TPTP Problem File: SLH0205^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : FOL_Seq_Calc3/0007_Fair_Stream/prob_00055_001818__11916978_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1451 ( 574 unt; 178 typ;   0 def)
%            Number of atoms       : 3346 (1417 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 10694 ( 397   ~;  90   |; 201   &;8472   @)
%                                         (   0 <=>;1534  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   23 (   6 avg)
%            Number of types       :   27 (  26 usr)
%            Number of type conns  :  510 ( 510   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  155 ( 152 usr;  15 con; 0-3 aty)
%            Number of variables   : 3561 ( 222   ^;3206   !; 133   ?;3561   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 15:27:24.639
%------------------------------------------------------------------------------
% Could-be-implicit typings (26)
thf(ty_n_t__Stream__Ostream_It__Stream__Ostream_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J_J,type,
    stream2377611395989027862list_a: $tType ).

thf(ty_n_t__Stream__Ostream_It__Stream__Ostream_It__List__Olist_It__List__Olist_Itf__a_J_J_J_J,type,
    stream3775083406817841430list_a: $tType ).

thf(ty_n_t__Stream__Ostream_It__List__Olist_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J_J,type,
    stream1229541022664496662list_a: $tType ).

thf(ty_n_t__Stream__Ostream_It__List__Olist_It__List__Olist_It__List__Olist_Itf__a_J_J_J_J,type,
    stream2255243159586646806list_a: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J_J,type,
    set_li4183784480778324208list_a: $tType ).

thf(ty_n_t__Stream__Ostream_It__Stream__Ostream_It__Stream__Ostream_Itf__a_J_J_J,type,
    stream2307142169165677840ream_a: $tType ).

thf(ty_n_t__Stream__Ostream_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J,type,
    stream_stream_list_a: $tType ).

thf(ty_n_t__Stream__Ostream_It__List__Olist_It__Stream__Ostream_Itf__a_J_J_J,type,
    stream_list_stream_a: $tType ).

thf(ty_n_t__Stream__Ostream_It__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    stream_list_list_a: $tType ).

thf(ty_n_t__List__Olist_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J,type,
    list_stream_list_a: $tType ).

thf(ty_n_t__Set__Oset_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J,type,
    set_stream_list_a: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Stream__Ostream_Itf__a_J_J_J,type,
    set_list_stream_a: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    list_list_list_a: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    set_list_list_a: $tType ).

thf(ty_n_t__Stream__Ostream_It__Stream__Ostream_Itf__a_J_J,type,
    stream_stream_a: $tType ).

thf(ty_n_t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    stream_list_a: $tType ).

thf(ty_n_t__List__Olist_It__Stream__Ostream_Itf__a_J_J,type,
    list_stream_a: $tType ).

thf(ty_n_t__Set__Oset_It__Stream__Ostream_Itf__a_J_J,type,
    set_stream_a: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    list_list_a: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    set_list_a: $tType ).

thf(ty_n_t__Stream__Ostream_Itf__a_J,type,
    stream_a: $tType ).

thf(ty_n_t__List__Olist_Itf__a_J,type,
    list_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Num__Onum,type,
    num: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (152)
thf(sy_c_BNF__Greatest__Fixpoint_OShift_001tf__a,type,
    bNF_Greatest_Shift_a: set_list_a > a > set_list_a ).

thf(sy_c_BNF__Greatest__Fixpoint_OSucc_001tf__a,type,
    bNF_Greatest_Succ_a: set_list_a > list_a > set_a ).

thf(sy_c_Fair__Stream_Ofair_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    fair_f5205184157793188661list_a: stream_list_list_a > $o ).

thf(sy_c_Fair__Stream_Ofair_001t__List__Olist_Itf__a_J,type,
    fair_fair_list_a: stream_list_a > $o ).

thf(sy_c_Fair__Stream_Ofair_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    fair_f1030357992759841077list_a: stream_stream_list_a > $o ).

thf(sy_c_Fair__Stream_Ofair_001t__Stream__Ostream_Itf__a_J,type,
    fair_fair_stream_a: stream_stream_a > $o ).

thf(sy_c_Fair__Stream_Ofair_001tf__a,type,
    fair_fair_a: stream_a > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_If_001t__Stream__Ostream_It__List__Olist_It__List__Olist_It__List__Olist_Itf__a_J_J_J_J,type,
    if_str8217234800680828380list_a: $o > stream2255243159586646806list_a > stream2255243159586646806list_a > stream2255243159586646806list_a ).

thf(sy_c_If_001t__Stream__Ostream_It__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    if_str7505741754068378070list_a: $o > stream_list_list_a > stream_list_list_a > stream_list_list_a ).

thf(sy_c_If_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    if_stream_list_a: $o > stream_list_a > stream_list_a > stream_list_a ).

thf(sy_c_List_Oappend_001t__List__Olist_Itf__a_J,type,
    append_list_a: list_list_a > list_list_a > list_list_a ).

thf(sy_c_List_Oappend_001tf__a,type,
    append_a: list_a > list_a > list_a ).

thf(sy_c_List_Obind_001tf__a_001tf__a,type,
    bind_a_a: list_a > ( a > list_a ) > list_a ).

thf(sy_c_List_Obutlast_001tf__a,type,
    butlast_a: list_a > list_a ).

thf(sy_c_List_Odistinct__adj_001tf__a,type,
    distinct_adj_a: list_a > $o ).

thf(sy_c_List_Odrop_001tf__a,type,
    drop_a: nat > list_a > list_a ).

thf(sy_c_List_Ogen__length_001tf__a,type,
    gen_length_a: nat > list_a > nat ).

thf(sy_c_List_Olast_001tf__a,type,
    last_a: list_a > a ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    cons_list_list_a: list_list_a > list_list_list_a > list_list_list_a ).

thf(sy_c_List_Olist_OCons_001t__List__Olist_Itf__a_J,type,
    cons_list_a: list_a > list_list_a > list_list_a ).

thf(sy_c_List_Olist_OCons_001tf__a,type,
    cons_a: a > list_a > list_a ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    nil_list_list_a: list_list_list_a ).

thf(sy_c_List_Olist_ONil_001t__List__Olist_Itf__a_J,type,
    nil_list_a: list_list_a ).

thf(sy_c_List_Olist_ONil_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    nil_stream_list_a: list_stream_list_a ).

thf(sy_c_List_Olist_ONil_001t__Stream__Ostream_Itf__a_J,type,
    nil_stream_a: list_stream_a ).

thf(sy_c_List_Olist_ONil_001tf__a,type,
    nil_a: list_a ).

thf(sy_c_List_Olist_Ohd_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    hd_list_list_a: list_list_list_a > list_list_a ).

thf(sy_c_List_Olist_Ohd_001t__List__Olist_Itf__a_J,type,
    hd_list_a: list_list_a > list_a ).

thf(sy_c_List_Olist_Ohd_001tf__a,type,
    hd_a: list_a > a ).

thf(sy_c_List_Olist_Osize__list_001tf__a,type,
    size_list_a: ( a > nat ) > list_a > nat ).

thf(sy_c_List_Olist_Otl_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    tl_list_list_a: list_list_list_a > list_list_list_a ).

thf(sy_c_List_Olist_Otl_001t__List__Olist_Itf__a_J,type,
    tl_list_a: list_list_a > list_list_a ).

thf(sy_c_List_Olist_Otl_001tf__a,type,
    tl_a: list_a > list_a ).

thf(sy_c_List_Olist__ex1_001t__List__Olist_Itf__a_J,type,
    list_ex1_list_a: ( list_a > $o ) > list_list_a > $o ).

thf(sy_c_List_Olist__ex1_001tf__a,type,
    list_ex1_a: ( a > $o ) > list_a > $o ).

thf(sy_c_List_Olist__ex_001t__List__Olist_Itf__a_J,type,
    list_ex_list_a: ( list_a > $o ) > list_list_a > $o ).

thf(sy_c_List_Olist__ex_001tf__a,type,
    list_ex_a: ( a > $o ) > list_a > $o ).

thf(sy_c_List_Olist__update_001tf__a,type,
    list_update_a: list_a > nat > a > list_a ).

thf(sy_c_List_On__lists_001tf__a,type,
    n_lists_a: nat > list_a > list_list_a ).

thf(sy_c_List_Onth_001t__List__Olist_Itf__a_J,type,
    nth_list_a: list_list_a > nat > list_a ).

thf(sy_c_List_Onth_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    nth_stream_list_a: list_stream_list_a > nat > stream_list_a ).

thf(sy_c_List_Onth_001t__Stream__Ostream_Itf__a_J,type,
    nth_stream_a: list_stream_a > nat > stream_a ).

thf(sy_c_List_Onth_001tf__a,type,
    nth_a: list_a > nat > a ).

thf(sy_c_List_Oproduct__lists_001tf__a,type,
    product_lists_a: list_list_a > list_list_a ).

thf(sy_c_List_Orotate1_001tf__a,type,
    rotate1_a: list_a > list_a ).

thf(sy_c_List_Orotate_001tf__a,type,
    rotate_a: nat > list_a > list_a ).

thf(sy_c_List_Osubseqs_001tf__a,type,
    subseqs_a: list_a > list_list_a ).

thf(sy_c_List_Otake_001tf__a,type,
    take_a: nat > list_a > list_a ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    size_s349497388124573686list_a: list_list_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J,type,
    size_s3694203809124329340list_a: list_stream_list_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Stream__Ostream_Itf__a_J_J,type,
    size_s2142770077969500662ream_a: list_stream_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_Itf__a_J,type,
    size_size_list_a: list_a > nat ).

thf(sy_c_Nat__Bijection_Otriangle,type,
    nat_triangle: nat > nat ).

thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
    numeral_numeral_nat: num > nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
    ord_less_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    ord_less_set_list_a: set_list_a > set_list_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__a_J,type,
    ord_less_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
    ord_less_eq_num: num > num > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    ord_le8488217952732425610list_a: set_list_list_a > set_list_list_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    ord_le8861187494160871172list_a: set_list_a > set_list_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Omin_001t__Nat__Onat,type,
    ord_min_nat: nat > nat > nat ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
    modulo_modulo_nat: nat > nat > nat ).

thf(sy_c_Set_OCollect_001t__List__Olist_Itf__a_J,type,
    collect_list_a: ( list_a > $o ) > set_list_a ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Stream_Ocycle_001t__List__Olist_Itf__a_J,type,
    cycle_list_a: list_list_a > stream_list_a ).

thf(sy_c_Stream_Ocycle_001tf__a,type,
    cycle_a: list_a > stream_a ).

thf(sy_c_Stream_Oflat_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    flat_list_list_a: stream2255243159586646806list_a > stream_list_list_a ).

thf(sy_c_Stream_Oflat_001t__List__Olist_Itf__a_J,type,
    flat_list_a: stream_list_list_a > stream_list_a ).

thf(sy_c_Stream_Oflat_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    flat_stream_list_a: stream1229541022664496662list_a > stream_stream_list_a ).

thf(sy_c_Stream_Oflat_001t__Stream__Ostream_Itf__a_J,type,
    flat_stream_a: stream_list_stream_a > stream_stream_a ).

thf(sy_c_Stream_Oflat_001tf__a,type,
    flat_a: stream_list_a > stream_a ).

thf(sy_c_Stream_Osdrop_001t__List__Olist_Itf__a_J,type,
    sdrop_list_a: nat > stream_list_a > stream_list_a ).

thf(sy_c_Stream_Osdrop_001tf__a,type,
    sdrop_a: nat > stream_a > stream_a ).

thf(sy_c_Stream_Oshift_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    shift_list_list_a: list_list_list_a > stream_list_list_a > stream_list_list_a ).

thf(sy_c_Stream_Oshift_001t__List__Olist_Itf__a_J,type,
    shift_list_a: list_list_a > stream_list_a > stream_list_a ).

thf(sy_c_Stream_Oshift_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    shift_stream_list_a: list_stream_list_a > stream_stream_list_a > stream_stream_list_a ).

thf(sy_c_Stream_Oshift_001t__Stream__Ostream_Itf__a_J,type,
    shift_stream_a: list_stream_a > stream_stream_a > stream_stream_a ).

thf(sy_c_Stream_Oshift_001tf__a,type,
    shift_a: list_a > stream_a > stream_a ).

thf(sy_c_Stream_Osinterleave_001t__List__Olist_Itf__a_J,type,
    sinterleave_list_a: stream_list_a > stream_list_a > stream_list_a ).

thf(sy_c_Stream_Osinterleave_001tf__a,type,
    sinterleave_a: stream_a > stream_a > stream_a ).

thf(sy_c_Stream_Osmember_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    smember_list_list_a: list_list_a > stream_list_list_a > $o ).

thf(sy_c_Stream_Osmember_001t__List__Olist_Itf__a_J,type,
    smember_list_a: list_a > stream_list_a > $o ).

thf(sy_c_Stream_Osmember_001tf__a,type,
    smember_a: a > stream_a > $o ).

thf(sy_c_Stream_Osmerge_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    smerge_list_list_a: stream3775083406817841430list_a > stream_list_list_a ).

thf(sy_c_Stream_Osmerge_001t__List__Olist_Itf__a_J,type,
    smerge_list_a: stream_stream_list_a > stream_list_a ).

thf(sy_c_Stream_Osmerge_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    smerge_stream_list_a: stream2377611395989027862list_a > stream_stream_list_a ).

thf(sy_c_Stream_Osmerge_001t__Stream__Ostream_Itf__a_J,type,
    smerge_stream_a: stream2307142169165677840ream_a > stream_stream_a ).

thf(sy_c_Stream_Osmerge_001tf__a,type,
    smerge_a: stream_stream_a > stream_a ).

thf(sy_c_Stream_Osnth_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    snth_list_list_a: stream_list_list_a > nat > list_list_a ).

thf(sy_c_Stream_Osnth_001t__List__Olist_Itf__a_J,type,
    snth_list_a: stream_list_a > nat > list_a ).

thf(sy_c_Stream_Osnth_001t__Stream__Ostream_It__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    snth_s3514276978948636852list_a: stream3775083406817841430list_a > nat > stream_list_list_a ).

thf(sy_c_Stream_Osnth_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    snth_stream_list_a: stream_stream_list_a > nat > stream_list_a ).

thf(sy_c_Stream_Osnth_001t__Stream__Ostream_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J,type,
    snth_s4451090846259577524list_a: stream2377611395989027862list_a > nat > stream_stream_list_a ).

thf(sy_c_Stream_Osnth_001t__Stream__Ostream_It__Stream__Ostream_Itf__a_J_J,type,
    snth_stream_stream_a: stream2307142169165677840ream_a > nat > stream_stream_a ).

thf(sy_c_Stream_Osnth_001t__Stream__Ostream_Itf__a_J,type,
    snth_stream_a: stream_stream_a > nat > stream_a ).

thf(sy_c_Stream_Osnth_001tf__a,type,
    snth_a: stream_a > nat > a ).

thf(sy_c_Stream_Ostake_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    stake_list_list_a: nat > stream_list_list_a > list_list_list_a ).

thf(sy_c_Stream_Ostake_001t__List__Olist_Itf__a_J,type,
    stake_list_a: nat > stream_list_a > list_list_a ).

thf(sy_c_Stream_Ostake_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    stake_stream_list_a: nat > stream_stream_list_a > list_stream_list_a ).

thf(sy_c_Stream_Ostake_001t__Stream__Ostream_Itf__a_J,type,
    stake_stream_a: nat > stream_stream_a > list_stream_a ).

thf(sy_c_Stream_Ostake_001tf__a,type,
    stake_a: nat > stream_a > list_a ).

thf(sy_c_Stream_Ostream_OSCons_001t__List__Olist_It__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    sCons_8165023923567507367list_a: list_list_list_a > stream2255243159586646806list_a > stream2255243159586646806list_a ).

thf(sy_c_Stream_Ostream_OSCons_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    sCons_list_list_a: list_list_a > stream_list_list_a > stream_list_list_a ).

thf(sy_c_Stream_Ostream_OSCons_001t__List__Olist_Itf__a_J,type,
    sCons_list_a: list_a > stream_list_a > stream_list_a ).

thf(sy_c_Stream_Ostream_OSCons_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    sCons_stream_list_a: stream_list_a > stream_stream_list_a > stream_stream_list_a ).

thf(sy_c_Stream_Ostream_OSCons_001t__Stream__Ostream_Itf__a_J,type,
    sCons_stream_a: stream_a > stream_stream_a > stream_stream_a ).

thf(sy_c_Stream_Ostream_OSCons_001tf__a,type,
    sCons_a: a > stream_a > stream_a ).

thf(sy_c_Stream_Ostream_Oshd_001t__List__Olist_It__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    shd_list_list_list_a: stream2255243159586646806list_a > list_list_list_a ).

thf(sy_c_Stream_Ostream_Oshd_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    shd_list_list_a: stream_list_list_a > list_list_a ).

thf(sy_c_Stream_Ostream_Oshd_001t__List__Olist_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J,type,
    shd_li3061069428927788988list_a: stream1229541022664496662list_a > list_stream_list_a ).

thf(sy_c_Stream_Ostream_Oshd_001t__List__Olist_It__Stream__Ostream_Itf__a_J_J,type,
    shd_list_stream_a: stream_list_stream_a > list_stream_a ).

thf(sy_c_Stream_Ostream_Oshd_001t__List__Olist_Itf__a_J,type,
    shd_list_a: stream_list_a > list_a ).

thf(sy_c_Stream_Ostream_Oshd_001tf__a,type,
    shd_a: stream_a > a ).

thf(sy_c_Stream_Ostream_Osset_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    sset_list_list_a: stream_list_list_a > set_list_list_a ).

thf(sy_c_Stream_Ostream_Osset_001t__List__Olist_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J,type,
    sset_l2691409540454527268list_a: stream1229541022664496662list_a > set_li4183784480778324208list_a ).

thf(sy_c_Stream_Ostream_Osset_001t__List__Olist_It__Stream__Ostream_Itf__a_J_J,type,
    sset_list_stream_a: stream_list_stream_a > set_list_stream_a ).

thf(sy_c_Stream_Ostream_Osset_001t__List__Olist_Itf__a_J,type,
    sset_list_a: stream_list_a > set_list_a ).

thf(sy_c_Stream_Ostream_Osset_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    sset_stream_list_a: stream_stream_list_a > set_stream_list_a ).

thf(sy_c_Stream_Ostream_Osset_001t__Stream__Ostream_Itf__a_J,type,
    sset_stream_a: stream_stream_a > set_stream_a ).

thf(sy_c_Stream_Ostream_Osset_001tf__a,type,
    sset_a: stream_a > set_a ).

thf(sy_c_Stream_Ostream_Ostl_001t__List__Olist_It__List__Olist_It__List__Olist_Itf__a_J_J_J,type,
    stl_list_list_list_a: stream2255243159586646806list_a > stream2255243159586646806list_a ).

thf(sy_c_Stream_Ostream_Ostl_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    stl_list_list_a: stream_list_list_a > stream_list_list_a ).

thf(sy_c_Stream_Ostream_Ostl_001t__List__Olist_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J,type,
    stl_li3392269663658258880list_a: stream1229541022664496662list_a > stream1229541022664496662list_a ).

thf(sy_c_Stream_Ostream_Ostl_001t__List__Olist_It__Stream__Ostream_Itf__a_J_J,type,
    stl_list_stream_a: stream_list_stream_a > stream_list_stream_a ).

thf(sy_c_Stream_Ostream_Ostl_001t__List__Olist_Itf__a_J,type,
    stl_list_a: stream_list_a > stream_list_a ).

thf(sy_c_Stream_Ostream_Ostl_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    stl_stream_list_a: stream_stream_list_a > stream_stream_list_a ).

thf(sy_c_Stream_Ostream_Ostl_001t__Stream__Ostream_Itf__a_J,type,
    stl_stream_a: stream_stream_a > stream_stream_a ).

thf(sy_c_Stream_Ostream_Ostl_001tf__a,type,
    stl_a: stream_a > stream_a ).

thf(sy_c_member_001t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    member_list_list_a: list_list_a > set_list_list_a > $o ).

thf(sy_c_member_001t__List__Olist_It__Stream__Ostream_It__List__Olist_Itf__a_J_J_J,type,
    member2241138852378865081list_a: list_stream_list_a > set_li4183784480778324208list_a > $o ).

thf(sy_c_member_001t__List__Olist_It__Stream__Ostream_Itf__a_J_J,type,
    member_list_stream_a: list_stream_a > set_list_stream_a > $o ).

thf(sy_c_member_001t__List__Olist_Itf__a_J,type,
    member_list_a: list_a > set_list_a > $o ).

thf(sy_c_member_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J,type,
    member_stream_list_a: stream_list_a > set_stream_list_a > $o ).

thf(sy_c_member_001t__Stream__Ostream_Itf__a_J,type,
    member_stream_a: stream_a > set_stream_a > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_m,type,
    m: nat ).

thf(sy_v_n,type,
    n: nat ).

thf(sy_v_na____,type,
    na: nat ).

thf(sy_v_s,type,
    s: stream_list_a ).

thf(sy_v_sa____,type,
    sa: stream_list_a ).

thf(sy_v_x,type,
    x: a ).

% Relevant facts (1263)
thf(fact_0_assms_I3_J,axiom,
    ! [X: list_a] :
      ( ( member_list_a @ X @ ( sset_list_a @ s ) )
     => ( X != nil_a ) ) ).

% assms(3)
thf(fact_1__092_060open_062_092_060forall_062xs_092_060in_062sset_A_Istl_As_J_O_Axs_A_092_060noteq_062_A_091_093_092_060close_062,axiom,
    ! [X: list_a] :
      ( ( member_list_a @ X @ ( sset_list_a @ ( stl_list_a @ sa ) ) )
     => ( X != nil_a ) ) ).

% \<open>\<forall>xs\<in>sset (stl s). xs \<noteq> []\<close>
thf(fact_2_Suc_Oprems_I3_J,axiom,
    ! [X: list_a] :
      ( ( member_list_a @ X @ ( sset_list_a @ sa ) )
     => ( X != nil_a ) ) ).

% Suc.prems(3)
thf(fact_3__092_060open_062m_A_060_Alength_A_Istl_As_A_B_B_An_J_092_060close_062,axiom,
    ord_less_nat @ m @ ( size_size_list_a @ ( snth_list_a @ ( stl_list_a @ sa ) @ na ) ) ).

% \<open>m < length (stl s !! n)\<close>
thf(fact_4__092_060open_062x_A_061_Astl_As_A_B_B_An_A_B_Am_092_060close_062,axiom,
    ( x
    = ( nth_a @ ( snth_list_a @ ( stl_list_a @ sa ) @ na ) @ m ) ) ).

% \<open>x = stl s !! n ! m\<close>
thf(fact_5__092_060open_062_092_060exists_062n_H_092_060ge_062n_O_Ax_A_061_Aflat_A_Istl_As_J_A_B_B_An_H_A_092_060Longrightarrow_062_A_092_060exists_062n_H_092_060ge_062Suc_An_O_Ax_A_061_Aflat_As_A_B_B_An_H_092_060close_062,axiom,
    ( ? [N: nat] :
        ( ( ord_less_eq_nat @ na @ N )
        & ( x
          = ( snth_a @ ( flat_a @ ( stl_list_a @ sa ) ) @ N ) ) )
   => ? [N2: nat] :
        ( ( ord_less_eq_nat @ ( suc @ na ) @ N2 )
        & ( x
          = ( snth_a @ ( flat_a @ sa ) @ N2 ) ) ) ) ).

% \<open>\<exists>n'\<ge>n. x = flat (stl s) !! n' \<Longrightarrow> \<exists>n'\<ge>Suc n. x = flat s !! n'\<close>
thf(fact_6__092_060open_062_I_092_060exists_062n_H_092_060ge_062Suc_An_O_Ax_A_061_Aflat_As_A_B_B_An_H_J_A_061_A_I_092_060exists_062n_H_092_060ge_062n_O_Ax_A_061_Aflat_As_A_B_B_ASuc_An_H_J_092_060close_062,axiom,
    ( ( ? [N3: nat] :
          ( ( ord_less_eq_nat @ ( suc @ na ) @ N3 )
          & ( x
            = ( snth_a @ ( flat_a @ sa ) @ N3 ) ) ) )
    = ( ? [N3: nat] :
          ( ( ord_less_eq_nat @ na @ N3 )
          & ( x
            = ( snth_a @ ( flat_a @ sa ) @ ( suc @ N3 ) ) ) ) ) ) ).

% \<open>(\<exists>n'\<ge>Suc n. x = flat s !! n') = (\<exists>n'\<ge>n. x = flat s !! Suc n')\<close>
thf(fact_7_Suc_Oprems_I1_J,axiom,
    ( x
    = ( nth_a @ ( snth_list_a @ sa @ ( suc @ na ) ) @ m ) ) ).

% Suc.prems(1)
thf(fact_8_order__refl,axiom,
    ! [X2: set_list_a] : ( ord_le8861187494160871172list_a @ X2 @ X2 ) ).

% order_refl
thf(fact_9_order__refl,axiom,
    ! [X2: set_a] : ( ord_less_eq_set_a @ X2 @ X2 ) ).

% order_refl
thf(fact_10_order__refl,axiom,
    ! [X2: num] : ( ord_less_eq_num @ X2 @ X2 ) ).

% order_refl
thf(fact_11_order__refl,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ X2 @ X2 ) ).

% order_refl
thf(fact_12_dual__order_Orefl,axiom,
    ! [A: set_list_a] : ( ord_le8861187494160871172list_a @ A @ A ) ).

% dual_order.refl
thf(fact_13_dual__order_Orefl,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% dual_order.refl
thf(fact_14_dual__order_Orefl,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% dual_order.refl
thf(fact_15_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_16_Suc_Ohyps,axiom,
    ! [S: stream_list_a] :
      ( ( x
        = ( nth_a @ ( snth_list_a @ S @ na ) @ m ) )
     => ( ( ord_less_nat @ m @ ( size_size_list_a @ ( snth_list_a @ S @ na ) ) )
       => ( ! [X3: list_a] :
              ( ( member_list_a @ X3 @ ( sset_list_a @ S ) )
             => ( X3 != nil_a ) )
         => ? [N2: nat] :
              ( ( ord_less_eq_nat @ na @ N2 )
              & ( x
                = ( snth_a @ ( flat_a @ S ) @ N2 ) ) ) ) ) ) ).

% Suc.hyps
thf(fact_17__092_060open_062_I_092_060exists_062n_H_092_060ge_062n_O_Ax_A_061_Aflat_As_A_B_B_ASuc_An_H_J_A_061_A_I_092_060exists_062n_H_092_060ge_062n_O_Ax_A_061_Astl_A_Iflat_As_J_A_B_B_An_H_J_092_060close_062,axiom,
    ( ( ? [N3: nat] :
          ( ( ord_less_eq_nat @ na @ N3 )
          & ( x
            = ( snth_a @ ( flat_a @ sa ) @ ( suc @ N3 ) ) ) ) )
    = ( ? [N3: nat] :
          ( ( ord_less_eq_nat @ na @ N3 )
          & ( x
            = ( snth_a @ ( stl_a @ ( flat_a @ sa ) ) @ N3 ) ) ) ) ) ).

% \<open>(\<exists>n'\<ge>n. x = flat s !! Suc n') = (\<exists>n'\<ge>n. x = stl (flat s) !! n')\<close>
thf(fact_18_assms_I1_J,axiom,
    ( x
    = ( nth_a @ ( snth_list_a @ s @ n ) @ m ) ) ).

% assms(1)
thf(fact_19_fair__def,axiom,
    ( fair_f1030357992759841077list_a
    = ( ^ [S2: stream_stream_list_a] :
        ! [X4: stream_list_a] :
          ( ( member_stream_list_a @ X4 @ ( sset_stream_list_a @ S2 ) )
         => ! [M: nat] :
            ? [N4: nat] :
              ( ( ord_less_eq_nat @ M @ N4 )
              & ( ( snth_stream_list_a @ S2 @ N4 )
                = X4 ) ) ) ) ) ).

% fair_def
thf(fact_20_fair__def,axiom,
    ( fair_fair_stream_a
    = ( ^ [S2: stream_stream_a] :
        ! [X4: stream_a] :
          ( ( member_stream_a @ X4 @ ( sset_stream_a @ S2 ) )
         => ! [M: nat] :
            ? [N4: nat] :
              ( ( ord_less_eq_nat @ M @ N4 )
              & ( ( snth_stream_a @ S2 @ N4 )
                = X4 ) ) ) ) ) ).

% fair_def
thf(fact_21_fair__def,axiom,
    ( fair_f5205184157793188661list_a
    = ( ^ [S2: stream_list_list_a] :
        ! [X4: list_list_a] :
          ( ( member_list_list_a @ X4 @ ( sset_list_list_a @ S2 ) )
         => ! [M: nat] :
            ? [N4: nat] :
              ( ( ord_less_eq_nat @ M @ N4 )
              & ( ( snth_list_list_a @ S2 @ N4 )
                = X4 ) ) ) ) ) ).

% fair_def
thf(fact_22_fair__def,axiom,
    ( fair_fair_a
    = ( ^ [S2: stream_a] :
        ! [X4: a] :
          ( ( member_a @ X4 @ ( sset_a @ S2 ) )
         => ! [M: nat] :
            ? [N4: nat] :
              ( ( ord_less_eq_nat @ M @ N4 )
              & ( ( snth_a @ S2 @ N4 )
                = X4 ) ) ) ) ) ).

% fair_def
thf(fact_23_fair__def,axiom,
    ( fair_fair_list_a
    = ( ^ [S2: stream_list_a] :
        ! [X4: list_a] :
          ( ( member_list_a @ X4 @ ( sset_list_a @ S2 ) )
         => ! [M: nat] :
            ? [N4: nat] :
              ( ( ord_less_eq_nat @ M @ N4 )
              & ( ( snth_list_a @ S2 @ N4 )
                = X4 ) ) ) ) ) ).

% fair_def
thf(fact_24_Suc_Oprems_I2_J,axiom,
    ord_less_nat @ m @ ( size_size_list_a @ ( snth_list_a @ sa @ ( suc @ na ) ) ) ).

% Suc.prems(2)
thf(fact_25_le__refl,axiom,
    ! [N5: nat] : ( ord_less_eq_nat @ N5 @ N5 ) ).

% le_refl
thf(fact_26_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_27_nat_Oinject,axiom,
    ! [X22: nat,Y2: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y2 ) )
      = ( X22 = Y2 ) ) ).

% nat.inject
thf(fact_28_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_29_assms_I2_J,axiom,
    ord_less_nat @ m @ ( size_size_list_a @ ( snth_list_a @ s @ n ) ) ).

% assms(2)
thf(fact_30_lessI,axiom,
    ! [N5: nat] : ( ord_less_nat @ N5 @ ( suc @ N5 ) ) ).

% lessI
thf(fact_31_Suc__mono,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N5 ) ) ) ).

% Suc_mono
thf(fact_32_Suc__less__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N5 ) )
      = ( ord_less_nat @ M2 @ N5 ) ) ).

% Suc_less_eq
thf(fact_33_Suc__le__mono,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N5 ) @ ( suc @ M2 ) )
      = ( ord_less_eq_nat @ N5 @ M2 ) ) ).

% Suc_le_mono
thf(fact_34_gt__ex,axiom,
    ! [X2: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X2 @ X_1 ) ).

% gt_ex
thf(fact_35_lift__Suc__mono__less,axiom,
    ! [F: nat > num,N5: nat,N6: nat] :
      ( ! [N7: nat] : ( ord_less_num @ ( F @ N7 ) @ ( F @ ( suc @ N7 ) ) )
     => ( ( ord_less_nat @ N5 @ N6 )
       => ( ord_less_num @ ( F @ N5 ) @ ( F @ N6 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_36_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N5: nat,N6: nat] :
      ( ! [N7: nat] : ( ord_less_nat @ ( F @ N7 ) @ ( F @ ( suc @ N7 ) ) )
     => ( ( ord_less_nat @ N5 @ N6 )
       => ( ord_less_nat @ ( F @ N5 ) @ ( F @ N6 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_37_less__imp__neq,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( X2 != Y ) ) ).

% less_imp_neq
thf(fact_38_less__imp__neq,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( X2 != Y ) ) ).

% less_imp_neq
thf(fact_39_order_Oasym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order.asym
thf(fact_40_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_41_ord__eq__less__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_42_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_43_ord__less__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_num @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_44_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_45_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X3: nat] :
          ( ! [Y3: nat] :
              ( ( ord_less_nat @ Y3 @ X3 )
             => ( P @ Y3 ) )
         => ( P @ X3 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_46_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > num,N5: nat,M2: nat] :
      ( ! [N7: nat] : ( ord_less_num @ ( F @ N7 ) @ ( F @ ( suc @ N7 ) ) )
     => ( ( ord_less_num @ ( F @ N5 ) @ ( F @ M2 ) )
        = ( ord_less_nat @ N5 @ M2 ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_47_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N5: nat,M2: nat] :
      ( ! [N7: nat] : ( ord_less_nat @ ( F @ N7 ) @ ( F @ ( suc @ N7 ) ) )
     => ( ( ord_less_nat @ ( F @ N5 ) @ ( F @ M2 ) )
        = ( ord_less_nat @ N5 @ M2 ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_48_antisym__conv3,axiom,
    ! [Y: num,X2: num] :
      ( ~ ( ord_less_num @ Y @ X2 )
     => ( ( ~ ( ord_less_num @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv3
thf(fact_49_antisym__conv3,axiom,
    ! [Y: nat,X2: nat] :
      ( ~ ( ord_less_nat @ Y @ X2 )
     => ( ( ~ ( ord_less_nat @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv3
thf(fact_50_linorder__cases,axiom,
    ! [X2: num,Y: num] :
      ( ~ ( ord_less_num @ X2 @ Y )
     => ( ( X2 != Y )
       => ( ord_less_num @ Y @ X2 ) ) ) ).

% linorder_cases
thf(fact_51_linorder__cases,axiom,
    ! [X2: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y )
     => ( ( X2 != Y )
       => ( ord_less_nat @ Y @ X2 ) ) ) ).

% linorder_cases
thf(fact_52_dual__order_Oasym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ~ ( ord_less_num @ A @ B ) ) ).

% dual_order.asym
thf(fact_53_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_54_dual__order_Oirrefl,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% dual_order.irrefl
thf(fact_55_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_56_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X5: nat] : ( P2 @ X5 ) )
    = ( ^ [P3: nat > $o] :
        ? [N4: nat] :
          ( ( P3 @ N4 )
          & ! [M: nat] :
              ( ( ord_less_nat @ M @ N4 )
             => ~ ( P3 @ M ) ) ) ) ) ).

% exists_least_iff
thf(fact_57_linorder__less__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A2: num,B2: num] :
          ( ( ord_less_num @ A2 @ B2 )
         => ( P @ A2 @ B2 ) )
     => ( ! [A2: num] : ( P @ A2 @ A2 )
       => ( ! [A2: num,B2: num] :
              ( ( P @ B2 @ A2 )
             => ( P @ A2 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_58_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A2: nat,B2: nat] :
          ( ( ord_less_nat @ A2 @ B2 )
         => ( P @ A2 @ B2 ) )
     => ( ! [A2: nat] : ( P @ A2 @ A2 )
       => ( ! [A2: nat,B2: nat] :
              ( ( P @ B2 @ A2 )
             => ( P @ A2 @ B2 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_59_order_Ostrict__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_60_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_61_not__less__iff__gr__or__eq,axiom,
    ! [X2: num,Y: num] :
      ( ( ~ ( ord_less_num @ X2 @ Y ) )
      = ( ( ord_less_num @ Y @ X2 )
        | ( X2 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_62_not__less__iff__gr__or__eq,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y ) )
      = ( ( ord_less_nat @ Y @ X2 )
        | ( X2 = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_63_dual__order_Ostrict__trans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_64_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_65_order_Ostrict__implies__not__eq,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_66_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_67_mem__Collect__eq,axiom,
    ! [A: list_a,P: list_a > $o] :
      ( ( member_list_a @ A @ ( collect_list_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_68_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_69_Collect__mem__eq,axiom,
    ! [A3: set_list_a] :
      ( ( collect_list_a
        @ ^ [X4: list_a] : ( member_list_a @ X4 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_70_Collect__mem__eq,axiom,
    ! [A3: set_a] :
      ( ( collect_a
        @ ^ [X4: a] : ( member_a @ X4 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_71_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_72_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_73_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_74_Suc__lessD,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ N5 )
     => ( ord_less_nat @ M2 @ N5 ) ) ).

% Suc_lessD
thf(fact_75_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_76_Suc__lessI,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ( ( suc @ M2 )
         != N5 )
       => ( ord_less_nat @ ( suc @ M2 ) @ N5 ) ) ) ).

% Suc_lessI
thf(fact_77_less__SucE,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N5 ) )
     => ( ~ ( ord_less_nat @ M2 @ N5 )
       => ( M2 = N5 ) ) ) ).

% less_SucE
thf(fact_78_less__SucI,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ord_less_nat @ M2 @ ( suc @ N5 ) ) ) ).

% less_SucI
thf(fact_79_Suc__inject,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y ) )
     => ( X2 = Y ) ) ).

% Suc_inject
thf(fact_80_Ex__less__Suc,axiom,
    ! [N5: nat,P: nat > $o] :
      ( ( ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N5 ) )
            & ( P @ I2 ) ) )
      = ( ( P @ N5 )
        | ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ N5 )
            & ( P @ I2 ) ) ) ) ).

% Ex_less_Suc
thf(fact_81_less__Suc__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N5 ) )
      = ( ( ord_less_nat @ M2 @ N5 )
        | ( M2 = N5 ) ) ) ).

% less_Suc_eq
thf(fact_82_n__not__Suc__n,axiom,
    ! [N5: nat] :
      ( N5
     != ( suc @ N5 ) ) ).

% n_not_Suc_n
thf(fact_83_nat__neq__iff,axiom,
    ! [M2: nat,N5: nat] :
      ( ( M2 != N5 )
      = ( ( ord_less_nat @ M2 @ N5 )
        | ( ord_less_nat @ N5 @ M2 ) ) ) ).

