TPTP Problem File: SLH0194^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Number_Theoretic_Transform/0007_NTT/prob_00259_009610__14097504_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1357 ( 759 unt; 80 typ; 0 def)
% Number of atoms : 3069 (1558 equ; 0 cnn)
% Maximal formula atoms : 11 ( 2 avg)
% Number of connectives : 10051 ( 180 ~; 70 |; 163 &;8670 @)
% ( 0 <=>; 968 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 5 avg)
% Number of types : 9 ( 8 usr)
% Number of type conns : 282 ( 282 >; 0 *; 0 +; 0 <<)
% Number of symbols : 75 ( 72 usr; 18 con; 0-5 aty)
% Number of variables : 3095 ( 137 ^;2923 !; 35 ?;3095 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-18 16:38:27.315
%------------------------------------------------------------------------------
% Could-be-implicit typings (8)
thf(ty_n_t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
list_F4626807571770296779ring_a: $tType ).
thf(ty_n_t__Finite____Field__Omod____ring_Itf__a_J,type,
finite_mod_ring_a: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (72)
thf(sy_c_Finite__Field_Oof__int__mod__ring_001tf__a,type,
finite8272632373135393572ring_a: int > finite_mod_ring_a ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Finite____Field__Omod____ring_Itf__a_J,type,
minus_3609261664126569004ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Oone__class_Oone_001t__Finite____Field__Omod____ring_Itf__a_J,type,
one_on2109788427901206336ring_a: finite_mod_ring_a ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Finite____Field__Omod____ring_Itf__a_J,type,
plus_p6165643967897163644ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Finite____Field__Omod____ring_Itf__a_J,type,
times_5121417576591743744ring_a: finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Finite____Field__Omod____ring_Itf__a_J,type,
uminus3100561713750211260ring_a: finite_mod_ring_a > finite_mod_ring_a ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Finite____Field__Omod____ring_Itf__a_J,type,
zero_z7902377541816115708ring_a: finite_mod_ring_a ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Int__Oint_001t__Finite____Field__Omod____ring_Itf__a_J,type,
groups7393019125535064413ring_a: ( int > finite_mod_ring_a ) > set_int > finite_mod_ring_a ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Finite____Field__Omod____ring_Itf__a_J,type,
groups3558780024651037881ring_a: ( nat > finite_mod_ring_a ) > set_nat > finite_mod_ring_a ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Nat__Onat_001t__Nat__Onat,type,
groups3542108847815614940at_nat: ( nat > nat ) > set_nat > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Finite____Field__Omod____ring_Itf__a_J,type,
groups465414945397457501ring_a: ( real > finite_mod_ring_a ) > set_real > finite_mod_ring_a ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Int__Oint,type,
groups1932886352136224148al_int: ( real > int ) > set_real > int ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Nat__Onat,type,
groups1935376822645274424al_nat: ( real > nat ) > set_real > nat ).
thf(sy_c_Groups__Big_Ocomm__monoid__add__class_Osum_001t__Real__Oreal_001t__Real__Oreal,type,
groups8097168146408367636l_real: ( real > real ) > set_real > real ).
thf(sy_c_If_001t__Finite____Field__Omod____ring_Itf__a_J,type,
if_Finite_mod_ring_a: $o > finite_mod_ring_a > finite_mod_ring_a > finite_mod_ring_a ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_If_001t__Real__Oreal,type,
if_real: $o > real > real > real ).
thf(sy_c_List_Onth_001t__Finite____Field__Omod____ring_Itf__a_J,type,
nth_Fi694352073394265932ring_a: list_F4626807571770296779ring_a > nat > finite_mod_ring_a ).
thf(sy_c_NTT_Ontt_001tf__a,type,
ntt_a: nat > nat > nat > finite_mod_ring_a > finite_mod_ring_a > $o ).
thf(sy_c_NTT_Ontt_OINTT_001tf__a,type,
iNTT_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).
thf(sy_c_NTT_Ontt_ONTT_001tf__a,type,
nTT_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > list_F4626807571770296779ring_a ).
thf(sy_c_NTT_Ontt_Ointt_001tf__a,type,
intt_a: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > nat > finite_mod_ring_a ).
thf(sy_c_NTT_Ontt_Ontt_001tf__a,type,
ntt_a2: nat > finite_mod_ring_a > list_F4626807571770296779ring_a > nat > finite_mod_ring_a ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Finite____Field__Omod____ring_Itf__a_J_J,type,
size_s7115545719440041015ring_a: list_F4626807571770296779ring_a > nat ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Finite____Field__Omod____ring_Itf__a_J,type,
power_6826135765519566523ring_a: finite_mod_ring_a > nat > finite_mod_ring_a ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Preliminary__Lemmas_Opreliminary_Omu_001tf__a,type,
preliminary_mu_a: nat > finite_mod_ring_a ).
thf(sy_c_Preliminary__Lemmas_Opreliminary_Oomega_001tf__a,type,
preliminary_omega_a: nat > finite_mod_ring_a ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Int__Oint,type,
modulo_modulo_int: int > int > int ).
thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
modulo_modulo_nat: nat > nat > nat ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Int__Oint,type,
set_or4662586982721622107an_int: int > int > set_int ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Nat__Onat,type,
set_or4665077453230672383an_nat: nat > nat > set_nat ).
thf(sy_c_Set__Interval_Oord__class_OatLeastLessThan_001t__Real__Oreal,type,
set_or66887138388493659n_real: real > real > set_real ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v__092_060mu_062,type,
mu: finite_mod_ring_a ).
thf(sy_v__092_060omega_062,type,
omega: finite_mod_ring_a ).
thf(sy_v_i____,type,
i: nat ).
thf(sy_v_j____,type,
j: nat ).
thf(sy_v_k,type,
k: nat ).
thf(sy_v_n,type,
n: nat ).
thf(sy_v_numbers,type,
numbers: list_F4626807571770296779ring_a ).
thf(sy_v_p,type,
p: nat ).
% Relevant facts (1267)
thf(fact_0_exp__rule,axiom,
! [C: finite_mod_ring_a,D: finite_mod_ring_a,E: nat] :
( ( power_6826135765519566523ring_a @ ( times_5121417576591743744ring_a @ C @ D ) @ E )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ C @ E ) @ ( power_6826135765519566523ring_a @ D @ E ) ) ) ).
% exp_rule
thf(fact_1_mu__properties_H,axiom,
mu != one_on2109788427901206336ring_a ).
% mu_properties'
thf(fact_2_sum__swap,axiom,
! [F: nat > nat > finite_mod_ring_a,Y: nat,X: nat] :
( ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( groups3558780024651037881ring_a @ ( F @ I ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] :
( groups3558780024651037881ring_a
@ ^ [I: nat] : ( F @ I @ J )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) ) ) ).
% sum_swap
thf(fact_3_sum__swap,axiom,
! [F: nat > nat > nat,Y: nat,X: nat] :
( ( groups3542108847815614940at_nat
@ ^ [I: nat] : ( groups3542108847815614940at_nat @ ( F @ I ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
= ( groups3542108847815614940at_nat
@ ^ [J: nat] :
( groups3542108847815614940at_nat
@ ^ [I: nat] : ( F @ I @ J )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ Y ) ) ) ).
% sum_swap
thf(fact_4__092_060open_062_I_092_060mu_062_A_094_A_Ii_A_N_Aj_J_J_A_094_An_A_061_A1_092_060close_062,axiom,
( ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ mu @ ( minus_minus_nat @ i @ j ) ) @ n )
= one_on2109788427901206336ring_a ) ).
% \<open>(\<mu> ^ (i - j)) ^ n = 1\<close>
thf(fact_5_sum__in,axiom,
! [F: nat > finite_mod_ring_a,Y: finite_mod_ring_a,X: nat] :
( ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( times_5121417576591743744ring_a @ ( F @ I ) @ Y )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
= ( times_5121417576591743744ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) @ Y ) ) ).
% sum_in
thf(fact_6_sum__diff__in,axiom,
! [F: nat > finite_mod_ring_a,X: nat,G: nat > finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) @ ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) )
= ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( minus_3609261664126569004ring_a @ ( F @ I ) @ ( G @ I ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) ) ).
% sum_diff_in
thf(fact_7__092_060open_062_I1_A_N_A_092_060mu_062_A_094_A_Ii_A_N_Aj_J_J_A_K_Asum_A_I_I_094_J_A_I_092_060mu_062_A_094_A_Ii_A_N_Aj_J_J_J_A_1230_O_O_060n_125_A_061_A1_A_N_A_I_092_060mu_062_A_094_A_Ii_A_N_Aj_J_J_A_094_An_092_060close_062,axiom,
( ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ ( power_6826135765519566523ring_a @ mu @ ( minus_minus_nat @ i @ j ) ) ) @ ( groups3558780024651037881ring_a @ ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ mu @ ( minus_minus_nat @ i @ j ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) )
= ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ mu @ ( minus_minus_nat @ i @ j ) ) @ n ) ) ) ).
% \<open>(1 - \<mu> ^ (i - j)) * sum ((^) (\<mu> ^ (i - j))) {0..<n} = 1 - (\<mu> ^ (i - j)) ^ n\<close>
thf(fact_8__C00_C,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ C @ ( power_6826135765519566523ring_a @ A @ j ) ) @ ( power_6826135765519566523ring_a @ B @ i ) )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ j ) @ ( times_5121417576591743744ring_a @ C @ ( power_6826135765519566523ring_a @ B @ ( minus_minus_nat @ i @ j ) ) ) ) ) ).
% "00"
thf(fact_9_i__assms,axiom,
ord_less_nat @ i @ n ).
% i_assms
thf(fact_10_j__assms,axiom,
ord_less_nat @ j @ i ).
% j_assms
thf(fact_11__092_060open_062_092_060mu_062_A_094_A_Ii_A_N_Aj_J_A_092_060noteq_062_A1_092_060close_062,axiom,
( ( power_6826135765519566523ring_a @ mu @ ( minus_minus_nat @ i @ j ) )
!= one_on2109788427901206336ring_a ) ).
% \<open>\<mu> ^ (i - j) \<noteq> 1\<close>
thf(fact_12__C03_C,axiom,
( ( groups3558780024651037881ring_a
@ ^ [L: nat] : ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ mu @ L ) @ ( minus_minus_nat @ i @ j ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
= ( groups3558780024651037881ring_a @ ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ mu @ ( minus_minus_nat @ i @ j ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) ) ).
% "03"
thf(fact_13_geo__sum,axiom,
! [X: finite_mod_ring_a,R: nat] :
( ( X != one_on2109788427901206336ring_a )
=> ( ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ X ) @ ( groups3558780024651037881ring_a @ ( power_6826135765519566523ring_a @ X ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ R ) ) )
= ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ ( power_6826135765519566523ring_a @ X @ R ) ) ) ) ).
% geo_sum
thf(fact_14_sum_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups3558780024651037881ring_a
@ ^ [Uu: nat] : zero_z7902377541816115708ring_a
@ A2 )
= zero_z7902377541816115708ring_a ) ).
% sum.neutral_const
thf(fact_15_sum_Oneutral__const,axiom,
! [A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [Uu: nat] : zero_zero_nat
@ A2 )
= zero_zero_nat ) ).
% sum.neutral_const
thf(fact_16_diff__0__eq__0,axiom,
! [N: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_17_diff__self__eq__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ M )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_18_diff__self,axiom,
! [A: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ A @ A )
= zero_z7902377541816115708ring_a ) ).
% diff_self
thf(fact_19_diff__self,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% diff_self
thf(fact_20_diff__self,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% diff_self
thf(fact_21_diff__0__right,axiom,
! [A: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ A @ zero_z7902377541816115708ring_a )
= A ) ).
% diff_0_right
thf(fact_22_diff__0__right,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_0_right
thf(fact_23_diff__0__right,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_0_right
thf(fact_24_zero__diff,axiom,
! [A: nat] :
( ( minus_minus_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% zero_diff
thf(fact_25_diff__zero,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ zero_zero_nat )
= A ) ).
% diff_zero
thf(fact_26_diff__zero,axiom,
! [A: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ A @ zero_z7902377541816115708ring_a )
= A ) ).
% diff_zero
thf(fact_27_diff__zero,axiom,
! [A: int] :
( ( minus_minus_int @ A @ zero_zero_int )
= A ) ).
% diff_zero
thf(fact_28_diff__zero,axiom,
! [A: real] :
( ( minus_minus_real @ A @ zero_zero_real )
= A ) ).
% diff_zero
thf(fact_29_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: nat] :
( ( minus_minus_nat @ A @ A )
= zero_zero_nat ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_30_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ A @ A )
= zero_z7902377541816115708ring_a ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_31_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: int] :
( ( minus_minus_int @ A @ A )
= zero_zero_int ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_32_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: real] :
( ( minus_minus_real @ A @ A )
= zero_zero_real ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_33_sum__eq,axiom,
! [X: nat,F: nat > finite_mod_ring_a,G: nat > finite_mod_ring_a] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ X )
=> ( ( F @ I2 )
= ( G @ I2 ) ) )
=> ( ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
= ( groups3558780024651037881ring_a @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) ) ) ).
% sum_eq
thf(fact_34_sum__eq,axiom,
! [X: nat,F: nat > nat,G: nat > nat] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ X )
=> ( ( F @ I2 )
= ( G @ I2 ) ) )
=> ( ( groups3542108847815614940at_nat @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
= ( groups3542108847815614940at_nat @ G @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) ) ) ) ).
% sum_eq
thf(fact_35_sum__neg__in,axiom,
! [F: int > finite_mod_ring_a,L2: int] :
( ( uminus3100561713750211260ring_a @ ( groups7393019125535064413ring_a @ F @ ( set_or4662586982721622107an_int @ zero_zero_int @ L2 ) ) )
= ( groups7393019125535064413ring_a
@ ^ [J: int] : ( uminus3100561713750211260ring_a @ ( F @ J ) )
@ ( set_or4662586982721622107an_int @ zero_zero_int @ L2 ) ) ) ).
% sum_neg_in
thf(fact_36_sum__neg__in,axiom,
! [F: real > finite_mod_ring_a,L2: real] :
( ( uminus3100561713750211260ring_a @ ( groups465414945397457501ring_a @ F @ ( set_or66887138388493659n_real @ zero_zero_real @ L2 ) ) )
= ( groups465414945397457501ring_a
@ ^ [J: real] : ( uminus3100561713750211260ring_a @ ( F @ J ) )
@ ( set_or66887138388493659n_real @ zero_zero_real @ L2 ) ) ) ).
% sum_neg_in
thf(fact_37_sum__neg__in,axiom,
! [F: nat > finite_mod_ring_a,L2: nat] :
( ( uminus3100561713750211260ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ L2 ) ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( uminus3100561713750211260ring_a @ ( F @ J ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ L2 ) ) ) ).
% sum_neg_in
thf(fact_38_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_39_add_Oinverse__inverse,axiom,
! [A: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_40_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_41_neg__equal__iff__equal,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_42_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_43_mult_Oright__neutral,axiom,
! [A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ A @ one_on2109788427901206336ring_a )
= A ) ).
% mult.right_neutral
thf(fact_44_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_45_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_46_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_47_mult__1,axiom,
! [A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ one_on2109788427901206336ring_a @ A )
= A ) ).
% mult_1
thf(fact_48_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_49_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_50_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_51_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_52_neg__equal__zero,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= A )
= ( A = zero_zero_real ) ) ).
% neg_equal_zero
thf(fact_53_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_54_equal__neg__zero,axiom,
! [A: real] :
( ( A
= ( uminus_uminus_real @ A ) )
= ( A = zero_zero_real ) ) ).
% equal_neg_zero
thf(fact_55_neg__equal__0__iff__equal,axiom,
! [A: finite_mod_ring_a] :
( ( ( uminus3100561713750211260ring_a @ A )
= zero_z7902377541816115708ring_a )
= ( A = zero_z7902377541816115708ring_a ) ) ).
% neg_equal_0_iff_equal
thf(fact_56_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_57_neg__equal__0__iff__equal,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% neg_equal_0_iff_equal
thf(fact_58_neg__0__equal__iff__equal,axiom,
! [A: finite_mod_ring_a] :
( ( zero_z7902377541816115708ring_a
= ( uminus3100561713750211260ring_a @ A ) )
= ( zero_z7902377541816115708ring_a = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_59_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_60_neg__0__equal__iff__equal,axiom,
! [A: real] :
( ( zero_zero_real
= ( uminus_uminus_real @ A ) )
= ( zero_zero_real = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_61_add_Oinverse__neutral,axiom,
( ( uminus3100561713750211260ring_a @ zero_z7902377541816115708ring_a )
= zero_z7902377541816115708ring_a ) ).
% add.inverse_neutral
thf(fact_62_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_63_add_Oinverse__neutral,axiom,
( ( uminus_uminus_real @ zero_zero_real )
= zero_zero_real ) ).
% add.inverse_neutral
thf(fact_64_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_65_neg__less__iff__less,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_66_minus__diff__eq,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( uminus3100561713750211260ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) )
= ( minus_3609261664126569004ring_a @ B @ A ) ) ).
% minus_diff_eq
thf(fact_67_minus__diff__eq,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( minus_minus_int @ A @ B ) )
= ( minus_minus_int @ B @ A ) ) ).
% minus_diff_eq
thf(fact_68_minus__diff__eq,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( minus_minus_real @ A @ B ) )
= ( minus_minus_real @ B @ A ) ) ).
% minus_diff_eq
thf(fact_69_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_70_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_71_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_72_diff__gt__0__iff__gt,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_int @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_73_diff__gt__0__iff__gt,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_real @ B @ A ) ) ).
% diff_gt_0_iff_gt
thf(fact_74_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_75_less__neg__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% less_neg_neg
thf(fact_76_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_77_neg__less__pos,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_pos
thf(fact_78_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_79_Collect__mem__eq,axiom,
! [A2: set_real] :
( ( collect_real
@ ^ [X2: real] : ( member_real @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_80_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_81_neg__0__less__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% neg_0_less_iff_less
thf(fact_82_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_83_neg__less__0__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_0_iff_less
thf(fact_84_diff__0,axiom,
! [A: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ zero_z7902377541816115708ring_a @ A )
= ( uminus3100561713750211260ring_a @ A ) ) ).
% diff_0
thf(fact_85_diff__0,axiom,
! [A: int] :
( ( minus_minus_int @ zero_zero_int @ A )
= ( uminus_uminus_int @ A ) ) ).
% diff_0
thf(fact_86_diff__0,axiom,
! [A: real] :
( ( minus_minus_real @ zero_zero_real @ A )
= ( uminus_uminus_real @ A ) ) ).
% diff_0
thf(fact_87_zero__less__diff,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N @ M ) )
= ( ord_less_nat @ M @ N ) ) ).
% zero_less_diff
thf(fact_88_k__bound,axiom,
ord_less_nat @ zero_zero_nat @ k ).
% k_bound
thf(fact_89_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ C )
= ( times_5121417576591743744ring_a @ A @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_90_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_91_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_92_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_93_comm__monoid__mult__class_Omult__1,axiom,
! [A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ one_on2109788427901206336ring_a @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_94_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_95_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_96_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_97_mult_Oassoc,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ C )
= ( times_5121417576591743744ring_a @ A @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).
% mult.assoc
thf(fact_98_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_99_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_100_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_101_equation__minus__iff,axiom,
! [A: int,B: int] :
( ( A
= ( uminus_uminus_int @ B ) )
= ( B
= ( uminus_uminus_int @ A ) ) ) ).
% equation_minus_iff
thf(fact_102_equation__minus__iff,axiom,
! [A: real,B: real] :
( ( A
= ( uminus_uminus_real @ B ) )
= ( B
= ( uminus_uminus_real @ A ) ) ) ).
% equation_minus_iff
thf(fact_103_minus__equation__iff,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= B )
= ( ( uminus_uminus_int @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_104_minus__equation__iff,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= B )
= ( ( uminus_uminus_real @ B )
= A ) ) ).
% minus_equation_iff
thf(fact_105_mult_Ocommute,axiom,
( times_5121417576591743744ring_a
= ( ^ [A3: finite_mod_ring_a,B2: finite_mod_ring_a] : ( times_5121417576591743744ring_a @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_106_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A3: nat,B2: nat] : ( times_times_nat @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_107_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A3: int,B2: int] : ( times_times_int @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_108_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A3: real,B2: real] : ( times_times_real @ B2 @ A3 ) ) ) ).
% mult.commute
thf(fact_109_mult_Ocomm__neutral,axiom,
! [A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ A @ one_on2109788427901206336ring_a )
= A ) ).
% mult.comm_neutral
thf(fact_110_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_111_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_112_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_113_mult_Oleft__commute,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ B @ ( times_5121417576591743744ring_a @ A @ C ) )
= ( times_5121417576591743744ring_a @ A @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_114_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_115_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_116_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_117_less__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% less_minus_iff
thf(fact_118_less__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% less_minus_iff
thf(fact_119_minus__less__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_120_minus__less__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_less_iff
thf(fact_121_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_122_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_123_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_124_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_125_one__reorient,axiom,
! [X: finite_mod_ring_a] :
( ( one_on2109788427901206336ring_a = X )
= ( X = one_on2109788427901206336ring_a ) ) ).
% one_reorient
thf(fact_126_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_127_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_128_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_129_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_130_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( P @ M2 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_131_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_132_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_133_zero__less__iff__neq__zero,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
= ( N != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_134_gr__implies__not__zero,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_135_not__less__zero,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less_zero
thf(fact_136_gr__zeroI,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr_zeroI
thf(fact_137_minus__diff__commute,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ B ) @ A )
= ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_138_minus__diff__commute,axiom,
! [B: int,A: int] :
( ( minus_minus_int @ ( uminus_uminus_int @ B ) @ A )
= ( minus_minus_int @ ( uminus_uminus_int @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_139_minus__diff__commute,axiom,
! [B: real,A: real] :
( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A )
= ( minus_minus_real @ ( uminus_uminus_real @ A ) @ B ) ) ).
