TPTP Problem File: SLH0186^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Combinable_Wands/0003_CombinableWands/prob_00163_005228__7577656_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1519 ( 581 unt; 236 typ;   0 def)
%            Number of atoms       : 3795 (1674 equ;   0 cnn)
%            Maximal formula atoms :   21 (   2 avg)
%            Number of connectives : 10599 ( 357   ~;  34   |; 267   &;8331   @)
%                                         (   0 <=>;1610  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   19 (   6 avg)
%            Number of types       :   22 (  21 usr)
%            Number of type conns  : 1295 (1295   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  218 ( 215 usr;  33 con; 0-5 aty)
%            Number of variables   : 3680 ( 177   ^;3382   !; 121   ?;3680   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 09:08:53.866
%------------------------------------------------------------------------------
% Could-be-implicit typings (21)
thf(ty_n_t__Set__Oset_It__Option__Ooption_It__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J_J,type,
    set_op381248089174005275_state: $tType ).

thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J,type,
    option6833441738159790651_state: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J,type,
    set_Pr1688445902015331925_state: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    produc3142500478612311029_state: $tType ).

thf(ty_n_t__Set__Oset_It__Option__Ooption_It__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_J_J,type,
    set_op4912175446517189883_state: $tType ).

thf(ty_n_t__Option__Ooption_It__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_J,type,
    option2250103068101548571_state: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_J,type,
    set_Pr1785066336555260981_state: $tType ).

thf(ty_n_t__Set__Oset_It__Option__Ooption_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J,type,
    set_op9003753404445127824_state: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    produc8023240190789890773_state: $tType ).

thf(ty_n_t__Set__Oset_It__Option__Ooption_It__Set__Oset_It__PartialHeapSA__Ostate_J_J_J,type,
    set_option_set_state: $tType ).

thf(ty_n_t__Option__Ooption_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    option_option_state: $tType ).

thf(ty_n_t__Set__Oset_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    set_option_state: $tType ).

thf(ty_n_t__Option__Ooption_It__Set__Oset_It__PartialHeapSA__Ostate_J_J,type,
    option_set_state: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__PartialHeapSA__Ostate_J_J,type,
    set_set_state: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__PartialHeapSA__Ostate_M_Eo_J_J,type,
    set_state_o: $tType ).

thf(ty_n_t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    option_state: $tType ).

thf(ty_n_t__Filter__Ofilter_It__PartialHeapSA__Ostate_J,type,
    filter_state: $tType ).

thf(ty_n_t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    set_state: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__PartialHeapSA__Ostate,type,
    state: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

% Explicit typings (215)
thf(sy_c_Boolean__Algebras_Oabstract__boolean__algebra_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    boolea5298875108296682874_state: ( set_state > set_state > set_state ) > ( set_state > set_state > set_state ) > ( set_state > set_state ) > set_state > set_state > $o ).

thf(sy_c_CombinableWands_OR,type,
    r: state > state > state ).

thf(sy_c_CombinableWands_Ocwand,type,
    cwand: set_state > set_state > set_state ).

thf(sy_c_CombinableWands_Ointuitionistic,type,
    intuitionistic: set_state > $o ).

thf(sy_c_CombinableWands_Oscaled,type,
    scaled: state > set_state ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_It__PartialHeapSA__Ostate_M_Eo_J,type,
    comple1664268212576242562tate_o: set_state_o > state > $o ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    comple4352483261711748803_state: set_set_state > set_state ).

thf(sy_c_Conditionally__Complete__Lattices_Opreorder__class_Obdd__above_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    condit2486170202803819276_state: set_set_state > $o ).

thf(sy_c_Filter_Ocofinite_001t__PartialHeapSA__Ostate,type,
    cofinite_state: filter_state ).

thf(sy_c_Finite__Set_OFpow_001t__PartialHeapSA__Ostate,type,
    finite_Fpow_state: set_state > set_set_state ).

thf(sy_c_Finite__Set_Ocard_001t__PartialHeapSA__Ostate,type,
    finite_card_state: set_state > nat ).

thf(sy_c_Finite__Set_Ofinite_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    finite3180955649987104801_state: set_option_state > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__PartialHeapSA__Ostate,type,
    finite_finite_state: set_state > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    finite4951987536711252743_state: set_set_state > $o ).

thf(sy_c_Fun_Ofun__upd_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_001t__Option__Ooption_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    fun_up8433615654909047651_state: ( option_state > option_option_state ) > option_state > option_option_state > option_state > option_option_state ).

thf(sy_c_Fun_Ofun__upd_001t__PartialHeapSA__Ostate_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    fun_up8843634000204221123_state: ( state > option_state ) > state > option_state > state > option_state ).

thf(sy_c_Fun_Ofun__upd_001t__PartialHeapSA__Ostate_001t__PartialHeapSA__Ostate,type,
    fun_upd_state_state: ( state > state ) > state > state > state > state ).

thf(sy_c_Fun_Ofun__upd_001t__PartialHeapSA__Ostate_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    fun_up837824997938104489_state: ( state > set_state ) > state > set_state > state > set_state ).

thf(sy_c_Fun_Oinj__on_001t__Nat__Onat_001t__PartialHeapSA__Ostate,type,
    inj_on_nat_state: ( nat > state ) > set_nat > $o ).

thf(sy_c_Fun_Oinj__on_001t__PartialHeapSA__Ostate_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    inj_on3577428053172332983_state: ( state > option_state ) > set_state > $o ).

thf(sy_c_Fun_Oinj__on_001t__PartialHeapSA__Ostate_001t__PartialHeapSA__Ostate,type,
    inj_on_state_state: ( state > state ) > set_state > $o ).

thf(sy_c_Fun_Othe__inv__into_001t__PartialHeapSA__Ostate_001t__PartialHeapSA__Ostate,type,
    the_in3035302284364921129_state: set_state > ( state > state ) > state > state ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    minus_3933957440811877961_state: set_state > set_state > set_state ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    uminus472742206872269241_state: set_state > set_state ).

thf(sy_c_If_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    if_option_state: $o > option_state > option_state > option_state ).

thf(sy_c_If_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    if_set_state: $o > set_state > set_state > set_state ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    inf_inf_set_state: set_state > set_state > set_state ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_It__PartialHeapSA__Ostate_J_J,type,
    inf_in8939913482472430008_state: set_set_state > set_set_state > set_set_state ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    sup_su99422728725954156_state: set_option_state > set_option_state > set_option_state ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    sup_sup_set_state: set_state > set_state > set_state ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Set__Oset_It__PartialHeapSA__Ostate_J_J,type,
    sup_su4188871578264421970_state: set_set_state > set_set_state > set_set_state ).

thf(sy_c_Lattices__Big_Osemilattice__inf__class_OInf__fin_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    lattic4879230916095660051_state: set_set_state > set_state ).

thf(sy_c_Lattices__Big_Osemilattice__sup__class_OSup__fin_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    lattic1454283544731368441_state: set_set_state > set_state ).

thf(sy_c_Map_Odom_001t__PartialHeapSA__Ostate_001t__PartialHeapSA__Ostate,type,
    dom_state_state: ( state > option_state ) > set_state ).

thf(sy_c_Map_Ograph_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    graph_628825510059920660_state: ( option_state > option_option_state ) > set_Pr1688445902015331925_state ).

thf(sy_c_Map_Omap__add_001t__PartialHeapSA__Ostate_001t__PartialHeapSA__Ostate,type,
    map_add_state_state: ( state > option_state ) > ( state > option_state ) > state > option_state ).

thf(sy_c_Map_Orestrict__map_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    restri6741197069250724038_state: ( option_state > option_option_state ) > set_option_state > option_state > option_option_state ).

thf(sy_c_Map_Orestrict__map_001t__PartialHeapSA__Ostate_001t__PartialHeapSA__Ostate,type,
    restri2287918369865870758_state: ( state > option_state ) > set_state > state > option_state ).

thf(sy_c_Option_Ooption_ONone_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    none_option_state: option_option_state ).

thf(sy_c_Option_Ooption_ONone_001t__PartialHeapSA__Ostate,type,
    none_state: option_state ).

thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    none_P2148290358184556502_state: option6833441738159790651_state ).

thf(sy_c_Option_Ooption_ONone_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    none_P348328851727313334_state: option2250103068101548571_state ).

thf(sy_c_Option_Ooption_ONone_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    none_set_state: option_set_state ).

thf(sy_c_Option_Ooption_OSome_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    some_option_state: option_state > option_option_state ).

thf(sy_c_Option_Ooption_OSome_001t__PartialHeapSA__Ostate,type,
    some_state: state > option_state ).

thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    some_P3186401494017672538_state: produc3142500478612311029_state > option6833441738159790651_state ).

thf(sy_c_Option_Ooption_OSome_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    some_P8120450764674687802_state: produc8023240190789890773_state > option2250103068101548571_state ).

thf(sy_c_Option_Ooption_OSome_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    some_set_state: set_state > option_set_state ).

thf(sy_c_Option_Ooption_Oset__option_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    set_op5162993263733338108_state: option_option_state > set_option_state ).

thf(sy_c_Option_Ooption_Oset__option_001t__PartialHeapSA__Ostate,type,
    set_option_state2: option_state > set_state ).

thf(sy_c_Option_Ooption_Oset__option_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    set_op4197959913983417475_state: option6833441738159790651_state > set_Pr1688445902015331925_state ).

thf(sy_c_Option_Ooption_Oset__option_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    set_op4970154267292507491_state: option2250103068101548571_state > set_Pr1785066336555260981_state ).

thf(sy_c_Option_Ooption_Oset__option_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    set_option_set_state2: option_set_state > set_set_state ).

thf(sy_c_Option_Ooption_Othe_001t__PartialHeapSA__Ostate,type,
    the_state: option_state > state ).

thf(sy_c_Option_Othese_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    these_option_state: set_op9003753404445127824_state > set_option_state ).

thf(sy_c_Option_Othese_001t__PartialHeapSA__Ostate,type,
    these_state: set_option_state > set_state ).

thf(sy_c_Option_Othese_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    these_5013389664457929650_state: set_op381248089174005275_state > set_Pr1688445902015331925_state ).

thf(sy_c_Option_Othese_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    these_9162046556185909650_state: set_op4912175446517189883_state > set_Pr1785066336555260981_state ).

thf(sy_c_Option_Othese_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    these_set_state: set_option_set_state > set_set_state ).

thf(sy_c_Order__Relation_Olinear__order__on_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    order_7502633587729487893_state: set_option_state > set_Pr1688445902015331925_state > $o ).

thf(sy_c_Order__Relation_Olinear__order__on_001t__PartialHeapSA__Ostate,type,
    order_7174064491916216133_state: set_state > set_Pr1785066336555260981_state > $o ).

thf(sy_c_Order__Relation_Owell__order__on_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    order_4461428600198971116_state: set_option_state > set_Pr1688445902015331925_state > $o ).

thf(sy_c_Order__Relation_Owell__order__on_001t__PartialHeapSA__Ostate,type,
    order_3972865417222356124_state: set_state > set_Pr1785066336555260981_state > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Option__Ooption_It__PartialHeapSA__Ostate_J_M_Eo_J,type,
    bot_bo4453335400789057457tate_o: option_state > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__PartialHeapSA__Ostate_M_Eo_J,type,
    bot_bot_state_o: state > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_M_Eo_J,type,
    bot_bo4049596492272799580tate_o: produc3142500478612311029_state > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_M_Eo_J,type,
    bot_bo2162275076026452348tate_o: produc8023240190789890773_state > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Set__Oset_It__PartialHeapSA__Ostate_J_M_Eo_J,type,
    bot_bot_set_state_o: set_state > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_Eo,type,
    bot_bot_o: $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Filter__Ofilter_It__PartialHeapSA__Ostate_J,type,
    bot_bot_filter_state: filter_state ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_It__PartialHeapSA__Ostate_M_Eo_J_J,type,
    bot_bot_set_state_o2: set_state_o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Option__Ooption_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J,type,
    bot_bo489212050006660900_state: set_op9003753404445127824_state ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    bot_bo710180891245420500_state: set_option_state ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Option__Ooption_It__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J_J,type,
    bot_bo2763976174278612103_state: set_op381248089174005275_state ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Option__Ooption_It__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_J_J,type,
    bot_bo3922232019306180455_state: set_op4912175446517189883_state ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Option__Ooption_It__Set__Oset_It__PartialHeapSA__Ostate_J_J_J,type,
    bot_bo7912781682106412938_state: set_option_set_state ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    bot_bot_set_state: set_state ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J,type,
    bot_bo1080640394036989633_state: set_Pr1688445902015331925_state ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_J,type,
    bot_bo9041262728264437921_state: set_Pr1785066336555260981_state ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__PartialHeapSA__Ostate_J_J,type,
    bot_bo2271482359692755898_state: set_set_state ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    ord_less_set_state: set_state > set_state > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__PartialHeapSA__Ostate_M_Eo_J,type,
    ord_less_eq_state_o: ( state > $o ) > ( state > $o ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    ord_le7116032884704190368_state: set_option_state > set_option_state > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    ord_le2494988322063910608_state: set_state > set_state > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J,type,
    ord_le6423325748750870005_state: set_Pr1688445902015331925_state > set_Pr1688445902015331925_state > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_J,type,
    ord_le2777189432094499797_state: set_Pr1785066336555260981_state > set_Pr1785066336555260981_state > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__PartialHeapSA__Ostate_J_J,type,
    ord_le5175021213330142598_state: set_set_state > set_set_state > $o ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    order_2642746146112740183_state: ( set_state > $o ) > set_state ).

thf(sy_c_Orderings_Oordering__top_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    orderi2162033302644881791_state: ( set_state > set_state > $o ) > ( set_state > set_state > $o ) > set_state > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__PartialHeapSA__Ostate_M_Eo_J,type,
    top_top_state_o: state > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_Eo,type,
    top_top_o: $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Nat__Onat_J,type,
    top_top_set_nat: set_nat ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    top_to7666338855062656496_state: set_option_state ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    top_top_set_state: set_state ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J,type,
    top_to5248747511432852389_state: set_Pr1688445902015331925_state ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_J,type,
    top_to4183510833390158213_state: set_Pr1785066336555260981_state ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__PartialHeapSA__Ostate_J_J,type,
    top_to5262587396890829782_state: set_set_state ).

thf(sy_c_PackageLogic_Opackage__logic_Obool__conj_001t__PartialHeapSA__Ostate,type,
    packag1330488657391168505_state: ( state > $o ) > ( state > $o ) > state > $o ).

thf(sy_c_PackageLogic_Opackage__logic_Ointuitionistic_001t__PartialHeapSA__Ostate,type,
    packag8361946002163212404_state: ( state > state > option_state ) > ( state > $o ) > $o ).

thf(sy_c_PackageLogic_Opackage__logic_Omono__pruner_001t__PartialHeapSA__Ostate,type,
    packag2456304381420842418_state: ( state > state > option_state ) > ( state > $o ) > $o ).

thf(sy_c_PackageLogic_Opackage__logic_Omono__pure__cond_001t__PartialHeapSA__Ostate,type,
    packag6595153354952283300_state: ( state > state > option_state ) > ( state > state ) > ( state > $o ) > $o ).

thf(sy_c_PartialHeapSA_Oadd__set,type,
    add_set: set_state > set_state > set_state ).

thf(sy_c_PartialHeapSA_Ocompatible__options_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    compat839418488507666022_state: option_option_state > option_option_state > $o ).

thf(sy_c_PartialHeapSA_Ocompatible__options_001t__PartialHeapSA__Ostate,type,
    compat2278460363914054422_state: option_state > option_state > $o ).

thf(sy_c_PartialHeapSA_Ocore,type,
    core: state > state ).

thf(sy_c_PartialHeapSA_Ogreater,type,
    greater: state > state > $o ).

thf(sy_c_PartialHeapSA_Ogreater__set,type,
    greater_set: set_state > set_state > $o ).

thf(sy_c_PartialHeapSA_Ominus,type,
    minus: state > state > state ).

thf(sy_c_PartialHeapSA_Oplus,type,
    plus: state > state > option_state ).

thf(sy_c_Product__Type_OPair_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    produc9160152616361873709_state: option_state > option_state > produc3142500478612311029_state ).

thf(sy_c_Product__Type_OPair_001t__PartialHeapSA__Ostate_001t__PartialHeapSA__Ostate,type,
    produc544653723139640077_state: state > state > produc8023240190789890773_state ).

thf(sy_c_Relation_OField_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    field_option_state: set_Pr1688445902015331925_state > set_option_state ).

thf(sy_c_Relation_OField_001t__PartialHeapSA__Ostate,type,
    field_state: set_Pr1785066336555260981_state > set_state ).

thf(sy_c_Relation_ORange_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    range_718955123782594827_state: set_Pr1688445902015331925_state > set_option_state ).

thf(sy_c_Relation_Orefl__on_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    refl_on_option_state: set_option_state > set_Pr1688445902015331925_state > $o ).

thf(sy_c_Relation_Orefl__on_001t__PartialHeapSA__Ostate,type,
    refl_on_state: set_state > set_Pr1785066336555260981_state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    sep_al511465913568422763_state: ( option_state > option_state > option_option_state ) > ( option_state > option_state ) > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_001t__PartialHeapSA__Ostate,type,
    sep_algebra_state: ( state > state > option_state ) > ( state > state ) > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    sep_al3542390230161005012_state: ( produc3142500478612311029_state > produc3142500478612311029_state > option6833441738159790651_state ) > ( produc3142500478612311029_state > produc3142500478612311029_state ) > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    sep_al7026638520560055732_state: ( produc8023240190789890773_state > produc8023240190789890773_state > option2250103068101548571_state ) > ( produc8023240190789890773_state > produc8023240190789890773_state ) > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    sep_al3379035725709354321_state: ( set_state > set_state > option_set_state ) > ( set_state > set_state ) > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Oadd__set_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    sep_ad494385427648137084_state: ( option_state > option_state > option_option_state ) > set_option_state > set_option_state > set_option_state ).

