,
! [A2: set_a,B4: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B4 ) @ B4 ) ).
% Int_lower2
thf(fact_829_Int__lower2,axiom,
! [A2: set_set_a,B4: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A2 @ B4 ) @ B4 ) ).
% Int_lower2
thf(fact_830_Int__absorb1,axiom,
! [B4: set_a,A2: set_a] :
( ( ord_less_eq_set_a @ B4 @ A2 )
=> ( ( inf_inf_set_a @ A2 @ B4 )
= B4 ) ) ).
% Int_absorb1
thf(fact_831_Int__absorb1,axiom,
! [B4: set_set_a,A2: set_set_a] :
( ( ord_le3724670747650509150_set_a @ B4 @ A2 )
=> ( ( inf_inf_set_set_a @ A2 @ B4 )
= B4 ) ) ).
% Int_absorb1
thf(fact_832_Int__absorb2,axiom,
! [A2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ A2 @ B4 )
=> ( ( inf_inf_set_a @ A2 @ B4 )
= A2 ) ) ).
% Int_absorb2
thf(fact_833_Int__absorb2,axiom,
! [A2: set_set_a,B4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A2 @ B4 )
=> ( ( inf_inf_set_set_a @ A2 @ B4 )
= A2 ) ) ).
% Int_absorb2
thf(fact_834_Int__greatest,axiom,
! [C4: set_a,A2: set_a,B4: set_a] :
( ( ord_less_eq_set_a @ C4 @ A2 )
=> ( ( ord_less_eq_set_a @ C4 @ B4 )
=> ( ord_less_eq_set_a @ C4 @ ( inf_inf_set_a @ A2 @ B4 ) ) ) ) ).
% Int_greatest
thf(fact_835_Int__greatest,axiom,
! [C4: set_set_a,A2: set_set_a,B4: set_set_a] :
( ( ord_le3724670747650509150_set_a @ C4 @ A2 )
=> ( ( ord_le3724670747650509150_set_a @ C4 @ B4 )
=> ( ord_le3724670747650509150_set_a @ C4 @ ( inf_inf_set_set_a @ A2 @ B4 ) ) ) ) ).
% Int_greatest
thf(fact_836_Int__Collect__mono,axiom,
! [A2: set_a,B4: set_a,P: a > $o,Q: a > $o] :
( ( ord_less_eq_set_a @ A2 @ B4 )
=> ( ! [X3: a] :
( ( member_a @ X3 @ A2 )
=> ( ( P @ X3 )
=> ( Q @ X3 ) ) )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B4 @ ( collect_a @ Q ) ) ) ) ) ).
% Int_Collect_mono
thf(fact_837_Int__Collect__mono,axiom,
! [A2: set_set_a,B4: set_set_a,P: set_a > $o,Q: set_a > $o] :
( ( ord_le3724670747650509150_set_a @ A2 @ B4 )
=> ( ! [X3: set_a] :
( ( member_set_a @ X3 @ A2 )
=> ( ( P @ X3 )
=> ( Q @ X3 ) ) )
=> ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A2 @ ( collect_set_a @ P ) ) @ ( inf_inf_set_set_a @ B4 @ ( collect_set_a @ Q ) ) ) ) ) ).
% Int_Collect_mono
thf(fact_838_diff__eq,axiom,
( minus_minus_set_a
= ( ^ [X2: set_a,Y2: set_a] : ( inf_inf_set_a @ X2 @ ( uminus_uminus_set_a @ Y2 ) ) ) ) ).
% diff_eq
thf(fact_839_inf__cancel__left1,axiom,
! [X: set_a,A: set_a,B: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ A ) @ ( inf_inf_set_a @ ( uminus_uminus_set_a @ X ) @ B ) )
= bot_bot_set_a ) ).
% inf_cancel_left1
thf(fact_840_inf__cancel__left2,axiom,
! [X: set_a,A: set_a,B: set_a] :
( ( inf_inf_set_a @ ( inf_inf_set_a @ ( uminus_uminus_set_a @ X ) @ A ) @ ( inf_inf_set_a @ X @ B ) )
= bot_bot_set_a ) ).
% inf_cancel_left2
thf(fact_841_inf__shunt,axiom,
! [X: set_a,Y: set_a] :
( ( ( inf_inf_set_a @ X @ Y )
= bot_bot_set_a )
= ( ord_less_eq_set_a @ X @ ( uminus_uminus_set_a @ Y ) ) ) ).
% inf_shunt
thf(fact_842_inf__shunt,axiom,
! [X: set_set_a,Y: set_set_a] :
( ( ( inf_inf_set_set_a @ X @ Y )
= bot_bot_set_set_a )
= ( ord_le3724670747650509150_set_a @ X @ ( uminus6103902357914783669_set_a @ Y ) ) ) ).
% inf_shunt
thf(fact_843_disjoint__eq__subset__Compl,axiom,
! [A2: set_a,B4: set_a] :
( ( ( inf_inf_set_a @ A2 @ B4 )
= bot_bot_set_a )
= ( ord_less_eq_set_a @ A2 @ ( uminus_uminus_set_a @ B4 ) ) ) ).
% disjoint_eq_subset_Compl
thf(fact_844_disjoint__eq__subset__Compl,axiom,
! [A2: set_set_a,B4: set_set_a] :
( ( ( inf_inf_set_set_a @ A2 @ B4 )
= bot_bot_set_set_a )
= ( ord_le3724670747650509150_set_a @ A2 @ ( uminus6103902357914783669_set_a @ B4 ) ) ) ).
% disjoint_eq_subset_Compl
thf(fact_845_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_846_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_847_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_848_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_849_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_850_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_851_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_852_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(1)
thf(fact_853_minus__int__code_I2_J,axiom,
! [L: int] :
( ( minus_minus_int @ zero_zero_int @ L )
= ( uminus_uminus_int @ L ) ) ).
% minus_int_code(2)
thf(fact_854_int__distrib_I4_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_855_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(3)
thf(fact_856_mult__of_Ounits__of__pow,axiom,
! [X: a,N: nat] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( pow_a_1875594501834816709it_nat @ ( units_7501539392726747778t_unit @ ( ring_mult_of_a_b @ r ) ) @ X @ N )
= ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ N ) ) ) ).
% mult_of.units_of_pow
thf(fact_857_field_OsubfieldI_H,axiom,
! [R: partia2175431115845679010xt_a_b,K2: set_a] :
( ( field_a_b @ R )
=> ( ( subring_a_b @ K2 @ R )
=> ( ! [K3: a] :
( ( member_a @ K3 @ ( minus_minus_set_a @ K2 @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( member_a @ ( m_inv_a_ring_ext_a_b @ R @ K3 ) @ K2 ) )
=> ( subfield_a_b @ K2 @ R ) ) ) ) ).
% field.subfieldI'
thf(fact_858_Group_Onat__pow__Suc,axiom,
! [G2: partia8223610829204095565t_unit,X: a,N: nat] :
( ( pow_a_1875594501834816709it_nat @ G2 @ X @ ( suc @ N ) )
= ( mult_a_Product_unit @ G2 @ ( pow_a_1875594501834816709it_nat @ G2 @ X @ N ) @ X ) ) ).
% Group.nat_pow_Suc
thf(fact_859_Group_Onat__pow__Suc,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,N: nat] :
( ( pow_a_1026414303147256608_b_nat @ G2 @ X @ ( suc @ N ) )
= ( mult_a_ring_ext_a_b @ G2 @ ( pow_a_1026414303147256608_b_nat @ G2 @ X @ N ) @ X ) ) ).
% Group.nat_pow_Suc
thf(fact_860_Units__pow__closed,axiom,
! [X: a,D: nat] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( member_a @ ( pow_a_1026414303147256608_b_nat @ r @ X @ D ) @ ( units_a_ring_ext_a_b @ r ) ) ) ).
% Units_pow_closed
thf(fact_861_pow__non__zero,axiom,
! [X: a,N: nat] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( X
!= ( zero_a_b @ r ) )
=> ( ( pow_a_1026414303147256608_b_nat @ r @ X @ N )
!= ( zero_a_b @ r ) ) ) ) ).
% pow_non_zero
thf(fact_862_nat__pow__zero,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ( pow_a_1026414303147256608_b_nat @ r @ ( zero_a_b @ r ) @ N )
= ( zero_a_b @ r ) ) ) ).
% nat_pow_zero
thf(fact_863_nat__pow__pow,axiom,
! [X: a,N: nat,M: nat] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( pow_a_1026414303147256608_b_nat @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ M )
= ( pow_a_1026414303147256608_b_nat @ r @ X @ ( times_times_nat @ N @ M ) ) ) ) ).
% nat_pow_pow
thf(fact_864_group__commutes__pow,axiom,
! [X: a,Y: a,N: nat] :
( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( mult_a_ring_ext_a_b @ r @ Y @ X ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ Y )
= ( mult_a_ring_ext_a_b @ r @ Y @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) ) ) ) ) ) ).
% group_commutes_pow
thf(fact_865_nat__pow__comm,axiom,
! [X: a,N: nat,M: nat] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ ( pow_a_1026414303147256608_b_nat @ r @ X @ M ) )
= ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ M ) @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) ) ) ) ).
% nat_pow_comm
thf(fact_866_nat__pow__distrib,axiom,
! [X: a,Y: a,N: nat] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( pow_a_1026414303147256608_b_nat @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ N )
= ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ ( pow_a_1026414303147256608_b_nat @ r @ Y @ N ) ) ) ) ) ).
% nat_pow_distrib
thf(fact_867_pow__mult__distrib,axiom,
! [X: a,Y: a,N: nat] :
( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( mult_a_ring_ext_a_b @ r @ Y @ X ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( pow_a_1026414303147256608_b_nat @ r @ ( mult_a_ring_ext_a_b @ r @ X @ Y ) @ N )
= ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ ( pow_a_1026414303147256608_b_nat @ r @ Y @ N ) ) ) ) ) ) ).
% pow_mult_distrib
thf(fact_868_nat__pow__Suc2,axiom,
! [X: a,N: nat] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( pow_a_1026414303147256608_b_nat @ r @ X @ ( suc @ N ) )
= ( mult_a_ring_ext_a_b @ r @ X @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) ) ) ) ).
% nat_pow_Suc2
thf(fact_869_nat__pow__mult,axiom,
! [X: a,N: nat,M: nat] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ ( pow_a_1026414303147256608_b_nat @ r @ X @ M ) )
= ( pow_a_1026414303147256608_b_nat @ r @ X @ ( plus_plus_nat @ N @ M ) ) ) ) ).
% nat_pow_mult
thf(fact_870_nat__pow__closed,axiom,
! [X: a,N: nat] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ).
% nat_pow_closed
thf(fact_871_nat__pow__one,axiom,
! [N: nat] :
( ( pow_a_1026414303147256608_b_nat @ r @ ( one_a_ring_ext_a_b @ r ) @ N )
= ( one_a_ring_ext_a_b @ r ) ) ).
% nat_pow_one
thf(fact_872_local_Onat__pow__Suc,axiom,
! [X: a,N: nat] :
( ( pow_a_1026414303147256608_b_nat @ r @ X @ ( suc @ N ) )
= ( mult_a_ring_ext_a_b @ r @ ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) @ X ) ) ).
% local.nat_pow_Suc
thf(fact_873_local_Onat__pow__0,axiom,
! [X: a] :
( ( pow_a_1026414303147256608_b_nat @ r @ X @ zero_zero_nat )
= ( one_a_ring_ext_a_b @ r ) ) ).
% local.nat_pow_0
thf(fact_874_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_875_Ring__Divisibility_Onat__pow__mult__of,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ R ) )
= ( pow_a_1026414303147256608_b_nat @ R ) ) ).
% Ring_Divisibility.nat_pow_mult_of
thf(fact_876_units__of__mult,axiom,
! [G2: partia8223610829204095565t_unit] :
( ( mult_a_Product_unit @ ( units_7501539392726747778t_unit @ G2 ) )
= ( mult_a_Product_unit @ G2 ) ) ).
% units_of_mult
thf(fact_877_units__of__mult,axiom,
! [G2: partia2175431115845679010xt_a_b] :
( ( mult_a_Product_unit @ ( units_8174867845824275201xt_a_b @ G2 ) )
= ( mult_a_ring_ext_a_b @ G2 ) ) ).
% units_of_mult
thf(fact_878_domain_Opow__non__zero,axiom,
! [R: partia2175431115845679010xt_a_b,X: a,N: nat] :
( ( domain_a_b @ R )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( X
!= ( zero_a_b @ R ) )
=> ( ( pow_a_1026414303147256608_b_nat @ R @ X @ N )
!= ( zero_a_b @ R ) ) ) ) ) ).
% domain.pow_non_zero
thf(fact_879_subringE_I2_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b] :
( ( subring_a_b @ H2 @ R )
=> ( member_a @ ( zero_a_b @ R ) @ H2 ) ) ).
% subringE(2)
thf(fact_880_subringE_I7_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H1: a,H22: a] :
( ( subring_a_b @ H2 @ R )
=> ( ( member_a @ H1 @ H2 )
=> ( ( member_a @ H22 @ H2 )
=> ( member_a @ ( add_a_b @ R @ H1 @ H22 ) @ H2 ) ) ) ) ).
% subringE(7)
thf(fact_881_subfieldE_I4_J,axiom,
! [K2: set_a,R: partia2175431115845679010xt_a_b,K1: a,K22: a] :
( ( subfield_a_b @ K2 @ R )
=> ( ( member_a @ K1 @ K2 )
=> ( ( member_a @ K22 @ K2 )
=> ( ( mult_a_ring_ext_a_b @ R @ K1 @ K22 )
= ( mult_a_ring_ext_a_b @ R @ K22 @ K1 ) ) ) ) ) ).
% subfieldE(4)
thf(fact_882_subringE_I6_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H1: a,H22: a] :
( ( subring_a_b @ H2 @ R )
=> ( ( member_a @ H1 @ H2 )
=> ( ( member_a @ H22 @ H2 )
=> ( member_a @ ( mult_a_ring_ext_a_b @ R @ H1 @ H22 ) @ H2 ) ) ) ) ).
% subringE(6)
thf(fact_883_subringE_I5_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H: a] :
( ( subring_a_b @ H2 @ R )
=> ( ( member_a @ H @ H2 )
=> ( member_a @ ( a_inv_a_b @ R @ H ) @ H2 ) ) ) ).
% subringE(5)
thf(fact_884_subfieldE_I3_J,axiom,
! [K2: set_a,R: partia2175431115845679010xt_a_b] :
( ( subfield_a_b @ K2 @ R )
=> ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ R ) ) ) ).
% subfieldE(3)
thf(fact_885_subringE_I1_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b] :
( ( subring_a_b @ H2 @ R )
=> ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ R ) ) ) ).
% subringE(1)
thf(fact_886_subfieldE_I5_J,axiom,
! [K2: set_a,R: partia2175431115845679010xt_a_b,K1: a,K22: a] :
( ( subfield_a_b @ K2 @ R )
=> ( ( member_a @ K1 @ K2 )
=> ( ( member_a @ K22 @ K2 )
=> ( ( ( mult_a_ring_ext_a_b @ R @ K1 @ K22 )
= ( zero_a_b @ R ) )
=> ( ( K1
= ( zero_a_b @ R ) )
| ( K22
= ( zero_a_b @ R ) ) ) ) ) ) ) ).
% subfieldE(5)
thf(fact_887_subfieldE_I6_J,axiom,
! [K2: set_a,R: partia2175431115845679010xt_a_b] :
( ( subfield_a_b @ K2 @ R )
=> ( ( one_a_ring_ext_a_b @ R )
!= ( zero_a_b @ R ) ) ) ).
% subfieldE(6)
thf(fact_888_field_Ocarrier__is__subfield,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( field_a_b @ R )
=> ( subfield_a_b @ ( partia707051561876973205xt_a_b @ R ) @ R ) ) ).
% field.carrier_is_subfield
thf(fact_889_units__of__pow,axiom,
! [X: a,N: nat] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( pow_a_1875594501834816709it_nat @ ( units_8174867845824275201xt_a_b @ r ) @ X @ N )
= ( pow_a_1026414303147256608_b_nat @ r @ X @ N ) ) ) ).
% units_of_pow
thf(fact_890_inf_Obounded__iff,axiom,
! [A: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
= ( ( ord_less_eq_set_a @ A @ B )
& ( ord_less_eq_set_a @ A @ C ) ) ) ).
% inf.bounded_iff
thf(fact_891_inf_Obounded__iff,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
= ( ( ord_less_eq_nat @ A @ B )
& ( ord_less_eq_nat @ A @ C ) ) ) ).