% nat_neq_iff
thf(fact_84_not__less__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ~ ( ord_less_nat @ M2 @ N5 ) )
      = ( ord_less_nat @ N5 @ ( suc @ M2 ) ) ) ).

% not_less_eq
thf(fact_85_All__less__Suc,axiom,
    ! [N5: nat,P: nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N5 ) )
           => ( P @ I2 ) ) )
      = ( ( P @ N5 )
        & ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ N5 )
           => ( P @ I2 ) ) ) ) ).

% All_less_Suc
thf(fact_86_Suc__less__eq2,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_nat @ ( suc @ N5 ) @ M2 )
      = ( ? [M3: nat] :
            ( ( M2
              = ( suc @ M3 ) )
            & ( ord_less_nat @ N5 @ M3 ) ) ) ) ).

% Suc_less_eq2
thf(fact_87_less__antisym,axiom,
    ! [N5: nat,M2: nat] :
      ( ~ ( ord_less_nat @ N5 @ M2 )
     => ( ( ord_less_nat @ N5 @ ( suc @ M2 ) )
       => ( M2 = N5 ) ) ) ).

% less_antisym
thf(fact_88_Suc__less__SucD,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N5 ) )
     => ( ord_less_nat @ M2 @ N5 ) ) ).

% Suc_less_SucD
thf(fact_89_less__not__refl,axiom,
    ! [N5: nat] :
      ~ ( ord_less_nat @ N5 @ N5 ) ).

% less_not_refl
thf(fact_90_less__not__refl2,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_nat @ N5 @ M2 )
     => ( M2 != N5 ) ) ).

% less_not_refl2
thf(fact_91_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_92_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_93_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] : ( P @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J2: nat,K2: nat] :
              ( ( ord_less_nat @ I3 @ J2 )
             => ( ( ord_less_nat @ J2 @ K2 )
               => ( ( P @ I3 @ J2 )
                 => ( ( P @ J2 @ K2 )
                   => ( P @ I3 @ K2 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_94_less__irrefl__nat,axiom,
    ! [N5: nat] :
      ~ ( ord_less_nat @ N5 @ N5 ) ).

% less_irrefl_nat
thf(fact_95_nat__less__induct,axiom,
    ! [P: nat > $o,N5: nat] :
      ( ! [N7: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_nat @ M4 @ N7 )
             => ( P @ M4 ) )
         => ( P @ N7 ) )
     => ( P @ N5 ) ) ).

% nat_less_induct
thf(fact_96_infinite__descent,axiom,
    ! [P: nat > $o,N5: nat] :
      ( ! [N7: nat] :
          ( ~ ( P @ N7 )
         => ? [M4: nat] :
              ( ( ord_less_nat @ M4 @ N7 )
              & ~ ( P @ M4 ) ) )
     => ( P @ N5 ) ) ).

% infinite_descent
thf(fact_97_linorder__neqE__nat,axiom,
    ! [X2: nat,Y: nat] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_nat @ X2 @ Y )
       => ( ord_less_nat @ Y @ X2 ) ) ) ).

% linorder_neqE_nat
thf(fact_98_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ J )
             => ( ( P @ ( suc @ I3 ) )
               => ( P @ I3 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_99_linorder__neqE,axiom,
    ! [X2: num,Y: num] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_num @ X2 @ Y )
       => ( ord_less_num @ Y @ X2 ) ) ) ).

% linorder_neqE
thf(fact_100_linorder__neqE,axiom,
    ! [X2: nat,Y: nat] :
      ( ( X2 != Y )
     => ( ~ ( ord_less_nat @ X2 @ Y )
       => ( ord_less_nat @ Y @ X2 ) ) ) ).

% linorder_neqE
thf(fact_101_not__less__less__Suc__eq,axiom,
    ! [N5: nat,M2: nat] :
      ( ~ ( ord_less_nat @ N5 @ M2 )
     => ( ( ord_less_nat @ N5 @ ( suc @ M2 ) )
        = ( N5 = M2 ) ) ) ).

% not_less_less_Suc_eq
thf(fact_102_size__neq__size__imp__neq,axiom,
    ! [X2: list_list_a,Y: list_list_a] :
      ( ( ( size_s349497388124573686list_a @ X2 )
       != ( size_s349497388124573686list_a @ Y ) )
     => ( X2 != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_103_size__neq__size__imp__neq,axiom,
    ! [X2: list_a,Y: list_a] :
      ( ( ( size_size_list_a @ X2 )
       != ( size_size_list_a @ Y ) )
     => ( X2 != Y ) ) ).

% size_neq_size_imp_neq
thf(fact_104_order__less__asym,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ~ ( ord_less_num @ Y @ X2 ) ) ).

% order_less_asym
thf(fact_105_order__less__asym,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ~ ( ord_less_nat @ Y @ X2 ) ) ).

% order_less_asym
thf(fact_106_linorder__neq__iff,axiom,
    ! [X2: num,Y: num] :
      ( ( X2 != Y )
      = ( ( ord_less_num @ X2 @ Y )
        | ( ord_less_num @ Y @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_107_linorder__neq__iff,axiom,
    ! [X2: nat,Y: nat] :
      ( ( X2 != Y )
      = ( ( ord_less_nat @ X2 @ Y )
        | ( ord_less_nat @ Y @ X2 ) ) ) ).

% linorder_neq_iff
thf(fact_108_order__less__asym_H,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ~ ( ord_less_num @ B @ A ) ) ).

% order_less_asym'
thf(fact_109_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_110_order__less__trans,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( ( ord_less_num @ Y @ Z )
       => ( ord_less_num @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_111_order__less__trans,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_less_trans
thf(fact_112_ord__eq__less__subst,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_113_ord__eq__less__subst,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_114_ord__eq__less__subst,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_115_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_116_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_117_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_118_ord__less__eq__subst,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_119_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_120_order__less__irrefl,axiom,
    ! [X2: num] :
      ~ ( ord_less_num @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_121_order__less__irrefl,axiom,
    ! [X2: nat] :
      ~ ( ord_less_nat @ X2 @ X2 ) ).

% order_less_irrefl
thf(fact_122_order__less__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_123_order__less__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_124_order__less__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_125_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_126_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_127_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_128_order__less__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_129_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_130_order__less__not__sym,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ~ ( ord_less_num @ Y @ X2 ) ) ).

% order_less_not_sym
thf(fact_131_order__less__not__sym,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ~ ( ord_less_nat @ Y @ X2 ) ) ).

% order_less_not_sym
thf(fact_132_order__less__imp__triv,axiom,
    ! [X2: num,Y: num,P: $o] :
      ( ( ord_less_num @ X2 @ Y )
     => ( ( ord_less_num @ Y @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_133_order__less__imp__triv,axiom,
    ! [X2: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( ( ord_less_nat @ Y @ X2 )
       => P ) ) ).

% order_less_imp_triv
thf(fact_134_linorder__less__linear,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
      | ( X2 = Y )
      | ( ord_less_num @ Y @ X2 ) ) ).

% linorder_less_linear
thf(fact_135_linorder__less__linear,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
      | ( X2 = Y )
      | ( ord_less_nat @ Y @ X2 ) ) ).

% linorder_less_linear
thf(fact_136_order__less__imp__not__eq,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( X2 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_137_order__less__imp__not__eq,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( X2 != Y ) ) ).

% order_less_imp_not_eq
thf(fact_138_order__less__imp__not__eq2,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( Y != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_139_order__less__imp__not__eq2,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( Y != X2 ) ) ).

% order_less_imp_not_eq2
thf(fact_140_order__less__imp__not__less,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ~ ( ord_less_num @ Y @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_141_order__less__imp__not__less,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ~ ( ord_less_nat @ Y @ X2 ) ) ).

% order_less_imp_not_less
thf(fact_142_le__imp__less__Suc,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ord_less_nat @ M2 @ ( suc @ N5 ) ) ) ).

% le_imp_less_Suc
thf(fact_143_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_144_less__Suc__eq__le,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N5 ) )
      = ( ord_less_eq_nat @ M2 @ N5 ) ) ).

% less_Suc_eq_le
thf(fact_145_le__less__Suc__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ( ord_less_nat @ N5 @ ( suc @ M2 ) )
        = ( N5 = M2 ) ) ) ).

% le_less_Suc_eq
thf(fact_146_Suc__le__lessD,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N5 )
     => ( ord_less_nat @ M2 @ N5 ) ) ).

% Suc_le_lessD
thf(fact_147_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N7: nat] :
              ( ( ord_less_eq_nat @ I @ N7 )
             => ( ( ord_less_nat @ N7 @ J )
               => ( ( P @ ( suc @ N7 ) )
                 => ( P @ N7 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_148_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N7: nat] :
              ( ( ord_less_eq_nat @ I @ N7 )
             => ( ( ord_less_nat @ N7 @ J )
               => ( ( P @ N7 )
                 => ( P @ ( suc @ N7 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_149_Suc__le__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N5 )
      = ( ord_less_nat @ M2 @ N5 ) ) ).

% Suc_le_eq
thf(fact_150_Suc__leI,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ord_less_eq_nat @ ( suc @ M2 ) @ N5 ) ) ).

% Suc_leI
thf(fact_151_transitive__stepwise__le,axiom,
    ! [M2: nat,N5: nat,R: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ! [X3: nat] : ( R @ X3 @ X3 )
       => ( ! [X3: nat,Y4: nat,Z2: nat] :
              ( ( R @ X3 @ Y4 )
             => ( ( R @ Y4 @ Z2 )
               => ( R @ X3 @ Z2 ) ) )
         => ( ! [N7: nat] : ( R @ N7 @ ( suc @ N7 ) )
           => ( R @ M2 @ N5 ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_152_nat__induct__at__least,axiom,
    ! [M2: nat,N5: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ( P @ M2 )
       => ( ! [N7: nat] :
              ( ( ord_less_eq_nat @ M2 @ N7 )
             => ( ( P @ N7 )
               => ( P @ ( suc @ N7 ) ) ) )
         => ( P @ N5 ) ) ) ) ).

% nat_induct_at_least
thf(fact_153_full__nat__induct,axiom,
    ! [P: nat > $o,N5: nat] :
      ( ! [N7: nat] :
          ( ! [M4: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M4 ) @ N7 )
             => ( P @ M4 ) )
         => ( P @ N7 ) )
     => ( P @ N5 ) ) ).

% full_nat_induct
thf(fact_154_not__less__eq__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ~ ( ord_less_eq_nat @ M2 @ N5 ) )
      = ( ord_less_eq_nat @ ( suc @ N5 ) @ M2 ) ) ).

% not_less_eq_eq
thf(fact_155_Suc__n__not__le__n,axiom,
    ! [N5: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N5 ) @ N5 ) ).

% Suc_n_not_le_n
thf(fact_156_le__Suc__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ M2 @ ( suc @ N5 ) )
      = ( ( ord_less_eq_nat @ M2 @ N5 )
        | ( M2
          = ( suc @ N5 ) ) ) ) ).

% le_Suc_eq
thf(fact_157_Suc__le__D,axiom,
    ! [N5: nat,M5: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N5 ) @ M5 )
     => ? [M6: nat] :
          ( M5
          = ( suc @ M6 ) ) ) ).

% Suc_le_D
thf(fact_158_le__SucI,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ord_less_eq_nat @ M2 @ ( suc @ N5 ) ) ) ).

% le_SucI
thf(fact_159_le__SucE,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ M2 @ ( suc @ N5 ) )
     => ( ~ ( ord_less_eq_nat @ M2 @ N5 )
       => ( M2
          = ( suc @ N5 ) ) ) ) ).

% le_SucE
thf(fact_160_Suc__leD,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N5 )
     => ( ord_less_eq_nat @ M2 @ N5 ) ) ).

% Suc_leD
thf(fact_161_lift__Suc__antimono__le,axiom,
    ! [F: nat > set_list_a,N5: nat,N6: nat] :
      ( ! [N7: nat] : ( ord_le8861187494160871172list_a @ ( F @ ( suc @ N7 ) ) @ ( F @ N7 ) )
     => ( ( ord_less_eq_nat @ N5 @ N6 )
       => ( ord_le8861187494160871172list_a @ ( F @ N6 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_162_lift__Suc__antimono__le,axiom,
    ! [F: nat > set_a,N5: nat,N6: nat] :
      ( ! [N7: nat] : ( ord_less_eq_set_a @ ( F @ ( suc @ N7 ) ) @ ( F @ N7 ) )
     => ( ( ord_less_eq_nat @ N5 @ N6 )
       => ( ord_less_eq_set_a @ ( F @ N6 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_163_lift__Suc__antimono__le,axiom,
    ! [F: nat > num,N5: nat,N6: nat] :
      ( ! [N7: nat] : ( ord_less_eq_num @ ( F @ ( suc @ N7 ) ) @ ( F @ N7 ) )
     => ( ( ord_less_eq_nat @ N5 @ N6 )
       => ( ord_less_eq_num @ ( F @ N6 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_164_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N5: nat,N6: nat] :
      ( ! [N7: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N7 ) ) @ ( F @ N7 ) )
     => ( ( ord_less_eq_nat @ N5 @ N6 )
       => ( ord_less_eq_nat @ ( F @ N6 ) @ ( F @ N5 ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_165_lift__Suc__mono__le,axiom,
    ! [F: nat > set_list_a,N5: nat,N6: nat] :
      ( ! [N7: nat] : ( ord_le8861187494160871172list_a @ ( F @ N7 ) @ ( F @ ( suc @ N7 ) ) )
     => ( ( ord_less_eq_nat @ N5 @ N6 )
       => ( ord_le8861187494160871172list_a @ ( F @ N5 ) @ ( F @ N6 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_166_lift__Suc__mono__le,axiom,
    ! [F: nat > set_a,N5: nat,N6: nat] :
      ( ! [N7: nat] : ( ord_less_eq_set_a @ ( F @ N7 ) @ ( F @ ( suc @ N7 ) ) )
     => ( ( ord_less_eq_nat @ N5 @ N6 )
       => ( ord_less_eq_set_a @ ( F @ N5 ) @ ( F @ N6 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_167_lift__Suc__mono__le,axiom,
    ! [F: nat > num,N5: nat,N6: nat] :
      ( ! [N7: nat] : ( ord_less_eq_num @ ( F @ N7 ) @ ( F @ ( suc @ N7 ) ) )
     => ( ( ord_less_eq_nat @ N5 @ N6 )
       => ( ord_less_eq_num @ ( F @ N5 ) @ ( F @ N6 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_168_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N5: nat,N6: nat] :
      ( ! [N7: nat] : ( ord_less_eq_nat @ ( F @ N7 ) @ ( F @ ( suc @ N7 ) ) )
     => ( ( ord_less_eq_nat @ N5 @ N6 )
       => ( ord_less_eq_nat @ ( F @ N5 ) @ ( F @ N6 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_169_order__le__imp__less__or__eq,axiom,
    ! [X2: set_list_a,Y: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ X2 @ Y )
     => ( ( ord_less_set_list_a @ X2 @ Y )
        | ( X2 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_170_order__le__imp__less__or__eq,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ Y )
     => ( ( ord_less_set_a @ X2 @ Y )
        | ( X2 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_171_order__le__imp__less__or__eq,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
     => ( ( ord_less_num @ X2 @ Y )
        | ( X2 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_172_order__le__imp__less__or__eq,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ord_less_nat @ X2 @ Y )
        | ( X2 = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_173_linorder__le__less__linear,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
      | ( ord_less_num @ Y @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_174_linorder__le__less__linear,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
      | ( ord_less_nat @ Y @ X2 ) ) ).

% linorder_le_less_linear
thf(fact_175_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_176_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_list_a,C: set_list_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_le8861187494160871172list_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_set_list_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_list_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_177_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > set_list_a,C: set_list_a] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_le8861187494160871172list_a @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_set_list_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_list_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_178_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_179_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > set_a,C: set_a] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_180_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_181_order__less__le__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_182_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_183_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_184_order__less__le__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_185_order__less__le__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_186_order__less__le__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_187_order__less__le__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_188_order__less__le__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_189_order__less__le__subst1,axiom,
    ! [A: num,F: set_a > num,B: set_a,C: set_a] :
      ( ( ord_less_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_190_order__less__le__subst1,axiom,
    ! [A: set_a,F: num > set_a,B: num,C: num] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_191_order__less__le__subst1,axiom,
    ! [A: set_list_a,F: nat > set_list_a,B: nat,C: nat] :
      ( ( ord_less_set_list_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_le8861187494160871172list_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_list_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_192_order__less__le__subst1,axiom,
    ! [A: nat,F: set_list_a > nat,B: set_list_a,C: set_list_a] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_le8861187494160871172list_a @ B @ C )
       => ( ! [X3: set_list_a,Y4: set_list_a] :
              ( ( ord_le8861187494160871172list_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_193_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_194_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_195_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_196_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_197_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_198_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_199_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > num,C: num] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_num @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_200_order__le__less__subst2,axiom,
    ! [A: num,B: num,F: num > set_a,C: set_a] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_201_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_list_a,C: set_list_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_set_list_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_le8861187494160871172list_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_list_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_202_order__le__less__subst2,axiom,
    ! [A: set_list_a,B: set_list_a,F: set_list_a > nat,C: nat] :
      ( ( ord_le8861187494160871172list_a @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_list_a,Y4: set_list_a] :
              ( ( ord_le8861187494160871172list_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_203_order__le__less__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_204_order__le__less__subst1,axiom,
    ! [A: set_list_a,F: nat > set_list_a,B: nat,C: nat] :
      ( ( ord_le8861187494160871172list_a @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_set_list_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_list_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_205_order__le__less__subst1,axiom,
    ! [A: set_list_a,F: num > set_list_a,B: num,C: num] :
      ( ( ord_le8861187494160871172list_a @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_set_list_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_list_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_206_order__le__less__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_207_order__le__less__subst1,axiom,
    ! [A: set_a,F: num > set_a,B: num,C: num] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_208_order__le__less__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_209_order__le__less__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_num @ X3 @ Y4 )
             => ( ord_less_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_num @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_210_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_nat @ X3 @ Y4 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_211_order__less__le__trans,axiom,
    ! [X2: set_list_a,Y: set_list_a,Z: set_list_a] :
      ( ( ord_less_set_list_a @ X2 @ Y )
     => ( ( ord_le8861187494160871172list_a @ Y @ Z )
       => ( ord_less_set_list_a @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_212_order__less__le__trans,axiom,
    ! [X2: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_set_a @ X2 @ Y )
     => ( ( ord_less_eq_set_a @ Y @ Z )
       => ( ord_less_set_a @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_213_order__less__le__trans,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( ( ord_less_eq_num @ Y @ Z )
       => ( ord_less_num @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_214_order__less__le__trans,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_less_le_trans
thf(fact_215_order__le__less__trans,axiom,
    ! [X2: set_list_a,Y: set_list_a,Z: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ X2 @ Y )
     => ( ( ord_less_set_list_a @ Y @ Z )
       => ( ord_less_set_list_a @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_216_order__le__less__trans,axiom,
    ! [X2: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ Y )
     => ( ( ord_less_set_a @ Y @ Z )
       => ( ord_less_set_a @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_217_order__le__less__trans,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
     => ( ( ord_less_num @ Y @ Z )
       => ( ord_less_num @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_218_order__le__less__trans,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X2 @ Z ) ) ) ).

% order_le_less_trans
thf(fact_219_order__neq__le__trans,axiom,
    ! [A: set_list_a,B: set_list_a] :
      ( ( A != B )
     => ( ( ord_le8861187494160871172list_a @ A @ B )
       => ( ord_less_set_list_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_220_order__neq__le__trans,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A != B )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( ord_less_set_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_221_order__neq__le__trans,axiom,
    ! [A: num,B: num] :
      ( ( A != B )
     => ( ( ord_less_eq_num @ A @ B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_222_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_223_order__le__neq__trans,axiom,
    ! [A: set_list_a,B: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_list_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_224_order__le__neq__trans,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_225_order__le__neq__trans,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( A != B )
       => ( ord_less_num @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_226_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_227_order__less__imp__le,axiom,
    ! [X2: set_list_a,Y: set_list_a] :
      ( ( ord_less_set_list_a @ X2 @ Y )
     => ( ord_le8861187494160871172list_a @ X2 @ Y ) ) ).

% order_less_imp_le
thf(fact_228_order__less__imp__le,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( ord_less_set_a @ X2 @ Y )
     => ( ord_less_eq_set_a @ X2 @ Y ) ) ).

% order_less_imp_le
thf(fact_229_order__less__imp__le,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_num @ X2 @ Y )
     => ( ord_less_eq_num @ X2 @ Y ) ) ).

% order_less_imp_le
thf(fact_230_order__less__imp__le,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_nat @ X2 @ Y )
     => ( ord_less_eq_nat @ X2 @ Y ) ) ).

% order_less_imp_le
thf(fact_231_linorder__not__less,axiom,
    ! [X2: num,Y: num] :
      ( ( ~ ( ord_less_num @ X2 @ Y ) )
      = ( ord_less_eq_num @ Y @ X2 ) ) ).

% linorder_not_less
thf(fact_232_linorder__not__less,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X2 @ Y ) )
      = ( ord_less_eq_nat @ Y @ X2 ) ) ).

% linorder_not_less
thf(fact_233_linorder__not__le,axiom,
    ! [X2: num,Y: num] :
      ( ( ~ ( ord_less_eq_num @ X2 @ Y ) )
      = ( ord_less_num @ Y @ X2 ) ) ).

% linorder_not_le
thf(fact_234_linorder__not__le,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X2 @ Y ) )
      = ( ord_less_nat @ Y @ X2 ) ) ).

% linorder_not_le
thf(fact_235_order__less__le,axiom,
    ( ord_less_set_list_a
    = ( ^ [X4: set_list_a,Y5: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_236_order__less__le,axiom,
    ( ord_less_set_a
    = ( ^ [X4: set_a,Y5: set_a] :
          ( ( ord_less_eq_set_a @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_237_order__less__le,axiom,
    ( ord_less_num
    = ( ^ [X4: num,Y5: num] :
          ( ( ord_less_eq_num @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_238_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y5 )
          & ( X4 != Y5 ) ) ) ) ).

% order_less_le
thf(fact_239_order__le__less,axiom,
    ( ord_le8861187494160871172list_a
    = ( ^ [X4: set_list_a,Y5: set_list_a] :
          ( ( ord_less_set_list_a @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_240_order__le__less,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X4: set_a,Y5: set_a] :
          ( ( ord_less_set_a @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_241_order__le__less,axiom,
    ( ord_less_eq_num
    = ( ^ [X4: num,Y5: num] :
          ( ( ord_less_num @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_242_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_nat @ X4 @ Y5 )
          | ( X4 = Y5 ) ) ) ) ).

% order_le_less
thf(fact_243_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_list_a,A: set_list_a] :
      ( ( ord_less_set_list_a @ B @ A )
     => ( ord_le8861187494160871172list_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_244_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ord_less_eq_set_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_245_dual__order_Ostrict__implies__order,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_num @ B @ A )
     => ( ord_less_eq_num @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_246_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_247_order_Ostrict__implies__order,axiom,
    ! [A: set_list_a,B: set_list_a] :
      ( ( ord_less_set_list_a @ A @ B )
     => ( ord_le8861187494160871172list_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_248_order_Ostrict__implies__order,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ord_less_eq_set_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_249_order_Ostrict__implies__order,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_num @ A @ B )
     => ( ord_less_eq_num @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_250_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_251_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_list_a
    = ( ^ [B3: set_list_a,A4: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ B3 @ A4 )
          & ~ ( ord_le8861187494160871172list_a @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_252_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_a
    = ( ^ [B3: set_a,A4: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A4 )
          & ~ ( ord_less_eq_set_a @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_253_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [B3: num,A4: num] :
          ( ( ord_less_eq_num @ B3 @ A4 )
          & ~ ( ord_less_eq_num @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_254_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_255_dual__order_Ostrict__trans2,axiom,
    ! [B: set_list_a,A: set_list_a,C: set_list_a] :
      ( ( ord_less_set_list_a @ B @ A )
     => ( ( ord_le8861187494160871172list_a @ C @ B )
       => ( ord_less_set_list_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_256_dual__order_Ostrict__trans2,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_257_dual__order_Ostrict__trans2,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_258_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_259_dual__order_Ostrict__trans1,axiom,
    ! [B: set_list_a,A: set_list_a,C: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ B @ A )
     => ( ( ord_less_set_list_a @ C @ B )
       => ( ord_less_set_list_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_260_dual__order_Ostrict__trans1,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_261_dual__order_Ostrict__trans1,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_num @ C @ B )
       => ( ord_less_num @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_262_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_263_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_list_a
    = ( ^ [B3: set_list_a,A4: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_264_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_a
    = ( ^ [B3: set_a,A4: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_265_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [B3: num,A4: num] :
          ( ( ord_less_eq_num @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_266_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_267_dual__order_Oorder__iff__strict,axiom,
    ( ord_le8861187494160871172list_a
    = ( ^ [B3: set_list_a,A4: set_list_a] :
          ( ( ord_less_set_list_a @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_268_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B3: set_a,A4: set_a] :
          ( ( ord_less_set_a @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_269_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [B3: num,A4: num] :
          ( ( ord_less_num @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_270_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_nat @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_271_order_Ostrict__iff__not,axiom,
    ( ord_less_set_list_a
    = ( ^ [A4: set_list_a,B3: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ A4 @ B3 )
          & ~ ( ord_le8861187494160871172list_a @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_272_order_Ostrict__iff__not,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B3 )
          & ~ ( ord_less_eq_set_a @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_273_order_Ostrict__iff__not,axiom,
    ( ord_less_num
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ A4 @ B3 )
          & ~ ( ord_less_eq_num @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_274_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ~ ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_275_order_Ostrict__trans2,axiom,
    ! [A: set_list_a,B: set_list_a,C: set_list_a] :
      ( ( ord_less_set_list_a @ A @ B )
     => ( ( ord_le8861187494160871172list_a @ B @ C )
       => ( ord_less_set_list_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_276_order_Ostrict__trans2,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_277_order_Ostrict__trans2,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_278_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_279_order_Ostrict__trans1,axiom,
    ! [A: set_list_a,B: set_list_a,C: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A @ B )
     => ( ( ord_less_set_list_a @ B @ C )
       => ( ord_less_set_list_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_280_order_Ostrict__trans1,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_281_order_Ostrict__trans1,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_num @ B @ C )
       => ( ord_less_num @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_282_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_283_order_Ostrict__iff__order,axiom,
    ( ord_less_set_list_a
    = ( ^ [A4: set_list_a,B3: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_284_order_Ostrict__iff__order,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_285_order_Ostrict__iff__order,axiom,
    ( ord_less_num
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_286_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_287_order_Oorder__iff__strict,axiom,
    ( ord_le8861187494160871172list_a
    = ( ^ [A4: set_list_a,B3: set_list_a] :
          ( ( ord_less_set_list_a @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_288_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_set_a @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_289_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_num
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_num @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_290_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_nat @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_291_not__le__imp__less,axiom,
    ! [Y: num,X2: num] :
      ( ~ ( ord_less_eq_num @ Y @ X2 )
     => ( ord_less_num @ X2 @ Y ) ) ).

% not_le_imp_less
thf(fact_292_not__le__imp__less,axiom,
    ! [Y: nat,X2: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X2 )
     => ( ord_less_nat @ X2 @ Y ) ) ).

% not_le_imp_less
thf(fact_293_less__le__not__le,axiom,
    ( ord_less_set_list_a
    = ( ^ [X4: set_list_a,Y5: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ X4 @ Y5 )
          & ~ ( ord_le8861187494160871172list_a @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_294_less__le__not__le,axiom,
    ( ord_less_set_a
    = ( ^ [X4: set_a,Y5: set_a] :
          ( ( ord_less_eq_set_a @ X4 @ Y5 )
          & ~ ( ord_less_eq_set_a @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_295_less__le__not__le,axiom,
    ( ord_less_num
    = ( ^ [X4: num,Y5: num] :
          ( ( ord_less_eq_num @ X4 @ Y5 )
          & ~ ( ord_less_eq_num @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_296_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y5 )
          & ~ ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ).

% less_le_not_le
thf(fact_297_antisym__conv2,axiom,
    ! [X2: set_list_a,Y: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ X2 @ Y )
     => ( ( ~ ( ord_less_set_list_a @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv2
thf(fact_298_antisym__conv2,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ Y )
     => ( ( ~ ( ord_less_set_a @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv2
thf(fact_299_antisym__conv2,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
     => ( ( ~ ( ord_less_num @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv2
thf(fact_300_antisym__conv2,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ~ ( ord_less_nat @ X2 @ Y ) )
        = ( X2 = Y ) ) ) ).

% antisym_conv2
thf(fact_301_antisym__conv1,axiom,
    ! [X2: set_list_a,Y: set_list_a] :
      ( ~ ( ord_less_set_list_a @ X2 @ Y )
     => ( ( ord_le8861187494160871172list_a @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% antisym_conv1
thf(fact_302_antisym__conv1,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ~ ( ord_less_set_a @ X2 @ Y )
     => ( ( ord_less_eq_set_a @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% antisym_conv1
thf(fact_303_antisym__conv1,axiom,
    ! [X2: num,Y: num] :
      ( ~ ( ord_less_num @ X2 @ Y )
     => ( ( ord_less_eq_num @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% antisym_conv1
thf(fact_304_antisym__conv1,axiom,
    ! [X2: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y )
     => ( ( ord_less_eq_nat @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% antisym_conv1
thf(fact_305_nless__le,axiom,
    ! [A: set_list_a,B: set_list_a] :
      ( ( ~ ( ord_less_set_list_a @ A @ B ) )
      = ( ~ ( ord_le8861187494160871172list_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_306_nless__le,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ~ ( ord_less_set_a @ A @ B ) )
      = ( ~ ( ord_less_eq_set_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_307_nless__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_num @ A @ B ) )
      = ( ~ ( ord_less_eq_num @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_308_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_309_leI,axiom,
    ! [X2: num,Y: num] :
      ( ~ ( ord_less_num @ X2 @ Y )
     => ( ord_less_eq_num @ Y @ X2 ) ) ).

% leI
thf(fact_310_leI,axiom,
    ! [X2: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X2 @ Y )
     => ( ord_less_eq_nat @ Y @ X2 ) ) ).

% leI
thf(fact_311_leD,axiom,
    ! [Y: set_list_a,X2: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ Y @ X2 )
     => ~ ( ord_less_set_list_a @ X2 @ Y ) ) ).

% leD
thf(fact_312_leD,axiom,
    ! [Y: set_a,X2: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X2 )
     => ~ ( ord_less_set_a @ X2 @ Y ) ) ).

% leD
thf(fact_313_leD,axiom,
    ! [Y: num,X2: num] :
      ( ( ord_less_eq_num @ Y @ X2 )
     => ~ ( ord_less_num @ X2 @ Y ) ) ).

% leD
thf(fact_314_leD,axiom,
    ! [Y: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y @ X2 )
     => ~ ( ord_less_nat @ X2 @ Y ) ) ).

% leD
thf(fact_315_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_316_le__neq__implies__less,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ( M2 != N5 )
       => ( ord_less_nat @ M2 @ N5 ) ) ) ).

% le_neq_implies_less
thf(fact_317_less__or__eq__imp__le,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( ord_less_nat @ M2 @ N5 )
        | ( M2 = N5 ) )
     => ( ord_less_eq_nat @ M2 @ N5 ) ) ).

% less_or_eq_imp_le
thf(fact_318_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M: nat,N4: nat] :
          ( ( ord_less_nat @ M @ N4 )
          | ( M = N4 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_319_less__imp__le__nat,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ord_less_eq_nat @ M2 @ N5 ) ) ).

% less_imp_le_nat
thf(fact_320_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M @ N4 )
          & ( M != N4 ) ) ) ) ).

% nat_less_le
thf(fact_321_sset__flat__stl,axiom,
    ! [S: stream2255243159586646806list_a] : ( ord_le8488217952732425610list_a @ ( sset_list_list_a @ ( flat_list_list_a @ ( stl_list_list_list_a @ S ) ) ) @ ( sset_list_list_a @ ( flat_list_list_a @ S ) ) ) ).

% sset_flat_stl
thf(fact_322_sset__flat__stl,axiom,
    ! [S: stream_list_a] : ( ord_less_eq_set_a @ ( sset_a @ ( flat_a @ ( stl_list_a @ S ) ) ) @ ( sset_a @ ( flat_a @ S ) ) ) ).

% sset_flat_stl
thf(fact_323_sset__flat__stl,axiom,
    ! [S: stream_list_list_a] : ( ord_le8861187494160871172list_a @ ( sset_list_a @ ( flat_list_a @ ( stl_list_list_a @ S ) ) ) @ ( sset_list_a @ ( flat_list_a @ S ) ) ) ).

% sset_flat_stl
thf(fact_324_order__antisym__conv,axiom,
    ! [Y: set_list_a,X2: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ Y @ X2 )
     => ( ( ord_le8861187494160871172list_a @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% order_antisym_conv
thf(fact_325_order__antisym__conv,axiom,
    ! [Y: set_a,X2: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X2 )
     => ( ( ord_less_eq_set_a @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% order_antisym_conv
thf(fact_326_order__antisym__conv,axiom,
    ! [Y: num,X2: num] :
      ( ( ord_less_eq_num @ Y @ X2 )
     => ( ( ord_less_eq_num @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% order_antisym_conv
thf(fact_327_order__antisym__conv,axiom,
    ! [Y: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y @ X2 )
     => ( ( ord_less_eq_nat @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% order_antisym_conv
thf(fact_328_linorder__le__cases,axiom,
    ! [X2: num,Y: num] :
      ( ~ ( ord_less_eq_num @ X2 @ Y )
     => ( ord_less_eq_num @ Y @ X2 ) ) ).

% linorder_le_cases
thf(fact_329_linorder__le__cases,axiom,
    ! [X2: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X2 @ Y )
     => ( ord_less_eq_nat @ Y @ X2 ) ) ).

% linorder_le_cases
thf(fact_330_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_331_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_332_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_333_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_334_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_335_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_336_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > num,C: num] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_337_ord__le__eq__subst,axiom,
    ! [A: num,B: num,F: num > set_a,C: set_a] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_338_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_list_a,C: set_list_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_le8861187494160871172list_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_le8861187494160871172list_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_339_ord__le__eq__subst,axiom,
    ! [A: set_list_a,B: set_list_a,F: set_list_a > nat,C: nat] :
      ( ( ord_le8861187494160871172list_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_list_a,Y4: set_list_a] :
              ( ( ord_le8861187494160871172list_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_340_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_341_ord__eq__le__subst,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_342_ord__eq__le__subst,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_343_ord__eq__le__subst,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_344_ord__eq__le__subst,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_345_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_346_ord__eq__le__subst,axiom,
    ! [A: num,F: set_a > num,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_347_ord__eq__le__subst,axiom,
    ! [A: set_a,F: num > set_a,B: num,C: num] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_348_ord__eq__le__subst,axiom,
    ! [A: set_list_a,F: nat > set_list_a,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_le8861187494160871172list_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_le8861187494160871172list_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_349_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_list_a > nat,B: set_list_a,C: set_list_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le8861187494160871172list_a @ B @ C )
       => ( ! [X3: set_list_a,Y4: set_list_a] :
              ( ( ord_le8861187494160871172list_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_350_linorder__linear,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
      | ( ord_less_eq_num @ Y @ X2 ) ) ).

% linorder_linear
thf(fact_351_linorder__linear,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
      | ( ord_less_eq_nat @ Y @ X2 ) ) ).

% linorder_linear
thf(fact_352_order__eq__refl,axiom,
    ! [X2: set_list_a,Y: set_list_a] :
      ( ( X2 = Y )
     => ( ord_le8861187494160871172list_a @ X2 @ Y ) ) ).

% order_eq_refl
thf(fact_353_order__eq__refl,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( X2 = Y )
     => ( ord_less_eq_set_a @ X2 @ Y ) ) ).

% order_eq_refl
thf(fact_354_order__eq__refl,axiom,
    ! [X2: num,Y: num] :
      ( ( X2 = Y )
     => ( ord_less_eq_num @ X2 @ Y ) ) ).

% order_eq_refl
thf(fact_355_order__eq__refl,axiom,
    ! [X2: nat,Y: nat] :
      ( ( X2 = Y )
     => ( ord_less_eq_nat @ X2 @ Y ) ) ).