thf(sy_c_SepAlgebra_Osep__algebra_Oadd__set_001t__PartialHeapSA__Ostate,type,
    sep_add_set_state: ( state > state > option_state ) > set_state > set_state > set_state ).

thf(sy_c_SepAlgebra_Osep__algebra_Oadd__set_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    sep_ad4751565379959694595_state: ( produc3142500478612311029_state > produc3142500478612311029_state > option6833441738159790651_state ) > set_Pr1688445902015331925_state > set_Pr1688445902015331925_state > set_Pr1688445902015331925_state ).

thf(sy_c_SepAlgebra_Osep__algebra_Oadd__set_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    sep_ad3780630032383550947_state: ( produc8023240190789890773_state > produc8023240190789890773_state > option2250103068101548571_state ) > set_Pr1785066336555260981_state > set_Pr1785066336555260981_state > set_Pr1785066336555260981_state ).

thf(sy_c_SepAlgebra_Osep__algebra_Oadd__set_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    sep_ad7561664654817782498_state: ( set_state > set_state > option_set_state ) > set_set_state > set_set_state > set_set_state ).

thf(sy_c_SepAlgebra_Osep__algebra_Oequiv_001t__PartialHeapSA__Ostate,type,
    sep_equiv_state: ( state > state > option_state ) > set_state > set_state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Ogreater_001t__PartialHeapSA__Ostate,type,
    sep_greater_state: ( state > state > option_state ) > state > state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Ogreater__set_001t__PartialHeapSA__Ostate,type,
    sep_gr7105985528888466643_state: ( state > state > option_state ) > set_state > set_state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Omax__projection__prop_001t__PartialHeapSA__Ostate,type,
    sep_ma8214210560313151521_state: ( state > state > option_state ) > ( state > $o ) > ( state > state ) > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Ominus_001t__PartialHeapSA__Ostate,type,
    sep_minus_state: ( state > state > option_state ) > ( state > state ) > state > state > state ).

thf(sy_c_SepAlgebra_Osep__algebra_Omono__prop_001t__PartialHeapSA__Ostate,type,
    sep_mono_prop_state: ( state > state > option_state ) > ( state > $o ) > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Opure_001t__PartialHeapSA__Ostate,type,
    sep_pure_state: ( state > state > option_state ) > state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Osetify_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    sep_se2722818254322476245_state: ( option_state > $o ) > set_option_state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Osetify_001t__PartialHeapSA__Ostate,type,
    sep_setify_state: ( state > $o ) > set_state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Osetify_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    sep_se7172211557308979434_state: ( produc3142500478612311029_state > $o ) > set_Pr1688445902015331925_state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Osetify_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    sep_se8263300668621121226_state: ( produc8023240190789890773_state > $o ) > set_Pr1785066336555260981_state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Osetify_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    sep_setify_set_state: ( set_state > $o ) > set_set_state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Osplus_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    sep_sp2496543662054378344_state: ( option_state > option_state > option_option_state ) > option_option_state > option_option_state > option_option_state ).

thf(sy_c_SepAlgebra_Osep__algebra_Osplus_001t__PartialHeapSA__Ostate,type,
    sep_splus_state: ( state > state > option_state ) > option_state > option_state > option_state ).

thf(sy_c_SepAlgebra_Osep__algebra_Osplus_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    sep_sp2357042210444369943_state: ( produc3142500478612311029_state > produc3142500478612311029_state > option6833441738159790651_state ) > option6833441738159790651_state > option6833441738159790651_state > option6833441738159790651_state ).

thf(sy_c_SepAlgebra_Osep__algebra_Osplus_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    sep_sp5678321299423575287_state: ( produc8023240190789890773_state > produc8023240190789890773_state > option2250103068101548571_state ) > option2250103068101548571_state > option2250103068101548571_state > option2250103068101548571_state ).

thf(sy_c_SepAlgebra_Osep__algebra_Osplus_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    sep_splus_set_state: ( set_state > set_state > option_set_state ) > option_set_state > option_set_state > option_set_state ).

thf(sy_c_SepAlgebra_Osep__algebra_Oup__closed_001t__PartialHeapSA__Ostate,type,
    sep_up_closed_state: ( state > state > option_state ) > set_state > $o ).

thf(sy_c_SepAlgebra_Osep__algebra_Oupper__closure_001t__PartialHeapSA__Ostate,type,
    sep_up1246176804924251236_state: ( state > state > option_state ) > set_state > set_state ).

thf(sy_c_Set_OCollect_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    collect_option_state: ( option_state > $o ) > set_option_state ).

thf(sy_c_Set_OCollect_001t__PartialHeapSA__Ostate,type,
    collect_state: ( state > $o ) > set_state ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    collec8144523193623705312_state: ( produc3142500478612311029_state > $o ) > set_Pr1688445902015331925_state ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    collec7320380983431419584_state: ( produc8023240190789890773_state > $o ) > set_Pr1785066336555260981_state ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    collect_set_state: ( set_state > $o ) > set_set_state ).

thf(sy_c_Set_OPow_001t__PartialHeapSA__Ostate,type,
    pow_state: set_state > set_set_state ).

thf(sy_c_Set_Oimage_001_062_It__PartialHeapSA__Ostate_M_Eo_J_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    image_7376656169852520768_state: ( ( state > $o ) > set_state ) > set_state_o > set_set_state ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    image_8240249968597053537_state: ( nat > option_state ) > set_nat > set_option_state ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__PartialHeapSA__Ostate,type,
    image_nat_state: ( nat > state ) > set_nat > set_state ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    image_nat_set_state: ( nat > set_state ) > set_nat > set_set_state ).

thf(sy_c_Set_Oimage_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_001t__Option__Ooption_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    image_4760606469461393131_state: ( option_state > option_option_state ) > set_option_state > set_op9003753404445127824_state ).

thf(sy_c_Set_Oimage_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    image_8299601973402907291_state: ( option_state > option_state ) > set_option_state > set_option_state ).

thf(sy_c_Set_Oimage_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_001t__PartialHeapSA__Ostate,type,
    image_3532137647693456075_state: ( option_state > state ) > set_option_state > set_state ).

thf(sy_c_Set_Oimage_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    image_3284240608559150209_state: ( option_state > set_state ) > set_option_state > set_set_state ).

thf(sy_c_Set_Oimage_001t__PartialHeapSA__Ostate_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    image_6076465424260689483_state: ( state > option_state ) > set_state > set_option_state ).

thf(sy_c_Set_Oimage_001t__PartialHeapSA__Ostate_001t__PartialHeapSA__Ostate,type,
    image_state_state: ( state > state ) > set_state > set_state ).

thf(sy_c_Set_Oimage_001t__PartialHeapSA__Ostate_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    image_2153010417677216468_state: ( state > produc8023240190789890773_state ) > set_state > set_Pr1785066336555260981_state ).

thf(sy_c_Set_Oimage_001t__PartialHeapSA__Ostate_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    image_4774290769506072625_state: ( state > set_state ) > set_state > set_set_state ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_001t__PartialHeapSA__Ostate,type,
    image_393491784373993066_state: ( produc3142500478612311029_state > state ) > set_Pr1688445902015331925_state > set_state ).

thf(sy_c_Set_Oimage_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_001t__PartialHeapSA__Ostate,type,
    image_5145414166468158282_state: ( produc8023240190789890773_state > state ) > set_Pr1785066336555260981_state > set_state ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__PartialHeapSA__Ostate_J_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    image_8427833934475094273_state: ( set_state > option_state ) > set_set_state > set_option_state ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__PartialHeapSA__Ostate_J_001t__PartialHeapSA__Ostate,type,
    image_4575879259649255985_state: ( set_state > state ) > set_set_state > set_state ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__PartialHeapSA__Ostate_J_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    image_2476256681063834599_state: ( set_state > set_state ) > set_set_state > set_set_state ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001t__Option__Ooption_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    insert7535573567550883338_state: option_option_state > set_op9003753404445127824_state > set_op9003753404445127824_state ).

thf(sy_c_Set_Oinsert_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    insert_option_state: option_state > set_option_state > set_option_state ).

thf(sy_c_Set_Oinsert_001t__Option__Ooption_It__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J,type,
    insert4808919046788495371_state: option6833441738159790651_state > set_op381248089174005275_state > set_op381248089174005275_state ).

thf(sy_c_Set_Oinsert_001t__Option__Ooption_It__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_J,type,
    insert4154903780514342891_state: option2250103068101548571_state > set_op4912175446517189883_state > set_op4912175446517189883_state ).

thf(sy_c_Set_Oinsert_001t__Option__Ooption_It__Set__Oset_It__PartialHeapSA__Ostate_J_J,type,
    insert1104837854041676528_state: option_set_state > set_option_set_state > set_option_set_state ).

thf(sy_c_Set_Oinsert_001t__PartialHeapSA__Ostate,type,
    insert_state: state > set_state > set_state ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    insert4171857611248116165_state: produc3142500478612311029_state > set_Pr1688445902015331925_state > set_Pr1688445902015331925_state ).

thf(sy_c_Set_Oinsert_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    insert7525286303735658661_state: produc8023240190789890773_state > set_Pr1785066336555260981_state > set_Pr1785066336555260981_state ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    insert_set_state: set_state > set_set_state > set_set_state ).

thf(sy_c_Set_Ois__empty_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    is_emp7138872393943660984_state: set_option_state > $o ).

thf(sy_c_Set_Ois__empty_001t__PartialHeapSA__Ostate,type,
    is_empty_state: set_state > $o ).

thf(sy_c_Set_Ois__empty_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    is_emp6065741494043489735_state: set_Pr1688445902015331925_state > $o ).

thf(sy_c_Set_Ois__empty_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    is_emp7935198893844832935_state: set_Pr1785066336555260981_state > $o ).

thf(sy_c_Set_Ois__empty_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    is_empty_set_state: set_set_state > $o ).

thf(sy_c_Set_Ois__singleton_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    is_sin8559911096322084886_state: set_option_state > $o ).

thf(sy_c_Set_Ois__singleton_001t__PartialHeapSA__Ostate,type,
    is_singleton_state: set_state > $o ).

thf(sy_c_Set_Ois__singleton_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    is_sin7571815095334105321_state: set_Pr1688445902015331925_state > $o ).

thf(sy_c_Set_Ois__singleton_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    is_sin3624314468123612105_state: set_Pr1785066336555260981_state > $o ).

thf(sy_c_Set_Ois__singleton_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    is_sin3747817797122030204_state: set_set_state > $o ).

thf(sy_c_Set_Opairwise_001t__PartialHeapSA__Ostate,type,
    pairwise_state: ( state > state > $o ) > set_state > $o ).

thf(sy_c_Set_Oremove_001t__PartialHeapSA__Ostate,type,
    remove_state: state > set_state > set_state ).

thf(sy_c_Set_Othe__elem_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    the_el1618976816499768149_state: set_option_state > option_state ).

thf(sy_c_Set_Othe__elem_001t__PartialHeapSA__Ostate,type,
    the_elem_state: set_state > state ).

thf(sy_c_Set_Othe__elem_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    the_el7118915247011979882_state: set_Pr1688445902015331925_state > produc3142500478612311029_state ).

thf(sy_c_Set_Othe__elem_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    the_el1727186808309674058_state: set_Pr1785066336555260981_state > produc8023240190789890773_state ).

thf(sy_c_Set_Othe__elem_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    the_elem_set_state: set_set_state > set_state ).

thf(sy_c_Set_Ovimage_001t__PartialHeapSA__Ostate_001t__PartialHeapSA__Ostate,type,
    vimage_state_state: ( state > state ) > set_state > set_state ).

thf(sy_c_member_001_062_It__PartialHeapSA__Ostate_M_Eo_J,type,
    member_state_o: ( state > $o ) > set_state_o > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Option__Ooption_It__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    member1079230918592710257_state: option_option_state > set_op9003753404445127824_state > $o ).

thf(sy_c_member_001t__Option__Ooption_It__PartialHeapSA__Ostate_J,type,
    member_option_state: option_state > set_option_state > $o ).

thf(sy_c_member_001t__Option__Ooption_It__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J_J,type,
    member3754053363737695844_state: option6833441738159790651_state > set_op381248089174005275_state > $o ).

thf(sy_c_member_001t__Option__Ooption_It__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J_J,type,
    member5076014802351601988_state: option2250103068101548571_state > set_op4912175446517189883_state > $o ).

thf(sy_c_member_001t__Option__Ooption_It__Set__Oset_It__PartialHeapSA__Ostate_J_J,type,
    member1412897518142203351_state: option_set_state > set_option_set_state > $o ).

thf(sy_c_member_001t__PartialHeapSA__Ostate,type,
    member_state: state > set_state > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Option__Ooption_It__PartialHeapSA__Ostate_J_Mt__Option__Ooption_It__PartialHeapSA__Ostate_J_J,type,
    member3029510603097127326_state: produc3142500478612311029_state > set_Pr1688445902015331925_state > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__PartialHeapSA__Ostate_Mt__PartialHeapSA__Ostate_J,type,
    member753036827967488894_state: produc8023240190789890773_state > set_Pr1785066336555260981_state > $o ).

thf(sy_c_member_001t__Set__Oset_It__PartialHeapSA__Ostate_J,type,
    member_set_state: set_state > set_set_state > $o ).

thf(sy_v_A,type,
    a: set_state ).

thf(sy_v_B,type,
    b: set_state ).

thf(sy_v_a____,type,
    a2: state ).

thf(sy_v_w,type,
    w: state ).

thf(sy_v_x____,type,
    x: state ).

% Relevant facts (1277)
thf(fact_0__092_060open_062Some_Ax_A_061_Aa_A_092_060oplus_062_Aw_092_060close_062,axiom,
    ( ( some_state @ x )
    = ( plus @ a2 @ w ) ) ).

% \<open>Some x = a \<oplus> w\<close>
thf(fact_1_assms,axiom,
    ! [A: state,X: state] :
      ( ( ( member_state @ A @ a )
        & ( ( some_state @ X )
          = ( plus @ A @ w ) ) )
     => ( member_state @ X @ b ) ) ).

% assms
thf(fact_2__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062a_O_A_092_060lbrakk_062Some_Ax_A_061_Aa_A_092_060oplus_062_Aw_059_Aa_A_092_060in_062_AA_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [A2: state] :
        ( ( ( some_state @ x )
          = ( plus @ A2 @ w ) )
       => ~ ( member_state @ A2 @ a ) ) ).

% \<open>\<And>thesis. (\<And>a. \<lbrakk>Some x = a \<oplus> w; a \<in> A\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_3__092_060open_062x_A_092_060in_062_AA_A_092_060otimes_062_A_123w_125_092_060close_062,axiom,
    member_state @ x @ ( add_set @ a @ ( insert_state @ w @ bot_bot_set_state ) ) ).

% \<open>x \<in> A \<otimes> {w}\<close>
thf(fact_4_w__in__scaled,axiom,
    ! [W: state] : ( member_state @ W @ ( scaled @ W ) ) ).

% w_in_scaled
thf(fact_5__092_060open_062a_A_092_060in_062_AA_092_060close_062,axiom,
    member_state @ a2 @ a ).

% \<open>a \<in> A\<close>
thf(fact_6_PartialSA_Osum__then__singleton,axiom,
    ! [A: state,B: state,C: state] :
      ( ( ( some_state @ A )
        = ( plus @ B @ C ) )
      = ( ( insert_state @ A @ bot_bot_set_state )
        = ( add_set @ ( insert_state @ B @ bot_bot_set_state ) @ ( insert_state @ C @ bot_bot_set_state ) ) ) ) ).

% PartialSA.sum_then_singleton
thf(fact_7_singletonI,axiom,
    ! [A: produc8023240190789890773_state] : ( member753036827967488894_state @ A @ ( insert7525286303735658661_state @ A @ bot_bo9041262728264437921_state ) ) ).

% singletonI
thf(fact_8_singletonI,axiom,
    ! [A: produc3142500478612311029_state] : ( member3029510603097127326_state @ A @ ( insert4171857611248116165_state @ A @ bot_bo1080640394036989633_state ) ) ).

% singletonI
thf(fact_9_singletonI,axiom,
    ! [A: option_state] : ( member_option_state @ A @ ( insert_option_state @ A @ bot_bo710180891245420500_state ) ) ).

% singletonI
thf(fact_10_singletonI,axiom,
    ! [A: set_state] : ( member_set_state @ A @ ( insert_set_state @ A @ bot_bo2271482359692755898_state ) ) ).

% singletonI
thf(fact_11_singletonI,axiom,
    ! [A: state] : ( member_state @ A @ ( insert_state @ A @ bot_bot_set_state ) ) ).

% singletonI
thf(fact_12_PartialSA_Oadd__set__elem,axiom,
    ! [Phi: state,A3: set_state,B2: set_state] :
      ( ( member_state @ Phi @ ( add_set @ A3 @ B2 ) )
      = ( ? [A4: state,B3: state] :
            ( ( ( some_state @ Phi )
              = ( plus @ A4 @ B3 ) )
            & ( member_state @ A4 @ A3 )
            & ( member_state @ B3 @ B2 ) ) ) ) ).

% PartialSA.add_set_elem
thf(fact_13_PartialSA_Ox__elem__set__product,axiom,
    ! [X: state,A3: set_state,B2: set_state] :
      ( ( member_state @ X @ ( add_set @ A3 @ B2 ) )
      = ( ? [A4: state,B3: state] :
            ( ( member_state @ A4 @ A3 )
            & ( member_state @ B3 @ B2 )
            & ( ( some_state @ X )
              = ( plus @ A4 @ B3 ) ) ) ) ) ).

% PartialSA.x_elem_set_product
thf(fact_14_PartialSA_Oempty__set__sum,axiom,
    ! [A3: set_state] :
      ( ( add_set @ bot_bot_set_state @ A3 )
      = bot_bot_set_state ) ).

% PartialSA.empty_set_sum
thf(fact_15_option_Oinject,axiom,
    ! [X2: option_state,Y2: option_state] :
      ( ( ( some_option_state @ X2 )
        = ( some_option_state @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% option.inject
thf(fact_16_option_Oinject,axiom,
    ! [X2: state,Y2: state] :
      ( ( ( some_state @ X2 )
        = ( some_state @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% option.inject
thf(fact_17_insertCI,axiom,
    ! [A: option_state,B2: set_option_state,B: option_state] :
      ( ( ~ ( member_option_state @ A @ B2 )
       => ( A = B ) )
     => ( member_option_state @ A @ ( insert_option_state @ B @ B2 ) ) ) ).