% minus_diff_commute
thf(fact_140_diff__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_141_diff__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_strict_right_mono
thf(fact_142_diff__strict__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_143_diff__strict__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_strict_left_mono
thf(fact_144_diff__eq__diff__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_int @ A @ B )
= ( ord_less_int @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_145_diff__eq__diff__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_real @ A @ B )
= ( ord_less_real @ C @ D ) ) ) ).
% diff_eq_diff_less
thf(fact_146_diff__strict__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ D @ C )
=> ( ord_less_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_147_diff__strict__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ D @ C )
=> ( ord_less_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_strict_mono
thf(fact_148_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M2: nat] :
( ( ord_less_nat @ M2 @ N2 )
& ~ ( P @ M2 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_149_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_150_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_151_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_152_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_153_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_154_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_155_less__imp__diff__less,axiom,
! [J2: nat,K: nat,N: nat] :
( ( ord_less_nat @ J2 @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J2 @ N ) @ K ) ) ).
% less_imp_diff_less
thf(fact_156_diff__less__mono2,axiom,
! [M: nat,N: nat,L2: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( ord_less_nat @ M @ L2 )
=> ( ord_less_nat @ ( minus_minus_nat @ L2 @ N ) @ ( minus_minus_nat @ L2 @ M ) ) ) ) ).
% diff_less_mono2
thf(fact_157_sum__negf,axiom,
! [F: nat > finite_mod_ring_a,A2: set_nat] :
( ( groups3558780024651037881ring_a
@ ^ [X2: nat] : ( uminus3100561713750211260ring_a @ ( F @ X2 ) )
@ A2 )
= ( uminus3100561713750211260ring_a @ ( groups3558780024651037881ring_a @ F @ A2 ) ) ) ).
% sum_negf
thf(fact_158_less__iff__diff__less__0,axiom,
( ord_less_int
= ( ^ [A3: int,B2: int] : ( ord_less_int @ ( minus_minus_int @ A3 @ B2 ) @ zero_zero_int ) ) ) ).
% less_iff_diff_less_0
thf(fact_159_less__iff__diff__less__0,axiom,
( ord_less_real
= ( ^ [A3: real,B2: real] : ( ord_less_real @ ( minus_minus_real @ A3 @ B2 ) @ zero_zero_real ) ) ) ).
% less_iff_diff_less_0
thf(fact_160_diff__less,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ord_less_nat @ ( minus_minus_nat @ M @ N ) @ M ) ) ) ).
% diff_less
thf(fact_161_sum__product,axiom,
! [F: nat > finite_mod_ring_a,A2: set_nat,G: nat > finite_mod_ring_a,B3: set_nat] :
( ( times_5121417576591743744ring_a @ ( groups3558780024651037881ring_a @ F @ A2 ) @ ( groups3558780024651037881ring_a @ G @ B3 ) )
= ( groups3558780024651037881ring_a
@ ^ [I: nat] :
( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( F @ I ) @ ( G @ J ) )
@ B3 )
@ A2 ) ) ).
% sum_product
thf(fact_162_sum__product,axiom,
! [F: nat > nat,A2: set_nat,G: nat > nat,B3: set_nat] :
( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ B3 ) )
= ( groups3542108847815614940at_nat
@ ^ [I: nat] :
( groups3542108847815614940at_nat
@ ^ [J: nat] : ( times_times_nat @ ( F @ I ) @ ( G @ J ) )
@ B3 )
@ A2 ) ) ).
% sum_product
thf(fact_163_sum__distrib__right,axiom,
! [F: nat > finite_mod_ring_a,A2: set_nat,R: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( groups3558780024651037881ring_a @ F @ A2 ) @ R )
= ( groups3558780024651037881ring_a
@ ^ [N3: nat] : ( times_5121417576591743744ring_a @ ( F @ N3 ) @ R )
@ A2 ) ) ).
% sum_distrib_right
thf(fact_164_sum__distrib__right,axiom,
! [F: nat > nat,A2: set_nat,R: nat] :
( ( times_times_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ R )
= ( groups3542108847815614940at_nat
@ ^ [N3: nat] : ( times_times_nat @ ( F @ N3 ) @ R )
@ A2 ) ) ).
% sum_distrib_right
thf(fact_165_sum__distrib__left,axiom,
! [R: finite_mod_ring_a,F: nat > finite_mod_ring_a,A2: set_nat] :
( ( times_5121417576591743744ring_a @ R @ ( groups3558780024651037881ring_a @ F @ A2 ) )
= ( groups3558780024651037881ring_a
@ ^ [N3: nat] : ( times_5121417576591743744ring_a @ R @ ( F @ N3 ) )
@ A2 ) ) ).
% sum_distrib_left
thf(fact_166_sum__distrib__left,axiom,
! [R: nat,F: nat > nat,A2: set_nat] :
( ( times_times_nat @ R @ ( groups3542108847815614940at_nat @ F @ A2 ) )
= ( groups3542108847815614940at_nat
@ ^ [N3: nat] : ( times_times_nat @ R @ ( F @ N3 ) )
@ A2 ) ) ).
% sum_distrib_left
thf(fact_167_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_168_zero__reorient,axiom,
! [X: finite_mod_ring_a] :
( ( zero_z7902377541816115708ring_a = X )
= ( X = zero_z7902377541816115708ring_a ) ) ).
% zero_reorient
thf(fact_169_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_170_zero__reorient,axiom,
! [X: real] :
( ( zero_zero_real = X )
= ( X = zero_zero_real ) ) ).
% zero_reorient
thf(fact_171_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
= ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_172_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ ( minus_3609261664126569004ring_a @ A @ C ) @ B )
= ( minus_3609261664126569004ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_173_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B )
= ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_174_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B )
= ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C ) ) ).
% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_175_diff__eq__diff__eq,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a,D: finite_mod_ring_a] :
( ( ( minus_3609261664126569004ring_a @ A @ B )
= ( minus_3609261664126569004ring_a @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_176_diff__eq__diff__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_177_diff__eq__diff__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( A = B )
= ( C = D ) ) ) ).
% diff_eq_diff_eq
thf(fact_178_sum_Oreindex__bij__witness,axiom,
! [S2: set_real,I3: nat > real,J2: real > nat,T2: set_nat,H: nat > finite_mod_ring_a,G: real > finite_mod_ring_a] :
( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( I3 @ ( J2 @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( member_nat @ ( J2 @ A4 ) @ T2 ) )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ T2 )
=> ( ( J2 @ ( I3 @ B4 ) )
= B4 ) )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ T2 )
=> ( member_real @ ( I3 @ B4 ) @ S2 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( H @ ( J2 @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups465414945397457501ring_a @ G @ S2 )
= ( groups3558780024651037881ring_a @ H @ T2 ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness
thf(fact_179_sum_Oreindex__bij__witness,axiom,
! [S2: set_real,I3: nat > real,J2: real > nat,T2: set_nat,H: nat > nat,G: real > nat] :
( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( I3 @ ( J2 @ A4 ) )
= A4 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( member_nat @ ( J2 @ A4 ) @ T2 ) )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ T2 )
=> ( ( J2 @ ( I3 @ B4 ) )
= B4 ) )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ T2 )
=> ( member_real @ ( I3 @ B4 ) @ S2 ) )
=> ( ! [A4: real] :
( ( member_real @ A4 @ S2 )
=> ( ( H @ ( J2 @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups1935376822645274424al_nat @ G @ S2 )
= ( groups3542108847815614940at_nat @ H @ T2 ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness
thf(fact_180_sum_Oreindex__bij__witness,axiom,
! [S2: set_nat,I3: real > nat,J2: nat > real,T2: set_real,H: real > finite_mod_ring_a,G: nat > finite_mod_ring_a] :
( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( ( I3 @ ( J2 @ A4 ) )
= A4 ) )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( member_real @ ( J2 @ A4 ) @ T2 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T2 )
=> ( ( J2 @ ( I3 @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T2 )
=> ( member_nat @ ( I3 @ B4 ) @ S2 ) )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( ( H @ ( J2 @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3558780024651037881ring_a @ G @ S2 )
= ( groups465414945397457501ring_a @ H @ T2 ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness
thf(fact_181_sum_Oreindex__bij__witness,axiom,
! [S2: set_nat,I3: nat > nat,J2: nat > nat,T2: set_nat,H: nat > finite_mod_ring_a,G: nat > finite_mod_ring_a] :
( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( ( I3 @ ( J2 @ A4 ) )
= A4 ) )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( member_nat @ ( J2 @ A4 ) @ T2 ) )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ T2 )
=> ( ( J2 @ ( I3 @ B4 ) )
= B4 ) )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ T2 )
=> ( member_nat @ ( I3 @ B4 ) @ S2 ) )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( ( H @ ( J2 @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3558780024651037881ring_a @ G @ S2 )
= ( groups3558780024651037881ring_a @ H @ T2 ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness
thf(fact_182_sum_Oreindex__bij__witness,axiom,
! [S2: set_nat,I3: real > nat,J2: nat > real,T2: set_real,H: real > nat,G: nat > nat] :
( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( ( I3 @ ( J2 @ A4 ) )
= A4 ) )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( member_real @ ( J2 @ A4 ) @ T2 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T2 )
=> ( ( J2 @ ( I3 @ B4 ) )
= B4 ) )
=> ( ! [B4: real] :
( ( member_real @ B4 @ T2 )
=> ( member_nat @ ( I3 @ B4 ) @ S2 ) )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( ( H @ ( J2 @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3542108847815614940at_nat @ G @ S2 )
= ( groups1935376822645274424al_nat @ H @ T2 ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness
thf(fact_183_sum_Oreindex__bij__witness,axiom,
! [S2: set_nat,I3: nat > nat,J2: nat > nat,T2: set_nat,H: nat > nat,G: nat > nat] :
( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( ( I3 @ ( J2 @ A4 ) )
= A4 ) )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( member_nat @ ( J2 @ A4 ) @ T2 ) )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ T2 )
=> ( ( J2 @ ( I3 @ B4 ) )
= B4 ) )
=> ( ! [B4: nat] :
( ( member_nat @ B4 @ T2 )
=> ( member_nat @ ( I3 @ B4 ) @ S2 ) )
=> ( ! [A4: nat] :
( ( member_nat @ A4 @ S2 )
=> ( ( H @ ( J2 @ A4 ) )
= ( G @ A4 ) ) )
=> ( ( groups3542108847815614940at_nat @ G @ S2 )
= ( groups3542108847815614940at_nat @ H @ T2 ) ) ) ) ) ) ) ).
% sum.reindex_bij_witness
thf(fact_184_sum_Oeq__general__inverses,axiom,
! [B3: set_nat,K: nat > real,A2: set_real,H: real > nat,Gamma: nat > finite_mod_ring_a,Phi: real > finite_mod_ring_a] :
( ! [Y2: nat] :
( ( member_nat @ Y2 @ B3 )
=> ( ( member_real @ ( K @ Y2 ) @ A2 )
& ( ( H @ ( K @ Y2 ) )
= Y2 ) ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ( member_nat @ ( H @ X3 ) @ B3 )
& ( ( K @ ( H @ X3 ) )
= X3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups465414945397457501ring_a @ Phi @ A2 )
= ( groups3558780024651037881ring_a @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general_inverses
thf(fact_185_sum_Oeq__general__inverses,axiom,
! [B3: set_nat,K: nat > real,A2: set_real,H: real > nat,Gamma: nat > nat,Phi: real > nat] :
( ! [Y2: nat] :
( ( member_nat @ Y2 @ B3 )
=> ( ( member_real @ ( K @ Y2 ) @ A2 )
& ( ( H @ ( K @ Y2 ) )
= Y2 ) ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ( member_nat @ ( H @ X3 ) @ B3 )
& ( ( K @ ( H @ X3 ) )
= X3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups1935376822645274424al_nat @ Phi @ A2 )
= ( groups3542108847815614940at_nat @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general_inverses
thf(fact_186_sum_Oeq__general__inverses,axiom,
! [B3: set_real,K: real > nat,A2: set_nat,H: nat > real,Gamma: real > finite_mod_ring_a,Phi: nat > finite_mod_ring_a] :
( ! [Y2: real] :
( ( member_real @ Y2 @ B3 )
=> ( ( member_nat @ ( K @ Y2 ) @ A2 )
& ( ( H @ ( K @ Y2 ) )
= Y2 ) ) )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( member_real @ ( H @ X3 ) @ B3 )
& ( ( K @ ( H @ X3 ) )
= X3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups3558780024651037881ring_a @ Phi @ A2 )
= ( groups465414945397457501ring_a @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general_inverses
thf(fact_187_sum_Oeq__general__inverses,axiom,
! [B3: set_nat,K: nat > nat,A2: set_nat,H: nat > nat,Gamma: nat > finite_mod_ring_a,Phi: nat > finite_mod_ring_a] :
( ! [Y2: nat] :
( ( member_nat @ Y2 @ B3 )
=> ( ( member_nat @ ( K @ Y2 ) @ A2 )
& ( ( H @ ( K @ Y2 ) )
= Y2 ) ) )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( member_nat @ ( H @ X3 ) @ B3 )
& ( ( K @ ( H @ X3 ) )
= X3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups3558780024651037881ring_a @ Phi @ A2 )
= ( groups3558780024651037881ring_a @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general_inverses
thf(fact_188_sum_Oeq__general__inverses,axiom,
! [B3: set_real,K: real > nat,A2: set_nat,H: nat > real,Gamma: real > nat,Phi: nat > nat] :
( ! [Y2: real] :
( ( member_real @ Y2 @ B3 )
=> ( ( member_nat @ ( K @ Y2 ) @ A2 )
& ( ( H @ ( K @ Y2 ) )
= Y2 ) ) )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( member_real @ ( H @ X3 ) @ B3 )
& ( ( K @ ( H @ X3 ) )
= X3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups3542108847815614940at_nat @ Phi @ A2 )
= ( groups1935376822645274424al_nat @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general_inverses
thf(fact_189_sum_Oeq__general__inverses,axiom,
! [B3: set_nat,K: nat > nat,A2: set_nat,H: nat > nat,Gamma: nat > nat,Phi: nat > nat] :
( ! [Y2: nat] :
( ( member_nat @ Y2 @ B3 )
=> ( ( member_nat @ ( K @ Y2 ) @ A2 )
& ( ( H @ ( K @ Y2 ) )
= Y2 ) ) )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( member_nat @ ( H @ X3 ) @ B3 )
& ( ( K @ ( H @ X3 ) )
= X3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups3542108847815614940at_nat @ Phi @ A2 )
= ( groups3542108847815614940at_nat @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general_inverses
thf(fact_190_sum_Oeq__general,axiom,
! [B3: set_nat,A2: set_real,H: real > nat,Gamma: nat > finite_mod_ring_a,Phi: real > finite_mod_ring_a] :
( ! [Y2: nat] :
( ( member_nat @ Y2 @ B3 )
=> ? [X4: real] :
( ( member_real @ X4 @ A2 )
& ( ( H @ X4 )
= Y2 )
& ! [Ya: real] :
( ( ( member_real @ Ya @ A2 )
& ( ( H @ Ya )
= Y2 ) )
=> ( Ya = X4 ) ) ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ( member_nat @ ( H @ X3 ) @ B3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups465414945397457501ring_a @ Phi @ A2 )
= ( groups3558780024651037881ring_a @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general
thf(fact_191_sum_Oeq__general,axiom,
! [B3: set_nat,A2: set_real,H: real > nat,Gamma: nat > nat,Phi: real > nat] :
( ! [Y2: nat] :
( ( member_nat @ Y2 @ B3 )
=> ? [X4: real] :
( ( member_real @ X4 @ A2 )
& ( ( H @ X4 )
= Y2 )
& ! [Ya: real] :
( ( ( member_real @ Ya @ A2 )
& ( ( H @ Ya )
= Y2 ) )
=> ( Ya = X4 ) ) ) )
=> ( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ( member_nat @ ( H @ X3 ) @ B3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups1935376822645274424al_nat @ Phi @ A2 )
= ( groups3542108847815614940at_nat @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general
thf(fact_192_sum_Oeq__general,axiom,
! [B3: set_real,A2: set_nat,H: nat > real,Gamma: real > finite_mod_ring_a,Phi: nat > finite_mod_ring_a] :
( ! [Y2: real] :
( ( member_real @ Y2 @ B3 )
=> ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ( H @ X4 )
= Y2 )
& ! [Ya: nat] :
( ( ( member_nat @ Ya @ A2 )
& ( ( H @ Ya )
= Y2 ) )
=> ( Ya = X4 ) ) ) )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( member_real @ ( H @ X3 ) @ B3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups3558780024651037881ring_a @ Phi @ A2 )
= ( groups465414945397457501ring_a @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general
thf(fact_193_sum_Oeq__general,axiom,
! [B3: set_nat,A2: set_nat,H: nat > nat,Gamma: nat > finite_mod_ring_a,Phi: nat > finite_mod_ring_a] :
( ! [Y2: nat] :
( ( member_nat @ Y2 @ B3 )
=> ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ( H @ X4 )
= Y2 )
& ! [Ya: nat] :
( ( ( member_nat @ Ya @ A2 )
& ( ( H @ Ya )
= Y2 ) )
=> ( Ya = X4 ) ) ) )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( member_nat @ ( H @ X3 ) @ B3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups3558780024651037881ring_a @ Phi @ A2 )
= ( groups3558780024651037881ring_a @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general
thf(fact_194_sum_Oeq__general,axiom,
! [B3: set_real,A2: set_nat,H: nat > real,Gamma: real > nat,Phi: nat > nat] :
( ! [Y2: real] :
( ( member_real @ Y2 @ B3 )
=> ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ( H @ X4 )
= Y2 )
& ! [Ya: nat] :
( ( ( member_nat @ Ya @ A2 )
& ( ( H @ Ya )
= Y2 ) )
=> ( Ya = X4 ) ) ) )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( member_real @ ( H @ X3 ) @ B3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups3542108847815614940at_nat @ Phi @ A2 )
= ( groups1935376822645274424al_nat @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general
thf(fact_195_sum_Oeq__general,axiom,
! [B3: set_nat,A2: set_nat,H: nat > nat,Gamma: nat > nat,Phi: nat > nat] :
( ! [Y2: nat] :
( ( member_nat @ Y2 @ B3 )
=> ? [X4: nat] :
( ( member_nat @ X4 @ A2 )
& ( ( H @ X4 )
= Y2 )
& ! [Ya: nat] :
( ( ( member_nat @ Ya @ A2 )
& ( ( H @ Ya )
= Y2 ) )
=> ( Ya = X4 ) ) ) )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( member_nat @ ( H @ X3 ) @ B3 )
& ( ( Gamma @ ( H @ X3 ) )
= ( Phi @ X3 ) ) ) )
=> ( ( groups3542108847815614940at_nat @ Phi @ A2 )
= ( groups3542108847815614940at_nat @ Gamma @ B3 ) ) ) ) ).
% sum.eq_general
thf(fact_196_sum_Ocong,axiom,
! [A2: set_nat,B3: set_nat,G: nat > finite_mod_ring_a,H: nat > finite_mod_ring_a] :
( ( A2 = B3 )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ B3 )
=> ( ( G @ X3 )
= ( H @ X3 ) ) )
=> ( ( groups3558780024651037881ring_a @ G @ A2 )
= ( groups3558780024651037881ring_a @ H @ B3 ) ) ) ) ).
% sum.cong
thf(fact_197_sum_Ocong,axiom,
! [A2: set_nat,B3: set_nat,G: nat > nat,H: nat > nat] :
( ( A2 = B3 )
=> ( ! [X3: nat] :
( ( member_nat @ X3 @ B3 )
=> ( ( G @ X3 )
= ( H @ X3 ) ) )
=> ( ( groups3542108847815614940at_nat @ G @ A2 )
= ( groups3542108847815614940at_nat @ H @ B3 ) ) ) ) ).
% sum.cong
thf(fact_198_diff__commute,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J2 ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I3 @ K ) @ J2 ) ) ).
% diff_commute
thf(fact_199_sum_Oswap,axiom,
! [G: nat > nat > finite_mod_ring_a,B3: set_nat,A2: set_nat] :
( ( groups3558780024651037881ring_a
@ ^ [I: nat] : ( groups3558780024651037881ring_a @ ( G @ I ) @ B3 )
@ A2 )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] :
( groups3558780024651037881ring_a
@ ^ [I: nat] : ( G @ I @ J )
@ A2 )
@ B3 ) ) ).
% sum.swap
thf(fact_200_sum_Oswap,axiom,
! [G: nat > nat > nat,B3: set_nat,A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [I: nat] : ( groups3542108847815614940at_nat @ ( G @ I ) @ B3 )
@ A2 )
= ( groups3542108847815614940at_nat
@ ^ [J: nat] :
( groups3542108847815614940at_nat
@ ^ [I: nat] : ( G @ I @ J )
@ A2 )
@ B3 ) ) ).