% order_eq_refl
thf(fact_356_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_357_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > num,C: num] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_358_order__subst2,axiom,
    ! [A: num,B: num,F: num > nat,C: nat] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_359_order__subst2,axiom,
    ! [A: num,B: num,F: num > num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_360_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_361_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_362_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > num,C: num] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_num @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_363_order__subst2,axiom,
    ! [A: num,B: num,F: num > set_a,C: set_a] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_364_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_list_a,C: set_list_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_le8861187494160871172list_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_le8861187494160871172list_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_le8861187494160871172list_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_365_order__subst2,axiom,
    ! [A: set_list_a,B: set_list_a,F: set_list_a > nat,C: nat] :
      ( ( ord_le8861187494160871172list_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_list_a,Y4: set_list_a] :
              ( ( ord_le8861187494160871172list_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_366_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_367_order__subst1,axiom,
    ! [A: nat,F: num > nat,B: num,C: num] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_368_order__subst1,axiom,
    ! [A: num,F: nat > num,B: nat,C: nat] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_369_order__subst1,axiom,
    ! [A: num,F: num > num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_370_order__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_371_order__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_372_order__subst1,axiom,
    ! [A: set_a,F: num > set_a,B: num,C: num] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ! [X3: num,Y4: num] :
              ( ( ord_less_eq_num @ X3 @ Y4 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_373_order__subst1,axiom,
    ! [A: num,F: set_a > num,B: set_a,C: set_a] :
      ( ( ord_less_eq_num @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y4: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y4 )
             => ( ord_less_eq_num @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_num @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_374_order__subst1,axiom,
    ! [A: nat,F: set_list_a > nat,B: set_list_a,C: set_list_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_le8861187494160871172list_a @ B @ C )
       => ( ! [X3: set_list_a,Y4: set_list_a] :
              ( ( ord_le8861187494160871172list_a @ X3 @ Y4 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_375_order__subst1,axiom,
    ! [A: set_list_a,F: nat > set_list_a,B: nat,C: nat] :
      ( ( ord_le8861187494160871172list_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y4: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y4 )
             => ( ord_le8861187494160871172list_a @ ( F @ X3 ) @ ( F @ Y4 ) ) )
         => ( ord_le8861187494160871172list_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_376_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: set_list_a,Z3: set_list_a] : ( Y6 = Z3 ) )
    = ( ^ [A4: set_list_a,B3: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ A4 @ B3 )
          & ( ord_le8861187494160871172list_a @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_377_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: set_a,Z3: set_a] : ( Y6 = Z3 ) )
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B3 )
          & ( ord_less_eq_set_a @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_378_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: num,Z3: num] : ( Y6 = Z3 ) )
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ A4 @ B3 )
          & ( ord_less_eq_num @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_379_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: nat,Z3: nat] : ( Y6 = Z3 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_380_antisym,axiom,
    ! [A: set_list_a,B: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A @ B )
     => ( ( ord_le8861187494160871172list_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_381_antisym,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_382_antisym,axiom,
    ! [A: num,B: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_383_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_384_dual__order_Otrans,axiom,
    ! [B: set_list_a,A: set_list_a,C: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ B @ A )
     => ( ( ord_le8861187494160871172list_a @ C @ B )
       => ( ord_le8861187494160871172list_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_385_dual__order_Otrans,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_eq_set_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_386_dual__order_Otrans,axiom,
    ! [B: num,A: num,C: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ C @ B )
       => ( ord_less_eq_num @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_387_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_388_dual__order_Oantisym,axiom,
    ! [B: set_list_a,A: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ B @ A )
     => ( ( ord_le8861187494160871172list_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_389_dual__order_Oantisym,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_390_dual__order_Oantisym,axiom,
    ! [B: num,A: num] :
      ( ( ord_less_eq_num @ B @ A )
     => ( ( ord_less_eq_num @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_391_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_392_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: set_list_a,Z3: set_list_a] : ( Y6 = Z3 ) )
    = ( ^ [A4: set_list_a,B3: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ B3 @ A4 )
          & ( ord_le8861187494160871172list_a @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_393_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: set_a,Z3: set_a] : ( Y6 = Z3 ) )
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A4 )
          & ( ord_less_eq_set_a @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_394_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: num,Z3: num] : ( Y6 = Z3 ) )
    = ( ^ [A4: num,B3: num] :
          ( ( ord_less_eq_num @ B3 @ A4 )
          & ( ord_less_eq_num @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_395_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y6: nat,Z3: nat] : ( Y6 = Z3 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_396_linorder__wlog,axiom,
    ! [P: num > num > $o,A: num,B: num] :
      ( ! [A2: num,B2: num] :
          ( ( ord_less_eq_num @ A2 @ B2 )
         => ( P @ A2 @ B2 ) )
     => ( ! [A2: num,B2: num] :
            ( ( P @ B2 @ A2 )
           => ( P @ A2 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_397_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A2: nat,B2: nat] :
          ( ( ord_less_eq_nat @ A2 @ B2 )
         => ( P @ A2 @ B2 ) )
     => ( ! [A2: nat,B2: nat] :
            ( ( P @ B2 @ A2 )
           => ( P @ A2 @ B2 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_398_order__trans,axiom,
    ! [X2: set_list_a,Y: set_list_a,Z: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ X2 @ Y )
     => ( ( ord_le8861187494160871172list_a @ Y @ Z )
       => ( ord_le8861187494160871172list_a @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_399_order__trans,axiom,
    ! [X2: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ Y )
     => ( ( ord_less_eq_set_a @ Y @ Z )
       => ( ord_less_eq_set_a @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_400_order__trans,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
     => ( ( ord_less_eq_num @ Y @ Z )
       => ( ord_less_eq_num @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_401_order__trans,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_eq_nat @ X2 @ Z ) ) ) ).

% order_trans
thf(fact_402_order_Otrans,axiom,
    ! [A: set_list_a,B: set_list_a,C: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A @ B )
     => ( ( ord_le8861187494160871172list_a @ B @ C )
       => ( ord_le8861187494160871172list_a @ A @ C ) ) ) ).

% order.trans
thf(fact_403_order_Otrans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% order.trans
thf(fact_404_order_Otrans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% order.trans
thf(fact_405_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_406_order__antisym,axiom,
    ! [X2: set_list_a,Y: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ X2 @ Y )
     => ( ( ord_le8861187494160871172list_a @ Y @ X2 )
       => ( X2 = Y ) ) ) ).

% order_antisym
thf(fact_407_order__antisym,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ Y )
     => ( ( ord_less_eq_set_a @ Y @ X2 )
       => ( X2 = Y ) ) ) ).

% order_antisym
thf(fact_408_order__antisym,axiom,
    ! [X2: num,Y: num] :
      ( ( ord_less_eq_num @ X2 @ Y )
     => ( ( ord_less_eq_num @ Y @ X2 )
       => ( X2 = Y ) ) ) ).

% order_antisym
thf(fact_409_order__antisym,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ord_less_eq_nat @ Y @ X2 )
       => ( X2 = Y ) ) ) ).

% order_antisym
thf(fact_410_ord__le__eq__trans,axiom,
    ! [A: set_list_a,B: set_list_a,C: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A @ B )
     => ( ( B = C )
       => ( ord_le8861187494160871172list_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_411_ord__le__eq__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_412_ord__le__eq__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( ord_less_eq_num @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_413_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_414_ord__eq__le__trans,axiom,
    ! [A: set_list_a,B: set_list_a,C: set_list_a] :
      ( ( A = B )
     => ( ( ord_le8861187494160871172list_a @ B @ C )
       => ( ord_le8861187494160871172list_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_415_ord__eq__le__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( A = B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_416_ord__eq__le__trans,axiom,
    ! [A: num,B: num,C: num] :
      ( ( A = B )
     => ( ( ord_less_eq_num @ B @ C )
       => ( ord_less_eq_num @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_417_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_418_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: set_list_a,Z3: set_list_a] : ( Y6 = Z3 ) )
    = ( ^ [X4: set_list_a,Y5: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ X4 @ Y5 )
          & ( ord_le8861187494160871172list_a @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_419_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: set_a,Z3: set_a] : ( Y6 = Z3 ) )
    = ( ^ [X4: set_a,Y5: set_a] :
          ( ( ord_less_eq_set_a @ X4 @ Y5 )
          & ( ord_less_eq_set_a @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_420_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: num,Z3: num] : ( Y6 = Z3 ) )
    = ( ^ [X4: num,Y5: num] :
          ( ( ord_less_eq_num @ X4 @ Y5 )
          & ( ord_less_eq_num @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_421_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y6: nat,Z3: nat] : ( Y6 = Z3 ) )
    = ( ^ [X4: nat,Y5: nat] :
          ( ( ord_less_eq_nat @ X4 @ Y5 )
          & ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_422_le__cases3,axiom,
    ! [X2: num,Y: num,Z: num] :
      ( ( ( ord_less_eq_num @ X2 @ Y )
       => ~ ( ord_less_eq_num @ Y @ Z ) )
     => ( ( ( ord_less_eq_num @ Y @ X2 )
         => ~ ( ord_less_eq_num @ X2 @ Z ) )
       => ( ( ( ord_less_eq_num @ X2 @ Z )
           => ~ ( ord_less_eq_num @ Z @ Y ) )
         => ( ( ( ord_less_eq_num @ Z @ Y )
             => ~ ( ord_less_eq_num @ Y @ X2 ) )
           => ( ( ( ord_less_eq_num @ Y @ Z )
               => ~ ( ord_less_eq_num @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_num @ Z @ X2 )
                 => ~ ( ord_less_eq_num @ X2 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_423_le__cases3,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X2 @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y @ X2 )
         => ~ ( ord_less_eq_nat @ X2 @ Z ) )
       => ( ( ( ord_less_eq_nat @ X2 @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X2 ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X2 ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X2 )
                 => ~ ( ord_less_eq_nat @ X2 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_424_nle__le,axiom,
    ! [A: num,B: num] :
      ( ( ~ ( ord_less_eq_num @ A @ B ) )
      = ( ( ord_less_eq_num @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_425_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_426_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y4: nat] :
            ( ( P @ Y4 )
           => ( ord_less_eq_nat @ Y4 @ B ) )
       => ? [X3: nat] :
            ( ( P @ X3 )
            & ! [Y3: nat] :
                ( ( P @ Y3 )
               => ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_427_nat__le__linear,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
      | ( ord_less_eq_nat @ N5 @ M2 ) ) ).

% nat_le_linear
thf(fact_428_le__antisym,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ( ord_less_eq_nat @ N5 @ M2 )
       => ( M2 = N5 ) ) ) ).

% le_antisym
thf(fact_429_eq__imp__le,axiom,
    ! [M2: nat,N5: nat] :
      ( ( M2 = N5 )
     => ( ord_less_eq_nat @ M2 @ N5 ) ) ).

% eq_imp_le
thf(fact_430_snth_Osimps_I2_J,axiom,
    ! [S: stream_stream_list_a,N5: nat] :
      ( ( snth_stream_list_a @ S @ ( suc @ N5 ) )
      = ( snth_stream_list_a @ ( stl_stream_list_a @ S ) @ N5 ) ) ).

% snth.simps(2)
thf(fact_431_snth_Osimps_I2_J,axiom,
    ! [S: stream_stream_a,N5: nat] :
      ( ( snth_stream_a @ S @ ( suc @ N5 ) )
      = ( snth_stream_a @ ( stl_stream_a @ S ) @ N5 ) ) ).

% snth.simps(2)
thf(fact_432_snth_Osimps_I2_J,axiom,
    ! [S: stream_list_list_a,N5: nat] :
      ( ( snth_list_list_a @ S @ ( suc @ N5 ) )
      = ( snth_list_list_a @ ( stl_list_list_a @ S ) @ N5 ) ) ).

% snth.simps(2)
thf(fact_433_snth_Osimps_I2_J,axiom,
    ! [S: stream_list_a,N5: nat] :
      ( ( snth_list_a @ S @ ( suc @ N5 ) )
      = ( snth_list_a @ ( stl_list_a @ S ) @ N5 ) ) ).

% snth.simps(2)
thf(fact_434_snth_Osimps_I2_J,axiom,
    ! [S: stream_a,N5: nat] :
      ( ( snth_a @ S @ ( suc @ N5 ) )
      = ( snth_a @ ( stl_a @ S ) @ N5 ) ) ).

% snth.simps(2)
thf(fact_435_nth__equalityI,axiom,
    ! [Xs: list_list_a,Ys: list_list_a] :
      ( ( ( size_s349497388124573686list_a @ Xs )
        = ( size_s349497388124573686list_a @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_s349497388124573686list_a @ Xs ) )
           => ( ( nth_list_a @ Xs @ I3 )
              = ( nth_list_a @ Ys @ I3 ) ) )
       => ( Xs = Ys ) ) ) ).

% nth_equalityI
thf(fact_436_nth__equalityI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_a @ Xs ) )
           => ( ( nth_a @ Xs @ I3 )
              = ( nth_a @ Ys @ I3 ) ) )
       => ( Xs = Ys ) ) ) ).

% nth_equalityI
thf(fact_437_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > list_a > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ K )
           => ? [X6: list_a] : ( P @ I2 @ X6 ) ) )
      = ( ? [Xs2: list_list_a] :
            ( ( ( size_s349497388124573686list_a @ Xs2 )
              = K )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K )
               => ( P @ I2 @ ( nth_list_a @ Xs2 @ I2 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_438_Skolem__list__nth,axiom,
    ! [K: nat,P: nat > a > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ K )
           => ? [X6: a] : ( P @ I2 @ X6 ) ) )
      = ( ? [Xs2: list_a] :
            ( ( ( size_size_list_a @ Xs2 )
              = K )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K )
               => ( P @ I2 @ ( nth_a @ Xs2 @ I2 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_439_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y6: list_list_a,Z3: list_list_a] : ( Y6 = Z3 ) )
    = ( ^ [Xs2: list_list_a,Ys2: list_list_a] :
          ( ( ( size_s349497388124573686list_a @ Xs2 )
            = ( size_s349497388124573686list_a @ Ys2 ) )
          & ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ ( size_s349497388124573686list_a @ Xs2 ) )
             => ( ( nth_list_a @ Xs2 @ I2 )
                = ( nth_list_a @ Ys2 @ I2 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_440_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y6: list_a,Z3: list_a] : ( Y6 = Z3 ) )
    = ( ^ [Xs2: list_a,Ys2: list_a] :
          ( ( ( size_size_list_a @ Xs2 )
            = ( size_size_list_a @ Ys2 ) )
          & ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ ( size_size_list_a @ Xs2 ) )
             => ( ( nth_a @ Xs2 @ I2 )
                = ( nth_a @ Ys2 @ I2 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_441_snth__sset,axiom,
    ! [S: stream_stream_list_a,N5: nat] : ( member_stream_list_a @ ( snth_stream_list_a @ S @ N5 ) @ ( sset_stream_list_a @ S ) ) ).

% snth_sset
thf(fact_442_snth__sset,axiom,
    ! [S: stream_stream_a,N5: nat] : ( member_stream_a @ ( snth_stream_a @ S @ N5 ) @ ( sset_stream_a @ S ) ) ).

% snth_sset
thf(fact_443_snth__sset,axiom,
    ! [S: stream_list_list_a,N5: nat] : ( member_list_list_a @ ( snth_list_list_a @ S @ N5 ) @ ( sset_list_list_a @ S ) ) ).

% snth_sset
thf(fact_444_snth__sset,axiom,
    ! [S: stream_a,N5: nat] : ( member_a @ ( snth_a @ S @ N5 ) @ ( sset_a @ S ) ) ).

% snth_sset
thf(fact_445_snth__sset,axiom,
    ! [S: stream_list_a,N5: nat] : ( member_list_a @ ( snth_list_a @ S @ N5 ) @ ( sset_list_a @ S ) ) ).

% snth_sset
thf(fact_446_stl__sset,axiom,
    ! [X2: list_list_a,A: stream_list_list_a] :
      ( ( member_list_list_a @ X2 @ ( sset_list_list_a @ ( stl_list_list_a @ A ) ) )
     => ( member_list_list_a @ X2 @ ( sset_list_list_a @ A ) ) ) ).

% stl_sset
thf(fact_447_stl__sset,axiom,
    ! [X2: a,A: stream_a] :
      ( ( member_a @ X2 @ ( sset_a @ ( stl_a @ A ) ) )
     => ( member_a @ X2 @ ( sset_a @ A ) ) ) ).

% stl_sset
thf(fact_448_stl__sset,axiom,
    ! [X2: list_a,A: stream_list_a] :
      ( ( member_list_a @ X2 @ ( sset_list_a @ ( stl_list_a @ A ) ) )
     => ( member_list_a @ X2 @ ( sset_list_a @ A ) ) ) ).

% stl_sset
thf(fact_449_length__induct,axiom,
    ! [P: list_list_a > $o,Xs: list_list_a] :
      ( ! [Xs3: list_list_a] :
          ( ! [Ys3: list_list_a] :
              ( ( ord_less_nat @ ( size_s349497388124573686list_a @ Ys3 ) @ ( size_s349497388124573686list_a @ Xs3 ) )
             => ( P @ Ys3 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs ) ) ).

% length_induct
thf(fact_450_length__induct,axiom,
    ! [P: list_a > $o,Xs: list_a] :
      ( ! [Xs3: list_a] :
          ( ! [Ys3: list_a] :
              ( ( ord_less_nat @ ( size_size_list_a @ Ys3 ) @ ( size_size_list_a @ Xs3 ) )
             => ( P @ Ys3 ) )
         => ( P @ Xs3 ) )
     => ( P @ Xs ) ) ).

% length_induct
thf(fact_451_nat__descend__induct,axiom,
    ! [N5: nat,P: nat > $o,M2: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N5 @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N5 )
           => ( ! [I4: nat] :
                  ( ( ord_less_nat @ K2 @ I4 )
                 => ( P @ I4 ) )
             => ( P @ K2 ) ) )
       => ( P @ M2 ) ) ) ).

% nat_descend_induct
thf(fact_452_complete__interval,axiom,
    ! [A: nat,B: nat,P: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P @ A )
       => ( ~ ( P @ B )
         => ? [C2: nat] :
              ( ( ord_less_eq_nat @ A @ C2 )
              & ( ord_less_eq_nat @ C2 @ B )
              & ! [X: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X )
                    & ( ord_less_nat @ X @ C2 ) )
                 => ( P @ X ) )
              & ! [D: nat] :
                  ( ! [X3: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X3 )
                        & ( ord_less_nat @ X3 @ D ) )
                     => ( P @ X3 ) )
                 => ( ord_less_eq_nat @ D @ C2 ) ) ) ) ) ) ).

% complete_interval
thf(fact_453_verit__comp__simplify1_I3_J,axiom,
    ! [B4: num,A5: num] :
      ( ( ~ ( ord_less_eq_num @ B4 @ A5 ) )
      = ( ord_less_num @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_454_verit__comp__simplify1_I3_J,axiom,
    ! [B4: nat,A5: nat] :
      ( ( ~ ( ord_less_eq_nat @ B4 @ A5 ) )
      = ( ord_less_nat @ A5 @ B4 ) ) ).

% verit_comp_simplify1(3)
thf(fact_455_pinf_I6_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ Z2 @ X )
     => ~ ( ord_less_eq_num @ X @ T ) ) ).

% pinf(6)
thf(fact_456_pinf_I6_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ Z2 @ X )
     => ~ ( ord_less_eq_nat @ X @ T ) ) ).

% pinf(6)
thf(fact_457_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_list_a] : ( ord_le8861187494160871172list_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_458_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_459_verit__comp__simplify1_I2_J,axiom,
    ! [A: num] : ( ord_less_eq_num @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_460_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_461_verit__la__disequality,axiom,
    ! [A: num,B: num] :
      ( ( A = B )
      | ~ ( ord_less_eq_num @ A @ B )
      | ~ ( ord_less_eq_num @ B @ A ) ) ).

% verit_la_disequality
thf(fact_462_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_463_verit__comp__simplify1_I1_J,axiom,
    ! [A: num] :
      ~ ( ord_less_num @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_464_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_465_pinf_I1_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z4: num] :
        ! [X3: num] :
          ( ( ord_less_num @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: num] :
          ! [X3: num] :
            ( ( ord_less_num @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z2: num] :
          ! [X: num] :
            ( ( ord_less_num @ Z2 @ X )
           => ( ( ( P @ X )
                & ( Q @ X ) )
              = ( ( P4 @ X )
                & ( Q2 @ X ) ) ) ) ) ) ).

% pinf(1)
thf(fact_466_pinf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z2: nat] :
          ! [X: nat] :
            ( ( ord_less_nat @ Z2 @ X )
           => ( ( ( P @ X )
                & ( Q @ X ) )
              = ( ( P4 @ X )
                & ( Q2 @ X ) ) ) ) ) ) ).

% pinf(1)
thf(fact_467_pinf_I2_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z4: num] :
        ! [X3: num] :
          ( ( ord_less_num @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: num] :
          ! [X3: num] :
            ( ( ord_less_num @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z2: num] :
          ! [X: num] :
            ( ( ord_less_num @ Z2 @ X )
           => ( ( ( P @ X )
                | ( Q @ X ) )
              = ( ( P4 @ X )
                | ( Q2 @ X ) ) ) ) ) ) ).

% pinf(2)
thf(fact_468_pinf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z4 @ X3 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z2: nat] :
          ! [X: nat] :
            ( ( ord_less_nat @ Z2 @ X )
           => ( ( ( P @ X )
                | ( Q @ X ) )
              = ( ( P4 @ X )
                | ( Q2 @ X ) ) ) ) ) ) ).

% pinf(2)
thf(fact_469_pinf_I3_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ Z2 @ X )
     => ( X != T ) ) ).

% pinf(3)
thf(fact_470_pinf_I3_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ Z2 @ X )
     => ( X != T ) ) ).

% pinf(3)
thf(fact_471_pinf_I4_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ Z2 @ X )
     => ( X != T ) ) ).

% pinf(4)
thf(fact_472_pinf_I4_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ Z2 @ X )
     => ( X != T ) ) ).

% pinf(4)
thf(fact_473_pinf_I5_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ Z2 @ X )
     => ~ ( ord_less_num @ X @ T ) ) ).

% pinf(5)
thf(fact_474_pinf_I5_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ Z2 @ X )
     => ~ ( ord_less_nat @ X @ T ) ) ).

% pinf(5)
thf(fact_475_pinf_I7_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ Z2 @ X )
     => ( ord_less_num @ T @ X ) ) ).

% pinf(7)
thf(fact_476_pinf_I7_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ Z2 @ X )
     => ( ord_less_nat @ T @ X ) ) ).

% pinf(7)
thf(fact_477_minf_I1_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z4: num] :
        ! [X3: num] :
          ( ( ord_less_num @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: num] :
          ! [X3: num] :
            ( ( ord_less_num @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z2: num] :
          ! [X: num] :
            ( ( ord_less_num @ X @ Z2 )
           => ( ( ( P @ X )
                & ( Q @ X ) )
              = ( ( P4 @ X )
                & ( Q2 @ X ) ) ) ) ) ) ).

% minf(1)
thf(fact_478_minf_I1_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z2: nat] :
          ! [X: nat] :
            ( ( ord_less_nat @ X @ Z2 )
           => ( ( ( P @ X )
                & ( Q @ X ) )
              = ( ( P4 @ X )
                & ( Q2 @ X ) ) ) ) ) ) ).

% minf(1)
thf(fact_479_minf_I2_J,axiom,
    ! [P: num > $o,P4: num > $o,Q: num > $o,Q2: num > $o] :
      ( ? [Z4: num] :
        ! [X3: num] :
          ( ( ord_less_num @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: num] :
          ! [X3: num] :
            ( ( ord_less_num @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z2: num] :
          ! [X: num] :
            ( ( ord_less_num @ X @ Z2 )
           => ( ( ( P @ X )
                | ( Q @ X ) )
              = ( ( P4 @ X )
                | ( Q2 @ X ) ) ) ) ) ) ).

% minf(2)
thf(fact_480_minf_I2_J,axiom,
    ! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z4 )
         => ( ( P @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q2 @ X3 ) ) )
       => ? [Z2: nat] :
          ! [X: nat] :
            ( ( ord_less_nat @ X @ Z2 )
           => ( ( ( P @ X )
                | ( Q @ X ) )
              = ( ( P4 @ X )
                | ( Q2 @ X ) ) ) ) ) ) ).

% minf(2)
thf(fact_481_minf_I3_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ X @ Z2 )
     => ( X != T ) ) ).

% minf(3)
thf(fact_482_minf_I3_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ X @ Z2 )
     => ( X != T ) ) ).

% minf(3)
thf(fact_483_minf_I4_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ X @ Z2 )
     => ( X != T ) ) ).

% minf(4)
thf(fact_484_minf_I4_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ X @ Z2 )
     => ( X != T ) ) ).

% minf(4)
thf(fact_485_minf_I5_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ X @ Z2 )
     => ( ord_less_num @ X @ T ) ) ).

% minf(5)
thf(fact_486_minf_I5_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ X @ Z2 )
     => ( ord_less_nat @ X @ T ) ) ).

% minf(5)
thf(fact_487_minf_I7_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ X @ Z2 )
     => ~ ( ord_less_num @ T @ X ) ) ).

% minf(7)
thf(fact_488_minf_I7_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ X @ Z2 )
     => ~ ( ord_less_nat @ T @ X ) ) ).

% minf(7)
thf(fact_489_neq__if__length__neq,axiom,
    ! [Xs: list_list_a,Ys: list_list_a] :
      ( ( ( size_s349497388124573686list_a @ Xs )
       != ( size_s349497388124573686list_a @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_490_neq__if__length__neq,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( size_size_list_a @ Xs )
       != ( size_size_list_a @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_491_Ex__list__of__length,axiom,
    ! [N5: nat] :
    ? [Xs3: list_list_a] :
      ( ( size_s349497388124573686list_a @ Xs3 )
      = N5 ) ).

% Ex_list_of_length
thf(fact_492_Ex__list__of__length,axiom,
    ! [N5: nat] :
    ? [Xs3: list_a] :
      ( ( size_size_list_a @ Xs3 )
      = N5 ) ).

% Ex_list_of_length
thf(fact_493_minf_I8_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ X @ Z2 )
     => ~ ( ord_less_eq_num @ T @ X ) ) ).

% minf(8)
thf(fact_494_minf_I8_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ X @ Z2 )
     => ~ ( ord_less_eq_nat @ T @ X ) ) ).

% minf(8)
thf(fact_495_minf_I6_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ X @ Z2 )
     => ( ord_less_eq_num @ X @ T ) ) ).

% minf(6)
thf(fact_496_minf_I6_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ X @ Z2 )
     => ( ord_less_eq_nat @ X @ T ) ) ).

% minf(6)
thf(fact_497_pinf_I8_J,axiom,
    ! [T: num] :
    ? [Z2: num] :
    ! [X: num] :
      ( ( ord_less_num @ Z2 @ X )
     => ( ord_less_eq_num @ T @ X ) ) ).

% pinf(8)
thf(fact_498_pinf_I8_J,axiom,
    ! [T: nat] :
    ? [Z2: nat] :
    ! [X: nat] :
      ( ( ord_less_nat @ Z2 @ X )
     => ( ord_less_eq_nat @ T @ X ) ) ).

% pinf(8)
thf(fact_499_subsetI,axiom,
    ! [A3: set_list_a,B5: set_list_a] :
      ( ! [X3: list_a] :
          ( ( member_list_a @ X3 @ A3 )
         => ( member_list_a @ X3 @ B5 ) )
     => ( ord_le8861187494160871172list_a @ A3 @ B5 ) ) ).

% subsetI
thf(fact_500_subsetI,axiom,
    ! [A3: set_a,B5: set_a] :
      ( ! [X3: a] :
          ( ( member_a @ X3 @ A3 )
         => ( member_a @ X3 @ B5 ) )
     => ( ord_less_eq_set_a @ A3 @ B5 ) ) ).

% subsetI
thf(fact_501_psubsetI,axiom,
    ! [A3: set_list_a,B5: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B5 )
     => ( ( A3 != B5 )
       => ( ord_less_set_list_a @ A3 @ B5 ) ) ) ).

% psubsetI
thf(fact_502_psubsetI,axiom,
    ! [A3: set_a,B5: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B5 )
     => ( ( A3 != B5 )
       => ( ord_less_set_a @ A3 @ B5 ) ) ) ).

% psubsetI
thf(fact_503_subset__antisym,axiom,
    ! [A3: set_list_a,B5: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B5 )
     => ( ( ord_le8861187494160871172list_a @ B5 @ A3 )
       => ( A3 = B5 ) ) ) ).

% subset_antisym
thf(fact_504_subset__antisym,axiom,
    ! [A3: set_a,B5: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B5 )
     => ( ( ord_less_eq_set_a @ B5 @ A3 )
       => ( A3 = B5 ) ) ) ).

% subset_antisym
thf(fact_505_snth__sset__smerge,axiom,
    ! [Ss: stream2377611395989027862list_a,N5: nat,M2: nat] : ( member_stream_list_a @ ( snth_stream_list_a @ ( snth_s4451090846259577524list_a @ Ss @ N5 ) @ M2 ) @ ( sset_stream_list_a @ ( smerge_stream_list_a @ Ss ) ) ) ).

% snth_sset_smerge
thf(fact_506_snth__sset__smerge,axiom,
    ! [Ss: stream2307142169165677840ream_a,N5: nat,M2: nat] : ( member_stream_a @ ( snth_stream_a @ ( snth_stream_stream_a @ Ss @ N5 ) @ M2 ) @ ( sset_stream_a @ ( smerge_stream_a @ Ss ) ) ) ).

% snth_sset_smerge
thf(fact_507_snth__sset__smerge,axiom,
    ! [Ss: stream3775083406817841430list_a,N5: nat,M2: nat] : ( member_list_list_a @ ( snth_list_list_a @ ( snth_s3514276978948636852list_a @ Ss @ N5 ) @ M2 ) @ ( sset_list_list_a @ ( smerge_list_list_a @ Ss ) ) ) ).

% snth_sset_smerge
thf(fact_508_snth__sset__smerge,axiom,
    ! [Ss: stream_stream_a,N5: nat,M2: nat] : ( member_a @ ( snth_a @ ( snth_stream_a @ Ss @ N5 ) @ M2 ) @ ( sset_a @ ( smerge_a @ Ss ) ) ) ).

% snth_sset_smerge
thf(fact_509_snth__sset__smerge,axiom,
    ! [Ss: stream_stream_list_a,N5: nat,M2: nat] : ( member_list_a @ ( snth_list_a @ ( snth_stream_list_a @ Ss @ N5 ) @ M2 ) @ ( sset_list_a @ ( smerge_list_a @ Ss ) ) ) ).

% snth_sset_smerge
thf(fact_510_shift__snth__less,axiom,
    ! [P5: nat,Xs: list_stream_list_a,S: stream_stream_list_a] :
      ( ( ord_less_nat @ P5 @ ( size_s3694203809124329340list_a @ Xs ) )
     => ( ( snth_stream_list_a @ ( shift_stream_list_a @ Xs @ S ) @ P5 )
        = ( nth_stream_list_a @ Xs @ P5 ) ) ) ).

% shift_snth_less
thf(fact_511_shift__snth__less,axiom,
    ! [P5: nat,Xs: list_stream_a,S: stream_stream_a] :
      ( ( ord_less_nat @ P5 @ ( size_s2142770077969500662ream_a @ Xs ) )
     => ( ( snth_stream_a @ ( shift_stream_a @ Xs @ S ) @ P5 )
        = ( nth_stream_a @ Xs @ P5 ) ) ) ).

% shift_snth_less
thf(fact_512_shift__snth__less,axiom,
    ! [P5: nat,Xs: list_list_a,S: stream_list_a] :
      ( ( ord_less_nat @ P5 @ ( size_s349497388124573686list_a @ Xs ) )
     => ( ( snth_list_a @ ( shift_list_a @ Xs @ S ) @ P5 )
        = ( nth_list_a @ Xs @ P5 ) ) ) ).

% shift_snth_less
thf(fact_513_shift__snth__less,axiom,
    ! [P5: nat,Xs: list_a,S: stream_a] :
      ( ( ord_less_nat @ P5 @ ( size_size_list_a @ Xs ) )
     => ( ( snth_a @ ( shift_a @ Xs @ S ) @ P5 )
        = ( nth_a @ Xs @ P5 ) ) ) ).

% shift_snth_less
thf(fact_514__092_060open_062_I_092_060exists_062n_H_092_060ge_062Suc_An_O_Ax_A_061_Aflat_As_A_B_B_An_H_J_A_061_A_I_092_060exists_062n_H_092_060ge_062n_O_Ax_A_061_A_Itl_A_Ishd_As_J_A_064_N_Aflat_A_Istl_As_J_J_A_B_B_An_H_J_092_060close_062,axiom,
    ( ( ? [N3: nat] :
          ( ( ord_less_eq_nat @ ( suc @ na ) @ N3 )
          & ( x
            = ( snth_a @ ( flat_a @ sa ) @ N3 ) ) ) )
    = ( ? [N3: nat] :
          ( ( ord_less_eq_nat @ na @ N3 )
          & ( x
            = ( snth_a @ ( shift_a @ ( tl_a @ ( shd_list_a @ sa ) ) @ ( flat_a @ ( stl_list_a @ sa ) ) ) @ N3 ) ) ) ) ) ).

% \<open>(\<exists>n'\<ge>Suc n. x = flat s !! n') = (\<exists>n'\<ge>n. x = (tl (shd s) @- flat (stl s)) !! n')\<close>
thf(fact_515_stake__nth,axiom,
    ! [M2: nat,N5: nat,S: stream_stream_list_a] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ( nth_stream_list_a @ ( stake_stream_list_a @ N5 @ S ) @ M2 )
        = ( snth_stream_list_a @ S @ M2 ) ) ) ).

% stake_nth
thf(fact_516_stake__nth,axiom,
    ! [M2: nat,N5: nat,S: stream_stream_a] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ( nth_stream_a @ ( stake_stream_a @ N5 @ S ) @ M2 )
        = ( snth_stream_a @ S @ M2 ) ) ) ).

% stake_nth
thf(fact_517_stake__nth,axiom,
    ! [M2: nat,N5: nat,S: stream_a] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ( nth_a @ ( stake_a @ N5 @ S ) @ M2 )
        = ( snth_a @ S @ M2 ) ) ) ).

% stake_nth
thf(fact_518_stake__nth,axiom,
    ! [M2: nat,N5: nat,S: stream_list_a] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ( nth_list_a @ ( stake_list_a @ N5 @ S ) @ M2 )
        = ( snth_list_a @ S @ M2 ) ) ) ).

% stake_nth
thf(fact_519_list__ex__length,axiom,
    ( list_ex_list_a
    = ( ^ [P3: list_a > $o,Xs2: list_list_a] :
        ? [N4: nat] :
          ( ( ord_less_nat @ N4 @ ( size_s349497388124573686list_a @ Xs2 ) )
          & ( P3 @ ( nth_list_a @ Xs2 @ N4 ) ) ) ) ) ).

% list_ex_length
thf(fact_520_list__ex__length,axiom,
    ( list_ex_a
    = ( ^ [P3: a > $o,Xs2: list_a] :
        ? [N4: nat] :
          ( ( ord_less_nat @ N4 @ ( size_size_list_a @ Xs2 ) )
          & ( P3 @ ( nth_a @ Xs2 @ N4 ) ) ) ) ) ).

% list_ex_length
thf(fact_521_shift__left__inj,axiom,
    ! [Xs: list_list_a,S1: stream_list_a,S22: stream_list_a] :
      ( ( ( shift_list_a @ Xs @ S1 )
        = ( shift_list_a @ Xs @ S22 ) )
      = ( S1 = S22 ) ) ).

% shift_left_inj
thf(fact_522_shift__left__inj,axiom,
    ! [Xs: list_a,S1: stream_a,S22: stream_a] :
      ( ( ( shift_a @ Xs @ S1 )
        = ( shift_a @ Xs @ S22 ) )
      = ( S1 = S22 ) ) ).

% shift_left_inj
thf(fact_523_length__stake,axiom,
    ! [N5: nat,S: stream_list_a] :
      ( ( size_s349497388124573686list_a @ ( stake_list_a @ N5 @ S ) )
      = N5 ) ).

% length_stake
thf(fact_524_length__stake,axiom,
    ! [N5: nat,S: stream_a] :
      ( ( size_size_list_a @ ( stake_a @ N5 @ S ) )
      = N5 ) ).

% length_stake
thf(fact_525_list__ex__simps_I2_J,axiom,
    ! [P: list_a > $o] :
      ~ ( list_ex_list_a @ P @ nil_list_a ) ).

% list_ex_simps(2)
thf(fact_526_list__ex__simps_I2_J,axiom,
    ! [P: a > $o] :
      ~ ( list_ex_a @ P @ nil_a ) ).

% list_ex_simps(2)
thf(fact_527_shift__simps_I2_J,axiom,
    ! [Xs: list_list_list_a,S: stream_list_list_a] :
      ( ( ( Xs = nil_list_list_a )
       => ( ( stl_list_list_a @ ( shift_list_list_a @ Xs @ S ) )
          = ( stl_list_list_a @ S ) ) )
      & ( ( Xs != nil_list_list_a )
       => ( ( stl_list_list_a @ ( shift_list_list_a @ Xs @ S ) )
          = ( shift_list_list_a @ ( tl_list_list_a @ Xs ) @ S ) ) ) ) ).

% shift_simps(2)
thf(fact_528_shift__simps_I2_J,axiom,
    ! [Xs: list_list_a,S: stream_list_a] :
      ( ( ( Xs = nil_list_a )
       => ( ( stl_list_a @ ( shift_list_a @ Xs @ S ) )
          = ( stl_list_a @ S ) ) )
      & ( ( Xs != nil_list_a )
       => ( ( stl_list_a @ ( shift_list_a @ Xs @ S ) )
          = ( shift_list_a @ ( tl_list_a @ Xs ) @ S ) ) ) ) ).

% shift_simps(2)
thf(fact_529_shift__simps_I2_J,axiom,
    ! [Xs: list_a,S: stream_a] :
      ( ( ( Xs = nil_a )
       => ( ( stl_a @ ( shift_a @ Xs @ S ) )
          = ( stl_a @ S ) ) )
      & ( ( Xs != nil_a )
       => ( ( stl_a @ ( shift_a @ Xs @ S ) )
          = ( shift_a @ ( tl_a @ Xs ) @ S ) ) ) ) ).

% shift_simps(2)
thf(fact_530_psubsetD,axiom,
    ! [A3: set_list_a,B5: set_list_a,C: list_a] :
      ( ( ord_less_set_list_a @ A3 @ B5 )
     => ( ( member_list_a @ C @ A3 )
       => ( member_list_a @ C @ B5 ) ) ) ).

% psubsetD
thf(fact_531_psubsetD,axiom,
    ! [A3: set_a,B5: set_a,C: a] :
      ( ( ord_less_set_a @ A3 @ B5 )
     => ( ( member_a @ C @ A3 )
       => ( member_a @ C @ B5 ) ) ) ).

% psubsetD
thf(fact_532_list_Osel_I2_J,axiom,
    ( ( tl_list_a @ nil_list_a )
    = nil_list_a ) ).

% list.sel(2)
thf(fact_533_list_Osel_I2_J,axiom,
    ( ( tl_a @ nil_a )
    = nil_a ) ).

% list.sel(2)
thf(fact_534_stream_Ocoinduct__strong,axiom,
    ! [R: stream_list_list_a > stream_list_list_a > $o,Stream: stream_list_list_a,Stream2: stream_list_list_a] :
      ( ( R @ Stream @ Stream2 )
     => ( ! [Stream3: stream_list_list_a,Stream4: stream_list_list_a] :
            ( ( R @ Stream3 @ Stream4 )
           => ( ( ( shd_list_list_a @ Stream3 )
                = ( shd_list_list_a @ Stream4 ) )
              & ( ( R @ ( stl_list_list_a @ Stream3 ) @ ( stl_list_list_a @ Stream4 ) )
                | ( ( stl_list_list_a @ Stream3 )
                  = ( stl_list_list_a @ Stream4 ) ) ) ) )
       => ( Stream = Stream2 ) ) ) ).