% insertCI
thf(fact_18_insertCI,axiom,
    ! [A: set_state,B2: set_set_state,B: set_state] :
      ( ( ~ ( member_set_state @ A @ B2 )
       => ( A = B ) )
     => ( member_set_state @ A @ ( insert_set_state @ B @ B2 ) ) ) ).

% insertCI
thf(fact_19_insertCI,axiom,
    ! [A: produc3142500478612311029_state,B2: set_Pr1688445902015331925_state,B: produc3142500478612311029_state] :
      ( ( ~ ( member3029510603097127326_state @ A @ B2 )
       => ( A = B ) )
     => ( member3029510603097127326_state @ A @ ( insert4171857611248116165_state @ B @ B2 ) ) ) ).

% insertCI
thf(fact_20_insertCI,axiom,
    ! [A: produc8023240190789890773_state,B2: set_Pr1785066336555260981_state,B: produc8023240190789890773_state] :
      ( ( ~ ( member753036827967488894_state @ A @ B2 )
       => ( A = B ) )
     => ( member753036827967488894_state @ A @ ( insert7525286303735658661_state @ B @ B2 ) ) ) ).

% insertCI
thf(fact_21_insertCI,axiom,
    ! [A: state,B2: set_state,B: state] :
      ( ( ~ ( member_state @ A @ B2 )
       => ( A = B ) )
     => ( member_state @ A @ ( insert_state @ B @ B2 ) ) ) ).

% insertCI
thf(fact_22_insert__iff,axiom,
    ! [A: option_state,B: option_state,A3: set_option_state] :
      ( ( member_option_state @ A @ ( insert_option_state @ B @ A3 ) )
      = ( ( A = B )
        | ( member_option_state @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_23_insert__iff,axiom,
    ! [A: set_state,B: set_state,A3: set_set_state] :
      ( ( member_set_state @ A @ ( insert_set_state @ B @ A3 ) )
      = ( ( A = B )
        | ( member_set_state @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_24_insert__iff,axiom,
    ! [A: produc3142500478612311029_state,B: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state] :
      ( ( member3029510603097127326_state @ A @ ( insert4171857611248116165_state @ B @ A3 ) )
      = ( ( A = B )
        | ( member3029510603097127326_state @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_25_insert__iff,axiom,
    ! [A: produc8023240190789890773_state,B: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state] :
      ( ( member753036827967488894_state @ A @ ( insert7525286303735658661_state @ B @ A3 ) )
      = ( ( A = B )
        | ( member753036827967488894_state @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_26_insert__iff,axiom,
    ! [A: state,B: state,A3: set_state] :
      ( ( member_state @ A @ ( insert_state @ B @ A3 ) )
      = ( ( A = B )
        | ( member_state @ A @ A3 ) ) ) ).

% insert_iff
thf(fact_27_insert__absorb2,axiom,
    ! [X: option_state,A3: set_option_state] :
      ( ( insert_option_state @ X @ ( insert_option_state @ X @ A3 ) )
      = ( insert_option_state @ X @ A3 ) ) ).

% insert_absorb2
thf(fact_28_insert__absorb2,axiom,
    ! [X: set_state,A3: set_set_state] :
      ( ( insert_set_state @ X @ ( insert_set_state @ X @ A3 ) )
      = ( insert_set_state @ X @ A3 ) ) ).

% insert_absorb2
thf(fact_29_insert__absorb2,axiom,
    ! [X: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state] :
      ( ( insert4171857611248116165_state @ X @ ( insert4171857611248116165_state @ X @ A3 ) )
      = ( insert4171857611248116165_state @ X @ A3 ) ) ).

% insert_absorb2
thf(fact_30_insert__absorb2,axiom,
    ! [X: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state] :
      ( ( insert7525286303735658661_state @ X @ ( insert7525286303735658661_state @ X @ A3 ) )
      = ( insert7525286303735658661_state @ X @ A3 ) ) ).

% insert_absorb2
thf(fact_31_insert__absorb2,axiom,
    ! [X: state,A3: set_state] :
      ( ( insert_state @ X @ ( insert_state @ X @ A3 ) )
      = ( insert_state @ X @ A3 ) ) ).

% insert_absorb2
thf(fact_32_empty__iff,axiom,
    ! [C: produc8023240190789890773_state] :
      ~ ( member753036827967488894_state @ C @ bot_bo9041262728264437921_state ) ).

% empty_iff
thf(fact_33_empty__iff,axiom,
    ! [C: produc3142500478612311029_state] :
      ~ ( member3029510603097127326_state @ C @ bot_bo1080640394036989633_state ) ).

% empty_iff
thf(fact_34_empty__iff,axiom,
    ! [C: option_state] :
      ~ ( member_option_state @ C @ bot_bo710180891245420500_state ) ).

% empty_iff
thf(fact_35_empty__iff,axiom,
    ! [C: set_state] :
      ~ ( member_set_state @ C @ bot_bo2271482359692755898_state ) ).

% empty_iff
thf(fact_36_empty__iff,axiom,
    ! [C: state] :
      ~ ( member_state @ C @ bot_bot_set_state ) ).

% empty_iff
thf(fact_37_all__not__in__conv,axiom,
    ! [A3: set_Pr1785066336555260981_state] :
      ( ( ! [X3: produc8023240190789890773_state] :
            ~ ( member753036827967488894_state @ X3 @ A3 ) )
      = ( A3 = bot_bo9041262728264437921_state ) ) ).

% all_not_in_conv
thf(fact_38_all__not__in__conv,axiom,
    ! [A3: set_Pr1688445902015331925_state] :
      ( ( ! [X3: produc3142500478612311029_state] :
            ~ ( member3029510603097127326_state @ X3 @ A3 ) )
      = ( A3 = bot_bo1080640394036989633_state ) ) ).

% all_not_in_conv
thf(fact_39_all__not__in__conv,axiom,
    ! [A3: set_option_state] :
      ( ( ! [X3: option_state] :
            ~ ( member_option_state @ X3 @ A3 ) )
      = ( A3 = bot_bo710180891245420500_state ) ) ).

% all_not_in_conv
thf(fact_40_all__not__in__conv,axiom,
    ! [A3: set_set_state] :
      ( ( ! [X3: set_state] :
            ~ ( member_set_state @ X3 @ A3 ) )
      = ( A3 = bot_bo2271482359692755898_state ) ) ).

% all_not_in_conv
thf(fact_41_all__not__in__conv,axiom,
    ! [A3: set_state] :
      ( ( ! [X3: state] :
            ~ ( member_state @ X3 @ A3 ) )
      = ( A3 = bot_bot_set_state ) ) ).

% all_not_in_conv
thf(fact_42_Collect__empty__eq,axiom,
    ! [P: produc8023240190789890773_state > $o] :
      ( ( ( collec7320380983431419584_state @ P )
        = bot_bo9041262728264437921_state )
      = ( ! [X3: produc8023240190789890773_state] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_43_Collect__empty__eq,axiom,
    ! [P: produc3142500478612311029_state > $o] :
      ( ( ( collec8144523193623705312_state @ P )
        = bot_bo1080640394036989633_state )
      = ( ! [X3: produc3142500478612311029_state] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_44_Collect__empty__eq,axiom,
    ! [P: option_state > $o] :
      ( ( ( collect_option_state @ P )
        = bot_bo710180891245420500_state )
      = ( ! [X3: option_state] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_45_Collect__empty__eq,axiom,
    ! [P: set_state > $o] :
      ( ( ( collect_set_state @ P )
        = bot_bo2271482359692755898_state )
      = ( ! [X3: set_state] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_46_Collect__empty__eq,axiom,
    ! [P: state > $o] :
      ( ( ( collect_state @ P )
        = bot_bot_set_state )
      = ( ! [X3: state] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_47_empty__Collect__eq,axiom,
    ! [P: produc8023240190789890773_state > $o] :
      ( ( bot_bo9041262728264437921_state
        = ( collec7320380983431419584_state @ P ) )
      = ( ! [X3: produc8023240190789890773_state] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_48_empty__Collect__eq,axiom,
    ! [P: produc3142500478612311029_state > $o] :
      ( ( bot_bo1080640394036989633_state
        = ( collec8144523193623705312_state @ P ) )
      = ( ! [X3: produc3142500478612311029_state] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_49_empty__Collect__eq,axiom,
    ! [P: option_state > $o] :
      ( ( bot_bo710180891245420500_state
        = ( collect_option_state @ P ) )
      = ( ! [X3: option_state] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_50_empty__Collect__eq,axiom,
    ! [P: set_state > $o] :
      ( ( bot_bo2271482359692755898_state
        = ( collect_set_state @ P ) )
      = ( ! [X3: set_state] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_51_empty__Collect__eq,axiom,
    ! [P: state > $o] :
      ( ( bot_bot_set_state
        = ( collect_state @ P ) )
      = ( ! [X3: state] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_52_ex__in__conv,axiom,
    ! [A3: set_Pr1785066336555260981_state] :
      ( ( ? [X3: produc8023240190789890773_state] : ( member753036827967488894_state @ X3 @ A3 ) )
      = ( A3 != bot_bo9041262728264437921_state ) ) ).

% ex_in_conv
thf(fact_53_ex__in__conv,axiom,
    ! [A3: set_Pr1688445902015331925_state] :
      ( ( ? [X3: produc3142500478612311029_state] : ( member3029510603097127326_state @ X3 @ A3 ) )
      = ( A3 != bot_bo1080640394036989633_state ) ) ).

% ex_in_conv
thf(fact_54_ex__in__conv,axiom,
    ! [A3: set_option_state] :
      ( ( ? [X3: option_state] : ( member_option_state @ X3 @ A3 ) )
      = ( A3 != bot_bo710180891245420500_state ) ) ).

% ex_in_conv
thf(fact_55_ex__in__conv,axiom,
    ! [A3: set_set_state] :
      ( ( ? [X3: set_state] : ( member_set_state @ X3 @ A3 ) )
      = ( A3 != bot_bo2271482359692755898_state ) ) ).

% ex_in_conv
thf(fact_56_ex__in__conv,axiom,
    ! [A3: set_state] :
      ( ( ? [X3: state] : ( member_state @ X3 @ A3 ) )
      = ( A3 != bot_bot_set_state ) ) ).

% ex_in_conv
thf(fact_57_equals0I,axiom,
    ! [A3: set_Pr1785066336555260981_state] :
      ( ! [Y: produc8023240190789890773_state] :
          ~ ( member753036827967488894_state @ Y @ A3 )
     => ( A3 = bot_bo9041262728264437921_state ) ) ).

% equals0I
thf(fact_58_equals0I,axiom,
    ! [A3: set_Pr1688445902015331925_state] :
      ( ! [Y: produc3142500478612311029_state] :
          ~ ( member3029510603097127326_state @ Y @ A3 )
     => ( A3 = bot_bo1080640394036989633_state ) ) ).

% equals0I
thf(fact_59_equals0I,axiom,
    ! [A3: set_option_state] :
      ( ! [Y: option_state] :
          ~ ( member_option_state @ Y @ A3 )
     => ( A3 = bot_bo710180891245420500_state ) ) ).

% equals0I
thf(fact_60_equals0I,axiom,
    ! [A3: set_set_state] :
      ( ! [Y: set_state] :
          ~ ( member_set_state @ Y @ A3 )
     => ( A3 = bot_bo2271482359692755898_state ) ) ).

% equals0I
thf(fact_61_equals0I,axiom,
    ! [A3: set_state] :
      ( ! [Y: state] :
          ~ ( member_state @ Y @ A3 )
     => ( A3 = bot_bot_set_state ) ) ).

% equals0I
thf(fact_62_equals0D,axiom,
    ! [A3: set_Pr1785066336555260981_state,A: produc8023240190789890773_state] :
      ( ( A3 = bot_bo9041262728264437921_state )
     => ~ ( member753036827967488894_state @ A @ A3 ) ) ).

% equals0D
thf(fact_63_equals0D,axiom,
    ! [A3: set_Pr1688445902015331925_state,A: produc3142500478612311029_state] :
      ( ( A3 = bot_bo1080640394036989633_state )
     => ~ ( member3029510603097127326_state @ A @ A3 ) ) ).

% equals0D
thf(fact_64_equals0D,axiom,
    ! [A3: set_option_state,A: option_state] :
      ( ( A3 = bot_bo710180891245420500_state )
     => ~ ( member_option_state @ A @ A3 ) ) ).

% equals0D
thf(fact_65_equals0D,axiom,
    ! [A3: set_set_state,A: set_state] :
      ( ( A3 = bot_bo2271482359692755898_state )
     => ~ ( member_set_state @ A @ A3 ) ) ).

% equals0D
thf(fact_66_equals0D,axiom,
    ! [A3: set_state,A: state] :
      ( ( A3 = bot_bot_set_state )
     => ~ ( member_state @ A @ A3 ) ) ).

% equals0D
thf(fact_67_emptyE,axiom,
    ! [A: produc8023240190789890773_state] :
      ~ ( member753036827967488894_state @ A @ bot_bo9041262728264437921_state ) ).

% emptyE
thf(fact_68_emptyE,axiom,
    ! [A: produc3142500478612311029_state] :
      ~ ( member3029510603097127326_state @ A @ bot_bo1080640394036989633_state ) ).

% emptyE
thf(fact_69_emptyE,axiom,
    ! [A: option_state] :
      ~ ( member_option_state @ A @ bot_bo710180891245420500_state ) ).

% emptyE
thf(fact_70_emptyE,axiom,
    ! [A: set_state] :
      ~ ( member_set_state @ A @ bot_bo2271482359692755898_state ) ).

% emptyE
thf(fact_71_emptyE,axiom,
    ! [A: state] :
      ~ ( member_state @ A @ bot_bot_set_state ) ).

% emptyE
thf(fact_72_mk__disjoint__insert,axiom,
    ! [A: option_state,A3: set_option_state] :
      ( ( member_option_state @ A @ A3 )
     => ? [B4: set_option_state] :
          ( ( A3
            = ( insert_option_state @ A @ B4 ) )
          & ~ ( member_option_state @ A @ B4 ) ) ) ).

% mk_disjoint_insert
thf(fact_73_mk__disjoint__insert,axiom,
    ! [A: set_state,A3: set_set_state] :
      ( ( member_set_state @ A @ A3 )
     => ? [B4: set_set_state] :
          ( ( A3
            = ( insert_set_state @ A @ B4 ) )
          & ~ ( member_set_state @ A @ B4 ) ) ) ).

% mk_disjoint_insert
thf(fact_74_mk__disjoint__insert,axiom,
    ! [A: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state] :
      ( ( member3029510603097127326_state @ A @ A3 )
     => ? [B4: set_Pr1688445902015331925_state] :
          ( ( A3
            = ( insert4171857611248116165_state @ A @ B4 ) )
          & ~ ( member3029510603097127326_state @ A @ B4 ) ) ) ).

% mk_disjoint_insert
thf(fact_75_mk__disjoint__insert,axiom,
    ! [A: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state] :
      ( ( member753036827967488894_state @ A @ A3 )
     => ? [B4: set_Pr1785066336555260981_state] :
          ( ( A3
            = ( insert7525286303735658661_state @ A @ B4 ) )
          & ~ ( member753036827967488894_state @ A @ B4 ) ) ) ).

% mk_disjoint_insert
thf(fact_76_mk__disjoint__insert,axiom,
    ! [A: state,A3: set_state] :
      ( ( member_state @ A @ A3 )
     => ? [B4: set_state] :
          ( ( A3
            = ( insert_state @ A @ B4 ) )
          & ~ ( member_state @ A @ B4 ) ) ) ).

% mk_disjoint_insert
thf(fact_77_insert__commute,axiom,
    ! [X: option_state,Y3: option_state,A3: set_option_state] :
      ( ( insert_option_state @ X @ ( insert_option_state @ Y3 @ A3 ) )
      = ( insert_option_state @ Y3 @ ( insert_option_state @ X @ A3 ) ) ) ).

% insert_commute
thf(fact_78_insert__commute,axiom,
    ! [X: set_state,Y3: set_state,A3: set_set_state] :
      ( ( insert_set_state @ X @ ( insert_set_state @ Y3 @ A3 ) )
      = ( insert_set_state @ Y3 @ ( insert_set_state @ X @ A3 ) ) ) ).

% insert_commute
thf(fact_79_insert__commute,axiom,
    ! [X: produc3142500478612311029_state,Y3: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state] :
      ( ( insert4171857611248116165_state @ X @ ( insert4171857611248116165_state @ Y3 @ A3 ) )
      = ( insert4171857611248116165_state @ Y3 @ ( insert4171857611248116165_state @ X @ A3 ) ) ) ).

% insert_commute
thf(fact_80_insert__commute,axiom,
    ! [X: produc8023240190789890773_state,Y3: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state] :
      ( ( insert7525286303735658661_state @ X @ ( insert7525286303735658661_state @ Y3 @ A3 ) )
      = ( insert7525286303735658661_state @ Y3 @ ( insert7525286303735658661_state @ X @ A3 ) ) ) ).

% insert_commute
thf(fact_81_insert__commute,axiom,
    ! [X: state,Y3: state,A3: set_state] :
      ( ( insert_state @ X @ ( insert_state @ Y3 @ A3 ) )
      = ( insert_state @ Y3 @ ( insert_state @ X @ A3 ) ) ) ).