% sum.swap
thf(fact_201_eq__iff__diff__eq__0,axiom,
( ( ^ [Y3: finite_mod_ring_a,Z: finite_mod_ring_a] : ( Y3 = Z ) )
= ( ^ [A3: finite_mod_ring_a,B2: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ A3 @ B2 )
= zero_z7902377541816115708ring_a ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_202_eq__iff__diff__eq__0,axiom,
( ( ^ [Y3: int,Z: int] : ( Y3 = Z ) )
= ( ^ [A3: int,B2: int] :
( ( minus_minus_int @ A3 @ B2 )
= zero_zero_int ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_203_eq__iff__diff__eq__0,axiom,
( ( ^ [Y3: real,Z: real] : ( Y3 = Z ) )
= ( ^ [A3: real,B2: real] :
( ( minus_minus_real @ A3 @ B2 )
= zero_zero_real ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_204_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: real > nat,A2: set_real] :
( ( ( groups1935376822645274424al_nat @ G @ A2 )
!= zero_zero_nat )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_nat ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_205_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: real > finite_mod_ring_a,A2: set_real] :
( ( ( groups465414945397457501ring_a @ G @ A2 )
!= zero_z7902377541816115708ring_a )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_z7902377541816115708ring_a ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_206_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: real > int,A2: set_real] :
( ( ( groups1932886352136224148al_int @ G @ A2 )
!= zero_zero_int )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_int ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_207_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: real > real,A2: set_real] :
( ( ( groups8097168146408367636l_real @ G @ A2 )
!= zero_zero_real )
=> ~ ! [A4: real] :
( ( member_real @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_real ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_208_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: nat > finite_mod_ring_a,A2: set_nat] :
( ( ( groups3558780024651037881ring_a @ G @ A2 )
!= zero_z7902377541816115708ring_a )
=> ~ ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_z7902377541816115708ring_a ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_209_sum_Onot__neutral__contains__not__neutral,axiom,
! [G: nat > nat,A2: set_nat] :
( ( ( groups3542108847815614940at_nat @ G @ A2 )
!= zero_zero_nat )
=> ~ ! [A4: nat] :
( ( member_nat @ A4 @ A2 )
=> ( ( G @ A4 )
= zero_zero_nat ) ) ) ).
% sum.not_neutral_contains_not_neutral
thf(fact_210_sum_Oneutral,axiom,
! [A2: set_nat,G: nat > finite_mod_ring_a] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( G @ X3 )
= zero_z7902377541816115708ring_a ) )
=> ( ( groups3558780024651037881ring_a @ G @ A2 )
= zero_z7902377541816115708ring_a ) ) ).
% sum.neutral
thf(fact_211_sum_Oneutral,axiom,
! [A2: set_nat,G: nat > nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ( G @ X3 )
= zero_zero_nat ) )
=> ( ( groups3542108847815614940at_nat @ G @ A2 )
= zero_zero_nat ) ) ).
% sum.neutral
thf(fact_212_diffs0__imp__equal,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N @ M )
= zero_zero_nat )
=> ( M = N ) ) ) ).
% diffs0_imp_equal
thf(fact_213_minus__nat_Odiff__0,axiom,
! [M: nat] :
( ( minus_minus_nat @ M @ zero_zero_nat )
= M ) ).
% minus_nat.diff_0
thf(fact_214_sum__subtractf,axiom,
! [F: nat > finite_mod_ring_a,G: nat > finite_mod_ring_a,A2: set_nat] :
( ( groups3558780024651037881ring_a
@ ^ [X2: nat] : ( minus_3609261664126569004ring_a @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_3609261664126569004ring_a @ ( groups3558780024651037881ring_a @ F @ A2 ) @ ( groups3558780024651037881ring_a @ G @ A2 ) ) ) ).
% sum_subtractf
thf(fact_215_power__strict__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_216_power__strict__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_217_power__strict__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_218_power__eq__0__iff,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( ( power_6826135765519566523ring_a @ A @ N )
= zero_z7902377541816115708ring_a )
= ( ( A = zero_z7902377541816115708ring_a )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_219_power__eq__0__iff,axiom,
! [A: nat,N: nat] :
( ( ( power_power_nat @ A @ N )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_220_power__eq__0__iff,axiom,
! [A: int,N: nat] :
( ( ( power_power_int @ A @ N )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_221_power__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( power_power_real @ A @ N )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_222_power__strict__increasing__iff,axiom,
! [B: nat,X: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_223_power__strict__increasing__iff,axiom,
! [B: int,X: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_224_power__strict__increasing__iff,axiom,
! [B: real,X: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_225_left__minus__one__mult__self,axiom,
! [N: nat,A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_226_left__minus__one__mult__self,axiom,
! [N: nat,A: int] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_227_left__minus__one__mult__self,axiom,
! [N: nat,A: real] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_228_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) )
= one_on2109788427901206336ring_a ) ).
% minus_one_mult_self
thf(fact_229_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
= one_one_int ) ).
% minus_one_mult_self
thf(fact_230_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
= one_one_real ) ).
% minus_one_mult_self
thf(fact_231_diff__numeral__special_I12_J,axiom,
( ( minus_3609261664126569004ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
= zero_z7902377541816115708ring_a ) ).
% diff_numeral_special(12)
thf(fact_232_diff__numeral__special_I12_J,axiom,
( ( minus_minus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% diff_numeral_special(12)
thf(fact_233_diff__numeral__special_I12_J,axiom,
( ( minus_minus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% diff_numeral_special(12)
thf(fact_234_mult__minus1,axiom,
! [Z2: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ Z2 )
= ( uminus3100561713750211260ring_a @ Z2 ) ) ).
% mult_minus1
thf(fact_235_mult__minus1,axiom,
! [Z2: int] :
( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z2 )
= ( uminus_uminus_int @ Z2 ) ) ).
% mult_minus1
thf(fact_236_mult__minus1,axiom,
! [Z2: real] :
( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z2 )
= ( uminus_uminus_real @ Z2 ) ) ).
% mult_minus1
thf(fact_237_mult__minus1__right,axiom,
! [Z2: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ Z2 @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
= ( uminus3100561713750211260ring_a @ Z2 ) ) ).
% mult_minus1_right
thf(fact_238_mult__minus1__right,axiom,
! [Z2: int] :
( ( times_times_int @ Z2 @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ Z2 ) ) ).
% mult_minus1_right
thf(fact_239_mult__minus1__right,axiom,
! [Z2: real] :
( ( times_times_real @ Z2 @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ Z2 ) ) ).
% mult_minus1_right
thf(fact_240_power__inject__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M )
= ( power_power_nat @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_241_power__inject__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M )
= ( power_power_int @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_242_power__inject__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M )
= ( power_power_real @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_243_verit__minus__simplify_I3_J,axiom,
! [B: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ zero_z7902377541816115708ring_a @ B )
= ( uminus3100561713750211260ring_a @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_244_verit__minus__simplify_I3_J,axiom,
! [B: int] :
( ( minus_minus_int @ zero_zero_int @ B )
= ( uminus_uminus_int @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_245_verit__minus__simplify_I3_J,axiom,
! [B: real] :
( ( minus_minus_real @ zero_zero_real @ B )
= ( uminus_uminus_real @ B ) ) ).
% verit_minus_simplify(3)
thf(fact_246_diff__numeral__special_I9_J,axiom,
( ( minus_3609261664126569004ring_a @ one_on2109788427901206336ring_a @ one_on2109788427901206336ring_a )
= zero_z7902377541816115708ring_a ) ).
% diff_numeral_special(9)
thf(fact_247_diff__numeral__special_I9_J,axiom,
( ( minus_minus_int @ one_one_int @ one_one_int )
= zero_zero_int ) ).
% diff_numeral_special(9)
thf(fact_248_diff__numeral__special_I9_J,axiom,
( ( minus_minus_real @ one_one_real @ one_one_real )
= zero_zero_real ) ).
% diff_numeral_special(9)
thf(fact_249_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_250_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_251_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_252_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_253_verit__minus__simplify_I4_J,axiom,
! [B: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_254_verit__minus__simplify_I4_J,axiom,
! [B: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_255_power__one__right,axiom,
! [A: finite_mod_ring_a] :
( ( power_6826135765519566523ring_a @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_256_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_257_power__one__right,axiom,
! [A: int] :
( ( power_power_int @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_258_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_259_power__one,axiom,
! [N: nat] :
( ( power_6826135765519566523ring_a @ one_on2109788427901206336ring_a @ N )
= one_on2109788427901206336ring_a ) ).
% power_one
thf(fact_260_power__one,axiom,
! [N: nat] :
( ( power_power_nat @ one_one_nat @ N )
= one_one_nat ) ).
% power_one
thf(fact_261_power__one,axiom,
! [N: nat] :
( ( power_power_int @ one_one_int @ N )
= one_one_int ) ).
% power_one
thf(fact_262_power__one,axiom,
! [N: nat] :
( ( power_power_real @ one_one_real @ N )
= one_one_real ) ).
% power_one
thf(fact_263_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_264_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_265_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_266_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_267_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_268_power__mult,axiom,
! [A: finite_mod_ring_a,M: nat,N: nat] :
( ( power_6826135765519566523ring_a @ A @ ( times_times_nat @ M @ N ) )
= ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_269_power__mult,axiom,
! [A: nat,M: nat,N: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_nat @ ( power_power_nat @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_270_power__mult,axiom,
! [A: int,M: nat,N: nat] :
( ( power_power_int @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_int @ ( power_power_int @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_271_power__mult,axiom,
! [A: real,M: nat,N: nat] :
( ( power_power_real @ A @ ( times_times_nat @ M @ N ) )
= ( power_power_real @ ( power_power_real @ A @ M ) @ N ) ) ).
% power_mult
thf(fact_272_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_273_diff__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M @ N ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% diff_mult_distrib
thf(fact_274_diff__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M @ N ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% diff_mult_distrib2
thf(fact_275_nat__power__less__imp__less,axiom,
! [I3: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I3 )
=> ( ( ord_less_nat @ ( power_power_nat @ I3 @ M ) @ ( power_power_nat @ I3 @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_276_mult__less__mono2,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I3 ) @ ( times_times_nat @ K @ J2 ) ) ) ) ).
% mult_less_mono2
thf(fact_277_mult__less__mono1,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I3 @ K ) @ ( times_times_nat @ J2 @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_278_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_279_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_280_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_281_verit__negate__coefficient_I3_J,axiom,
! [A: int,B: int] :
( ( A = B )
=> ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_282_verit__negate__coefficient_I3_J,axiom,
! [A: real,B: real] :
( ( A = B )
=> ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) ) ) ).
% verit_negate_coefficient(3)
thf(fact_283_power__minus__mult,axiom,
! [N: nat,A: finite_mod_ring_a] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_6826135765519566523ring_a @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_284_power__minus__mult,axiom,
! [N: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_nat @ ( power_power_nat @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_nat @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_285_power__minus__mult,axiom,
! [N: nat,A: int] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_int @ ( power_power_int @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_int @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_286_power__minus__mult,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( times_times_real @ ( power_power_real @ A @ ( minus_minus_nat @ N @ one_one_nat ) ) @ A )
= ( power_power_real @ A @ N ) ) ) ).
% power_minus_mult
thf(fact_287_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_288_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_289_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_290_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_291_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_292_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_293_power__not__zero,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( A != zero_z7902377541816115708ring_a )
=> ( ( power_6826135765519566523ring_a @ A @ N )
!= zero_z7902377541816115708ring_a ) ) ).
% power_not_zero
thf(fact_294_power__not__zero,axiom,
! [A: nat,N: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_295_power__not__zero,axiom,
! [A: int,N: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_296_power__not__zero,axiom,
! [A: real,N: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_297_verit__negate__coefficient_I2_J,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_298_verit__negate__coefficient_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_299_power__commutes,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ A )
= ( times_5121417576591743744ring_a @ A @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ).
% power_commutes
thf(fact_300_power__commutes,axiom,
! [A: nat,N: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ).
% power_commutes
thf(fact_301_power__commutes,axiom,
! [A: int,N: nat] :
( ( times_times_int @ ( power_power_int @ A @ N ) @ A )
= ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ).
% power_commutes
thf(fact_302_power__commutes,axiom,
! [A: real,N: nat] :
( ( times_times_real @ ( power_power_real @ A @ N ) @ A )
= ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ).
% power_commutes
thf(fact_303_power__mult__distrib,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,N: nat] :
( ( power_6826135765519566523ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ N )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ A @ N ) @ ( power_6826135765519566523ring_a @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_304_power__mult__distrib,axiom,
! [A: nat,B: nat,N: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N )
= ( times_times_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_305_power__mult__distrib,axiom,
! [A: int,B: int,N: nat] :
( ( power_power_int @ ( times_times_int @ A @ B ) @ N )
= ( times_times_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_306_power__mult__distrib,axiom,
! [A: real,B: real,N: nat] :
( ( power_power_real @ ( times_times_real @ A @ B ) @ N )
= ( times_times_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) ) ) ).
% power_mult_distrib
thf(fact_307_power__commuting__commutes,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a,N: nat] :
( ( ( times_5121417576591743744ring_a @ X @ Y )
= ( times_5121417576591743744ring_a @ Y @ X ) )
=> ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ X @ N ) @ Y )
= ( times_5121417576591743744ring_a @ Y @ ( power_6826135765519566523ring_a @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_308_power__commuting__commutes,axiom,
! [X: nat,Y: nat,N: nat] :
( ( ( times_times_nat @ X @ Y )
= ( times_times_nat @ Y @ X ) )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ Y )
= ( times_times_nat @ Y @ ( power_power_nat @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_309_power__commuting__commutes,axiom,
! [X: int,Y: int,N: nat] :
( ( ( times_times_int @ X @ Y )
= ( times_times_int @ Y @ X ) )
=> ( ( times_times_int @ ( power_power_int @ X @ N ) @ Y )
= ( times_times_int @ Y @ ( power_power_int @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_310_power__commuting__commutes,axiom,
! [X: real,Y: real,N: nat] :
( ( ( times_times_real @ X @ Y )
= ( times_times_real @ Y @ X ) )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ Y )
= ( times_times_real @ Y @ ( power_power_real @ X @ N ) ) ) ) ).
% power_commuting_commutes
thf(fact_311_one__neq__neg__one,axiom,
( one_one_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% one_neq_neg_one
thf(fact_312_one__neq__neg__one,axiom,
( one_one_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% one_neq_neg_one
thf(fact_313_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_314_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_315_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_316_zero__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N ) ) ) ).
% zero_less_power
thf(fact_317_zero__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N ) ) ) ).
% zero_less_power
thf(fact_318_zero__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N ) ) ) ).
% zero_less_power
thf(fact_319_zero__neq__neg__one,axiom,
( zero_zero_int
!= ( uminus_uminus_int @ one_one_int ) ) ).
% zero_neq_neg_one
thf(fact_320_zero__neq__neg__one,axiom,
( zero_zero_real
!= ( uminus_uminus_real @ one_one_real ) ) ).
% zero_neq_neg_one
thf(fact_321_less__minus__one__simps_I2_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% less_minus_one_simps(2)
thf(fact_322_less__minus__one__simps_I2_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% less_minus_one_simps(2)
thf(fact_323_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(4)
thf(fact_324_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(4)
thf(fact_325_left__right__inverse__power,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a,N: nat] :
( ( ( times_5121417576591743744ring_a @ X @ Y )
= one_on2109788427901206336ring_a )
=> ( ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ X @ N ) @ ( power_6826135765519566523ring_a @ Y @ N ) )
= one_on2109788427901206336ring_a ) ) ).
% left_right_inverse_power
thf(fact_326_left__right__inverse__power,axiom,
! [X: nat,Y: nat,N: nat] :
( ( ( times_times_nat @ X @ Y )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N ) @ ( power_power_nat @ Y @ N ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_327_left__right__inverse__power,axiom,
! [X: int,Y: int,N: nat] :
( ( ( times_times_int @ X @ Y )
= one_one_int )
=> ( ( times_times_int @ ( power_power_int @ X @ N ) @ ( power_power_int @ Y @ N ) )
= one_one_int ) ) ).
% left_right_inverse_power
thf(fact_328_left__right__inverse__power,axiom,
! [X: real,Y: real,N: nat] :
( ( ( times_times_real @ X @ Y )
= one_one_real )
=> ( ( times_times_real @ ( power_power_real @ X @ N ) @ ( power_power_real @ Y @ N ) )
= one_one_real ) ) ).
% left_right_inverse_power
thf(fact_329_power__0,axiom,
! [A: finite_mod_ring_a] :
( ( power_6826135765519566523ring_a @ A @ zero_zero_nat )
= one_on2109788427901206336ring_a ) ).
% power_0
thf(fact_330_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_331_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_332_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_333_less__minus__one__simps_I1_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ zero_zero_int ).
% less_minus_one_simps(1)
thf(fact_334_less__minus__one__simps_I1_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ zero_zero_real ).
% less_minus_one_simps(1)
thf(fact_335_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(3)
thf(fact_336_less__minus__one__simps_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(3)
thf(fact_337_power__less__power__Suc,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_338_power__less__power__Suc,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_339_power__less__power__Suc,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_less_power_Suc
thf(fact_340_power__gt1__lemma,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_341_power__gt1__lemma,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_342_power__gt1__lemma,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) ) ) ).
% power_gt1_lemma
thf(fact_343_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ N )
= one_on2109788427901206336ring_a ) )
& ( ( N != zero_zero_nat )
=> ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ N )
= zero_z7902377541816115708ring_a ) ) ) ).
% power_0_left
thf(fact_344_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_345_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_346_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_347_power__minus,axiom,
! [A: finite_mod_ring_a,N: nat] :
( ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ A ) @ N )
= ( times_5121417576591743744ring_a @ ( power_6826135765519566523ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ N ) @ ( power_6826135765519566523ring_a @ A @ N ) ) ) ).
% power_minus
thf(fact_348_power__minus,axiom,
! [A: int,N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ N )
= ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ A @ N ) ) ) ).
% power_minus
thf(fact_349_power__minus,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ N )
= ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ A @ N ) ) ) ).
% power_minus
thf(fact_350_power__strict__increasing,axiom,
! [N: nat,N4: nat,A: nat] :
( ( ord_less_nat @ N @ N4 )
=> ( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).
% power_strict_increasing
thf(fact_351_power__strict__increasing,axiom,
! [N: nat,N4: nat,A: int] :
( ( ord_less_nat @ N @ N4 )
=> ( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).
% power_strict_increasing
thf(fact_352_power__strict__increasing,axiom,
! [N: nat,N4: nat,A: real] :
( ( ord_less_nat @ N @ N4 )
=> ( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).
% power_strict_increasing
thf(fact_353_power__less__imp__less__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_354_power__less__imp__less__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_355_power__less__imp__less__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% power_less_imp_less_exp
thf(fact_356_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_6826135765519566523ring_a @ zero_z7902377541816115708ring_a @ N )
= zero_z7902377541816115708ring_a ) ) ).
% zero_power
thf(fact_357_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ).
% zero_power
thf(fact_358_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ).
% zero_power
thf(fact_359_zero__power,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ).
% zero_power
thf(fact_360_power__Suc__less,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N ) ) @ ( power_power_nat @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_361_power__Suc__less,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( times_times_int @ A @ ( power_power_int @ A @ N ) ) @ ( power_power_int @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_362_power__Suc__less,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( times_times_real @ A @ ( power_power_real @ A @ N ) ) @ ( power_power_real @ A @ N ) ) ) ) ).
% power_Suc_less
thf(fact_363_power__strict__decreasing,axiom,
! [N: nat,N4: nat,A: nat] :
( ( ord_less_nat @ N @ N4 )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ A @ one_one_nat )
=> ( ord_less_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_364_power__strict__decreasing,axiom,
! [N: nat,N4: nat,A: int] :
( ( ord_less_nat @ N @ N4 )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ A @ one_one_int )
=> ( ord_less_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_365_power__strict__decreasing,axiom,
! [N: nat,N4: nat,A: real] :
( ( ord_less_nat @ N @ N4 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ A @ one_one_real )
=> ( ord_less_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_strict_decreasing
thf(fact_366_one__less__power,axiom,
! [A: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( power_power_nat @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_367_one__less__power,axiom,
! [A: int,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_int @ one_one_int @ ( power_power_int @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_368_one__less__power,axiom,
! [A: real,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_real @ one_one_real @ ( power_power_real @ A @ N ) ) ) ) ).
% one_less_power
thf(fact_369_power__eq__if,axiom,
( power_6826135765519566523ring_a
= ( ^ [P2: finite_mod_ring_a,M3: nat] : ( if_Finite_mod_ring_a @ ( M3 = zero_zero_nat ) @ one_on2109788427901206336ring_a @ ( times_5121417576591743744ring_a @ P2 @ ( power_6826135765519566523ring_a @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_370_power__eq__if,axiom,
( power_power_nat
= ( ^ [P2: nat,M3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ one_one_nat @ ( times_times_nat @ P2 @ ( power_power_nat @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_371_power__eq__if,axiom,
( power_power_int
= ( ^ [P2: int,M3: nat] : ( if_int @ ( M3 = zero_zero_nat ) @ one_one_int @ ( times_times_int @ P2 @ ( power_power_int @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_372_power__eq__if,axiom,
( power_power_real
= ( ^ [P2: real,M3: nat] : ( if_real @ ( M3 = zero_zero_nat ) @ one_one_real @ ( times_times_real @ P2 @ ( power_power_real @ P2 @ ( minus_minus_nat @ M3 @ one_one_nat ) ) ) ) ) ) ).
% power_eq_if
thf(fact_373_mult__cancel__left1,axiom,
! [C: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C
= ( times_5121417576591743744ring_a @ C @ B ) )
= ( ( C = zero_z7902377541816115708ring_a )
| ( B = one_on2109788427901206336ring_a ) ) ) ).
% mult_cancel_left1
thf(fact_374_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_375_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_376_mult__cancel__left2,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( ( times_5121417576591743744ring_a @ C @ A )
= C )
= ( ( C = zero_z7902377541816115708ring_a )
| ( A = one_on2109788427901206336ring_a ) ) ) ).
% mult_cancel_left2
thf(fact_377_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_378_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_379_mult__cancel__right1,axiom,
! [C: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C
= ( times_5121417576591743744ring_a @ B @ C ) )
= ( ( C = zero_z7902377541816115708ring_a )
| ( B = one_on2109788427901206336ring_a ) ) ) ).