% stream.coinduct_strong
thf(fact_535_stream_Ocoinduct__strong,axiom,
    ! [R: stream_list_a > stream_list_a > $o,Stream: stream_list_a,Stream2: stream_list_a] :
      ( ( R @ Stream @ Stream2 )
     => ( ! [Stream3: stream_list_a,Stream4: stream_list_a] :
            ( ( R @ Stream3 @ Stream4 )
           => ( ( ( shd_list_a @ Stream3 )
                = ( shd_list_a @ Stream4 ) )
              & ( ( R @ ( stl_list_a @ Stream3 ) @ ( stl_list_a @ Stream4 ) )
                | ( ( stl_list_a @ Stream3 )
                  = ( stl_list_a @ Stream4 ) ) ) ) )
       => ( Stream = Stream2 ) ) ) ).

% stream.coinduct_strong
thf(fact_536_stream_Ocoinduct__strong,axiom,
    ! [R: stream_a > stream_a > $o,Stream: stream_a,Stream2: stream_a] :
      ( ( R @ Stream @ Stream2 )
     => ( ! [Stream3: stream_a,Stream4: stream_a] :
            ( ( R @ Stream3 @ Stream4 )
           => ( ( ( shd_a @ Stream3 )
                = ( shd_a @ Stream4 ) )
              & ( ( R @ ( stl_a @ Stream3 ) @ ( stl_a @ Stream4 ) )
                | ( ( stl_a @ Stream3 )
                  = ( stl_a @ Stream4 ) ) ) ) )
       => ( Stream = Stream2 ) ) ) ).

% stream.coinduct_strong
thf(fact_537_stream_Ocoinduct,axiom,
    ! [R: stream_list_list_a > stream_list_list_a > $o,Stream: stream_list_list_a,Stream2: stream_list_list_a] :
      ( ( R @ Stream @ Stream2 )
     => ( ! [Stream3: stream_list_list_a,Stream4: stream_list_list_a] :
            ( ( R @ Stream3 @ Stream4 )
           => ( ( ( shd_list_list_a @ Stream3 )
                = ( shd_list_list_a @ Stream4 ) )
              & ( R @ ( stl_list_list_a @ Stream3 ) @ ( stl_list_list_a @ Stream4 ) ) ) )
       => ( Stream = Stream2 ) ) ) ).

% stream.coinduct
thf(fact_538_stream_Ocoinduct,axiom,
    ! [R: stream_list_a > stream_list_a > $o,Stream: stream_list_a,Stream2: stream_list_a] :
      ( ( R @ Stream @ Stream2 )
     => ( ! [Stream3: stream_list_a,Stream4: stream_list_a] :
            ( ( R @ Stream3 @ Stream4 )
           => ( ( ( shd_list_a @ Stream3 )
                = ( shd_list_a @ Stream4 ) )
              & ( R @ ( stl_list_a @ Stream3 ) @ ( stl_list_a @ Stream4 ) ) ) )
       => ( Stream = Stream2 ) ) ) ).

% stream.coinduct
thf(fact_539_stream_Ocoinduct,axiom,
    ! [R: stream_a > stream_a > $o,Stream: stream_a,Stream2: stream_a] :
      ( ( R @ Stream @ Stream2 )
     => ( ! [Stream3: stream_a,Stream4: stream_a] :
            ( ( R @ Stream3 @ Stream4 )
           => ( ( ( shd_a @ Stream3 )
                = ( shd_a @ Stream4 ) )
              & ( R @ ( stl_a @ Stream3 ) @ ( stl_a @ Stream4 ) ) ) )
       => ( Stream = Stream2 ) ) ) ).

% stream.coinduct
thf(fact_540_stream_Oexpand,axiom,
    ! [Stream: stream_list_list_a,Stream2: stream_list_list_a] :
      ( ( ( ( shd_list_list_a @ Stream )
          = ( shd_list_list_a @ Stream2 ) )
        & ( ( stl_list_list_a @ Stream )
          = ( stl_list_list_a @ Stream2 ) ) )
     => ( Stream = Stream2 ) ) ).

% stream.expand
thf(fact_541_stream_Oexpand,axiom,
    ! [Stream: stream_list_a,Stream2: stream_list_a] :
      ( ( ( ( shd_list_a @ Stream )
          = ( shd_list_a @ Stream2 ) )
        & ( ( stl_list_a @ Stream )
          = ( stl_list_a @ Stream2 ) ) )
     => ( Stream = Stream2 ) ) ).

% stream.expand
thf(fact_542_stream_Oexpand,axiom,
    ! [Stream: stream_a,Stream2: stream_a] :
      ( ( ( ( shd_a @ Stream )
          = ( shd_a @ Stream2 ) )
        & ( ( stl_a @ Stream )
          = ( stl_a @ Stream2 ) ) )
     => ( Stream = Stream2 ) ) ).

% stream.expand
thf(fact_543_shd__sset,axiom,
    ! [A: stream_a] : ( member_a @ ( shd_a @ A ) @ ( sset_a @ A ) ) ).

% shd_sset
thf(fact_544_shd__sset,axiom,
    ! [A: stream_list_list_a] : ( member_list_list_a @ ( shd_list_list_a @ A ) @ ( sset_list_list_a @ A ) ) ).

% shd_sset
thf(fact_545_shd__sset,axiom,
    ! [A: stream_list_a] : ( member_list_a @ ( shd_list_a @ A ) @ ( sset_list_a @ A ) ) ).

% shd_sset
thf(fact_546_shift_Osimps_I1_J,axiom,
    ! [S: stream_list_a] :
      ( ( shift_list_a @ nil_list_a @ S )
      = S ) ).

% shift.simps(1)
thf(fact_547_shift_Osimps_I1_J,axiom,
    ! [S: stream_a] :
      ( ( shift_a @ nil_a @ S )
      = S ) ).

% shift.simps(1)
thf(fact_548_flat__unfold,axiom,
    ! [Ws: stream_list_list_a] :
      ( ( ( shd_list_list_a @ Ws )
       != nil_list_a )
     => ( ( flat_list_a @ Ws )
        = ( shift_list_a @ ( shd_list_list_a @ Ws ) @ ( flat_list_a @ ( stl_list_list_a @ Ws ) ) ) ) ) ).

% flat_unfold
thf(fact_549_flat__unfold,axiom,
    ! [Ws: stream_list_a] :
      ( ( ( shd_list_a @ Ws )
       != nil_a )
     => ( ( flat_a @ Ws )
        = ( shift_a @ ( shd_list_a @ Ws ) @ ( flat_a @ ( stl_list_a @ Ws ) ) ) ) ) ).

% flat_unfold
thf(fact_550_sset__induct,axiom,
    ! [Y: list_list_a,S: stream_list_list_a,P: list_list_a > stream_list_list_a > $o] :
      ( ( member_list_list_a @ Y @ ( sset_list_list_a @ S ) )
     => ( ! [S3: stream_list_list_a] : ( P @ ( shd_list_list_a @ S3 ) @ S3 )
       => ( ! [S3: stream_list_list_a,Y4: list_list_a] :
              ( ( member_list_list_a @ Y4 @ ( sset_list_list_a @ ( stl_list_list_a @ S3 ) ) )
             => ( ( P @ Y4 @ ( stl_list_list_a @ S3 ) )
               => ( P @ Y4 @ S3 ) ) )
         => ( P @ Y @ S ) ) ) ) ).

% sset_induct
thf(fact_551_sset__induct,axiom,
    ! [Y: a,S: stream_a,P: a > stream_a > $o] :
      ( ( member_a @ Y @ ( sset_a @ S ) )
     => ( ! [S3: stream_a] : ( P @ ( shd_a @ S3 ) @ S3 )
       => ( ! [S3: stream_a,Y4: a] :
              ( ( member_a @ Y4 @ ( sset_a @ ( stl_a @ S3 ) ) )
             => ( ( P @ Y4 @ ( stl_a @ S3 ) )
               => ( P @ Y4 @ S3 ) ) )
         => ( P @ Y @ S ) ) ) ) ).

% sset_induct
thf(fact_552_sset__induct,axiom,
    ! [Y: list_a,S: stream_list_a,P: list_a > stream_list_a > $o] :
      ( ( member_list_a @ Y @ ( sset_list_a @ S ) )
     => ( ! [S3: stream_list_a] : ( P @ ( shd_list_a @ S3 ) @ S3 )
       => ( ! [S3: stream_list_a,Y4: list_a] :
              ( ( member_list_a @ Y4 @ ( sset_list_a @ ( stl_list_a @ S3 ) ) )
             => ( ( P @ Y4 @ ( stl_list_a @ S3 ) )
               => ( P @ Y4 @ S3 ) ) )
         => ( P @ Y @ S ) ) ) ) ).

% sset_induct
thf(fact_553_subset__iff__psubset__eq,axiom,
    ( ord_le8861187494160871172list_a
    = ( ^ [A6: set_list_a,B6: set_list_a] :
          ( ( ord_less_set_list_a @ A6 @ B6 )
          | ( A6 = B6 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_554_subset__iff__psubset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( ( ord_less_set_a @ A6 @ B6 )
          | ( A6 = B6 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_555_subset__psubset__trans,axiom,
    ! [A3: set_list_a,B5: set_list_a,C3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B5 )
     => ( ( ord_less_set_list_a @ B5 @ C3 )
       => ( ord_less_set_list_a @ A3 @ C3 ) ) ) ).

% subset_psubset_trans
thf(fact_556_subset__psubset__trans,axiom,
    ! [A3: set_a,B5: set_a,C3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B5 )
     => ( ( ord_less_set_a @ B5 @ C3 )
       => ( ord_less_set_a @ A3 @ C3 ) ) ) ).

% subset_psubset_trans
thf(fact_557_subset__not__subset__eq,axiom,
    ( ord_less_set_list_a
    = ( ^ [A6: set_list_a,B6: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ A6 @ B6 )
          & ~ ( ord_le8861187494160871172list_a @ B6 @ A6 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_558_subset__not__subset__eq,axiom,
    ( ord_less_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( ( ord_less_eq_set_a @ A6 @ B6 )
          & ~ ( ord_less_eq_set_a @ B6 @ A6 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_559_psubset__subset__trans,axiom,
    ! [A3: set_list_a,B5: set_list_a,C3: set_list_a] :
      ( ( ord_less_set_list_a @ A3 @ B5 )
     => ( ( ord_le8861187494160871172list_a @ B5 @ C3 )
       => ( ord_less_set_list_a @ A3 @ C3 ) ) ) ).

% psubset_subset_trans
thf(fact_560_psubset__subset__trans,axiom,
    ! [A3: set_a,B5: set_a,C3: set_a] :
      ( ( ord_less_set_a @ A3 @ B5 )
     => ( ( ord_less_eq_set_a @ B5 @ C3 )
       => ( ord_less_set_a @ A3 @ C3 ) ) ) ).

% psubset_subset_trans
thf(fact_561_psubset__imp__subset,axiom,
    ! [A3: set_list_a,B5: set_list_a] :
      ( ( ord_less_set_list_a @ A3 @ B5 )
     => ( ord_le8861187494160871172list_a @ A3 @ B5 ) ) ).

% psubset_imp_subset
thf(fact_562_psubset__imp__subset,axiom,
    ! [A3: set_a,B5: set_a] :
      ( ( ord_less_set_a @ A3 @ B5 )
     => ( ord_less_eq_set_a @ A3 @ B5 ) ) ).

% psubset_imp_subset
thf(fact_563_Collect__mono__iff,axiom,
    ! [P: list_a > $o,Q: list_a > $o] :
      ( ( ord_le8861187494160871172list_a @ ( collect_list_a @ P ) @ ( collect_list_a @ Q ) )
      = ( ! [X4: list_a] :
            ( ( P @ X4 )
           => ( Q @ X4 ) ) ) ) ).

% Collect_mono_iff
thf(fact_564_Collect__mono__iff,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
      = ( ! [X4: a] :
            ( ( P @ X4 )
           => ( Q @ X4 ) ) ) ) ).

% Collect_mono_iff
thf(fact_565_set__eq__subset,axiom,
    ( ( ^ [Y6: set_list_a,Z3: set_list_a] : ( Y6 = Z3 ) )
    = ( ^ [A6: set_list_a,B6: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ A6 @ B6 )
          & ( ord_le8861187494160871172list_a @ B6 @ A6 ) ) ) ) ).

% set_eq_subset
thf(fact_566_set__eq__subset,axiom,
    ( ( ^ [Y6: set_a,Z3: set_a] : ( Y6 = Z3 ) )
    = ( ^ [A6: set_a,B6: set_a] :
          ( ( ord_less_eq_set_a @ A6 @ B6 )
          & ( ord_less_eq_set_a @ B6 @ A6 ) ) ) ) ).

% set_eq_subset
thf(fact_567_subset__trans,axiom,
    ! [A3: set_list_a,B5: set_list_a,C3: set_list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B5 )
     => ( ( ord_le8861187494160871172list_a @ B5 @ C3 )
       => ( ord_le8861187494160871172list_a @ A3 @ C3 ) ) ) ).

% subset_trans
thf(fact_568_subset__trans,axiom,
    ! [A3: set_a,B5: set_a,C3: set_a] :
      ( ( ord_less_eq_set_a @ A3 @ B5 )
     => ( ( ord_less_eq_set_a @ B5 @ C3 )
       => ( ord_less_eq_set_a @ A3 @ C3 ) ) ) ).

% subset_trans
thf(fact_569_Collect__mono,axiom,
    ! [P: list_a > $o,Q: list_a > $o] :
      ( ! [X3: list_a] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_le8861187494160871172list_a @ ( collect_list_a @ P ) @ ( collect_list_a @ Q ) ) ) ).

% Collect_mono
thf(fact_570_Collect__mono,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_571_subset__refl,axiom,
    ! [A3: set_list_a] : ( ord_le8861187494160871172list_a @ A3 @ A3 ) ).

% subset_refl
thf(fact_572_subset__refl,axiom,
    ! [A3: set_a] : ( ord_less_eq_set_a @ A3 @ A3 ) ).

% subset_refl
thf(fact_573_subset__iff,axiom,
    ( ord_le8861187494160871172list_a
    = ( ^ [A6: set_list_a,B6: set_list_a] :
        ! [T2: list_a] :
          ( ( member_list_a @ T2 @ A6 )
         => ( member_list_a @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_574_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
        ! [T2: a] :
          ( ( member_a @ T2 @ A6 )
         => ( member_a @ T2 @ B6 ) ) ) ) ).

% subset_iff
thf(fact_575_psubset__eq,axiom,
    ( ord_less_set_list_a
    = ( ^ [A6: set_list_a,B6: set_list_a] :
          ( ( ord_le8861187494160871172list_a @ A6 @ B6 )
          & ( A6 != B6 ) ) ) ) ).

% psubset_eq
thf(fact_576_psubset__eq,axiom,
    ( ord_less_set_a
    = ( ^ [A6: set_a,B6: set_a] :
          ( ( ord_less_eq_set_a @ A6 @ B6 )
          & ( A6 != B6 ) ) ) ) ).

% psubset_eq
thf(fact_577_equalityD2,axiom,
    ! [A3: set_list_a,B5: set_list_a] :
      ( ( A3 = B5 )
     => ( ord_le8861187494160871172list_a @ B5 @ A3 ) ) ).

% equalityD2
thf(fact_578_equalityD2,axiom,
    ! [A3: set_a,B5: set_a] :
      ( ( A3 = B5 )
     => ( ord_less_eq_set_a @ B5 @ A3 ) ) ).

% equalityD2
thf(fact_579_equalityD1,axiom,
    ! [A3: set_list_a,B5: set_list_a] :
      ( ( A3 = B5 )
     => ( ord_le8861187494160871172list_a @ A3 @ B5 ) ) ).

% equalityD1
thf(fact_580_equalityD1,axiom,
    ! [A3: set_a,B5: set_a] :
      ( ( A3 = B5 )
     => ( ord_less_eq_set_a @ A3 @ B5 ) ) ).

% equalityD1
thf(fact_581_subset__eq,axiom,
    ( ord_le8861187494160871172list_a
    = ( ^ [A6: set_list_a,B6: set_list_a] :
        ! [X4: list_a] :
          ( ( member_list_a @ X4 @ A6 )
         => ( member_list_a @ X4 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_582_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A6: set_a,B6: set_a] :
        ! [X4: a] :
          ( ( member_a @ X4 @ A6 )
         => ( member_a @ X4 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_583_equalityE,axiom,
    ! [A3: set_list_a,B5: set_list_a] :
      ( ( A3 = B5 )
     => ~ ( ( ord_le8861187494160871172list_a @ A3 @ B5 )
         => ~ ( ord_le8861187494160871172list_a @ B5 @ A3 ) ) ) ).

% equalityE
thf(fact_584_equalityE,axiom,
    ! [A3: set_a,B5: set_a] :
      ( ( A3 = B5 )
     => ~ ( ( ord_less_eq_set_a @ A3 @ B5 )
         => ~ ( ord_less_eq_set_a @ B5 @ A3 ) ) ) ).

% equalityE
thf(fact_585_psubsetE,axiom,
    ! [A3: set_list_a,B5: set_list_a] :
      ( ( ord_less_set_list_a @ A3 @ B5 )
     => ~ ( ( ord_le8861187494160871172list_a @ A3 @ B5 )
         => ( ord_le8861187494160871172list_a @ B5 @ A3 ) ) ) ).

% psubsetE
thf(fact_586_psubsetE,axiom,
    ! [A3: set_a,B5: set_a] :
      ( ( ord_less_set_a @ A3 @ B5 )
     => ~ ( ( ord_less_eq_set_a @ A3 @ B5 )
         => ( ord_less_eq_set_a @ B5 @ A3 ) ) ) ).

% psubsetE
thf(fact_587_subsetD,axiom,
    ! [A3: set_list_a,B5: set_list_a,C: list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B5 )
     => ( ( member_list_a @ C @ A3 )
       => ( member_list_a @ C @ B5 ) ) ) ).

% subsetD
thf(fact_588_subsetD,axiom,
    ! [A3: set_a,B5: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A3 @ B5 )
     => ( ( member_a @ C @ A3 )
       => ( member_a @ C @ B5 ) ) ) ).

% subsetD
thf(fact_589_in__mono,axiom,
    ! [A3: set_list_a,B5: set_list_a,X2: list_a] :
      ( ( ord_le8861187494160871172list_a @ A3 @ B5 )
     => ( ( member_list_a @ X2 @ A3 )
       => ( member_list_a @ X2 @ B5 ) ) ) ).

% in_mono
thf(fact_590_in__mono,axiom,
    ! [A3: set_a,B5: set_a,X2: a] :
      ( ( ord_less_eq_set_a @ A3 @ B5 )
     => ( ( member_a @ X2 @ A3 )
       => ( member_a @ X2 @ B5 ) ) ) ).

% in_mono
thf(fact_591_nth__tl,axiom,
    ! [N5: nat,Xs: list_list_a] :
      ( ( ord_less_nat @ N5 @ ( size_s349497388124573686list_a @ ( tl_list_a @ Xs ) ) )
     => ( ( nth_list_a @ ( tl_list_a @ Xs ) @ N5 )
        = ( nth_list_a @ Xs @ ( suc @ N5 ) ) ) ) ).

% nth_tl
thf(fact_592_nth__tl,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ord_less_nat @ N5 @ ( size_size_list_a @ ( tl_a @ Xs ) ) )
     => ( ( nth_a @ ( tl_a @ Xs ) @ N5 )
        = ( nth_a @ Xs @ ( suc @ N5 ) ) ) ) ).

% nth_tl
thf(fact_593_flat__snth,axiom,
    ! [S: stream1229541022664496662list_a,N5: nat] :
      ( ! [X3: list_stream_list_a] :
          ( ( member2241138852378865081list_a @ X3 @ ( sset_l2691409540454527268list_a @ S ) )
         => ( X3 != nil_stream_list_a ) )
     => ( ( ( ord_less_nat @ N5 @ ( size_s3694203809124329340list_a @ ( shd_li3061069428927788988list_a @ S ) ) )
         => ( ( snth_stream_list_a @ ( flat_stream_list_a @ S ) @ N5 )
            = ( nth_stream_list_a @ ( shd_li3061069428927788988list_a @ S ) @ N5 ) ) )
        & ( ~ ( ord_less_nat @ N5 @ ( size_s3694203809124329340list_a @ ( shd_li3061069428927788988list_a @ S ) ) )
         => ( ( snth_stream_list_a @ ( flat_stream_list_a @ S ) @ N5 )
            = ( snth_stream_list_a @ ( flat_stream_list_a @ ( stl_li3392269663658258880list_a @ S ) ) @ ( minus_minus_nat @ N5 @ ( size_s3694203809124329340list_a @ ( shd_li3061069428927788988list_a @ S ) ) ) ) ) ) ) ) ).

% flat_snth
thf(fact_594_flat__snth,axiom,
    ! [S: stream_list_stream_a,N5: nat] :
      ( ! [X3: list_stream_a] :
          ( ( member_list_stream_a @ X3 @ ( sset_list_stream_a @ S ) )
         => ( X3 != nil_stream_a ) )
     => ( ( ( ord_less_nat @ N5 @ ( size_s2142770077969500662ream_a @ ( shd_list_stream_a @ S ) ) )
         => ( ( snth_stream_a @ ( flat_stream_a @ S ) @ N5 )
            = ( nth_stream_a @ ( shd_list_stream_a @ S ) @ N5 ) ) )
        & ( ~ ( ord_less_nat @ N5 @ ( size_s2142770077969500662ream_a @ ( shd_list_stream_a @ S ) ) )
         => ( ( snth_stream_a @ ( flat_stream_a @ S ) @ N5 )
            = ( snth_stream_a @ ( flat_stream_a @ ( stl_list_stream_a @ S ) ) @ ( minus_minus_nat @ N5 @ ( size_s2142770077969500662ream_a @ ( shd_list_stream_a @ S ) ) ) ) ) ) ) ) ).

% flat_snth
thf(fact_595_flat__snth,axiom,
    ! [S: stream_list_list_a,N5: nat] :
      ( ! [X3: list_list_a] :
          ( ( member_list_list_a @ X3 @ ( sset_list_list_a @ S ) )
         => ( X3 != nil_list_a ) )
     => ( ( ( ord_less_nat @ N5 @ ( size_s349497388124573686list_a @ ( shd_list_list_a @ S ) ) )
         => ( ( snth_list_a @ ( flat_list_a @ S ) @ N5 )
            = ( nth_list_a @ ( shd_list_list_a @ S ) @ N5 ) ) )
        & ( ~ ( ord_less_nat @ N5 @ ( size_s349497388124573686list_a @ ( shd_list_list_a @ S ) ) )
         => ( ( snth_list_a @ ( flat_list_a @ S ) @ N5 )
            = ( snth_list_a @ ( flat_list_a @ ( stl_list_list_a @ S ) ) @ ( minus_minus_nat @ N5 @ ( size_s349497388124573686list_a @ ( shd_list_list_a @ S ) ) ) ) ) ) ) ) ).

% flat_snth
thf(fact_596_flat__snth,axiom,
    ! [S: stream_list_a,N5: nat] :
      ( ! [X3: list_a] :
          ( ( member_list_a @ X3 @ ( sset_list_a @ S ) )
         => ( X3 != nil_a ) )
     => ( ( ( ord_less_nat @ N5 @ ( size_size_list_a @ ( shd_list_a @ S ) ) )
         => ( ( snth_a @ ( flat_a @ S ) @ N5 )
            = ( nth_a @ ( shd_list_a @ S ) @ N5 ) ) )
        & ( ~ ( ord_less_nat @ N5 @ ( size_size_list_a @ ( shd_list_a @ S ) ) )
         => ( ( snth_a @ ( flat_a @ S ) @ N5 )
            = ( snth_a @ ( flat_a @ ( stl_list_a @ S ) ) @ ( minus_minus_nat @ N5 @ ( size_size_list_a @ ( shd_list_a @ S ) ) ) ) ) ) ) ) ).

% flat_snth
thf(fact_597_flat_Osimps_I2_J,axiom,
    ! [Ws: stream2255243159586646806list_a] :
      ( ( stl_list_list_a @ ( flat_list_list_a @ Ws ) )
      = ( flat_list_list_a
        @ ( if_str8217234800680828380list_a
          @ ( ( tl_list_list_a @ ( shd_list_list_list_a @ Ws ) )
            = nil_list_list_a )
          @ ( stl_list_list_list_a @ Ws )
          @ ( sCons_8165023923567507367list_a @ ( tl_list_list_a @ ( shd_list_list_list_a @ Ws ) ) @ ( stl_list_list_list_a @ Ws ) ) ) ) ) ).

% flat.simps(2)
thf(fact_598_flat_Osimps_I2_J,axiom,
    ! [Ws: stream_list_list_a] :
      ( ( stl_list_a @ ( flat_list_a @ Ws ) )
      = ( flat_list_a
        @ ( if_str7505741754068378070list_a
          @ ( ( tl_list_a @ ( shd_list_list_a @ Ws ) )
            = nil_list_a )
          @ ( stl_list_list_a @ Ws )
          @ ( sCons_list_list_a @ ( tl_list_a @ ( shd_list_list_a @ Ws ) ) @ ( stl_list_list_a @ Ws ) ) ) ) ) ).

% flat.simps(2)
thf(fact_599_flat_Osimps_I2_J,axiom,
    ! [Ws: stream_list_a] :
      ( ( stl_a @ ( flat_a @ Ws ) )
      = ( flat_a
        @ ( if_stream_list_a
          @ ( ( tl_a @ ( shd_list_a @ Ws ) )
            = nil_a )
          @ ( stl_list_a @ Ws )
          @ ( sCons_list_a @ ( tl_a @ ( shd_list_a @ Ws ) ) @ ( stl_list_a @ Ws ) ) ) ) ) ).

% flat.simps(2)
thf(fact_600_stake__cycle__eq,axiom,
    ! [U: list_list_a] :
      ( ( U != nil_list_a )
     => ( ( stake_list_a @ ( size_s349497388124573686list_a @ U ) @ ( cycle_list_a @ U ) )
        = U ) ) ).

% stake_cycle_eq
thf(fact_601_stake__cycle__eq,axiom,
    ! [U: list_a] :
      ( ( U != nil_a )
     => ( ( stake_a @ ( size_size_list_a @ U ) @ ( cycle_a @ U ) )
        = U ) ) ).

% stake_cycle_eq
thf(fact_602_shift__snth,axiom,
    ! [N5: nat,Xs: list_stream_list_a,S: stream_stream_list_a] :
      ( ( ( ord_less_nat @ N5 @ ( size_s3694203809124329340list_a @ Xs ) )
       => ( ( snth_stream_list_a @ ( shift_stream_list_a @ Xs @ S ) @ N5 )
          = ( nth_stream_list_a @ Xs @ N5 ) ) )
      & ( ~ ( ord_less_nat @ N5 @ ( size_s3694203809124329340list_a @ Xs ) )
       => ( ( snth_stream_list_a @ ( shift_stream_list_a @ Xs @ S ) @ N5 )
          = ( snth_stream_list_a @ S @ ( minus_minus_nat @ N5 @ ( size_s3694203809124329340list_a @ Xs ) ) ) ) ) ) ).

% shift_snth
thf(fact_603_shift__snth,axiom,
    ! [N5: nat,Xs: list_stream_a,S: stream_stream_a] :
      ( ( ( ord_less_nat @ N5 @ ( size_s2142770077969500662ream_a @ Xs ) )
       => ( ( snth_stream_a @ ( shift_stream_a @ Xs @ S ) @ N5 )
          = ( nth_stream_a @ Xs @ N5 ) ) )
      & ( ~ ( ord_less_nat @ N5 @ ( size_s2142770077969500662ream_a @ Xs ) )
       => ( ( snth_stream_a @ ( shift_stream_a @ Xs @ S ) @ N5 )
          = ( snth_stream_a @ S @ ( minus_minus_nat @ N5 @ ( size_s2142770077969500662ream_a @ Xs ) ) ) ) ) ) ).

% shift_snth
thf(fact_604_shift__snth,axiom,
    ! [N5: nat,Xs: list_list_a,S: stream_list_a] :
      ( ( ( ord_less_nat @ N5 @ ( size_s349497388124573686list_a @ Xs ) )
       => ( ( snth_list_a @ ( shift_list_a @ Xs @ S ) @ N5 )
          = ( nth_list_a @ Xs @ N5 ) ) )
      & ( ~ ( ord_less_nat @ N5 @ ( size_s349497388124573686list_a @ Xs ) )
       => ( ( snth_list_a @ ( shift_list_a @ Xs @ S ) @ N5 )
          = ( snth_list_a @ S @ ( minus_minus_nat @ N5 @ ( size_s349497388124573686list_a @ Xs ) ) ) ) ) ) ).

% shift_snth
thf(fact_605_shift__snth,axiom,
    ! [N5: nat,Xs: list_a,S: stream_a] :
      ( ( ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
       => ( ( snth_a @ ( shift_a @ Xs @ S ) @ N5 )
          = ( nth_a @ Xs @ N5 ) ) )
      & ( ~ ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
       => ( ( snth_a @ ( shift_a @ Xs @ S ) @ N5 )
          = ( snth_a @ S @ ( minus_minus_nat @ N5 @ ( size_size_list_a @ Xs ) ) ) ) ) ) ).

% shift_snth
thf(fact_606_shift__snth__ge,axiom,
    ! [Xs: list_stream_list_a,P5: nat,S: stream_stream_list_a] :
      ( ( ord_less_eq_nat @ ( size_s3694203809124329340list_a @ Xs ) @ P5 )
     => ( ( snth_stream_list_a @ ( shift_stream_list_a @ Xs @ S ) @ P5 )
        = ( snth_stream_list_a @ S @ ( minus_minus_nat @ P5 @ ( size_s3694203809124329340list_a @ Xs ) ) ) ) ) ).

% shift_snth_ge
thf(fact_607_shift__snth__ge,axiom,
    ! [Xs: list_stream_a,P5: nat,S: stream_stream_a] :
      ( ( ord_less_eq_nat @ ( size_s2142770077969500662ream_a @ Xs ) @ P5 )
     => ( ( snth_stream_a @ ( shift_stream_a @ Xs @ S ) @ P5 )
        = ( snth_stream_a @ S @ ( minus_minus_nat @ P5 @ ( size_s2142770077969500662ream_a @ Xs ) ) ) ) ) ).

% shift_snth_ge
thf(fact_608_shift__snth__ge,axiom,
    ! [Xs: list_list_a,P5: nat,S: stream_list_a] :
      ( ( ord_less_eq_nat @ ( size_s349497388124573686list_a @ Xs ) @ P5 )
     => ( ( snth_list_a @ ( shift_list_a @ Xs @ S ) @ P5 )
        = ( snth_list_a @ S @ ( minus_minus_nat @ P5 @ ( size_s349497388124573686list_a @ Xs ) ) ) ) ) ).

% shift_snth_ge
thf(fact_609_shift__snth__ge,axiom,
    ! [Xs: list_a,P5: nat,S: stream_a] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ P5 )
     => ( ( snth_a @ ( shift_a @ Xs @ S ) @ P5 )
        = ( snth_a @ S @ ( minus_minus_nat @ P5 @ ( size_size_list_a @ Xs ) ) ) ) ) ).

% shift_snth_ge
thf(fact_610_list__ex1__simps_I1_J,axiom,
    ! [P: list_a > $o] :
      ~ ( list_ex1_list_a @ P @ nil_list_a ) ).

% list_ex1_simps(1)
thf(fact_611_list__ex1__simps_I1_J,axiom,
    ! [P: a > $o] :
      ~ ( list_ex1_a @ P @ nil_a ) ).

% list_ex1_simps(1)
thf(fact_612_stake_Osimps_I2_J,axiom,
    ! [N5: nat,S: stream_list_list_a] :
      ( ( stake_list_list_a @ ( suc @ N5 ) @ S )
      = ( cons_list_list_a @ ( shd_list_list_a @ S ) @ ( stake_list_list_a @ N5 @ ( stl_list_list_a @ S ) ) ) ) ).

% stake.simps(2)
thf(fact_613_stake_Osimps_I2_J,axiom,
    ! [N5: nat,S: stream_list_a] :
      ( ( stake_list_a @ ( suc @ N5 ) @ S )
      = ( cons_list_a @ ( shd_list_a @ S ) @ ( stake_list_a @ N5 @ ( stl_list_a @ S ) ) ) ) ).

% stake.simps(2)
thf(fact_614_stake_Osimps_I2_J,axiom,
    ! [N5: nat,S: stream_a] :
      ( ( stake_a @ ( suc @ N5 ) @ S )
      = ( cons_a @ ( shd_a @ S ) @ ( stake_a @ N5 @ ( stl_a @ S ) ) ) ) ).

% stake.simps(2)
thf(fact_615_list_Oinject,axiom,
    ! [X21: a,X222: list_a,Y21: a,Y22: list_a] :
      ( ( ( cons_a @ X21 @ X222 )
        = ( cons_a @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X222 = Y22 ) ) ) ).

% list.inject
thf(fact_616_list_Oinject,axiom,
    ! [X21: list_a,X222: list_list_a,Y21: list_a,Y22: list_list_a] :
      ( ( ( cons_list_a @ X21 @ X222 )
        = ( cons_list_a @ Y21 @ Y22 ) )
      = ( ( X21 = Y21 )
        & ( X222 = Y22 ) ) ) ).

% list.inject
thf(fact_617_stream_Oinject,axiom,
    ! [X1: list_a,X22: stream_list_a,Y1: list_a,Y2: stream_list_a] :
      ( ( ( sCons_list_a @ X1 @ X22 )
        = ( sCons_list_a @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y2 ) ) ) ).

% stream.inject
thf(fact_618_stream_Oinject,axiom,
    ! [X1: list_list_a,X22: stream_list_list_a,Y1: list_list_a,Y2: stream_list_list_a] :
      ( ( ( sCons_list_list_a @ X1 @ X22 )
        = ( sCons_list_list_a @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y2 ) ) ) ).

% stream.inject
thf(fact_619_stream_Oinject,axiom,
    ! [X1: a,X22: stream_a,Y1: a,Y2: stream_a] :
      ( ( ( sCons_a @ X1 @ X22 )
        = ( sCons_a @ Y1 @ Y2 ) )
      = ( ( X1 = Y1 )
        & ( X22 = Y2 ) ) ) ).

% stream.inject
thf(fact_620_Suc__diff__diff,axiom,
    ! [M2: nat,N5: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M2 ) @ N5 ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M2 @ N5 ) @ K ) ) ).

% Suc_diff_diff
thf(fact_621_diff__Suc__Suc,axiom,
    ! [M2: nat,N5: nat] :
      ( ( minus_minus_nat @ ( suc @ M2 ) @ ( suc @ N5 ) )
      = ( minus_minus_nat @ M2 @ N5 ) ) ).

% diff_Suc_Suc
thf(fact_622_diff__diff__cancel,axiom,
    ! [I: nat,N5: nat] :
      ( ( ord_less_eq_nat @ I @ N5 )
     => ( ( minus_minus_nat @ N5 @ ( minus_minus_nat @ N5 @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_623_list__ex__simps_I1_J,axiom,
    ! [P: a > $o,X2: a,Xs: list_a] :
      ( ( list_ex_a @ P @ ( cons_a @ X2 @ Xs ) )
      = ( ( P @ X2 )
        | ( list_ex_a @ P @ Xs ) ) ) ).

% list_ex_simps(1)
thf(fact_624_list__ex__simps_I1_J,axiom,
    ! [P: list_a > $o,X2: list_a,Xs: list_list_a] :
      ( ( list_ex_list_a @ P @ ( cons_list_a @ X2 @ Xs ) )
      = ( ( P @ X2 )
        | ( list_ex_list_a @ P @ Xs ) ) ) ).

% list_ex_simps(1)
thf(fact_625_nth__Cons__Suc,axiom,
    ! [X2: list_a,Xs: list_list_a,N5: nat] :
      ( ( nth_list_a @ ( cons_list_a @ X2 @ Xs ) @ ( suc @ N5 ) )
      = ( nth_list_a @ Xs @ N5 ) ) ).

% nth_Cons_Suc
thf(fact_626_nth__Cons__Suc,axiom,
    ! [X2: a,Xs: list_a,N5: nat] :
      ( ( nth_a @ ( cons_a @ X2 @ Xs ) @ ( suc @ N5 ) )
      = ( nth_a @ Xs @ N5 ) ) ).

% nth_Cons_Suc
thf(fact_627_stream_Ocollapse,axiom,
    ! [Stream: stream_list_list_a] :
      ( ( sCons_list_list_a @ ( shd_list_list_a @ Stream ) @ ( stl_list_list_a @ Stream ) )
      = Stream ) ).

% stream.collapse
thf(fact_628_stream_Ocollapse,axiom,
    ! [Stream: stream_list_a] :
      ( ( sCons_list_a @ ( shd_list_a @ Stream ) @ ( stl_list_a @ Stream ) )
      = Stream ) ).

% stream.collapse
thf(fact_629_stream_Ocollapse,axiom,
    ! [Stream: stream_a] :
      ( ( sCons_a @ ( shd_a @ Stream ) @ ( stl_a @ Stream ) )
      = Stream ) ).

% stream.collapse
thf(fact_630_flat__Stream,axiom,
    ! [Xs: list_list_a,Ws: stream_list_list_a] :
      ( ( Xs != nil_list_a )
     => ( ( flat_list_a @ ( sCons_list_list_a @ Xs @ Ws ) )
        = ( shift_list_a @ Xs @ ( flat_list_a @ Ws ) ) ) ) ).

% flat_Stream
thf(fact_631_flat__Stream,axiom,
    ! [Xs: list_a,Ws: stream_list_a] :
      ( ( Xs != nil_a )
     => ( ( flat_a @ ( sCons_list_a @ Xs @ Ws ) )
        = ( shift_a @ Xs @ ( flat_a @ Ws ) ) ) ) ).