% inf.bounded_iff
thf(fact_892_inf_Obounded__iff,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ ( inf_inf_int @ B @ C ) )
= ( ( ord_less_eq_int @ A @ B )
& ( ord_less_eq_int @ A @ C ) ) ) ).
% inf.bounded_iff
thf(fact_893_inf_Obounded__iff,axiom,
! [A: set_set_a,B: set_set_a,C: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A @ ( inf_inf_set_set_a @ B @ C ) )
= ( ( ord_le3724670747650509150_set_a @ A @ B )
& ( ord_le3724670747650509150_set_a @ A @ C ) ) ) ).
% inf.bounded_iff
thf(fact_894_le__inf__iff,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
= ( ( ord_less_eq_set_a @ X @ Y )
& ( ord_less_eq_set_a @ X @ Z ) ) ) ).
% le_inf_iff
thf(fact_895_le__inf__iff,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) )
= ( ( ord_less_eq_nat @ X @ Y )
& ( ord_less_eq_nat @ X @ Z ) ) ) ).
% le_inf_iff
thf(fact_896_le__inf__iff,axiom,
! [X: int,Y: int,Z: int] :
( ( ord_less_eq_int @ X @ ( inf_inf_int @ Y @ Z ) )
= ( ( ord_less_eq_int @ X @ Y )
& ( ord_less_eq_int @ X @ Z ) ) ) ).
% le_inf_iff
thf(fact_897_le__inf__iff,axiom,
! [X: set_set_a,Y: set_set_a,Z: set_set_a] :
( ( ord_le3724670747650509150_set_a @ X @ ( inf_inf_set_set_a @ Y @ Z ) )
= ( ( ord_le3724670747650509150_set_a @ X @ Y )
& ( ord_le3724670747650509150_set_a @ X @ Z ) ) ) ).
% le_inf_iff
thf(fact_898_verit__la__generic,axiom,
! [A: int,X: int] :
( ( ord_less_eq_int @ A @ X )
| ( A = X )
| ( ord_less_eq_int @ X @ A ) ) ).
% verit_la_generic
thf(fact_899_inf__sup__ord_I2_J,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_900_inf__sup__ord_I2_J,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_901_inf__sup__ord_I2_J,axiom,
! [X: int,Y: int] : ( ord_less_eq_int @ ( inf_inf_int @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_902_inf__sup__ord_I2_J,axiom,
! [X: set_set_a,Y: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X @ Y ) @ Y ) ).
% inf_sup_ord(2)
thf(fact_903_inf__sup__ord_I1_J,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_904_inf__sup__ord_I1_J,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_905_inf__sup__ord_I1_J,axiom,
! [X: int,Y: int] : ( ord_less_eq_int @ ( inf_inf_int @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_906_inf__sup__ord_I1_J,axiom,
! [X: set_set_a,Y: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X @ Y ) @ X ) ).
% inf_sup_ord(1)
thf(fact_907_inf__le1,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_908_inf__le1,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_909_inf__le1,axiom,
! [X: int,Y: int] : ( ord_less_eq_int @ ( inf_inf_int @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_910_inf__le1,axiom,
! [X: set_set_a,Y: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X @ Y ) @ X ) ).
% inf_le1
thf(fact_911_inf__le2,axiom,
! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_912_inf__le2,axiom,
! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_913_inf__le2,axiom,
! [X: int,Y: int] : ( ord_less_eq_int @ ( inf_inf_int @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_914_inf__le2,axiom,
! [X: set_set_a,Y: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ X @ Y ) @ Y ) ).
% inf_le2
thf(fact_915_le__infE,axiom,
! [X: set_a,A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B ) )
=> ~ ( ( ord_less_eq_set_a @ X @ A )
=> ~ ( ord_less_eq_set_a @ X @ B ) ) ) ).
% le_infE
thf(fact_916_le__infE,axiom,
! [X: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B ) )
=> ~ ( ( ord_less_eq_nat @ X @ A )
=> ~ ( ord_less_eq_nat @ X @ B ) ) ) ).
% le_infE
thf(fact_917_le__infE,axiom,
! [X: int,A: int,B: int] :
( ( ord_less_eq_int @ X @ ( inf_inf_int @ A @ B ) )
=> ~ ( ( ord_less_eq_int @ X @ A )
=> ~ ( ord_less_eq_int @ X @ B ) ) ) ).
% le_infE
thf(fact_918_le__infE,axiom,
! [X: set_set_a,A: set_set_a,B: set_set_a] :
( ( ord_le3724670747650509150_set_a @ X @ ( inf_inf_set_set_a @ A @ B ) )
=> ~ ( ( ord_le3724670747650509150_set_a @ X @ A )
=> ~ ( ord_le3724670747650509150_set_a @ X @ B ) ) ) ).
% le_infE
thf(fact_919_le__infI,axiom,
! [X: set_a,A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ X @ A )
=> ( ( ord_less_eq_set_a @ X @ B )
=> ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B ) ) ) ) ).
% le_infI
thf(fact_920_le__infI,axiom,
! [X: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ X @ A )
=> ( ( ord_less_eq_nat @ X @ B )
=> ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B ) ) ) ) ).
% le_infI
thf(fact_921_le__infI,axiom,
! [X: int,A: int,B: int] :
( ( ord_less_eq_int @ X @ A )
=> ( ( ord_less_eq_int @ X @ B )
=> ( ord_less_eq_int @ X @ ( inf_inf_int @ A @ B ) ) ) ) ).
% le_infI
thf(fact_922_le__infI,axiom,
! [X: set_set_a,A: set_set_a,B: set_set_a] :
( ( ord_le3724670747650509150_set_a @ X @ A )
=> ( ( ord_le3724670747650509150_set_a @ X @ B )
=> ( ord_le3724670747650509150_set_a @ X @ ( inf_inf_set_set_a @ A @ B ) ) ) ) ).
% le_infI
thf(fact_923_inf__mono,axiom,
! [A: set_a,C: set_a,B: set_a,D: set_a] :
( ( ord_less_eq_set_a @ A @ C )
=> ( ( ord_less_eq_set_a @ B @ D )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ ( inf_inf_set_a @ C @ D ) ) ) ) ).
% inf_mono
thf(fact_924_inf__mono,axiom,
! [A: nat,C: nat,B: nat,D: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ D )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ ( inf_inf_nat @ C @ D ) ) ) ) ).
% inf_mono
thf(fact_925_inf__mono,axiom,
! [A: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ A @ C )
=> ( ( ord_less_eq_int @ B @ D )
=> ( ord_less_eq_int @ ( inf_inf_int @ A @ B ) @ ( inf_inf_int @ C @ D ) ) ) ) ).
% inf_mono
thf(fact_926_inf__mono,axiom,
! [A: set_set_a,C: set_set_a,B: set_set_a,D: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A @ C )
=> ( ( ord_le3724670747650509150_set_a @ B @ D )
=> ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ ( inf_inf_set_set_a @ C @ D ) ) ) ) ).
% inf_mono
thf(fact_927_le__infI1,axiom,
! [A: set_a,X: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ X )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).
% le_infI1
thf(fact_928_le__infI1,axiom,
! [A: nat,X: nat,B: nat] :
( ( ord_less_eq_nat @ A @ X )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).
% le_infI1
thf(fact_929_le__infI1,axiom,
! [A: int,X: int,B: int] :
( ( ord_less_eq_int @ A @ X )
=> ( ord_less_eq_int @ ( inf_inf_int @ A @ B ) @ X ) ) ).
% le_infI1
thf(fact_930_le__infI1,axiom,
! [A: set_set_a,X: set_set_a,B: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A @ X )
=> ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ X ) ) ).
% le_infI1
thf(fact_931_le__infI2,axiom,
! [B: set_a,X: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B @ X )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).
% le_infI2
thf(fact_932_le__infI2,axiom,
! [B: nat,X: nat,A: nat] :
( ( ord_less_eq_nat @ B @ X )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).
% le_infI2
thf(fact_933_le__infI2,axiom,
! [B: int,X: int,A: int] :
( ( ord_less_eq_int @ B @ X )
=> ( ord_less_eq_int @ ( inf_inf_int @ A @ B ) @ X ) ) ).
% le_infI2
thf(fact_934_le__infI2,axiom,
! [B: set_set_a,X: set_set_a,A: set_set_a] :
( ( ord_le3724670747650509150_set_a @ B @ X )
=> ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ X ) ) ).
% le_infI2
thf(fact_935_inf_OorderE,axiom,
! [A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( A
= ( inf_inf_set_a @ A @ B ) ) ) ).
% inf.orderE
thf(fact_936_inf_OorderE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( A
= ( inf_inf_nat @ A @ B ) ) ) ).
% inf.orderE
thf(fact_937_inf_OorderE,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( A
= ( inf_inf_int @ A @ B ) ) ) ).
% inf.orderE
thf(fact_938_inf_OorderE,axiom,
! [A: set_set_a,B: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A @ B )
=> ( A
= ( inf_inf_set_set_a @ A @ B ) ) ) ).
% inf.orderE
thf(fact_939_inf_OorderI,axiom,
! [A: set_a,B: set_a] :
( ( A
= ( inf_inf_set_a @ A @ B ) )
=> ( ord_less_eq_set_a @ A @ B ) ) ).
% inf.orderI
thf(fact_940_inf_OorderI,axiom,
! [A: nat,B: nat] :
( ( A
= ( inf_inf_nat @ A @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% inf.orderI
thf(fact_941_inf_OorderI,axiom,
! [A: int,B: int] :
( ( A
= ( inf_inf_int @ A @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% inf.orderI
thf(fact_942_inf_OorderI,axiom,
! [A: set_set_a,B: set_set_a] :
( ( A
= ( inf_inf_set_set_a @ A @ B ) )
=> ( ord_le3724670747650509150_set_a @ A @ B ) ) ).
% inf.orderI
thf(fact_943_inf__unique,axiom,
! [F2: set_a > set_a > set_a,X: set_a,Y: set_a] :
( ! [X3: set_a,Y6: set_a] : ( ord_less_eq_set_a @ ( F2 @ X3 @ Y6 ) @ X3 )
=> ( ! [X3: set_a,Y6: set_a] : ( ord_less_eq_set_a @ ( F2 @ X3 @ Y6 ) @ Y6 )
=> ( ! [X3: set_a,Y6: set_a,Z3: set_a] :
( ( ord_less_eq_set_a @ X3 @ Y6 )
=> ( ( ord_less_eq_set_a @ X3 @ Z3 )
=> ( ord_less_eq_set_a @ X3 @ ( F2 @ Y6 @ Z3 ) ) ) )
=> ( ( inf_inf_set_a @ X @ Y )
= ( F2 @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_944_inf__unique,axiom,
! [F2: nat > nat > nat,X: nat,Y: nat] :
( ! [X3: nat,Y6: nat] : ( ord_less_eq_nat @ ( F2 @ X3 @ Y6 ) @ X3 )
=> ( ! [X3: nat,Y6: nat] : ( ord_less_eq_nat @ ( F2 @ X3 @ Y6 ) @ Y6 )
=> ( ! [X3: nat,Y6: nat,Z3: nat] :
( ( ord_less_eq_nat @ X3 @ Y6 )
=> ( ( ord_less_eq_nat @ X3 @ Z3 )
=> ( ord_less_eq_nat @ X3 @ ( F2 @ Y6 @ Z3 ) ) ) )
=> ( ( inf_inf_nat @ X @ Y )
= ( F2 @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_945_inf__unique,axiom,
! [F2: int > int > int,X: int,Y: int] :
( ! [X3: int,Y6: int] : ( ord_less_eq_int @ ( F2 @ X3 @ Y6 ) @ X3 )
=> ( ! [X3: int,Y6: int] : ( ord_less_eq_int @ ( F2 @ X3 @ Y6 ) @ Y6 )
=> ( ! [X3: int,Y6: int,Z3: int] :
( ( ord_less_eq_int @ X3 @ Y6 )
=> ( ( ord_less_eq_int @ X3 @ Z3 )
=> ( ord_less_eq_int @ X3 @ ( F2 @ Y6 @ Z3 ) ) ) )
=> ( ( inf_inf_int @ X @ Y )
= ( F2 @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_946_inf__unique,axiom,
! [F2: set_set_a > set_set_a > set_set_a,X: set_set_a,Y: set_set_a] :
( ! [X3: set_set_a,Y6: set_set_a] : ( ord_le3724670747650509150_set_a @ ( F2 @ X3 @ Y6 ) @ X3 )
=> ( ! [X3: set_set_a,Y6: set_set_a] : ( ord_le3724670747650509150_set_a @ ( F2 @ X3 @ Y6 ) @ Y6 )
=> ( ! [X3: set_set_a,Y6: set_set_a,Z3: set_set_a] :
( ( ord_le3724670747650509150_set_a @ X3 @ Y6 )
=> ( ( ord_le3724670747650509150_set_a @ X3 @ Z3 )
=> ( ord_le3724670747650509150_set_a @ X3 @ ( F2 @ Y6 @ Z3 ) ) ) )
=> ( ( inf_inf_set_set_a @ X @ Y )
= ( F2 @ X @ Y ) ) ) ) ) ).
% inf_unique
thf(fact_947_le__iff__inf,axiom,
( ord_less_eq_set_a
= ( ^ [X2: set_a,Y2: set_a] :
( ( inf_inf_set_a @ X2 @ Y2 )
= X2 ) ) ) ).
% le_iff_inf
thf(fact_948_le__iff__inf,axiom,
( ord_less_eq_nat
= ( ^ [X2: nat,Y2: nat] :
( ( inf_inf_nat @ X2 @ Y2 )
= X2 ) ) ) ).
% le_iff_inf
thf(fact_949_le__iff__inf,axiom,
( ord_less_eq_int
= ( ^ [X2: int,Y2: int] :
( ( inf_inf_int @ X2 @ Y2 )
= X2 ) ) ) ).
% le_iff_inf
thf(fact_950_le__iff__inf,axiom,
( ord_le3724670747650509150_set_a
= ( ^ [X2: set_set_a,Y2: set_set_a] :
( ( inf_inf_set_set_a @ X2 @ Y2 )
= X2 ) ) ) ).
% le_iff_inf
thf(fact_951_inf_Oabsorb1,axiom,
! [A: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( inf_inf_set_a @ A @ B )
= A ) ) ).
% inf.absorb1
thf(fact_952_inf_Oabsorb1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( inf_inf_nat @ A @ B )
= A ) ) ).
% inf.absorb1
thf(fact_953_inf_Oabsorb1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( inf_inf_int @ A @ B )
= A ) ) ).
% inf.absorb1
thf(fact_954_inf_Oabsorb1,axiom,
! [A: set_set_a,B: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A @ B )
=> ( ( inf_inf_set_set_a @ A @ B )
= A ) ) ).
% inf.absorb1
thf(fact_955_inf_Oabsorb2,axiom,
! [B: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B @ A )
=> ( ( inf_inf_set_a @ A @ B )
= B ) ) ).
% inf.absorb2
thf(fact_956_inf_Oabsorb2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( inf_inf_nat @ A @ B )
= B ) ) ).
% inf.absorb2
thf(fact_957_inf_Oabsorb2,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( inf_inf_int @ A @ B )
= B ) ) ).
% inf.absorb2
thf(fact_958_inf_Oabsorb2,axiom,
! [B: set_set_a,A: set_set_a] :
( ( ord_le3724670747650509150_set_a @ B @ A )
=> ( ( inf_inf_set_set_a @ A @ B )
= B ) ) ).
% inf.absorb2
thf(fact_959_inf__absorb1,axiom,
! [X: set_a,Y: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( inf_inf_set_a @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_960_inf__absorb1,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( inf_inf_nat @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_961_inf__absorb1,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( inf_inf_int @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_962_inf__absorb1,axiom,
! [X: set_set_a,Y: set_set_a] :
( ( ord_le3724670747650509150_set_a @ X @ Y )
=> ( ( inf_inf_set_set_a @ X @ Y )
= X ) ) ).
% inf_absorb1
thf(fact_963_inf__absorb2,axiom,
! [Y: set_a,X: set_a] :
( ( ord_less_eq_set_a @ Y @ X )
=> ( ( inf_inf_set_a @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_964_inf__absorb2,axiom,
! [Y: nat,X: nat] :
( ( ord_less_eq_nat @ Y @ X )
=> ( ( inf_inf_nat @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_965_inf__absorb2,axiom,
! [Y: int,X: int] :
( ( ord_less_eq_int @ Y @ X )
=> ( ( inf_inf_int @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_966_inf__absorb2,axiom,
! [Y: set_set_a,X: set_set_a] :
( ( ord_le3724670747650509150_set_a @ Y @ X )
=> ( ( inf_inf_set_set_a @ X @ Y )
= Y ) ) ).