% insert_commute
thf(fact_82_insert__eq__iff,axiom,
    ! [A: option_state,A3: set_option_state,B: option_state,B2: set_option_state] :
      ( ~ ( member_option_state @ A @ A3 )
     => ( ~ ( member_option_state @ B @ B2 )
       => ( ( ( insert_option_state @ A @ A3 )
            = ( insert_option_state @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A3 = B2 ) )
            & ( ( A != B )
             => ? [C2: set_option_state] :
                  ( ( A3
                    = ( insert_option_state @ B @ C2 ) )
                  & ~ ( member_option_state @ B @ C2 )
                  & ( B2
                    = ( insert_option_state @ A @ C2 ) )
                  & ~ ( member_option_state @ A @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_83_insert__eq__iff,axiom,
    ! [A: set_state,A3: set_set_state,B: set_state,B2: set_set_state] :
      ( ~ ( member_set_state @ A @ A3 )
     => ( ~ ( member_set_state @ B @ B2 )
       => ( ( ( insert_set_state @ A @ A3 )
            = ( insert_set_state @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A3 = B2 ) )
            & ( ( A != B )
             => ? [C2: set_set_state] :
                  ( ( A3
                    = ( insert_set_state @ B @ C2 ) )
                  & ~ ( member_set_state @ B @ C2 )
                  & ( B2
                    = ( insert_set_state @ A @ C2 ) )
                  & ~ ( member_set_state @ A @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_84_insert__eq__iff,axiom,
    ! [A: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state,B: produc3142500478612311029_state,B2: set_Pr1688445902015331925_state] :
      ( ~ ( member3029510603097127326_state @ A @ A3 )
     => ( ~ ( member3029510603097127326_state @ B @ B2 )
       => ( ( ( insert4171857611248116165_state @ A @ A3 )
            = ( insert4171857611248116165_state @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A3 = B2 ) )
            & ( ( A != B )
             => ? [C2: set_Pr1688445902015331925_state] :
                  ( ( A3
                    = ( insert4171857611248116165_state @ B @ C2 ) )
                  & ~ ( member3029510603097127326_state @ B @ C2 )
                  & ( B2
                    = ( insert4171857611248116165_state @ A @ C2 ) )
                  & ~ ( member3029510603097127326_state @ A @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_85_insert__eq__iff,axiom,
    ! [A: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state,B: produc8023240190789890773_state,B2: set_Pr1785066336555260981_state] :
      ( ~ ( member753036827967488894_state @ A @ A3 )
     => ( ~ ( member753036827967488894_state @ B @ B2 )
       => ( ( ( insert7525286303735658661_state @ A @ A3 )
            = ( insert7525286303735658661_state @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A3 = B2 ) )
            & ( ( A != B )
             => ? [C2: set_Pr1785066336555260981_state] :
                  ( ( A3
                    = ( insert7525286303735658661_state @ B @ C2 ) )
                  & ~ ( member753036827967488894_state @ B @ C2 )
                  & ( B2
                    = ( insert7525286303735658661_state @ A @ C2 ) )
                  & ~ ( member753036827967488894_state @ A @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_86_insert__eq__iff,axiom,
    ! [A: state,A3: set_state,B: state,B2: set_state] :
      ( ~ ( member_state @ A @ A3 )
     => ( ~ ( member_state @ B @ B2 )
       => ( ( ( insert_state @ A @ A3 )
            = ( insert_state @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A3 = B2 ) )
            & ( ( A != B )
             => ? [C2: set_state] :
                  ( ( A3
                    = ( insert_state @ B @ C2 ) )
                  & ~ ( member_state @ B @ C2 )
                  & ( B2
                    = ( insert_state @ A @ C2 ) )
                  & ~ ( member_state @ A @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_87_insert__absorb,axiom,
    ! [A: option_state,A3: set_option_state] :
      ( ( member_option_state @ A @ A3 )
     => ( ( insert_option_state @ A @ A3 )
        = A3 ) ) ).

% insert_absorb
thf(fact_88_insert__absorb,axiom,
    ! [A: set_state,A3: set_set_state] :
      ( ( member_set_state @ A @ A3 )
     => ( ( insert_set_state @ A @ A3 )
        = A3 ) ) ).

% insert_absorb
thf(fact_89_insert__absorb,axiom,
    ! [A: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state] :
      ( ( member3029510603097127326_state @ A @ A3 )
     => ( ( insert4171857611248116165_state @ A @ A3 )
        = A3 ) ) ).

% insert_absorb
thf(fact_90_insert__absorb,axiom,
    ! [A: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state] :
      ( ( member753036827967488894_state @ A @ A3 )
     => ( ( insert7525286303735658661_state @ A @ A3 )
        = A3 ) ) ).

% insert_absorb
thf(fact_91_insert__absorb,axiom,
    ! [A: state,A3: set_state] :
      ( ( member_state @ A @ A3 )
     => ( ( insert_state @ A @ A3 )
        = A3 ) ) ).

% insert_absorb
thf(fact_92_insert__ident,axiom,
    ! [X: option_state,A3: set_option_state,B2: set_option_state] :
      ( ~ ( member_option_state @ X @ A3 )
     => ( ~ ( member_option_state @ X @ B2 )
       => ( ( ( insert_option_state @ X @ A3 )
            = ( insert_option_state @ X @ B2 ) )
          = ( A3 = B2 ) ) ) ) ).

% insert_ident
thf(fact_93_insert__ident,axiom,
    ! [X: set_state,A3: set_set_state,B2: set_set_state] :
      ( ~ ( member_set_state @ X @ A3 )
     => ( ~ ( member_set_state @ X @ B2 )
       => ( ( ( insert_set_state @ X @ A3 )
            = ( insert_set_state @ X @ B2 ) )
          = ( A3 = B2 ) ) ) ) ).

% insert_ident
thf(fact_94_insert__ident,axiom,
    ! [X: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state,B2: set_Pr1688445902015331925_state] :
      ( ~ ( member3029510603097127326_state @ X @ A3 )
     => ( ~ ( member3029510603097127326_state @ X @ B2 )
       => ( ( ( insert4171857611248116165_state @ X @ A3 )
            = ( insert4171857611248116165_state @ X @ B2 ) )
          = ( A3 = B2 ) ) ) ) ).

% insert_ident
thf(fact_95_insert__ident,axiom,
    ! [X: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state,B2: set_Pr1785066336555260981_state] :
      ( ~ ( member753036827967488894_state @ X @ A3 )
     => ( ~ ( member753036827967488894_state @ X @ B2 )
       => ( ( ( insert7525286303735658661_state @ X @ A3 )
            = ( insert7525286303735658661_state @ X @ B2 ) )
          = ( A3 = B2 ) ) ) ) ).

% insert_ident
thf(fact_96_insert__ident,axiom,
    ! [X: state,A3: set_state,B2: set_state] :
      ( ~ ( member_state @ X @ A3 )
     => ( ~ ( member_state @ X @ B2 )
       => ( ( ( insert_state @ X @ A3 )
            = ( insert_state @ X @ B2 ) )
          = ( A3 = B2 ) ) ) ) ).

% insert_ident
thf(fact_97_Set_Oset__insert,axiom,
    ! [X: option_state,A3: set_option_state] :
      ( ( member_option_state @ X @ A3 )
     => ~ ! [B4: set_option_state] :
            ( ( A3
              = ( insert_option_state @ X @ B4 ) )
           => ( member_option_state @ X @ B4 ) ) ) ).

% Set.set_insert
thf(fact_98_Set_Oset__insert,axiom,
    ! [X: set_state,A3: set_set_state] :
      ( ( member_set_state @ X @ A3 )
     => ~ ! [B4: set_set_state] :
            ( ( A3
              = ( insert_set_state @ X @ B4 ) )
           => ( member_set_state @ X @ B4 ) ) ) ).

% Set.set_insert
thf(fact_99_Set_Oset__insert,axiom,
    ! [X: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state] :
      ( ( member3029510603097127326_state @ X @ A3 )
     => ~ ! [B4: set_Pr1688445902015331925_state] :
            ( ( A3
              = ( insert4171857611248116165_state @ X @ B4 ) )
           => ( member3029510603097127326_state @ X @ B4 ) ) ) ).

% Set.set_insert
thf(fact_100_Set_Oset__insert,axiom,
    ! [X: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state] :
      ( ( member753036827967488894_state @ X @ A3 )
     => ~ ! [B4: set_Pr1785066336555260981_state] :
            ( ( A3
              = ( insert7525286303735658661_state @ X @ B4 ) )
           => ( member753036827967488894_state @ X @ B4 ) ) ) ).

% Set.set_insert
thf(fact_101_Set_Oset__insert,axiom,
    ! [X: state,A3: set_state] :
      ( ( member_state @ X @ A3 )
     => ~ ! [B4: set_state] :
            ( ( A3
              = ( insert_state @ X @ B4 ) )
           => ( member_state @ X @ B4 ) ) ) ).

% Set.set_insert
thf(fact_102_insertI2,axiom,
    ! [A: option_state,B2: set_option_state,B: option_state] :
      ( ( member_option_state @ A @ B2 )
     => ( member_option_state @ A @ ( insert_option_state @ B @ B2 ) ) ) ).

% insertI2
thf(fact_103_insertI2,axiom,
    ! [A: set_state,B2: set_set_state,B: set_state] :
      ( ( member_set_state @ A @ B2 )
     => ( member_set_state @ A @ ( insert_set_state @ B @ B2 ) ) ) ).

% insertI2
thf(fact_104_insertI2,axiom,
    ! [A: produc3142500478612311029_state,B2: set_Pr1688445902015331925_state,B: produc3142500478612311029_state] :
      ( ( member3029510603097127326_state @ A @ B2 )
     => ( member3029510603097127326_state @ A @ ( insert4171857611248116165_state @ B @ B2 ) ) ) ).

% insertI2
thf(fact_105_insertI2,axiom,
    ! [A: produc8023240190789890773_state,B2: set_Pr1785066336555260981_state,B: produc8023240190789890773_state] :
      ( ( member753036827967488894_state @ A @ B2 )
     => ( member753036827967488894_state @ A @ ( insert7525286303735658661_state @ B @ B2 ) ) ) ).

% insertI2
thf(fact_106_insertI2,axiom,
    ! [A: state,B2: set_state,B: state] :
      ( ( member_state @ A @ B2 )
     => ( member_state @ A @ ( insert_state @ B @ B2 ) ) ) ).

% insertI2
thf(fact_107_insertI1,axiom,
    ! [A: option_state,B2: set_option_state] : ( member_option_state @ A @ ( insert_option_state @ A @ B2 ) ) ).

% insertI1
thf(fact_108_insertI1,axiom,
    ! [A: set_state,B2: set_set_state] : ( member_set_state @ A @ ( insert_set_state @ A @ B2 ) ) ).

% insertI1
thf(fact_109_insertI1,axiom,
    ! [A: produc3142500478612311029_state,B2: set_Pr1688445902015331925_state] : ( member3029510603097127326_state @ A @ ( insert4171857611248116165_state @ A @ B2 ) ) ).

% insertI1
thf(fact_110_insertI1,axiom,
    ! [A: produc8023240190789890773_state,B2: set_Pr1785066336555260981_state] : ( member753036827967488894_state @ A @ ( insert7525286303735658661_state @ A @ B2 ) ) ).

% insertI1
thf(fact_111_insertI1,axiom,
    ! [A: state,B2: set_state] : ( member_state @ A @ ( insert_state @ A @ B2 ) ) ).

% insertI1
thf(fact_112_insertE,axiom,
    ! [A: option_state,B: option_state,A3: set_option_state] :
      ( ( member_option_state @ A @ ( insert_option_state @ B @ A3 ) )
     => ( ( A != B )
       => ( member_option_state @ A @ A3 ) ) ) ).

% insertE
thf(fact_113_insertE,axiom,
    ! [A: set_state,B: set_state,A3: set_set_state] :
      ( ( member_set_state @ A @ ( insert_set_state @ B @ A3 ) )
     => ( ( A != B )
       => ( member_set_state @ A @ A3 ) ) ) ).

% insertE
thf(fact_114_insertE,axiom,
    ! [A: produc3142500478612311029_state,B: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state] :
      ( ( member3029510603097127326_state @ A @ ( insert4171857611248116165_state @ B @ A3 ) )
     => ( ( A != B )
       => ( member3029510603097127326_state @ A @ A3 ) ) ) ).

% insertE
thf(fact_115_insertE,axiom,
    ! [A: produc8023240190789890773_state,B: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state] :
      ( ( member753036827967488894_state @ A @ ( insert7525286303735658661_state @ B @ A3 ) )
     => ( ( A != B )
       => ( member753036827967488894_state @ A @ A3 ) ) ) ).

% insertE
thf(fact_116_insertE,axiom,
    ! [A: state,B: state,A3: set_state] :
      ( ( member_state @ A @ ( insert_state @ B @ A3 ) )
     => ( ( A != B )
       => ( member_state @ A @ A3 ) ) ) ).

% insertE
thf(fact_117_commutative,axiom,
    ( plus
    = ( ^ [A4: state,B3: state] : ( plus @ B3 @ A4 ) ) ) ).

% commutative
thf(fact_118_PartialSA_Oadd__set__commm,axiom,
    ( add_set
    = ( ^ [A5: set_state,B5: set_state] : ( add_set @ B5 @ A5 ) ) ) ).

% PartialSA.add_set_commm
thf(fact_119_PartialSA_Oadd__set__asso,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( add_set @ ( add_set @ A3 @ B2 ) @ C3 )
      = ( add_set @ A3 @ ( add_set @ B2 @ C3 ) ) ) ).

% PartialSA.add_set_asso
thf(fact_120_singleton__inject,axiom,
    ! [A: produc8023240190789890773_state,B: produc8023240190789890773_state] :
      ( ( ( insert7525286303735658661_state @ A @ bot_bo9041262728264437921_state )
        = ( insert7525286303735658661_state @ B @ bot_bo9041262728264437921_state ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_121_singleton__inject,axiom,
    ! [A: produc3142500478612311029_state,B: produc3142500478612311029_state] :
      ( ( ( insert4171857611248116165_state @ A @ bot_bo1080640394036989633_state )
        = ( insert4171857611248116165_state @ B @ bot_bo1080640394036989633_state ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_122_singleton__inject,axiom,
    ! [A: option_state,B: option_state] :
      ( ( ( insert_option_state @ A @ bot_bo710180891245420500_state )
        = ( insert_option_state @ B @ bot_bo710180891245420500_state ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_123_singleton__inject,axiom,
    ! [A: set_state,B: set_state] :
      ( ( ( insert_set_state @ A @ bot_bo2271482359692755898_state )
        = ( insert_set_state @ B @ bot_bo2271482359692755898_state ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_124_singleton__inject,axiom,
    ! [A: state,B: state] :
      ( ( ( insert_state @ A @ bot_bot_set_state )
        = ( insert_state @ B @ bot_bot_set_state ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_125_insert__not__empty,axiom,
    ! [A: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state] :
      ( ( insert7525286303735658661_state @ A @ A3 )
     != bot_bo9041262728264437921_state ) ).

% insert_not_empty
thf(fact_126_insert__not__empty,axiom,
    ! [A: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state] :
      ( ( insert4171857611248116165_state @ A @ A3 )
     != bot_bo1080640394036989633_state ) ).

% insert_not_empty
thf(fact_127_insert__not__empty,axiom,
    ! [A: option_state,A3: set_option_state] :
      ( ( insert_option_state @ A @ A3 )
     != bot_bo710180891245420500_state ) ).

% insert_not_empty
thf(fact_128_insert__not__empty,axiom,
    ! [A: set_state,A3: set_set_state] :
      ( ( insert_set_state @ A @ A3 )
     != bot_bo2271482359692755898_state ) ).

% insert_not_empty
thf(fact_129_insert__not__empty,axiom,
    ! [A: state,A3: set_state] :
      ( ( insert_state @ A @ A3 )
     != bot_bot_set_state ) ).

% insert_not_empty
thf(fact_130_doubleton__eq__iff,axiom,
    ! [A: produc8023240190789890773_state,B: produc8023240190789890773_state,C: produc8023240190789890773_state,D: produc8023240190789890773_state] :
      ( ( ( insert7525286303735658661_state @ A @ ( insert7525286303735658661_state @ B @ bot_bo9041262728264437921_state ) )
        = ( insert7525286303735658661_state @ C @ ( insert7525286303735658661_state @ D @ bot_bo9041262728264437921_state ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_131_doubleton__eq__iff,axiom,
    ! [A: produc3142500478612311029_state,B: produc3142500478612311029_state,C: produc3142500478612311029_state,D: produc3142500478612311029_state] :
      ( ( ( insert4171857611248116165_state @ A @ ( insert4171857611248116165_state @ B @ bot_bo1080640394036989633_state ) )
        = ( insert4171857611248116165_state @ C @ ( insert4171857611248116165_state @ D @ bot_bo1080640394036989633_state ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_132_doubleton__eq__iff,axiom,
    ! [A: option_state,B: option_state,C: option_state,D: option_state] :
      ( ( ( insert_option_state @ A @ ( insert_option_state @ B @ bot_bo710180891245420500_state ) )
        = ( insert_option_state @ C @ ( insert_option_state @ D @ bot_bo710180891245420500_state ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_133_doubleton__eq__iff,axiom,
    ! [A: set_state,B: set_state,C: set_state,D: set_state] :
      ( ( ( insert_set_state @ A @ ( insert_set_state @ B @ bot_bo2271482359692755898_state ) )
        = ( insert_set_state @ C @ ( insert_set_state @ D @ bot_bo2271482359692755898_state ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_134_doubleton__eq__iff,axiom,
    ! [A: state,B: state,C: state,D: state] :
      ( ( ( insert_state @ A @ ( insert_state @ B @ bot_bot_set_state ) )
        = ( insert_state @ C @ ( insert_state @ D @ bot_bot_set_state ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_135_singleton__iff,axiom,
    ! [B: produc8023240190789890773_state,A: produc8023240190789890773_state] :
      ( ( member753036827967488894_state @ B @ ( insert7525286303735658661_state @ A @ bot_bo9041262728264437921_state ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_136_singleton__iff,axiom,
    ! [B: produc3142500478612311029_state,A: produc3142500478612311029_state] :
      ( ( member3029510603097127326_state @ B @ ( insert4171857611248116165_state @ A @ bot_bo1080640394036989633_state ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_137_singleton__iff,axiom,
    ! [B: option_state,A: option_state] :
      ( ( member_option_state @ B @ ( insert_option_state @ A @ bot_bo710180891245420500_state ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_138_singleton__iff,axiom,
    ! [B: set_state,A: set_state] :
      ( ( member_set_state @ B @ ( insert_set_state @ A @ bot_bo2271482359692755898_state ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_139_singleton__iff,axiom,
    ! [B: state,A: state] :
      ( ( member_state @ B @ ( insert_state @ A @ bot_bot_set_state ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_140_singletonD,axiom,
    ! [B: produc8023240190789890773_state,A: produc8023240190789890773_state] :
      ( ( member753036827967488894_state @ B @ ( insert7525286303735658661_state @ A @ bot_bo9041262728264437921_state ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_141_singletonD,axiom,
    ! [B: produc3142500478612311029_state,A: produc3142500478612311029_state] :
      ( ( member3029510603097127326_state @ B @ ( insert4171857611248116165_state @ A @ bot_bo1080640394036989633_state ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_142_singletonD,axiom,
    ! [B: option_state,A: option_state] :
      ( ( member_option_state @ B @ ( insert_option_state @ A @ bot_bo710180891245420500_state ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_143_singletonD,axiom,
    ! [B: set_state,A: set_state] :
      ( ( member_set_state @ B @ ( insert_set_state @ A @ bot_bo2271482359692755898_state ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_144_singletonD,axiom,
    ! [B: state,A: state] :
      ( ( member_state @ B @ ( insert_state @ A @ bot_bot_set_state ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_145_positivity,axiom,
    ! [A: state,B: state,C: state] :
      ( ( ( plus @ A @ B )
        = ( some_state @ C ) )
     => ( ( ( some_state @ C )
          = ( plus @ C @ C ) )
       => ( ( some_state @ A )
          = ( plus @ A @ A ) ) ) ) ).