% flat_Stream
thf(fact_632_flat__Cons,axiom,
    ! [X2: list_list_a,Xs: list_list_list_a,Ws: stream2255243159586646806list_a] :
      ( ( flat_list_list_a @ ( sCons_8165023923567507367list_a @ ( cons_list_list_a @ X2 @ Xs ) @ Ws ) )
      = ( sCons_list_list_a @ X2 @ ( flat_list_list_a @ ( if_str8217234800680828380list_a @ ( Xs = nil_list_list_a ) @ Ws @ ( sCons_8165023923567507367list_a @ Xs @ Ws ) ) ) ) ) ).

% flat_Cons
thf(fact_633_flat__Cons,axiom,
    ! [X2: list_a,Xs: list_list_a,Ws: stream_list_list_a] :
      ( ( flat_list_a @ ( sCons_list_list_a @ ( cons_list_a @ X2 @ Xs ) @ Ws ) )
      = ( sCons_list_a @ X2 @ ( flat_list_a @ ( if_str7505741754068378070list_a @ ( Xs = nil_list_a ) @ Ws @ ( sCons_list_list_a @ Xs @ Ws ) ) ) ) ) ).

% flat_Cons
thf(fact_634_flat__Cons,axiom,
    ! [X2: a,Xs: list_a,Ws: stream_list_a] :
      ( ( flat_a @ ( sCons_list_a @ ( cons_a @ X2 @ Xs ) @ Ws ) )
      = ( sCons_a @ X2 @ ( flat_a @ ( if_stream_list_a @ ( Xs = nil_a ) @ Ws @ ( sCons_list_a @ Xs @ Ws ) ) ) ) ) ).

% flat_Cons
thf(fact_635_transpose_Ocases,axiom,
    ! [X2: list_list_list_a] :
      ( ( X2 != nil_list_list_a )
     => ( ! [Xss: list_list_list_a] :
            ( X2
           != ( cons_list_list_a @ nil_list_a @ Xss ) )
       => ~ ! [X3: list_a,Xs3: list_list_a,Xss: list_list_list_a] :
              ( X2
             != ( cons_list_list_a @ ( cons_list_a @ X3 @ Xs3 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_636_transpose_Ocases,axiom,
    ! [X2: list_list_a] :
      ( ( X2 != nil_list_a )
     => ( ! [Xss: list_list_a] :
            ( X2
           != ( cons_list_a @ nil_a @ Xss ) )
       => ~ ! [X3: a,Xs3: list_a,Xss: list_list_a] :
              ( X2
             != ( cons_list_a @ ( cons_a @ X3 @ Xs3 ) @ Xss ) ) ) ) ).

% transpose.cases
thf(fact_637_shift_Osimps_I2_J,axiom,
    ! [X2: list_a,Xs: list_list_a,S: stream_list_a] :
      ( ( shift_list_a @ ( cons_list_a @ X2 @ Xs ) @ S )
      = ( sCons_list_a @ X2 @ ( shift_list_a @ Xs @ S ) ) ) ).

% shift.simps(2)
thf(fact_638_shift_Osimps_I2_J,axiom,
    ! [X2: list_list_a,Xs: list_list_list_a,S: stream_list_list_a] :
      ( ( shift_list_list_a @ ( cons_list_list_a @ X2 @ Xs ) @ S )
      = ( sCons_list_list_a @ X2 @ ( shift_list_list_a @ Xs @ S ) ) ) ).

% shift.simps(2)
thf(fact_639_shift_Osimps_I2_J,axiom,
    ! [X2: a,Xs: list_a,S: stream_a] :
      ( ( shift_a @ ( cons_a @ X2 @ Xs ) @ S )
      = ( sCons_a @ X2 @ ( shift_a @ Xs @ S ) ) ) ).

% shift.simps(2)
thf(fact_640_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_641_stream_Oexhaust,axiom,
    ! [Y: stream_list_a] :
      ~ ! [X12: list_a,X23: stream_list_a] :
          ( Y
         != ( sCons_list_a @ X12 @ X23 ) ) ).

% stream.exhaust
thf(fact_642_stream_Oexhaust,axiom,
    ! [Y: stream_list_list_a] :
      ~ ! [X12: list_list_a,X23: stream_list_list_a] :
          ( Y
         != ( sCons_list_list_a @ X12 @ X23 ) ) ).

% stream.exhaust
thf(fact_643_stream_Oexhaust,axiom,
    ! [Y: stream_a] :
      ~ ! [X12: a,X23: stream_a] :
          ( Y
         != ( sCons_a @ X12 @ X23 ) ) ).

% stream.exhaust
thf(fact_644_not__Cons__self2,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( cons_a @ X2 @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_645_not__Cons__self2,axiom,
    ! [X2: list_a,Xs: list_list_a] :
      ( ( cons_list_a @ X2 @ Xs )
     != Xs ) ).

% not_Cons_self2
thf(fact_646_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N7: nat] :
            ( ( P @ ( suc @ N7 ) )
           => ( P @ N7 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_647_list__nonempty__induct,axiom,
    ! [Xs: list_list_a,P: list_list_a > $o] :
      ( ( Xs != nil_list_a )
     => ( ! [X3: list_a] : ( P @ ( cons_list_a @ X3 @ nil_list_a ) )
       => ( ! [X3: list_a,Xs3: list_list_a] :
              ( ( Xs3 != nil_list_a )
             => ( ( P @ Xs3 )
               => ( P @ ( cons_list_a @ X3 @ Xs3 ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_648_list__nonempty__induct,axiom,
    ! [Xs: list_a,P: list_a > $o] :
      ( ( Xs != nil_a )
     => ( ! [X3: a] : ( P @ ( cons_a @ X3 @ nil_a ) )
       => ( ! [X3: a,Xs3: list_a] :
              ( ( Xs3 != nil_a )
             => ( ( P @ Xs3 )
               => ( P @ ( cons_a @ X3 @ Xs3 ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% list_nonempty_induct
thf(fact_649_list__induct2_H,axiom,
    ! [P: list_a > list_list_a > $o,Xs: list_a,Ys: list_list_a] :
      ( ( P @ nil_a @ nil_list_a )
     => ( ! [X3: a,Xs3: list_a] : ( P @ ( cons_a @ X3 @ Xs3 ) @ nil_list_a )
       => ( ! [Y4: list_a,Ys4: list_list_a] : ( P @ nil_a @ ( cons_list_a @ Y4 @ Ys4 ) )
         => ( ! [X3: a,Xs3: list_a,Y4: list_a,Ys4: list_list_a] :
                ( ( P @ Xs3 @ Ys4 )
               => ( P @ ( cons_a @ X3 @ Xs3 ) @ ( cons_list_a @ Y4 @ Ys4 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_650_list__induct2_H,axiom,
    ! [P: list_list_a > list_a > $o,Xs: list_list_a,Ys: list_a] :
      ( ( P @ nil_list_a @ nil_a )
     => ( ! [X3: list_a,Xs3: list_list_a] : ( P @ ( cons_list_a @ X3 @ Xs3 ) @ nil_a )
       => ( ! [Y4: a,Ys4: list_a] : ( P @ nil_list_a @ ( cons_a @ Y4 @ Ys4 ) )
         => ( ! [X3: list_a,Xs3: list_list_a,Y4: a,Ys4: list_a] :
                ( ( P @ Xs3 @ Ys4 )
               => ( P @ ( cons_list_a @ X3 @ Xs3 ) @ ( cons_a @ Y4 @ Ys4 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_651_list__induct2_H,axiom,
    ! [P: list_list_a > list_list_a > $o,Xs: list_list_a,Ys: list_list_a] :
      ( ( P @ nil_list_a @ nil_list_a )
     => ( ! [X3: list_a,Xs3: list_list_a] : ( P @ ( cons_list_a @ X3 @ Xs3 ) @ nil_list_a )
       => ( ! [Y4: list_a,Ys4: list_list_a] : ( P @ nil_list_a @ ( cons_list_a @ Y4 @ Ys4 ) )
         => ( ! [X3: list_a,Xs3: list_list_a,Y4: list_a,Ys4: list_list_a] :
                ( ( P @ Xs3 @ Ys4 )
               => ( P @ ( cons_list_a @ X3 @ Xs3 ) @ ( cons_list_a @ Y4 @ Ys4 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_652_list__induct2_H,axiom,
    ! [P: list_a > list_a > $o,Xs: list_a,Ys: list_a] :
      ( ( P @ nil_a @ nil_a )
     => ( ! [X3: a,Xs3: list_a] : ( P @ ( cons_a @ X3 @ Xs3 ) @ nil_a )
       => ( ! [Y4: a,Ys4: list_a] : ( P @ nil_a @ ( cons_a @ Y4 @ Ys4 ) )
         => ( ! [X3: a,Xs3: list_a,Y4: a,Ys4: list_a] :
                ( ( P @ Xs3 @ Ys4 )
               => ( P @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y4 @ Ys4 ) ) )
           => ( P @ Xs @ Ys ) ) ) ) ) ).

% list_induct2'
thf(fact_653_neq__Nil__conv,axiom,
    ! [Xs: list_list_a] :
      ( ( Xs != nil_list_a )
      = ( ? [Y5: list_a,Ys2: list_list_a] :
            ( Xs
            = ( cons_list_a @ Y5 @ Ys2 ) ) ) ) ).

% neq_Nil_conv
thf(fact_654_neq__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
      = ( ? [Y5: a,Ys2: list_a] :
            ( Xs
            = ( cons_a @ Y5 @ Ys2 ) ) ) ) ).

% neq_Nil_conv
thf(fact_655_remdups__adj_Ocases,axiom,
    ! [X2: list_list_a] :
      ( ( X2 != nil_list_a )
     => ( ! [X3: list_a] :
            ( X2
           != ( cons_list_a @ X3 @ nil_list_a ) )
       => ~ ! [X3: list_a,Y4: list_a,Xs3: list_list_a] :
              ( X2
             != ( cons_list_a @ X3 @ ( cons_list_a @ Y4 @ Xs3 ) ) ) ) ) ).

% remdups_adj.cases
thf(fact_656_remdups__adj_Ocases,axiom,
    ! [X2: list_a] :
      ( ( X2 != nil_a )
     => ( ! [X3: a] :
            ( X2
           != ( cons_a @ X3 @ nil_a ) )
       => ~ ! [X3: a,Y4: a,Xs3: list_a] :
              ( X2
             != ( cons_a @ X3 @ ( cons_a @ Y4 @ Xs3 ) ) ) ) ) ).

% remdups_adj.cases
thf(fact_657_list_Oexhaust,axiom,
    ! [Y: list_list_a] :
      ( ( Y != nil_list_a )
     => ~ ! [X212: list_a,X223: list_list_a] :
            ( Y
           != ( cons_list_a @ X212 @ X223 ) ) ) ).

% list.exhaust
thf(fact_658_list_Oexhaust,axiom,
    ! [Y: list_a] :
      ( ( Y != nil_a )
     => ~ ! [X212: a,X223: list_a] :
            ( Y
           != ( cons_a @ X212 @ X223 ) ) ) ).

% list.exhaust
thf(fact_659_list_OdiscI,axiom,
    ! [List: list_list_a,X21: list_a,X222: list_list_a] :
      ( ( List
        = ( cons_list_a @ X21 @ X222 ) )
     => ( List != nil_list_a ) ) ).

% list.discI
thf(fact_660_list_OdiscI,axiom,
    ! [List: list_a,X21: a,X222: list_a] :
      ( ( List
        = ( cons_a @ X21 @ X222 ) )
     => ( List != nil_a ) ) ).

% list.discI
thf(fact_661_list_Odistinct_I1_J,axiom,
    ! [X21: list_a,X222: list_list_a] :
      ( nil_list_a
     != ( cons_list_a @ X21 @ X222 ) ) ).

% list.distinct(1)
thf(fact_662_list_Odistinct_I1_J,axiom,
    ! [X21: a,X222: list_a] :
      ( nil_a
     != ( cons_a @ X21 @ X222 ) ) ).

% list.distinct(1)
thf(fact_663_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N5: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N5 ) @ K ) ) ).

% less_imp_diff_less
thf(fact_664_diff__less__mono2,axiom,
    ! [M2: nat,N5: nat,L: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ( ord_less_nat @ M2 @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N5 ) @ ( minus_minus_nat @ L @ M2 ) ) ) ) ).

% diff_less_mono2
thf(fact_665_eq__diff__iff,axiom,
    ! [K: nat,M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N5 )
       => ( ( ( minus_minus_nat @ M2 @ K )
            = ( minus_minus_nat @ N5 @ K ) )
          = ( M2 = N5 ) ) ) ) ).

% eq_diff_iff
thf(fact_666_le__diff__iff,axiom,
    ! [K: nat,M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N5 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N5 @ K ) )
          = ( ord_less_eq_nat @ M2 @ N5 ) ) ) ) ).

% le_diff_iff
thf(fact_667_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N5 )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N5 @ K ) )
          = ( minus_minus_nat @ M2 @ N5 ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_668_diff__le__mono,axiom,
    ! [M2: nat,N5: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ L ) @ ( minus_minus_nat @ N5 @ L ) ) ) ).

% diff_le_mono
thf(fact_669_diff__le__self,axiom,
    ! [M2: nat,N5: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ N5 ) @ M2 ) ).

% diff_le_self
thf(fact_670_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_671_diff__le__mono2,axiom,
    ! [M2: nat,N5: nat,L: nat] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N5 ) @ ( minus_minus_nat @ L @ M2 ) ) ) ).

% diff_le_mono2
thf(fact_672_stream_Osel_I2_J,axiom,
    ! [X1: list_list_a,X22: stream_list_list_a] :
      ( ( stl_list_list_a @ ( sCons_list_list_a @ X1 @ X22 ) )
      = X22 ) ).

% stream.sel(2)
thf(fact_673_stream_Osel_I2_J,axiom,
    ! [X1: list_a,X22: stream_list_a] :
      ( ( stl_list_a @ ( sCons_list_a @ X1 @ X22 ) )
      = X22 ) ).

% stream.sel(2)
thf(fact_674_stream_Osel_I2_J,axiom,
    ! [X1: a,X22: stream_a] :
      ( ( stl_a @ ( sCons_a @ X1 @ X22 ) )
      = X22 ) ).

% stream.sel(2)
thf(fact_675_stream_Oset__induct,axiom,
    ! [X2: list_list_a,A: stream_list_list_a,P: list_list_a > stream_list_list_a > $o] :
      ( ( member_list_list_a @ X2 @ ( sset_list_list_a @ A ) )
     => ( ! [Z1: list_list_a,Z22: stream_list_list_a] : ( P @ Z1 @ ( sCons_list_list_a @ Z1 @ Z22 ) )
       => ( ! [Z1: list_list_a,Z22: stream_list_list_a,Xa: list_list_a] :
              ( ( member_list_list_a @ Xa @ ( sset_list_list_a @ Z22 ) )
             => ( ( P @ Xa @ Z22 )
               => ( P @ Xa @ ( sCons_list_list_a @ Z1 @ Z22 ) ) ) )
         => ( P @ X2 @ A ) ) ) ) ).

% stream.set_induct
thf(fact_676_stream_Oset__induct,axiom,
    ! [X2: a,A: stream_a,P: a > stream_a > $o] :
      ( ( member_a @ X2 @ ( sset_a @ A ) )
     => ( ! [Z1: a,Z22: stream_a] : ( P @ Z1 @ ( sCons_a @ Z1 @ Z22 ) )
       => ( ! [Z1: a,Z22: stream_a,Xa: a] :
              ( ( member_a @ Xa @ ( sset_a @ Z22 ) )
             => ( ( P @ Xa @ Z22 )
               => ( P @ Xa @ ( sCons_a @ Z1 @ Z22 ) ) ) )
         => ( P @ X2 @ A ) ) ) ) ).

% stream.set_induct
thf(fact_677_stream_Oset__induct,axiom,
    ! [X2: list_a,A: stream_list_a,P: list_a > stream_list_a > $o] :
      ( ( member_list_a @ X2 @ ( sset_list_a @ A ) )
     => ( ! [Z1: list_a,Z22: stream_list_a] : ( P @ Z1 @ ( sCons_list_a @ Z1 @ Z22 ) )
       => ( ! [Z1: list_a,Z22: stream_list_a,Xa: list_a] :
              ( ( member_list_a @ Xa @ ( sset_list_a @ Z22 ) )
             => ( ( P @ Xa @ Z22 )
               => ( P @ Xa @ ( sCons_list_a @ Z1 @ Z22 ) ) ) )
         => ( P @ X2 @ A ) ) ) ) ).

% stream.set_induct
thf(fact_678_stream_Oset__cases,axiom,
    ! [E: list_list_a,A: stream_list_list_a] :
      ( ( member_list_list_a @ E @ ( sset_list_list_a @ A ) )
     => ( ! [Z22: stream_list_list_a] :
            ( A
           != ( sCons_list_list_a @ E @ Z22 ) )
       => ~ ! [Z1: list_list_a,Z22: stream_list_list_a] :
              ( ( A
                = ( sCons_list_list_a @ Z1 @ Z22 ) )
             => ~ ( member_list_list_a @ E @ ( sset_list_list_a @ Z22 ) ) ) ) ) ).

% stream.set_cases
thf(fact_679_stream_Oset__cases,axiom,
    ! [E: a,A: stream_a] :
      ( ( member_a @ E @ ( sset_a @ A ) )
     => ( ! [Z22: stream_a] :
            ( A
           != ( sCons_a @ E @ Z22 ) )
       => ~ ! [Z1: a,Z22: stream_a] :
              ( ( A
                = ( sCons_a @ Z1 @ Z22 ) )
             => ~ ( member_a @ E @ ( sset_a @ Z22 ) ) ) ) ) ).

% stream.set_cases
thf(fact_680_stream_Oset__cases,axiom,
    ! [E: list_a,A: stream_list_a] :
      ( ( member_list_a @ E @ ( sset_list_a @ A ) )
     => ( ! [Z22: stream_list_a] :
            ( A
           != ( sCons_list_a @ E @ Z22 ) )
       => ~ ! [Z1: list_a,Z22: stream_list_a] :
              ( ( A
                = ( sCons_list_a @ Z1 @ Z22 ) )
             => ~ ( member_list_a @ E @ ( sset_list_a @ Z22 ) ) ) ) ) ).

% stream.set_cases
thf(fact_681_stream_Oset__intros_I1_J,axiom,
    ! [X1: list_list_a,X22: stream_list_list_a] : ( member_list_list_a @ X1 @ ( sset_list_list_a @ ( sCons_list_list_a @ X1 @ X22 ) ) ) ).

% stream.set_intros(1)
thf(fact_682_stream_Oset__intros_I1_J,axiom,
    ! [X1: a,X22: stream_a] : ( member_a @ X1 @ ( sset_a @ ( sCons_a @ X1 @ X22 ) ) ) ).

% stream.set_intros(1)
thf(fact_683_stream_Oset__intros_I1_J,axiom,
    ! [X1: list_a,X22: stream_list_a] : ( member_list_a @ X1 @ ( sset_list_a @ ( sCons_list_a @ X1 @ X22 ) ) ) ).

% stream.set_intros(1)
thf(fact_684_stream_Oset__intros_I2_J,axiom,
    ! [Y: list_list_a,X22: stream_list_list_a,X1: list_list_a] :
      ( ( member_list_list_a @ Y @ ( sset_list_list_a @ X22 ) )
     => ( member_list_list_a @ Y @ ( sset_list_list_a @ ( sCons_list_list_a @ X1 @ X22 ) ) ) ) ).

% stream.set_intros(2)
thf(fact_685_stream_Oset__intros_I2_J,axiom,
    ! [Y: a,X22: stream_a,X1: a] :
      ( ( member_a @ Y @ ( sset_a @ X22 ) )
     => ( member_a @ Y @ ( sset_a @ ( sCons_a @ X1 @ X22 ) ) ) ) ).

% stream.set_intros(2)
thf(fact_686_stream_Oset__intros_I2_J,axiom,
    ! [Y: list_a,X22: stream_list_a,X1: list_a] :
      ( ( member_list_a @ Y @ ( sset_list_a @ X22 ) )
     => ( member_list_a @ Y @ ( sset_list_a @ ( sCons_list_a @ X1 @ X22 ) ) ) ) ).

% stream.set_intros(2)
thf(fact_687_stream_Osel_I1_J,axiom,
    ! [X1: list_list_a,X22: stream_list_list_a] :
      ( ( shd_list_list_a @ ( sCons_list_list_a @ X1 @ X22 ) )
      = X1 ) ).

% stream.sel(1)
thf(fact_688_stream_Osel_I1_J,axiom,
    ! [X1: a,X22: stream_a] :
      ( ( shd_a @ ( sCons_a @ X1 @ X22 ) )
      = X1 ) ).

% stream.sel(1)
thf(fact_689_stream_Osel_I1_J,axiom,
    ! [X1: list_a,X22: stream_list_a] :
      ( ( shd_list_a @ ( sCons_list_a @ X1 @ X22 ) )
      = X1 ) ).

% stream.sel(1)
thf(fact_690_list_Osel_I3_J,axiom,
    ! [X21: list_a,X222: list_list_a] :
      ( ( tl_list_a @ ( cons_list_a @ X21 @ X222 ) )
      = X222 ) ).

% list.sel(3)
thf(fact_691_list_Osel_I3_J,axiom,
    ! [X21: a,X222: list_a] :
      ( ( tl_a @ ( cons_a @ X21 @ X222 ) )
      = X222 ) ).

% list.sel(3)
thf(fact_692_diff__less__Suc,axiom,
    ! [M2: nat,N5: nat] : ( ord_less_nat @ ( minus_minus_nat @ M2 @ N5 ) @ ( suc @ M2 ) ) ).

% diff_less_Suc
thf(fact_693_Suc__diff__Suc,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_nat @ N5 @ M2 )
     => ( ( suc @ ( minus_minus_nat @ M2 @ ( suc @ N5 ) ) )
        = ( minus_minus_nat @ M2 @ N5 ) ) ) ).

% Suc_diff_Suc
thf(fact_694_length__Suc__conv,axiom,
    ! [Xs: list_list_a,N5: nat] :
      ( ( ( size_s349497388124573686list_a @ Xs )
        = ( suc @ N5 ) )
      = ( ? [Y5: list_a,Ys2: list_list_a] :
            ( ( Xs
              = ( cons_list_a @ Y5 @ Ys2 ) )
            & ( ( size_s349497388124573686list_a @ Ys2 )
              = N5 ) ) ) ) ).

% length_Suc_conv
thf(fact_695_length__Suc__conv,axiom,
    ! [Xs: list_a,N5: nat] :
      ( ( ( size_size_list_a @ Xs )
        = ( suc @ N5 ) )
      = ( ? [Y5: a,Ys2: list_a] :
            ( ( Xs
              = ( cons_a @ Y5 @ Ys2 ) )
            & ( ( size_size_list_a @ Ys2 )
              = N5 ) ) ) ) ).

% length_Suc_conv
thf(fact_696_Suc__length__conv,axiom,
    ! [N5: nat,Xs: list_list_a] :
      ( ( ( suc @ N5 )
        = ( size_s349497388124573686list_a @ Xs ) )
      = ( ? [Y5: list_a,Ys2: list_list_a] :
            ( ( Xs
              = ( cons_list_a @ Y5 @ Ys2 ) )
            & ( ( size_s349497388124573686list_a @ Ys2 )
              = N5 ) ) ) ) ).

% Suc_length_conv
thf(fact_697_Suc__length__conv,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ( suc @ N5 )
        = ( size_size_list_a @ Xs ) )
      = ( ? [Y5: a,Ys2: list_a] :
            ( ( Xs
              = ( cons_a @ Y5 @ Ys2 ) )
            & ( ( size_size_list_a @ Ys2 )
              = N5 ) ) ) ) ).

% Suc_length_conv
thf(fact_698_Suc__diff__le,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_eq_nat @ N5 @ M2 )
     => ( ( minus_minus_nat @ ( suc @ M2 ) @ N5 )
        = ( suc @ ( minus_minus_nat @ M2 @ N5 ) ) ) ) ).

% Suc_diff_le
thf(fact_699_list__induct3,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_list_a,P: list_a > list_a > list_list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_s349497388124573686list_a @ Zs ) )
       => ( ( P @ nil_a @ nil_a @ nil_list_a )
         => ( ! [X3: a,Xs3: list_a,Y4: a,Ys4: list_a,Z2: list_a,Zs2: list_list_a] :
                ( ( ( size_size_list_a @ Xs3 )
                  = ( size_size_list_a @ Ys4 ) )
               => ( ( ( size_size_list_a @ Ys4 )
                    = ( size_s349497388124573686list_a @ Zs2 ) )
                 => ( ( P @ Xs3 @ Ys4 @ Zs2 )
                   => ( P @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y4 @ Ys4 ) @ ( cons_list_a @ Z2 @ Zs2 ) ) ) ) )
           => ( P @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_700_list__induct3,axiom,
    ! [Xs: list_a,Ys: list_list_a,Zs: list_a,P: list_a > list_list_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_s349497388124573686list_a @ Ys ) )
     => ( ( ( size_s349497388124573686list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( P @ nil_a @ nil_list_a @ nil_a )
         => ( ! [X3: a,Xs3: list_a,Y4: list_a,Ys4: list_list_a,Z2: a,Zs2: list_a] :
                ( ( ( size_size_list_a @ Xs3 )
                  = ( size_s349497388124573686list_a @ Ys4 ) )
               => ( ( ( size_s349497388124573686list_a @ Ys4 )
                    = ( size_size_list_a @ Zs2 ) )
                 => ( ( P @ Xs3 @ Ys4 @ Zs2 )
                   => ( P @ ( cons_a @ X3 @ Xs3 ) @ ( cons_list_a @ Y4 @ Ys4 ) @ ( cons_a @ Z2 @ Zs2 ) ) ) ) )
           => ( P @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_701_list__induct3,axiom,
    ! [Xs: list_a,Ys: list_list_a,Zs: list_list_a,P: list_a > list_list_a > list_list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_s349497388124573686list_a @ Ys ) )
     => ( ( ( size_s349497388124573686list_a @ Ys )
          = ( size_s349497388124573686list_a @ Zs ) )
       => ( ( P @ nil_a @ nil_list_a @ nil_list_a )
         => ( ! [X3: a,Xs3: list_a,Y4: list_a,Ys4: list_list_a,Z2: list_a,Zs2: list_list_a] :
                ( ( ( size_size_list_a @ Xs3 )
                  = ( size_s349497388124573686list_a @ Ys4 ) )
               => ( ( ( size_s349497388124573686list_a @ Ys4 )
                    = ( size_s349497388124573686list_a @ Zs2 ) )
                 => ( ( P @ Xs3 @ Ys4 @ Zs2 )
                   => ( P @ ( cons_a @ X3 @ Xs3 ) @ ( cons_list_a @ Y4 @ Ys4 ) @ ( cons_list_a @ Z2 @ Zs2 ) ) ) ) )
           => ( P @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_702_list__induct3,axiom,
    ! [Xs: list_list_a,Ys: list_a,Zs: list_a,P: list_list_a > list_a > list_a > $o] :
      ( ( ( size_s349497388124573686list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( P @ nil_list_a @ nil_a @ nil_a )
         => ( ! [X3: list_a,Xs3: list_list_a,Y4: a,Ys4: list_a,Z2: a,Zs2: list_a] :
                ( ( ( size_s349497388124573686list_a @ Xs3 )
                  = ( size_size_list_a @ Ys4 ) )
               => ( ( ( size_size_list_a @ Ys4 )
                    = ( size_size_list_a @ Zs2 ) )
                 => ( ( P @ Xs3 @ Ys4 @ Zs2 )
                   => ( P @ ( cons_list_a @ X3 @ Xs3 ) @ ( cons_a @ Y4 @ Ys4 ) @ ( cons_a @ Z2 @ Zs2 ) ) ) ) )
           => ( P @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_703_list__induct3,axiom,
    ! [Xs: list_list_a,Ys: list_a,Zs: list_list_a,P: list_list_a > list_a > list_list_a > $o] :
      ( ( ( size_s349497388124573686list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_s349497388124573686list_a @ Zs ) )
       => ( ( P @ nil_list_a @ nil_a @ nil_list_a )
         => ( ! [X3: list_a,Xs3: list_list_a,Y4: a,Ys4: list_a,Z2: list_a,Zs2: list_list_a] :
                ( ( ( size_s349497388124573686list_a @ Xs3 )
                  = ( size_size_list_a @ Ys4 ) )
               => ( ( ( size_size_list_a @ Ys4 )
                    = ( size_s349497388124573686list_a @ Zs2 ) )
                 => ( ( P @ Xs3 @ Ys4 @ Zs2 )
                   => ( P @ ( cons_list_a @ X3 @ Xs3 ) @ ( cons_a @ Y4 @ Ys4 ) @ ( cons_list_a @ Z2 @ Zs2 ) ) ) ) )
           => ( P @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_704_list__induct3,axiom,
    ! [Xs: list_list_a,Ys: list_list_a,Zs: list_a,P: list_list_a > list_list_a > list_a > $o] :
      ( ( ( size_s349497388124573686list_a @ Xs )
        = ( size_s349497388124573686list_a @ Ys ) )
     => ( ( ( size_s349497388124573686list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( P @ nil_list_a @ nil_list_a @ nil_a )
         => ( ! [X3: list_a,Xs3: list_list_a,Y4: list_a,Ys4: list_list_a,Z2: a,Zs2: list_a] :
                ( ( ( size_s349497388124573686list_a @ Xs3 )
                  = ( size_s349497388124573686list_a @ Ys4 ) )
               => ( ( ( size_s349497388124573686list_a @ Ys4 )
                    = ( size_size_list_a @ Zs2 ) )
                 => ( ( P @ Xs3 @ Ys4 @ Zs2 )
                   => ( P @ ( cons_list_a @ X3 @ Xs3 ) @ ( cons_list_a @ Y4 @ Ys4 ) @ ( cons_a @ Z2 @ Zs2 ) ) ) ) )
           => ( P @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_705_list__induct3,axiom,
    ! [Xs: list_list_a,Ys: list_list_a,Zs: list_list_a,P: list_list_a > list_list_a > list_list_a > $o] :
      ( ( ( size_s349497388124573686list_a @ Xs )
        = ( size_s349497388124573686list_a @ Ys ) )
     => ( ( ( size_s349497388124573686list_a @ Ys )
          = ( size_s349497388124573686list_a @ Zs ) )
       => ( ( P @ nil_list_a @ nil_list_a @ nil_list_a )
         => ( ! [X3: list_a,Xs3: list_list_a,Y4: list_a,Ys4: list_list_a,Z2: list_a,Zs2: list_list_a] :
                ( ( ( size_s349497388124573686list_a @ Xs3 )
                  = ( size_s349497388124573686list_a @ Ys4 ) )
               => ( ( ( size_s349497388124573686list_a @ Ys4 )
                    = ( size_s349497388124573686list_a @ Zs2 ) )
                 => ( ( P @ Xs3 @ Ys4 @ Zs2 )
                   => ( P @ ( cons_list_a @ X3 @ Xs3 ) @ ( cons_list_a @ Y4 @ Ys4 ) @ ( cons_list_a @ Z2 @ Zs2 ) ) ) ) )
           => ( P @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_706_list__induct3,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,P: list_a > list_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( ( size_size_list_a @ Ys )
          = ( size_size_list_a @ Zs ) )
       => ( ( P @ nil_a @ nil_a @ nil_a )
         => ( ! [X3: a,Xs3: list_a,Y4: a,Ys4: list_a,Z2: a,Zs2: list_a] :
                ( ( ( size_size_list_a @ Xs3 )
                  = ( size_size_list_a @ Ys4 ) )
               => ( ( ( size_size_list_a @ Ys4 )
                    = ( size_size_list_a @ Zs2 ) )
                 => ( ( P @ Xs3 @ Ys4 @ Zs2 )
                   => ( P @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y4 @ Ys4 ) @ ( cons_a @ Z2 @ Zs2 ) ) ) ) )
           => ( P @ Xs @ Ys @ Zs ) ) ) ) ) ).

% list_induct3
thf(fact_707_list__induct2,axiom,
    ! [Xs: list_a,Ys: list_list_a,P: list_a > list_list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_s349497388124573686list_a @ Ys ) )
     => ( ( P @ nil_a @ nil_list_a )
       => ( ! [X3: a,Xs3: list_a,Y4: list_a,Ys4: list_list_a] :
              ( ( ( size_size_list_a @ Xs3 )
                = ( size_s349497388124573686list_a @ Ys4 ) )
             => ( ( P @ Xs3 @ Ys4 )
               => ( P @ ( cons_a @ X3 @ Xs3 ) @ ( cons_list_a @ Y4 @ Ys4 ) ) ) )
         => ( P @ Xs @ Ys ) ) ) ) ).

% list_induct2
thf(fact_708_list__induct2,axiom,
    ! [Xs: list_list_a,Ys: list_a,P: list_list_a > list_a > $o] :
      ( ( ( size_s349497388124573686list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( P @ nil_list_a @ nil_a )
       => ( ! [X3: list_a,Xs3: list_list_a,Y4: a,Ys4: list_a] :
              ( ( ( size_s349497388124573686list_a @ Xs3 )
                = ( size_size_list_a @ Ys4 ) )
             => ( ( P @ Xs3 @ Ys4 )
               => ( P @ ( cons_list_a @ X3 @ Xs3 ) @ ( cons_a @ Y4 @ Ys4 ) ) ) )
         => ( P @ Xs @ Ys ) ) ) ) ).

% list_induct2
thf(fact_709_list__induct2,axiom,
    ! [Xs: list_list_a,Ys: list_list_a,P: list_list_a > list_list_a > $o] :
      ( ( ( size_s349497388124573686list_a @ Xs )
        = ( size_s349497388124573686list_a @ Ys ) )
     => ( ( P @ nil_list_a @ nil_list_a )
       => ( ! [X3: list_a,Xs3: list_list_a,Y4: list_a,Ys4: list_list_a] :
              ( ( ( size_s349497388124573686list_a @ Xs3 )
                = ( size_s349497388124573686list_a @ Ys4 ) )
             => ( ( P @ Xs3 @ Ys4 )
               => ( P @ ( cons_list_a @ X3 @ Xs3 ) @ ( cons_list_a @ Y4 @ Ys4 ) ) ) )
         => ( P @ Xs @ Ys ) ) ) ) ).

% list_induct2
thf(fact_710_list__induct2,axiom,
    ! [Xs: list_a,Ys: list_a,P: list_a > list_a > $o] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ( P @ nil_a @ nil_a )
       => ( ! [X3: a,Xs3: list_a,Y4: a,Ys4: list_a] :
              ( ( ( size_size_list_a @ Xs3 )
                = ( size_size_list_a @ Ys4 ) )
             => ( ( P @ Xs3 @ Ys4 )
               => ( P @ ( cons_a @ X3 @ Xs3 ) @ ( cons_a @ Y4 @ Ys4 ) ) ) )
         => ( P @ Xs @ Ys ) ) ) ) ).

% list_induct2
thf(fact_711_less__diff__iff,axiom,
    ! [K: nat,M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ K @ M2 )
     => ( ( ord_less_eq_nat @ K @ N5 )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N5 @ K ) )
          = ( ord_less_nat @ M2 @ N5 ) ) ) ) ).

% less_diff_iff
thf(fact_712_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_713_impossible__Cons,axiom,
    ! [Xs: list_list_a,Ys: list_list_a,X2: list_a] :
      ( ( ord_less_eq_nat @ ( size_s349497388124573686list_a @ Xs ) @ ( size_s349497388124573686list_a @ Ys ) )
     => ( Xs
       != ( cons_list_a @ X2 @ Ys ) ) ) ).

% impossible_Cons
thf(fact_714_impossible__Cons,axiom,
    ! [Xs: list_a,Ys: list_a,X2: a] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) )
     => ( Xs
       != ( cons_a @ X2 @ Ys ) ) ) ).

% impossible_Cons
thf(fact_715_snth__Stream,axiom,
    ! [X2: stream_list_a,S: stream_stream_list_a,I: nat] :
      ( ( snth_stream_list_a @ ( sCons_stream_list_a @ X2 @ S ) @ ( suc @ I ) )
      = ( snth_stream_list_a @ S @ I ) ) ).

% snth_Stream
thf(fact_716_snth__Stream,axiom,
    ! [X2: stream_a,S: stream_stream_a,I: nat] :
      ( ( snth_stream_a @ ( sCons_stream_a @ X2 @ S ) @ ( suc @ I ) )
      = ( snth_stream_a @ S @ I ) ) ).

% snth_Stream
thf(fact_717_snth__Stream,axiom,
    ! [X2: list_list_a,S: stream_list_list_a,I: nat] :
      ( ( snth_list_list_a @ ( sCons_list_list_a @ X2 @ S ) @ ( suc @ I ) )
      = ( snth_list_list_a @ S @ I ) ) ).

% snth_Stream
thf(fact_718_snth__Stream,axiom,
    ! [X2: a,S: stream_a,I: nat] :
      ( ( snth_a @ ( sCons_a @ X2 @ S ) @ ( suc @ I ) )
      = ( snth_a @ S @ I ) ) ).

% snth_Stream
thf(fact_719_snth__Stream,axiom,
    ! [X2: list_a,S: stream_list_a,I: nat] :
      ( ( snth_list_a @ ( sCons_list_a @ X2 @ S ) @ ( suc @ I ) )
      = ( snth_list_a @ S @ I ) ) ).

% snth_Stream
thf(fact_720_tl__Nil,axiom,
    ! [Xs: list_list_a] :
      ( ( ( tl_list_a @ Xs )
        = nil_list_a )
      = ( ( Xs = nil_list_a )
        | ? [X4: list_a] :
            ( Xs
            = ( cons_list_a @ X4 @ nil_list_a ) ) ) ) ).

% tl_Nil
thf(fact_721_tl__Nil,axiom,
    ! [Xs: list_a] :
      ( ( ( tl_a @ Xs )
        = nil_a )
      = ( ( Xs = nil_a )
        | ? [X4: a] :
            ( Xs
            = ( cons_a @ X4 @ nil_a ) ) ) ) ).