% inf_absorb2
thf(fact_967_inf_OboundedE,axiom,
! [A: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
=> ~ ( ( ord_less_eq_set_a @ A @ B )
=> ~ ( ord_less_eq_set_a @ A @ C ) ) ) ).
% inf.boundedE
thf(fact_968_inf_OboundedE,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
=> ~ ( ( ord_less_eq_nat @ A @ B )
=> ~ ( ord_less_eq_nat @ A @ C ) ) ) ).
% inf.boundedE
thf(fact_969_inf_OboundedE,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ ( inf_inf_int @ B @ C ) )
=> ~ ( ( ord_less_eq_int @ A @ B )
=> ~ ( ord_less_eq_int @ A @ C ) ) ) ).
% inf.boundedE
thf(fact_970_inf_OboundedE,axiom,
! [A: set_set_a,B: set_set_a,C: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A @ ( inf_inf_set_set_a @ B @ C ) )
=> ~ ( ( ord_le3724670747650509150_set_a @ A @ B )
=> ~ ( ord_le3724670747650509150_set_a @ A @ C ) ) ) ).
% inf.boundedE
thf(fact_971_inf_OboundedI,axiom,
! [A: set_a,B: set_a,C: set_a] :
( ( ord_less_eq_set_a @ A @ B )
=> ( ( ord_less_eq_set_a @ A @ C )
=> ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ) ).
% inf.boundedI
thf(fact_972_inf_OboundedI,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ A @ C )
=> ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) ) ) ) ).
% inf.boundedI
thf(fact_973_inf_OboundedI,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ A @ C )
=> ( ord_less_eq_int @ A @ ( inf_inf_int @ B @ C ) ) ) ) ).
% inf.boundedI
thf(fact_974_inf_OboundedI,axiom,
! [A: set_set_a,B: set_set_a,C: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A @ B )
=> ( ( ord_le3724670747650509150_set_a @ A @ C )
=> ( ord_le3724670747650509150_set_a @ A @ ( inf_inf_set_set_a @ B @ C ) ) ) ) ).
% inf.boundedI
thf(fact_975_inf__greatest,axiom,
! [X: set_a,Y: set_a,Z: set_a] :
( ( ord_less_eq_set_a @ X @ Y )
=> ( ( ord_less_eq_set_a @ X @ Z )
=> ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ) ).
% inf_greatest
thf(fact_976_inf__greatest,axiom,
! [X: nat,Y: nat,Z: nat] :
( ( ord_less_eq_nat @ X @ Y )
=> ( ( ord_less_eq_nat @ X @ Z )
=> ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) ) ) ) ).
% inf_greatest
thf(fact_977_inf__greatest,axiom,
! [X: int,Y: int,Z: int] :
( ( ord_less_eq_int @ X @ Y )
=> ( ( ord_less_eq_int @ X @ Z )
=> ( ord_less_eq_int @ X @ ( inf_inf_int @ Y @ Z ) ) ) ) ).
% inf_greatest
thf(fact_978_inf__greatest,axiom,
! [X: set_set_a,Y: set_set_a,Z: set_set_a] :
( ( ord_le3724670747650509150_set_a @ X @ Y )
=> ( ( ord_le3724670747650509150_set_a @ X @ Z )
=> ( ord_le3724670747650509150_set_a @ X @ ( inf_inf_set_set_a @ Y @ Z ) ) ) ) ).
% inf_greatest
thf(fact_979_inf_Oorder__iff,axiom,
( ord_less_eq_set_a
= ( ^ [A3: set_a,B2: set_a] :
( A3
= ( inf_inf_set_a @ A3 @ B2 ) ) ) ) ).
% inf.order_iff
thf(fact_980_inf_Oorder__iff,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] :
( A3
= ( inf_inf_nat @ A3 @ B2 ) ) ) ) ).
% inf.order_iff
thf(fact_981_inf_Oorder__iff,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B2: int] :
( A3
= ( inf_inf_int @ A3 @ B2 ) ) ) ) ).
% inf.order_iff
thf(fact_982_inf_Oorder__iff,axiom,
( ord_le3724670747650509150_set_a
= ( ^ [A3: set_set_a,B2: set_set_a] :
( A3
= ( inf_inf_set_set_a @ A3 @ B2 ) ) ) ) ).
% inf.order_iff
thf(fact_983_inf_Ocobounded1,axiom,
! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ A ) ).
% inf.cobounded1
thf(fact_984_inf_Ocobounded1,axiom,
! [A: nat,B: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ A ) ).
% inf.cobounded1
thf(fact_985_inf_Ocobounded1,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( inf_inf_int @ A @ B ) @ A ) ).
% inf.cobounded1
thf(fact_986_inf_Ocobounded1,axiom,
! [A: set_set_a,B: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ A ) ).
% inf.cobounded1
thf(fact_987_inf_Ocobounded2,axiom,
! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ B ) ).
% inf.cobounded2
thf(fact_988_inf_Ocobounded2,axiom,
! [A: nat,B: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ B ) ).
% inf.cobounded2
thf(fact_989_inf_Ocobounded2,axiom,
! [A: int,B: int] : ( ord_less_eq_int @ ( inf_inf_int @ A @ B ) @ B ) ).
% inf.cobounded2
thf(fact_990_inf_Ocobounded2,axiom,
! [A: set_set_a,B: set_set_a] : ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ B ) ).
% inf.cobounded2
thf(fact_991_inf_Oabsorb__iff1,axiom,
( ord_less_eq_set_a
= ( ^ [A3: set_a,B2: set_a] :
( ( inf_inf_set_a @ A3 @ B2 )
= A3 ) ) ) ).
% inf.absorb_iff1
thf(fact_992_inf_Oabsorb__iff1,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] :
( ( inf_inf_nat @ A3 @ B2 )
= A3 ) ) ) ).
% inf.absorb_iff1
thf(fact_993_inf_Oabsorb__iff1,axiom,
( ord_less_eq_int
= ( ^ [A3: int,B2: int] :
( ( inf_inf_int @ A3 @ B2 )
= A3 ) ) ) ).
% inf.absorb_iff1
thf(fact_994_inf_Oabsorb__iff1,axiom,
( ord_le3724670747650509150_set_a
= ( ^ [A3: set_set_a,B2: set_set_a] :
( ( inf_inf_set_set_a @ A3 @ B2 )
= A3 ) ) ) ).
% inf.absorb_iff1
thf(fact_995_inf_Oabsorb__iff2,axiom,
( ord_less_eq_set_a
= ( ^ [B2: set_a,A3: set_a] :
( ( inf_inf_set_a @ A3 @ B2 )
= B2 ) ) ) ).
% inf.absorb_iff2
thf(fact_996_inf_Oabsorb__iff2,axiom,
( ord_less_eq_nat
= ( ^ [B2: nat,A3: nat] :
( ( inf_inf_nat @ A3 @ B2 )
= B2 ) ) ) ).
% inf.absorb_iff2
thf(fact_997_inf_Oabsorb__iff2,axiom,
( ord_less_eq_int
= ( ^ [B2: int,A3: int] :
( ( inf_inf_int @ A3 @ B2 )
= B2 ) ) ) ).
% inf.absorb_iff2
thf(fact_998_inf_Oabsorb__iff2,axiom,
( ord_le3724670747650509150_set_a
= ( ^ [B2: set_set_a,A3: set_set_a] :
( ( inf_inf_set_set_a @ A3 @ B2 )
= B2 ) ) ) ).
% inf.absorb_iff2
thf(fact_999_inf_OcoboundedI1,axiom,
! [A: set_a,C: set_a,B: set_a] :
( ( ord_less_eq_set_a @ A @ C )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).
% inf.coboundedI1
thf(fact_1000_inf_OcoboundedI1,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).
% inf.coboundedI1
thf(fact_1001_inf_OcoboundedI1,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ C )
=> ( ord_less_eq_int @ ( inf_inf_int @ A @ B ) @ C ) ) ).
% inf.coboundedI1
thf(fact_1002_inf_OcoboundedI1,axiom,
! [A: set_set_a,C: set_set_a,B: set_set_a] :
( ( ord_le3724670747650509150_set_a @ A @ C )
=> ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ C ) ) ).
% inf.coboundedI1
thf(fact_1003_inf_OcoboundedI2,axiom,
! [B: set_a,C: set_a,A: set_a] :
( ( ord_less_eq_set_a @ B @ C )
=> ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).
% inf.coboundedI2
thf(fact_1004_inf_OcoboundedI2,axiom,
! [B: nat,C: nat,A: nat] :
( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).
% inf.coboundedI2
thf(fact_1005_inf_OcoboundedI2,axiom,
! [B: int,C: int,A: int] :
( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ ( inf_inf_int @ A @ B ) @ C ) ) ).
% inf.coboundedI2
thf(fact_1006_inf_OcoboundedI2,axiom,
! [B: set_set_a,C: set_set_a,A: set_set_a] :
( ( ord_le3724670747650509150_set_a @ B @ C )
=> ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ B ) @ C ) ) ).
% inf.coboundedI2
thf(fact_1007_subdomainI_H,axiom,
! [H2: set_a] :
( ( subring_a_b @ H2 @ r )
=> ( subdomain_a_b @ H2 @ r ) ) ).
% subdomainI'
thf(fact_1008_add__additive__subgroups,axiom,
! [H2: set_a,K2: set_a] :
( ( additi2834746164131130830up_a_b @ H2 @ r )
=> ( ( additi2834746164131130830up_a_b @ K2 @ r )
=> ( additi2834746164131130830up_a_b @ ( set_add_a_b @ r @ H2 @ K2 ) @ r ) ) ) ).
% add_additive_subgroups
thf(fact_1009_field__axioms_Ointro,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( ( units_a_ring_ext_a_b @ R )
= ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( field_axioms_a_b @ R ) ) ).
% field_axioms.intro
thf(fact_1010_subdomainE_I8_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H1: a,H22: a] :
( ( subdomain_a_b @ H2 @ R )
=> ( ( member_a @ H1 @ H2 )
=> ( ( member_a @ H22 @ H2 )
=> ( ( mult_a_ring_ext_a_b @ R @ H1 @ H22 )
= ( mult_a_ring_ext_a_b @ R @ H22 @ H1 ) ) ) ) ) ).
% subdomainE(8)
thf(fact_1011_subdomainE_I6_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H1: a,H22: a] :
( ( subdomain_a_b @ H2 @ R )
=> ( ( member_a @ H1 @ H2 )
=> ( ( member_a @ H22 @ H2 )
=> ( member_a @ ( mult_a_ring_ext_a_b @ R @ H1 @ H22 ) @ H2 ) ) ) ) ).
% subdomainE(6)
thf(fact_1012_subdomainE_I2_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b] :
( ( subdomain_a_b @ H2 @ R )
=> ( member_a @ ( zero_a_b @ R ) @ H2 ) ) ).
% subdomainE(2)
thf(fact_1013_subdomainE_I7_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H1: a,H22: a] :
( ( subdomain_a_b @ H2 @ R )
=> ( ( member_a @ H1 @ H2 )
=> ( ( member_a @ H22 @ H2 )
=> ( member_a @ ( add_a_b @ R @ H1 @ H22 ) @ H2 ) ) ) ) ).
% subdomainE(7)
thf(fact_1014_subdomainE_I5_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H: a] :
( ( subdomain_a_b @ H2 @ R )
=> ( ( member_a @ H @ H2 )
=> ( member_a @ ( a_inv_a_b @ R @ H ) @ H2 ) ) ) ).
% subdomainE(5)
thf(fact_1015_subdomainE_I1_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b] :
( ( subdomain_a_b @ H2 @ R )
=> ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ R ) ) ) ).
% subdomainE(1)
thf(fact_1016_subdomain_Osubintegral,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H1: a,H22: a] :
( ( subdomain_a_b @ H2 @ R )
=> ( ( member_a @ H1 @ H2 )
=> ( ( member_a @ H22 @ H2 )
=> ( ( ( mult_a_ring_ext_a_b @ R @ H1 @ H22 )
= ( zero_a_b @ R ) )
=> ( ( H1
= ( zero_a_b @ R ) )
| ( H22
= ( zero_a_b @ R ) ) ) ) ) ) ) ).
% subdomain.subintegral
thf(fact_1017_subdomain_Osub__one__not__zero,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b] :
( ( subdomain_a_b @ H2 @ R )
=> ( ( one_a_ring_ext_a_b @ R )
!= ( zero_a_b @ R ) ) ) ).
% subdomain.sub_one_not_zero
thf(fact_1018_domain_OsubdomainI_H,axiom,
! [R: partia2175431115845679010xt_a_b,H2: set_a] :
( ( domain_a_b @ R )
=> ( ( subring_a_b @ H2 @ R )
=> ( subdomain_a_b @ H2 @ R ) ) ) ).
% domain.subdomainI'
thf(fact_1019_field_Oaxioms_I2_J,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( field_a_b @ R )
=> ( field_axioms_a_b @ R ) ) ).
% field.axioms(2)
thf(fact_1020_field_Ointro,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( domain_a_b @ R )
=> ( ( field_axioms_a_b @ R )
=> ( field_a_b @ R ) ) ) ).
% field.intro
thf(fact_1021_field__def,axiom,
( field_a_b
= ( ^ [R2: partia2175431115845679010xt_a_b] :
( ( domain_a_b @ R2 )
& ( field_axioms_a_b @ R2 ) ) ) ) ).
% field_def
thf(fact_1022_field__axioms__def,axiom,
( field_axioms_a_b
= ( ^ [R2: partia2175431115845679010xt_a_b] :
( ( units_a_ring_ext_a_b @ R2 )
= ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R2 ) @ ( insert_a @ ( zero_a_b @ R2 ) @ bot_bot_set_a ) ) ) ) ) ).
% field_axioms_def
thf(fact_1023_subdomainI,axiom,
! [H2: set_a] :
( ( subcring_a_b @ H2 @ r )
=> ( ( ( one_a_ring_ext_a_b @ r )
!= ( zero_a_b @ r ) )
=> ( ! [H12: a,H23: a] :
( ( member_a @ H12 @ H2 )
=> ( ( member_a @ H23 @ H2 )
=> ( ( ( mult_a_ring_ext_a_b @ r @ H12 @ H23 )
= ( zero_a_b @ r ) )
=> ( ( H12
= ( zero_a_b @ r ) )
| ( H23
= ( zero_a_b @ r ) ) ) ) ) )
=> ( subdomain_a_b @ H2 @ r ) ) ) ) ).
% subdomainI
thf(fact_1024_mult__of_OproperfactorI3,axiom,
! [P2: a,A: a,B: a] :
( ( P2
= ( mult_a_ring_ext_a_b @ r @ A @ B ) )
=> ( ~ ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ P2 ) ) ) ) ) ).
% mult_of.properfactorI3
thf(fact_1025_carrier__is__subcring,axiom,
subcring_a_b @ ( partia707051561876973205xt_a_b @ r ) @ r ).
% carrier_is_subcring
thf(fact_1026_subcringI_H,axiom,
! [H2: set_a] :
( ( subring_a_b @ H2 @ r )
=> ( subcring_a_b @ H2 @ r ) ) ).
% subcringI'
thf(fact_1027_subcring__inter,axiom,
! [I2: set_a,J2: set_a] :
( ( subcring_a_b @ I2 @ r )
=> ( ( subcring_a_b @ J2 @ r )
=> ( subcring_a_b @ ( inf_inf_set_a @ I2 @ J2 ) @ r ) ) ) ).
% subcring_inter
thf(fact_1028_mult__of_Oproperfactor__divides,axiom,
! [A: a,B: a] :
( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ).
% mult_of.properfactor_divides
thf(fact_1029_subcringI,axiom,
! [H2: set_a] :
( ( subring_a_b @ H2 @ r )
=> ( ! [H12: a,H23: a] :
( ( member_a @ H12 @ H2 )
=> ( ( member_a @ H23 @ H2 )
=> ( ( mult_a_ring_ext_a_b @ r @ H12 @ H23 )
= ( mult_a_ring_ext_a_b @ r @ H23 @ H12 ) ) ) )
=> ( subcring_a_b @ H2 @ r ) ) ) ).
% subcringI
thf(fact_1030_properfactor__of__zero_I1_J,axiom,
! [B: a] :
( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ~ ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ B @ ( zero_a_b @ r ) ) ) ).
% properfactor_of_zero(1)
thf(fact_1031_mult__of_Oproperfactor__prod__l,axiom,
! [A: a,B: a,C: a] :
( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ) ).
% mult_of.properfactor_prod_l
thf(fact_1032_mult__of_Oproperfactor__prod__r,axiom,
! [A: a,B: a,C: a] :
( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ) ).