% positivity
thf(fact_146_asso1,axiom,
    ! [A: state,B: state,Ab: state,C: state,Bc: state] :
      ( ( ( ( plus @ A @ B )
          = ( some_state @ Ab ) )
        & ( ( plus @ B @ C )
          = ( some_state @ Bc ) ) )
     => ( ( plus @ Ab @ C )
        = ( plus @ A @ Bc ) ) ) ).

% asso1
thf(fact_147_the__elem__eq,axiom,
    ! [X: produc8023240190789890773_state] :
      ( ( the_el1727186808309674058_state @ ( insert7525286303735658661_state @ X @ bot_bo9041262728264437921_state ) )
      = X ) ).

% the_elem_eq
thf(fact_148_the__elem__eq,axiom,
    ! [X: produc3142500478612311029_state] :
      ( ( the_el7118915247011979882_state @ ( insert4171857611248116165_state @ X @ bot_bo1080640394036989633_state ) )
      = X ) ).

% the_elem_eq
thf(fact_149_the__elem__eq,axiom,
    ! [X: option_state] :
      ( ( the_el1618976816499768149_state @ ( insert_option_state @ X @ bot_bo710180891245420500_state ) )
      = X ) ).

% the_elem_eq
thf(fact_150_the__elem__eq,axiom,
    ! [X: set_state] :
      ( ( the_elem_set_state @ ( insert_set_state @ X @ bot_bo2271482359692755898_state ) )
      = X ) ).

% the_elem_eq
thf(fact_151_the__elem__eq,axiom,
    ! [X: state] :
      ( ( the_elem_state @ ( insert_state @ X @ bot_bot_set_state ) )
      = X ) ).

% the_elem_eq
thf(fact_152_bot__apply,axiom,
    ( bot_bot_state_o
    = ( ^ [X3: state] : bot_bot_o ) ) ).

% bot_apply
thf(fact_153_is__singletonI,axiom,
    ! [X: produc8023240190789890773_state] : ( is_sin3624314468123612105_state @ ( insert7525286303735658661_state @ X @ bot_bo9041262728264437921_state ) ) ).

% is_singletonI
thf(fact_154_is__singletonI,axiom,
    ! [X: produc3142500478612311029_state] : ( is_sin7571815095334105321_state @ ( insert4171857611248116165_state @ X @ bot_bo1080640394036989633_state ) ) ).

% is_singletonI
thf(fact_155_is__singletonI,axiom,
    ! [X: option_state] : ( is_sin8559911096322084886_state @ ( insert_option_state @ X @ bot_bo710180891245420500_state ) ) ).

% is_singletonI
thf(fact_156_is__singletonI,axiom,
    ! [X: set_state] : ( is_sin3747817797122030204_state @ ( insert_set_state @ X @ bot_bo2271482359692755898_state ) ) ).

% is_singletonI
thf(fact_157_is__singletonI,axiom,
    ! [X: state] : ( is_singleton_state @ ( insert_state @ X @ bot_bot_set_state ) ) ).

% is_singletonI
thf(fact_158_mem__Collect__eq,axiom,
    ! [A: option_state,P: option_state > $o] :
      ( ( member_option_state @ A @ ( collect_option_state @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_159_mem__Collect__eq,axiom,
    ! [A: set_state,P: set_state > $o] :
      ( ( member_set_state @ A @ ( collect_set_state @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_160_mem__Collect__eq,axiom,
    ! [A: produc3142500478612311029_state,P: produc3142500478612311029_state > $o] :
      ( ( member3029510603097127326_state @ A @ ( collec8144523193623705312_state @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_161_mem__Collect__eq,axiom,
    ! [A: produc8023240190789890773_state,P: produc8023240190789890773_state > $o] :
      ( ( member753036827967488894_state @ A @ ( collec7320380983431419584_state @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_162_mem__Collect__eq,axiom,
    ! [A: state,P: state > $o] :
      ( ( member_state @ A @ ( collect_state @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_163_Collect__mem__eq,axiom,
    ! [A3: set_option_state] :
      ( ( collect_option_state
        @ ^ [X3: option_state] : ( member_option_state @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_164_Collect__mem__eq,axiom,
    ! [A3: set_set_state] :
      ( ( collect_set_state
        @ ^ [X3: set_state] : ( member_set_state @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_165_Collect__mem__eq,axiom,
    ! [A3: set_Pr1688445902015331925_state] :
      ( ( collec8144523193623705312_state
        @ ^ [X3: produc3142500478612311029_state] : ( member3029510603097127326_state @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_166_Collect__mem__eq,axiom,
    ! [A3: set_Pr1785066336555260981_state] :
      ( ( collec7320380983431419584_state
        @ ^ [X3: produc8023240190789890773_state] : ( member753036827967488894_state @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_167_Collect__mem__eq,axiom,
    ! [A3: set_state] :
      ( ( collect_state
        @ ^ [X3: state] : ( member_state @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_168_Collect__cong,axiom,
    ! [P: state > $o,Q: state > $o] :
      ( ! [X4: state] :
          ( ( P @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect_state @ P )
        = ( collect_state @ Q ) ) ) ).

% Collect_cong
thf(fact_169_PartialSA_Osetify__sum,axiom,
    ! [P: state > $o,A3: set_state,B2: set_state] :
      ( ( sep_setify_state @ P @ ( add_set @ A3 @ B2 ) )
      = ( ! [X3: state] :
            ( ( member_state @ X3 @ A3 )
           => ( sep_setify_state @ P @ ( add_set @ ( insert_state @ X3 @ bot_bot_set_state ) @ B2 ) ) ) ) ) ).

% PartialSA.setify_sum
thf(fact_170_these__insert__Some,axiom,
    ! [X: set_state,A3: set_option_set_state] :
      ( ( these_set_state @ ( insert1104837854041676528_state @ ( some_set_state @ X ) @ A3 ) )
      = ( insert_set_state @ X @ ( these_set_state @ A3 ) ) ) ).

% these_insert_Some
thf(fact_171_these__insert__Some,axiom,
    ! [X: produc3142500478612311029_state,A3: set_op381248089174005275_state] :
      ( ( these_5013389664457929650_state @ ( insert4808919046788495371_state @ ( some_P3186401494017672538_state @ X ) @ A3 ) )
      = ( insert4171857611248116165_state @ X @ ( these_5013389664457929650_state @ A3 ) ) ) ).

% these_insert_Some
thf(fact_172_these__insert__Some,axiom,
    ! [X: produc8023240190789890773_state,A3: set_op4912175446517189883_state] :
      ( ( these_9162046556185909650_state @ ( insert4154903780514342891_state @ ( some_P8120450764674687802_state @ X ) @ A3 ) )
      = ( insert7525286303735658661_state @ X @ ( these_9162046556185909650_state @ A3 ) ) ) ).

% these_insert_Some
thf(fact_173_these__insert__Some,axiom,
    ! [X: option_state,A3: set_op9003753404445127824_state] :
      ( ( these_option_state @ ( insert7535573567550883338_state @ ( some_option_state @ X ) @ A3 ) )
      = ( insert_option_state @ X @ ( these_option_state @ A3 ) ) ) ).

% these_insert_Some
thf(fact_174_these__insert__Some,axiom,
    ! [X: state,A3: set_option_state] :
      ( ( these_state @ ( insert_option_state @ ( some_state @ X ) @ A3 ) )
      = ( insert_state @ X @ ( these_state @ A3 ) ) ) ).

% these_insert_Some
thf(fact_175_Set_Ois__empty__def,axiom,
    ( is_emp7935198893844832935_state
    = ( ^ [A5: set_Pr1785066336555260981_state] : ( A5 = bot_bo9041262728264437921_state ) ) ) ).

% Set.is_empty_def
thf(fact_176_Set_Ois__empty__def,axiom,
    ( is_emp6065741494043489735_state
    = ( ^ [A5: set_Pr1688445902015331925_state] : ( A5 = bot_bo1080640394036989633_state ) ) ) ).

% Set.is_empty_def
thf(fact_177_Set_Ois__empty__def,axiom,
    ( is_emp7138872393943660984_state
    = ( ^ [A5: set_option_state] : ( A5 = bot_bo710180891245420500_state ) ) ) ).

% Set.is_empty_def
thf(fact_178_Set_Ois__empty__def,axiom,
    ( is_empty_set_state
    = ( ^ [A5: set_set_state] : ( A5 = bot_bo2271482359692755898_state ) ) ) ).

% Set.is_empty_def
thf(fact_179_Set_Ois__empty__def,axiom,
    ( is_empty_state
    = ( ^ [A5: set_state] : ( A5 = bot_bot_set_state ) ) ) ).

% Set.is_empty_def
thf(fact_180_is__singleton__def,axiom,
    ( is_sin3624314468123612105_state
    = ( ^ [A5: set_Pr1785066336555260981_state] :
        ? [X3: produc8023240190789890773_state] :
          ( A5
          = ( insert7525286303735658661_state @ X3 @ bot_bo9041262728264437921_state ) ) ) ) ).

% is_singleton_def
thf(fact_181_is__singleton__def,axiom,
    ( is_sin7571815095334105321_state
    = ( ^ [A5: set_Pr1688445902015331925_state] :
        ? [X3: produc3142500478612311029_state] :
          ( A5
          = ( insert4171857611248116165_state @ X3 @ bot_bo1080640394036989633_state ) ) ) ) ).

% is_singleton_def
thf(fact_182_is__singleton__def,axiom,
    ( is_sin8559911096322084886_state
    = ( ^ [A5: set_option_state] :
        ? [X3: option_state] :
          ( A5
          = ( insert_option_state @ X3 @ bot_bo710180891245420500_state ) ) ) ) ).

% is_singleton_def
thf(fact_183_is__singleton__def,axiom,
    ( is_sin3747817797122030204_state
    = ( ^ [A5: set_set_state] :
        ? [X3: set_state] :
          ( A5
          = ( insert_set_state @ X3 @ bot_bo2271482359692755898_state ) ) ) ) ).

% is_singleton_def
thf(fact_184_is__singleton__def,axiom,
    ( is_singleton_state
    = ( ^ [A5: set_state] :
        ? [X3: state] :
          ( A5
          = ( insert_state @ X3 @ bot_bot_set_state ) ) ) ) ).

% is_singleton_def
thf(fact_185_is__singletonE,axiom,
    ! [A3: set_Pr1785066336555260981_state] :
      ( ( is_sin3624314468123612105_state @ A3 )
     => ~ ! [X4: produc8023240190789890773_state] :
            ( A3
           != ( insert7525286303735658661_state @ X4 @ bot_bo9041262728264437921_state ) ) ) ).

% is_singletonE
thf(fact_186_is__singletonE,axiom,
    ! [A3: set_Pr1688445902015331925_state] :
      ( ( is_sin7571815095334105321_state @ A3 )
     => ~ ! [X4: produc3142500478612311029_state] :
            ( A3
           != ( insert4171857611248116165_state @ X4 @ bot_bo1080640394036989633_state ) ) ) ).

% is_singletonE
thf(fact_187_is__singletonE,axiom,
    ! [A3: set_option_state] :
      ( ( is_sin8559911096322084886_state @ A3 )
     => ~ ! [X4: option_state] :
            ( A3
           != ( insert_option_state @ X4 @ bot_bo710180891245420500_state ) ) ) ).

% is_singletonE
thf(fact_188_is__singletonE,axiom,
    ! [A3: set_set_state] :
      ( ( is_sin3747817797122030204_state @ A3 )
     => ~ ! [X4: set_state] :
            ( A3
           != ( insert_set_state @ X4 @ bot_bo2271482359692755898_state ) ) ) ).

% is_singletonE
thf(fact_189_is__singletonE,axiom,
    ! [A3: set_state] :
      ( ( is_singleton_state @ A3 )
     => ~ ! [X4: state] :
            ( A3
           != ( insert_state @ X4 @ bot_bot_set_state ) ) ) ).

% is_singletonE
thf(fact_190_PartialSA_Ox__elem__set__product__splus,axiom,
    ! [X: state,A3: set_state,B2: set_state] :
      ( ( member_state @ X @ ( add_set @ A3 @ B2 ) )
      = ( ? [A4: state,B3: state] :
            ( ( member_state @ A4 @ A3 )
            & ( member_state @ B3 @ B2 )
            & ( ( some_state @ X )
              = ( sep_splus_state @ plus @ ( some_state @ A4 ) @ ( some_state @ B3 ) ) ) ) ) ) ).

% PartialSA.x_elem_set_product_splus
thf(fact_191_option_Osimps_I15_J,axiom,
    ! [X2: produc8023240190789890773_state] :
      ( ( set_op4970154267292507491_state @ ( some_P8120450764674687802_state @ X2 ) )
      = ( insert7525286303735658661_state @ X2 @ bot_bo9041262728264437921_state ) ) ).

% option.simps(15)
thf(fact_192_option_Osimps_I15_J,axiom,
    ! [X2: produc3142500478612311029_state] :
      ( ( set_op4197959913983417475_state @ ( some_P3186401494017672538_state @ X2 ) )
      = ( insert4171857611248116165_state @ X2 @ bot_bo1080640394036989633_state ) ) ).

% option.simps(15)
thf(fact_193_option_Osimps_I15_J,axiom,
    ! [X2: option_state] :
      ( ( set_op5162993263733338108_state @ ( some_option_state @ X2 ) )
      = ( insert_option_state @ X2 @ bot_bo710180891245420500_state ) ) ).

% option.simps(15)
thf(fact_194_option_Osimps_I15_J,axiom,
    ! [X2: set_state] :
      ( ( set_option_set_state2 @ ( some_set_state @ X2 ) )
      = ( insert_set_state @ X2 @ bot_bo2271482359692755898_state ) ) ).

% option.simps(15)
thf(fact_195_option_Osimps_I15_J,axiom,
    ! [X2: state] :
      ( ( set_option_state2 @ ( some_state @ X2 ) )
      = ( insert_state @ X2 @ bot_bot_set_state ) ) ).

% option.simps(15)
thf(fact_196_PartialSA_Oequiv__stable__sum,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( sep_equiv_state @ plus @ A3 @ B2 )
     => ( sep_equiv_state @ plus @ ( add_set @ A3 @ C3 ) @ ( add_set @ B2 @ C3 ) ) ) ).

% PartialSA.equiv_stable_sum
thf(fact_197_in__cwand,axiom,
    ! [A3: set_state,W: state,B2: set_state] :
      ( ! [A2: state,X4: state] :
          ( ( ( member_state @ A2 @ A3 )
            & ( ( some_state @ X4 )
              = ( plus @ ( r @ A2 @ W ) @ A2 ) ) )
         => ( member_state @ X4 @ B2 ) )
     => ( member_state @ W @ ( cwand @ A3 @ B2 ) ) ) ).

% in_cwand
thf(fact_198_elem__set,axiom,
    ! [X: set_state,Xo: option_set_state] :
      ( ( member_set_state @ X @ ( set_option_set_state2 @ Xo ) )
      = ( Xo
        = ( some_set_state @ X ) ) ) ).

% elem_set
thf(fact_199_elem__set,axiom,
    ! [X: produc3142500478612311029_state,Xo: option6833441738159790651_state] :
      ( ( member3029510603097127326_state @ X @ ( set_op4197959913983417475_state @ Xo ) )
      = ( Xo
        = ( some_P3186401494017672538_state @ X ) ) ) ).

% elem_set
thf(fact_200_elem__set,axiom,
    ! [X: produc8023240190789890773_state,Xo: option2250103068101548571_state] :
      ( ( member753036827967488894_state @ X @ ( set_op4970154267292507491_state @ Xo ) )
      = ( Xo
        = ( some_P8120450764674687802_state @ X ) ) ) ).

% elem_set
thf(fact_201_elem__set,axiom,
    ! [X: option_state,Xo: option_option_state] :
      ( ( member_option_state @ X @ ( set_op5162993263733338108_state @ Xo ) )
      = ( Xo
        = ( some_option_state @ X ) ) ) ).

% elem_set
thf(fact_202_elem__set,axiom,
    ! [X: state,Xo: option_state] :
      ( ( member_state @ X @ ( set_option_state2 @ Xo ) )
      = ( Xo
        = ( some_state @ X ) ) ) ).

% elem_set
thf(fact_203_these__empty,axiom,
    ( ( these_9162046556185909650_state @ bot_bo3922232019306180455_state )
    = bot_bo9041262728264437921_state ) ).