% mult_cancel_right1
thf(fact_380_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_381_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_382_mult__cancel__right2,axiom,
! [A: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( ( times_5121417576591743744ring_a @ A @ C )
= C )
= ( ( C = zero_z7902377541816115708ring_a )
| ( A = one_on2109788427901206336ring_a ) ) ) ).
% mult_cancel_right2
thf(fact_383_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_384_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_385_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_386_mult__minus__right,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ A @ ( uminus3100561713750211260ring_a @ B ) )
= ( uminus3100561713750211260ring_a @ ( times_5121417576591743744ring_a @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_387_mult__minus__right,axiom,
! [A: int,B: int] :
( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_388_mult__minus__right,axiom,
! [A: real,B: real] :
( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_389_minus__mult__minus,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( uminus3100561713750211260ring_a @ B ) )
= ( times_5121417576591743744ring_a @ A @ B ) ) ).
% minus_mult_minus
thf(fact_390_minus__mult__minus,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( times_times_int @ A @ B ) ) ).
% minus_mult_minus
thf(fact_391_minus__mult__minus,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( times_times_real @ A @ B ) ) ).
% minus_mult_minus
thf(fact_392_mult__minus__left,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B )
= ( uminus3100561713750211260ring_a @ ( times_5121417576591743744ring_a @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_393_mult__minus__left,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_394_mult__minus__left,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_395_mult__cancel__right,axiom,
! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( times_5121417576591743744ring_a @ A @ C )
= ( times_5121417576591743744ring_a @ B @ C ) )
= ( ( C = zero_z7902377541816115708ring_a )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_396_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_397_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_398_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_399_mult__cancel__left,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( times_5121417576591743744ring_a @ C @ A )
= ( times_5121417576591743744ring_a @ C @ B ) )
= ( ( C = zero_z7902377541816115708ring_a )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_400_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_401_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_402_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_403_mult__eq__0__iff,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( times_5121417576591743744ring_a @ A @ B )
= zero_z7902377541816115708ring_a )
= ( ( A = zero_z7902377541816115708ring_a )
| ( B = zero_z7902377541816115708ring_a ) ) ) ).
% mult_eq_0_iff
thf(fact_404_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_405_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_406_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_407_mult__zero__right,axiom,
! [A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ A @ zero_z7902377541816115708ring_a )
= zero_z7902377541816115708ring_a ) ).
% mult_zero_right
thf(fact_408_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_409_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_410_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_411_mult__zero__left,axiom,
! [A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ zero_z7902377541816115708ring_a @ A )
= zero_z7902377541816115708ring_a ) ).
% mult_zero_left
thf(fact_412_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_413_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_414_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_415_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_416_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_417_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_418_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_419_linorder__neqE__linordered__idom,axiom,
! [X: int,Y: int] :
( ( X != Y )
=> ( ~ ( ord_less_int @ X @ Y )
=> ( ord_less_int @ Y @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_420_linorder__neqE__linordered__idom,axiom,
! [X: real,Y: real] :
( ( X != Y )
=> ( ~ ( ord_less_real @ X @ Y )
=> ( ord_less_real @ Y @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_421_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_422_mult__right__cancel,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( ( times_5121417576591743744ring_a @ A @ C )
= ( times_5121417576591743744ring_a @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_423_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_424_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_425_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_426_mult__left__cancel,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( C != zero_z7902377541816115708ring_a )
=> ( ( ( times_5121417576591743744ring_a @ C @ A )
= ( times_5121417576591743744ring_a @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_427_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_428_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_429_mult__left__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_430_no__zero__divisors,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( A != zero_z7902377541816115708ring_a )
=> ( ( B != zero_z7902377541816115708ring_a )
=> ( ( times_5121417576591743744ring_a @ A @ B )
!= zero_z7902377541816115708ring_a ) ) ) ).
% no_zero_divisors
thf(fact_431_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_432_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_433_no__zero__divisors,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_434_divisors__zero,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( times_5121417576591743744ring_a @ A @ B )
= zero_z7902377541816115708ring_a )
=> ( ( A = zero_z7902377541816115708ring_a )
| ( B = zero_z7902377541816115708ring_a ) ) ) ).
% divisors_zero
thf(fact_435_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_436_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_437_divisors__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_438_mult__not__zero,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( times_5121417576591743744ring_a @ A @ B )
!= zero_z7902377541816115708ring_a )
=> ( ( A != zero_z7902377541816115708ring_a )
& ( B != zero_z7902377541816115708ring_a ) ) ) ).
% mult_not_zero
thf(fact_439_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_440_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_441_mult__not__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_442_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_443_zero__neq__one,axiom,
zero_z7902377541816115708ring_a != one_on2109788427901206336ring_a ).
% zero_neq_one
thf(fact_444_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_445_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_446_right__diff__distrib_H,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ A @ ( minus_3609261664126569004ring_a @ B @ C ) )
= ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ ( times_5121417576591743744ring_a @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_447_right__diff__distrib_H,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( minus_minus_nat @ B @ C ) )
= ( minus_minus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_448_right__diff__distrib_H,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_449_right__diff__distrib_H,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib'
thf(fact_450_left__diff__distrib_H,axiom,
! [B: finite_mod_ring_a,C: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ B @ C ) @ A )
= ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ B @ A ) @ ( times_5121417576591743744ring_a @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_451_left__diff__distrib_H,axiom,
! [B: nat,C: nat,A: nat] :
( ( times_times_nat @ ( minus_minus_nat @ B @ C ) @ A )
= ( minus_minus_nat @ ( times_times_nat @ B @ A ) @ ( times_times_nat @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_452_left__diff__distrib_H,axiom,
! [B: int,C: int,A: int] :
( ( times_times_int @ ( minus_minus_int @ B @ C ) @ A )
= ( minus_minus_int @ ( times_times_int @ B @ A ) @ ( times_times_int @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_453_left__diff__distrib_H,axiom,
! [B: real,C: real,A: real] :
( ( times_times_real @ ( minus_minus_real @ B @ C ) @ A )
= ( minus_minus_real @ ( times_times_real @ B @ A ) @ ( times_times_real @ C @ A ) ) ) ).
% left_diff_distrib'
thf(fact_454_right__diff__distrib,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ A @ ( minus_3609261664126569004ring_a @ B @ C ) )
= ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ ( times_5121417576591743744ring_a @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_455_right__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_456_right__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% right_diff_distrib
thf(fact_457_left__diff__distrib,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ C )
= ( minus_3609261664126569004ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_458_left__diff__distrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_459_left__diff__distrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% left_diff_distrib
thf(fact_460_square__eq__iff,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( times_5121417576591743744ring_a @ A @ A )
= ( times_5121417576591743744ring_a @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus3100561713750211260ring_a @ B ) ) ) ) ).
% square_eq_iff
thf(fact_461_square__eq__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ A )
= ( times_times_int @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_int @ B ) ) ) ) ).
% square_eq_iff
thf(fact_462_square__eq__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ A )
= ( times_times_real @ B @ B ) )
= ( ( A = B )
| ( A
= ( uminus_uminus_real @ B ) ) ) ) ).
% square_eq_iff
thf(fact_463_minus__mult__commute,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B )
= ( times_5121417576591743744ring_a @ A @ ( uminus3100561713750211260ring_a @ B ) ) ) ).
% minus_mult_commute
thf(fact_464_minus__mult__commute,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( times_times_int @ A @ ( uminus_uminus_int @ B ) ) ) ).
% minus_mult_commute
thf(fact_465_minus__mult__commute,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( times_times_real @ A @ ( uminus_uminus_real @ B ) ) ) ).
% minus_mult_commute
thf(fact_466_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_467_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_468_lambda__zero,axiom,
( ( ^ [H2: finite_mod_ring_a] : zero_z7902377541816115708ring_a )
= ( times_5121417576591743744ring_a @ zero_z7902377541816115708ring_a ) ) ).
% lambda_zero
thf(fact_469_lambda__zero,axiom,
( ( ^ [H2: nat] : zero_zero_nat )
= ( times_times_nat @ zero_zero_nat ) ) ).
% lambda_zero
thf(fact_470_lambda__zero,axiom,
( ( ^ [H2: int] : zero_zero_int )
= ( times_times_int @ zero_zero_int ) ) ).
% lambda_zero
thf(fact_471_lambda__zero,axiom,
( ( ^ [H2: real] : zero_zero_real )
= ( times_times_real @ zero_zero_real ) ) ).
% lambda_zero
thf(fact_472_lambda__one,axiom,
( ( ^ [X2: finite_mod_ring_a] : X2 )
= ( times_5121417576591743744ring_a @ one_on2109788427901206336ring_a ) ) ).
% lambda_one
thf(fact_473_lambda__one,axiom,
( ( ^ [X2: nat] : X2 )
= ( times_times_nat @ one_one_nat ) ) ).
% lambda_one
thf(fact_474_lambda__one,axiom,
( ( ^ [X2: int] : X2 )
= ( times_times_int @ one_one_int ) ) ).
% lambda_one
thf(fact_475_lambda__one,axiom,
( ( ^ [X2: real] : X2 )
= ( times_times_real @ one_one_real ) ) ).
% lambda_one
thf(fact_476_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_477_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_478_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_479_mult__less__cancel__right__disj,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_480_mult__less__cancel__right__disj,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_481_mult__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_482_mult__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_483_mult__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_484_mult__strict__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_485_mult__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_486_mult__less__cancel__left__disj,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_487_mult__less__cancel__left__disj,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_488_mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_489_mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_490_mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_491_mult__strict__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_492_mult__strict__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_493_mult__less__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_494_mult__less__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_495_mult__less__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_496_mult__less__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_497_zero__less__mult__pos2,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_498_zero__less__mult__pos2,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_499_zero__less__mult__pos2,axiom,
! [B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_500_zero__less__mult__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_501_zero__less__mult__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_502_zero__less__mult__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_503_zero__less__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ zero_zero_int @ B ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).
% zero_less_mult_iff
thf(fact_504_zero__less__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_mult_iff
thf(fact_505_mult__pos__neg2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_506_mult__pos__neg2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_pos_neg2
thf(fact_507_mult__pos__neg2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_pos_neg2
thf(fact_508_mult__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_509_mult__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_510_mult__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_511_mult__pos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg
thf(fact_512_mult__pos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_pos_neg
thf(fact_513_mult__pos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_pos_neg
thf(fact_514_mult__neg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_neg_pos
thf(fact_515_mult__neg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_neg_pos
thf(fact_516_mult__neg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_neg_pos
thf(fact_517_mult__less__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ B @ zero_zero_int ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_518_mult__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_519_not__square__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).
% not_square_less_zero
thf(fact_520_not__square__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).
% not_square_less_zero
thf(fact_521_mult__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_522_mult__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_523_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_524_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_525_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_526_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_527_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_528_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_529_less__1__mult,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ( ord_less_nat @ one_one_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_530_less__1__mult,axiom,
! [M: int,N: int] :
( ( ord_less_int @ one_one_int @ M )
=> ( ( ord_less_int @ one_one_int @ N )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_531_less__1__mult,axiom,
! [M: real,N: real] :
( ( ord_less_real @ one_one_real @ M )
=> ( ( ord_less_real @ one_one_real @ N )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_532_square__eq__1__iff,axiom,
! [X: finite_mod_ring_a] :
( ( ( times_5121417576591743744ring_a @ X @ X )
= one_on2109788427901206336ring_a )
= ( ( X = one_on2109788427901206336ring_a )
| ( X
= ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) ) ) ) ).
% square_eq_1_iff
thf(fact_533_square__eq__1__iff,axiom,
! [X: int] :
( ( ( times_times_int @ X @ X )
= one_one_int )
= ( ( X = one_one_int )
| ( X
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% square_eq_1_iff
thf(fact_534_square__eq__1__iff,axiom,
! [X: real] :
( ( ( times_times_real @ X @ X )
= one_one_real )
= ( ( X = one_one_real )
| ( X
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% square_eq_1_iff
thf(fact_535_mult__hom_Ohom__zero,axiom,
! [C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ C @ zero_z7902377541816115708ring_a )
= zero_z7902377541816115708ring_a ) ).
% mult_hom.hom_zero
thf(fact_536_mult__hom_Ohom__zero,axiom,
! [C: nat] :
( ( times_times_nat @ C @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_hom.hom_zero
thf(fact_537_mult__hom_Ohom__zero,axiom,
! [C: int] :
( ( times_times_int @ C @ zero_zero_int )
= zero_zero_int ) ).
% mult_hom.hom_zero
thf(fact_538_mult__hom_Ohom__zero,axiom,
! [C: real] :
( ( times_times_real @ C @ zero_zero_real )
= zero_zero_real ) ).
% mult_hom.hom_zero
thf(fact_539_omega__properties__ex,axiom,
~ ! [Omega: finite_mod_ring_a] :
( ( ( power_6826135765519566523ring_a @ Omega @ n )
= one_on2109788427901206336ring_a )
=> ( ( Omega != one_on2109788427901206336ring_a )
=> ~ ! [M2: nat] :
( ( ( ( power_6826135765519566523ring_a @ Omega @ M2 )
= one_on2109788427901206336ring_a )
& ( M2 != zero_zero_nat ) )
=> ( ord_less_eq_nat @ n @ M2 ) ) ) ) ).
% omega_properties_ex
thf(fact_540_omega__exists,axiom,
? [Omega: finite_mod_ring_a] :
( ( ( power_6826135765519566523ring_a @ Omega @ n )
= one_on2109788427901206336ring_a )
& ( Omega != one_on2109788427901206336ring_a )
& ! [M2: nat] :
( ( ( ( power_6826135765519566523ring_a @ Omega @ M2 )
= one_on2109788427901206336ring_a )
& ( M2 != zero_zero_nat ) )
=> ( ord_less_eq_nat @ n @ M2 ) ) ) ).
% omega_exists
thf(fact_541_sum__split,axiom,
! [R1: nat,R2: nat,F: nat > finite_mod_ring_a] :
( ( ord_less_nat @ R1 @ R2 )
=> ( ( plus_p6165643967897163644ring_a @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ R1 ) ) @ ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ R1 @ R2 ) ) )
= ( groups3558780024651037881ring_a @ F @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ R2 ) ) ) ) ).
% sum_split
thf(fact_542_mu__def,axiom,
( ( preliminary_mu_a @ n )
= ( power_6826135765519566523ring_a @ ( preliminary_omega_a @ n ) @ ( minus_minus_nat @ n @ one_one_nat ) ) ) ).
% mu_def
thf(fact_543_intt__def,axiom,
! [Xs: list_F4626807571770296779ring_a,I3: nat] :
( ( intt_a @ n @ mu @ Xs @ I3 )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ Xs @ J ) @ ( power_6826135765519566523ring_a @ mu @ ( times_times_nat @ I3 @ J ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) ) ).
% intt_def
thf(fact_544_all__nat__less__eq,axiom,
! [N: nat,P: nat > $o] :
( ( ! [M3: nat] :
( ( ord_less_nat @ M3 @ N )
=> ( P @ M3 ) ) )
= ( ! [X2: nat] :
( ( member_nat @ X2 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
=> ( P @ X2 ) ) ) ) ).
% all_nat_less_eq
thf(fact_545_ex__nat__less__eq,axiom,
! [N: nat,P: nat > $o] :
( ( ? [M3: nat] :
( ( ord_less_nat @ M3 @ N )
& ( P @ M3 ) ) )
= ( ? [X2: nat] :
( ( member_nat @ X2 @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) )
& ( P @ X2 ) ) ) ) ).
% ex_nat_less_eq
thf(fact_546_add__left__cancel,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( ( plus_p6165643967897163644ring_a @ A @ B )
= ( plus_p6165643967897163644ring_a @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_547_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_548_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_549_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_550_add__right__cancel,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( ( plus_p6165643967897163644ring_a @ B @ A )
= ( plus_p6165643967897163644ring_a @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_551_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_552_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_553_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_554_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_555_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_556_add_Oright__neutral,axiom,
! [A: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ A @ zero_z7902377541816115708ring_a )
= A ) ).
% add.right_neutral
thf(fact_557_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_558_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_559_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_560_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_561_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_562_add__cancel__left__left,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( ( plus_p6165643967897163644ring_a @ B @ A )
= A )
= ( B = zero_z7902377541816115708ring_a ) ) ).
% add_cancel_left_left
thf(fact_563_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_564_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_565_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_566_add__cancel__left__right,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( ( plus_p6165643967897163644ring_a @ A @ B )
= A )
= ( B = zero_z7902377541816115708ring_a ) ) ).
% add_cancel_left_right
thf(fact_567_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_568_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_569_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_570_add__cancel__right__left,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( A
= ( plus_p6165643967897163644ring_a @ B @ A ) )
= ( B = zero_z7902377541816115708ring_a ) ) ).
% add_cancel_right_left
thf(fact_571_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_572_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_573_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_574_add__cancel__right__right,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( A
= ( plus_p6165643967897163644ring_a @ A @ B ) )
= ( B = zero_z7902377541816115708ring_a ) ) ).
% add_cancel_right_right
thf(fact_575_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_576_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_577_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_578_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y ) )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_579_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_580_add__0,axiom,
! [A: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ zero_z7902377541816115708ring_a @ A )
= A ) ).
% add_0
thf(fact_581_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_582_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_583_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_584_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_585_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_586_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_587_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_588_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_589_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_590_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_591_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_592_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_593_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_594_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_595_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_596_neg__le__iff__le,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_597_add__diff__cancel,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_598_add__diff__cancel,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_599_add__diff__cancel,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel
thf(fact_600_diff__add__cancel,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_601_diff__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_602_diff__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ).
% diff_add_cancel
thf(fact_603_add__diff__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_604_add__diff__cancel__left,axiom,
! [C: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ C @ A ) @ ( plus_p6165643967897163644ring_a @ C @ B ) )
= ( minus_3609261664126569004ring_a @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_605_add__diff__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_606_add__diff__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_left
thf(fact_607_add__diff__cancel__left_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_608_add__diff__cancel__left_H,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_609_add__diff__cancel__left_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_610_add__diff__cancel__left_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ A )
= B ) ).
% add_diff_cancel_left'
thf(fact_611_add__diff__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( minus_minus_nat @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_612_add__diff__cancel__right,axiom,
! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ C ) @ ( plus_p6165643967897163644ring_a @ B @ C ) )
= ( minus_3609261664126569004ring_a @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_613_add__diff__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_614_add__diff__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ A @ B ) ) ).
% add_diff_cancel_right
thf(fact_615_add__diff__cancel__right_H,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_616_add__diff__cancel__right_H,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_617_add__diff__cancel__right_H,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_618_add__diff__cancel__right_H,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ B )
= A ) ).
% add_diff_cancel_right'
thf(fact_619_minus__add__distrib,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( uminus3100561713750211260ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) )
= ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( uminus3100561713750211260ring_a @ B ) ) ) ).
% minus_add_distrib
thf(fact_620_minus__add__distrib,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).
% minus_add_distrib
thf(fact_621_minus__add__distrib,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).
% minus_add_distrib
thf(fact_622_minus__add__cancel,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ ( plus_p6165643967897163644ring_a @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_623_minus__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_624_minus__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_625_add__minus__cancel,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_626_add__minus__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_627_add__minus__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_628_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_629_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_630_diff__diff__cancel,axiom,
! [I3: nat,N: nat] :
( ( ord_less_eq_nat @ I3 @ N )
=> ( ( minus_minus_nat @ N @ ( minus_minus_nat @ N @ I3 ) )
= I3 ) ) ).
% diff_diff_cancel
thf(fact_631_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_632_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_633_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_634_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_635_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_636_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_637_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_638_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_639_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_640_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_641_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_642_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_643_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_644_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_645_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_646_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_647_diff__ge__0__iff__ge,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( minus_minus_int @ A @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_648_diff__ge__0__iff__ge,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ).
% diff_ge_0_iff_ge
thf(fact_649_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_650_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_651_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_652_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_653_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_654_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_655_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_656_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_657_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_658_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_659_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_660_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_661_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_662_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_663_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_664_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_665_sum__squares__eq__zero__iff,axiom,
! [X: int,Y: int] :
( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_666_sum__squares__eq__zero__iff,axiom,
! [X: real,Y: real] :
( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_667_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_668_neg__less__eq__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_669_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_670_less__eq__neg__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% less_eq_neg_nonpos
thf(fact_671_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_672_neg__le__0__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_le_0_iff_le
thf(fact_673_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_674_neg__0__le__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% neg_0_le_iff_le
thf(fact_675_diff__add__zero,axiom,
! [A: nat,B: nat] :
( ( minus_minus_nat @ A @ ( plus_plus_nat @ A @ B ) )
= zero_zero_nat ) ).
% diff_add_zero
thf(fact_676_le__add__diff__inverse2,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_677_le__add__diff__inverse2,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_678_le__add__diff__inverse2,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ B )
= A ) ) ).
% le_add_diff_inverse2
thf(fact_679_le__add__diff__inverse,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( plus_plus_nat @ B @ ( minus_minus_nat @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_680_le__add__diff__inverse,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( plus_plus_int @ B @ ( minus_minus_int @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_681_le__add__diff__inverse,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( plus_plus_real @ B @ ( minus_minus_real @ A @ B ) )
= A ) ) ).
% le_add_diff_inverse
thf(fact_682_ab__left__minus,axiom,
! [A: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ A )
= zero_z7902377541816115708ring_a ) ).
% ab_left_minus
thf(fact_683_ab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_left_minus
thf(fact_684_ab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_left_minus
thf(fact_685_add_Oright__inverse,axiom,
! [A: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ A @ ( uminus3100561713750211260ring_a @ A ) )
= zero_z7902377541816115708ring_a ) ).
% add.right_inverse
thf(fact_686_add_Oright__inverse,axiom,
! [A: int] :
( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
= zero_zero_int ) ).
% add.right_inverse
thf(fact_687_add_Oright__inverse,axiom,
! [A: real] :
( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
= zero_zero_real ) ).