% mult_of.properfactor_prod_r
thf(fact_1033_mult__of_Oproperfactor__unitE,axiom,
! [U: a,A: a] :
( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ U )
=> ~ ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ).
% mult_of.properfactor_unitE
thf(fact_1034_mult__of_Oproperfactor__trans1,axiom,
! [A: a,B: a,C: a] :
( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ B @ C )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ C ) ) ) ) ) ).
% mult_of.properfactor_trans1
thf(fact_1035_mult__of_Oproperfactor__trans2,axiom,
! [A: a,B: a,C: a] :
( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ B @ C )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ C ) ) ) ) ) ).
% mult_of.properfactor_trans2
thf(fact_1036_mult__of_Oproperfactor__mult__l,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) )
= ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ) ).
% mult_of.properfactor_mult_l
thf(fact_1037_mult__of_Oproperfactor__mult__lI,axiom,
! [A: a,B: a,C: a] :
( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ C @ A ) @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ).
% mult_of.properfactor_mult_lI
thf(fact_1038_mult__of_Oproperfactor__mult__r,axiom,
! [A: a,B: a,C: a] :
( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ C ) @ ( mult_a_ring_ext_a_b @ r @ B @ C ) )
= ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ) ).
% mult_of.properfactor_mult_r
thf(fact_1039_mult__of_Oproperfactor__mult__rI,axiom,
! [A: a,B: a,C: a] :
( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ C ) @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ).
% mult_of.properfactor_mult_rI
thf(fact_1040_subcringE_I2_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b] :
( ( subcring_a_b @ H2 @ R )
=> ( member_a @ ( zero_a_b @ R ) @ H2 ) ) ).
% subcringE(2)
thf(fact_1041_subcringE_I7_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H1: a,H22: a] :
( ( subcring_a_b @ H2 @ R )
=> ( ( member_a @ H1 @ H2 )
=> ( ( member_a @ H22 @ H2 )
=> ( member_a @ ( add_a_b @ R @ H1 @ H22 ) @ H2 ) ) ) ) ).
% subcringE(7)
thf(fact_1042_subcringE_I5_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H: a] :
( ( subcring_a_b @ H2 @ R )
=> ( ( member_a @ H @ H2 )
=> ( member_a @ ( a_inv_a_b @ R @ H ) @ H2 ) ) ) ).
% subcringE(5)
thf(fact_1043_subcring_Osub__m__comm,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H1: a,H22: a] :
( ( subcring_a_b @ H2 @ R )
=> ( ( member_a @ H1 @ H2 )
=> ( ( member_a @ H22 @ H2 )
=> ( ( mult_a_ring_ext_a_b @ R @ H1 @ H22 )
= ( mult_a_ring_ext_a_b @ R @ H22 @ H1 ) ) ) ) ) ).
% subcring.sub_m_comm
thf(fact_1044_subcringE_I6_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b,H1: a,H22: a] :
( ( subcring_a_b @ H2 @ R )
=> ( ( member_a @ H1 @ H2 )
=> ( ( member_a @ H22 @ H2 )
=> ( member_a @ ( mult_a_ring_ext_a_b @ R @ H1 @ H22 ) @ H2 ) ) ) ) ).
% subcringE(6)
thf(fact_1045_properfactor__def,axiom,
( proper6663671550266415409t_unit
= ( ^ [G: partia8223610829204095565t_unit,A3: a,B2: a] :
( ( factor3040189038382604065t_unit @ G @ A3 @ B2 )
& ~ ( factor3040189038382604065t_unit @ G @ B2 @ A3 ) ) ) ) ).
% properfactor_def
thf(fact_1046_properfactor__def,axiom,
( proper19828929941537682xt_a_b
= ( ^ [G: partia2175431115845679010xt_a_b,A3: a,B2: a] :
( ( factor8216151070175719842xt_a_b @ G @ A3 @ B2 )
& ~ ( factor8216151070175719842xt_a_b @ G @ B2 @ A3 ) ) ) ) ).
% properfactor_def
thf(fact_1047_properfactorI,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( factor3040189038382604065t_unit @ G2 @ A @ B )
=> ( ~ ( factor3040189038382604065t_unit @ G2 @ B @ A )
=> ( proper6663671550266415409t_unit @ G2 @ A @ B ) ) ) ).
% properfactorI
thf(fact_1048_properfactorI,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( factor8216151070175719842xt_a_b @ G2 @ A @ B )
=> ( ~ ( factor8216151070175719842xt_a_b @ G2 @ B @ A )
=> ( proper19828929941537682xt_a_b @ G2 @ A @ B ) ) ) ).
% properfactorI
thf(fact_1049_properfactorE,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( proper6663671550266415409t_unit @ G2 @ A @ B )
=> ~ ( ( factor3040189038382604065t_unit @ G2 @ A @ B )
=> ( factor3040189038382604065t_unit @ G2 @ B @ A ) ) ) ).
% properfactorE
thf(fact_1050_properfactorE,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( proper19828929941537682xt_a_b @ G2 @ A @ B )
=> ~ ( ( factor8216151070175719842xt_a_b @ G2 @ A @ B )
=> ( factor8216151070175719842xt_a_b @ G2 @ B @ A ) ) ) ).
% properfactorE
thf(fact_1051_subcringE_I1_J,axiom,
! [H2: set_a,R: partia2175431115845679010xt_a_b] :
( ( subcring_a_b @ H2 @ R )
=> ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ R ) ) ) ).
% subcringE(1)
thf(fact_1052_irreducible__def,axiom,
( irredu6211895646901577903xt_a_b
= ( ^ [G: partia2175431115845679010xt_a_b,A3: a] :
( ~ ( member_a @ A3 @ ( units_a_ring_ext_a_b @ G ) )
& ! [X2: a] :
( ( member_a @ X2 @ ( partia707051561876973205xt_a_b @ G ) )
=> ( ( proper19828929941537682xt_a_b @ G @ X2 @ A3 )
=> ( member_a @ X2 @ ( units_a_ring_ext_a_b @ G ) ) ) ) ) ) ) ).
% irreducible_def
thf(fact_1053_irreducible__def,axiom,
( irredu4023057619401689684t_unit
= ( ^ [G: partia8223610829204095565t_unit,A3: a] :
( ~ ( member_a @ A3 @ ( units_a_Product_unit @ G ) )
& ! [X2: a] :
( ( member_a @ X2 @ ( partia6735698275553448452t_unit @ G ) )
=> ( ( proper6663671550266415409t_unit @ G @ X2 @ A3 )
=> ( member_a @ X2 @ ( units_a_Product_unit @ G ) ) ) ) ) ) ) ).
% irreducible_def
thf(fact_1054_irreducibleI,axiom,
! [A: a,G2: partia2175431115845679010xt_a_b] :
( ~ ( member_a @ A @ ( units_a_ring_ext_a_b @ G2 ) )
=> ( ! [B3: a] :
( ( member_a @ B3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( proper19828929941537682xt_a_b @ G2 @ B3 @ A )
=> ( member_a @ B3 @ ( units_a_ring_ext_a_b @ G2 ) ) ) )
=> ( irredu6211895646901577903xt_a_b @ G2 @ A ) ) ) ).
% irreducibleI
thf(fact_1055_irreducibleI,axiom,
! [A: a,G2: partia8223610829204095565t_unit] :
( ~ ( member_a @ A @ ( units_a_Product_unit @ G2 ) )
=> ( ! [B3: a] :
( ( member_a @ B3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( proper6663671550266415409t_unit @ G2 @ B3 @ A )
=> ( member_a @ B3 @ ( units_a_Product_unit @ G2 ) ) ) )
=> ( irredu4023057619401689684t_unit @ G2 @ A ) ) ) ).
% irreducibleI
thf(fact_1056_irreducibleE,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a] :
( ( irredu6211895646901577903xt_a_b @ G2 @ A )
=> ~ ( ~ ( member_a @ A @ ( units_a_ring_ext_a_b @ G2 ) )
=> ~ ! [B6: a] :
( ( ( member_a @ B6 @ ( partia707051561876973205xt_a_b @ G2 ) )
& ( proper19828929941537682xt_a_b @ G2 @ B6 @ A ) )
=> ( member_a @ B6 @ ( units_a_ring_ext_a_b @ G2 ) ) ) ) ) ).
% irreducibleE
thf(fact_1057_irreducibleE,axiom,
! [G2: partia8223610829204095565t_unit,A: a] :
( ( irredu4023057619401689684t_unit @ G2 @ A )
=> ~ ( ~ ( member_a @ A @ ( units_a_Product_unit @ G2 ) )
=> ~ ! [B6: a] :
( ( ( member_a @ B6 @ ( partia6735698275553448452t_unit @ G2 ) )
& ( proper6663671550266415409t_unit @ G2 @ B6 @ A ) )
=> ( member_a @ B6 @ ( units_a_Product_unit @ G2 ) ) ) ) ) ).
% irreducibleE
thf(fact_1058_irreducibleD,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( irredu6211895646901577903xt_a_b @ G2 @ A )
=> ( ( proper19828929941537682xt_a_b @ G2 @ B @ A )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( member_a @ B @ ( units_a_ring_ext_a_b @ G2 ) ) ) ) ) ).
% irreducibleD
thf(fact_1059_irreducibleD,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( irredu4023057619401689684t_unit @ G2 @ A )
=> ( ( proper6663671550266415409t_unit @ G2 @ B @ A )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( member_a @ B @ ( units_a_Product_unit @ G2 ) ) ) ) ) ).
% irreducibleD
thf(fact_1060_monoid__cancel_Oproperfactor__mult__l,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( proper19828929941537682xt_a_b @ G2 @ ( mult_a_ring_ext_a_b @ G2 @ C @ A ) @ ( mult_a_ring_ext_a_b @ G2 @ C @ B ) )
= ( proper19828929941537682xt_a_b @ G2 @ A @ B ) ) ) ) ) ) ).
% monoid_cancel.properfactor_mult_l
thf(fact_1061_monoid__cancel_Oproperfactor__mult__l,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a,C: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( proper6663671550266415409t_unit @ G2 @ ( mult_a_Product_unit @ G2 @ C @ A ) @ ( mult_a_Product_unit @ G2 @ C @ B ) )
= ( proper6663671550266415409t_unit @ G2 @ A @ B ) ) ) ) ) ) ).
% monoid_cancel.properfactor_mult_l
thf(fact_1062_monoid__cancel_Oproperfactor__mult__lI,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( proper19828929941537682xt_a_b @ G2 @ A @ B )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( proper19828929941537682xt_a_b @ G2 @ ( mult_a_ring_ext_a_b @ G2 @ C @ A ) @ ( mult_a_ring_ext_a_b @ G2 @ C @ B ) ) ) ) ) ) ).
% monoid_cancel.properfactor_mult_lI
thf(fact_1063_monoid__cancel_Oproperfactor__mult__lI,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a,C: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( proper6663671550266415409t_unit @ G2 @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( proper6663671550266415409t_unit @ G2 @ ( mult_a_Product_unit @ G2 @ C @ A ) @ ( mult_a_Product_unit @ G2 @ C @ B ) ) ) ) ) ) ).
% monoid_cancel.properfactor_mult_lI
thf(fact_1064_domain_Oproperfactor__of__zero_I1_J,axiom,
! [R: partia2175431115845679010xt_a_b,B: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ~ ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ R ) @ B @ ( zero_a_b @ R ) ) ) ) ).
% domain.properfactor_of_zero(1)
thf(fact_1065_properfactor__imp__properfactor__mult,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ r ) @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( proper19828929941537682xt_a_b @ r @ B @ A )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ B @ A ) ) ) ) ).
% properfactor_imp_properfactor_mult
thf(fact_1066_nat__diff__add__eq2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_1067_properfactor__divides,axiom,
! [A: a,B: a] :
( ( proper19828929941537682xt_a_b @ r @ A @ B )
=> ( factor8216151070175719842xt_a_b @ r @ A @ B ) ) ).
% properfactor_divides
thf(fact_1068_properfactor__of__zero_I2_J,axiom,
! [B: a] :
( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( proper19828929941537682xt_a_b @ r @ B @ ( zero_a_b @ r ) )
= ( B
!= ( zero_a_b @ r ) ) ) ) ).
% properfactor_of_zero(2)
thf(fact_1069_properfactor__prod__l,axiom,
! [A: a,B: a,C: a] :
( ( proper19828929941537682xt_a_b @ r @ A @ B )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( proper19828929941537682xt_a_b @ r @ A @ ( mult_a_ring_ext_a_b @ r @ C @ B ) ) ) ) ) ) ).
% properfactor_prod_l
thf(fact_1070_properfactor__prod__r,axiom,
! [A: a,B: a,C: a] :
( ( proper19828929941537682xt_a_b @ r @ A @ B )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( proper19828929941537682xt_a_b @ r @ A @ ( mult_a_ring_ext_a_b @ r @ B @ C ) ) ) ) ) ) ).
% properfactor_prod_r
thf(fact_1071_properfactor__unitE,axiom,
! [U: a,A: a] :
( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( proper19828929941537682xt_a_b @ r @ A @ U )
=> ~ ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% properfactor_unitE
thf(fact_1072_properfactor__trans1,axiom,
! [A: a,B: a,C: a] :
( ( factor8216151070175719842xt_a_b @ r @ A @ B )
=> ( ( proper19828929941537682xt_a_b @ r @ B @ C )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( proper19828929941537682xt_a_b @ r @ A @ C ) ) ) ) ) ).
% properfactor_trans1
thf(fact_1073_properfactor__trans2,axiom,
! [A: a,B: a,C: a] :
( ( proper19828929941537682xt_a_b @ r @ A @ B )
=> ( ( factor8216151070175719842xt_a_b @ r @ B @ C )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( proper19828929941537682xt_a_b @ r @ A @ C ) ) ) ) ) ).
% properfactor_trans2
thf(fact_1074_properfactor__mult__imp__properfactor,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ B @ A )
=> ( proper19828929941537682xt_a_b @ r @ B @ A ) ) ) ) ).
% properfactor_mult_imp_properfactor
thf(fact_1075_domain_Oproperfactor__of__zero_I2_J,axiom,
! [R: partia2175431115845679010xt_a_b,B: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( proper19828929941537682xt_a_b @ R @ B @ ( zero_a_b @ R ) )
= ( B
!= ( zero_a_b @ R ) ) ) ) ) ).
% domain.properfactor_of_zero(2)
thf(fact_1076_properfactor__hom,axiom,
! [H: a > a,R: partia2175431115845679010xt_a_b,S: partia2175431115845679010xt_a_b,X: a,B: a] :
( ( member_a_a @ H @ ( ring_iso_a_b_a_b @ R @ S ) )
=> ( ( domain_a_b @ R )
=> ( ( domain_a_b @ S )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( proper19828929941537682xt_a_b @ R @ B @ X )
= ( proper19828929941537682xt_a_b @ S @ ( H @ B ) @ ( H @ X ) ) ) ) ) ) ) ) ).
% properfactor_hom
thf(fact_1077_domain_Oproperfactor__mult__imp__properfactor,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ R ) @ B @ A )
=> ( proper19828929941537682xt_a_b @ R @ B @ A ) ) ) ) ) ).
% domain.properfactor_mult_imp_properfactor
thf(fact_1078_domain_Oproperfactor__imp__properfactor__mult,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( minus_minus_set_a @ ( partia707051561876973205xt_a_b @ R ) @ ( insert_a @ ( zero_a_b @ R ) @ bot_bot_set_a ) ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( proper19828929941537682xt_a_b @ R @ B @ A )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ R ) @ B @ A ) ) ) ) ) ).
% domain.properfactor_imp_properfactor_mult
thf(fact_1079_nat__eq__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M )
= N ) ) ) ).
% nat_eq_add_iff1
thf(fact_1080_nat__eq__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( M
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_1081_nat__le__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_le_add_iff1
thf(fact_1082_nat__le__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N ) ) ) ) ).
% nat_le_add_iff2
thf(fact_1083_nat__diff__add__eq1,axiom,
! [J: nat,I: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M ) @ N ) ) ) ).
% nat_diff_add_eq1
thf(fact_1084_mult__of_Ogroup__l__invI,axiom,
( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ? [Xa2: a] :
( ( member_a @ Xa2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
& ( ( mult_a_ring_ext_a_b @ r @ Xa2 @ X3 )
= ( one_a_ring_ext_a_b @ r ) ) ) )
=> ( group_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ).
% mult_of.group_l_invI
thf(fact_1085_mult__of_OassociatedD2,axiom,
! [A: a,B: a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
& ( A
= ( mult_a_ring_ext_a_b @ r @ B @ X3 ) ) ) ) ) ) ).