% these_empty
thf(fact_204_these__empty,axiom,
    ( ( these_5013389664457929650_state @ bot_bo2763976174278612103_state )
    = bot_bo1080640394036989633_state ) ).

% these_empty
thf(fact_205_these__empty,axiom,
    ( ( these_option_state @ bot_bo489212050006660900_state )
    = bot_bo710180891245420500_state ) ).

% these_empty
thf(fact_206_these__empty,axiom,
    ( ( these_set_state @ bot_bo7912781682106412938_state )
    = bot_bo2271482359692755898_state ) ).

% these_empty
thf(fact_207_these__empty,axiom,
    ( ( these_state @ bot_bo710180891245420500_state )
    = bot_bot_set_state ) ).

% these_empty
thf(fact_208_PartialSA_Osetify__def,axiom,
    ( sep_setify_state
    = ( ^ [P2: state > $o,A5: set_state] :
        ! [X3: state] :
          ( ( member_state @ X3 @ A5 )
         => ( P2 @ X3 ) ) ) ) ).

% PartialSA.setify_def
thf(fact_209_bot__set__def,axiom,
    ( bot_bo9041262728264437921_state
    = ( collec7320380983431419584_state @ bot_bo2162275076026452348tate_o ) ) ).

% bot_set_def
thf(fact_210_bot__set__def,axiom,
    ( bot_bo1080640394036989633_state
    = ( collec8144523193623705312_state @ bot_bo4049596492272799580tate_o ) ) ).

% bot_set_def
thf(fact_211_bot__set__def,axiom,
    ( bot_bo710180891245420500_state
    = ( collect_option_state @ bot_bo4453335400789057457tate_o ) ) ).

% bot_set_def
thf(fact_212_bot__set__def,axiom,
    ( bot_bo2271482359692755898_state
    = ( collect_set_state @ bot_bot_set_state_o ) ) ).

% bot_set_def
thf(fact_213_bot__set__def,axiom,
    ( bot_bot_set_state
    = ( collect_state @ bot_bot_state_o ) ) ).

% bot_set_def
thf(fact_214_PartialSA_Osplus__asso,axiom,
    ! [A: option_state,B: option_state,C: option_state] :
      ( ( sep_splus_state @ plus @ ( sep_splus_state @ plus @ A @ B ) @ C )
      = ( sep_splus_state @ plus @ A @ ( sep_splus_state @ plus @ B @ C ) ) ) ).

% PartialSA.splus_asso
thf(fact_215_PartialSA_Osplus__comm,axiom,
    ! [A: option_state,B: option_state] :
      ( ( sep_splus_state @ plus @ A @ B )
      = ( sep_splus_state @ plus @ B @ A ) ) ).

% PartialSA.splus_comm
thf(fact_216_option_Oset__cases,axiom,
    ! [E: set_state,A: option_set_state] :
      ( ( member_set_state @ E @ ( set_option_set_state2 @ A ) )
     => ( A
        = ( some_set_state @ E ) ) ) ).

% option.set_cases
thf(fact_217_option_Oset__cases,axiom,
    ! [E: produc3142500478612311029_state,A: option6833441738159790651_state] :
      ( ( member3029510603097127326_state @ E @ ( set_op4197959913983417475_state @ A ) )
     => ( A
        = ( some_P3186401494017672538_state @ E ) ) ) ).

% option.set_cases
thf(fact_218_option_Oset__cases,axiom,
    ! [E: produc8023240190789890773_state,A: option2250103068101548571_state] :
      ( ( member753036827967488894_state @ E @ ( set_op4970154267292507491_state @ A ) )
     => ( A
        = ( some_P8120450764674687802_state @ E ) ) ) ).

% option.set_cases
thf(fact_219_option_Oset__cases,axiom,
    ! [E: option_state,A: option_option_state] :
      ( ( member_option_state @ E @ ( set_op5162993263733338108_state @ A ) )
     => ( A
        = ( some_option_state @ E ) ) ) ).

% option.set_cases
thf(fact_220_option_Oset__cases,axiom,
    ! [E: state,A: option_state] :
      ( ( member_state @ E @ ( set_option_state2 @ A ) )
     => ( A
        = ( some_state @ E ) ) ) ).

% option.set_cases
thf(fact_221_option_Oset__intros,axiom,
    ! [X2: set_state] : ( member_set_state @ X2 @ ( set_option_set_state2 @ ( some_set_state @ X2 ) ) ) ).

% option.set_intros
thf(fact_222_option_Oset__intros,axiom,
    ! [X2: produc3142500478612311029_state] : ( member3029510603097127326_state @ X2 @ ( set_op4197959913983417475_state @ ( some_P3186401494017672538_state @ X2 ) ) ) ).

% option.set_intros
thf(fact_223_option_Oset__intros,axiom,
    ! [X2: produc8023240190789890773_state] : ( member753036827967488894_state @ X2 @ ( set_op4970154267292507491_state @ ( some_P8120450764674687802_state @ X2 ) ) ) ).

% option.set_intros
thf(fact_224_option_Oset__intros,axiom,
    ! [X2: option_state] : ( member_option_state @ X2 @ ( set_op5162993263733338108_state @ ( some_option_state @ X2 ) ) ) ).

% option.set_intros
thf(fact_225_option_Oset__intros,axiom,
    ! [X2: state] : ( member_state @ X2 @ ( set_option_state2 @ ( some_state @ X2 ) ) ) ).

% option.set_intros
thf(fact_226_ospec,axiom,
    ! [A3: option_option_state,P: option_state > $o,X: option_state] :
      ( ! [X4: option_state] :
          ( ( member_option_state @ X4 @ ( set_op5162993263733338108_state @ A3 ) )
         => ( P @ X4 ) )
     => ( ( A3
          = ( some_option_state @ X ) )
       => ( P @ X ) ) ) ).

% ospec
thf(fact_227_ospec,axiom,
    ! [A3: option_state,P: state > $o,X: state] :
      ( ! [X4: state] :
          ( ( member_state @ X4 @ ( set_option_state2 @ A3 ) )
         => ( P @ X4 ) )
     => ( ( A3
          = ( some_state @ X ) )
       => ( P @ X ) ) ) ).

% ospec
thf(fact_228_in__these__eq,axiom,
    ! [X: set_state,A3: set_option_set_state] :
      ( ( member_set_state @ X @ ( these_set_state @ A3 ) )
      = ( member1412897518142203351_state @ ( some_set_state @ X ) @ A3 ) ) ).

% in_these_eq
thf(fact_229_in__these__eq,axiom,
    ! [X: produc3142500478612311029_state,A3: set_op381248089174005275_state] :
      ( ( member3029510603097127326_state @ X @ ( these_5013389664457929650_state @ A3 ) )
      = ( member3754053363737695844_state @ ( some_P3186401494017672538_state @ X ) @ A3 ) ) ).

% in_these_eq
thf(fact_230_in__these__eq,axiom,
    ! [X: produc8023240190789890773_state,A3: set_op4912175446517189883_state] :
      ( ( member753036827967488894_state @ X @ ( these_9162046556185909650_state @ A3 ) )
      = ( member5076014802351601988_state @ ( some_P8120450764674687802_state @ X ) @ A3 ) ) ).

% in_these_eq
thf(fact_231_in__these__eq,axiom,
    ! [X: option_state,A3: set_op9003753404445127824_state] :
      ( ( member_option_state @ X @ ( these_option_state @ A3 ) )
      = ( member1079230918592710257_state @ ( some_option_state @ X ) @ A3 ) ) ).

% in_these_eq
thf(fact_232_in__these__eq,axiom,
    ! [X: state,A3: set_option_state] :
      ( ( member_state @ X @ ( these_state @ A3 ) )
      = ( member_option_state @ ( some_state @ X ) @ A3 ) ) ).

% in_these_eq
thf(fact_233_is__singleton__the__elem,axiom,
    ( is_sin3624314468123612105_state
    = ( ^ [A5: set_Pr1785066336555260981_state] :
          ( A5
          = ( insert7525286303735658661_state @ ( the_el1727186808309674058_state @ A5 ) @ bot_bo9041262728264437921_state ) ) ) ) ).

% is_singleton_the_elem
thf(fact_234_is__singleton__the__elem,axiom,
    ( is_sin7571815095334105321_state
    = ( ^ [A5: set_Pr1688445902015331925_state] :
          ( A5
          = ( insert4171857611248116165_state @ ( the_el7118915247011979882_state @ A5 ) @ bot_bo1080640394036989633_state ) ) ) ) ).

% is_singleton_the_elem
thf(fact_235_is__singleton__the__elem,axiom,
    ( is_sin8559911096322084886_state
    = ( ^ [A5: set_option_state] :
          ( A5
          = ( insert_option_state @ ( the_el1618976816499768149_state @ A5 ) @ bot_bo710180891245420500_state ) ) ) ) ).

% is_singleton_the_elem
thf(fact_236_is__singleton__the__elem,axiom,
    ( is_sin3747817797122030204_state
    = ( ^ [A5: set_set_state] :
          ( A5
          = ( insert_set_state @ ( the_elem_set_state @ A5 ) @ bot_bo2271482359692755898_state ) ) ) ) ).

% is_singleton_the_elem
thf(fact_237_is__singleton__the__elem,axiom,
    ( is_singleton_state
    = ( ^ [A5: set_state] :
          ( A5
          = ( insert_state @ ( the_elem_state @ A5 ) @ bot_bot_set_state ) ) ) ) ).

% is_singleton_the_elem
thf(fact_238_PartialSA_Osplus_Osimps_I3_J,axiom,
    ! [A: state,B: state] :
      ( ( sep_splus_state @ plus @ ( some_state @ A ) @ ( some_state @ B ) )
      = ( plus @ A @ B ) ) ).

% PartialSA.splus.simps(3)
thf(fact_239_PartialSA_Osplus__develop,axiom,
    ! [A: state,B: state,C: state,D: state] :
      ( ( ( some_state @ A )
        = ( plus @ B @ C ) )
     => ( ( plus @ A @ D )
        = ( sep_splus_state @ plus @ ( sep_splus_state @ plus @ ( some_state @ B ) @ ( some_state @ C ) ) @ ( some_state @ D ) ) ) ) ).

% PartialSA.splus_develop
thf(fact_240_is__singletonI_H,axiom,
    ! [A3: set_Pr1785066336555260981_state] :
      ( ( A3 != bot_bo9041262728264437921_state )
     => ( ! [X4: produc8023240190789890773_state,Y: produc8023240190789890773_state] :
            ( ( member753036827967488894_state @ X4 @ A3 )
           => ( ( member753036827967488894_state @ Y @ A3 )
             => ( X4 = Y ) ) )
       => ( is_sin3624314468123612105_state @ A3 ) ) ) ).

% is_singletonI'
thf(fact_241_is__singletonI_H,axiom,
    ! [A3: set_Pr1688445902015331925_state] :
      ( ( A3 != bot_bo1080640394036989633_state )
     => ( ! [X4: produc3142500478612311029_state,Y: produc3142500478612311029_state] :
            ( ( member3029510603097127326_state @ X4 @ A3 )
           => ( ( member3029510603097127326_state @ Y @ A3 )
             => ( X4 = Y ) ) )
       => ( is_sin7571815095334105321_state @ A3 ) ) ) ).

% is_singletonI'
thf(fact_242_is__singletonI_H,axiom,
    ! [A3: set_option_state] :
      ( ( A3 != bot_bo710180891245420500_state )
     => ( ! [X4: option_state,Y: option_state] :
            ( ( member_option_state @ X4 @ A3 )
           => ( ( member_option_state @ Y @ A3 )
             => ( X4 = Y ) ) )
       => ( is_sin8559911096322084886_state @ A3 ) ) ) ).

% is_singletonI'
thf(fact_243_is__singletonI_H,axiom,
    ! [A3: set_set_state] :
      ( ( A3 != bot_bo2271482359692755898_state )
     => ( ! [X4: set_state,Y: set_state] :
            ( ( member_set_state @ X4 @ A3 )
           => ( ( member_set_state @ Y @ A3 )
             => ( X4 = Y ) ) )
       => ( is_sin3747817797122030204_state @ A3 ) ) ) ).

% is_singletonI'
thf(fact_244_is__singletonI_H,axiom,
    ! [A3: set_state] :
      ( ( A3 != bot_bot_set_state )
     => ( ! [X4: state,Y: state] :
            ( ( member_state @ X4 @ A3 )
           => ( ( member_state @ Y @ A3 )
             => ( X4 = Y ) ) )
       => ( is_singleton_state @ A3 ) ) ) ).

% is_singletonI'
thf(fact_245_bot__fun__def,axiom,
    ( bot_bot_state_o
    = ( ^ [X3: state] : bot_bot_o ) ) ).

% bot_fun_def
thf(fact_246_PartialSA_Omono__prop__set__equiv,axiom,
    ! [P: state > $o,A3: set_state,B2: set_state] :
      ( ( sep_mono_prop_state @ plus @ P )
     => ( ( sep_equiv_state @ plus @ A3 @ B2 )
       => ( ( sep_setify_state @ P @ A3 )
          = ( sep_setify_state @ P @ B2 ) ) ) ) ).

% PartialSA.mono_prop_set_equiv
thf(fact_247_PartialSA_Osetify__sum__image,axiom,
    ! [P: state > $o,F: nat > state,A3: set_nat,B2: set_state] :
      ( ( sep_setify_state @ P @ ( add_set @ ( image_nat_state @ F @ A3 ) @ B2 ) )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A3 )
           => ( sep_setify_state @ P @ ( add_set @ ( insert_state @ ( F @ X3 ) @ bot_bot_set_state ) @ B2 ) ) ) ) ) ).

% PartialSA.setify_sum_image
thf(fact_248_sep__algebra_Oequiv_Ocong,axiom,
    sep_equiv_state = sep_equiv_state ).

% sep_algebra.equiv.cong
thf(fact_249_sep__algebra_Osplus_Ocong,axiom,
    sep_splus_state = sep_splus_state ).

% sep_algebra.splus.cong
thf(fact_250_these__not__empty__eq,axiom,
    ! [B2: set_op4912175446517189883_state] :
      ( ( ( these_9162046556185909650_state @ B2 )
       != bot_bo9041262728264437921_state )
      = ( ( B2 != bot_bo3922232019306180455_state )
        & ( B2
         != ( insert4154903780514342891_state @ none_P348328851727313334_state @ bot_bo3922232019306180455_state ) ) ) ) ).

% these_not_empty_eq
thf(fact_251_these__not__empty__eq,axiom,
    ! [B2: set_op381248089174005275_state] :
      ( ( ( these_5013389664457929650_state @ B2 )
       != bot_bo1080640394036989633_state )
      = ( ( B2 != bot_bo2763976174278612103_state )
        & ( B2
         != ( insert4808919046788495371_state @ none_P2148290358184556502_state @ bot_bo2763976174278612103_state ) ) ) ) ).

% these_not_empty_eq
thf(fact_252_these__not__empty__eq,axiom,
    ! [B2: set_op9003753404445127824_state] :
      ( ( ( these_option_state @ B2 )
       != bot_bo710180891245420500_state )
      = ( ( B2 != bot_bo489212050006660900_state )
        & ( B2
         != ( insert7535573567550883338_state @ none_option_state @ bot_bo489212050006660900_state ) ) ) ) ).

% these_not_empty_eq
thf(fact_253_these__not__empty__eq,axiom,
    ! [B2: set_option_set_state] :
      ( ( ( these_set_state @ B2 )
       != bot_bo2271482359692755898_state )
      = ( ( B2 != bot_bo7912781682106412938_state )
        & ( B2
         != ( insert1104837854041676528_state @ none_set_state @ bot_bo7912781682106412938_state ) ) ) ) ).

% these_not_empty_eq
thf(fact_254_these__not__empty__eq,axiom,
    ! [B2: set_option_state] :
      ( ( ( these_state @ B2 )
       != bot_bot_set_state )
      = ( ( B2 != bot_bo710180891245420500_state )
        & ( B2
         != ( insert_option_state @ none_state @ bot_bo710180891245420500_state ) ) ) ) ).

% these_not_empty_eq
thf(fact_255_these__empty__eq,axiom,
    ! [B2: set_op4912175446517189883_state] :
      ( ( ( these_9162046556185909650_state @ B2 )
        = bot_bo9041262728264437921_state )
      = ( ( B2 = bot_bo3922232019306180455_state )
        | ( B2
          = ( insert4154903780514342891_state @ none_P348328851727313334_state @ bot_bo3922232019306180455_state ) ) ) ) ).

% these_empty_eq
thf(fact_256_these__empty__eq,axiom,
    ! [B2: set_op381248089174005275_state] :
      ( ( ( these_5013389664457929650_state @ B2 )
        = bot_bo1080640394036989633_state )
      = ( ( B2 = bot_bo2763976174278612103_state )
        | ( B2
          = ( insert4808919046788495371_state @ none_P2148290358184556502_state @ bot_bo2763976174278612103_state ) ) ) ) ).

% these_empty_eq
thf(fact_257_these__empty__eq,axiom,
    ! [B2: set_op9003753404445127824_state] :
      ( ( ( these_option_state @ B2 )
        = bot_bo710180891245420500_state )
      = ( ( B2 = bot_bo489212050006660900_state )
        | ( B2
          = ( insert7535573567550883338_state @ none_option_state @ bot_bo489212050006660900_state ) ) ) ) ).

% these_empty_eq
thf(fact_258_these__empty__eq,axiom,
    ! [B2: set_option_set_state] :
      ( ( ( these_set_state @ B2 )
        = bot_bo2271482359692755898_state )
      = ( ( B2 = bot_bo7912781682106412938_state )
        | ( B2
          = ( insert1104837854041676528_state @ none_set_state @ bot_bo7912781682106412938_state ) ) ) ) ).

% these_empty_eq
thf(fact_259_these__empty__eq,axiom,
    ! [B2: set_option_state] :
      ( ( ( these_state @ B2 )
        = bot_bot_set_state )
      = ( ( B2 = bot_bo710180891245420500_state )
        | ( B2
          = ( insert_option_state @ none_state @ bot_bo710180891245420500_state ) ) ) ) ).