% add.right_inverse
thf(fact_688_uminus__add__conv__diff,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ A ) @ B )
= ( minus_3609261664126569004ring_a @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_689_uminus__add__conv__diff,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_690_uminus__add__conv__diff,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B )
= ( minus_minus_real @ B @ A ) ) ).
% uminus_add_conv_diff
thf(fact_691_diff__minus__eq__add,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ A @ ( uminus3100561713750211260ring_a @ B ) )
= ( plus_p6165643967897163644ring_a @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_692_diff__minus__eq__add,axiom,
! [A: int,B: int] :
( ( minus_minus_int @ A @ ( uminus_uminus_int @ B ) )
= ( plus_plus_int @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_693_diff__minus__eq__add,axiom,
! [A: real,B: real] :
( ( minus_minus_real @ A @ ( uminus_uminus_real @ B ) )
= ( plus_plus_real @ A @ B ) ) ).
% diff_minus_eq_add
thf(fact_694_diff__is__0__eq,axiom,
! [M: nat,N: nat] :
( ( ( minus_minus_nat @ M @ N )
= zero_zero_nat )
= ( ord_less_eq_nat @ M @ N ) ) ).
% diff_is_0_eq
thf(fact_695_diff__is__0__eq_H,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( minus_minus_nat @ M @ N )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_696_add__neg__numeral__special_I7_J,axiom,
( ( plus_p6165643967897163644ring_a @ one_on2109788427901206336ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) )
= zero_z7902377541816115708ring_a ) ).
% add_neg_numeral_special(7)
thf(fact_697_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% add_neg_numeral_special(7)
thf(fact_698_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% add_neg_numeral_special(7)
thf(fact_699_add__neg__numeral__special_I8_J,axiom,
( ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ one_on2109788427901206336ring_a ) @ one_on2109788427901206336ring_a )
= zero_z7902377541816115708ring_a ) ).
% add_neg_numeral_special(8)
thf(fact_700_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= zero_zero_int ) ).
% add_neg_numeral_special(8)
thf(fact_701_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= zero_zero_real ) ).
% add_neg_numeral_special(8)
thf(fact_702_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_703_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_704_power__mono__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_705_power__mono__iff,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_706_power__mono__iff,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_707_power__increasing__iff,axiom,
! [B: nat,X: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_708_power__increasing__iff,axiom,
! [B: int,X: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_709_power__increasing__iff,axiom,
! [B: real,X: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_710_power__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_711_power__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_712_power__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_713_mult__hom_Ohom__add,axiom,
! [C: finite_mod_ring_a,X: finite_mod_ring_a,Y: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ C @ ( plus_p6165643967897163644ring_a @ X @ Y ) )
= ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ C @ X ) @ ( times_5121417576591743744ring_a @ C @ Y ) ) ) ).
% mult_hom.hom_add
thf(fact_714_mult__hom_Ohom__add,axiom,
! [C: nat,X: nat,Y: nat] :
( ( times_times_nat @ C @ ( plus_plus_nat @ X @ Y ) )
= ( plus_plus_nat @ ( times_times_nat @ C @ X ) @ ( times_times_nat @ C @ Y ) ) ) ).
% mult_hom.hom_add
thf(fact_715_mult__hom_Ohom__add,axiom,
! [C: int,X: int,Y: int] :
( ( times_times_int @ C @ ( plus_plus_int @ X @ Y ) )
= ( plus_plus_int @ ( times_times_int @ C @ X ) @ ( times_times_int @ C @ Y ) ) ) ).
% mult_hom.hom_add
thf(fact_716_mult__hom_Ohom__add,axiom,
! [C: real,X: real,Y: real] :
( ( times_times_real @ C @ ( plus_plus_real @ X @ Y ) )
= ( plus_plus_real @ ( times_times_real @ C @ X ) @ ( times_times_real @ C @ Y ) ) ) ).
% mult_hom.hom_add
thf(fact_717_add__le__add__imp__diff__le,axiom,
! [I3: nat,K: nat,N: nat,J2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J2 @ K ) )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ N )
=> ( ( ord_less_eq_nat @ N @ ( plus_plus_nat @ J2 @ K ) )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ N @ K ) @ J2 ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_718_add__le__add__imp__diff__le,axiom,
! [I3: int,K: int,N: int,J2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J2 @ K ) )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ N )
=> ( ( ord_less_eq_int @ N @ ( plus_plus_int @ J2 @ K ) )
=> ( ord_less_eq_int @ ( minus_minus_int @ N @ K ) @ J2 ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_719_add__le__add__imp__diff__le,axiom,
! [I3: real,K: real,N: real,J2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I3 @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J2 @ K ) )
=> ( ( ord_less_eq_real @ ( plus_plus_real @ I3 @ K ) @ N )
=> ( ( ord_less_eq_real @ N @ ( plus_plus_real @ J2 @ K ) )
=> ( ord_less_eq_real @ ( minus_minus_real @ N @ K ) @ J2 ) ) ) ) ) ).
% add_le_add_imp_diff_le
thf(fact_720_add__le__imp__le__diff,axiom,
! [I3: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ N )
=> ( ord_less_eq_nat @ I3 @ ( minus_minus_nat @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_721_add__le__imp__le__diff,axiom,
! [I3: int,K: int,N: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ N )
=> ( ord_less_eq_int @ I3 @ ( minus_minus_int @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_722_add__le__imp__le__diff,axiom,
! [I3: real,K: real,N: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ I3 @ K ) @ N )
=> ( ord_less_eq_real @ I3 @ ( minus_minus_real @ N @ K ) ) ) ).
% add_le_imp_le_diff
thf(fact_723_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
= ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_724_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_725_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_726_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_727_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ( I3 = J2 )
& ( K = L2 ) )
=> ( ( plus_plus_nat @ I3 @ K )
= ( plus_plus_nat @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_728_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I3: int,J2: int,K: int,L2: int] :
( ( ( I3 = J2 )
& ( K = L2 ) )
=> ( ( plus_plus_int @ I3 @ K )
= ( plus_plus_int @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_729_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I3: real,J2: real,K: real,L2: real] :
( ( ( I3 = J2 )
& ( K = L2 ) )
=> ( ( plus_plus_real @ I3 @ K )
= ( plus_plus_real @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_730_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ( ord_less_eq_nat @ I3 @ J2 )
& ( K = L2 ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_731_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I3: int,J2: int,K: int,L2: int] :
( ( ( ord_less_eq_int @ I3 @ J2 )
& ( K = L2 ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_732_add__mono__thms__linordered__semiring_I3_J,axiom,
! [I3: real,J2: real,K: real,L2: real] :
( ( ( ord_less_eq_real @ I3 @ J2 )
& ( K = L2 ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(3)
thf(fact_733_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ( I3 = J2 )
& ( ord_less_eq_nat @ K @ L2 ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_734_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I3: int,J2: int,K: int,L2: int] :
( ( ( I3 = J2 )
& ( ord_less_eq_int @ K @ L2 ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_735_add__mono__thms__linordered__semiring_I2_J,axiom,
! [I3: real,J2: real,K: real,L2: real] :
( ( ( I3 = J2 )
& ( ord_less_eq_real @ K @ L2 ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(2)
thf(fact_736_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ( ord_less_eq_nat @ I3 @ J2 )
& ( ord_less_eq_nat @ K @ L2 ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_737_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I3: int,J2: int,K: int,L2: int] :
( ( ( ord_less_eq_int @ I3 @ J2 )
& ( ord_less_eq_int @ K @ L2 ) )
=> ( ord_less_eq_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_738_add__mono__thms__linordered__semiring_I1_J,axiom,
! [I3: real,J2: real,K: real,L2: real] :
( ( ( ord_less_eq_real @ I3 @ J2 )
& ( ord_less_eq_real @ K @ L2 ) )
=> ( ord_less_eq_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_semiring(1)
thf(fact_739_group__cancel_Oadd1,axiom,
! [A2: finite_mod_ring_a,K: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( A2
= ( plus_p6165643967897163644ring_a @ K @ A ) )
=> ( ( plus_p6165643967897163644ring_a @ A2 @ B )
= ( plus_p6165643967897163644ring_a @ K @ ( plus_p6165643967897163644ring_a @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_740_group__cancel_Oadd1,axiom,
! [A2: nat,K: nat,A: nat,B: nat] :
( ( A2
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A2 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_741_group__cancel_Oadd1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_742_group__cancel_Oadd1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_743_group__cancel_Oadd2,axiom,
! [B3: finite_mod_ring_a,K: finite_mod_ring_a,B: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( B3
= ( plus_p6165643967897163644ring_a @ K @ B ) )
=> ( ( plus_p6165643967897163644ring_a @ A @ B3 )
= ( plus_p6165643967897163644ring_a @ K @ ( plus_p6165643967897163644ring_a @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_744_group__cancel_Oadd2,axiom,
! [B3: nat,K: nat,B: nat,A: nat] :
( ( B3
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B3 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_745_group__cancel_Oadd2,axiom,
! [B3: int,K: int,B: int,A: int] :
( ( B3
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B3 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_746_group__cancel_Oadd2,axiom,
! [B3: real,K: real,B: real,A: real] :
( ( B3
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B3 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_747_add_Oassoc,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
= ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).
% add.assoc
thf(fact_748_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_749_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_750_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_751_add_Oleft__cancel,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( ( plus_p6165643967897163644ring_a @ A @ B )
= ( plus_p6165643967897163644ring_a @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_752_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_753_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_754_add_Oright__cancel,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( ( plus_p6165643967897163644ring_a @ B @ A )
= ( plus_p6165643967897163644ring_a @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_755_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_756_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_757_add_Ocommute,axiom,
( plus_p6165643967897163644ring_a
= ( ^ [A3: finite_mod_ring_a,B2: finite_mod_ring_a] : ( plus_p6165643967897163644ring_a @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_758_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A3: nat,B2: nat] : ( plus_plus_nat @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_759_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A3: int,B2: int] : ( plus_plus_int @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_760_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A3: real,B2: real] : ( plus_plus_real @ B2 @ A3 ) ) ) ).
% add.commute
thf(fact_761_add_Oleft__commute,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ B @ ( plus_p6165643967897163644ring_a @ A @ C ) )
= ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).
% add.left_commute
thf(fact_762_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_763_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_764_add_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_765_add__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_mono
thf(fact_766_add__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_mono
thf(fact_767_add__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_mono
thf(fact_768_add__left__imp__eq,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( ( plus_p6165643967897163644ring_a @ A @ B )
= ( plus_p6165643967897163644ring_a @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_769_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_770_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_771_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_772_add__right__imp__eq,axiom,
! [B: finite_mod_ring_a,A: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( ( plus_p6165643967897163644ring_a @ B @ A )
= ( plus_p6165643967897163644ring_a @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_773_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_774_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_775_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_776_add__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_left_mono
thf(fact_777_add__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_left_mono
thf(fact_778_add__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_left_mono
thf(fact_779_less__eqE,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ~ ! [C2: nat] :
( B
!= ( plus_plus_nat @ A @ C2 ) ) ) ).
% less_eqE
thf(fact_780_add__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_right_mono
thf(fact_781_add__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_right_mono
thf(fact_782_add__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_right_mono
thf(fact_783_le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] :
? [C3: nat] :
( B2
= ( plus_plus_nat @ A3 @ C3 ) ) ) ) ).
% le_iff_add
thf(fact_784_add__le__imp__le__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_785_add__le__imp__le__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_786_add__le__imp__le__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_left
thf(fact_787_add__le__imp__le__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_788_add__le__imp__le__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_eq_int @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_789_add__le__imp__le__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_eq_real @ A @ B ) ) ).
% add_le_imp_le_right
thf(fact_790_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_791_le__trans,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ord_less_eq_nat @ J2 @ K )
=> ( ord_less_eq_nat @ I3 @ K ) ) ) ).
% le_trans
thf(fact_792_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_793_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_794_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_795_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y2: nat] :
( ( P @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ B ) )
=> ? [X3: nat] :
( ( P @ X3 )
& ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_796_diff__le__eq,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ ( minus_minus_int @ A @ B ) @ C )
= ( ord_less_eq_int @ A @ ( plus_plus_int @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_797_diff__le__eq,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ ( minus_minus_real @ A @ B ) @ C )
= ( ord_less_eq_real @ A @ ( plus_plus_real @ C @ B ) ) ) ).
% diff_le_eq
thf(fact_798_le__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ ( minus_minus_int @ C @ B ) )
= ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_799_le__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ ( minus_minus_real @ C @ B ) )
= ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% le_diff_eq
thf(fact_800_ordered__cancel__comm__monoid__diff__class_Odiff__add,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ A )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add
thf(fact_801_le__add__diff,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ C @ ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% le_add_diff
thf(fact_802_ordered__cancel__comm__monoid__diff__class_Ole__diff__conv2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_diff_conv2
thf(fact_803_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc
thf(fact_804_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ C @ B ) @ A )
= ( plus_plus_nat @ C @ ( minus_minus_nat @ B @ A ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc
thf(fact_805_ordered__cancel__comm__monoid__diff__class_Oadd__diff__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C )
= ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_assoc2
thf(fact_806_ordered__cancel__comm__monoid__diff__class_Odiff__add__assoc2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ B @ C ) @ A )
= ( plus_plus_nat @ ( minus_minus_nat @ B @ A ) @ C ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_add_assoc2
thf(fact_807_ordered__cancel__comm__monoid__diff__class_Odiff__diff__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( minus_minus_nat @ C @ ( minus_minus_nat @ B @ A ) )
= ( minus_minus_nat @ ( plus_plus_nat @ C @ A ) @ B ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.diff_diff_right
thf(fact_808_ordered__cancel__comm__monoid__diff__class_Oadd__diff__inverse,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( plus_plus_nat @ A @ ( minus_minus_nat @ B @ A ) )
= B ) ) ).
% ordered_cancel_comm_monoid_diff_class.add_diff_inverse
thf(fact_809_ordered__cancel__comm__monoid__diff__class_Ole__imp__diff__is__add,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ( ( minus_minus_nat @ B @ A )
= C )
= ( B
= ( plus_plus_nat @ C @ A ) ) ) ) ) ).
% ordered_cancel_comm_monoid_diff_class.le_imp_diff_is_add
thf(fact_810_add__mono__thms__linordered__field_I4_J,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ( ord_less_eq_nat @ I3 @ J2 )
& ( ord_less_nat @ K @ L2 ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_811_add__mono__thms__linordered__field_I4_J,axiom,
! [I3: int,J2: int,K: int,L2: int] :
( ( ( ord_less_eq_int @ I3 @ J2 )
& ( ord_less_int @ K @ L2 ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_812_add__mono__thms__linordered__field_I4_J,axiom,
! [I3: real,J2: real,K: real,L2: real] :
( ( ( ord_less_eq_real @ I3 @ J2 )
& ( ord_less_real @ K @ L2 ) )
=> ( ord_less_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(4)
thf(fact_813_add__mono__thms__linordered__field_I3_J,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ( ord_less_nat @ I3 @ J2 )
& ( ord_less_eq_nat @ K @ L2 ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_814_add__mono__thms__linordered__field_I3_J,axiom,
! [I3: int,J2: int,K: int,L2: int] :
( ( ( ord_less_int @ I3 @ J2 )
& ( ord_less_eq_int @ K @ L2 ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_815_add__mono__thms__linordered__field_I3_J,axiom,
! [I3: real,J2: real,K: real,L2: real] :
( ( ( ord_less_real @ I3 @ J2 )
& ( ord_less_eq_real @ K @ L2 ) )
=> ( ord_less_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(3)
thf(fact_816_add__le__less__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_817_add__le__less__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_818_add__le__less__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_le_less_mono
thf(fact_819_add__less__le__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_820_add__less__le__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_821_add__less__le__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_less_le_mono
thf(fact_822_add__decreasing,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_823_add__decreasing,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_824_add__decreasing,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing
thf(fact_825_add__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_826_add__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_827_add__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing
thf(fact_828_add__decreasing2,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ C @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_829_add__decreasing2,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_830_add__decreasing2,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ B ) ) ) ).
% add_decreasing2
thf(fact_831_add__increasing2,axiom,
! [C: nat,B: nat,A: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_832_add__increasing2,axiom,
! [C: int,B: int,A: int] :
( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_833_add__increasing2,axiom,
! [C: real,B: real,A: real] :
( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_increasing2
thf(fact_834_add__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_835_add__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_836_add__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_nonneg
thf(fact_837_add__nonpos__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_nonpos
thf(fact_838_add__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_nonpos
thf(fact_839_add__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_nonpos
thf(fact_840_add__nonneg__eq__0__iff,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_841_add__nonneg__eq__0__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ( plus_plus_int @ X @ Y )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_842_add__nonneg__eq__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ( plus_plus_real @ X @ Y )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ) ) ).
% add_nonneg_eq_0_iff
thf(fact_843_add__nonpos__eq__0__iff,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ X @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ Y @ zero_zero_nat )
=> ( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_844_add__nonpos__eq__0__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ X @ zero_zero_int )
=> ( ( ord_less_eq_int @ Y @ zero_zero_int )
=> ( ( ( plus_plus_int @ X @ Y )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_845_add__nonpos__eq__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ X @ zero_zero_real )
=> ( ( ord_less_eq_real @ Y @ zero_zero_real )
=> ( ( ( plus_plus_real @ X @ Y )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ) ) ).
% add_nonpos_eq_0_iff
thf(fact_846_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_847_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_848_verit__comp__simplify1_I2_J,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_849_is__num__normalize_I1_J,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
= ( plus_p6165643967897163644ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_850_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_851_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_852_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_853_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_854_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_855_ntt_Ointt_Ocong,axiom,
intt_a = intt_a ).
% ntt.intt.cong
thf(fact_856_add__strict__increasing2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_857_add__strict__increasing2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_858_add__strict__increasing2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing2
thf(fact_859_add__strict__increasing,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_860_add__strict__increasing,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_861_add__strict__increasing,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% add_strict_increasing
thf(fact_862_add__pos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_863_add__pos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_864_add__pos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_nonneg
thf(fact_865_add__nonpos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_nonpos_neg
thf(fact_866_add__nonpos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_nonpos_neg
thf(fact_867_add__nonpos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_nonpos_neg
thf(fact_868_add__nonneg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_869_add__nonneg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_870_add__nonneg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_nonneg_pos
thf(fact_871_add__neg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_nonpos
thf(fact_872_add__neg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_nonpos
thf(fact_873_add__neg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_nonpos
thf(fact_874_sum__squares__le__zero__iff,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) @ zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_875_sum__squares__le__zero__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) @ zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_squares_le_zero_iff
thf(fact_876_sum__squares__ge__zero,axiom,
! [X: int,Y: int] : ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) ) ) ).
% sum_squares_ge_zero
thf(fact_877_sum__squares__ge__zero,axiom,
! [X: real,Y: real] : ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) ) ) ).
% sum_squares_ge_zero
thf(fact_878_ordered__ring__class_Ole__add__iff2,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_eq_int @ C @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ B @ A ) @ E ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_879_ordered__ring__class_Ole__add__iff2,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( ord_less_eq_real @ C @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ B @ A ) @ E ) @ D ) ) ) ).
% ordered_ring_class.le_add_iff2
thf(fact_880_ordered__ring__class_Ole__add__iff1,axiom,
! [A: int,E: int,C: int,B: int,D: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ A @ E ) @ C ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ D ) )
= ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ ( minus_minus_int @ A @ B ) @ E ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_881_ordered__ring__class_Ole__add__iff1,axiom,
! [A: real,E: real,C: real,B: real,D: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ A @ E ) @ C ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ D ) )
= ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( minus_minus_real @ A @ B ) @ E ) @ C ) @ D ) ) ).
% ordered_ring_class.le_add_iff1
thf(fact_882_power__increasing,axiom,
! [N: nat,N4: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N4 )
=> ( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ A @ N4 ) ) ) ) ).
% power_increasing
thf(fact_883_power__increasing,axiom,
! [N: nat,N4: nat,A: int] :
( ( ord_less_eq_nat @ N @ N4 )
=> ( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ A @ N4 ) ) ) ) ).
% power_increasing
thf(fact_884_power__increasing,axiom,
! [N: nat,N4: nat,A: real] :
( ( ord_less_eq_nat @ N @ N4 )
=> ( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ A @ N4 ) ) ) ) ).
% power_increasing
thf(fact_885_verit__sum__simplify,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% verit_sum_simplify
thf(fact_886_verit__sum__simplify,axiom,
! [A: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ A @ zero_z7902377541816115708ring_a )
= A ) ).
% verit_sum_simplify
thf(fact_887_verit__sum__simplify,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% verit_sum_simplify
thf(fact_888_verit__sum__simplify,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% verit_sum_simplify
thf(fact_889_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_890_comm__monoid__add__class_Oadd__0,axiom,
! [A: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ zero_z7902377541816115708ring_a @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_891_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_892_comm__monoid__add__class_Oadd__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_893_add_Ocomm__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.comm_neutral
thf(fact_894_add_Ocomm__neutral,axiom,
! [A: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ A @ zero_z7902377541816115708ring_a )
= A ) ).
% add.comm_neutral
thf(fact_895_add_Ocomm__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.comm_neutral
thf(fact_896_add_Ocomm__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.comm_neutral
thf(fact_897_add_Ogroup__left__neutral,axiom,
! [A: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ zero_z7902377541816115708ring_a @ A )
= A ) ).
% add.group_left_neutral
thf(fact_898_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_899_add_Ogroup__left__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add.group_left_neutral
thf(fact_900_add__less__imp__less__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_901_add__less__imp__less__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_902_add__less__imp__less__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_right
thf(fact_903_add__less__imp__less__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
=> ( ord_less_nat @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_904_add__less__imp__less__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
=> ( ord_less_int @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_905_add__less__imp__less__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
=> ( ord_less_real @ A @ B ) ) ).
% add_less_imp_less_left
thf(fact_906_add__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_907_add__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_908_add__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) ) ) ).