% mult_of.associatedD2
thf(fact_1086_mult__of_Oassociated__sym,axiom,
! [A: a,B: a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ B @ A ) ) ).
% mult_of.associated_sym
thf(fact_1087_mult__of_Oassociated__trans,axiom,
! [A: a,B: a,C: a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ B @ C )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ C ) ) ) ) ) ).
% mult_of.associated_trans
thf(fact_1088_mult__of_Oassoc__subst,axiom,
! [A: a,B: a,F2: a > a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ! [A4: a,B3: a] :
( ( ( member_a @ A4 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
& ( member_a @ B3 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
& ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A4 @ B3 ) )
=> ( ( member_a @ ( F2 @ A4 ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
& ( member_a @ ( F2 @ B3 ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
& ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( F2 @ A4 ) @ ( F2 @ B3 ) ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( F2 @ A ) @ ( F2 @ B ) ) ) ) ) ) ).
% mult_of.assoc_subst
thf(fact_1089_mult__of_OUnits__assoc,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ).
% mult_of.Units_assoc
thf(fact_1090_units__group,axiom,
group_a_Product_unit @ ( units_8174867845824275201xt_a_b @ r ) ).
% units_group
thf(fact_1091_mult__of_Oassoc__l__cancel,axiom,
! [A: a,B: a,B7: a] :
( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B7 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A @ B7 ) )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ B @ B7 ) ) ) ) ) ).
% mult_of.assoc_l_cancel
thf(fact_1092_mult__of_Oassoc__r__cancel,axiom,
! [A: a,B: a,A6: a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A6 @ B ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A6 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ A6 ) ) ) ) ) ).
% mult_of.assoc_r_cancel
thf(fact_1093_mult__of_Omult__cong__l,axiom,
! [A: a,A6: a,B: a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ A6 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A6 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A6 @ B ) ) ) ) ) ) ).
% mult_of.mult_cong_l
thf(fact_1094_mult__of_Omult__cong__r,axiom,
! [B: a,B7: a,A: a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ B @ B7 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B7 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A @ B7 ) ) ) ) ) ) ).
% mult_of.mult_cong_r
thf(fact_1095_mult__of_Oassoc__unit__l,axiom,
! [A: a,B: a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ).
% mult_of.assoc_unit_l
thf(fact_1096_mult__of_Oassoc__unit__r,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ B @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ).
% mult_of.assoc_unit_r
thf(fact_1097_mult__of_Odivides__cong__l,axiom,
! [X: a,X6: a,Y: a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ X @ X6 )
=> ( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ X6 @ Y )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y ) ) ) ) ).
% mult_of.divides_cong_l
thf(fact_1098_mult__of_Odivides__cong__r,axiom,
! [X: a,Y: a,Y3: a] :
( ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y )
=> ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ Y @ Y3 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( factor3040189038382604065t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y3 ) ) ) ) ).
% mult_of.divides_cong_r
thf(fact_1099_mult__of_Oproperfactor__cong__r,axiom,
! [X: a,Y: a,Y3: a] :
( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y )
=> ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ Y @ Y3 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y3 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y3 ) ) ) ) ) ) ).
% mult_of.properfactor_cong_r
thf(fact_1100_mult__of_Oproperfactor__cong__l,axiom,
! [X6: a,X: a,Y: a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ X6 @ X )
=> ( ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ X @ Y )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ X6 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( proper6663671550266415409t_unit @ ( ring_mult_of_a_b @ r ) @ X6 @ Y ) ) ) ) ) ) ).
% mult_of.properfactor_cong_l
thf(fact_1101_mult__of_Oirreducible__cong,axiom,
! [A: a,A6: a] :
( ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A )
=> ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ A6 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ A6 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( irredu4023057619401689684t_unit @ ( ring_mult_of_a_b @ r ) @ A6 ) ) ) ) ) ).
% mult_of.irreducible_cong
thf(fact_1102_mult__of_Ounits__group,axiom,
group_a_Product_unit @ ( units_7501539392726747778t_unit @ ( ring_mult_of_a_b @ r ) ) ).
% mult_of.units_group
thf(fact_1103_mult__of_Oprime__cong,axiom,
! [P2: a,P4: a] :
( ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P2 )
=> ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ P2 @ P4 )
=> ( ( member_a @ P2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ P4 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( prime_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ P4 ) ) ) ) ) ).
% mult_of.prime_cong
thf(fact_1104_mult__of_Oassociated__iff,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
= ( ? [X2: a] :
( ( member_a @ X2 @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
& ( A
= ( mult_a_ring_ext_a_b @ r @ B @ X2 ) ) ) ) ) ) ) ).
% mult_of.associated_iff
thf(fact_1105_mult__of_OassociatedI2_H,axiom,
! [A: a,B: a,U: a] :
( ( A
= ( mult_a_ring_ext_a_b @ r @ B @ U ) )
=> ( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ).
% mult_of.associatedI2'
thf(fact_1106_mult__of_OassociatedI2,axiom,
! [U: a,A: a,B: a] :
( ( member_a @ U @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( A
= ( mult_a_ring_ext_a_b @ r @ B @ U ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ).
% mult_of.associatedI2
thf(fact_1107_mult__of_OassociatedE2,axiom,
! [A: a,B: a] :
( ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B )
=> ( ! [U2: a] :
( ( A
= ( mult_a_ring_ext_a_b @ r @ B @ U2 ) )
=> ~ ( member_a @ U2 @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ~ ( member_a @ B @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ) ).
% mult_of.associatedE2
thf(fact_1108_group_Oinv__inv,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( m_inv_a_ring_ext_a_b @ G2 @ ( m_inv_a_ring_ext_a_b @ G2 @ X ) )
= X ) ) ) ).
% group.inv_inv
thf(fact_1109_group_Oinv__inv,axiom,
! [G2: partia8223610829204095565t_unit,X: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( m_inv_a_Product_unit @ G2 @ ( m_inv_a_Product_unit @ G2 @ X ) )
= X ) ) ) ).
% group.inv_inv
thf(fact_1110_mult__of_Oassociated__refl,axiom,
! [A: a] :
( ( member_a @ A @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ A ) ) ).
% mult_of.associated_refl
thf(fact_1111_properfactorI2,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( factor3040189038382604065t_unit @ G2 @ A @ B )
=> ( ~ ( associ6879500422977059064t_unit @ G2 @ A @ B )
=> ( proper6663671550266415409t_unit @ G2 @ A @ B ) ) ) ).
% properfactorI2
thf(fact_1112_properfactorI2,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( factor8216151070175719842xt_a_b @ G2 @ A @ B )
=> ( ~ ( associ5860276527279195403xt_a_b @ G2 @ A @ B )
=> ( proper19828929941537682xt_a_b @ G2 @ A @ B ) ) ) ).
% properfactorI2
thf(fact_1113_properfactorE2,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( proper6663671550266415409t_unit @ G2 @ A @ B )
=> ~ ( ( factor3040189038382604065t_unit @ G2 @ A @ B )
=> ( associ6879500422977059064t_unit @ G2 @ A @ B ) ) ) ).
% properfactorE2
thf(fact_1114_properfactorE2,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( proper19828929941537682xt_a_b @ G2 @ A @ B )
=> ~ ( ( factor8216151070175719842xt_a_b @ G2 @ A @ B )
=> ( associ5860276527279195403xt_a_b @ G2 @ A @ B ) ) ) ).
% properfactorE2
thf(fact_1115_group_Oinv__closed,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( member_a @ ( m_inv_a_ring_ext_a_b @ G2 @ X ) @ ( partia707051561876973205xt_a_b @ G2 ) ) ) ) ).
% group.inv_closed
thf(fact_1116_group_Oinv__closed,axiom,
! [G2: partia8223610829204095565t_unit,X: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( member_a @ ( m_inv_a_Product_unit @ G2 @ X ) @ ( partia6735698275553448452t_unit @ G2 ) ) ) ) ).
% group.inv_closed
thf(fact_1117_Group_Ogroup_Oright__cancel,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( ( mult_a_ring_ext_a_b @ G2 @ Y @ X )
= ( mult_a_ring_ext_a_b @ G2 @ Z @ X ) )
= ( Y = Z ) ) ) ) ) ) ).
% Group.group.right_cancel
thf(fact_1118_Group_Ogroup_Oright__cancel,axiom,
! [G2: partia8223610829204095565t_unit,X: a,Y: a,Z: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ Z @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( ( mult_a_Product_unit @ G2 @ Y @ X )
= ( mult_a_Product_unit @ G2 @ Z @ X ) )
= ( Y = Z ) ) ) ) ) ) ).
% Group.group.right_cancel
thf(fact_1119_group_OUnits__eq,axiom,
! [G2: partia2175431115845679010xt_a_b] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( units_a_ring_ext_a_b @ G2 )
= ( partia707051561876973205xt_a_b @ G2 ) ) ) ).
% group.Units_eq
thf(fact_1120_group_OUnits__eq,axiom,
! [G2: partia8223610829204095565t_unit] :
( ( group_a_Product_unit @ G2 )
=> ( ( units_a_Product_unit @ G2 )
= ( partia6735698275553448452t_unit @ G2 ) ) ) ).
% group.Units_eq
thf(fact_1121_divides__antisym,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( factor3040189038382604065t_unit @ G2 @ A @ B )
=> ( ( factor3040189038382604065t_unit @ G2 @ B @ A )
=> ( associ6879500422977059064t_unit @ G2 @ A @ B ) ) ) ).
% divides_antisym
thf(fact_1122_divides__antisym,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( factor8216151070175719842xt_a_b @ G2 @ A @ B )
=> ( ( factor8216151070175719842xt_a_b @ G2 @ B @ A )
=> ( associ5860276527279195403xt_a_b @ G2 @ A @ B ) ) ) ).
% divides_antisym
thf(fact_1123_associated__def,axiom,
( associ6879500422977059064t_unit
= ( ^ [G: partia8223610829204095565t_unit,A3: a,B2: a] :
( ( factor3040189038382604065t_unit @ G @ A3 @ B2 )
& ( factor3040189038382604065t_unit @ G @ B2 @ A3 ) ) ) ) ).
% associated_def
thf(fact_1124_associated__def,axiom,
( associ5860276527279195403xt_a_b
= ( ^ [G: partia2175431115845679010xt_a_b,A3: a,B2: a] :
( ( factor8216151070175719842xt_a_b @ G @ A3 @ B2 )
& ( factor8216151070175719842xt_a_b @ G @ B2 @ A3 ) ) ) ) ).
% associated_def
thf(fact_1125_associatedE,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( associ6879500422977059064t_unit @ G2 @ A @ B )
=> ~ ( ( factor3040189038382604065t_unit @ G2 @ A @ B )
=> ~ ( factor3040189038382604065t_unit @ G2 @ B @ A ) ) ) ).
% associatedE
thf(fact_1126_associatedE,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( associ5860276527279195403xt_a_b @ G2 @ A @ B )
=> ~ ( ( factor8216151070175719842xt_a_b @ G2 @ A @ B )
=> ~ ( factor8216151070175719842xt_a_b @ G2 @ B @ A ) ) ) ).
% associatedE
thf(fact_1127_associatedD,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( associ6879500422977059064t_unit @ G2 @ A @ B )
=> ( factor3040189038382604065t_unit @ G2 @ A @ B ) ) ).
% associatedD
thf(fact_1128_associatedD,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( associ5860276527279195403xt_a_b @ G2 @ A @ B )
=> ( factor8216151070175719842xt_a_b @ G2 @ A @ B ) ) ).
% associatedD
thf(fact_1129_group_OUnits,axiom,
! [G2: partia2175431115845679010xt_a_b] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ord_less_eq_set_a @ ( partia707051561876973205xt_a_b @ G2 ) @ ( units_a_ring_ext_a_b @ G2 ) ) ) ).
% group.Units
thf(fact_1130_group_OUnits,axiom,
! [G2: partia8223610829204095565t_unit] :
( ( group_a_Product_unit @ G2 )
=> ( ord_less_eq_set_a @ ( partia6735698275553448452t_unit @ G2 ) @ ( units_a_Product_unit @ G2 ) ) ) ).
% group.Units
thf(fact_1131_groupI,axiom,
! [G2: partia2175431115845679010xt_a_b] :
( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ! [Y6: a] :
( ( member_a @ Y6 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( member_a @ ( mult_a_ring_ext_a_b @ G2 @ X3 @ Y6 ) @ ( partia707051561876973205xt_a_b @ G2 ) ) ) )
=> ( ( member_a @ ( one_a_ring_ext_a_b @ G2 ) @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ! [Y6: a] :
( ( member_a @ Y6 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ! [Z3: a] :
( ( member_a @ Z3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ ( mult_a_ring_ext_a_b @ G2 @ X3 @ Y6 ) @ Z3 )
= ( mult_a_ring_ext_a_b @ G2 @ X3 @ ( mult_a_ring_ext_a_b @ G2 @ Y6 @ Z3 ) ) ) ) ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ ( one_a_ring_ext_a_b @ G2 ) @ X3 )
= X3 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ? [Xa2: a] :
( ( member_a @ Xa2 @ ( partia707051561876973205xt_a_b @ G2 ) )
& ( ( mult_a_ring_ext_a_b @ G2 @ Xa2 @ X3 )
= ( one_a_ring_ext_a_b @ G2 ) ) ) )
=> ( group_a_ring_ext_a_b @ G2 ) ) ) ) ) ) ).
% groupI
thf(fact_1132_groupI,axiom,
! [G2: partia8223610829204095565t_unit] :
( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ! [Y6: a] :
( ( member_a @ Y6 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( member_a @ ( mult_a_Product_unit @ G2 @ X3 @ Y6 ) @ ( partia6735698275553448452t_unit @ G2 ) ) ) )
=> ( ( member_a @ ( one_a_Product_unit @ G2 ) @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ! [Y6: a] :
( ( member_a @ Y6 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ! [Z3: a] :
( ( member_a @ Z3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ ( mult_a_Product_unit @ G2 @ X3 @ Y6 ) @ Z3 )
= ( mult_a_Product_unit @ G2 @ X3 @ ( mult_a_Product_unit @ G2 @ Y6 @ Z3 ) ) ) ) ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ ( one_a_Product_unit @ G2 ) @ X3 )
= X3 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ? [Xa2: a] :
( ( member_a @ Xa2 @ ( partia6735698275553448452t_unit @ G2 ) )
& ( ( mult_a_Product_unit @ G2 @ Xa2 @ X3 )
= ( one_a_Product_unit @ G2 ) ) ) )
=> ( group_a_Product_unit @ G2 ) ) ) ) ) ) ).
% groupI
thf(fact_1133_group_Or__cancel__one_H,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,A: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( X
= ( mult_a_ring_ext_a_b @ G2 @ A @ X ) )
= ( A
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ) ) ).
% group.r_cancel_one'
thf(fact_1134_group_Or__cancel__one_H,axiom,
! [G2: partia8223610829204095565t_unit,X: a,A: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( X
= ( mult_a_Product_unit @ G2 @ A @ X ) )
= ( A
= ( one_a_Product_unit @ G2 ) ) ) ) ) ) ).
% group.r_cancel_one'
thf(fact_1135_group_Ol__cancel__one_H,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,A: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( X
= ( mult_a_ring_ext_a_b @ G2 @ X @ A ) )
= ( A
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ) ) ).
% group.l_cancel_one'
thf(fact_1136_group_Ol__cancel__one_H,axiom,
! [G2: partia8223610829204095565t_unit,X: a,A: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( X
= ( mult_a_Product_unit @ G2 @ X @ A ) )
= ( A
= ( one_a_Product_unit @ G2 ) ) ) ) ) ) ).
% group.l_cancel_one'
thf(fact_1137_group_Or__cancel__one,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,A: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( ( mult_a_ring_ext_a_b @ G2 @ A @ X )
= X )
= ( A
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ) ) ).
% group.r_cancel_one
thf(fact_1138_group_Or__cancel__one,axiom,
! [G2: partia8223610829204095565t_unit,X: a,A: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( ( mult_a_Product_unit @ G2 @ A @ X )
= X )
= ( A
= ( one_a_Product_unit @ G2 ) ) ) ) ) ) ).
% group.r_cancel_one
thf(fact_1139_group_Ol__cancel__one,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,A: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( ( mult_a_ring_ext_a_b @ G2 @ X @ A )
= X )
= ( A
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ) ) ).
% group.l_cancel_one
thf(fact_1140_group_Ol__cancel__one,axiom,
! [G2: partia8223610829204095565t_unit,X: a,A: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( ( mult_a_Product_unit @ G2 @ X @ A )
= X )
= ( A
= ( one_a_Product_unit @ G2 ) ) ) ) ) ) ).