% tl_Nil
thf(fact_722_Nil__tl,axiom,
    ! [Xs: list_list_a] :
      ( ( nil_list_a
        = ( tl_list_a @ Xs ) )
      = ( ( Xs = nil_list_a )
        | ? [X4: list_a] :
            ( Xs
            = ( cons_list_a @ X4 @ nil_list_a ) ) ) ) ).

% Nil_tl
thf(fact_723_Nil__tl,axiom,
    ! [Xs: list_a] :
      ( ( nil_a
        = ( tl_a @ Xs ) )
      = ( ( Xs = nil_a )
        | ? [X4: a] :
            ( Xs
            = ( cons_a @ X4 @ nil_a ) ) ) ) ).

% Nil_tl
thf(fact_724_stream_Oexhaust__sel,axiom,
    ! [Stream: stream_list_list_a] :
      ( Stream
      = ( sCons_list_list_a @ ( shd_list_list_a @ Stream ) @ ( stl_list_list_a @ Stream ) ) ) ).

% stream.exhaust_sel
thf(fact_725_stream_Oexhaust__sel,axiom,
    ! [Stream: stream_list_a] :
      ( Stream
      = ( sCons_list_a @ ( shd_list_a @ Stream ) @ ( stl_list_a @ Stream ) ) ) ).

% stream.exhaust_sel
thf(fact_726_stream_Oexhaust__sel,axiom,
    ! [Stream: stream_a] :
      ( Stream
      = ( sCons_a @ ( shd_a @ Stream ) @ ( stl_a @ Stream ) ) ) ).

% stream.exhaust_sel
thf(fact_727_Suc__le__length__iff,axiom,
    ! [N5: nat,Xs: list_list_a] :
      ( ( ord_less_eq_nat @ ( suc @ N5 ) @ ( size_s349497388124573686list_a @ Xs ) )
      = ( ? [X4: list_a,Ys2: list_list_a] :
            ( ( Xs
              = ( cons_list_a @ X4 @ Ys2 ) )
            & ( ord_less_eq_nat @ N5 @ ( size_s349497388124573686list_a @ Ys2 ) ) ) ) ) ).

% Suc_le_length_iff
thf(fact_728_Suc__le__length__iff,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ord_less_eq_nat @ ( suc @ N5 ) @ ( size_size_list_a @ Xs ) )
      = ( ? [X4: a,Ys2: list_a] :
            ( ( Xs
              = ( cons_a @ X4 @ Ys2 ) )
            & ( ord_less_eq_nat @ N5 @ ( size_size_list_a @ Ys2 ) ) ) ) ) ).

% Suc_le_length_iff
thf(fact_729_cycle__decomp,axiom,
    ! [U: list_list_a] :
      ( ( U != nil_list_a )
     => ( ( cycle_list_a @ U )
        = ( shift_list_a @ U @ ( cycle_list_a @ U ) ) ) ) ).

% cycle_decomp
thf(fact_730_cycle__decomp,axiom,
    ! [U: list_a] :
      ( ( U != nil_a )
     => ( ( cycle_a @ U )
        = ( shift_a @ U @ ( cycle_a @ U ) ) ) ) ).

% cycle_decomp
thf(fact_731_length__Cons,axiom,
    ! [X2: list_a,Xs: list_list_a] :
      ( ( size_s349497388124573686list_a @ ( cons_list_a @ X2 @ Xs ) )
      = ( suc @ ( size_s349497388124573686list_a @ Xs ) ) ) ).

% length_Cons
thf(fact_732_length__Cons,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( size_size_list_a @ ( cons_a @ X2 @ Xs ) )
      = ( suc @ ( size_size_list_a @ Xs ) ) ) ).

% length_Cons
thf(fact_733_flat_Ocode,axiom,
    ( flat_list_a
    = ( ^ [Ws2: stream_list_list_a] :
          ( sCons_list_a @ ( hd_list_a @ ( shd_list_list_a @ Ws2 ) )
          @ ( flat_list_a
            @ ( if_str7505741754068378070list_a
              @ ( ( tl_list_a @ ( shd_list_list_a @ Ws2 ) )
                = nil_list_a )
              @ ( stl_list_list_a @ Ws2 )
              @ ( sCons_list_list_a @ ( tl_list_a @ ( shd_list_list_a @ Ws2 ) ) @ ( stl_list_list_a @ Ws2 ) ) ) ) ) ) ) ).

% flat.code
thf(fact_734_flat_Ocode,axiom,
    ( flat_list_list_a
    = ( ^ [Ws2: stream2255243159586646806list_a] :
          ( sCons_list_list_a @ ( hd_list_list_a @ ( shd_list_list_list_a @ Ws2 ) )
          @ ( flat_list_list_a
            @ ( if_str8217234800680828380list_a
              @ ( ( tl_list_list_a @ ( shd_list_list_list_a @ Ws2 ) )
                = nil_list_list_a )
              @ ( stl_list_list_list_a @ Ws2 )
              @ ( sCons_8165023923567507367list_a @ ( tl_list_list_a @ ( shd_list_list_list_a @ Ws2 ) ) @ ( stl_list_list_list_a @ Ws2 ) ) ) ) ) ) ) ).

% flat.code
thf(fact_735_flat_Ocode,axiom,
    ( flat_a
    = ( ^ [Ws2: stream_list_a] :
          ( sCons_a @ ( hd_a @ ( shd_list_a @ Ws2 ) )
          @ ( flat_a
            @ ( if_stream_list_a
              @ ( ( tl_a @ ( shd_list_a @ Ws2 ) )
                = nil_a )
              @ ( stl_list_a @ Ws2 )
              @ ( sCons_list_a @ ( tl_a @ ( shd_list_a @ Ws2 ) ) @ ( stl_list_a @ Ws2 ) ) ) ) ) ) ) ).

% flat.code
thf(fact_736_smember__code,axiom,
    ! [X2: list_a,Y: list_a,S: stream_list_a] :
      ( ( smember_list_a @ X2 @ ( sCons_list_a @ Y @ S ) )
      = ( ( X2 != Y )
       => ( smember_list_a @ X2 @ S ) ) ) ).

% smember_code
thf(fact_737_smember__code,axiom,
    ! [X2: list_list_a,Y: list_list_a,S: stream_list_list_a] :
      ( ( smember_list_list_a @ X2 @ ( sCons_list_list_a @ Y @ S ) )
      = ( ( X2 != Y )
       => ( smember_list_list_a @ X2 @ S ) ) ) ).

% smember_code
thf(fact_738_smember__code,axiom,
    ! [X2: a,Y: a,S: stream_a] :
      ( ( smember_a @ X2 @ ( sCons_a @ Y @ S ) )
      = ( ( X2 != Y )
       => ( smember_a @ X2 @ S ) ) ) ).

% smember_code
thf(fact_739_id__stake__snth__sdrop,axiom,
    ! [S: stream_list_a,I: nat] :
      ( S
      = ( shift_list_a @ ( stake_list_a @ I @ S ) @ ( sCons_list_a @ ( snth_list_a @ S @ I ) @ ( sdrop_list_a @ ( suc @ I ) @ S ) ) ) ) ).

% id_stake_snth_sdrop
thf(fact_740_id__stake__snth__sdrop,axiom,
    ! [S: stream_a,I: nat] :
      ( S
      = ( shift_a @ ( stake_a @ I @ S ) @ ( sCons_a @ ( snth_a @ S @ I ) @ ( sdrop_a @ ( suc @ I ) @ S ) ) ) ) ).

% id_stake_snth_sdrop
thf(fact_741_sdrop__simps_I2_J,axiom,
    ! [N5: nat,S: stream_list_a] :
      ( ( stl_list_a @ ( sdrop_list_a @ N5 @ S ) )
      = ( sdrop_list_a @ ( suc @ N5 ) @ S ) ) ).

% sdrop_simps(2)
thf(fact_742_sdrop__simps_I2_J,axiom,
    ! [N5: nat,S: stream_a] :
      ( ( stl_a @ ( sdrop_a @ N5 @ S ) )
      = ( sdrop_a @ ( suc @ N5 ) @ S ) ) ).

% sdrop_simps(2)
thf(fact_743_sdrop__simps_I1_J,axiom,
    ! [N5: nat,S: stream_a] :
      ( ( shd_a @ ( sdrop_a @ N5 @ S ) )
      = ( snth_a @ S @ N5 ) ) ).

% sdrop_simps(1)
thf(fact_744_sdrop__simps_I1_J,axiom,
    ! [N5: nat,S: stream_list_a] :
      ( ( shd_list_a @ ( sdrop_list_a @ N5 @ S ) )
      = ( snth_list_a @ S @ N5 ) ) ).

% sdrop_simps(1)
thf(fact_745_list_Ocollapse,axiom,
    ! [List: list_a] :
      ( ( List != nil_a )
     => ( ( cons_a @ ( hd_a @ List ) @ ( tl_a @ List ) )
        = List ) ) ).

% list.collapse
thf(fact_746_hd__Cons__tl,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( cons_a @ ( hd_a @ Xs ) @ ( tl_a @ Xs ) )
        = Xs ) ) ).

% hd_Cons_tl
thf(fact_747_shift__simps_I1_J,axiom,
    ! [Xs: list_a,S: stream_a] :
      ( ( ( Xs = nil_a )
       => ( ( shd_a @ ( shift_a @ Xs @ S ) )
          = ( shd_a @ S ) ) )
      & ( ( Xs != nil_a )
       => ( ( shd_a @ ( shift_a @ Xs @ S ) )
          = ( hd_a @ Xs ) ) ) ) ).

% shift_simps(1)
thf(fact_748_shift__simps_I1_J,axiom,
    ! [Xs: list_list_a,S: stream_list_a] :
      ( ( ( Xs = nil_list_a )
       => ( ( shd_list_a @ ( shift_list_a @ Xs @ S ) )
          = ( shd_list_a @ S ) ) )
      & ( ( Xs != nil_list_a )
       => ( ( shd_list_a @ ( shift_list_a @ Xs @ S ) )
          = ( hd_list_a @ Xs ) ) ) ) ).

% shift_simps(1)
thf(fact_749_sdrop__cycle__eq,axiom,
    ! [U: list_a] :
      ( ( U != nil_a )
     => ( ( sdrop_a @ ( size_size_list_a @ U ) @ ( cycle_a @ U ) )
        = ( cycle_a @ U ) ) ) ).

% sdrop_cycle_eq
thf(fact_750_sdrop__stl,axiom,
    ! [N5: nat,S: stream_list_a] :
      ( ( sdrop_list_a @ N5 @ ( stl_list_a @ S ) )
      = ( stl_list_a @ ( sdrop_list_a @ N5 @ S ) ) ) ).

% sdrop_stl
thf(fact_751_sdrop__stl,axiom,
    ! [N5: nat,S: stream_a] :
      ( ( sdrop_a @ N5 @ ( stl_a @ S ) )
      = ( stl_a @ ( sdrop_a @ N5 @ S ) ) ) ).

% sdrop_stl
thf(fact_752_list_Oexpand,axiom,
    ! [List: list_a,List2: list_a] :
      ( ( ( List = nil_a )
        = ( List2 = nil_a ) )
     => ( ( ( List != nil_a )
         => ( ( List2 != nil_a )
           => ( ( ( hd_a @ List )
                = ( hd_a @ List2 ) )
              & ( ( tl_a @ List )
                = ( tl_a @ List2 ) ) ) ) )
       => ( List = List2 ) ) ) ).

% list.expand
thf(fact_753_cycle_Osimps_I1_J,axiom,
    ! [Xs: list_list_a] :
      ( ( shd_list_a @ ( cycle_list_a @ Xs ) )
      = ( hd_list_a @ Xs ) ) ).

% cycle.simps(1)
thf(fact_754_sdrop_Osimps_I2_J,axiom,
    ! [N5: nat,S: stream_list_a] :
      ( ( sdrop_list_a @ ( suc @ N5 ) @ S )
      = ( sdrop_list_a @ N5 @ ( stl_list_a @ S ) ) ) ).

% sdrop.simps(2)
thf(fact_755_sdrop_Osimps_I2_J,axiom,
    ! [N5: nat,S: stream_a] :
      ( ( sdrop_a @ ( suc @ N5 ) @ S )
      = ( sdrop_a @ N5 @ ( stl_a @ S ) ) ) ).

% sdrop.simps(2)
thf(fact_756_stake__sdrop,axiom,
    ! [N5: nat,S: stream_a] :
      ( ( shift_a @ ( stake_a @ N5 @ S ) @ ( sdrop_a @ N5 @ S ) )
      = S ) ).

% stake_sdrop
thf(fact_757_list_Oexhaust__sel,axiom,
    ! [List: list_a] :
      ( ( List != nil_a )
     => ( List
        = ( cons_a @ ( hd_a @ List ) @ ( tl_a @ List ) ) ) ) ).

% list.exhaust_sel
thf(fact_758_diff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_759_flat_Osimps_I1_J,axiom,
    ! [Ws: stream_list_a] :
      ( ( shd_a @ ( flat_a @ Ws ) )
      = ( hd_a @ ( shd_list_a @ Ws ) ) ) ).

% flat.simps(1)
thf(fact_760_flat_Osimps_I1_J,axiom,
    ! [Ws: stream_list_list_a] :
      ( ( shd_list_a @ ( flat_list_a @ Ws ) )
      = ( hd_list_a @ ( shd_list_list_a @ Ws ) ) ) ).

% flat.simps(1)
thf(fact_761_Stream_Osmember__def,axiom,
    ( smember_list_a
    = ( ^ [X4: list_a,S2: stream_list_a] : ( member_list_a @ X4 @ ( sset_list_a @ S2 ) ) ) ) ).

% Stream.smember_def
thf(fact_762_cycle__rotated,axiom,
    ! [V: list_a,U: list_a,S: stream_a] :
      ( ( V != nil_a )
     => ( ( ( cycle_a @ U )
          = ( shift_a @ V @ S ) )
       => ( ( cycle_a @ ( append_a @ ( tl_a @ U ) @ ( cons_a @ ( hd_a @ U ) @ nil_a ) ) )
          = ( shift_a @ ( tl_a @ V ) @ S ) ) ) ) ).

% cycle_rotated
thf(fact_763_product__lists_Osimps_I1_J,axiom,
    ( ( product_lists_a @ nil_list_a )
    = ( cons_list_a @ nil_a @ nil_list_a ) ) ).

% product_lists.simps(1)
thf(fact_764_cycle_Ocode,axiom,
    ( cycle_a
    = ( ^ [Xs2: list_a] : ( sCons_a @ ( hd_a @ Xs2 ) @ ( cycle_a @ ( append_a @ ( tl_a @ Xs2 ) @ ( cons_a @ ( hd_a @ Xs2 ) @ nil_a ) ) ) ) ) ) ).

% cycle.code
thf(fact_765_append__is__Nil__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = nil_a )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% append_is_Nil_conv
thf(fact_766_Nil__is__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( nil_a
        = ( append_a @ Xs @ Ys ) )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% Nil_is_append_conv
thf(fact_767_self__append__conv2,axiom,
    ! [Y: list_a,Xs: list_a] :
      ( ( Y
        = ( append_a @ Xs @ Y ) )
      = ( Xs = nil_a ) ) ).

% self_append_conv2
thf(fact_768_append__self__conv2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_a ) ) ).

% append_self_conv2
thf(fact_769_self__append__conv,axiom,
    ! [Y: list_a,Ys: list_a] :
      ( ( Y
        = ( append_a @ Y @ Ys ) )
      = ( Ys = nil_a ) ) ).

% self_append_conv
thf(fact_770_append__self__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_a ) ) ).

% append_self_conv
thf(fact_771_append__Nil2,axiom,
    ! [Xs: list_a] :
      ( ( append_a @ Xs @ nil_a )
      = Xs ) ).

% append_Nil2
thf(fact_772_append_Oright__neutral,axiom,
    ! [A: list_a] :
      ( ( append_a @ A @ nil_a )
      = A ) ).

% append.right_neutral
thf(fact_773_append__eq__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a,Us: list_a,Vs: list_a] :
      ( ( ( ( size_size_list_a @ Xs )
          = ( size_size_list_a @ Ys ) )
        | ( ( size_size_list_a @ Us )
          = ( size_size_list_a @ Vs ) ) )
     => ( ( ( append_a @ Xs @ Us )
          = ( append_a @ Ys @ Vs ) )
        = ( ( Xs = Ys )
          & ( Us = Vs ) ) ) ) ).

% append_eq_append_conv
thf(fact_774_shift__append,axiom,
    ! [Xs: list_a,Ys: list_a,S: stream_a] :
      ( ( shift_a @ ( append_a @ Xs @ Ys ) @ S )
      = ( shift_a @ Xs @ ( shift_a @ Ys @ S ) ) ) ).

% shift_append
thf(fact_775_append1__eq__conv,axiom,
    ! [Xs: list_a,X2: a,Ys: list_a,Y: a] :
      ( ( ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) )
        = ( append_a @ Ys @ ( cons_a @ Y @ nil_a ) ) )
      = ( ( Xs = Ys )
        & ( X2 = Y ) ) ) ).

% append1_eq_conv
thf(fact_776_tl__append2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
        = ( append_a @ ( tl_a @ Xs ) @ Ys ) ) ) ).

% tl_append2
thf(fact_777_hd__append2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
        = ( hd_a @ Xs ) ) ) ).

% hd_append2
thf(fact_778_nth__append__length,axiom,
    ! [Xs: list_a,X2: a,Ys: list_a] :
      ( ( nth_a @ ( append_a @ Xs @ ( cons_a @ X2 @ Ys ) ) @ ( size_size_list_a @ Xs ) )
      = X2 ) ).

% nth_append_length
thf(fact_779_eq__Nil__appendI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_a @ nil_a @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_780_append_Oleft__neutral,axiom,
    ! [A: list_a] :
      ( ( append_a @ nil_a @ A )
      = A ) ).

% append.left_neutral
thf(fact_781_append__Nil,axiom,
    ! [Ys: list_a] :
      ( ( append_a @ nil_a @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_782_rev__induct,axiom,
    ! [P: list_a > $o,Xs: list_a] :
      ( ( P @ nil_a )
     => ( ! [X3: a,Xs3: list_a] :
            ( ( P @ Xs3 )
           => ( P @ ( append_a @ Xs3 @ ( cons_a @ X3 @ nil_a ) ) ) )
       => ( P @ Xs ) ) ) ).

% rev_induct
thf(fact_783_rev__exhaust,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ~ ! [Ys4: list_a,Y4: a] :
            ( Xs
           != ( append_a @ Ys4 @ ( cons_a @ Y4 @ nil_a ) ) ) ) ).

% rev_exhaust
thf(fact_784_Cons__eq__append__conv,axiom,
    ! [X2: a,Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( cons_a @ X2 @ Xs )
        = ( append_a @ Ys @ Zs ) )
      = ( ( ( Ys = nil_a )
          & ( ( cons_a @ X2 @ Xs )
            = Zs ) )
        | ? [Ys5: list_a] :
            ( ( ( cons_a @ X2 @ Ys5 )
              = Ys )
            & ( Xs
              = ( append_a @ Ys5 @ Zs ) ) ) ) ) ).

% Cons_eq_append_conv
thf(fact_785_append__eq__Cons__conv,axiom,
    ! [Ys: list_a,Zs: list_a,X2: a,Xs: list_a] :
      ( ( ( append_a @ Ys @ Zs )
        = ( cons_a @ X2 @ Xs ) )
      = ( ( ( Ys = nil_a )
          & ( Zs
            = ( cons_a @ X2 @ Xs ) ) )
        | ? [Ys5: list_a] :
            ( ( Ys
              = ( cons_a @ X2 @ Ys5 ) )
            & ( ( append_a @ Ys5 @ Zs )
              = Xs ) ) ) ) ).

% append_eq_Cons_conv
thf(fact_786_rev__nonempty__induct,axiom,
    ! [Xs: list_a,P: list_a > $o] :
      ( ( Xs != nil_a )
     => ( ! [X3: a] : ( P @ ( cons_a @ X3 @ nil_a ) )
       => ( ! [X3: a,Xs3: list_a] :
              ( ( Xs3 != nil_a )
             => ( ( P @ Xs3 )
               => ( P @ ( append_a @ Xs3 @ ( cons_a @ X3 @ nil_a ) ) ) ) )
         => ( P @ Xs ) ) ) ) ).

% rev_nonempty_induct
thf(fact_787_tl__append__if,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( Xs = nil_a )
       => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
          = ( tl_a @ Ys ) ) )
      & ( ( Xs != nil_a )
       => ( ( tl_a @ ( append_a @ Xs @ Ys ) )
          = ( append_a @ ( tl_a @ Xs ) @ Ys ) ) ) ) ).

% tl_append_if
thf(fact_788_hd__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( Xs = nil_a )
       => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
          = ( hd_a @ Ys ) ) )
      & ( ( Xs != nil_a )
       => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
          = ( hd_a @ Xs ) ) ) ) ).

% hd_append
thf(fact_789_longest__common__prefix,axiom,
    ! [Xs: list_a,Ys: list_a] :
    ? [Ps: list_a,Xs4: list_a,Ys6: list_a] :
      ( ( Xs
        = ( append_a @ Ps @ Xs4 ) )
      & ( Ys
        = ( append_a @ Ps @ Ys6 ) )
      & ( ( Xs4 = nil_a )
        | ( Ys6 = nil_a )
        | ( ( hd_a @ Xs4 )
         != ( hd_a @ Ys6 ) ) ) ) ).

% longest_common_prefix
thf(fact_790_same__length__different,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != Ys )
     => ( ( ( size_size_list_a @ Xs )
          = ( size_size_list_a @ Ys ) )
       => ? [Pre: list_a,X3: a,Xs4: list_a,Y4: a,Ys6: list_a] :
            ( ( X3 != Y4 )
            & ( Xs
              = ( append_a @ Pre @ ( append_a @ ( cons_a @ X3 @ nil_a ) @ Xs4 ) ) )
            & ( Ys
              = ( append_a @ Pre @ ( append_a @ ( cons_a @ Y4 @ nil_a ) @ Ys6 ) ) ) ) ) ) ).

% same_length_different
thf(fact_791_length__Suc__conv__rev,axiom,
    ! [Xs: list_a,N5: nat] :
      ( ( ( size_size_list_a @ Xs )
        = ( suc @ N5 ) )
      = ( ? [Y5: a,Ys2: list_a] :
            ( ( Xs
              = ( append_a @ Ys2 @ ( cons_a @ Y5 @ nil_a ) ) )
            & ( ( size_size_list_a @ Ys2 )
              = N5 ) ) ) ) ).

% length_Suc_conv_rev
thf(fact_792_length__append__singleton,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( size_size_list_a @ ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) ) )
      = ( suc @ ( size_size_list_a @ Xs ) ) ) ).

% length_append_singleton
thf(fact_793_nth__append,axiom,
    ! [N5: nat,Xs: list_a,Ys: list_a] :
      ( ( ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
       => ( ( nth_a @ ( append_a @ Xs @ Ys ) @ N5 )
          = ( nth_a @ Xs @ N5 ) ) )
      & ( ~ ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
       => ( ( nth_a @ ( append_a @ Xs @ Ys ) @ N5 )
          = ( nth_a @ Ys @ ( minus_minus_nat @ N5 @ ( size_size_list_a @ Xs ) ) ) ) ) ) ).

% nth_append
thf(fact_794_cycle__Cons,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( cycle_a @ ( cons_a @ X2 @ Xs ) )
      = ( sCons_a @ X2 @ ( cycle_a @ ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) ) ) ) ) ).

% cycle_Cons
thf(fact_795_stake__Suc,axiom,
    ! [N5: nat,S: stream_list_a] :
      ( ( stake_list_a @ ( suc @ N5 ) @ S )
      = ( append_list_a @ ( stake_list_a @ N5 @ S ) @ ( cons_list_a @ ( snth_list_a @ S @ N5 ) @ nil_list_a ) ) ) ).

% stake_Suc
thf(fact_796_stake__Suc,axiom,
    ! [N5: nat,S: stream_a] :
      ( ( stake_a @ ( suc @ N5 ) @ S )
      = ( append_a @ ( stake_a @ N5 @ S ) @ ( cons_a @ ( snth_a @ S @ N5 ) @ nil_a ) ) ) ).

% stake_Suc
thf(fact_797_cycle_Osimps_I2_J,axiom,
    ! [Xs: list_list_a] :
      ( ( stl_list_a @ ( cycle_list_a @ Xs ) )
      = ( cycle_list_a @ ( append_list_a @ ( tl_list_a @ Xs ) @ ( cons_list_a @ ( hd_list_a @ Xs ) @ nil_list_a ) ) ) ) ).

% cycle.simps(2)
thf(fact_798_cycle_Osimps_I2_J,axiom,
    ! [Xs: list_a] :
      ( ( stl_a @ ( cycle_a @ Xs ) )
      = ( cycle_a @ ( append_a @ ( tl_a @ Xs ) @ ( cons_a @ ( hd_a @ Xs ) @ nil_a ) ) ) ) ).

% cycle.simps(2)
thf(fact_799_rotate1__hd__tl,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( rotate1_a @ Xs )
        = ( append_a @ ( tl_a @ Xs ) @ ( cons_a @ ( hd_a @ Xs ) @ nil_a ) ) ) ) ).

% rotate1_hd_tl
thf(fact_800_SuccI,axiom,
    ! [Kl: list_a,K: a,Kl2: set_list_a] :
      ( ( member_list_a @ ( append_a @ Kl @ ( cons_a @ K @ nil_a ) ) @ Kl2 )
     => ( member_a @ K @ ( bNF_Greatest_Succ_a @ Kl2 @ Kl ) ) ) ).

% SuccI
thf(fact_801_SuccD,axiom,
    ! [K: a,Kl2: set_list_a,Kl: list_a] :
      ( ( member_a @ K @ ( bNF_Greatest_Succ_a @ Kl2 @ Kl ) )
     => ( member_list_a @ ( append_a @ Kl @ ( cons_a @ K @ nil_a ) ) @ Kl2 ) ) ).

% SuccD
thf(fact_802_take__Suc__conv__app__nth,axiom,
    ! [I: nat,Xs: list_a] :
      ( ( ord_less_nat @ I @ ( size_size_list_a @ Xs ) )
     => ( ( take_a @ ( suc @ I ) @ Xs )
        = ( append_a @ ( take_a @ I @ Xs ) @ ( cons_a @ ( nth_a @ Xs @ I ) @ nil_a ) ) ) ) ).

% take_Suc_conv_app_nth
thf(fact_803_rotate1__is__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( rotate1_a @ Xs )
        = nil_a )
      = ( Xs = nil_a ) ) ).

% rotate1_is_Nil_conv
thf(fact_804_length__rotate1,axiom,
    ! [Xs: list_a] :
      ( ( size_size_list_a @ ( rotate1_a @ Xs ) )
      = ( size_size_list_a @ Xs ) ) ).

% length_rotate1
thf(fact_805_bind__simps_I1_J,axiom,
    ! [F: a > list_a] :
      ( ( bind_a_a @ nil_a @ F )
      = nil_a ) ).

% bind_simps(1)
thf(fact_806_take__all__iff,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ( take_a @ N5 @ Xs )
        = Xs )
      = ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N5 ) ) ).

% take_all_iff
thf(fact_807_take__all,axiom,
    ! [Xs: list_a,N5: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N5 )
     => ( ( take_a @ N5 @ Xs )
        = Xs ) ) ).

% take_all
thf(fact_808_nth__take,axiom,
    ! [I: nat,N5: nat,Xs: list_a] :
      ( ( ord_less_nat @ I @ N5 )
     => ( ( nth_a @ ( take_a @ N5 @ Xs ) @ I )
        = ( nth_a @ Xs @ I ) ) ) ).

% nth_take
thf(fact_809_take__append,axiom,
    ! [N5: nat,Xs: list_a,Ys: list_a] :
      ( ( take_a @ N5 @ ( append_a @ Xs @ Ys ) )
      = ( append_a @ ( take_a @ N5 @ Xs ) @ ( take_a @ ( minus_minus_nat @ N5 @ ( size_size_list_a @ Xs ) ) @ Ys ) ) ) ).

% take_append
thf(fact_810_stake__cycle__le,axiom,
    ! [U: list_a,N5: nat] :
      ( ( U != nil_a )
     => ( ( ord_less_nat @ N5 @ ( size_size_list_a @ U ) )
       => ( ( stake_a @ N5 @ ( cycle_a @ U ) )
          = ( take_a @ N5 @ U ) ) ) ) ).

% stake_cycle_le
thf(fact_811_take__Nil,axiom,
    ! [N5: nat] :
      ( ( take_a @ N5 @ nil_a )
      = nil_a ) ).

% take_Nil
thf(fact_812_rotate1_Osimps_I1_J,axiom,
    ( ( rotate1_a @ nil_a )
    = nil_a ) ).

% rotate1.simps(1)
thf(fact_813_take__tl,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( take_a @ N5 @ ( tl_a @ Xs ) )
      = ( tl_a @ ( take_a @ ( suc @ N5 ) @ Xs ) ) ) ).

% take_tl
thf(fact_814_nth__take__lemma,axiom,
    ! [K: nat,Xs: list_a,Ys: list_a] :
      ( ( ord_less_eq_nat @ K @ ( size_size_list_a @ Xs ) )
     => ( ( ord_less_eq_nat @ K @ ( size_size_list_a @ Ys ) )
       => ( ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ K )
             => ( ( nth_a @ Xs @ I3 )
                = ( nth_a @ Ys @ I3 ) ) )
         => ( ( take_a @ K @ Xs )
            = ( take_a @ K @ Ys ) ) ) ) ) ).

% nth_take_lemma
thf(fact_815_rotate1_Osimps_I2_J,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( rotate1_a @ ( cons_a @ X2 @ Xs ) )
      = ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) ) ) ).

% rotate1.simps(2)
thf(fact_816_take__Suc,axiom,
    ! [Xs: list_a,N5: nat] :
      ( ( Xs != nil_a )
     => ( ( take_a @ ( suc @ N5 ) @ Xs )
        = ( cons_a @ ( hd_a @ Xs ) @ ( take_a @ N5 @ ( tl_a @ Xs ) ) ) ) ) ).

% take_Suc
thf(fact_817_stake__shift,axiom,
    ! [I: nat,W: list_a,S: stream_a] :
      ( ( stake_a @ I @ ( shift_a @ W @ S ) )
      = ( append_a @ ( take_a @ I @ W ) @ ( stake_a @ ( minus_minus_nat @ I @ ( size_size_list_a @ W ) ) @ S ) ) ) ).

% stake_shift
thf(fact_818_take__hd__drop,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
     => ( ( append_a @ ( take_a @ N5 @ Xs ) @ ( cons_a @ ( hd_a @ ( drop_a @ N5 @ Xs ) ) @ nil_a ) )
        = ( take_a @ ( suc @ N5 ) @ Xs ) ) ) ).

% take_hd_drop
thf(fact_819_empty__Shift,axiom,
    ! [Kl2: set_list_a,K: a] :
      ( ( member_list_a @ nil_a @ Kl2 )
     => ( ( member_a @ K @ ( bNF_Greatest_Succ_a @ Kl2 @ nil_a ) )
       => ( member_list_a @ nil_a @ ( bNF_Greatest_Shift_a @ Kl2 @ K ) ) ) ) ).

% empty_Shift
thf(fact_820_id__take__nth__drop,axiom,
    ! [I: nat,Xs: list_a] :
      ( ( ord_less_nat @ I @ ( size_size_list_a @ Xs ) )
     => ( Xs
        = ( append_a @ ( take_a @ I @ Xs ) @ ( cons_a @ ( nth_a @ Xs @ I ) @ ( drop_a @ ( suc @ I ) @ Xs ) ) ) ) ) ).

% id_take_nth_drop
thf(fact_821_sinterleave_Ocode,axiom,
    ( sinterleave_list_a
    = ( ^ [S12: stream_list_a,S23: stream_list_a] : ( sCons_list_a @ ( shd_list_a @ S12 ) @ ( sinterleave_list_a @ S23 @ ( stl_list_a @ S12 ) ) ) ) ) ).

% sinterleave.code
thf(fact_822_sinterleave_Ocode,axiom,
    ( sinterleave_a
    = ( ^ [S12: stream_a,S23: stream_a] : ( sCons_a @ ( shd_a @ S12 ) @ ( sinterleave_a @ S23 @ ( stl_a @ S12 ) ) ) ) ) ).

% sinterleave.code
thf(fact_823_length__drop,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( size_size_list_a @ ( drop_a @ N5 @ Xs ) )
      = ( minus_minus_nat @ ( size_size_list_a @ Xs ) @ N5 ) ) ).

% length_drop
thf(fact_824_drop__all,axiom,
    ! [Xs: list_a,N5: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N5 )
     => ( ( drop_a @ N5 @ Xs )
        = nil_a ) ) ).

% drop_all
thf(fact_825_drop__eq__Nil,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ( drop_a @ N5 @ Xs )
        = nil_a )
      = ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N5 ) ) ).

% drop_eq_Nil
thf(fact_826_drop__eq__Nil2,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( nil_a
        = ( drop_a @ N5 @ Xs ) )
      = ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N5 ) ) ).

% drop_eq_Nil2
thf(fact_827_drop__append,axiom,
    ! [N5: nat,Xs: list_a,Ys: list_a] :
      ( ( drop_a @ N5 @ ( append_a @ Xs @ Ys ) )
      = ( append_a @ ( drop_a @ N5 @ Xs ) @ ( drop_a @ ( minus_minus_nat @ N5 @ ( size_size_list_a @ Xs ) ) @ Ys ) ) ) ).

% drop_append
thf(fact_828_tl__drop,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( tl_a @ ( drop_a @ N5 @ Xs ) )
      = ( drop_a @ N5 @ ( tl_a @ Xs ) ) ) ).

% tl_drop
thf(fact_829_drop__Nil,axiom,
    ! [N5: nat] :
      ( ( drop_a @ N5 @ nil_a )
      = nil_a ) ).

% drop_Nil
thf(fact_830_nth__via__drop,axiom,
    ! [N5: nat,Xs: list_a,Y: a,Ys: list_a] :
      ( ( ( drop_a @ N5 @ Xs )
        = ( cons_a @ Y @ Ys ) )
     => ( ( nth_a @ Xs @ N5 )
        = Y ) ) ).

% nth_via_drop
thf(fact_831_drop__Suc,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( drop_a @ ( suc @ N5 ) @ Xs )
      = ( drop_a @ N5 @ ( tl_a @ Xs ) ) ) ).

% drop_Suc
thf(fact_832_sinterleave_Osimps_I2_J,axiom,
    ! [S1: stream_list_a,S22: stream_list_a] :
      ( ( stl_list_a @ ( sinterleave_list_a @ S1 @ S22 ) )
      = ( sinterleave_list_a @ S22 @ ( stl_list_a @ S1 ) ) ) ).

% sinterleave.simps(2)
thf(fact_833_sinterleave_Osimps_I2_J,axiom,
    ! [S1: stream_a,S22: stream_a] :
      ( ( stl_a @ ( sinterleave_a @ S1 @ S22 ) )
      = ( sinterleave_a @ S22 @ ( stl_a @ S1 ) ) ) ).

% sinterleave.simps(2)
thf(fact_834_sinterleave_Osimps_I1_J,axiom,
    ! [S1: stream_list_a,S22: stream_list_a] :
      ( ( shd_list_a @ ( sinterleave_list_a @ S1 @ S22 ) )
      = ( shd_list_a @ S1 ) ) ).

% sinterleave.simps(1)
thf(fact_835_append__eq__conv__conj,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Zs )
      = ( ( Xs
          = ( take_a @ ( size_size_list_a @ Xs ) @ Zs ) )
        & ( Ys
          = ( drop_a @ ( size_size_list_a @ Xs ) @ Zs ) ) ) ) ).

% append_eq_conv_conj
thf(fact_836_append__eq__append__conv__if,axiom,
    ! [Xs_1: list_a,Xs_2: list_a,Ys_1: list_a,Ys_2: list_a] :
      ( ( ( append_a @ Xs_1 @ Xs_2 )
        = ( append_a @ Ys_1 @ Ys_2 ) )
      = ( ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs_1 ) @ ( size_size_list_a @ Ys_1 ) )
         => ( ( Xs_1
              = ( take_a @ ( size_size_list_a @ Xs_1 ) @ Ys_1 ) )
            & ( Xs_2
              = ( append_a @ ( drop_a @ ( size_size_list_a @ Xs_1 ) @ Ys_1 ) @ Ys_2 ) ) ) )
        & ( ~ ( ord_less_eq_nat @ ( size_size_list_a @ Xs_1 ) @ ( size_size_list_a @ Ys_1 ) )
         => ( ( ( take_a @ ( size_size_list_a @ Ys_1 ) @ Xs_1 )
              = Ys_1 )
            & ( ( append_a @ ( drop_a @ ( size_size_list_a @ Ys_1 ) @ Xs_1 ) @ Xs_2 )
              = Ys_2 ) ) ) ) ) ).

% append_eq_append_conv_if
thf(fact_837_hd__drop__conv__nth,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
     => ( ( hd_a @ ( drop_a @ N5 @ Xs ) )
        = ( nth_a @ Xs @ N5 ) ) ) ).

% hd_drop_conv_nth
thf(fact_838_sdrop__shift,axiom,
    ! [I: nat,W: list_a,S: stream_a] :
      ( ( sdrop_a @ I @ ( shift_a @ W @ S ) )
      = ( shift_a @ ( drop_a @ I @ W ) @ ( sdrop_a @ ( minus_minus_nat @ I @ ( size_size_list_a @ W ) ) @ S ) ) ) ).

% sdrop_shift
thf(fact_839_Cons__nth__drop__Suc,axiom,
    ! [I: nat,Xs: list_a] :
      ( ( ord_less_nat @ I @ ( size_size_list_a @ Xs ) )
     => ( ( cons_a @ ( nth_a @ Xs @ I ) @ ( drop_a @ ( suc @ I ) @ Xs ) )
        = ( drop_a @ I @ Xs ) ) ) ).