% these_empty_eq
thf(fact_260_PartialSA_OequivI,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( greater_set @ A3 @ B2 )
     => ( ( greater_set @ B2 @ A3 )
       => ( sep_equiv_state @ plus @ A3 @ B2 ) ) ) ).

% PartialSA.equivI
thf(fact_261_PartialSA_Oequiv__def,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( sep_equiv_state @ plus @ A3 @ B2 )
      = ( ( greater_set @ A3 @ B2 )
        & ( greater_set @ B2 @ A3 ) ) ) ).

% PartialSA.equiv_def
thf(fact_262_these__insert__None,axiom,
    ! [A3: set_op9003753404445127824_state] :
      ( ( these_option_state @ ( insert7535573567550883338_state @ none_option_state @ A3 ) )
      = ( these_option_state @ A3 ) ) ).

% these_insert_None
thf(fact_263_these__insert__None,axiom,
    ! [A3: set_option_state] :
      ( ( these_state @ ( insert_option_state @ none_state @ A3 ) )
      = ( these_state @ A3 ) ) ).

% these_insert_None
thf(fact_264_PartialSA_Osplus_Osimps_I2_J,axiom,
    ! [V: state] :
      ( ( sep_splus_state @ plus @ ( some_state @ V ) @ none_state )
      = none_state ) ).

% PartialSA.splus.simps(2)
thf(fact_265_PartialSA_Osplus_Oelims,axiom,
    ! [X: option_state,Xa: option_state,Y3: option_state] :
      ( ( ( sep_splus_state @ plus @ X @ Xa )
        = Y3 )
     => ( ( ( X = none_state )
         => ( Y3 != none_state ) )
       => ( ( ? [V2: state] :
                ( X
                = ( some_state @ V2 ) )
           => ( ( Xa = none_state )
             => ( Y3 != none_state ) ) )
         => ~ ! [A2: state] :
                ( ( X
                  = ( some_state @ A2 ) )
               => ! [B6: state] :
                    ( ( Xa
                      = ( some_state @ B6 ) )
                   => ( Y3
                     != ( plus @ A2 @ B6 ) ) ) ) ) ) ) ).

% PartialSA.splus.elims
thf(fact_266_image__eqI,axiom,
    ! [B: state,F: state > state,X: state,A3: set_state] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_state @ X @ A3 )
       => ( member_state @ B @ ( image_state_state @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_267_image__eqI,axiom,
    ! [B: state,F: nat > state,X: nat,A3: set_nat] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_nat @ X @ A3 )
       => ( member_state @ B @ ( image_nat_state @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_268_image__eqI,axiom,
    ! [B: option_state,F: state > option_state,X: state,A3: set_state] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_state @ X @ A3 )
       => ( member_option_state @ B @ ( image_6076465424260689483_state @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_269_image__eqI,axiom,
    ! [B: set_state,F: state > set_state,X: state,A3: set_state] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_state @ X @ A3 )
       => ( member_set_state @ B @ ( image_4774290769506072625_state @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_270_image__eqI,axiom,
    ! [B: state,F: option_state > state,X: option_state,A3: set_option_state] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_option_state @ X @ A3 )
       => ( member_state @ B @ ( image_3532137647693456075_state @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_271_image__eqI,axiom,
    ! [B: state,F: set_state > state,X: set_state,A3: set_set_state] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_set_state @ X @ A3 )
       => ( member_state @ B @ ( image_4575879259649255985_state @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_272_image__eqI,axiom,
    ! [B: produc8023240190789890773_state,F: state > produc8023240190789890773_state,X: state,A3: set_state] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_state @ X @ A3 )
       => ( member753036827967488894_state @ B @ ( image_2153010417677216468_state @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_273_image__eqI,axiom,
    ! [B: option_state,F: option_state > option_state,X: option_state,A3: set_option_state] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_option_state @ X @ A3 )
       => ( member_option_state @ B @ ( image_8299601973402907291_state @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_274_image__eqI,axiom,
    ! [B: set_state,F: option_state > set_state,X: option_state,A3: set_option_state] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_option_state @ X @ A3 )
       => ( member_set_state @ B @ ( image_3284240608559150209_state @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_275_image__eqI,axiom,
    ! [B: option_state,F: set_state > option_state,X: set_state,A3: set_set_state] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_set_state @ X @ A3 )
       => ( member_option_state @ B @ ( image_8427833934475094273_state @ F @ A3 ) ) ) ) ).

% image_eqI
thf(fact_276_image__is__empty,axiom,
    ! [F: state > state,A3: set_state] :
      ( ( ( image_state_state @ F @ A3 )
        = bot_bot_set_state )
      = ( A3 = bot_bot_set_state ) ) ).

% image_is_empty
thf(fact_277_image__is__empty,axiom,
    ! [F: nat > state,A3: set_nat] :
      ( ( ( image_nat_state @ F @ A3 )
        = bot_bot_set_state )
      = ( A3 = bot_bot_set_nat ) ) ).

% image_is_empty
thf(fact_278_image__is__empty,axiom,
    ! [F: option_state > state,A3: set_option_state] :
      ( ( ( image_3532137647693456075_state @ F @ A3 )
        = bot_bot_set_state )
      = ( A3 = bot_bo710180891245420500_state ) ) ).

% image_is_empty
thf(fact_279_image__is__empty,axiom,
    ! [F: set_state > state,A3: set_set_state] :
      ( ( ( image_4575879259649255985_state @ F @ A3 )
        = bot_bot_set_state )
      = ( A3 = bot_bo2271482359692755898_state ) ) ).

% image_is_empty
thf(fact_280_image__is__empty,axiom,
    ! [F: state > option_state,A3: set_state] :
      ( ( ( image_6076465424260689483_state @ F @ A3 )
        = bot_bo710180891245420500_state )
      = ( A3 = bot_bot_set_state ) ) ).

% image_is_empty
thf(fact_281_image__is__empty,axiom,
    ! [F: state > set_state,A3: set_state] :
      ( ( ( image_4774290769506072625_state @ F @ A3 )
        = bot_bo2271482359692755898_state )
      = ( A3 = bot_bot_set_state ) ) ).

% image_is_empty
thf(fact_282_image__is__empty,axiom,
    ! [F: produc8023240190789890773_state > state,A3: set_Pr1785066336555260981_state] :
      ( ( ( image_5145414166468158282_state @ F @ A3 )
        = bot_bot_set_state )
      = ( A3 = bot_bo9041262728264437921_state ) ) ).

% image_is_empty
thf(fact_283_image__is__empty,axiom,
    ! [F: state > produc8023240190789890773_state,A3: set_state] :
      ( ( ( image_2153010417677216468_state @ F @ A3 )
        = bot_bo9041262728264437921_state )
      = ( A3 = bot_bot_set_state ) ) ).

% image_is_empty
thf(fact_284_image__is__empty,axiom,
    ! [F: option_state > option_state,A3: set_option_state] :
      ( ( ( image_8299601973402907291_state @ F @ A3 )
        = bot_bo710180891245420500_state )
      = ( A3 = bot_bo710180891245420500_state ) ) ).

% image_is_empty
thf(fact_285_image__is__empty,axiom,
    ! [F: set_state > option_state,A3: set_set_state] :
      ( ( ( image_8427833934475094273_state @ F @ A3 )
        = bot_bo710180891245420500_state )
      = ( A3 = bot_bo2271482359692755898_state ) ) ).

% image_is_empty
thf(fact_286_empty__is__image,axiom,
    ! [F: state > state,A3: set_state] :
      ( ( bot_bot_set_state
        = ( image_state_state @ F @ A3 ) )
      = ( A3 = bot_bot_set_state ) ) ).

% empty_is_image
thf(fact_287_empty__is__image,axiom,
    ! [F: nat > state,A3: set_nat] :
      ( ( bot_bot_set_state
        = ( image_nat_state @ F @ A3 ) )
      = ( A3 = bot_bot_set_nat ) ) ).

% empty_is_image
thf(fact_288_empty__is__image,axiom,
    ! [F: option_state > state,A3: set_option_state] :
      ( ( bot_bot_set_state
        = ( image_3532137647693456075_state @ F @ A3 ) )
      = ( A3 = bot_bo710180891245420500_state ) ) ).

% empty_is_image
thf(fact_289_empty__is__image,axiom,
    ! [F: set_state > state,A3: set_set_state] :
      ( ( bot_bot_set_state
        = ( image_4575879259649255985_state @ F @ A3 ) )
      = ( A3 = bot_bo2271482359692755898_state ) ) ).

% empty_is_image
thf(fact_290_empty__is__image,axiom,
    ! [F: state > option_state,A3: set_state] :
      ( ( bot_bo710180891245420500_state
        = ( image_6076465424260689483_state @ F @ A3 ) )
      = ( A3 = bot_bot_set_state ) ) ).

% empty_is_image
thf(fact_291_empty__is__image,axiom,
    ! [F: state > set_state,A3: set_state] :
      ( ( bot_bo2271482359692755898_state
        = ( image_4774290769506072625_state @ F @ A3 ) )
      = ( A3 = bot_bot_set_state ) ) ).

% empty_is_image
thf(fact_292_empty__is__image,axiom,
    ! [F: produc8023240190789890773_state > state,A3: set_Pr1785066336555260981_state] :
      ( ( bot_bot_set_state
        = ( image_5145414166468158282_state @ F @ A3 ) )
      = ( A3 = bot_bo9041262728264437921_state ) ) ).

% empty_is_image
thf(fact_293_empty__is__image,axiom,
    ! [F: state > produc8023240190789890773_state,A3: set_state] :
      ( ( bot_bo9041262728264437921_state
        = ( image_2153010417677216468_state @ F @ A3 ) )
      = ( A3 = bot_bot_set_state ) ) ).

% empty_is_image
thf(fact_294_empty__is__image,axiom,
    ! [F: option_state > option_state,A3: set_option_state] :
      ( ( bot_bo710180891245420500_state
        = ( image_8299601973402907291_state @ F @ A3 ) )
      = ( A3 = bot_bo710180891245420500_state ) ) ).

% empty_is_image
thf(fact_295_empty__is__image,axiom,
    ! [F: set_state > option_state,A3: set_set_state] :
      ( ( bot_bo710180891245420500_state
        = ( image_8427833934475094273_state @ F @ A3 ) )
      = ( A3 = bot_bo2271482359692755898_state ) ) ).

% empty_is_image
thf(fact_296_image__empty,axiom,
    ! [F: state > state] :
      ( ( image_state_state @ F @ bot_bot_set_state )
      = bot_bot_set_state ) ).

% image_empty
thf(fact_297_image__empty,axiom,
    ! [F: nat > state] :
      ( ( image_nat_state @ F @ bot_bot_set_nat )
      = bot_bot_set_state ) ).

% image_empty
thf(fact_298_image__empty,axiom,
    ! [F: state > option_state] :
      ( ( image_6076465424260689483_state @ F @ bot_bot_set_state )
      = bot_bo710180891245420500_state ) ).

% image_empty
thf(fact_299_image__empty,axiom,
    ! [F: state > set_state] :
      ( ( image_4774290769506072625_state @ F @ bot_bot_set_state )
      = bot_bo2271482359692755898_state ) ).

% image_empty
thf(fact_300_image__empty,axiom,
    ! [F: option_state > state] :
      ( ( image_3532137647693456075_state @ F @ bot_bo710180891245420500_state )
      = bot_bot_set_state ) ).

% image_empty
thf(fact_301_image__empty,axiom,
    ! [F: set_state > state] :
      ( ( image_4575879259649255985_state @ F @ bot_bo2271482359692755898_state )
      = bot_bot_set_state ) ).

% image_empty
thf(fact_302_image__empty,axiom,
    ! [F: state > produc8023240190789890773_state] :
      ( ( image_2153010417677216468_state @ F @ bot_bot_set_state )
      = bot_bo9041262728264437921_state ) ).

% image_empty
thf(fact_303_image__empty,axiom,
    ! [F: produc8023240190789890773_state > state] :
      ( ( image_5145414166468158282_state @ F @ bot_bo9041262728264437921_state )
      = bot_bot_set_state ) ).

% image_empty
thf(fact_304_image__empty,axiom,
    ! [F: option_state > option_state] :
      ( ( image_8299601973402907291_state @ F @ bot_bo710180891245420500_state )
      = bot_bo710180891245420500_state ) ).

% image_empty
thf(fact_305_image__empty,axiom,
    ! [F: option_state > set_state] :
      ( ( image_3284240608559150209_state @ F @ bot_bo710180891245420500_state )
      = bot_bo2271482359692755898_state ) ).

% image_empty
thf(fact_306_insert__image,axiom,
    ! [X: state,A3: set_state,F: state > state] :
      ( ( member_state @ X @ A3 )
     => ( ( insert_state @ ( F @ X ) @ ( image_state_state @ F @ A3 ) )
        = ( image_state_state @ F @ A3 ) ) ) ).

% insert_image
thf(fact_307_insert__image,axiom,
    ! [X: nat,A3: set_nat,F: nat > state] :
      ( ( member_nat @ X @ A3 )
     => ( ( insert_state @ ( F @ X ) @ ( image_nat_state @ F @ A3 ) )
        = ( image_nat_state @ F @ A3 ) ) ) ).

% insert_image
thf(fact_308_insert__image,axiom,
    ! [X: state,A3: set_state,F: state > option_state] :
      ( ( member_state @ X @ A3 )
     => ( ( insert_option_state @ ( F @ X ) @ ( image_6076465424260689483_state @ F @ A3 ) )
        = ( image_6076465424260689483_state @ F @ A3 ) ) ) ).

% insert_image
thf(fact_309_insert__image,axiom,
    ! [X: state,A3: set_state,F: state > set_state] :
      ( ( member_state @ X @ A3 )
     => ( ( insert_set_state @ ( F @ X ) @ ( image_4774290769506072625_state @ F @ A3 ) )
        = ( image_4774290769506072625_state @ F @ A3 ) ) ) ).

% insert_image
thf(fact_310_insert__image,axiom,
    ! [X: option_state,A3: set_option_state,F: option_state > state] :
      ( ( member_option_state @ X @ A3 )
     => ( ( insert_state @ ( F @ X ) @ ( image_3532137647693456075_state @ F @ A3 ) )
        = ( image_3532137647693456075_state @ F @ A3 ) ) ) ).

% insert_image
thf(fact_311_insert__image,axiom,
    ! [X: set_state,A3: set_set_state,F: set_state > state] :
      ( ( member_set_state @ X @ A3 )
     => ( ( insert_state @ ( F @ X ) @ ( image_4575879259649255985_state @ F @ A3 ) )
        = ( image_4575879259649255985_state @ F @ A3 ) ) ) ).

% insert_image
thf(fact_312_insert__image,axiom,
    ! [X: state,A3: set_state,F: state > produc8023240190789890773_state] :
      ( ( member_state @ X @ A3 )
     => ( ( insert7525286303735658661_state @ ( F @ X ) @ ( image_2153010417677216468_state @ F @ A3 ) )
        = ( image_2153010417677216468_state @ F @ A3 ) ) ) ).

% insert_image
thf(fact_313_insert__image,axiom,
    ! [X: option_state,A3: set_option_state,F: option_state > option_state] :
      ( ( member_option_state @ X @ A3 )
     => ( ( insert_option_state @ ( F @ X ) @ ( image_8299601973402907291_state @ F @ A3 ) )
        = ( image_8299601973402907291_state @ F @ A3 ) ) ) ).

% insert_image
thf(fact_314_insert__image,axiom,
    ! [X: option_state,A3: set_option_state,F: option_state > set_state] :
      ( ( member_option_state @ X @ A3 )
     => ( ( insert_set_state @ ( F @ X ) @ ( image_3284240608559150209_state @ F @ A3 ) )
        = ( image_3284240608559150209_state @ F @ A3 ) ) ) ).

% insert_image
thf(fact_315_insert__image,axiom,
    ! [X: set_state,A3: set_set_state,F: set_state > option_state] :
      ( ( member_set_state @ X @ A3 )
     => ( ( insert_option_state @ ( F @ X ) @ ( image_8427833934475094273_state @ F @ A3 ) )
        = ( image_8427833934475094273_state @ F @ A3 ) ) ) ).

% insert_image
thf(fact_316_image__insert,axiom,
    ! [F: state > state,A: state,B2: set_state] :
      ( ( image_state_state @ F @ ( insert_state @ A @ B2 ) )
      = ( insert_state @ ( F @ A ) @ ( image_state_state @ F @ B2 ) ) ) ).

% image_insert
thf(fact_317_image__insert,axiom,
    ! [F: nat > state,A: nat,B2: set_nat] :
      ( ( image_nat_state @ F @ ( insert_nat @ A @ B2 ) )
      = ( insert_state @ ( F @ A ) @ ( image_nat_state @ F @ B2 ) ) ) ).

% image_insert
thf(fact_318_image__insert,axiom,
    ! [F: state > option_state,A: state,B2: set_state] :
      ( ( image_6076465424260689483_state @ F @ ( insert_state @ A @ B2 ) )
      = ( insert_option_state @ ( F @ A ) @ ( image_6076465424260689483_state @ F @ B2 ) ) ) ).

% image_insert
thf(fact_319_image__insert,axiom,
    ! [F: state > set_state,A: state,B2: set_state] :
      ( ( image_4774290769506072625_state @ F @ ( insert_state @ A @ B2 ) )
      = ( insert_set_state @ ( F @ A ) @ ( image_4774290769506072625_state @ F @ B2 ) ) ) ).

% image_insert
thf(fact_320_image__insert,axiom,
    ! [F: option_state > state,A: option_state,B2: set_option_state] :
      ( ( image_3532137647693456075_state @ F @ ( insert_option_state @ A @ B2 ) )
      = ( insert_state @ ( F @ A ) @ ( image_3532137647693456075_state @ F @ B2 ) ) ) ).

% image_insert
thf(fact_321_image__insert,axiom,
    ! [F: set_state > state,A: set_state,B2: set_set_state] :
      ( ( image_4575879259649255985_state @ F @ ( insert_set_state @ A @ B2 ) )
      = ( insert_state @ ( F @ A ) @ ( image_4575879259649255985_state @ F @ B2 ) ) ) ).