% group.l_cancel_one
thf(fact_1141_group_Or__inv__ex,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
& ( ( mult_a_ring_ext_a_b @ G2 @ X @ X3 )
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ) ).
% group.r_inv_ex
thf(fact_1142_group_Or__inv__ex,axiom,
! [G2: partia8223610829204095565t_unit,X: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
& ( ( mult_a_Product_unit @ G2 @ X @ X3 )
= ( one_a_Product_unit @ G2 ) ) ) ) ) ).
% group.r_inv_ex
thf(fact_1143_group_Ol__inv__ex,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
& ( ( mult_a_ring_ext_a_b @ G2 @ X3 @ X )
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ) ).
% group.l_inv_ex
thf(fact_1144_group_Ol__inv__ex,axiom,
! [G2: partia8223610829204095565t_unit,X: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
& ( ( mult_a_Product_unit @ G2 @ X3 @ X )
= ( one_a_Product_unit @ G2 ) ) ) ) ) ).
% group.l_inv_ex
thf(fact_1145_group_Oinv__comm,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,Y: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( ( mult_a_ring_ext_a_b @ G2 @ X @ Y )
= ( one_a_ring_ext_a_b @ G2 ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ Y @ X )
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ) ) ).
% group.inv_comm
thf(fact_1146_group_Oinv__comm,axiom,
! [G2: partia8223610829204095565t_unit,X: a,Y: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( ( mult_a_Product_unit @ G2 @ X @ Y )
= ( one_a_Product_unit @ G2 ) )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ Y @ X )
= ( one_a_Product_unit @ G2 ) ) ) ) ) ) ).
% group.inv_comm
thf(fact_1147_monoid__cancel_Oassoc__l__cancel,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a,B7: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B7 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( associ5860276527279195403xt_a_b @ G2 @ ( mult_a_ring_ext_a_b @ G2 @ A @ B ) @ ( mult_a_ring_ext_a_b @ G2 @ A @ B7 ) )
=> ( associ5860276527279195403xt_a_b @ G2 @ B @ B7 ) ) ) ) ) ) ).
% monoid_cancel.assoc_l_cancel
thf(fact_1148_monoid__cancel_Oassoc__l__cancel,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a,B7: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B7 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( associ6879500422977059064t_unit @ G2 @ ( mult_a_Product_unit @ G2 @ A @ B ) @ ( mult_a_Product_unit @ G2 @ A @ B7 ) )
=> ( associ6879500422977059064t_unit @ G2 @ B @ B7 ) ) ) ) ) ) ).
% monoid_cancel.assoc_l_cancel
thf(fact_1149_group_Oinv__mult__group,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,Y: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( m_inv_a_ring_ext_a_b @ G2 @ ( mult_a_ring_ext_a_b @ G2 @ X @ Y ) )
= ( mult_a_ring_ext_a_b @ G2 @ ( m_inv_a_ring_ext_a_b @ G2 @ Y ) @ ( m_inv_a_ring_ext_a_b @ G2 @ X ) ) ) ) ) ) ).
% group.inv_mult_group
thf(fact_1150_group_Oinv__mult__group,axiom,
! [G2: partia8223610829204095565t_unit,X: a,Y: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( m_inv_a_Product_unit @ G2 @ ( mult_a_Product_unit @ G2 @ X @ Y ) )
= ( mult_a_Product_unit @ G2 @ ( m_inv_a_Product_unit @ G2 @ Y ) @ ( m_inv_a_Product_unit @ G2 @ X ) ) ) ) ) ) ).
% group.inv_mult_group
thf(fact_1151_group_Oinv__solve__left,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( A
= ( mult_a_ring_ext_a_b @ G2 @ ( m_inv_a_ring_ext_a_b @ G2 @ B ) @ C ) )
= ( C
= ( mult_a_ring_ext_a_b @ G2 @ B @ A ) ) ) ) ) ) ) ).
% group.inv_solve_left
thf(fact_1152_group_Oinv__solve__left,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a,C: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( A
= ( mult_a_Product_unit @ G2 @ ( m_inv_a_Product_unit @ G2 @ B ) @ C ) )
= ( C
= ( mult_a_Product_unit @ G2 @ B @ A ) ) ) ) ) ) ) ).
% group.inv_solve_left
thf(fact_1153_group_Oinv__solve__left_H,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( ( mult_a_ring_ext_a_b @ G2 @ ( m_inv_a_ring_ext_a_b @ G2 @ B ) @ C )
= A )
= ( C
= ( mult_a_ring_ext_a_b @ G2 @ B @ A ) ) ) ) ) ) ) ).
% group.inv_solve_left'
thf(fact_1154_group_Oinv__solve__left_H,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a,C: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( ( mult_a_Product_unit @ G2 @ ( m_inv_a_Product_unit @ G2 @ B ) @ C )
= A )
= ( C
= ( mult_a_Product_unit @ G2 @ B @ A ) ) ) ) ) ) ) ).
% group.inv_solve_left'
thf(fact_1155_group_Oinv__solve__right,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( A
= ( mult_a_ring_ext_a_b @ G2 @ B @ ( m_inv_a_ring_ext_a_b @ G2 @ C ) ) )
= ( B
= ( mult_a_ring_ext_a_b @ G2 @ A @ C ) ) ) ) ) ) ) ).
% group.inv_solve_right
thf(fact_1156_group_Oinv__solve__right,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a,C: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( A
= ( mult_a_Product_unit @ G2 @ B @ ( m_inv_a_Product_unit @ G2 @ C ) ) )
= ( B
= ( mult_a_Product_unit @ G2 @ A @ C ) ) ) ) ) ) ) ).
% group.inv_solve_right
thf(fact_1157_group_Oinv__solve__right_H,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a,C: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( ( mult_a_ring_ext_a_b @ G2 @ B @ ( m_inv_a_ring_ext_a_b @ G2 @ C ) )
= A )
= ( B
= ( mult_a_ring_ext_a_b @ G2 @ A @ C ) ) ) ) ) ) ) ).
% group.inv_solve_right'
thf(fact_1158_group_Oinv__solve__right_H,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a,C: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ C @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( ( mult_a_Product_unit @ G2 @ B @ ( m_inv_a_Product_unit @ G2 @ C ) )
= A )
= ( B
= ( mult_a_Product_unit @ G2 @ A @ C ) ) ) ) ) ) ) ).
% group.inv_solve_right'
thf(fact_1159_monoid__cancel_Oassoc__unit__r,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( member_a @ A @ ( units_a_ring_ext_a_b @ G2 ) )
=> ( ( associ5860276527279195403xt_a_b @ G2 @ A @ B )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( member_a @ B @ ( units_a_ring_ext_a_b @ G2 ) ) ) ) ) ) ).
% monoid_cancel.assoc_unit_r
thf(fact_1160_monoid__cancel_Oassoc__unit__r,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( member_a @ A @ ( units_a_Product_unit @ G2 ) )
=> ( ( associ6879500422977059064t_unit @ G2 @ A @ B )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( member_a @ B @ ( units_a_Product_unit @ G2 ) ) ) ) ) ) ).
% monoid_cancel.assoc_unit_r
thf(fact_1161_monoid__cancel_Oassoc__unit__l,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( associ5860276527279195403xt_a_b @ G2 @ A @ B )
=> ( ( member_a @ B @ ( units_a_ring_ext_a_b @ G2 ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( member_a @ A @ ( units_a_ring_ext_a_b @ G2 ) ) ) ) ) ) ).
% monoid_cancel.assoc_unit_l
thf(fact_1162_monoid__cancel_Oassoc__unit__l,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( associ6879500422977059064t_unit @ G2 @ A @ B )
=> ( ( member_a @ B @ ( units_a_Product_unit @ G2 ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( member_a @ A @ ( units_a_Product_unit @ G2 ) ) ) ) ) ) ).
% monoid_cancel.assoc_unit_l
thf(fact_1163_group_Oinv__eq__1__iff,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( ( m_inv_a_ring_ext_a_b @ G2 @ X )
= ( one_a_ring_ext_a_b @ G2 ) )
= ( X
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ) ).
% group.inv_eq_1_iff
thf(fact_1164_group_Oinv__eq__1__iff,axiom,
! [G2: partia8223610829204095565t_unit,X: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( ( m_inv_a_Product_unit @ G2 @ X )
= ( one_a_Product_unit @ G2 ) )
= ( X
= ( one_a_Product_unit @ G2 ) ) ) ) ) ).
% group.inv_eq_1_iff
thf(fact_1165_group_Onat__pow__inv,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,I: nat] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( pow_a_1026414303147256608_b_nat @ G2 @ ( m_inv_a_ring_ext_a_b @ G2 @ X ) @ I )
= ( m_inv_a_ring_ext_a_b @ G2 @ ( pow_a_1026414303147256608_b_nat @ G2 @ X @ I ) ) ) ) ) ).
% group.nat_pow_inv
thf(fact_1166_group_Onat__pow__inv,axiom,
! [G2: partia8223610829204095565t_unit,X: a,I: nat] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( pow_a_1875594501834816709it_nat @ G2 @ ( m_inv_a_Product_unit @ G2 @ X ) @ I )
= ( m_inv_a_Product_unit @ G2 @ ( pow_a_1875594501834816709it_nat @ G2 @ X @ I ) ) ) ) ) ).
% group.nat_pow_inv
thf(fact_1167_monoid__cancel_Oirreducible__cong,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,A6: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( irredu6211895646901577903xt_a_b @ G2 @ A )
=> ( ( associ5860276527279195403xt_a_b @ G2 @ A @ A6 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ A6 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( irredu6211895646901577903xt_a_b @ G2 @ A6 ) ) ) ) ) ) ).
% monoid_cancel.irreducible_cong
thf(fact_1168_monoid__cancel_Oirreducible__cong,axiom,
! [G2: partia8223610829204095565t_unit,A: a,A6: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( irredu4023057619401689684t_unit @ G2 @ A )
=> ( ( associ6879500422977059064t_unit @ G2 @ A @ A6 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ A6 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( irredu4023057619401689684t_unit @ G2 @ A6 ) ) ) ) ) ) ).
% monoid_cancel.irreducible_cong
thf(fact_1169_monoid__cancel_Oprime__cong,axiom,
! [G2: partia2175431115845679010xt_a_b,P2: a,P4: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( prime_a_ring_ext_a_b @ G2 @ P2 )
=> ( ( associ5860276527279195403xt_a_b @ G2 @ P2 @ P4 )
=> ( ( member_a @ P2 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ P4 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( prime_a_ring_ext_a_b @ G2 @ P4 ) ) ) ) ) ) ).
% monoid_cancel.prime_cong
thf(fact_1170_monoid__cancel_Oprime__cong,axiom,
! [G2: partia8223610829204095565t_unit,P2: a,P4: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( prime_a_Product_unit @ G2 @ P2 )
=> ( ( associ6879500422977059064t_unit @ G2 @ P2 @ P4 )
=> ( ( member_a @ P2 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ P4 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( prime_a_Product_unit @ G2 @ P4 ) ) ) ) ) ) ).
% monoid_cancel.prime_cong
thf(fact_1171_divides__irreducible__condition,axiom,
! [G2: partia2175431115845679010xt_a_b,R3: a,A: a] :
( ( irredu6211895646901577903xt_a_b @ G2 @ R3 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( factor8216151070175719842xt_a_b @ G2 @ A @ R3 )
=> ( ( member_a @ A @ ( units_a_ring_ext_a_b @ G2 ) )
| ( associ5860276527279195403xt_a_b @ G2 @ A @ R3 ) ) ) ) ) ).
% divides_irreducible_condition
thf(fact_1172_divides__irreducible__condition,axiom,
! [G2: partia8223610829204095565t_unit,R3: a,A: a] :
( ( irredu4023057619401689684t_unit @ G2 @ R3 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( factor3040189038382604065t_unit @ G2 @ A @ R3 )
=> ( ( member_a @ A @ ( units_a_Product_unit @ G2 ) )
| ( associ6879500422977059064t_unit @ G2 @ A @ R3 ) ) ) ) ) ).
% divides_irreducible_condition
thf(fact_1173_monoid__cancel_OassociatedD2,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( associ5860276527279195403xt_a_b @ G2 @ A @ B )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( units_a_ring_ext_a_b @ G2 ) )
& ( A
= ( mult_a_ring_ext_a_b @ G2 @ B @ X3 ) ) ) ) ) ) ) ).
% monoid_cancel.associatedD2
thf(fact_1174_monoid__cancel_OassociatedD2,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( associ6879500422977059064t_unit @ G2 @ A @ B )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ? [X3: a] :
( ( member_a @ X3 @ ( units_a_Product_unit @ G2 ) )
& ( A
= ( mult_a_Product_unit @ G2 @ B @ X3 ) ) ) ) ) ) ) ).
% monoid_cancel.associatedD2
thf(fact_1175_monoid__cancel_OassociatedE2,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( associ5860276527279195403xt_a_b @ G2 @ A @ B )
=> ( ! [U2: a] :
( ( A
= ( mult_a_ring_ext_a_b @ G2 @ B @ U2 ) )
=> ~ ( member_a @ U2 @ ( units_a_ring_ext_a_b @ G2 ) ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ~ ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) ) ) ) ) ) ).
% monoid_cancel.associatedE2
thf(fact_1176_monoid__cancel_OassociatedE2,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( associ6879500422977059064t_unit @ G2 @ A @ B )
=> ( ! [U2: a] :
( ( A
= ( mult_a_Product_unit @ G2 @ B @ U2 ) )
=> ~ ( member_a @ U2 @ ( units_a_Product_unit @ G2 ) ) )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ~ ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) ) ) ) ) ) ).
% monoid_cancel.associatedE2
thf(fact_1177_monoid__cancel_Oassociated__iff,axiom,
! [G2: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( monoid5798828371819920185xt_a_b @ G2 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( associ5860276527279195403xt_a_b @ G2 @ A @ B )
= ( ? [X2: a] :
( ( member_a @ X2 @ ( units_a_ring_ext_a_b @ G2 ) )
& ( A
= ( mult_a_ring_ext_a_b @ G2 @ B @ X2 ) ) ) ) ) ) ) ) ).
% monoid_cancel.associated_iff
thf(fact_1178_monoid__cancel_Oassociated__iff,axiom,
! [G2: partia8223610829204095565t_unit,A: a,B: a] :
( ( monoid1999574367301118026t_unit @ G2 )
=> ( ( member_a @ A @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ B @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( associ6879500422977059064t_unit @ G2 @ A @ B )
= ( ? [X2: a] :
( ( member_a @ X2 @ ( units_a_Product_unit @ G2 ) )
& ( A
= ( mult_a_Product_unit @ G2 @ B @ X2 ) ) ) ) ) ) ) ) ).
% monoid_cancel.associated_iff
thf(fact_1179_group_Ol__inv,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ ( m_inv_a_ring_ext_a_b @ G2 @ X ) @ X )
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ).
% group.l_inv
thf(fact_1180_group_Ol__inv,axiom,
! [G2: partia8223610829204095565t_unit,X: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ ( m_inv_a_Product_unit @ G2 @ X ) @ X )
= ( one_a_Product_unit @ G2 ) ) ) ) ).
% group.l_inv
thf(fact_1181_group_Or__inv,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ X @ ( m_inv_a_ring_ext_a_b @ G2 @ X ) )
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ).
% group.r_inv
thf(fact_1182_group_Or__inv,axiom,
! [G2: partia8223610829204095565t_unit,X: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ X @ ( m_inv_a_Product_unit @ G2 @ X ) )
= ( one_a_Product_unit @ G2 ) ) ) ) ).
% group.r_inv
thf(fact_1183_group_Oinv__equality,axiom,
! [G2: partia2175431115845679010xt_a_b,Y: a,X: a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( ( mult_a_ring_ext_a_b @ G2 @ Y @ X )
= ( one_a_ring_ext_a_b @ G2 ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( m_inv_a_ring_ext_a_b @ G2 @ X )
= Y ) ) ) ) ) ).
% group.inv_equality
thf(fact_1184_group_Oinv__equality,axiom,
! [G2: partia8223610829204095565t_unit,Y: a,X: a] :
( ( group_a_Product_unit @ G2 )
=> ( ( ( mult_a_Product_unit @ G2 @ Y @ X )
= ( one_a_Product_unit @ G2 ) )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( m_inv_a_Product_unit @ G2 @ X )
= Y ) ) ) ) ) ).
% group.inv_equality
thf(fact_1185_group_Opow__eq__div2,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,M: nat,N: nat] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( ( pow_a_1026414303147256608_b_nat @ G2 @ X @ M )
= ( pow_a_1026414303147256608_b_nat @ G2 @ X @ N ) )
=> ( ( pow_a_1026414303147256608_b_nat @ G2 @ X @ ( minus_minus_nat @ M @ N ) )
= ( one_a_ring_ext_a_b @ G2 ) ) ) ) ) ).