% add_strict_right_mono
thf(fact_909_add__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_910_add__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_911_add__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) ) ) ).
% add_strict_left_mono
thf(fact_912_add__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_913_add__strict__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_914_add__strict__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ D ) ) ) ) ).
% add_strict_mono
thf(fact_915_add__mono__thms__linordered__field_I1_J,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ( ord_less_nat @ I3 @ J2 )
& ( K = L2 ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_916_add__mono__thms__linordered__field_I1_J,axiom,
! [I3: int,J2: int,K: int,L2: int] :
( ( ( ord_less_int @ I3 @ J2 )
& ( K = L2 ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_917_add__mono__thms__linordered__field_I1_J,axiom,
! [I3: real,J2: real,K: real,L2: real] :
( ( ( ord_less_real @ I3 @ J2 )
& ( K = L2 ) )
=> ( ord_less_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(1)
thf(fact_918_add__mono__thms__linordered__field_I2_J,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ( I3 = J2 )
& ( ord_less_nat @ K @ L2 ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_919_add__mono__thms__linordered__field_I2_J,axiom,
! [I3: int,J2: int,K: int,L2: int] :
( ( ( I3 = J2 )
& ( ord_less_int @ K @ L2 ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_920_add__mono__thms__linordered__field_I2_J,axiom,
! [I3: real,J2: real,K: real,L2: real] :
( ( ( I3 = J2 )
& ( ord_less_real @ K @ L2 ) )
=> ( ord_less_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(2)
thf(fact_921_add__mono__thms__linordered__field_I5_J,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ( ord_less_nat @ I3 @ J2 )
& ( ord_less_nat @ K @ L2 ) )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_922_add__mono__thms__linordered__field_I5_J,axiom,
! [I3: int,J2: int,K: int,L2: int] :
( ( ( ord_less_int @ I3 @ J2 )
& ( ord_less_int @ K @ L2 ) )
=> ( ord_less_int @ ( plus_plus_int @ I3 @ K ) @ ( plus_plus_int @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_923_add__mono__thms__linordered__field_I5_J,axiom,
! [I3: real,J2: real,K: real,L2: real] :
( ( ( ord_less_real @ I3 @ J2 )
& ( ord_less_real @ K @ L2 ) )
=> ( ord_less_real @ ( plus_plus_real @ I3 @ K ) @ ( plus_plus_real @ J2 @ L2 ) ) ) ).
% add_mono_thms_linordered_field(5)
thf(fact_924_ring__class_Oring__distribs_I2_J,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
= ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_925_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_926_ring__class_Oring__distribs_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_927_ring__class_Oring__distribs_I1_J,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) )
= ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ ( times_5121417576591743744ring_a @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_928_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_929_ring__class_Oring__distribs_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_930_comm__semiring__class_Odistrib,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
= ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_931_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_932_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_933_comm__semiring__class_Odistrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_934_distrib__left,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) )
= ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ B ) @ ( times_5121417576591743744ring_a @ A @ C ) ) ) ).
% distrib_left
thf(fact_935_distrib__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% distrib_left
thf(fact_936_distrib__left,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% distrib_left
thf(fact_937_distrib__left,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% distrib_left
thf(fact_938_distrib__right,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( times_5121417576591743744ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C )
= ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ C ) @ ( times_5121417576591743744ring_a @ B @ C ) ) ) ).
% distrib_right
thf(fact_939_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_940_distrib__right,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_941_distrib__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_942_combine__common__factor,axiom,
! [A: finite_mod_ring_a,E: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ A @ E ) @ ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ B @ E ) @ C ) )
= ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_943_combine__common__factor,axiom,
! [A: nat,E: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_944_combine__common__factor,axiom,
! [A: int,E: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_945_combine__common__factor,axiom,
! [A: real,E: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_946_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_947_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_948_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_949_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_950_group__cancel_Osub1,axiom,
! [A2: finite_mod_ring_a,K: finite_mod_ring_a,A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( A2
= ( plus_p6165643967897163644ring_a @ K @ A ) )
=> ( ( minus_3609261664126569004ring_a @ A2 @ B )
= ( plus_p6165643967897163644ring_a @ K @ ( minus_3609261664126569004ring_a @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_951_group__cancel_Osub1,axiom,
! [A2: int,K: int,A: int,B: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( minus_minus_int @ A2 @ B )
= ( plus_plus_int @ K @ ( minus_minus_int @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_952_group__cancel_Osub1,axiom,
! [A2: real,K: real,A: real,B: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( minus_minus_real @ A2 @ B )
= ( plus_plus_real @ K @ ( minus_minus_real @ A @ B ) ) ) ) ).
% group_cancel.sub1
thf(fact_953_diff__eq__eq,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( ( minus_3609261664126569004ring_a @ A @ B )
= C )
= ( A
= ( plus_p6165643967897163644ring_a @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_954_diff__eq__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( minus_minus_int @ A @ B )
= C )
= ( A
= ( plus_plus_int @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_955_diff__eq__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( minus_minus_real @ A @ B )
= C )
= ( A
= ( plus_plus_real @ C @ B ) ) ) ).
% diff_eq_eq
thf(fact_956_eq__diff__eq,axiom,
! [A: finite_mod_ring_a,C: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( A
= ( minus_3609261664126569004ring_a @ C @ B ) )
= ( ( plus_p6165643967897163644ring_a @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_957_eq__diff__eq,axiom,
! [A: int,C: int,B: int] :
( ( A
= ( minus_minus_int @ C @ B ) )
= ( ( plus_plus_int @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_958_eq__diff__eq,axiom,
! [A: real,C: real,B: real] :
( ( A
= ( minus_minus_real @ C @ B ) )
= ( ( plus_plus_real @ A @ B )
= C ) ) ).
% eq_diff_eq
thf(fact_959_add__diff__eq,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ A @ ( minus_3609261664126569004ring_a @ B @ C ) )
= ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_960_add__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_961_add__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ B ) @ C ) ) ).
% add_diff_eq
thf(fact_962_diff__diff__eq2,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ A @ ( minus_3609261664126569004ring_a @ B @ C ) )
= ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_963_diff__diff__eq2,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( minus_minus_int @ B @ C ) )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_964_diff__diff__eq2,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( minus_minus_real @ B @ C ) )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_diff_eq2
thf(fact_965_diff__add__eq,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( plus_p6165643967897163644ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ C )
= ( minus_3609261664126569004ring_a @ ( plus_p6165643967897163644ring_a @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_966_diff__add__eq,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ ( plus_plus_int @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_967_diff__add__eq,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ ( plus_plus_real @ A @ C ) @ B ) ) ).
% diff_add_eq
thf(fact_968_diff__add__eq__diff__diff__swap,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) )
= ( minus_3609261664126569004ring_a @ ( minus_3609261664126569004ring_a @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_969_diff__add__eq__diff__diff__swap,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) )
= ( minus_minus_int @ ( minus_minus_int @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_970_diff__add__eq__diff__diff__swap,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) )
= ( minus_minus_real @ ( minus_minus_real @ A @ C ) @ B ) ) ).
% diff_add_eq_diff_diff_swap
thf(fact_971_add__implies__diff,axiom,
! [C: nat,B: nat,A: nat] :
( ( ( plus_plus_nat @ C @ B )
= A )
=> ( C
= ( minus_minus_nat @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_972_add__implies__diff,axiom,
! [C: finite_mod_ring_a,B: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( ( plus_p6165643967897163644ring_a @ C @ B )
= A )
=> ( C
= ( minus_3609261664126569004ring_a @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_973_add__implies__diff,axiom,
! [C: int,B: int,A: int] :
( ( ( plus_plus_int @ C @ B )
= A )
=> ( C
= ( minus_minus_int @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_974_add__implies__diff,axiom,
! [C: real,B: real,A: real] :
( ( ( plus_plus_real @ C @ B )
= A )
=> ( C
= ( minus_minus_real @ A @ B ) ) ) ).
% add_implies_diff
thf(fact_975_diff__diff__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C )
= ( minus_minus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_976_diff__diff__eq,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( minus_3609261664126569004ring_a @ ( minus_3609261664126569004ring_a @ A @ B ) @ C )
= ( minus_3609261664126569004ring_a @ A @ ( plus_p6165643967897163644ring_a @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_977_diff__diff__eq,axiom,
! [A: int,B: int,C: int] :
( ( minus_minus_int @ ( minus_minus_int @ A @ B ) @ C )
= ( minus_minus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_978_diff__diff__eq,axiom,
! [A: real,B: real,C: real] :
( ( minus_minus_real @ ( minus_minus_real @ A @ B ) @ C )
= ( minus_minus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% diff_diff_eq
thf(fact_979_is__num__normalize_I8_J,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( uminus3100561713750211260ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) )
= ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ B ) @ ( uminus3100561713750211260ring_a @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_980_is__num__normalize_I8_J,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_981_is__num__normalize_I8_J,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% is_num_normalize(8)
thf(fact_982_add_Oinverse__distrib__swap,axiom,
! [A: finite_mod_ring_a,B: finite_mod_ring_a] :
( ( uminus3100561713750211260ring_a @ ( plus_p6165643967897163644ring_a @ A @ B ) )
= ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ B ) @ ( uminus3100561713750211260ring_a @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_983_add_Oinverse__distrib__swap,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_984_add_Oinverse__distrib__swap,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% add.inverse_distrib_swap
thf(fact_985_group__cancel_Oneg1,axiom,
! [A2: finite_mod_ring_a,K: finite_mod_ring_a,A: finite_mod_ring_a] :
( ( A2
= ( plus_p6165643967897163644ring_a @ K @ A ) )
=> ( ( uminus3100561713750211260ring_a @ A2 )
= ( plus_p6165643967897163644ring_a @ ( uminus3100561713750211260ring_a @ K ) @ ( uminus3100561713750211260ring_a @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_986_group__cancel_Oneg1,axiom,
! [A2: int,K: int,A: int] :
( ( A2
= ( plus_plus_int @ K @ A ) )
=> ( ( uminus_uminus_int @ A2 )
= ( plus_plus_int @ ( uminus_uminus_int @ K ) @ ( uminus_uminus_int @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_987_group__cancel_Oneg1,axiom,
! [A2: real,K: real,A: real] :
( ( A2
= ( plus_plus_real @ K @ A ) )
=> ( ( uminus_uminus_real @ A2 )
= ( plus_plus_real @ ( uminus_uminus_real @ K ) @ ( uminus_uminus_real @ A ) ) ) ) ).
% group_cancel.neg1
thf(fact_988_verit__comp__simplify1_I3_J,axiom,
! [B5: nat,A5: nat] :
( ( ~ ( ord_less_eq_nat @ B5 @ A5 ) )
= ( ord_less_nat @ A5 @ B5 ) ) ).
% verit_comp_simplify1(3)
thf(fact_989_verit__comp__simplify1_I3_J,axiom,
! [B5: int,A5: int] :
( ( ~ ( ord_less_eq_int @ B5 @ A5 ) )
= ( ord_less_int @ A5 @ B5 ) ) ).
% verit_comp_simplify1(3)
thf(fact_990_verit__comp__simplify1_I3_J,axiom,
! [B5: real,A5: real] :
( ( ~ ( ord_less_eq_real @ B5 @ A5 ) )
= ( ord_less_real @ A5 @ B5 ) ) ).
% verit_comp_simplify1(3)
thf(fact_991_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_992_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_993_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_994_diff__mono,axiom,
! [A: int,B: int,D: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ D @ C )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_995_diff__mono,axiom,
! [A: real,B: real,D: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ D @ C )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).
% diff_mono
thf(fact_996_diff__left__mono,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ord_less_eq_int @ ( minus_minus_int @ C @ A ) @ ( minus_minus_int @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_997_diff__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ord_less_eq_real @ ( minus_minus_real @ C @ A ) @ ( minus_minus_real @ C @ B ) ) ) ).
% diff_left_mono
thf(fact_998_diff__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( minus_minus_int @ A @ C ) @ ( minus_minus_int @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_999_diff__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( minus_minus_real @ A @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).
% diff_right_mono
thf(fact_1000_diff__eq__diff__less__eq,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ( minus_minus_int @ A @ B )
= ( minus_minus_int @ C @ D ) )
=> ( ( ord_less_eq_int @ A @ B )
= ( ord_less_eq_int @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_1001_diff__eq__diff__less__eq,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ( minus_minus_real @ A @ B )
= ( minus_minus_real @ C @ D ) )
=> ( ( ord_less_eq_real @ A @ B )
= ( ord_less_eq_real @ C @ D ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_1002_le__imp__neg__le,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) ) ) ).
% le_imp_neg_le
thf(fact_1003_le__imp__neg__le,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% le_imp_neg_le
thf(fact_1004_minus__le__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ B )
= ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_1005_minus__le__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ B )
= ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A ) ) ).
% minus_le_iff
thf(fact_1006_le__minus__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ B ) )
= ( ord_less_eq_int @ B @ ( uminus_uminus_int @ A ) ) ) ).
% le_minus_iff
thf(fact_1007_le__minus__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ B ) )
= ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A ) ) ) ).
% le_minus_iff
thf(fact_1008_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_1009_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_1010_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_1011_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_1012_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I3: nat,J2: nat] :
( ! [I2: nat,J3: nat] :
( ( ord_less_nat @ I2 @ J3 )
=> ( ord_less_nat @ ( F @ I2 ) @ ( F @ J3 ) ) )
=> ( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ord_less_eq_nat @ ( F @ I3 ) @ ( F @ J2 ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_1013_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_1014_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_1015_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M3: nat,N3: nat] :
( ( ord_less_nat @ M3 @ N3 )
| ( M3 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_1016_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_1017_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M3: nat,N3: nat] :
( ( ord_less_eq_nat @ M3 @ N3 )
& ( M3 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_1018_eq__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ( minus_minus_nat @ M @ K )
= ( minus_minus_nat @ N @ K ) )
= ( M = N ) ) ) ) ).
% eq_diff_iff
thf(fact_1019_le__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ) ).
% le_diff_iff
thf(fact_1020_Nat_Odiff__diff__eq,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_1021_diff__le__mono,axiom,
! [M: nat,N: nat,L2: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M @ L2 ) @ ( minus_minus_nat @ N @ L2 ) ) ) ).
% diff_le_mono
thf(fact_1022_diff__le__self,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M @ N ) @ M ) ).
% diff_le_self
thf(fact_1023_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_1024_diff__le__mono2,axiom,
! [M: nat,N: nat,L2: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L2 @ N ) @ ( minus_minus_nat @ L2 @ M ) ) ) ).
% diff_le_mono2
thf(fact_1025_mult__le__mono2,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I3 ) @ ( times_times_nat @ K @ J2 ) ) ) ).
% mult_le_mono2
thf(fact_1026_mult__le__mono1,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ I3 @ K ) @ ( times_times_nat @ J2 @ K ) ) ) ).
% mult_le_mono1
thf(fact_1027_mult__le__mono,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ord_less_eq_nat @ K @ L2 )
=> ( ord_less_eq_nat @ ( times_times_nat @ I3 @ K ) @ ( times_times_nat @ J2 @ L2 ) ) ) ) ).
% mult_le_mono
thf(fact_1028_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_1029_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_1030_mult__hom_Ohom__add__eq__zero,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a,C: finite_mod_ring_a] :
( ( ( plus_p6165643967897163644ring_a @ X @ Y )
= zero_z7902377541816115708ring_a )
=> ( ( plus_p6165643967897163644ring_a @ ( times_5121417576591743744ring_a @ C @ X ) @ ( times_5121417576591743744ring_a @ C @ Y ) )
= zero_z7902377541816115708ring_a ) ) ).
% mult_hom.hom_add_eq_zero
thf(fact_1031_mult__hom_Ohom__add__eq__zero,axiom,
! [X: nat,Y: nat,C: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
=> ( ( plus_plus_nat @ ( times_times_nat @ C @ X ) @ ( times_times_nat @ C @ Y ) )
= zero_zero_nat ) ) ).
% mult_hom.hom_add_eq_zero
thf(fact_1032_mult__hom_Ohom__add__eq__zero,axiom,
! [X: int,Y: int,C: int] :
( ( ( plus_plus_int @ X @ Y )
= zero_zero_int )
=> ( ( plus_plus_int @ ( times_times_int @ C @ X ) @ ( times_times_int @ C @ Y ) )
= zero_zero_int ) ) ).
% mult_hom.hom_add_eq_zero
thf(fact_1033_mult__hom_Ohom__add__eq__zero,axiom,
! [X: real,Y: real,C: real] :
( ( ( plus_plus_real @ X @ Y )
= zero_zero_real )
=> ( ( plus_plus_real @ ( times_times_real @ C @ X ) @ ( times_times_real @ C @ Y ) )
= zero_zero_real ) ) ).
% mult_hom.hom_add_eq_zero
thf(fact_1034_convex__bound__le,axiom,
! [X: int,A: int,Y: int,U: int,V: int] :
( ( ord_less_eq_int @ X @ A )
=> ( ( ord_less_eq_int @ Y @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U @ V )
= one_one_int )
=> ( ord_less_eq_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_1035_convex__bound__le,axiom,
! [X: real,A: real,Y: real,U: real,V: real] :
( ( ord_less_eq_real @ X @ A )
=> ( ( ord_less_eq_real @ Y @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ U )
=> ( ( ord_less_eq_real @ zero_zero_real @ V )
=> ( ( ( plus_plus_real @ U @ V )
= one_one_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_le
thf(fact_1036_power__decreasing,axiom,
! [N: nat,N4: nat,A: nat] :
( ( ord_less_eq_nat @ N @ N4 )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N4 ) @ ( power_power_nat @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1037_power__decreasing,axiom,
! [N: nat,N4: nat,A: int] :
( ( ord_less_eq_nat @ N @ N4 )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N4 ) @ ( power_power_int @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1038_power__decreasing,axiom,
! [N: nat,N4: nat,A: real] :
( ( ord_less_eq_nat @ N @ N4 )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N4 ) @ ( power_power_real @ A @ N ) ) ) ) ) ).
% power_decreasing
thf(fact_1039_power__le__imp__le__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ M ) @ ( power_power_nat @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_1040_power__le__imp__le__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ M ) @ ( power_power_int @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_1041_power__le__imp__le__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ M ) @ ( power_power_real @ A @ N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_le_imp_le_exp
thf(fact_1042_sum_Odistrib,axiom,
! [G: nat > finite_mod_ring_a,H: nat > finite_mod_ring_a,A2: set_nat] :
( ( groups3558780024651037881ring_a
@ ^ [X2: nat] : ( plus_p6165643967897163644ring_a @ ( G @ X2 ) @ ( H @ X2 ) )
@ A2 )
= ( plus_p6165643967897163644ring_a @ ( groups3558780024651037881ring_a @ G @ A2 ) @ ( groups3558780024651037881ring_a @ H @ A2 ) ) ) ).
% sum.distrib
thf(fact_1043_sum_Odistrib,axiom,
! [G: nat > nat,H: nat > nat,A2: set_nat] :
( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : ( plus_plus_nat @ ( G @ X2 ) @ ( H @ X2 ) )
@ A2 )
= ( plus_plus_nat @ ( groups3542108847815614940at_nat @ G @ A2 ) @ ( groups3542108847815614940at_nat @ H @ A2 ) ) ) ).
% sum.distrib
thf(fact_1044_sum__mono,axiom,
! [K2: set_real,F: real > nat,G: real > nat] :
( ! [I2: real] :
( ( member_real @ I2 @ K2 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_nat @ ( groups1935376822645274424al_nat @ F @ K2 ) @ ( groups1935376822645274424al_nat @ G @ K2 ) ) ) ).
% sum_mono
thf(fact_1045_sum__mono,axiom,
! [K2: set_real,F: real > int,G: real > int] :
( ! [I2: real] :
( ( member_real @ I2 @ K2 )
=> ( ord_less_eq_int @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_int @ ( groups1932886352136224148al_int @ F @ K2 ) @ ( groups1932886352136224148al_int @ G @ K2 ) ) ) ).
% sum_mono
thf(fact_1046_sum__mono,axiom,
! [K2: set_real,F: real > real,G: real > real] :
( ! [I2: real] :
( ( member_real @ I2 @ K2 )
=> ( ord_less_eq_real @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_real @ ( groups8097168146408367636l_real @ F @ K2 ) @ ( groups8097168146408367636l_real @ G @ K2 ) ) ) ).
% sum_mono
thf(fact_1047_sum__mono,axiom,
! [K2: set_nat,F: nat > nat,G: nat > nat] :
( ! [I2: nat] :
( ( member_nat @ I2 @ K2 )
=> ( ord_less_eq_nat @ ( F @ I2 ) @ ( G @ I2 ) ) )
=> ( ord_less_eq_nat @ ( groups3542108847815614940at_nat @ F @ K2 ) @ ( groups3542108847815614940at_nat @ G @ K2 ) ) ) ).
% sum_mono
thf(fact_1048_sum__subtractf__nat,axiom,
! [A2: set_real,G: real > nat,F: real > nat] :
( ! [X3: real] :
( ( member_real @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
=> ( ( groups1935376822645274424al_nat
@ ^ [X2: real] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups1935376822645274424al_nat @ F @ A2 ) @ ( groups1935376822645274424al_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_1049_sum__subtractf__nat,axiom,
! [A2: set_nat,G: nat > nat,F: nat > nat] :
( ! [X3: nat] :
( ( member_nat @ X3 @ A2 )
=> ( ord_less_eq_nat @ ( G @ X3 ) @ ( F @ X3 ) ) )
=> ( ( groups3542108847815614940at_nat
@ ^ [X2: nat] : ( minus_minus_nat @ ( F @ X2 ) @ ( G @ X2 ) )
@ A2 )
= ( minus_minus_nat @ ( groups3542108847815614940at_nat @ F @ A2 ) @ ( groups3542108847815614940at_nat @ G @ A2 ) ) ) ) ).