% Cons_nth_drop_Suc
thf(fact_840_upd__conv__take__nth__drop,axiom,
    ! [I: nat,Xs: list_a,A: a] :
      ( ( ord_less_nat @ I @ ( size_size_list_a @ Xs ) )
     => ( ( list_update_a @ Xs @ I @ A )
        = ( append_a @ ( take_a @ I @ Xs ) @ ( cons_a @ A @ ( drop_a @ ( suc @ I ) @ Xs ) ) ) ) ) ).

% upd_conv_take_nth_drop
thf(fact_841_stake__append,axiom,
    ! [N5: nat,U: list_a,S: stream_a] :
      ( ( stake_a @ N5 @ ( shift_a @ U @ S ) )
      = ( append_a @ ( take_a @ ( ord_min_nat @ ( size_size_list_a @ U ) @ N5 ) @ U ) @ ( stake_a @ ( minus_minus_nat @ N5 @ ( size_size_list_a @ U ) ) @ S ) ) ) ).

% stake_append
thf(fact_842_min_Oright__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_min_nat @ ( ord_min_nat @ A @ B ) @ B )
      = ( ord_min_nat @ A @ B ) ) ).

% min.right_idem
thf(fact_843_min_Oleft__idem,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_min_nat @ A @ ( ord_min_nat @ A @ B ) )
      = ( ord_min_nat @ A @ B ) ) ).

% min.left_idem
thf(fact_844_min_Oidem,axiom,
    ! [A: nat] :
      ( ( ord_min_nat @ A @ A )
      = A ) ).

% min.idem
thf(fact_845_min_Obounded__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( ord_min_nat @ B @ C ) )
      = ( ( ord_less_eq_nat @ A @ B )
        & ( ord_less_eq_nat @ A @ C ) ) ) ).

% min.bounded_iff
thf(fact_846_min_Oabsorb2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_min_nat @ A @ B )
        = B ) ) ).

% min.absorb2
thf(fact_847_min_Oabsorb1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_min_nat @ A @ B )
        = A ) ) ).

% min.absorb1
thf(fact_848_min__less__iff__conj,axiom,
    ! [Z: nat,X2: nat,Y: nat] :
      ( ( ord_less_nat @ Z @ ( ord_min_nat @ X2 @ Y ) )
      = ( ( ord_less_nat @ Z @ X2 )
        & ( ord_less_nat @ Z @ Y ) ) ) ).

% min_less_iff_conj
thf(fact_849_min_Oabsorb4,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_min_nat @ A @ B )
        = B ) ) ).

% min.absorb4
thf(fact_850_min_Oabsorb3,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_min_nat @ A @ B )
        = A ) ) ).

% min.absorb3
thf(fact_851_list__update__nonempty,axiom,
    ! [Xs: list_a,K: nat,X2: a] :
      ( ( ( list_update_a @ Xs @ K @ X2 )
        = nil_a )
      = ( Xs = nil_a ) ) ).

% list_update_nonempty
thf(fact_852_length__list__update,axiom,
    ! [Xs: list_a,I: nat,X2: a] :
      ( ( size_size_list_a @ ( list_update_a @ Xs @ I @ X2 ) )
      = ( size_size_list_a @ Xs ) ) ).

% length_list_update
thf(fact_853_min__Suc__Suc,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_min_nat @ ( suc @ M2 ) @ ( suc @ N5 ) )
      = ( suc @ ( ord_min_nat @ M2 @ N5 ) ) ) ).

% min_Suc_Suc
thf(fact_854_list__update__id,axiom,
    ! [Xs: list_a,I: nat] :
      ( ( list_update_a @ Xs @ I @ ( nth_a @ Xs @ I ) )
      = Xs ) ).

% list_update_id
thf(fact_855_nth__list__update__neq,axiom,
    ! [I: nat,J: nat,Xs: list_a,X2: a] :
      ( ( I != J )
     => ( ( nth_a @ ( list_update_a @ Xs @ I @ X2 ) @ J )
        = ( nth_a @ Xs @ J ) ) ) ).

% nth_list_update_neq
thf(fact_856_list__update__beyond,axiom,
    ! [Xs: list_a,I: nat,X2: a] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ I )
     => ( ( list_update_a @ Xs @ I @ X2 )
        = Xs ) ) ).

% list_update_beyond
thf(fact_857_length__take,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( size_size_list_a @ ( take_a @ N5 @ Xs ) )
      = ( ord_min_nat @ ( size_size_list_a @ Xs ) @ N5 ) ) ).

% length_take
thf(fact_858_list__update__length,axiom,
    ! [Xs: list_a,X2: a,Ys: list_a,Y: a] :
      ( ( list_update_a @ ( append_a @ Xs @ ( cons_a @ X2 @ Ys ) ) @ ( size_size_list_a @ Xs ) @ Y )
      = ( append_a @ Xs @ ( cons_a @ Y @ Ys ) ) ) ).

% list_update_length
thf(fact_859_nth__list__update__eq,axiom,
    ! [I: nat,Xs: list_a,X2: a] :
      ( ( ord_less_nat @ I @ ( size_size_list_a @ Xs ) )
     => ( ( nth_a @ ( list_update_a @ Xs @ I @ X2 ) @ I )
        = X2 ) ) ).

% nth_list_update_eq
thf(fact_860_min__diff,axiom,
    ! [M2: nat,I: nat,N5: nat] :
      ( ( ord_min_nat @ ( minus_minus_nat @ M2 @ I ) @ ( minus_minus_nat @ N5 @ I ) )
      = ( minus_minus_nat @ ( ord_min_nat @ M2 @ N5 ) @ I ) ) ).

% min_diff
thf(fact_861_min__def,axiom,
    ( ord_min_nat
    = ( ^ [A4: nat,B3: nat] : ( if_nat @ ( ord_less_eq_nat @ A4 @ B3 ) @ A4 @ B3 ) ) ) ).

% min_def
thf(fact_862_min__absorb1,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ Y )
     => ( ( ord_min_nat @ X2 @ Y )
        = X2 ) ) ).

% min_absorb1
thf(fact_863_min__absorb2,axiom,
    ! [Y: nat,X2: nat] :
      ( ( ord_less_eq_nat @ Y @ X2 )
     => ( ( ord_min_nat @ X2 @ Y )
        = Y ) ) ).

% min_absorb2
thf(fact_864_min_Ostrict__coboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ B @ C )
     => ( ord_less_nat @ ( ord_min_nat @ A @ B ) @ C ) ) ).

% min.strict_coboundedI2
thf(fact_865_min_Ostrict__coboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ A @ C )
     => ( ord_less_nat @ ( ord_min_nat @ A @ B ) @ C ) ) ).

% min.strict_coboundedI1
thf(fact_866_min_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( A4
            = ( ord_min_nat @ A4 @ B3 ) )
          & ( A4 != B3 ) ) ) ) ).

% min.strict_order_iff
thf(fact_867_min_Ostrict__boundedE,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( ord_min_nat @ B @ C ) )
     => ~ ( ( ord_less_nat @ A @ B )
         => ~ ( ord_less_nat @ A @ C ) ) ) ).

% min.strict_boundedE
thf(fact_868_min__less__iff__disj,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ ( ord_min_nat @ X2 @ Y ) @ Z )
      = ( ( ord_less_nat @ X2 @ Z )
        | ( ord_less_nat @ Y @ Z ) ) ) ).

% min_less_iff_disj
thf(fact_869_min_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_min_nat @ B @ ( ord_min_nat @ A @ C ) )
      = ( ord_min_nat @ A @ ( ord_min_nat @ B @ C ) ) ) ).

% min.left_commute
thf(fact_870_min_Ocommute,axiom,
    ( ord_min_nat
    = ( ^ [A4: nat,B3: nat] : ( ord_min_nat @ B3 @ A4 ) ) ) ).

% min.commute
thf(fact_871_min_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_min_nat @ ( ord_min_nat @ A @ B ) @ C )
      = ( ord_min_nat @ A @ ( ord_min_nat @ B @ C ) ) ) ).

% min.assoc
thf(fact_872_min__le__iff__disj,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ ( ord_min_nat @ X2 @ Y ) @ Z )
      = ( ( ord_less_eq_nat @ X2 @ Z )
        | ( ord_less_eq_nat @ Y @ Z ) ) ) ).

% min_le_iff_disj
thf(fact_873_min_OcoboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ C )
     => ( ord_less_eq_nat @ ( ord_min_nat @ A @ B ) @ C ) ) ).

% min.coboundedI2
thf(fact_874_min_OcoboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ord_less_eq_nat @ ( ord_min_nat @ A @ B ) @ C ) ) ).

% min.coboundedI1
thf(fact_875_min_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_min_nat @ A4 @ B3 )
          = B3 ) ) ) ).

% min.absorb_iff2
thf(fact_876_min_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_min_nat @ A4 @ B3 )
          = A4 ) ) ) ).

% min.absorb_iff1
thf(fact_877_min_Ocobounded2,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ ( ord_min_nat @ A @ B ) @ B ) ).

% min.cobounded2
thf(fact_878_min_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ ( ord_min_nat @ A @ B ) @ A ) ).

% min.cobounded1
thf(fact_879_min_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( A4
          = ( ord_min_nat @ A4 @ B3 ) ) ) ) ).

% min.order_iff
thf(fact_880_min_OboundedI,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ C )
       => ( ord_less_eq_nat @ A @ ( ord_min_nat @ B @ C ) ) ) ) ).

% min.boundedI
thf(fact_881_min_OboundedE,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( ord_min_nat @ B @ C ) )
     => ~ ( ( ord_less_eq_nat @ A @ B )
         => ~ ( ord_less_eq_nat @ A @ C ) ) ) ).

% min.boundedE
thf(fact_882_min_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( ord_min_nat @ A @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% min.orderI
thf(fact_883_min_OorderE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( A
        = ( ord_min_nat @ A @ B ) ) ) ).

% min.orderE
thf(fact_884_min_Omono,axiom,
    ! [A: nat,C: nat,B: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ D2 )
       => ( ord_less_eq_nat @ ( ord_min_nat @ A @ B ) @ ( ord_min_nat @ C @ D2 ) ) ) ) ).

% min.mono
thf(fact_885_list__update_Osimps_I1_J,axiom,
    ! [I: nat,V: a] :
      ( ( list_update_a @ nil_a @ I @ V )
      = nil_a ) ).

% list_update.simps(1)
thf(fact_886_list__update__code_I1_J,axiom,
    ! [I: nat,Y: a] :
      ( ( list_update_a @ nil_a @ I @ Y )
      = nil_a ) ).

% list_update_code(1)
thf(fact_887_list__update__append1,axiom,
    ! [I: nat,Xs: list_a,Ys: list_a,X2: a] :
      ( ( ord_less_nat @ I @ ( size_size_list_a @ Xs ) )
     => ( ( list_update_a @ ( append_a @ Xs @ Ys ) @ I @ X2 )
        = ( append_a @ ( list_update_a @ Xs @ I @ X2 ) @ Ys ) ) ) ).

% list_update_append1
thf(fact_888_nth__list__update,axiom,
    ! [I: nat,Xs: list_a,J: nat,X2: a] :
      ( ( ord_less_nat @ I @ ( size_size_list_a @ Xs ) )
     => ( ( ( I = J )
         => ( ( nth_a @ ( list_update_a @ Xs @ I @ X2 ) @ J )
            = X2 ) )
        & ( ( I != J )
         => ( ( nth_a @ ( list_update_a @ Xs @ I @ X2 ) @ J )
            = ( nth_a @ Xs @ J ) ) ) ) ) ).

% nth_list_update
thf(fact_889_list__update__same__conv,axiom,
    ! [I: nat,Xs: list_a,X2: a] :
      ( ( ord_less_nat @ I @ ( size_size_list_a @ Xs ) )
     => ( ( ( list_update_a @ Xs @ I @ X2 )
          = Xs )
        = ( ( nth_a @ Xs @ I )
          = X2 ) ) ) ).

% list_update_same_conv
thf(fact_890_list__update__append,axiom,
    ! [N5: nat,Xs: list_a,Ys: list_a,X2: a] :
      ( ( ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
       => ( ( list_update_a @ ( append_a @ Xs @ Ys ) @ N5 @ X2 )
          = ( append_a @ ( list_update_a @ Xs @ N5 @ X2 ) @ Ys ) ) )
      & ( ~ ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
       => ( ( list_update_a @ ( append_a @ Xs @ Ys ) @ N5 @ X2 )
          = ( append_a @ Xs @ ( list_update_a @ Ys @ ( minus_minus_nat @ N5 @ ( size_size_list_a @ Xs ) ) @ X2 ) ) ) ) ) ).

% list_update_append
thf(fact_891_subseqs_Osimps_I1_J,axiom,
    ( ( subseqs_a @ nil_a )
    = ( cons_list_a @ nil_a @ nil_list_a ) ) ).

% subseqs.simps(1)
thf(fact_892_nth__drop,axiom,
    ! [N5: nat,Xs: list_a,I: nat] :
      ( ( ord_less_eq_nat @ N5 @ ( size_size_list_a @ Xs ) )
     => ( ( nth_a @ ( drop_a @ N5 @ Xs ) @ I )
        = ( nth_a @ Xs @ ( plus_plus_nat @ N5 @ I ) ) ) ) ).

% nth_drop
thf(fact_893_nth__rotate1,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
     => ( ( nth_a @ ( rotate1_a @ Xs ) @ N5 )
        = ( nth_a @ Xs @ ( modulo_modulo_nat @ ( suc @ N5 ) @ ( size_size_list_a @ Xs ) ) ) ) ) ).

% nth_rotate1
thf(fact_894_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_895_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_896_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_897_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_898_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_899_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_900_add__diff__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_left
thf(fact_901_add__diff__cancel__left_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
      = B ) ).

% add_diff_cancel_left'
thf(fact_902_add__diff__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( minus_minus_nat @ A @ B ) ) ).

% add_diff_cancel_right
thf(fact_903_add__diff__cancel__right_H,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = A ) ).

% add_diff_cancel_right'
thf(fact_904_add__Suc__right,axiom,
    ! [M2: nat,N5: nat] :
      ( ( plus_plus_nat @ M2 @ ( suc @ N5 ) )
      = ( suc @ ( plus_plus_nat @ M2 @ N5 ) ) ) ).

% add_Suc_right
thf(fact_905_nat__add__left__cancel__less,axiom,
    ! [K: nat,M2: nat,N5: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N5 ) )
      = ( ord_less_nat @ M2 @ N5 ) ) ).

% nat_add_left_cancel_less
thf(fact_906_nat__add__left__cancel__le,axiom,
    ! [K: nat,M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N5 ) )
      = ( ord_less_eq_nat @ M2 @ N5 ) ) ).

% nat_add_left_cancel_le
thf(fact_907_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_908_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_909_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_910_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_911_length__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( size_size_list_a @ ( append_a @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) ) ) ).

% length_append
thf(fact_912_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
        = ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_913_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_914_nth__append__length__plus,axiom,
    ! [Xs: list_a,Ys: list_a,N5: nat] :
      ( ( nth_a @ ( append_a @ Xs @ Ys ) @ ( plus_plus_nat @ ( size_size_list_a @ Xs ) @ N5 ) )
      = ( nth_a @ Ys @ N5 ) ) ).

% nth_append_length_plus
thf(fact_915_min__add__distrib__right,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( plus_plus_nat @ X2 @ ( ord_min_nat @ Y @ Z ) )
      = ( ord_min_nat @ ( plus_plus_nat @ X2 @ Y ) @ ( plus_plus_nat @ X2 @ Z ) ) ) ).

% min_add_distrib_right
thf(fact_916_min__add__distrib__left,axiom,
    ! [X2: nat,Y: nat,Z: nat] :
      ( ( plus_plus_nat @ ( ord_min_nat @ X2 @ Y ) @ Z )
      = ( ord_min_nat @ ( plus_plus_nat @ X2 @ Z ) @ ( plus_plus_nat @ Y @ Z ) ) ) ).

% min_add_distrib_left
thf(fact_917_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_918_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_919_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_920_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_strict_mono
thf(fact_921_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_922_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_923_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_924_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_925_diff__diff__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
      = ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% diff_diff_eq
thf(fact_926_add__implies__diff,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ( plus_plus_nat @ C @ B )
        = A )
     => ( C
        = ( minus_minus_nat @ A @ B ) ) ) ).

% add_implies_diff
thf(fact_927_nat__arith_Osuc1,axiom,
    ! [A3: nat,K: nat,A: nat] :
      ( ( A3
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A3 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_928_add__Suc,axiom,
    ! [M2: nat,N5: nat] :
      ( ( plus_plus_nat @ ( suc @ M2 ) @ N5 )
      = ( suc @ ( plus_plus_nat @ M2 @ N5 ) ) ) ).

% add_Suc
thf(fact_929_add__Suc__shift,axiom,
    ! [M2: nat,N5: nat] :
      ( ( plus_plus_nat @ ( suc @ M2 ) @ N5 )
      = ( plus_plus_nat @ M2 @ ( suc @ N5 ) ) ) ).

% add_Suc_shift
thf(fact_930_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_931_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_932_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_933_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_934_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_935_trans__less__add1,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).

% trans_less_add1
thf(fact_936_trans__less__add2,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).

% trans_less_add2
thf(fact_937_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M2: nat,N5: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M2 @ L )
          = ( plus_plus_nat @ K @ N5 ) )
       => ( ord_less_nat @ M2 @ N5 ) ) ) ).

% less_add_eq_less
thf(fact_938_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( plus_plus_nat @ M @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_939_trans__le__add2,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).

% trans_le_add2
thf(fact_940_trans__le__add1,axiom,
    ! [I: nat,J: nat,M2: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).

% trans_le_add1
thf(fact_941_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_942_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_943_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N7: nat] :
          ( L
          = ( plus_plus_nat @ K @ N7 ) ) ) ).

% le_Suc_ex
thf(fact_944_add__leD2,axiom,
    ! [M2: nat,K: nat,N5: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N5 )
     => ( ord_less_eq_nat @ K @ N5 ) ) ).

% add_leD2
thf(fact_945_add__leD1,axiom,
    ! [M2: nat,K: nat,N5: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N5 )
     => ( ord_less_eq_nat @ M2 @ N5 ) ) ).

% add_leD1
thf(fact_946_le__add2,axiom,
    ! [N5: nat,M2: nat] : ( ord_less_eq_nat @ N5 @ ( plus_plus_nat @ M2 @ N5 ) ) ).

% le_add2
thf(fact_947_le__add1,axiom,
    ! [N5: nat,M2: nat] : ( ord_less_eq_nat @ N5 @ ( plus_plus_nat @ N5 @ M2 ) ) ).

% le_add1
thf(fact_948_add__leE,axiom,
    ! [M2: nat,K: nat,N5: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N5 )
     => ~ ( ( ord_less_eq_nat @ M2 @ N5 )
         => ~ ( ord_less_eq_nat @ K @ N5 ) ) ) ).

% add_leE
thf(fact_949_diff__add__inverse2,axiom,
    ! [M2: nat,N5: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ N5 ) @ N5 )
      = M2 ) ).

% diff_add_inverse2
thf(fact_950_diff__add__inverse,axiom,
    ! [N5: nat,M2: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ N5 @ M2 ) @ N5 )
      = M2 ) ).

% diff_add_inverse
thf(fact_951_diff__cancel2,axiom,
    ! [M2: nat,K: nat,N5: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ K ) @ ( plus_plus_nat @ N5 @ K ) )
      = ( minus_minus_nat @ M2 @ N5 ) ) ).

% diff_cancel2
thf(fact_952_Nat_Odiff__cancel,axiom,
    ! [K: nat,M2: nat,N5: nat] :
      ( ( minus_minus_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N5 ) )
      = ( minus_minus_nat @ M2 @ N5 ) ) ).

% Nat.diff_cancel
thf(fact_953_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_954_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_955_group__cancel_Oadd1,axiom,
    ! [A3: nat,K: nat,A: nat,B: nat] :
      ( ( A3
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A3 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_956_group__cancel_Oadd2,axiom,
    ! [B5: nat,K: nat,B: nat,A: nat] :
      ( ( B5
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B5 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_957_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_958_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B3: nat] : ( plus_plus_nat @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_959_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_960_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_961_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_962_gen__length__def,axiom,
    ( gen_length_a
    = ( ^ [N4: nat,Xs2: list_a] : ( plus_plus_nat @ N4 @ ( size_size_list_a @ Xs2 ) ) ) ) ).

% gen_length_def
thf(fact_963_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_964_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_965_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_966_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_mono
thf(fact_967_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_968_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( B
           != ( plus_plus_nat @ A @ C2 ) ) ) ).

% less_eqE
thf(fact_969_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_970_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
        ? [C4: nat] :
          ( B3
          = ( plus_plus_nat @ A4 @ C4 ) ) ) ) ).

% le_iff_add
thf(fact_971_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_972_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_973_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_974_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_975_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D2 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_le_less_mono
thf(fact_976_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D2: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D2 )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D2 ) ) ) ) ).

% add_less_le_mono
thf(fact_977_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ( ( minus_minus_nat @ B @ A )
            = C )
          = ( B
            = ( plus_plus_nat @ C @ A ) ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_978_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
        = B ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_979_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_980_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
        = ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_981_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
        = ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_982_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
        = ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_983_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_984_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).

% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_985_le__add__diff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).

% le_add_diff
thf(fact_986_diff__add,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
        = B ) ) ).

% diff_add
thf(fact_987_less__imp__Suc__add,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ? [K2: nat] :
          ( N5
          = ( suc @ ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_988_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( suc @ ( plus_plus_nat @ M @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_989_less__add__Suc2,axiom,
    ! [I: nat,M2: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M2 @ I ) ) ) ).

% less_add_Suc2
thf(fact_990_less__add__Suc1,axiom,
    ! [I: nat,M2: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M2 ) ) ) ).

% less_add_Suc1
thf(fact_991_less__natE,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ~ ! [Q3: nat] :
            ( N5
           != ( suc @ ( plus_plus_nat @ M2 @ Q3 ) ) ) ) ).

% less_natE
thf(fact_992_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M2: nat,K: nat] :
      ( ! [M6: nat,N7: nat] :
          ( ( ord_less_nat @ M6 @ N7 )
         => ( ord_less_nat @ ( F @ M6 ) @ ( F @ N7 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M2 ) @ K ) @ ( F @ ( plus_plus_nat @ M2 @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_993_add__diff__inverse__nat,axiom,
    ! [M2: nat,N5: nat] :
      ( ~ ( ord_less_nat @ M2 @ N5 )
     => ( ( plus_plus_nat @ N5 @ ( minus_minus_nat @ M2 @ N5 ) )
        = M2 ) ) ).

% add_diff_inverse_nat
thf(fact_994_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
      = ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_995_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
      = ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_996_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
        = ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_997_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
        = ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_998_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
        = ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_999_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ( minus_minus_nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus_nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_1000_sdrop__snth,axiom,
    ! [N5: nat,S: stream_a,M2: nat] :
      ( ( snth_a @ ( sdrop_a @ N5 @ S ) @ M2 )
      = ( snth_a @ S @ ( plus_plus_nat @ N5 @ M2 ) ) ) ).

% sdrop_snth
thf(fact_1001_sdrop__snth,axiom,
    ! [N5: nat,S: stream_list_a,M2: nat] :
      ( ( snth_list_a @ ( sdrop_list_a @ N5 @ S ) @ M2 )
      = ( snth_list_a @ S @ ( plus_plus_nat @ N5 @ M2 ) ) ) ).

% sdrop_snth
thf(fact_1002_gen__length__code_I1_J,axiom,
    ! [N5: nat] :
      ( ( gen_length_a @ N5 @ nil_a )
      = N5 ) ).

% gen_length_code(1)
thf(fact_1003_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq_nat @ K @ J )
     => ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
        = ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_1004_le__add__diff__inverse2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
        = A ) ) ).

% le_add_diff_inverse2
thf(fact_1005_le__add__diff__inverse,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% le_add_diff_inverse
thf(fact_1006_mod__less,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ( modulo_modulo_nat @ M2 @ N5 )
        = M2 ) ) ).

% mod_less
thf(fact_1007_mod__Suc__Suc__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M2 @ N5 ) ) ) @ N5 )
      = ( modulo_modulo_nat @ ( suc @ ( suc @ M2 ) ) @ N5 ) ) ).

% mod_Suc_Suc_eq
thf(fact_1008_mod__Suc__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M2 @ N5 ) ) @ N5 )
      = ( modulo_modulo_nat @ ( suc @ M2 ) @ N5 ) ) ).

% mod_Suc_eq
thf(fact_1009_mod__less__eq__dividend,axiom,
    ! [M2: nat,N5: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M2 @ N5 ) @ M2 ) ).

% mod_less_eq_dividend
thf(fact_1010_add__le__add__imp__diff__le,axiom,
    ! [I: nat,K: nat,N5: nat,J: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N5 )
     => ( ( ord_less_eq_nat @ N5 @ ( plus_plus_nat @ J @ K ) )
       => ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N5 )
         => ( ( ord_less_eq_nat @ N5 @ ( plus_plus_nat @ J @ K ) )
           => ( ord_less_eq_nat @ ( minus_minus_nat @ N5 @ K ) @ J ) ) ) ) ) ).

% add_le_add_imp_diff_le
thf(fact_1011_add__le__imp__le__diff,axiom,
    ! [I: nat,K: nat,N5: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ N5 )
     => ( ord_less_eq_nat @ I @ ( minus_minus_nat @ N5 @ K ) ) ) ).

% add_le_imp_le_diff
thf(fact_1012_linordered__semidom__class_Oadd__diff__inverse,axiom,
    ! [A: nat,B: nat] :
      ( ~ ( ord_less_nat @ A @ B )
     => ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
        = A ) ) ).

% linordered_semidom_class.add_diff_inverse
thf(fact_1013_mod__induct,axiom,
    ! [P: nat > $o,N5: nat,P5: nat,M2: nat] :
      ( ( P @ N5 )
     => ( ( ord_less_nat @ N5 @ P5 )
       => ( ( ord_less_nat @ M2 @ P5 )
         => ( ! [N7: nat] :
                ( ( ord_less_nat @ N7 @ P5 )
               => ( ( P @ N7 )
                 => ( P @ ( modulo_modulo_nat @ ( suc @ N7 ) @ P5 ) ) ) )
           => ( P @ M2 ) ) ) ) ) ).

% mod_induct
thf(fact_1014_mod__Suc__le__divisor,axiom,
    ! [M2: nat,N5: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M2 @ ( suc @ N5 ) ) @ N5 ) ).

% mod_Suc_le_divisor
thf(fact_1015_mod__if,axiom,
    ( modulo_modulo_nat
    = ( ^ [M: nat,N4: nat] : ( if_nat @ ( ord_less_nat @ M @ N4 ) @ M @ ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N4 ) @ N4 ) ) ) ) ).

% mod_if
thf(fact_1016_le__mod__geq,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_eq_nat @ N5 @ M2 )
     => ( ( modulo_modulo_nat @ M2 @ N5 )
        = ( modulo_modulo_nat @ ( minus_minus_nat @ M2 @ N5 ) @ N5 ) ) ) ).

% le_mod_geq
thf(fact_1017_sdrop__cycle__eq__mod__0,axiom,
    ! [U: list_a,N5: nat] :
      ( ( U != nil_a )
     => ( ( ( modulo_modulo_nat @ N5 @ ( size_size_list_a @ U ) )
          = zero_zero_nat )
       => ( ( sdrop_a @ N5 @ ( cycle_a @ U ) )
          = ( cycle_a @ U ) ) ) ) ).

% sdrop_cycle_eq_mod_0
thf(fact_1018_triangle__Suc,axiom,
    ! [N5: nat] :
      ( ( nat_triangle @ ( suc @ N5 ) )
      = ( plus_plus_nat @ ( nat_triangle @ N5 ) @ ( suc @ N5 ) ) ) ).

% triangle_Suc
thf(fact_1019_sdrop__cycle,axiom,
    ! [U: list_a,N5: nat] :
      ( ( U != nil_a )
     => ( ( sdrop_a @ N5 @ ( cycle_a @ U ) )
        = ( cycle_a @ ( rotate_a @ ( modulo_modulo_nat @ N5 @ ( size_size_list_a @ U ) ) @ U ) ) ) ) ).

% sdrop_cycle
thf(fact_1020_le__zero__eq,axiom,
    ! [N5: nat] :
      ( ( ord_less_eq_nat @ N5 @ zero_zero_nat )
      = ( N5 = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_1021_not__gr__zero,axiom,
    ! [N5: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N5 ) )
      = ( N5 = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_1022_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_1023_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_1024_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_1025_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_1026_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_1027_add__eq__0__iff__both__eq__0,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ( plus_plus_nat @ X2 @ Y )
        = zero_zero_nat )
      = ( ( X2 = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_1028_zero__eq__add__iff__both__eq__0,axiom,
    ! [X2: nat,Y: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X2 @ Y ) )
      = ( ( X2 = zero_zero_nat )
        & ( Y = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_1029_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_1030_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1031_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_1032_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_1033_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_1034_neq0__conv,axiom,
    ! [N5: nat] :
      ( ( N5 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N5 ) ) ).

% neq0_conv
thf(fact_1035_less__nat__zero__code,axiom,
    ! [N5: nat] :
      ~ ( ord_less_nat @ N5 @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_1036_le0,axiom,
    ! [N5: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N5 ) ).

% le0
thf(fact_1037_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_1038_Nat_Oadd__0__right,axiom,
    ! [M2: nat] :
      ( ( plus_plus_nat @ M2 @ zero_zero_nat )
      = M2 ) ).

% Nat.add_0_right
thf(fact_1039_add__is__0,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( plus_plus_nat @ M2 @ N5 )
        = zero_zero_nat )
      = ( ( M2 = zero_zero_nat )
        & ( N5 = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_1040_diff__self__eq__0,axiom,
    ! [M2: nat] :
      ( ( minus_minus_nat @ M2 @ M2 )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_1041_diff__0__eq__0,axiom,
    ! [N5: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N5 )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_1042_min__0R,axiom,
    ! [N5: nat] :
      ( ( ord_min_nat @ N5 @ zero_zero_nat )
      = zero_zero_nat ) ).

% min_0R
thf(fact_1043_min__0L,axiom,
    ! [N5: nat] :
      ( ( ord_min_nat @ zero_zero_nat @ N5 )
      = zero_zero_nat ) ).

% min_0L
thf(fact_1044_rotate__is__Nil__conv,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ( rotate_a @ N5 @ Xs )
        = nil_a )
      = ( Xs = nil_a ) ) ).

% rotate_is_Nil_conv
thf(fact_1045_length__rotate,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( size_size_list_a @ ( rotate_a @ N5 @ Xs ) )
      = ( size_size_list_a @ Xs ) ) ).

% length_rotate
thf(fact_1046_triangle__0,axiom,
    ( ( nat_triangle @ zero_zero_nat )
    = zero_zero_nat ) ).

% triangle_0
thf(fact_1047_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_1048_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_1049_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_1050_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_1051_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_1052_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_1053_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_1054_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_1055_diff__add__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = zero_zero_nat ) ).

% diff_add_zero
thf(fact_1056_zero__less__Suc,axiom,
    ! [N5: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N5 ) ) ).

% zero_less_Suc
thf(fact_1057_less__Suc0,axiom,
    ! [N5: nat] :
      ( ( ord_less_nat @ N5 @ ( suc @ zero_zero_nat ) )
      = ( N5 = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_1058_length__0__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( size_size_list_a @ Xs )
        = zero_zero_nat )
      = ( Xs = nil_a ) ) ).

% length_0_conv
thf(fact_1059_add__gr__0,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M2 @ N5 ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M2 )
        | ( ord_less_nat @ zero_zero_nat @ N5 ) ) ) ).

% add_gr_0
thf(fact_1060_zero__less__diff,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N5 @ M2 ) )
      = ( ord_less_nat @ M2 @ N5 ) ) ).

% zero_less_diff
thf(fact_1061_diff__is__0__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( minus_minus_nat @ M2 @ N5 )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M2 @ N5 ) ) ).

% diff_is_0_eq
thf(fact_1062_diff__is__0__eq_H,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ( minus_minus_nat @ M2 @ N5 )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_1063_nth__Cons__0,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( nth_a @ ( cons_a @ X2 @ Xs ) @ zero_zero_nat )
      = X2 ) ).

% nth_Cons_0
thf(fact_1064_mod__by__Suc__0,axiom,
    ! [M2: nat] :
      ( ( modulo_modulo_nat @ M2 @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% mod_by_Suc_0
thf(fact_1065_take__eq__Nil2,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( nil_a
        = ( take_a @ N5 @ Xs ) )
      = ( ( N5 = zero_zero_nat )
        | ( Xs = nil_a ) ) ) ).

% take_eq_Nil2
thf(fact_1066_take__eq__Nil,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ( take_a @ N5 @ Xs )
        = nil_a )
      = ( ( N5 = zero_zero_nat )
        | ( Xs = nil_a ) ) ) ).

% take_eq_Nil
thf(fact_1067_take0,axiom,
    ( ( take_a @ zero_zero_nat )
    = ( ^ [Xs2: list_a] : nil_a ) ) ).

% take0
thf(fact_1068_stake__invert__Nil,axiom,
    ! [N5: nat,S: stream_a] :
      ( ( ( stake_a @ N5 @ S )
        = nil_a )
      = ( N5 = zero_zero_nat ) ) ).

% stake_invert_Nil
thf(fact_1069_length__greater__0__conv,axiom,
    ! [Xs: list_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_a @ Xs ) )
      = ( Xs != nil_a ) ) ).

% length_greater_0_conv
thf(fact_1070_Suc__pred,axiom,
    ! [N5: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( ( suc @ ( minus_minus_nat @ N5 @ ( suc @ zero_zero_nat ) ) )
        = N5 ) ) ).

% Suc_pred
thf(fact_1071_rotate__id,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ( modulo_modulo_nat @ N5 @ ( size_size_list_a @ Xs ) )
        = zero_zero_nat )
     => ( ( rotate_a @ N5 @ Xs )
        = Xs ) ) ).

% rotate_id
thf(fact_1072_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_1073_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_1074_plus__nat_Oadd__0,axiom,
    ! [N5: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N5 )
      = N5 ) ).

% plus_nat.add_0
thf(fact_1075_add__eq__self__zero,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( plus_plus_nat @ M2 @ N5 )
        = M2 )
     => ( N5 = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_1076_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_1077_zero__le,axiom,
    ! [X2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X2 ) ).

% zero_le
thf(fact_1078_gr__zeroI,axiom,
    ! [N5: nat] :
      ( ( N5 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N5 ) ) ).

% gr_zeroI
thf(fact_1079_not__less__zero,axiom,
    ! [N5: nat] :
      ~ ( ord_less_nat @ N5 @ zero_zero_nat ) ).

% not_less_zero
thf(fact_1080_gr__implies__not__zero,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( N5 != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_1081_zero__less__iff__neq__zero,axiom,
    ! [N5: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
      = ( N5 != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_1082_zero__reorient,axiom,
    ! [X2: nat] :
      ( ( zero_zero_nat = X2 )
      = ( X2 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_1083_diffs0__imp__equal,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( minus_minus_nat @ M2 @ N5 )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N5 @ M2 )
          = zero_zero_nat )
       => ( M2 = N5 ) ) ) ).

% diffs0_imp_equal
thf(fact_1084_minus__nat_Odiff__0,axiom,
    ! [M2: nat] :
      ( ( minus_minus_nat @ M2 @ zero_zero_nat )
      = M2 ) ).

% minus_nat.diff_0
thf(fact_1085_le__0__eq,axiom,
    ! [N5: nat] :
      ( ( ord_less_eq_nat @ N5 @ zero_zero_nat )
      = ( N5 = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_1086_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_1087_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_1088_less__eq__nat_Osimps_I1_J,axiom,
    ! [N5: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N5 ) ).

% less_eq_nat.simps(1)
thf(fact_1089_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_1090_gr0I,axiom,
    ! [N5: nat] :
      ( ( N5 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N5 ) ) ).

% gr0I
thf(fact_1091_not__gr0,axiom,
    ! [N5: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N5 ) )
      = ( N5 = zero_zero_nat ) ) ).

% not_gr0
thf(fact_1092_not__less0,axiom,
    ! [N5: nat] :
      ~ ( ord_less_nat @ N5 @ zero_zero_nat ) ).

% not_less0
thf(fact_1093_less__zeroE,axiom,
    ! [N5: nat] :
      ~ ( ord_less_nat @ N5 @ zero_zero_nat ) ).

% less_zeroE
thf(fact_1094_gr__implies__not0,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( N5 != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_1095_infinite__descent0,axiom,
    ! [P: nat > $o,N5: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N7: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N7 )
           => ( ~ ( P @ N7 )
             => ? [M4: nat] :
                  ( ( ord_less_nat @ M4 @ N7 )
                  & ~ ( P @ M4 ) ) ) )
       => ( P @ N5 ) ) ) ).

% infinite_descent0
thf(fact_1096_list__decode_Ocases,axiom,
    ! [X2: nat] :
      ( ( X2 != zero_zero_nat )
     => ~ ! [N7: nat] :
            ( X2
           != ( suc @ N7 ) ) ) ).

% list_decode.cases
thf(fact_1097_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_1098_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_1099_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_1100_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_1101_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_1102_nat__induct,axiom,
    ! [P: nat > $o,N5: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N7: nat] :
            ( ( P @ N7 )
           => ( P @ ( suc @ N7 ) ) )
       => ( P @ N5 ) ) ) ).

% nat_induct
thf(fact_1103_diff__induct,axiom,
    ! [P: nat > nat > $o,M2: nat,N5: nat] :
      ( ! [X3: nat] : ( P @ X3 @ zero_zero_nat )
     => ( ! [Y4: nat] : ( P @ zero_zero_nat @ ( suc @ Y4 ) )
       => ( ! [X3: nat,Y4: nat] :
              ( ( P @ X3 @ Y4 )
             => ( P @ ( suc @ X3 ) @ ( suc @ Y4 ) ) )
         => ( P @ M2 @ N5 ) ) ) ) ).