% group.pow_eq_div2
thf(fact_1186_group_Opow__eq__div2,axiom,
! [G2: partia8223610829204095565t_unit,X: a,M: nat,N: nat] :
( ( group_a_Product_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( ( pow_a_1875594501834816709it_nat @ G2 @ X @ M )
= ( pow_a_1875594501834816709it_nat @ G2 @ X @ N ) )
=> ( ( pow_a_1875594501834816709it_nat @ G2 @ X @ ( minus_minus_nat @ M @ N ) )
= ( one_a_Product_unit @ G2 ) ) ) ) ) ).
% group.pow_eq_div2
thf(fact_1187_group_Oone__in__subset,axiom,
! [G2: partia2175431115845679010xt_a_b,H2: set_a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( H2 != bot_bot_set_a )
=> ( ! [X3: a] :
( ( member_a @ X3 @ H2 )
=> ( member_a @ ( m_inv_a_ring_ext_a_b @ G2 @ X3 ) @ H2 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ H2 )
=> ! [Xa: a] :
( ( member_a @ Xa @ H2 )
=> ( member_a @ ( mult_a_ring_ext_a_b @ G2 @ X3 @ Xa ) @ H2 ) ) )
=> ( member_a @ ( one_a_ring_ext_a_b @ G2 ) @ H2 ) ) ) ) ) ) ).
% group.one_in_subset
thf(fact_1188_group_Oone__in__subset,axiom,
! [G2: partia8223610829204095565t_unit,H2: set_a] :
( ( group_a_Product_unit @ G2 )
=> ( ( ord_less_eq_set_a @ H2 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( H2 != bot_bot_set_a )
=> ( ! [X3: a] :
( ( member_a @ X3 @ H2 )
=> ( member_a @ ( m_inv_a_Product_unit @ G2 @ X3 ) @ H2 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ H2 )
=> ! [Xa: a] :
( ( member_a @ Xa @ H2 )
=> ( member_a @ ( mult_a_Product_unit @ G2 @ X3 @ Xa ) @ H2 ) ) )
=> ( member_a @ ( one_a_Product_unit @ G2 ) @ H2 ) ) ) ) ) ) ).
% group.one_in_subset
thf(fact_1189_group_Osetmult__subset__G,axiom,
! [G2: partia2175431115845679010xt_a_b,H2: set_a,K2: set_a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ord_less_eq_set_a @ ( set_mu8047982887099575916xt_a_b @ G2 @ H2 @ K2 ) @ ( partia707051561876973205xt_a_b @ G2 ) ) ) ) ) ).
% group.setmult_subset_G
thf(fact_1190_group_Osetmult__subset__G,axiom,
! [G2: partia8223610829204095565t_unit,H2: set_a,K2: set_a] :
( ( group_a_Product_unit @ G2 )
=> ( ( ord_less_eq_set_a @ H2 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( ord_less_eq_set_a @ K2 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ord_less_eq_set_a @ ( set_mu9095145553939800791t_unit @ G2 @ H2 @ K2 ) @ ( partia6735698275553448452t_unit @ G2 ) ) ) ) ) ).
% group.setmult_subset_G
thf(fact_1191_group_Oset__mult__assoc,axiom,
! [G2: partia2175431115845679010xt_a_b,M2: set_a,H2: set_a,K2: set_a] :
( ( group_a_ring_ext_a_b @ G2 )
=> ( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( set_mu8047982887099575916xt_a_b @ G2 @ ( set_mu8047982887099575916xt_a_b @ G2 @ M2 @ H2 ) @ K2 )
= ( set_mu8047982887099575916xt_a_b @ G2 @ M2 @ ( set_mu8047982887099575916xt_a_b @ G2 @ H2 @ K2 ) ) ) ) ) ) ) ).
% group.set_mult_assoc
thf(fact_1192_group_Oset__mult__assoc,axiom,
! [G2: partia8223610829204095565t_unit,M2: set_a,H2: set_a,K2: set_a] :
( ( group_a_Product_unit @ G2 )
=> ( ( ord_less_eq_set_a @ M2 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( ord_less_eq_set_a @ H2 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( ord_less_eq_set_a @ K2 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( set_mu9095145553939800791t_unit @ G2 @ ( set_mu9095145553939800791t_unit @ G2 @ M2 @ H2 ) @ K2 )
= ( set_mu9095145553939800791t_unit @ G2 @ M2 @ ( set_mu9095145553939800791t_unit @ G2 @ H2 @ K2 ) ) ) ) ) ) ) ).
% group.set_mult_assoc
thf(fact_1193_associated__sym,axiom,
! [A: a,B: a] :
( ( associ5860276527279195403xt_a_b @ r @ A @ B )
=> ( associ5860276527279195403xt_a_b @ r @ B @ A ) ) ).
% associated_sym
thf(fact_1194_assoc__subst,axiom,
! [A: a,B: a,F2: a > a] :
( ( associ5860276527279195403xt_a_b @ r @ A @ B )
=> ( ! [A4: a,B3: a] :
( ( ( member_a @ A4 @ ( partia707051561876973205xt_a_b @ r ) )
& ( member_a @ B3 @ ( partia707051561876973205xt_a_b @ r ) )
& ( associ5860276527279195403xt_a_b @ r @ A4 @ B3 ) )
=> ( ( member_a @ ( F2 @ A4 ) @ ( partia707051561876973205xt_a_b @ r ) )
& ( member_a @ ( F2 @ B3 ) @ ( partia707051561876973205xt_a_b @ r ) )
& ( associ5860276527279195403xt_a_b @ r @ ( F2 @ A4 ) @ ( F2 @ B3 ) ) ) )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( associ5860276527279195403xt_a_b @ r @ ( F2 @ A ) @ ( F2 @ B ) ) ) ) ) ) ).
% assoc_subst
thf(fact_1195_associated__trans,axiom,
! [A: a,B: a,C: a] :
( ( associ5860276527279195403xt_a_b @ r @ A @ B )
=> ( ( associ5860276527279195403xt_a_b @ r @ B @ C )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ C @ ( partia707051561876973205xt_a_b @ r ) )
=> ( associ5860276527279195403xt_a_b @ r @ A @ C ) ) ) ) ) ).
% associated_trans
thf(fact_1196_Units__assoc,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) )
=> ( associ5860276527279195403xt_a_b @ r @ A @ B ) ) ) ).
% Units_assoc
thf(fact_1197_mult__cong__l,axiom,
! [A: a,A6: a,B: a] :
( ( associ5860276527279195403xt_a_b @ r @ A @ A6 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ A6 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( associ5860276527279195403xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A6 @ B ) ) ) ) ) ) ).
% mult_cong_l
thf(fact_1198_mult__cong__r,axiom,
! [B: a,B7: a,A: a] :
( ( associ5860276527279195403xt_a_b @ r @ B @ B7 )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B7 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( associ5860276527279195403xt_a_b @ r @ ( mult_a_ring_ext_a_b @ r @ A @ B ) @ ( mult_a_ring_ext_a_b @ r @ A @ B7 ) ) ) ) ) ) ).
% mult_cong_r
thf(fact_1199_Units__cong,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ B @ ( units_a_ring_ext_a_b @ r ) ) ) ) ) ).
% Units_cong
thf(fact_1200_divides__cong__l,axiom,
! [X: a,X6: a,Y: a] :
( ( associ5860276527279195403xt_a_b @ r @ X @ X6 )
=> ( ( factor8216151070175719842xt_a_b @ r @ X6 @ Y )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( factor8216151070175719842xt_a_b @ r @ X @ Y ) ) ) ) ).
% divides_cong_l
thf(fact_1201_divides__cong__r,axiom,
! [X: a,Y: a,Y3: a] :
( ( factor8216151070175719842xt_a_b @ r @ X @ Y )
=> ( ( associ5860276527279195403xt_a_b @ r @ Y @ Y3 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( factor8216151070175719842xt_a_b @ r @ X @ Y3 ) ) ) ) ).
% divides_cong_r
thf(fact_1202_mult__of_Oinv__eq__imp__eq,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X )
= ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ Y ) )
=> ( X = Y ) ) ) ) ).
% mult_of.inv_eq_imp_eq
thf(fact_1203_properfactor__cong__l,axiom,
! [X6: a,X: a,Y: a] :
( ( associ5860276527279195403xt_a_b @ r @ X6 @ X )
=> ( ( proper19828929941537682xt_a_b @ r @ X @ Y )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ X6 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( proper19828929941537682xt_a_b @ r @ X6 @ Y ) ) ) ) ) ) ).
% properfactor_cong_l
thf(fact_1204_properfactor__cong__r,axiom,
! [X: a,Y: a,Y3: a] :
( ( proper19828929941537682xt_a_b @ r @ X @ Y )
=> ( ( associ5860276527279195403xt_a_b @ r @ Y @ Y3 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( proper19828929941537682xt_a_b @ r @ X @ Y3 ) ) ) ) ) ) ).
% properfactor_cong_r
thf(fact_1205_associated__iff__same__ideal,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
= ( ( cgenid547466209912283029xt_a_b @ r @ A )
= ( cgenid547466209912283029xt_a_b @ r @ B ) ) ) ) ) ).
% associated_iff_same_ideal
thf(fact_1206_mult__of_Oset__mult__closed,axiom,
! [H2: set_a,K2: set_a] :
( ( ord_less_eq_set_a @ H2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( ord_less_eq_set_a @ K2 @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ord_less_eq_set_a @ ( set_mu9095145553939800791t_unit @ ( ring_mult_of_a_b @ r ) @ H2 @ K2 ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ) ).
% mult_of.set_mult_closed
thf(fact_1207_group__l__invI,axiom,
( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ? [Xa2: a] :
( ( member_a @ Xa2 @ ( partia707051561876973205xt_a_b @ r ) )
& ( ( mult_a_ring_ext_a_b @ r @ Xa2 @ X3 )
= ( one_a_ring_ext_a_b @ r ) ) ) )
=> ( group_a_ring_ext_a_b @ r ) ) ).
% group_l_invI
thf(fact_1208_assoc__iff__assoc__mult,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
= ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ r ) @ A @ B ) ) ) ) ).
% assoc_iff_assoc_mult
thf(fact_1209_ring__associated__iff,axiom,
! [A: a,B: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( associ5860276527279195403xt_a_b @ r @ A @ B )
= ( ? [X2: a] :
( ( member_a @ X2 @ ( units_a_ring_ext_a_b @ r ) )
& ( A
= ( mult_a_ring_ext_a_b @ r @ X2 @ B ) ) ) ) ) ) ) ).
% ring_associated_iff
thf(fact_1210_associatedI2_H,axiom,
! [A: a,B: a,U: a] :
( ( A
= ( mult_a_ring_ext_a_b @ r @ B @ U ) )
=> ( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( associ5860276527279195403xt_a_b @ r @ A @ B ) ) ) ) ).
% associatedI2'
thf(fact_1211_associatedI2,axiom,
! [U: a,A: a,B: a] :
( ( member_a @ U @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( A
= ( mult_a_ring_ext_a_b @ r @ B @ U ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( associ5860276527279195403xt_a_b @ r @ A @ B ) ) ) ) ).
% associatedI2
thf(fact_1212_mult__of_Oinv__eq__one__eq,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X )
= ( one_a_ring_ext_a_b @ r ) )
= ( X
= ( one_a_ring_ext_a_b @ r ) ) ) ) ).
% mult_of.inv_eq_one_eq
thf(fact_1213_mult__of_Ounits__of__inv,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( m_inv_a_Product_unit @ ( units_7501539392726747778t_unit @ ( ring_mult_of_a_b @ r ) ) @ X )
= ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) ) ) ).
% mult_of.units_of_inv
thf(fact_1214_units__of__inv,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_ring_ext_a_b @ r ) )
=> ( ( m_inv_a_Product_unit @ ( units_8174867845824275201xt_a_b @ r ) @ X )
= ( m_inv_a_ring_ext_a_b @ r @ X ) ) ) ).
% units_of_inv
thf(fact_1215_mult__of_Ocomm__inv__char,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X )
= Y ) ) ) ) ).
% mult_of.comm_inv_char
thf(fact_1216_mult__of_Oinv__char,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X )
= Y ) ) ) ) ) ).
% mult_of.inv_char
thf(fact_1217_mult__of_Oinv__unique_H,axiom,
! [X: a,Y: a] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ X @ Y )
= ( one_a_ring_ext_a_b @ r ) )
=> ( ( ( mult_a_ring_ext_a_b @ r @ Y @ X )
= ( one_a_ring_ext_a_b @ r ) )
=> ( Y
= ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) ) ) ) ) ) ).
% mult_of.inv_unique'
thf(fact_1218_Ring__Divisibility_Oone__mult__of,axiom,
! [R: partia2175431115845679010xt_a_b] :
( ( one_a_Product_unit @ ( ring_mult_of_a_b @ R ) )
= ( one_a_ring_ext_a_b @ R ) ) ).
% Ring_Divisibility.one_mult_of
thf(fact_1219_associated__refl,axiom,
! [A: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( associ5860276527279195403xt_a_b @ r @ A @ A ) ) ).
% associated_refl
thf(fact_1220_mult__of_Oinv__one,axiom,
( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ ( one_a_ring_ext_a_b @ r ) )
= ( one_a_ring_ext_a_b @ r ) ) ).
% mult_of.inv_one
thf(fact_1221_mult__of_OUnits__inv__Units,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).
% mult_of.Units_inv_Units
thf(fact_1222_mult__of_OUnits__inv__inv,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) )
= X ) ) ).
% mult_of.Units_inv_inv
thf(fact_1223_mult__of_OUnits__inv__closed,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( member_a @ ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) ) ) ).
% mult_of.Units_inv_closed
thf(fact_1224_mult__of_OUnits__r__inv,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ X @ ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) )
= ( one_a_ring_ext_a_b @ r ) ) ) ).
% mult_of.Units_r_inv
thf(fact_1225_mult__of_OUnits__l__inv,axiom,
! [X: a] :
( ( member_a @ X @ ( units_a_Product_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( mult_a_ring_ext_a_b @ r @ ( m_inv_a_Product_unit @ ( ring_mult_of_a_b @ r ) @ X ) @ X )
= ( one_a_ring_ext_a_b @ r ) ) ) ).
% mult_of.Units_l_inv
thf(fact_1226_domain_Oring__associated__iff,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( associ5860276527279195403xt_a_b @ R @ A @ B )
= ( ? [X2: a] :
( ( member_a @ X2 @ ( units_a_ring_ext_a_b @ R ) )
& ( A
= ( mult_a_ring_ext_a_b @ R @ X2 @ B ) ) ) ) ) ) ) ) ).
% domain.ring_associated_iff
thf(fact_1227_domain_Oassoc__iff__assoc__mult,axiom,
! [R: partia2175431115845679010xt_a_b,A: a,B: a] :
( ( domain_a_b @ R )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ R ) )
=> ( ( associ5860276527279195403xt_a_b @ R @ A @ B )
= ( associ6879500422977059064t_unit @ ( ring_mult_of_a_b @ R ) @ A @ B ) ) ) ) ) ).
% domain.assoc_iff_assoc_mult
thf(fact_1228_mono__set__mult,axiom,
! [H2: set_a,H4: set_a,K2: set_a,K6: set_a,G2: partia2175431115845679010xt_a_b] :
( ( ord_less_eq_set_a @ H2 @ H4 )
=> ( ( ord_less_eq_set_a @ K2 @ K6 )
=> ( ord_less_eq_set_a @ ( set_mu8047982887099575916xt_a_b @ G2 @ H2 @ K2 ) @ ( set_mu8047982887099575916xt_a_b @ G2 @ H4 @ K6 ) ) ) ) ).
% mono_set_mult
thf(fact_1229_mono__set__mult,axiom,
! [H2: set_a,H4: set_a,K2: set_a,K6: set_a,G2: partia8223610829204095565t_unit] :
( ( ord_less_eq_set_a @ H2 @ H4 )
=> ( ( ord_less_eq_set_a @ K2 @ K6 )
=> ( ord_less_eq_set_a @ ( set_mu9095145553939800791t_unit @ G2 @ H2 @ K2 ) @ ( set_mu9095145553939800791t_unit @ G2 @ H4 @ K6 ) ) ) ) ).
% mono_set_mult
thf(fact_1230_mult__of_Ounits__comm__group,axiom,
comm_g1850867397131805039t_unit @ ( units_7501539392726747778t_unit @ ( ring_mult_of_a_b @ r ) ) ).