% sum_subtractf_nat
thf(fact_1050_convex__bound__lt,axiom,
! [X: int,A: int,Y: int,U: int,V: int] :
( ( ord_less_int @ X @ A )
=> ( ( ord_less_int @ Y @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ U )
=> ( ( ord_less_eq_int @ zero_zero_int @ V )
=> ( ( ( plus_plus_int @ U @ V )
= one_one_int )
=> ( ord_less_int @ ( plus_plus_int @ ( times_times_int @ U @ X ) @ ( times_times_int @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_1051_convex__bound__lt,axiom,
! [X: real,A: real,Y: real,U: real,V: real] :
( ( ord_less_real @ X @ A )
=> ( ( ord_less_real @ Y @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ U )
=> ( ( ord_less_eq_real @ zero_zero_real @ V )
=> ( ( ( plus_plus_real @ U @ V )
= one_one_real )
=> ( ord_less_real @ ( plus_plus_real @ ( times_times_real @ U @ X ) @ ( times_times_real @ V @ Y ) ) @ A ) ) ) ) ) ) ).
% convex_bound_lt
thf(fact_1052_pos__add__strict,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_1053_pos__add__strict,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ B @ ( plus_plus_int @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_1054_pos__add__strict,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ B @ ( plus_plus_real @ A @ C ) ) ) ) ).
% pos_add_strict
thf(fact_1055_canonically__ordered__monoid__add__class_OlessE,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ! [C2: nat] :
( ( B
= ( plus_plus_nat @ A @ C2 ) )
=> ( C2 = zero_zero_nat ) ) ) ).
% canonically_ordered_monoid_add_class.lessE
thf(fact_1056_add__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_1057_add__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_1058_add__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ B ) ) ) ) ).
% add_pos_pos
thf(fact_1059_add__neg__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% add_neg_neg
thf(fact_1060_add__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( plus_plus_int @ A @ B ) @ zero_zero_int ) ) ) ).
% add_neg_neg
thf(fact_1061_add__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( plus_plus_real @ A @ B ) @ zero_zero_real ) ) ) ).
% add_neg_neg
thf(fact_1062_add__less__zeroD,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
=> ( ( ord_less_real @ X @ zero_zero_real )
| ( ord_less_real @ Y @ zero_zero_real ) ) ) ).
% add_less_zeroD
thf(fact_1063_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K3: nat] :
( ( ord_less_eq_nat @ K3 @ N )
& ! [I4: nat] :
( ( ord_less_nat @ I4 @ K3 )
=> ~ ( P @ I4 ) )
& ( P @ K3 ) ) ) ) ).
% ex_least_nat_le
thf(fact_1064_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_1065_less__diff__iff,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ K @ M )
=> ( ( ord_less_eq_nat @ K @ N )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M @ K ) @ ( minus_minus_nat @ N @ K ) )
= ( ord_less_nat @ M @ N ) ) ) ) ).
% less_diff_iff
thf(fact_1066_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_1067__C02_C,axiom,
( ( groups3558780024651037881ring_a
@ ^ [L: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ j ) @ ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ mu @ L ) @ ( minus_minus_nat @ i @ j ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
= ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ j )
@ ( groups3558780024651037881ring_a
@ ^ [L: nat] : ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ mu @ L ) @ ( minus_minus_nat @ i @ j ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) ) ) ).
% "02"
thf(fact_1068_Chebyshev__sum__upper__nat,axiom,
! [N: nat,A: nat > nat,B: nat > nat] :
( ! [I2: nat,J3: nat] :
( ( ord_less_eq_nat @ I2 @ J3 )
=> ( ( ord_less_nat @ J3 @ N )
=> ( ord_less_eq_nat @ ( A @ I2 ) @ ( A @ J3 ) ) ) )
=> ( ! [I2: nat,J3: nat] :
( ( ord_less_eq_nat @ I2 @ J3 )
=> ( ( ord_less_nat @ J3 @ N )
=> ( ord_less_eq_nat @ ( B @ J3 ) @ ( B @ I2 ) ) ) )
=> ( ord_less_eq_nat
@ ( times_times_nat @ N
@ ( groups3542108847815614940at_nat
@ ^ [I: nat] : ( times_times_nat @ ( A @ I ) @ ( B @ I ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) )
@ ( times_times_nat @ ( groups3542108847815614940at_nat @ A @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) @ ( groups3542108847815614940at_nat @ B @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ N ) ) ) ) ) ) ).
% Chebyshev_sum_upper_nat
thf(fact_1069_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_1070_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_1071_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_1072_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_1073_diff__diff__left,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I3 @ J2 ) @ K )
= ( minus_minus_nat @ I3 @ ( plus_plus_nat @ J2 @ K ) ) ) ).
% diff_diff_left
thf(fact_1074_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_1075_Nat_Odiff__diff__right,axiom,
! [K: nat,J2: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( minus_minus_nat @ I3 @ ( minus_minus_nat @ J2 @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I3 @ K ) @ J2 ) ) ) ).
% Nat.diff_diff_right
thf(fact_1076_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J2: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K ) @ I3 )
= ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I3 ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1077_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J2: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( plus_plus_nat @ I3 @ ( minus_minus_nat @ J2 @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I3 @ J2 ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1078_n__def,axiom,
( ( size_s7115545719440041015ring_a @ numbers )
= n ) ).
% n_def
thf(fact_1079_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1080_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_1081_add__lessD1,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I3 @ J2 ) @ K )
=> ( ord_less_nat @ I3 @ K ) ) ).
% add_lessD1
thf(fact_1082_add__less__mono,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ K @ L2 )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ) ).
% add_less_mono
thf(fact_1083_not__add__less1,axiom,
! [I3: nat,J2: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I3 @ J2 ) @ I3 ) ).
% not_add_less1
thf(fact_1084_not__add__less2,axiom,
! [J2: nat,I3: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J2 @ I3 ) @ I3 ) ).
% not_add_less2
thf(fact_1085_add__less__mono1,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ K ) ) ) ).
% add_less_mono1
thf(fact_1086_trans__less__add1,axiom,
! [I3: nat,J2: nat,M: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ord_less_nat @ I3 @ ( plus_plus_nat @ J2 @ M ) ) ) ).
% trans_less_add1
thf(fact_1087_trans__less__add2,axiom,
! [I3: nat,J2: nat,M: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ord_less_nat @ I3 @ ( plus_plus_nat @ M @ J2 ) ) ) ).
% trans_less_add2
thf(fact_1088_less__add__eq__less,axiom,
! [K: nat,L2: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L2 )
=> ( ( ( plus_plus_nat @ M @ L2 )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_1089_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M3: nat,N3: nat] :
? [K4: nat] :
( N3
= ( plus_plus_nat @ M3 @ K4 ) ) ) ) ).
% nat_le_iff_add
thf(fact_1090_trans__le__add2,axiom,
! [I3: nat,J2: nat,M: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ord_less_eq_nat @ I3 @ ( plus_plus_nat @ M @ J2 ) ) ) ).
% trans_le_add2
thf(fact_1091_trans__le__add1,axiom,
! [I3: nat,J2: nat,M: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ord_less_eq_nat @ I3 @ ( plus_plus_nat @ J2 @ M ) ) ) ).
% trans_le_add1
thf(fact_1092_add__le__mono1,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ K ) ) ) ).
% add_le_mono1
thf(fact_1093_add__le__mono,axiom,
! [I3: nat,J2: nat,K: nat,L2: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ord_less_eq_nat @ K @ L2 )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ ( plus_plus_nat @ J2 @ L2 ) ) ) ) ).
% add_le_mono
thf(fact_1094_le__Suc__ex,axiom,
! [K: nat,L2: nat] :
( ( ord_less_eq_nat @ K @ L2 )
=> ? [N2: nat] :
( L2
= ( plus_plus_nat @ K @ N2 ) ) ) ).
% le_Suc_ex
thf(fact_1095_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_1096_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_1097_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_1098_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_1099_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_1100_diff__add__inverse2,axiom,
! [M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ N ) @ N )
= M ) ).
% diff_add_inverse2
thf(fact_1101_diff__add__inverse,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N @ M ) @ N )
= M ) ).
% diff_add_inverse
thf(fact_1102_diff__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M @ K ) @ ( plus_plus_nat @ N @ K ) )
= ( minus_minus_nat @ M @ N ) ) ).
% diff_cancel2
thf(fact_1103_Nat_Odiff__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( minus_minus_nat @ M @ N ) ) ).
% Nat.diff_cancel
thf(fact_1104_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_1105_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_1106_left__add__mult__distrib,axiom,
! [I3: nat,U: nat,J2: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I3 @ J2 ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_1107_less__imp__add__positive,axiom,
! [I3: nat,J2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ? [K3: nat] :
( ( ord_less_nat @ zero_zero_nat @ K3 )
& ( ( plus_plus_nat @ I3 @ K3 )
= J2 ) ) ) ).
% less_imp_add_positive
thf(fact_1108_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M4: nat,N2: nat] :
( ( ord_less_nat @ M4 @ N2 )
=> ( ord_less_nat @ ( F @ M4 ) @ ( F @ N2 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1109_diff__add__0,axiom,
! [N: nat,M: nat] :
( ( minus_minus_nat @ N @ ( plus_plus_nat @ N @ M ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_1110_less__diff__conv,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( ord_less_nat @ I3 @ ( minus_minus_nat @ J2 @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I3 @ K ) @ J2 ) ) ).
% less_diff_conv
thf(fact_1111_add__diff__inverse__nat,axiom,
! [M: nat,N: nat] :
( ~ ( ord_less_nat @ M @ N )
=> ( ( plus_plus_nat @ N @ ( minus_minus_nat @ M @ N ) )
= M ) ) ).
% add_diff_inverse_nat
thf(fact_1112_Nat_Ole__imp__diff__is__add,axiom,
! [I3: nat,J2: nat,K: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ( minus_minus_nat @ J2 @ I3 )
= K )
= ( J2
= ( plus_plus_nat @ K @ I3 ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_1113_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J2: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J2 @ I3 ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J2 @ K ) @ I3 ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_1114_Nat_Odiff__add__assoc,axiom,
! [K: nat,J2: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I3 @ J2 ) @ K )
= ( plus_plus_nat @ I3 @ ( minus_minus_nat @ J2 @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_1115_Nat_Ole__diff__conv2,axiom,
! [K: nat,J2: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( ord_less_eq_nat @ I3 @ ( minus_minus_nat @ J2 @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I3 @ K ) @ J2 ) ) ) ).
% Nat.le_diff_conv2
thf(fact_1116_le__diff__conv,axiom,
! [J2: nat,K: nat,I3: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J2 @ K ) @ I3 )
= ( ord_less_eq_nat @ J2 @ ( plus_plus_nat @ I3 @ K ) ) ) ).
% le_diff_conv
thf(fact_1117_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D2: nat] :
( ( A
= ( plus_plus_nat @ B @ D2 ) )
& ~ ( P @ D2 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_1118_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D2: nat] :
( ( A
= ( plus_plus_nat @ B @ D2 ) )
=> ( P @ D2 ) ) ) ) ).
% nat_diff_split
thf(fact_1119_less__diff__conv2,axiom,
! [K: nat,J2: nat,I3: nat] :
( ( ord_less_eq_nat @ K @ J2 )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J2 @ K ) @ I3 )
= ( ord_less_nat @ J2 @ ( plus_plus_nat @ I3 @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_1120_nat__eq__add__iff1,axiom,
! [J2: nat,I3: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J2 @ I3 )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J2 ) @ U ) @ M )
= N ) ) ) ).
% nat_eq_add_iff1
thf(fact_1121_nat__eq__add__iff2,axiom,
! [I3: nat,J2: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M )
= ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( M
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I3 ) @ U ) @ N ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_1122_nat__le__add__iff1,axiom,
! [J2: nat,I3: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J2 @ I3 )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J2 ) @ U ) @ M ) @ N ) ) ) ).
% nat_le_add_iff1
thf(fact_1123_nat__le__add__iff2,axiom,
! [I3: nat,J2: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( ord_less_eq_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I3 ) @ U ) @ N ) ) ) ) ).
% nat_le_add_iff2
thf(fact_1124_nat__diff__add__eq1,axiom,
! [J2: nat,I3: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J2 @ I3 )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J2 ) @ U ) @ M ) @ N ) ) ) ).
% nat_diff_add_eq1
thf(fact_1125_nat__diff__add__eq2,axiom,
! [I3: nat,J2: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( minus_minus_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I3 ) @ U ) @ N ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_1126_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M5: nat] :
( ( P @ X )
=> ( ! [X3: nat] :
( ( P @ X3 )
=> ( ord_less_eq_nat @ X3 @ M5 ) )
=> ~ ! [M4: nat] :
( ( P @ M4 )
=> ~ ! [X4: nat] :
( ( P @ X4 )
=> ( ord_less_eq_nat @ X4 @ M4 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_1127_nat__less__add__iff1,axiom,
! [J2: nat,I3: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ J2 @ I3 )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I3 @ J2 ) @ U ) @ M ) @ N ) ) ) ).
% nat_less_add_iff1
thf(fact_1128_nat__less__add__iff2,axiom,
! [I3: nat,J2: nat,U: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ I3 @ J2 )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I3 @ U ) @ M ) @ ( plus_plus_nat @ ( times_times_nat @ J2 @ U ) @ N ) )
= ( ord_less_nat @ M @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J2 @ I3 ) @ U ) @ N ) ) ) ) ).
% nat_less_add_iff2
thf(fact_1129_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N3 @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).
% mult_eq_if
thf(fact_1130__C01_C,axiom,
( ( groups3558780024651037881ring_a
@ ^ [L: nat] : ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ j ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ L @ j ) ) ) @ ( power_6826135765519566523ring_a @ mu @ ( times_times_nat @ i @ L ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
= ( groups3558780024651037881ring_a
@ ^ [L: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ j ) @ ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ mu @ L ) @ ( minus_minus_nat @ i @ j ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) ) ).
% "01"
thf(fact_1131__C3_C,axiom,
( ( groups3558780024651037881ring_a
@ ^ [L: nat] :
( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ L @ J ) ) ) @ ( power_6826135765519566523ring_a @ mu @ ( times_times_nat @ i @ L ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] :
( groups3558780024651037881ring_a
@ ^ [L: nat] : ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ L @ J ) ) ) @ ( power_6826135765519566523ring_a @ mu @ ( times_times_nat @ i @ L ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) ) ).
% "3"
thf(fact_1132__C2_C,axiom,
( ( groups3558780024651037881ring_a
@ ^ [L: nat] :
( times_5121417576591743744ring_a
@ ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ L @ J ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
@ ( power_6826135765519566523ring_a @ mu @ ( times_times_nat @ i @ L ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
= ( groups3558780024651037881ring_a
@ ^ [L: nat] :
( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ L @ J ) ) ) @ ( power_6826135765519566523ring_a @ mu @ ( times_times_nat @ i @ L ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) ) ).
% "2"
thf(fact_1133__C1_C,axiom,
( ( intt_a @ n @ mu @ ( nTT_a @ n @ omega @ numbers ) @ i )
= ( groups3558780024651037881ring_a
@ ^ [L: nat] :
( times_5121417576591743744ring_a
@ ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ L @ J ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
@ ( power_6826135765519566523ring_a @ mu @ ( times_times_nat @ i @ L ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) ) ).
% "1"
thf(fact_1134_omega__properties_I2_J,axiom,
omega != one_on2109788427901206336ring_a ).
% omega_properties(2)
thf(fact_1135_omega__properties_I1_J,axiom,
( ( power_6826135765519566523ring_a @ omega @ n )
= one_on2109788427901206336ring_a ) ).
% omega_properties(1)
thf(fact_1136_mu__properties,axiom,
( ( times_5121417576591743744ring_a @ mu @ omega )
= one_on2109788427901206336ring_a ) ).
% mu_properties
thf(fact_1137_length__NTT,axiom,
! [Numbers: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ Numbers )
= n )
=> ( ( size_s7115545719440041015ring_a @ ( nTT_a @ n @ omega @ Numbers ) )
= n ) ) ).
% length_NTT
thf(fact_1138_omega__properties_I3_J,axiom,
! [M2: nat] :
( ( ( ( power_6826135765519566523ring_a @ omega @ M2 )
= one_on2109788427901206336ring_a )
& ( M2 != zero_zero_nat ) )
=> ( ord_less_eq_nat @ n @ M2 ) ) ).
% omega_properties(3)
thf(fact_1139_length__INTT,axiom,
! [Numbers: list_F4626807571770296779ring_a] :
( ( ( size_s7115545719440041015ring_a @ Numbers )
= n )
=> ( ( size_s7115545719440041015ring_a @ ( iNTT_a @ n @ mu @ Numbers ) )
= n ) ) ).
% length_INTT
thf(fact_1140_local_Ontt__def,axiom,
! [Numbers: list_F4626807571770296779ring_a,I3: nat] :
( ( ntt_a2 @ n @ omega @ Numbers @ I3 )
= ( groups3558780024651037881ring_a
@ ^ [J: nat] : ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ Numbers @ J ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ I3 @ J ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) ) ) ).
% local.ntt_def
thf(fact_1141__C0_C,axiom,
! [I3: nat] :
( ( ord_less_nat @ I3 @ n )
=> ( ( nth_Fi694352073394265932ring_a @ ( iNTT_a @ n @ mu @ ( nTT_a @ n @ omega @ numbers ) ) @ I3 )
= ( intt_a @ n @ mu @ ( nTT_a @ n @ omega @ numbers ) @ I3 ) ) ) ).
% "0"
thf(fact_1142_p__fact,axiom,
( p
= ( plus_plus_nat @ ( times_times_nat @ k @ n ) @ one_one_nat ) ) ).
% p_fact
thf(fact_1143_ntt__axioms,axiom,
ntt_a @ p @ n @ k @ omega @ mu ).
% ntt_axioms
thf(fact_1144_iisj,axiom,
! [J2: nat] :
( ( J2 = i )
=> ( ( groups3558780024651037881ring_a
@ ^ [L: nat] : ( times_5121417576591743744ring_a @ ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ J2 ) @ ( power_6826135765519566523ring_a @ omega @ ( times_times_nat @ L @ J2 ) ) ) @ ( power_6826135765519566523ring_a @ mu @ ( times_times_nat @ i @ L ) ) )
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
= ( times_5121417576591743744ring_a @ ( nth_Fi694352073394265932ring_a @ numbers @ J2 ) @ ( finite8272632373135393572ring_a @ ( semiri1314217659103216013at_int @ n ) ) ) ) ) ).
% iisj
thf(fact_1145_int__exp__hom,axiom,
! [X: nat,I3: nat] :
( ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ I3 )
= ( semiri1314217659103216013at_int @ ( power_power_nat @ X @ I3 ) ) ) ).
% int_exp_hom
thf(fact_1146_exp__homo,axiom,
! [X: int,I3: nat] :
( ( finite8272632373135393572ring_a @ ( power_power_int @ X @ I3 ) )
= ( power_6826135765519566523ring_a @ ( finite8272632373135393572ring_a @ X ) @ I3 ) ) ).
% exp_homo
thf(fact_1147_homomorphism__mul__on__ring,axiom,
! [X: int,Y: int] :
( ( times_5121417576591743744ring_a @ ( finite8272632373135393572ring_a @ X ) @ ( finite8272632373135393572ring_a @ Y ) )
= ( finite8272632373135393572ring_a @ ( times_times_int @ X @ Y ) ) ) ).
% homomorphism_mul_on_ring
thf(fact_1148_homomorphism__add,axiom,
! [X: int,Y: int] :
( ( plus_p6165643967897163644ring_a @ ( finite8272632373135393572ring_a @ X ) @ ( finite8272632373135393572ring_a @ Y ) )
= ( finite8272632373135393572ring_a @ ( plus_plus_int @ X @ Y ) ) ) ).
% homomorphism_add
thf(fact_1149_negative__zle,axiom,
! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zle
thf(fact_1150_sum__const,axiom,
! [C: finite_mod_ring_a,X: nat] :
( ( groups3558780024651037881ring_a
@ ^ [I: nat] : C
@ ( set_or4665077453230672383an_nat @ zero_zero_nat @ X ) )
= ( times_5121417576591743744ring_a @ ( finite8272632373135393572ring_a @ ( semiri1314217659103216013at_int @ X ) ) @ C ) ) ).
% sum_const
thf(fact_1151_negative__eq__positive,axiom,
! [N: nat,M: nat] :
( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ M ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% negative_eq_positive
thf(fact_1152_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( K
!= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% nonneg_int_cases
thf(fact_1153_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_1154_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% zle_int
thf(fact_1155_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_1156_nat__leq__as__int,axiom,
( ord_less_eq_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_leq_as_int
thf(fact_1157_nonpos__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ~ ! [N2: nat] :
( K
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% nonpos_int_cases
thf(fact_1158_negative__zle__0,axiom,
! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).
% negative_zle_0
thf(fact_1159_int__zle__neg,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% int_zle_neg
thf(fact_1160_int__cases2,axiom,
! [Z2: int] :
( ! [N2: nat] :
( Z2
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( Z2
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% int_cases2
thf(fact_1161_not__int__zless__negative,axiom,
! [N: nat,M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% not_int_zless_negative
thf(fact_1162_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_1163_int__diff__cases,axiom,
! [Z2: int] :
~ ! [M4: nat,N2: nat] :
( Z2
!= ( minus_minus_int @ ( semiri1314217659103216013at_int @ M4 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% int_diff_cases
thf(fact_1164_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_1165_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_1166_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_1167_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_1168_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_1169_nat__less__as__int,axiom,
( ord_less_nat
= ( ^ [A3: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A3 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_less_as_int
thf(fact_1170_nat__int__comparison_I1_J,axiom,
( ( ^ [Y3: nat,Z: nat] : ( Y3 = Z ) )
= ( ^ [A3: nat,B2: nat] :
( ( semiri1314217659103216013at_int @ A3 )
= ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_1171_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_1172_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_1173_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_1174_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W: int,Z3: int] :
? [N3: nat] :
( Z3
= ( plus_plus_int @ W @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_1175_zadd__int__left,axiom,
! [M: nat,N: nat,Z2: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z2 ) ) ).