% diff_induct
thf(fact_1104_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N7: nat] :
            ( ( P @ ( suc @ N7 ) )
           => ( P @ N7 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_1105_Suc__neq__Zero,axiom,
    ! [M2: nat] :
      ( ( suc @ M2 )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_1106_Zero__neq__Suc,axiom,
    ! [M2: nat] :
      ( zero_zero_nat
     != ( suc @ M2 ) ) ).

% Zero_neq_Suc
thf(fact_1107_Zero__not__Suc,axiom,
    ! [M2: nat] :
      ( zero_zero_nat
     != ( suc @ M2 ) ) ).

% Zero_not_Suc
thf(fact_1108_not0__implies__Suc,axiom,
    ! [N5: nat] :
      ( ( N5 != zero_zero_nat )
     => ? [M6: nat] :
          ( N5
          = ( suc @ M6 ) ) ) ).

% not0_implies_Suc
thf(fact_1109_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_1110_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_1111_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_1112_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_1113_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_1114_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_1115_add__nonneg__eq__0__iff,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X2 )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
       => ( ( ( plus_plus_nat @ X2 @ Y )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_1116_add__nonpos__eq__0__iff,axiom,
    ! [X2: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X2 @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X2 @ Y )
            = zero_zero_nat )
          = ( ( X2 = zero_zero_nat )
            & ( Y = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_1117_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_1118_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C2: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C2 ) )
           => ( C2 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_1119_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_1120_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_1121_less__Suc__eq__0__disj,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ ( suc @ N5 ) )
      = ( ( M2 = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M2
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N5 ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_1122_gr0__implies__Suc,axiom,
    ! [N5: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ? [M6: nat] :
          ( N5
          = ( suc @ M6 ) ) ) ).

% gr0_implies_Suc
thf(fact_1123_All__less__Suc2,axiom,
    ! [N5: nat,P: nat > $o] :
      ( ( ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N5 ) )
           => ( P @ I2 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I2: nat] :
            ( ( ord_less_nat @ I2 @ N5 )
           => ( P @ ( suc @ I2 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_1124_gr0__conv__Suc,axiom,
    ! [N5: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
      = ( ? [M: nat] :
            ( N5
            = ( suc @ M ) ) ) ) ).

% gr0_conv_Suc
thf(fact_1125_Ex__less__Suc2,axiom,
    ! [N5: nat,P: nat > $o] :
      ( ( ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ ( suc @ N5 ) )
            & ( P @ I2 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I2: nat] :
            ( ( ord_less_nat @ I2 @ N5 )
            & ( P @ ( suc @ I2 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_1126_add__is__1,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( plus_plus_nat @ M2 @ N5 )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M2
            = ( suc @ zero_zero_nat ) )
          & ( N5 = zero_zero_nat ) )
        | ( ( M2 = zero_zero_nat )
          & ( N5
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1127_one__is__add,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M2 @ N5 ) )
      = ( ( ( M2
            = ( suc @ zero_zero_nat ) )
          & ( N5 = zero_zero_nat ) )
        | ( ( M2 = zero_zero_nat )
          & ( N5
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1128_ex__least__nat__le,axiom,
    ! [P: nat > $o,N5: nat] :
      ( ( P @ N5 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N5 )
            & ! [I4: nat] :
                ( ( ord_less_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_1129_list_Osize_I3_J,axiom,
    ( ( size_size_list_a @ nil_a )
    = zero_zero_nat ) ).

% list.size(3)
thf(fact_1130_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K2: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K2 )
          & ( ( plus_plus_nat @ I @ K2 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_1131_diff__less,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( ( ord_less_nat @ zero_zero_nat @ M2 )
       => ( ord_less_nat @ ( minus_minus_nat @ M2 @ N5 ) @ M2 ) ) ) ).

% diff_less
thf(fact_1132_diff__add__0,axiom,
    ! [N5: nat,M2: nat] :
      ( ( minus_minus_nat @ N5 @ ( plus_plus_nat @ N5 @ M2 ) )
      = zero_zero_nat ) ).

% diff_add_0
thf(fact_1133_mod__Suc,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( ( suc @ ( modulo_modulo_nat @ M2 @ N5 ) )
          = N5 )
       => ( ( modulo_modulo_nat @ ( suc @ M2 ) @ N5 )
          = zero_zero_nat ) )
      & ( ( ( suc @ ( modulo_modulo_nat @ M2 @ N5 ) )
         != N5 )
       => ( ( modulo_modulo_nat @ ( suc @ M2 ) @ N5 )
          = ( suc @ ( modulo_modulo_nat @ M2 @ N5 ) ) ) ) ) ).

% mod_Suc
thf(fact_1134_mod__less__divisor,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( ord_less_nat @ ( modulo_modulo_nat @ M2 @ N5 ) @ N5 ) ) ).

% mod_less_divisor
thf(fact_1135_take__0,axiom,
    ! [Xs: list_a] :
      ( ( take_a @ zero_zero_nat @ Xs )
      = nil_a ) ).

% take_0
thf(fact_1136_stake_Osimps_I1_J,axiom,
    ! [S: stream_a] :
      ( ( stake_a @ zero_zero_nat @ S )
      = nil_a ) ).

% stake.simps(1)
thf(fact_1137_snth_Osimps_I1_J,axiom,
    ! [S: stream_a] :
      ( ( snth_a @ S @ zero_zero_nat )
      = ( shd_a @ S ) ) ).

% snth.simps(1)
thf(fact_1138_snth_Osimps_I1_J,axiom,
    ! [S: stream_list_a] :
      ( ( snth_list_a @ S @ zero_zero_nat )
      = ( shd_list_a @ S ) ) ).

% snth.simps(1)
thf(fact_1139_rotate__append,axiom,
    ! [L: list_a,Q4: list_a] :
      ( ( rotate_a @ ( size_size_list_a @ L ) @ ( append_a @ L @ Q4 ) )
      = ( append_a @ Q4 @ L ) ) ).

% rotate_append
thf(fact_1140_rotate__conv__mod,axiom,
    ( rotate_a
    = ( ^ [N4: nat,Xs2: list_a] : ( rotate_a @ ( modulo_modulo_nat @ N4 @ ( size_size_list_a @ Xs2 ) ) @ Xs2 ) ) ) ).

% rotate_conv_mod
thf(fact_1141_length__code,axiom,
    ( size_size_list_a
    = ( gen_length_a @ zero_zero_nat ) ) ).

% length_code
thf(fact_1142_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_1143_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_1144_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_1145_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_1146_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_1147_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_1148_ex__least__nat__less,axiom,
    ! [P: nat > $o,N5: nat] :
      ( ( P @ N5 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N5 )
            & ! [I4: nat] :
                ( ( ord_less_eq_nat @ I4 @ K2 )
               => ~ ( P @ I4 ) )
            & ( P @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1149_diff__Suc__less,axiom,
    ! [N5: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( ord_less_nat @ ( minus_minus_nat @ N5 @ ( suc @ I ) ) @ N5 ) ) ).

% diff_Suc_less
thf(fact_1150_nat__diff__split__asm,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ~ ( ( ( ord_less_nat @ A @ B )
              & ~ ( P @ zero_zero_nat ) )
            | ? [D3: nat] :
                ( ( A
                  = ( plus_plus_nat @ B @ D3 ) )
                & ~ ( P @ D3 ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_1151_nat__diff__split,axiom,
    ! [P: nat > $o,A: nat,B: nat] :
      ( ( P @ ( minus_minus_nat @ A @ B ) )
      = ( ( ( ord_less_nat @ A @ B )
         => ( P @ zero_zero_nat ) )
        & ! [D3: nat] :
            ( ( A
              = ( plus_plus_nat @ B @ D3 ) )
           => ( P @ D3 ) ) ) ) ).

% nat_diff_split
thf(fact_1152_mod__le__divisor,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ M2 @ N5 ) @ N5 ) ) ).

% mod_le_divisor
thf(fact_1153_hd__conv__nth,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ Xs )
        = ( nth_a @ Xs @ zero_zero_nat ) ) ) ).

% hd_conv_nth
thf(fact_1154_list_Osize_I4_J,axiom,
    ! [X21: a,X222: list_a] :
      ( ( size_size_list_a @ ( cons_a @ X21 @ X222 ) )
      = ( plus_plus_nat @ ( size_size_list_a @ X222 ) @ ( suc @ zero_zero_nat ) ) ) ).

% list.size(4)
thf(fact_1155_nth__rotate,axiom,
    ! [N5: nat,Xs: list_a,M2: nat] :
      ( ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
     => ( ( nth_a @ ( rotate_a @ M2 @ Xs ) @ N5 )
        = ( nth_a @ Xs @ ( modulo_modulo_nat @ ( plus_plus_nat @ M2 @ N5 ) @ ( size_size_list_a @ Xs ) ) ) ) ) ).

% nth_rotate
thf(fact_1156_hd__rotate__conv__nth,axiom,
    ! [Xs: list_a,N5: nat] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ ( rotate_a @ N5 @ Xs ) )
        = ( nth_a @ Xs @ ( modulo_modulo_nat @ N5 @ ( size_size_list_a @ Xs ) ) ) ) ) ).

% hd_rotate_conv_nth
thf(fact_1157_rotate__drop__take,axiom,
    ( rotate_a
    = ( ^ [N4: nat,Xs2: list_a] : ( append_a @ ( drop_a @ ( modulo_modulo_nat @ N4 @ ( size_size_list_a @ Xs2 ) ) @ Xs2 ) @ ( take_a @ ( modulo_modulo_nat @ N4 @ ( size_size_list_a @ Xs2 ) ) @ Xs2 ) ) ) ) ).

% rotate_drop_take
thf(fact_1158_Nitpick_Osize__list__simp_I2_J,axiom,
    ( size_size_list_a
    = ( ^ [Xs2: list_a] : ( if_nat @ ( Xs2 = nil_a ) @ zero_zero_nat @ ( suc @ ( size_size_list_a @ ( tl_a @ Xs2 ) ) ) ) ) ) ).

% Nitpick.size_list_simp(2)
thf(fact_1159_n__lists__Nil,axiom,
    ! [N5: nat] :
      ( ( ( N5 = zero_zero_nat )
       => ( ( n_lists_a @ N5 @ nil_a )
          = ( cons_list_a @ nil_a @ nil_list_a ) ) )
      & ( ( N5 != zero_zero_nat )
       => ( ( n_lists_a @ N5 @ nil_a )
          = nil_list_a ) ) ) ).

% n_lists_Nil
thf(fact_1160_n__lists_Osimps_I1_J,axiom,
    ! [Xs: list_a] :
      ( ( n_lists_a @ zero_zero_nat @ Xs )
      = ( cons_list_a @ nil_a @ nil_list_a ) ) ).

% n_lists.simps(1)
thf(fact_1161_gcd__nat__induct,axiom,
    ! [P: nat > nat > $o,M2: nat,N5: nat] :
      ( ! [M6: nat] : ( P @ M6 @ zero_zero_nat )
     => ( ! [M6: nat,N7: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N7 )
           => ( ( P @ N7 @ ( modulo_modulo_nat @ M6 @ N7 ) )
             => ( P @ M6 @ N7 ) ) )
       => ( P @ M2 @ N5 ) ) ) ).

% gcd_nat_induct
thf(fact_1162_Nitpick_Osize__list__simp_I1_J,axiom,
    ( size_list_a
    = ( ^ [F2: a > nat,Xs2: list_a] : ( if_nat @ ( Xs2 = nil_a ) @ zero_zero_nat @ ( suc @ ( plus_plus_nat @ ( F2 @ ( hd_a @ Xs2 ) ) @ ( size_list_a @ F2 @ ( tl_a @ Xs2 ) ) ) ) ) ) ) ).

% Nitpick.size_list_simp(1)
thf(fact_1163_list_Osize__gen_I1_J,axiom,
    ! [X2: a > nat] :
      ( ( size_list_a @ X2 @ nil_a )
      = zero_zero_nat ) ).

% list.size_gen(1)
thf(fact_1164_nth__Cons__pos,axiom,
    ! [N5: nat,X2: a,Xs: list_a] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( ( nth_a @ ( cons_a @ X2 @ Xs ) @ N5 )
        = ( nth_a @ Xs @ ( minus_minus_nat @ N5 @ one_one_nat ) ) ) ) ).

% nth_Cons_pos
thf(fact_1165_less__one,axiom,
    ! [N5: nat] :
      ( ( ord_less_nat @ N5 @ one_one_nat )
      = ( N5 = zero_zero_nat ) ) ).

% less_one
thf(fact_1166_diff__Suc__1,axiom,
    ! [N5: nat] :
      ( ( minus_minus_nat @ ( suc @ N5 ) @ one_one_nat )
      = N5 ) ).

% diff_Suc_1
thf(fact_1167_length__tl,axiom,
    ! [Xs: list_a] :
      ( ( size_size_list_a @ ( tl_a @ Xs ) )
      = ( minus_minus_nat @ ( size_size_list_a @ Xs ) @ one_one_nat ) ) ).

% length_tl
thf(fact_1168_rotate__length01,axiom,
    ! [Xs: list_a,N5: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ one_one_nat )
     => ( ( rotate_a @ N5 @ Xs )
        = Xs ) ) ).

% rotate_length01
thf(fact_1169_rotate1__length01,axiom,
    ! [Xs: list_a] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ one_one_nat )
     => ( ( rotate1_a @ Xs )
        = Xs ) ) ).

% rotate1_length01
thf(fact_1170_Suc__diff__1,axiom,
    ! [N5: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( ( suc @ ( minus_minus_nat @ N5 @ one_one_nat ) )
        = N5 ) ) ).

% Suc_diff_1
thf(fact_1171_one__reorient,axiom,
    ! [X2: nat] :
      ( ( one_one_nat = X2 )
      = ( X2 = one_one_nat ) ) ).

% one_reorient
thf(fact_1172_diff__Suc__eq__diff__pred,axiom,
    ! [M2: nat,N5: nat] :
      ( ( minus_minus_nat @ M2 @ ( suc @ N5 ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M2 @ one_one_nat ) @ N5 ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1173_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N4: nat] : ( plus_plus_nat @ N4 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1174_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1175_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1176_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1177_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_1178_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_1179_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_1180_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_1181_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_1182_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_1183_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_1184_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_1185_nat__induct__non__zero,axiom,
    ! [N5: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( ( P @ one_one_nat )
       => ( ! [N7: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N7 )
             => ( ( P @ N7 )
               => ( P @ ( suc @ N7 ) ) ) )
         => ( P @ N5 ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1186_tl__take,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( tl_a @ ( take_a @ N5 @ Xs ) )
      = ( take_a @ ( minus_minus_nat @ N5 @ one_one_nat ) @ ( tl_a @ Xs ) ) ) ).

% tl_take
thf(fact_1187_Suc__diff__eq__diff__pred,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( ( minus_minus_nat @ ( suc @ M2 ) @ N5 )
        = ( minus_minus_nat @ M2 @ ( minus_minus_nat @ N5 @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_1188_Suc__pred_H,axiom,
    ! [N5: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( N5
        = ( suc @ ( minus_minus_nat @ N5 @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_1189_add__eq__if,axiom,
    ( plus_plus_nat
    = ( ^ [M: nat,N4: nat] : ( if_nat @ ( M = zero_zero_nat ) @ N4 @ ( suc @ ( plus_plus_nat @ ( minus_minus_nat @ M @ one_one_nat ) @ N4 ) ) ) ) ) ).

% add_eq_if
thf(fact_1190_nth__Cons_H,axiom,
    ! [N5: nat,X2: a,Xs: list_a] :
      ( ( ( N5 = zero_zero_nat )
       => ( ( nth_a @ ( cons_a @ X2 @ Xs ) @ N5 )
          = X2 ) )
      & ( ( N5 != zero_zero_nat )
       => ( ( nth_a @ ( cons_a @ X2 @ Xs ) @ N5 )
          = ( nth_a @ Xs @ ( minus_minus_nat @ N5 @ one_one_nat ) ) ) ) ) ).

% nth_Cons'
thf(fact_1191_nth__non__equal__first__eq,axiom,
    ! [X2: a,Y: a,Xs: list_a,N5: nat] :
      ( ( X2 != Y )
     => ( ( ( nth_a @ ( cons_a @ X2 @ Xs ) @ N5 )
          = Y )
        = ( ( ( nth_a @ Xs @ ( minus_minus_nat @ N5 @ one_one_nat ) )
            = Y )
          & ( ord_less_nat @ zero_zero_nat @ N5 ) ) ) ) ).

% nth_non_equal_first_eq
thf(fact_1192_take__Cons_H,axiom,
    ! [N5: nat,X2: a,Xs: list_a] :
      ( ( ( N5 = zero_zero_nat )
       => ( ( take_a @ N5 @ ( cons_a @ X2 @ Xs ) )
          = nil_a ) )
      & ( ( N5 != zero_zero_nat )
       => ( ( take_a @ N5 @ ( cons_a @ X2 @ Xs ) )
          = ( cons_a @ X2 @ ( take_a @ ( minus_minus_nat @ N5 @ one_one_nat ) @ Xs ) ) ) ) ) ).

% take_Cons'
thf(fact_1193_bounded__Max__nat,axiom,
    ! [P: nat > $o,X2: nat,M7: nat] :
      ( ( P @ X2 )
     => ( ! [X3: nat] :
            ( ( P @ X3 )
           => ( ord_less_eq_nat @ X3 @ M7 ) )
       => ~ ! [M6: nat] :
              ( ( P @ M6 )
             => ~ ! [X: nat] :
                    ( ( P @ X )
                   => ( ord_less_eq_nat @ X @ M6 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_1194_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_1195_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_1196_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_1197_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_1198_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_1199_verit__le__mono__div,axiom,
    ! [A3: nat,B5: nat,N5: nat] :
      ( ( ord_less_nat @ A3 @ B5 )
     => ( ( ord_less_nat @ zero_zero_nat @ N5 )
       => ( ord_less_eq_nat
          @ ( plus_plus_nat @ ( divide_divide_nat @ A3 @ N5 )
            @ ( if_nat
              @ ( ( modulo_modulo_nat @ B5 @ N5 )
                = zero_zero_nat )
              @ one_one_nat
              @ zero_zero_nat ) )
          @ ( divide_divide_nat @ B5 @ N5 ) ) ) ) ).

% verit_le_mono_div
thf(fact_1200_butlast__take,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ord_less_eq_nat @ N5 @ ( size_size_list_a @ Xs ) )
     => ( ( butlast_a @ ( take_a @ N5 @ Xs ) )
        = ( take_a @ ( minus_minus_nat @ N5 @ one_one_nat ) @ Xs ) ) ) ).

% butlast_take
thf(fact_1201_div__by__Suc__0,axiom,
    ! [M2: nat] :
      ( ( divide_divide_nat @ M2 @ ( suc @ zero_zero_nat ) )
      = M2 ) ).

% div_by_Suc_0
thf(fact_1202_div__less,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ M2 @ N5 )
     => ( ( divide_divide_nat @ M2 @ N5 )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_1203_butlast__snoc,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( butlast_a @ ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) ) )
      = Xs ) ).

% butlast_snoc
thf(fact_1204_length__butlast,axiom,
    ! [Xs: list_a] :
      ( ( size_size_list_a @ ( butlast_a @ Xs ) )
      = ( minus_minus_nat @ ( size_size_list_a @ Xs ) @ one_one_nat ) ) ).

% length_butlast
thf(fact_1205_butlast__tl,axiom,
    ! [Xs: list_a] :
      ( ( butlast_a @ ( tl_a @ Xs ) )
      = ( tl_a @ ( butlast_a @ Xs ) ) ) ).

% butlast_tl
thf(fact_1206_butlast_Osimps_I1_J,axiom,
    ( ( butlast_a @ nil_a )
    = nil_a ) ).

% butlast.simps(1)
thf(fact_1207_div__le__dividend,axiom,
    ! [M2: nat,N5: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ N5 ) @ M2 ) ).

% div_le_dividend
thf(fact_1208_div__le__mono,axiom,
    ! [M2: nat,N5: nat,K: nat] :
      ( ( ord_less_eq_nat @ M2 @ N5 )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ K ) @ ( divide_divide_nat @ N5 @ K ) ) ) ).

% div_le_mono
thf(fact_1209_butlast__append,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( ( Ys = nil_a )
       => ( ( butlast_a @ ( append_a @ Xs @ Ys ) )
          = ( butlast_a @ Xs ) ) )
      & ( ( Ys != nil_a )
       => ( ( butlast_a @ ( append_a @ Xs @ Ys ) )
          = ( append_a @ Xs @ ( butlast_a @ Ys ) ) ) ) ) ).

% butlast_append
thf(fact_1210_butlast_Osimps_I2_J,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( ( Xs = nil_a )
       => ( ( butlast_a @ ( cons_a @ X2 @ Xs ) )
          = nil_a ) )
      & ( ( Xs != nil_a )
       => ( ( butlast_a @ ( cons_a @ X2 @ Xs ) )
          = ( cons_a @ X2 @ ( butlast_a @ Xs ) ) ) ) ) ).

% butlast.simps(2)
thf(fact_1211_Suc__div__le__mono,axiom,
    ! [M2: nat,N5: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M2 @ N5 ) @ ( divide_divide_nat @ ( suc @ M2 ) @ N5 ) ) ).

% Suc_div_le_mono
thf(fact_1212_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( divide_divide_nat @ M2 @ N5 )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M2 @ N5 )
        | ( N5 = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_1213_div__greater__zero__iff,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M2 @ N5 ) )
      = ( ( ord_less_eq_nat @ N5 @ M2 )
        & ( ord_less_nat @ zero_zero_nat @ N5 ) ) ) ).

% div_greater_zero_iff
thf(fact_1214_div__le__mono2,axiom,
    ! [M2: nat,N5: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M2 )
     => ( ( ord_less_eq_nat @ M2 @ N5 )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N5 ) @ ( divide_divide_nat @ K @ M2 ) ) ) ) ).

% div_le_mono2
thf(fact_1215_div__less__dividend,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_nat @ one_one_nat @ N5 )
     => ( ( ord_less_nat @ zero_zero_nat @ M2 )
       => ( ord_less_nat @ ( divide_divide_nat @ M2 @ N5 ) @ M2 ) ) ) ).

% div_less_dividend
thf(fact_1216_div__eq__dividend__iff,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M2 )
     => ( ( ( divide_divide_nat @ M2 @ N5 )
          = M2 )
        = ( N5 = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_1217_div__Suc,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( ( modulo_modulo_nat @ ( suc @ M2 ) @ N5 )
          = zero_zero_nat )
       => ( ( divide_divide_nat @ ( suc @ M2 ) @ N5 )
          = ( suc @ ( divide_divide_nat @ M2 @ N5 ) ) ) )
      & ( ( ( modulo_modulo_nat @ ( suc @ M2 ) @ N5 )
         != zero_zero_nat )
       => ( ( divide_divide_nat @ ( suc @ M2 ) @ N5 )
          = ( divide_divide_nat @ M2 @ N5 ) ) ) ) ).

% div_Suc
thf(fact_1218_div__less__mono,axiom,
    ! [A3: nat,B5: nat,N5: nat] :
      ( ( ord_less_nat @ A3 @ B5 )
     => ( ( ord_less_nat @ zero_zero_nat @ N5 )
       => ( ( ( modulo_modulo_nat @ A3 @ N5 )
            = zero_zero_nat )
         => ( ( ( modulo_modulo_nat @ B5 @ N5 )
              = zero_zero_nat )
           => ( ord_less_nat @ ( divide_divide_nat @ A3 @ N5 ) @ ( divide_divide_nat @ B5 @ N5 ) ) ) ) ) ) ).

% div_less_mono
thf(fact_1219_nth__butlast,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ord_less_nat @ N5 @ ( size_size_list_a @ ( butlast_a @ Xs ) ) )
     => ( ( nth_a @ ( butlast_a @ Xs ) @ N5 )
        = ( nth_a @ Xs @ N5 ) ) ) ).

% nth_butlast
thf(fact_1220_take__butlast,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
     => ( ( take_a @ N5 @ ( butlast_a @ Xs ) )
        = ( take_a @ N5 @ Xs ) ) ) ).

% take_butlast
thf(fact_1221_div__if,axiom,
    ( divide_divide_nat
    = ( ^ [M: nat,N4: nat] :
          ( if_nat
          @ ( ( ord_less_nat @ M @ N4 )
            | ( N4 = zero_zero_nat ) )
          @ zero_zero_nat
          @ ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M @ N4 ) @ N4 ) ) ) ) ) ).

% div_if
thf(fact_1222_butlast__conv__take,axiom,
    ( butlast_a
    = ( ^ [Xs2: list_a] : ( take_a @ ( minus_minus_nat @ ( size_size_list_a @ Xs2 ) @ one_one_nat ) @ Xs2 ) ) ) ).

% butlast_conv_take
thf(fact_1223_butlast__list__update,axiom,
    ! [K: nat,Xs: list_a,X2: a] :
      ( ( ( K
          = ( minus_minus_nat @ ( size_size_list_a @ Xs ) @ one_one_nat ) )
       => ( ( butlast_a @ ( list_update_a @ Xs @ K @ X2 ) )
          = ( butlast_a @ Xs ) ) )
      & ( ( K
         != ( minus_minus_nat @ ( size_size_list_a @ Xs ) @ one_one_nat ) )
       => ( ( butlast_a @ ( list_update_a @ Xs @ K @ X2 ) )
          = ( list_update_a @ ( butlast_a @ Xs ) @ K @ X2 ) ) ) ) ).

% butlast_list_update
thf(fact_1224_le__div__geq,axiom,
    ! [N5: nat,M2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N5 )
     => ( ( ord_less_eq_nat @ N5 @ M2 )
       => ( ( divide_divide_nat @ M2 @ N5 )
          = ( suc @ ( divide_divide_nat @ ( minus_minus_nat @ M2 @ N5 ) @ N5 ) ) ) ) ) ).

% le_div_geq
thf(fact_1225_append__butlast__last__id,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( append_a @ ( butlast_a @ Xs ) @ ( cons_a @ ( last_a @ Xs ) @ nil_a ) )
        = Xs ) ) ).

% append_butlast_last_id
thf(fact_1226_last__appendR,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys != nil_a )
     => ( ( last_a @ ( append_a @ Xs @ Ys ) )
        = ( last_a @ Ys ) ) ) ).

% last_appendR
thf(fact_1227_last__appendL,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( Ys = nil_a )
     => ( ( last_a @ ( append_a @ Xs @ Ys ) )
        = ( last_a @ Xs ) ) ) ).

% last_appendL
thf(fact_1228_last__snoc,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( last_a @ ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) ) )
      = X2 ) ).

% last_snoc
thf(fact_1229_last__drop,axiom,
    ! [N5: nat,Xs: list_a] :
      ( ( ord_less_nat @ N5 @ ( size_size_list_a @ Xs ) )
     => ( ( last_a @ ( drop_a @ N5 @ Xs ) )
        = ( last_a @ Xs ) ) ) ).

% last_drop
thf(fact_1230_last__ConsR,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( Xs != nil_a )
     => ( ( last_a @ ( cons_a @ X2 @ Xs ) )
        = ( last_a @ Xs ) ) ) ).

% last_ConsR
thf(fact_1231_last__ConsL,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( Xs = nil_a )
     => ( ( last_a @ ( cons_a @ X2 @ Xs ) )
        = X2 ) ) ).

% last_ConsL
thf(fact_1232_last_Osimps,axiom,
    ! [Xs: list_a,X2: a] :
      ( ( ( Xs = nil_a )
       => ( ( last_a @ ( cons_a @ X2 @ Xs ) )
          = X2 ) )
      & ( ( Xs != nil_a )
       => ( ( last_a @ ( cons_a @ X2 @ Xs ) )
          = ( last_a @ Xs ) ) ) ) ).

% last.simps
thf(fact_1233_last__append,axiom,
    ! [Ys: list_a,Xs: list_a] :
      ( ( ( Ys = nil_a )
       => ( ( last_a @ ( append_a @ Xs @ Ys ) )
          = ( last_a @ Xs ) ) )
      & ( ( Ys != nil_a )
       => ( ( last_a @ ( append_a @ Xs @ Ys ) )
          = ( last_a @ Ys ) ) ) ) ).

% last_append
thf(fact_1234_longest__common__suffix,axiom,
    ! [Xs: list_a,Ys: list_a] :
    ? [Ss2: list_a,Xs4: list_a,Ys6: list_a] :
      ( ( Xs
        = ( append_a @ Xs4 @ Ss2 ) )
      & ( Ys
        = ( append_a @ Ys6 @ Ss2 ) )
      & ( ( Xs4 = nil_a )
        | ( Ys6 = nil_a )
        | ( ( last_a @ Xs4 )
         != ( last_a @ Ys6 ) ) ) ) ).

% longest_common_suffix
thf(fact_1235_hd__Nil__eq__last,axiom,
    ( ( hd_a @ nil_a )
    = ( last_a @ nil_a ) ) ).

% hd_Nil_eq_last
thf(fact_1236_last__tl,axiom,
    ! [Xs: list_a] :
      ( ( ( Xs = nil_a )
        | ( ( tl_a @ Xs )
         != nil_a ) )
     => ( ( last_a @ ( tl_a @ Xs ) )
        = ( last_a @ Xs ) ) ) ).

% last_tl
thf(fact_1237_snoc__eq__iff__butlast,axiom,
    ! [Xs: list_a,X2: a,Ys: list_a] :
      ( ( ( append_a @ Xs @ ( cons_a @ X2 @ nil_a ) )
        = Ys )
      = ( ( Ys != nil_a )
        & ( ( butlast_a @ Ys )
          = Xs )
        & ( ( last_a @ Ys )
          = X2 ) ) ) ).

% snoc_eq_iff_butlast
thf(fact_1238_last__conv__nth,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( last_a @ Xs )
        = ( nth_a @ Xs @ ( minus_minus_nat @ ( size_size_list_a @ Xs ) @ one_one_nat ) ) ) ) ).

% last_conv_nth
thf(fact_1239_last__list__update,axiom,
    ! [Xs: list_a,K: nat,X2: a] :
      ( ( Xs != nil_a )
     => ( ( ( K
            = ( minus_minus_nat @ ( size_size_list_a @ Xs ) @ one_one_nat ) )
         => ( ( last_a @ ( list_update_a @ Xs @ K @ X2 ) )
            = X2 ) )
        & ( ( K
           != ( minus_minus_nat @ ( size_size_list_a @ Xs ) @ one_one_nat ) )
         => ( ( last_a @ ( list_update_a @ Xs @ K @ X2 ) )
            = ( last_a @ Xs ) ) ) ) ) ).

% last_list_update
thf(fact_1240_distinct__adj__append__iff,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( distinct_adj_a @ ( append_a @ Xs @ Ys ) )
      = ( ( distinct_adj_a @ Xs )
        & ( distinct_adj_a @ Ys )
        & ( ( Xs = nil_a )
          | ( Ys = nil_a )
          | ( ( last_a @ Xs )
           != ( hd_a @ Ys ) ) ) ) ) ).

% distinct_adj_append_iff
thf(fact_1241_numeral__le__iff,axiom,
    ! [M2: num,N5: num] :
      ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M2 ) @ ( numeral_numeral_nat @ N5 ) )
      = ( ord_less_eq_num @ M2 @ N5 ) ) ).

% numeral_le_iff
thf(fact_1242_numeral__less__iff,axiom,
    ! [M2: num,N5: num] :
      ( ( ord_less_nat @ ( numeral_numeral_nat @ M2 ) @ ( numeral_numeral_nat @ N5 ) )
      = ( ord_less_num @ M2 @ N5 ) ) ).

% numeral_less_iff
thf(fact_1243_min__number__of_I1_J,axiom,
    ! [U: num,V: num] :
      ( ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_min_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ U ) ) )
      & ( ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
       => ( ( ord_min_nat @ ( numeral_numeral_nat @ U ) @ ( numeral_numeral_nat @ V ) )
          = ( numeral_numeral_nat @ V ) ) ) ) ).

% min_number_of(1)
thf(fact_1244_nth__Cons__numeral,axiom,
    ! [X2: a,Xs: list_a,V: num] :
      ( ( nth_a @ ( cons_a @ X2 @ Xs ) @ ( numeral_numeral_nat @ V ) )
      = ( nth_a @ Xs @ ( minus_minus_nat @ ( numeral_numeral_nat @ V ) @ one_one_nat ) ) ) ).

% nth_Cons_numeral
thf(fact_1245_one__le__numeral,axiom,
    ! [N5: num] : ( ord_less_eq_nat @ one_one_nat @ ( numeral_numeral_nat @ N5 ) ) ).

% one_le_numeral
thf(fact_1246_not__numeral__less__one,axiom,
    ! [N5: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N5 ) @ one_one_nat ) ).

% not_numeral_less_one
thf(fact_1247_zero__less__numeral,axiom,
    ! [N5: num] : ( ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N5 ) ) ).

% zero_less_numeral
thf(fact_1248_not__numeral__less__zero,axiom,
    ! [N5: num] :
      ~ ( ord_less_nat @ ( numeral_numeral_nat @ N5 ) @ zero_zero_nat ) ).

% not_numeral_less_zero
thf(fact_1249_not__numeral__le__zero,axiom,
    ! [N5: num] :
      ~ ( ord_less_eq_nat @ ( numeral_numeral_nat @ N5 ) @ zero_zero_nat ) ).

% not_numeral_le_zero
thf(fact_1250_zero__le__numeral,axiom,
    ! [N5: num] : ( ord_less_eq_nat @ zero_zero_nat @ ( numeral_numeral_nat @ N5 ) ) ).

% zero_le_numeral
thf(fact_1251_distinct__adj__Nil,axiom,
    distinct_adj_a @ nil_a ).

% distinct_adj_Nil
thf(fact_1252_distinct__adj__singleton,axiom,
    ! [X2: a] : ( distinct_adj_a @ ( cons_a @ X2 @ nil_a ) ) ).

% distinct_adj_singleton
thf(fact_1253_distinct__adj__Cons,axiom,
    ! [X2: a,Xs: list_a] :
      ( ( distinct_adj_a @ ( cons_a @ X2 @ Xs ) )
      = ( ( Xs = nil_a )
        | ( ( X2
           != ( hd_a @ Xs ) )
          & ( distinct_adj_a @ Xs ) ) ) ) ).

% distinct_adj_Cons
thf(fact_1254_Suc__times__mod__eq,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M2 )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M2 @ N5 ) ) @ M2 )
        = one_one_nat ) ) ).

% Suc_times_mod_eq
thf(fact_1255_split__div_H,axiom,
    ! [P: nat > $o,M2: nat,N5: nat] :
      ( ( P @ ( divide_divide_nat @ M2 @ N5 ) )
      = ( ( ( N5 = zero_zero_nat )
          & ( P @ zero_zero_nat ) )
        | ? [Q5: nat] :
            ( ( ord_less_eq_nat @ ( times_times_nat @ N5 @ Q5 ) @ M2 )
            & ( ord_less_nat @ M2 @ ( times_times_nat @ N5 @ ( suc @ Q5 ) ) )
            & ( P @ Q5 ) ) ) ) ).

% split_div'
thf(fact_1256_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_1257_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_1258_mult__is__0,axiom,
    ! [M2: nat,N5: nat] :
      ( ( ( times_times_nat @ M2 @ N5 )
        = zero_zero_nat )
      = ( ( M2 = zero_zero_nat )
        | ( N5 = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1259_mult__0__right,axiom,
    ! [M2: nat] :
      ( ( times_times_nat @ M2 @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1260_mult__cancel1,axiom,
    ! [K: nat,M2: nat,N5: nat] :
      ( ( ( times_times_nat @ K @ M2 )
        = ( times_times_nat @ K @ N5 ) )
      = ( ( M2 = N5 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1261_mult__cancel2,axiom,
    ! [M2: nat,K: nat,N5: nat] :
      ( ( ( times_times_nat @ M2 @ K )
        = ( times_times_nat @ N5 @ K ) )
      = ( ( M2 = N5 )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1262_nat__1__eq__mult__iff,axiom,
    ! [M2: nat,N5: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M2 @ N5 ) )
      = ( ( M2 = one_one_nat )
        & ( N5 = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff

% Helper facts (9)
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X2: nat,Y: nat] :
      ( ( if_nat @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X2: nat,Y: nat] :
      ( ( if_nat @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J_T,axiom,
    ! [X2: stream_list_a,Y: stream_list_a] :
      ( ( if_stream_list_a @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Stream__Ostream_It__List__Olist_Itf__a_J_J_T,axiom,
    ! [X2: stream_list_a,Y: stream_list_a] :
      ( ( if_stream_list_a @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_2_1_If_001t__Stream__Ostream_It__List__Olist_It__List__Olist_Itf__a_J_J_J_T,axiom,
    ! [X2: stream_list_list_a,Y: stream_list_list_a] :
      ( ( if_str7505741754068378070list_a @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Stream__Ostream_It__List__Olist_It__List__Olist_Itf__a_J_J_J_T,axiom,
    ! [X2: stream_list_list_a,Y: stream_list_list_a] :
      ( ( if_str7505741754068378070list_a @ $true @ X2 @ Y )
      = X2 ) ).

thf(help_If_3_1_If_001t__Stream__Ostream_It__List__Olist_It__List__Olist_It__List__Olist_Itf__a_J_J_J_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Stream__Ostream_It__List__Olist_It__List__Olist_It__List__Olist_Itf__a_J_J_J_J_T,axiom,
    ! [X2: stream2255243159586646806list_a,Y: stream2255243159586646806list_a] :
      ( ( if_str8217234800680828380list_a @ $false @ X2 @ Y )
      = Y ) ).

thf(help_If_1_1_If_001t__Stream__Ostream_It__List__Olist_It__List__Olist_It__List__Olist_Itf__a_J_J_J_J_T,axiom,
    ! [X2: stream2255243159586646806list_a,Y: stream2255243159586646806list_a] :
      ( ( if_str8217234800680828380list_a @ $true @ X2 @ Y )
      = X2 ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    ? [N: nat] :
      ( ( ord_less_eq_nat @ na @ N )
      & ( x
        = ( snth_a @ ( flat_a @ ( stl_list_a @ sa ) ) @ N ) ) ) ).

%------------------------------------------------------------------------------