% mult_of.units_comm_group
thf(fact_1231_a__rcos__assoc__lcos,axiom,
! [H2: set_a,K2: set_a,X: a] :
( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( set_add_a_b @ r @ ( a_r_coset_a_b @ r @ H2 @ X ) @ K2 )
= ( set_add_a_b @ r @ H2 @ ( a_l_coset_a_b @ r @ X @ K2 ) ) ) ) ) ) ).
% a_rcos_assoc_lcos
thf(fact_1232_a__r__coset__subset__G,axiom,
! [H2: set_a,X: a] :
( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ord_less_eq_set_a @ ( a_r_coset_a_b @ r @ H2 @ X ) @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% a_r_coset_subset_G
thf(fact_1233_units__comm__group,axiom,
comm_g1850867397131805039t_unit @ ( units_8174867845824275201xt_a_b @ r ) ).
% units_comm_group
thf(fact_1234_a__rcosI,axiom,
! [H: a,H2: set_a,X: a] :
( ( member_a @ H @ H2 )
=> ( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_a @ ( add_a_b @ r @ H @ X ) @ ( a_r_coset_a_b @ r @ H2 @ X ) ) ) ) ) ).
% a_rcosI
thf(fact_1235_a__coset__add__assoc,axiom,
! [M2: set_a,G3: a,H: a] :
( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ G3 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ H @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( a_r_coset_a_b @ r @ ( a_r_coset_a_b @ r @ M2 @ G3 ) @ H )
= ( a_r_coset_a_b @ r @ M2 @ ( add_a_b @ r @ G3 @ H ) ) ) ) ) ) ).
% a_coset_add_assoc
thf(fact_1236_a__setmult__rcos__assoc,axiom,
! [H2: set_a,K2: set_a,X: a] :
( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( set_add_a_b @ r @ H2 @ ( a_r_coset_a_b @ r @ K2 @ X ) )
= ( a_r_coset_a_b @ r @ ( set_add_a_b @ r @ H2 @ K2 ) @ X ) ) ) ) ) ).
% a_setmult_rcos_assoc
thf(fact_1237_a__coset__add__inv2,axiom,
! [M2: set_a,X: a,Y: a] :
( ( ( a_r_coset_a_b @ r @ M2 @ X )
= ( a_r_coset_a_b @ r @ M2 @ Y ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( a_r_coset_a_b @ r @ M2 @ ( add_a_b @ r @ X @ ( a_inv_a_b @ r @ Y ) ) )
= M2 ) ) ) ) ) ).
% a_coset_add_inv2
thf(fact_1238_a__coset__add__inv1,axiom,
! [M2: set_a,X: a,Y: a] :
( ( ( a_r_coset_a_b @ r @ M2 @ ( add_a_b @ r @ X @ ( a_inv_a_b @ r @ Y ) ) )
= M2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( a_r_coset_a_b @ r @ M2 @ X )
= ( a_r_coset_a_b @ r @ M2 @ Y ) ) ) ) ) ) ).
% a_coset_add_inv1
thf(fact_1239_a__coset__add__zero,axiom,
! [M2: set_a] :
( ( ord_less_eq_set_a @ M2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( a_r_coset_a_b @ r @ M2 @ ( zero_a_b @ r ) )
= M2 ) ) ).
% a_coset_add_zero
thf(fact_1240_comm__groupE_I2_J,axiom,
! [G2: partia2175431115845679010xt_a_b] :
( ( comm_g837948081586602452xt_a_b @ G2 )
=> ( member_a @ ( one_a_ring_ext_a_b @ G2 ) @ ( partia707051561876973205xt_a_b @ G2 ) ) ) ).
% comm_groupE(2)
thf(fact_1241_comm__groupE_I2_J,axiom,
! [G2: partia8223610829204095565t_unit] :
( ( comm_g1850867397131805039t_unit @ G2 )
=> ( member_a @ ( one_a_Product_unit @ G2 ) @ ( partia6735698275553448452t_unit @ G2 ) ) ) ).
% comm_groupE(2)
thf(fact_1242_comm__groupE_I4_J,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,Y: a] :
( ( comm_g837948081586602452xt_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ X @ Y )
= ( mult_a_ring_ext_a_b @ G2 @ Y @ X ) ) ) ) ) ).
% comm_groupE(4)
thf(fact_1243_comm__groupE_I4_J,axiom,
! [G2: partia8223610829204095565t_unit,X: a,Y: a] :
( ( comm_g1850867397131805039t_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ X @ Y )
= ( mult_a_Product_unit @ G2 @ Y @ X ) ) ) ) ) ).
% comm_groupE(4)
thf(fact_1244_comm__groupE_I3_J,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,Y: a,Z: a] :
( ( comm_g837948081586602452xt_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ Z @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ ( mult_a_ring_ext_a_b @ G2 @ X @ Y ) @ Z )
= ( mult_a_ring_ext_a_b @ G2 @ X @ ( mult_a_ring_ext_a_b @ G2 @ Y @ Z ) ) ) ) ) ) ) ).
% comm_groupE(3)
thf(fact_1245_comm__groupE_I3_J,axiom,
! [G2: partia8223610829204095565t_unit,X: a,Y: a,Z: a] :
( ( comm_g1850867397131805039t_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ Z @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ ( mult_a_Product_unit @ G2 @ X @ Y ) @ Z )
= ( mult_a_Product_unit @ G2 @ X @ ( mult_a_Product_unit @ G2 @ Y @ Z ) ) ) ) ) ) ) ).
% comm_groupE(3)
thf(fact_1246_comm__groupE_I1_J,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a,Y: a] :
( ( comm_g837948081586602452xt_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( member_a @ Y @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( member_a @ ( mult_a_ring_ext_a_b @ G2 @ X @ Y ) @ ( partia707051561876973205xt_a_b @ G2 ) ) ) ) ) ).
% comm_groupE(1)
thf(fact_1247_comm__groupE_I1_J,axiom,
! [G2: partia8223610829204095565t_unit,X: a,Y: a] :
( ( comm_g1850867397131805039t_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( member_a @ Y @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( member_a @ ( mult_a_Product_unit @ G2 @ X @ Y ) @ ( partia6735698275553448452t_unit @ G2 ) ) ) ) ) ).
% comm_groupE(1)
thf(fact_1248_comm__groupI,axiom,
! [G2: partia2175431115845679010xt_a_b] :
( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ! [Y6: a] :
( ( member_a @ Y6 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( member_a @ ( mult_a_ring_ext_a_b @ G2 @ X3 @ Y6 ) @ ( partia707051561876973205xt_a_b @ G2 ) ) ) )
=> ( ( member_a @ ( one_a_ring_ext_a_b @ G2 ) @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ! [Y6: a] :
( ( member_a @ Y6 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ! [Z3: a] :
( ( member_a @ Z3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ ( mult_a_ring_ext_a_b @ G2 @ X3 @ Y6 ) @ Z3 )
= ( mult_a_ring_ext_a_b @ G2 @ X3 @ ( mult_a_ring_ext_a_b @ G2 @ Y6 @ Z3 ) ) ) ) ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ! [Y6: a] :
( ( member_a @ Y6 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ X3 @ Y6 )
= ( mult_a_ring_ext_a_b @ G2 @ Y6 @ X3 ) ) ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ ( one_a_ring_ext_a_b @ G2 ) @ X3 )
= X3 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ? [Xa2: a] :
( ( member_a @ Xa2 @ ( partia707051561876973205xt_a_b @ G2 ) )
& ( ( mult_a_ring_ext_a_b @ G2 @ Xa2 @ X3 )
= ( one_a_ring_ext_a_b @ G2 ) ) ) )
=> ( comm_g837948081586602452xt_a_b @ G2 ) ) ) ) ) ) ) ).
% comm_groupI
thf(fact_1249_comm__groupI,axiom,
! [G2: partia8223610829204095565t_unit] :
( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ! [Y6: a] :
( ( member_a @ Y6 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( member_a @ ( mult_a_Product_unit @ G2 @ X3 @ Y6 ) @ ( partia6735698275553448452t_unit @ G2 ) ) ) )
=> ( ( member_a @ ( one_a_Product_unit @ G2 ) @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ! [Y6: a] :
( ( member_a @ Y6 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ! [Z3: a] :
( ( member_a @ Z3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ ( mult_a_Product_unit @ G2 @ X3 @ Y6 ) @ Z3 )
= ( mult_a_Product_unit @ G2 @ X3 @ ( mult_a_Product_unit @ G2 @ Y6 @ Z3 ) ) ) ) ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ! [Y6: a] :
( ( member_a @ Y6 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ X3 @ Y6 )
= ( mult_a_Product_unit @ G2 @ Y6 @ X3 ) ) ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ ( one_a_Product_unit @ G2 ) @ X3 )
= X3 ) )
=> ( ! [X3: a] :
( ( member_a @ X3 @ ( partia6735698275553448452t_unit @ G2 ) )
=> ? [Xa2: a] :
( ( member_a @ Xa2 @ ( partia6735698275553448452t_unit @ G2 ) )
& ( ( mult_a_Product_unit @ G2 @ Xa2 @ X3 )
= ( one_a_Product_unit @ G2 ) ) ) )
=> ( comm_g1850867397131805039t_unit @ G2 ) ) ) ) ) ) ) ).
% comm_groupI
thf(fact_1250_comm__groupE_I5_J,axiom,
! [G2: partia2175431115845679010xt_a_b,X: a] :
( ( comm_g837948081586602452xt_a_b @ G2 )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ G2 ) )
=> ( ( mult_a_ring_ext_a_b @ G2 @ ( one_a_ring_ext_a_b @ G2 ) @ X )
= X ) ) ) ).
% comm_groupE(5)
thf(fact_1251_comm__groupE_I5_J,axiom,
! [G2: partia8223610829204095565t_unit,X: a] :
( ( comm_g1850867397131805039t_unit @ G2 )
=> ( ( member_a @ X @ ( partia6735698275553448452t_unit @ G2 ) )
=> ( ( mult_a_Product_unit @ G2 @ ( one_a_Product_unit @ G2 ) @ X )
= X ) ) ) ).
% comm_groupE(5)
thf(fact_1252_a__rcosetsI,axiom,
! [H2: set_a,X: a] :
( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( member_set_a @ ( a_r_coset_a_b @ r @ H2 @ X ) @ ( a_RCOSETS_a_b @ r @ H2 ) ) ) ) ).
% a_rcosetsI
thf(fact_1253_telescopic__base__aux,axiom,
! [K2: set_a,F: set_a,N: nat,E2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( ( subfield_a_b @ F @ r )
=> ( ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ F )
=> ( ( embedd2795209813406577254on_a_b @ r @ one_one_nat @ F @ E2 )
=> ( embedd2795209813406577254on_a_b @ r @ N @ K2 @ E2 ) ) ) ) ) ).
% telescopic_base_aux
thf(fact_1254_nat__pow__eone,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( pow_a_1026414303147256608_b_nat @ r @ X @ one_one_nat )
= X ) ) ).
% nat_pow_eone
thf(fact_1255_dimension__one,axiom,
! [K2: set_a] :
( ( subfield_a_b @ K2 @ r )
=> ( embedd2795209813406577254on_a_b @ r @ one_one_nat @ K2 @ K2 ) ) ).
% dimension_one
thf(fact_1256_mult__of_Onat__pow__eone,axiom,
! [X: a] :
( ( member_a @ X @ ( partia6735698275553448452t_unit @ ( ring_mult_of_a_b @ r ) ) )
=> ( ( pow_a_1875594501834816709it_nat @ ( ring_mult_of_a_b @ r ) @ X @ one_one_nat )
= X ) ) ).
% mult_of.nat_pow_eone
thf(fact_1257_add_Oint__pow__1,axiom,
! [X: a] :
( ( member_a @ X @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( add_pow_a_b_int @ r @ one_one_int @ X )
= X ) ) ).
% add.int_pow_1
thf(fact_1258_odd__nonzero,axiom,
! [Z: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_1259_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_1260_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
=> ( ( M = one_one_int )
| ( M
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_1261_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( ( M = one_one_int )
& ( N = one_one_int ) )
| ( ( M
= ( uminus_uminus_int @ one_one_int ) )
& ( N
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_1262_int__le__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_le_induct
thf(fact_1263_int__induct,axiom,
! [P: int > $o,K: int,I: int] :
( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ I3 )
=> ( P @ ( minus_minus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_induct
thf(fact_1264_rcosets__subset__PowG,axiom,
! [H2: set_a] :
( ( additi2834746164131130830up_a_b @ H2 @ r )
=> ( ord_le3724670747650509150_set_a @ ( a_RCOSETS_a_b @ r @ H2 ) @ ( pow_a @ ( partia707051561876973205xt_a_b @ r ) ) ) ) ).
% rcosets_subset_PowG
thf(fact_1265_quotient__eq__iff__same__a__r__cos,axiom,
! [I2: set_a,A: a,B: a] :
( ( ideal_a_b @ I2 @ r )
=> ( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ B @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( member_a @ ( a_minus_a_b @ r @ A @ B ) @ I2 )
= ( ( a_r_coset_a_b @ r @ I2 @ A )
= ( a_r_coset_a_b @ r @ I2 @ B ) ) ) ) ) ) ).
% quotient_eq_iff_same_a_r_cos
thf(fact_1266_oneideal,axiom,
ideal_a_b @ ( partia707051561876973205xt_a_b @ r ) @ r ).
% oneideal
thf(fact_1267_a__rcos__zero,axiom,
! [I2: set_a,I: a] :
( ( ideal_a_b @ I2 @ r )
=> ( ( member_a @ I @ I2 )
=> ( ( a_r_coset_a_b @ r @ I2 @ I )
= I2 ) ) ) ).
% a_rcos_zero
thf(fact_1268_add__ideals,axiom,
! [I2: set_a,J2: set_a] :
( ( ideal_a_b @ I2 @ r )
=> ( ( ideal_a_b @ J2 @ r )
=> ( ideal_a_b @ ( set_add_a_b @ r @ I2 @ J2 ) @ r ) ) ) ).
% add_ideals
thf(fact_1269_i__intersect,axiom,
! [I2: set_a,J2: set_a] :
( ( ideal_a_b @ I2 @ r )
=> ( ( ideal_a_b @ J2 @ r )
=> ( ideal_a_b @ ( inf_inf_set_a @ I2 @ J2 ) @ r ) ) ) ).
% i_intersect
thf(fact_1270_cgenideal__ideal,axiom,
! [A: a] :
( ( member_a @ A @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ideal_a_b @ ( cgenid547466209912283029xt_a_b @ r @ A ) @ r ) ) ).
% cgenideal_ideal
thf(fact_1271_genideal__minimal,axiom,
! [I2: set_a,S: set_a] :
( ( ideal_a_b @ I2 @ r )
=> ( ( ord_less_eq_set_a @ S @ I2 )
=> ( ord_less_eq_set_a @ ( genideal_a_b @ r @ S ) @ I2 ) ) ) ).
% genideal_minimal
thf(fact_1272_cgenideal__minimal,axiom,
! [J2: set_a,A: a] :
( ( ideal_a_b @ J2 @ r )
=> ( ( member_a @ A @ J2 )
=> ( ord_less_eq_set_a @ ( cgenid547466209912283029xt_a_b @ r @ A ) @ J2 ) ) ) ).
% cgenideal_minimal
thf(fact_1273_zeroideal,axiom,
ideal_a_b @ ( insert_a @ ( zero_a_b @ r ) @ bot_bot_set_a ) @ r ).
% zeroideal
thf(fact_1274_genideal__ideal,axiom,
! [S: set_a] :
( ( ord_less_eq_set_a @ S @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ideal_a_b @ ( genideal_a_b @ r @ S ) @ r ) ) ).
% genideal_ideal
thf(fact_1275_Idl__subset__ideal,axiom,
! [I2: set_a,H2: set_a] :
( ( ideal_a_b @ I2 @ r )
=> ( ( ord_less_eq_set_a @ H2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ord_less_eq_set_a @ ( genideal_a_b @ r @ H2 ) @ I2 )
= ( ord_less_eq_set_a @ H2 @ I2 ) ) ) ) ).
% Idl_subset_ideal
thf(fact_1276_ideal__is__subalgebra,axiom,
! [K2: set_a,I2: set_a] :
( ( ord_less_eq_set_a @ K2 @ ( partia707051561876973205xt_a_b @ r ) )
=> ( ( ideal_a_b @ I2 @ r )
=> ( embedd9027525575939734154ra_a_b @ K2 @ I2 @ r ) ) ) ).
% ideal_is_subalgebra
% Conjectures (1)
thf(conj_0,conjecture,
( ( add_a_b @ r @ ( add_a_b @ r @ b @ c ) @ ( a_inv_a_b @ r @ b ) )
= c ) ).
%------------------------------------------------------------------------------