% zadd_int_left
thf(fact_1176_neg__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% neg_int_cases
thf(fact_1177_zmult__zless__mono2__lemma,axiom,
! [I3: int,J2: int,K: nat] :
( ( ord_less_int @ I3 @ J2 )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I3 ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J2 ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_1178_int__cases4,axiom,
! [M: int] :
( ! [N2: nat] :
( M
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( M
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% int_cases4
thf(fact_1179_int__cases3,axiom,
! [K: int] :
( ( K != zero_zero_int )
=> ( ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ) ).
% int_cases3
thf(fact_1180_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_1181_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% pos_int_cases
thf(fact_1182_zdiff__int__split,axiom,
! [P: int > $o,X: nat,Y: nat] :
( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y ) ) )
= ( ( ( ord_less_eq_nat @ Y @ X )
=> ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y ) ) ) )
& ( ( ord_less_nat @ X @ Y )
=> ( P @ zero_zero_int ) ) ) ) ).
% zdiff_int_split
thf(fact_1183_zle__diff1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ W2 @ ( minus_minus_int @ Z2 @ one_one_int ) )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% zle_diff1_eq
thf(fact_1184_zle__add1__eq__le,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ).
% zle_add1_eq_le
thf(fact_1185_decr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( minus_minus_int @ X3 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( minus_minus_int @ X4 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% decr_mult_lemma
thf(fact_1186_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
=> ( ( M = one_one_int )
| ( M
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_1187_minusinfinity,axiom,
! [D: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int,K3: int] :
( ( P1 @ X3 )
= ( P1 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D ) ) ) )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z4 )
=> ( ( P @ X3 )
= ( P1 @ X3 ) ) )
=> ( ? [X_1: int] : ( P1 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% minusinfinity
thf(fact_1188_plusinfinity,axiom,
! [D: int,P3: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int,K3: int] :
( ( P3 @ X3 )
= ( P3 @ ( minus_minus_int @ X3 @ ( times_times_int @ K3 @ D ) ) ) )
=> ( ? [Z4: int] :
! [X3: int] :
( ( ord_less_int @ Z4 @ X3 )
=> ( ( P @ X3 )
= ( P3 @ X3 ) ) )
=> ( ? [X_1: int] : ( P3 @ X_1 )
=> ? [X_12: int] : ( P @ X_12 ) ) ) ) ) ).
% plusinfinity
thf(fact_1189_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1190_zmult__zless__mono2,axiom,
! [I3: int,J2: int,K: int] :
( ( ord_less_int @ I3 @ J2 )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I3 ) @ ( times_times_int @ K @ J2 ) ) ) ) ).
% zmult_zless_mono2
thf(fact_1191_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( ( M = one_one_int )
& ( N = one_one_int ) )
| ( ( M
= ( uminus_uminus_int @ one_one_int ) )
& ( N
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_1192_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_1193_times__int__code_I2_J,axiom,
! [L2: int] :
( ( times_times_int @ zero_zero_int @ L2 )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_1194_int__distrib_I3_J,axiom,
! [Z1: int,Z22: int,W2: int] :
( ( times_times_int @ ( minus_minus_int @ Z1 @ Z22 ) @ W2 )
= ( minus_minus_int @ ( times_times_int @ Z1 @ W2 ) @ ( times_times_int @ Z22 @ W2 ) ) ) ).
% int_distrib(3)
thf(fact_1195_int__distrib_I4_J,axiom,
! [W2: int,Z1: int,Z22: int] :
( ( times_times_int @ W2 @ ( minus_minus_int @ Z1 @ Z22 ) )
= ( minus_minus_int @ ( times_times_int @ W2 @ Z1 ) @ ( times_times_int @ W2 @ Z22 ) ) ) ).
% int_distrib(4)
thf(fact_1196_incr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( plus_plus_int @ X3 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( plus_plus_int @ X4 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_1197_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W2: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W2 )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W2 ) @ ( times_times_int @ Z22 @ W2 ) ) ) ).
% int_distrib(1)
thf(fact_1198_int__distrib_I2_J,axiom,
! [W2: int,Z1: int,Z22: int] :
( ( times_times_int @ W2 @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W2 @ Z1 ) @ ( times_times_int @ W2 @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_1199_int__induct,axiom,
! [P: int > $o,K: int,I3: int] :
( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_induct
thf(fact_1200_add1__zle__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% add1_zle_eq
thf(fact_1201_odd__nonzero,axiom,
! [Z2: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_1202_int__ge__induct,axiom,
! [K: int,I3: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_ge_induct
thf(fact_1203_int__gr__induct,axiom,
! [K: int,I3: int,P: int > $o] :
( ( ord_less_int @ K @ I3 )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_gr_induct
thf(fact_1204_le__imp__0__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).
% le_imp_0_less
thf(fact_1205_zless__add1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ( ord_less_int @ W2 @ Z2 )
| ( W2 = Z2 ) ) ) ).
% zless_add1_eq
thf(fact_1206_odd__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1207_zless__imp__add1__zle,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ Z2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 ) ) ).
% zless_imp_add1_zle
thf(fact_1208_plus__int__code_I2_J,axiom,
! [L2: int] :
( ( plus_plus_int @ zero_zero_int @ L2 )
= L2 ) ).
% plus_int_code(2)
thf(fact_1209_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_1210_int__less__induct,axiom,
! [I3: int,K: int,P: int > $o] :
( ( ord_less_int @ I3 @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_less_induct
thf(fact_1211_minus__int__code_I1_J,axiom,
! [K: int] :
( ( minus_minus_int @ K @ zero_zero_int )
= K ) ).
% minus_int_code(1)
thf(fact_1212_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_1213_minus__int__code_I2_J,axiom,
! [L2: int] :
( ( minus_minus_int @ zero_zero_int @ L2 )
= ( uminus_uminus_int @ L2 ) ) ).
% minus_int_code(2)
thf(fact_1214_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_1215_verit__la__generic,axiom,
! [A: int,X: int] :
( ( ord_less_eq_int @ A @ X )
| ( A = X )
| ( ord_less_eq_int @ X @ A ) ) ).
% verit_la_generic
thf(fact_1216_conj__le__cong,axiom,
! [X: int,X5: int,P: $o,P3: $o] :
( ( X = X5 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X5 )
=> ( P = P3 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
& P )
= ( ( ord_less_eq_int @ zero_zero_int @ X5 )
& P3 ) ) ) ) ).
% conj_le_cong
thf(fact_1217_imp__le__cong,axiom,
! [X: int,X5: int,P: $o,P3: $o] :
( ( X = X5 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X5 )
=> ( P = P3 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
=> P )
= ( ( ord_less_eq_int @ zero_zero_int @ X5 )
=> P3 ) ) ) ) ).
% imp_le_cong
thf(fact_1218_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_1219_int__one__le__iff__zero__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ one_one_int @ Z2 )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% int_one_le_iff_zero_less
thf(fact_1220_int__le__induct,axiom,
! [I3: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I3 @ K )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I3 ) ) ) ) ).
% int_le_induct
thf(fact_1221_mod__homo,axiom,
( finite8272632373135393572ring_a
= ( ^ [X2: int] : ( finite8272632373135393572ring_a @ ( modulo_modulo_int @ X2 @ ( semiri1314217659103216013at_int @ p ) ) ) ) ) ).
% mod_homo
thf(fact_1222_mod__neg__neg__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ( ( ord_less_int @ L2 @ K )
=> ( ( modulo_modulo_int @ K @ L2 )
= K ) ) ) ).
% mod_neg_neg_trivial
thf(fact_1223_mod__pos__pos__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ( ( ord_less_int @ K @ L2 )
=> ( ( modulo_modulo_int @ K @ L2 )
= K ) ) ) ).
% mod_pos_pos_trivial
thf(fact_1224_mod__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ( modulo_modulo_nat @ M @ N )
= M ) ) ).
% mod_less
thf(fact_1225_int__ops_I9_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( modulo_modulo_nat @ A @ B ) )
= ( modulo_modulo_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(9)
thf(fact_1226_nat__mod__eq__iff,axiom,
! [X: nat,N: nat,Y: nat] :
( ( ( modulo_modulo_nat @ X @ N )
= ( modulo_modulo_nat @ Y @ N ) )
= ( ? [Q1: nat,Q2: nat] :
( ( plus_plus_nat @ X @ ( times_times_nat @ N @ Q1 ) )
= ( plus_plus_nat @ Y @ ( times_times_nat @ N @ Q2 ) ) ) ) ) ).
% nat_mod_eq_iff
thf(fact_1227_le__mod__geq,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ( modulo_modulo_nat @ M @ N )
= ( modulo_modulo_nat @ ( minus_minus_nat @ M @ N ) @ N ) ) ) ).
% le_mod_geq
thf(fact_1228_mod__if,axiom,
( modulo_modulo_nat
= ( ^ [M3: nat,N3: nat] : ( if_nat @ ( ord_less_nat @ M3 @ N3 ) @ M3 @ ( modulo_modulo_nat @ ( minus_minus_nat @ M3 @ N3 ) @ N3 ) ) ) ) ).
% mod_if
thf(fact_1229_mod__less__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).
% mod_less_divisor
thf(fact_1230_mod__less__eq__dividend,axiom,
! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).
% mod_less_eq_dividend
thf(fact_1231_mod__le__divisor,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).
% mod_le_divisor
thf(fact_1232_mod__eq__nat2E,axiom,
! [M: nat,Q: nat,N: nat] :
( ( ( modulo_modulo_nat @ M @ Q )
= ( modulo_modulo_nat @ N @ Q ) )
=> ( ( ord_less_eq_nat @ M @ N )
=> ~ ! [S3: nat] :
( N
!= ( plus_plus_nat @ M @ ( times_times_nat @ Q @ S3 ) ) ) ) ) ).
% mod_eq_nat2E
thf(fact_1233_mod__eq__nat1E,axiom,
! [M: nat,Q: nat,N: nat] :
( ( ( modulo_modulo_nat @ M @ Q )
= ( modulo_modulo_nat @ N @ Q ) )
=> ( ( ord_less_eq_nat @ N @ M )
=> ~ ! [S3: nat] :
( M
!= ( plus_plus_nat @ N @ ( times_times_nat @ Q @ S3 ) ) ) ) ) ).
% mod_eq_nat1E
thf(fact_1234_split__mod,axiom,
! [Q3: nat > $o,M: nat,N: nat] :
( ( Q3 @ ( modulo_modulo_nat @ M @ N ) )
= ( ( ( N = zero_zero_nat )
=> ( Q3 @ M ) )
& ( ( N != zero_zero_nat )
=> ! [I: nat,J: nat] :
( ( ( ord_less_nat @ J @ N )
& ( M
= ( plus_plus_nat @ ( times_times_nat @ N @ I ) @ J ) ) )
=> ( Q3 @ J ) ) ) ) ) ).
% split_mod
thf(fact_1235_zmod__le__nonneg__dividend,axiom,
! [M: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ M )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ M @ K ) @ M ) ) ).
% zmod_le_nonneg_dividend
thf(fact_1236_zmod__trivial__iff,axiom,
! [I3: int,K: int] :
( ( ( modulo_modulo_int @ I3 @ K )
= I3 )
= ( ( K = zero_zero_int )
| ( ( ord_less_eq_int @ zero_zero_int @ I3 )
& ( ord_less_int @ I3 @ K ) )
| ( ( ord_less_eq_int @ I3 @ zero_zero_int )
& ( ord_less_int @ K @ I3 ) ) ) ) ).
% zmod_trivial_iff
thf(fact_1237_Euclidean__Division_Opos__mod__sign,axiom,
! [L2: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L2 )
=> ( ord_less_eq_int @ zero_zero_int @ ( modulo_modulo_int @ K @ L2 ) ) ) ).
% Euclidean_Division.pos_mod_sign
thf(fact_1238_neg__mod__sign,axiom,
! [L2: int,K: int] :
( ( ord_less_int @ L2 @ zero_zero_int )
=> ( ord_less_eq_int @ ( modulo_modulo_int @ K @ L2 ) @ zero_zero_int ) ) ).
% neg_mod_sign
thf(fact_1239_zmod__zminus1__eq__if,axiom,
! [A: int,B: int] :
( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= zero_zero_int ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ A ) @ B )
= ( minus_minus_int @ B @ ( modulo_modulo_int @ A @ B ) ) ) ) ) ).
% zmod_zminus1_eq_if
thf(fact_1240_zmod__zminus2__eq__if,axiom,
! [A: int,B: int] :
( ( ( ( modulo_modulo_int @ A @ B )
= zero_zero_int )
=> ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= zero_zero_int ) )
& ( ( ( modulo_modulo_int @ A @ B )
!= zero_zero_int )
=> ( ( modulo_modulo_int @ A @ ( uminus_uminus_int @ B ) )
= ( minus_minus_int @ ( modulo_modulo_int @ A @ B ) @ B ) ) ) ) ).
% zmod_zminus2_eq_if
thf(fact_1241_mod__pos__geq,axiom,
! [L2: int,K: int] :
( ( ord_less_int @ zero_zero_int @ L2 )
=> ( ( ord_less_eq_int @ L2 @ K )
=> ( ( modulo_modulo_int @ K @ L2 )
= ( modulo_modulo_int @ ( minus_minus_int @ K @ L2 ) @ L2 ) ) ) ) ).
% mod_pos_geq
thf(fact_1242_mod__pos__neg__trivial,axiom,
! [K: int,L2: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ( ( ord_less_eq_int @ ( plus_plus_int @ K @ L2 ) @ zero_zero_int )
=> ( ( modulo_modulo_int @ K @ L2 )
= ( plus_plus_int @ K @ L2 ) ) ) ) ).
% mod_pos_neg_trivial
thf(fact_1243_minus__mod__int__eq,axiom,
! [L2: int,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ L2 )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ K ) @ L2 )
= ( minus_minus_int @ ( minus_minus_int @ L2 @ one_one_int ) @ ( modulo_modulo_int @ ( minus_minus_int @ K @ one_one_int ) @ L2 ) ) ) ) ).
% minus_mod_int_eq
thf(fact_1244_zmod__minus1,axiom,
! [B: int] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( modulo_modulo_int @ ( uminus_uminus_int @ one_one_int ) @ B )
= ( minus_minus_int @ B @ one_one_int ) ) ) ).
% zmod_minus1
thf(fact_1245_int__mod__pos__eq,axiom,
! [A: int,B: int,Q: int,R: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ R )
=> ( ( ord_less_int @ R @ B )
=> ( ( modulo_modulo_int @ A @ B )
= R ) ) ) ) ).
% int_mod_pos_eq
thf(fact_1246_int__mod__neg__eq,axiom,
! [A: int,B: int,Q: int,R: int] :
( ( A
= ( plus_plus_int @ ( times_times_int @ B @ Q ) @ R ) )
=> ( ( ord_less_eq_int @ R @ zero_zero_int )
=> ( ( ord_less_int @ B @ R )
=> ( ( modulo_modulo_int @ A @ B )
= R ) ) ) ) ).
% int_mod_neg_eq
thf(fact_1247_split__zmod,axiom,
! [Q3: int > $o,N: int,K: int] :
( ( Q3 @ ( modulo_modulo_int @ N @ K ) )
= ( ( ( K = zero_zero_int )
=> ( Q3 @ N ) )
& ( ( ord_less_int @ zero_zero_int @ K )
=> ! [I: int,J: int] :
( ( ( ord_less_eq_int @ zero_zero_int @ J )
& ( ord_less_int @ J @ K )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I ) @ J ) ) )
=> ( Q3 @ J ) ) )
& ( ( ord_less_int @ K @ zero_zero_int )
=> ! [I: int,J: int] :
( ( ( ord_less_int @ K @ J )
& ( ord_less_eq_int @ J @ zero_zero_int )
& ( N
= ( plus_plus_int @ ( times_times_int @ K @ I ) @ J ) ) )
=> ( Q3 @ J ) ) ) ) ) ).
% split_zmod
thf(fact_1248_gcd__nat__induct,axiom,
! [P: nat > nat > $o,M: nat,N: nat] :
( ! [M4: nat] : ( P @ M4 @ zero_zero_nat )
=> ( ! [M4: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( P @ N2 @ ( modulo_modulo_nat @ M4 @ N2 ) )
=> ( P @ M4 @ N2 ) ) )
=> ( P @ M @ N ) ) ) ).
% gcd_nat_induct
thf(fact_1249_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
= ( P @ B4 @ A4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
=> ( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
=> ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_1250_nat__less__real__le,axiom,
( ord_less_nat
= ( ^ [N3: nat,M3: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M3 ) ) ) ) ).
% nat_less_real_le
thf(fact_1251_nat__le__real__less,axiom,
( ord_less_eq_nat
= ( ^ [N3: nat,M3: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M3 ) @ one_one_real ) ) ) ) ).
% nat_le_real_less
thf(fact_1252_real__archimedian__rdiv__eq__0,axiom,
! [X: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ! [M4: nat] :
( ( ord_less_nat @ zero_zero_nat @ M4 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M4 ) @ X ) @ C ) )
=> ( X = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_1253_real__add__minus__iff,axiom,
! [X: real,A: real] :
( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
= zero_zero_real )
= ( X = A ) ) ).
% real_add_minus_iff
thf(fact_1254_complete__real,axiom,
! [S2: set_real] :
( ? [X4: real] : ( member_real @ X4 @ S2 )
=> ( ? [Z4: real] :
! [X3: real] :
( ( member_real @ X3 @ S2 )
=> ( ord_less_eq_real @ X3 @ Z4 ) )
=> ? [Y2: real] :
( ! [X4: real] :
( ( member_real @ X4 @ S2 )
=> ( ord_less_eq_real @ X4 @ Y2 ) )
& ! [Z4: real] :
( ! [X3: real] :
( ( member_real @ X3 @ S2 )
=> ( ord_less_eq_real @ X3 @ Z4 ) )
=> ( ord_less_eq_real @ Y2 @ Z4 ) ) ) ) ) ).
% complete_real
thf(fact_1255_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X2: real,Y5: real] :
( ( ord_less_real @ X2 @ Y5 )
| ( X2 = Y5 ) ) ) ) ).
% less_eq_real_def
thf(fact_1256_minus__real__def,axiom,
( minus_minus_real
= ( ^ [X2: real,Y5: real] : ( plus_plus_real @ X2 @ ( uminus_uminus_real @ Y5 ) ) ) ) ).
% minus_real_def
thf(fact_1257_real__0__le__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).
% real_0_le_add_iff
thf(fact_1258_real__add__le__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
= ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_le_0_iff
thf(fact_1259_real__0__less__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
= ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).
% real_0_less_add_iff
thf(fact_1260_real__add__less__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
= ( ord_less_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_less_0_iff
thf(fact_1261_Bernoulli__inequality,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).
% Bernoulli_inequality
thf(fact_1262_real__minus__mult__self__le,axiom,
! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X @ X ) ) ).
% real_minus_mult_self_le
thf(fact_1263_linear__plus__1__le__power,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N ) ) ) ).
% linear_plus_1_le_power
thf(fact_1264_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
& ( ( power_power_real @ X3 @ N )
= A )
& ! [Y4: real] :
( ( ( ord_less_real @ zero_zero_real @ Y4 )
& ( ( power_power_real @ Y4 @ N )
= A ) )
=> ( Y4 = X3 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1265_Bolzano,axiom,
! [A: real,B: real,P: real > real > $o] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [A4: real,B4: real,C2: real] :
( ( P @ A4 @ B4 )
=> ( ( P @ B4 @ C2 )
=> ( ( ord_less_eq_real @ A4 @ B4 )
=> ( ( ord_less_eq_real @ B4 @ C2 )
=> ( P @ A4 @ C2 ) ) ) ) )
=> ( ! [X3: real] :
( ( ord_less_eq_real @ A @ X3 )
=> ( ( ord_less_eq_real @ X3 @ B )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [A4: real,B4: real] :
( ( ( ord_less_eq_real @ A4 @ X3 )
& ( ord_less_eq_real @ X3 @ B4 )
& ( ord_less_real @ ( minus_minus_real @ B4 @ A4 ) @ D3 ) )
=> ( P @ A4 @ B4 ) ) ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Bolzano
thf(fact_1266_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R3: real] :
( ( ord_less_real @ zero_zero_real @ R3 )
& ( ( power_power_real @ R3 @ N )
= A ) ) ) ) ).
% realpow_pos_nth
% Helper facts (9)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y: int] :
( ( if_int @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y: int] :
( ( if_int @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $true @ X @ Y )
= X ) ).
thf(help_If_2_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y: real] :
( ( if_real @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Real__Oreal_T,axiom,
! [X: real,Y: real] :
( ( if_real @ $true @ X @ Y )
= X ) ).
thf(help_If_3_1_If_001t__Finite____Field__Omod____ring_Itf__a_J_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Finite____Field__Omod____ring_Itf__a_J_T,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
( ( if_Finite_mod_ring_a @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Finite____Field__Omod____ring_Itf__a_J_T,axiom,
! [X: finite_mod_ring_a,Y: finite_mod_ring_a] :
( ( if_Finite_mod_ring_a @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( groups3558780024651037881ring_a @ ( power_6826135765519566523ring_a @ ( power_6826135765519566523ring_a @ mu @ ( minus_minus_nat @ i @ j ) ) ) @ ( set_or4665077453230672383an_nat @ zero_zero_nat @ n ) )
= zero_z7902377541816115708ring_a ) ).
%------------------------------------------------------------------------------