% image_insert
thf(fact_322_image__insert,axiom,
    ! [F: state > produc8023240190789890773_state,A: state,B2: set_state] :
      ( ( image_2153010417677216468_state @ F @ ( insert_state @ A @ B2 ) )
      = ( insert7525286303735658661_state @ ( F @ A ) @ ( image_2153010417677216468_state @ F @ B2 ) ) ) ).

% image_insert
thf(fact_323_image__insert,axiom,
    ! [F: option_state > option_state,A: option_state,B2: set_option_state] :
      ( ( image_8299601973402907291_state @ F @ ( insert_option_state @ A @ B2 ) )
      = ( insert_option_state @ ( F @ A ) @ ( image_8299601973402907291_state @ F @ B2 ) ) ) ).

% image_insert
thf(fact_324_image__insert,axiom,
    ! [F: option_state > set_state,A: option_state,B2: set_option_state] :
      ( ( image_3284240608559150209_state @ F @ ( insert_option_state @ A @ B2 ) )
      = ( insert_set_state @ ( F @ A ) @ ( image_3284240608559150209_state @ F @ B2 ) ) ) ).

% image_insert
thf(fact_325_image__insert,axiom,
    ! [F: set_state > option_state,A: set_state,B2: set_set_state] :
      ( ( image_8427833934475094273_state @ F @ ( insert_set_state @ A @ B2 ) )
      = ( insert_option_state @ ( F @ A ) @ ( image_8427833934475094273_state @ F @ B2 ) ) ) ).

% image_insert
thf(fact_326_not__Some__eq,axiom,
    ! [X: option_option_state] :
      ( ( ! [Y4: option_state] :
            ( X
           != ( some_option_state @ Y4 ) ) )
      = ( X = none_option_state ) ) ).

% not_Some_eq
thf(fact_327_not__Some__eq,axiom,
    ! [X: option_state] :
      ( ( ! [Y4: state] :
            ( X
           != ( some_state @ Y4 ) ) )
      = ( X = none_state ) ) ).

% not_Some_eq
thf(fact_328_not__None__eq,axiom,
    ! [X: option_option_state] :
      ( ( X != none_option_state )
      = ( ? [Y4: option_state] :
            ( X
            = ( some_option_state @ Y4 ) ) ) ) ).

% not_None_eq
thf(fact_329_not__None__eq,axiom,
    ! [X: option_state] :
      ( ( X != none_state )
      = ( ? [Y4: state] :
            ( X
            = ( some_state @ Y4 ) ) ) ) ).

% not_None_eq
thf(fact_330_set__empty__eq,axiom,
    ! [Xo: option2250103068101548571_state] :
      ( ( ( set_op4970154267292507491_state @ Xo )
        = bot_bo9041262728264437921_state )
      = ( Xo = none_P348328851727313334_state ) ) ).

% set_empty_eq
thf(fact_331_set__empty__eq,axiom,
    ! [Xo: option6833441738159790651_state] :
      ( ( ( set_op4197959913983417475_state @ Xo )
        = bot_bo1080640394036989633_state )
      = ( Xo = none_P2148290358184556502_state ) ) ).

% set_empty_eq
thf(fact_332_set__empty__eq,axiom,
    ! [Xo: option_option_state] :
      ( ( ( set_op5162993263733338108_state @ Xo )
        = bot_bo710180891245420500_state )
      = ( Xo = none_option_state ) ) ).

% set_empty_eq
thf(fact_333_set__empty__eq,axiom,
    ! [Xo: option_set_state] :
      ( ( ( set_option_set_state2 @ Xo )
        = bot_bo2271482359692755898_state )
      = ( Xo = none_set_state ) ) ).

% set_empty_eq
thf(fact_334_set__empty__eq,axiom,
    ! [Xo: option_state] :
      ( ( ( set_option_state2 @ Xo )
        = bot_bot_set_state )
      = ( Xo = none_state ) ) ).

% set_empty_eq
thf(fact_335_sep__algebra_Omono__prop_Ocong,axiom,
    sep_mono_prop_state = sep_mono_prop_state ).

% sep_algebra.mono_prop.cong
thf(fact_336_PartialSA_Osucc__set__trans,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( greater_set @ A3 @ B2 )
     => ( ( greater_set @ B2 @ C3 )
       => ( greater_set @ A3 @ C3 ) ) ) ).

% PartialSA.succ_set_trans
thf(fact_337_PartialSA_Olarger__set__refl,axiom,
    ! [A3: set_state] : ( greater_set @ A3 @ A3 ) ).

% PartialSA.larger_set_refl
thf(fact_338_imageI,axiom,
    ! [X: state,A3: set_state,F: state > state] :
      ( ( member_state @ X @ A3 )
     => ( member_state @ ( F @ X ) @ ( image_state_state @ F @ A3 ) ) ) ).

% imageI
thf(fact_339_imageI,axiom,
    ! [X: nat,A3: set_nat,F: nat > state] :
      ( ( member_nat @ X @ A3 )
     => ( member_state @ ( F @ X ) @ ( image_nat_state @ F @ A3 ) ) ) ).

% imageI
thf(fact_340_imageI,axiom,
    ! [X: state,A3: set_state,F: state > option_state] :
      ( ( member_state @ X @ A3 )
     => ( member_option_state @ ( F @ X ) @ ( image_6076465424260689483_state @ F @ A3 ) ) ) ).

% imageI
thf(fact_341_imageI,axiom,
    ! [X: state,A3: set_state,F: state > set_state] :
      ( ( member_state @ X @ A3 )
     => ( member_set_state @ ( F @ X ) @ ( image_4774290769506072625_state @ F @ A3 ) ) ) ).

% imageI
thf(fact_342_imageI,axiom,
    ! [X: option_state,A3: set_option_state,F: option_state > state] :
      ( ( member_option_state @ X @ A3 )
     => ( member_state @ ( F @ X ) @ ( image_3532137647693456075_state @ F @ A3 ) ) ) ).

% imageI
thf(fact_343_imageI,axiom,
    ! [X: set_state,A3: set_set_state,F: set_state > state] :
      ( ( member_set_state @ X @ A3 )
     => ( member_state @ ( F @ X ) @ ( image_4575879259649255985_state @ F @ A3 ) ) ) ).

% imageI
thf(fact_344_imageI,axiom,
    ! [X: state,A3: set_state,F: state > produc8023240190789890773_state] :
      ( ( member_state @ X @ A3 )
     => ( member753036827967488894_state @ ( F @ X ) @ ( image_2153010417677216468_state @ F @ A3 ) ) ) ).

% imageI
thf(fact_345_imageI,axiom,
    ! [X: option_state,A3: set_option_state,F: option_state > option_state] :
      ( ( member_option_state @ X @ A3 )
     => ( member_option_state @ ( F @ X ) @ ( image_8299601973402907291_state @ F @ A3 ) ) ) ).

% imageI
thf(fact_346_imageI,axiom,
    ! [X: option_state,A3: set_option_state,F: option_state > set_state] :
      ( ( member_option_state @ X @ A3 )
     => ( member_set_state @ ( F @ X ) @ ( image_3284240608559150209_state @ F @ A3 ) ) ) ).

% imageI
thf(fact_347_imageI,axiom,
    ! [X: set_state,A3: set_set_state,F: set_state > option_state] :
      ( ( member_set_state @ X @ A3 )
     => ( member_option_state @ ( F @ X ) @ ( image_8427833934475094273_state @ F @ A3 ) ) ) ).

% imageI
thf(fact_348_image__iff,axiom,
    ! [Z: state,F: nat > state,A3: set_nat] :
      ( ( member_state @ Z @ ( image_nat_state @ F @ A3 ) )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ A3 )
            & ( Z
              = ( F @ X3 ) ) ) ) ) ).

% image_iff
thf(fact_349_image__iff,axiom,
    ! [Z: option_state,F: state > option_state,A3: set_state] :
      ( ( member_option_state @ Z @ ( image_6076465424260689483_state @ F @ A3 ) )
      = ( ? [X3: state] :
            ( ( member_state @ X3 @ A3 )
            & ( Z
              = ( F @ X3 ) ) ) ) ) ).

% image_iff
thf(fact_350_image__iff,axiom,
    ! [Z: set_state,F: state > set_state,A3: set_state] :
      ( ( member_set_state @ Z @ ( image_4774290769506072625_state @ F @ A3 ) )
      = ( ? [X3: state] :
            ( ( member_state @ X3 @ A3 )
            & ( Z
              = ( F @ X3 ) ) ) ) ) ).

% image_iff
thf(fact_351_image__iff,axiom,
    ! [Z: set_state,F: set_state > set_state,A3: set_set_state] :
      ( ( member_set_state @ Z @ ( image_2476256681063834599_state @ F @ A3 ) )
      = ( ? [X3: set_state] :
            ( ( member_set_state @ X3 @ A3 )
            & ( Z
              = ( F @ X3 ) ) ) ) ) ).

% image_iff
thf(fact_352_image__iff,axiom,
    ! [Z: set_state,F: ( state > $o ) > set_state,A3: set_state_o] :
      ( ( member_set_state @ Z @ ( image_7376656169852520768_state @ F @ A3 ) )
      = ( ? [X3: state > $o] :
            ( ( member_state_o @ X3 @ A3 )
            & ( Z
              = ( F @ X3 ) ) ) ) ) ).

% image_iff
thf(fact_353_bex__imageD,axiom,
    ! [F: state > option_state,A3: set_state,P: option_state > $o] :
      ( ? [X5: option_state] :
          ( ( member_option_state @ X5 @ ( image_6076465424260689483_state @ F @ A3 ) )
          & ( P @ X5 ) )
     => ? [X4: state] :
          ( ( member_state @ X4 @ A3 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_354_bex__imageD,axiom,
    ! [F: state > set_state,A3: set_state,P: set_state > $o] :
      ( ? [X5: set_state] :
          ( ( member_set_state @ X5 @ ( image_4774290769506072625_state @ F @ A3 ) )
          & ( P @ X5 ) )
     => ? [X4: state] :
          ( ( member_state @ X4 @ A3 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_355_bex__imageD,axiom,
    ! [F: set_state > set_state,A3: set_set_state,P: set_state > $o] :
      ( ? [X5: set_state] :
          ( ( member_set_state @ X5 @ ( image_2476256681063834599_state @ F @ A3 ) )
          & ( P @ X5 ) )
     => ? [X4: set_state] :
          ( ( member_set_state @ X4 @ A3 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_356_bex__imageD,axiom,
    ! [F: nat > state,A3: set_nat,P: state > $o] :
      ( ? [X5: state] :
          ( ( member_state @ X5 @ ( image_nat_state @ F @ A3 ) )
          & ( P @ X5 ) )
     => ? [X4: nat] :
          ( ( member_nat @ X4 @ A3 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_357_bex__imageD,axiom,
    ! [F: ( state > $o ) > set_state,A3: set_state_o,P: set_state > $o] :
      ( ? [X5: set_state] :
          ( ( member_set_state @ X5 @ ( image_7376656169852520768_state @ F @ A3 ) )
          & ( P @ X5 ) )
     => ? [X4: state > $o] :
          ( ( member_state_o @ X4 @ A3 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_358_image__cong,axiom,
    ! [M: set_nat,N: set_nat,F: nat > state,G: nat > state] :
      ( ( M = N )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ N )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) )
       => ( ( image_nat_state @ F @ M )
          = ( image_nat_state @ G @ N ) ) ) ) ).

% image_cong
thf(fact_359_image__cong,axiom,
    ! [M: set_state_o,N: set_state_o,F: ( state > $o ) > set_state,G: ( state > $o ) > set_state] :
      ( ( M = N )
     => ( ! [X4: state > $o] :
            ( ( member_state_o @ X4 @ N )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) )
       => ( ( image_7376656169852520768_state @ F @ M )
          = ( image_7376656169852520768_state @ G @ N ) ) ) ) ).

% image_cong
thf(fact_360_image__cong,axiom,
    ! [M: set_state,N: set_state,F: state > option_state,G: state > option_state] :
      ( ( M = N )
     => ( ! [X4: state] :
            ( ( member_state @ X4 @ N )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) )
       => ( ( image_6076465424260689483_state @ F @ M )
          = ( image_6076465424260689483_state @ G @ N ) ) ) ) ).

% image_cong
thf(fact_361_image__cong,axiom,
    ! [M: set_state,N: set_state,F: state > set_state,G: state > set_state] :
      ( ( M = N )
     => ( ! [X4: state] :
            ( ( member_state @ X4 @ N )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) )
       => ( ( image_4774290769506072625_state @ F @ M )
          = ( image_4774290769506072625_state @ G @ N ) ) ) ) ).

% image_cong
thf(fact_362_image__cong,axiom,
    ! [M: set_set_state,N: set_set_state,F: set_state > set_state,G: set_state > set_state] :
      ( ( M = N )
     => ( ! [X4: set_state] :
            ( ( member_set_state @ X4 @ N )
           => ( ( F @ X4 )
              = ( G @ X4 ) ) )
       => ( ( image_2476256681063834599_state @ F @ M )
          = ( image_2476256681063834599_state @ G @ N ) ) ) ) ).

% image_cong
thf(fact_363_ball__imageD,axiom,
    ! [F: state > option_state,A3: set_state,P: option_state > $o] :
      ( ! [X4: option_state] :
          ( ( member_option_state @ X4 @ ( image_6076465424260689483_state @ F @ A3 ) )
         => ( P @ X4 ) )
     => ! [X5: state] :
          ( ( member_state @ X5 @ A3 )
         => ( P @ ( F @ X5 ) ) ) ) ).

% ball_imageD
thf(fact_364_ball__imageD,axiom,
    ! [F: state > set_state,A3: set_state,P: set_state > $o] :
      ( ! [X4: set_state] :
          ( ( member_set_state @ X4 @ ( image_4774290769506072625_state @ F @ A3 ) )
         => ( P @ X4 ) )
     => ! [X5: state] :
          ( ( member_state @ X5 @ A3 )
         => ( P @ ( F @ X5 ) ) ) ) ).

% ball_imageD
thf(fact_365_ball__imageD,axiom,
    ! [F: set_state > set_state,A3: set_set_state,P: set_state > $o] :
      ( ! [X4: set_state] :
          ( ( member_set_state @ X4 @ ( image_2476256681063834599_state @ F @ A3 ) )
         => ( P @ X4 ) )
     => ! [X5: set_state] :
          ( ( member_set_state @ X5 @ A3 )
         => ( P @ ( F @ X5 ) ) ) ) ).

% ball_imageD
thf(fact_366_ball__imageD,axiom,
    ! [F: nat > state,A3: set_nat,P: state > $o] :
      ( ! [X4: state] :
          ( ( member_state @ X4 @ ( image_nat_state @ F @ A3 ) )
         => ( P @ X4 ) )
     => ! [X5: nat] :
          ( ( member_nat @ X5 @ A3 )
         => ( P @ ( F @ X5 ) ) ) ) ).

% ball_imageD
thf(fact_367_ball__imageD,axiom,
    ! [F: ( state > $o ) > set_state,A3: set_state_o,P: set_state > $o] :
      ( ! [X4: set_state] :
          ( ( member_set_state @ X4 @ ( image_7376656169852520768_state @ F @ A3 ) )
         => ( P @ X4 ) )
     => ! [X5: state > $o] :
          ( ( member_state_o @ X5 @ A3 )
         => ( P @ ( F @ X5 ) ) ) ) ).

% ball_imageD
thf(fact_368_rev__image__eqI,axiom,
    ! [X: state,A3: set_state,B: state,F: state > state] :
      ( ( member_state @ X @ A3 )
     => ( ( B
          = ( F @ X ) )
       => ( member_state @ B @ ( image_state_state @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_369_rev__image__eqI,axiom,
    ! [X: nat,A3: set_nat,B: state,F: nat > state] :
      ( ( member_nat @ X @ A3 )
     => ( ( B
          = ( F @ X ) )
       => ( member_state @ B @ ( image_nat_state @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_370_rev__image__eqI,axiom,
    ! [X: state,A3: set_state,B: option_state,F: state > option_state] :
      ( ( member_state @ X @ A3 )
     => ( ( B
          = ( F @ X ) )
       => ( member_option_state @ B @ ( image_6076465424260689483_state @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_371_rev__image__eqI,axiom,
    ! [X: state,A3: set_state,B: set_state,F: state > set_state] :
      ( ( member_state @ X @ A3 )
     => ( ( B
          = ( F @ X ) )
       => ( member_set_state @ B @ ( image_4774290769506072625_state @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_372_rev__image__eqI,axiom,
    ! [X: option_state,A3: set_option_state,B: state,F: option_state > state] :
      ( ( member_option_state @ X @ A3 )
     => ( ( B
          = ( F @ X ) )
       => ( member_state @ B @ ( image_3532137647693456075_state @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_373_rev__image__eqI,axiom,
    ! [X: set_state,A3: set_set_state,B: state,F: set_state > state] :
      ( ( member_set_state @ X @ A3 )
     => ( ( B
          = ( F @ X ) )
       => ( member_state @ B @ ( image_4575879259649255985_state @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_374_rev__image__eqI,axiom,
    ! [X: state,A3: set_state,B: produc8023240190789890773_state,F: state > produc8023240190789890773_state] :
      ( ( member_state @ X @ A3 )
     => ( ( B
          = ( F @ X ) )
       => ( member753036827967488894_state @ B @ ( image_2153010417677216468_state @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_375_rev__image__eqI,axiom,
    ! [X: option_state,A3: set_option_state,B: option_state,F: option_state > option_state] :
      ( ( member_option_state @ X @ A3 )
     => ( ( B
          = ( F @ X ) )
       => ( member_option_state @ B @ ( image_8299601973402907291_state @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_376_rev__image__eqI,axiom,
    ! [X: option_state,A3: set_option_state,B: set_state,F: option_state > set_state] :
      ( ( member_option_state @ X @ A3 )
     => ( ( B
          = ( F @ X ) )
       => ( member_set_state @ B @ ( image_3284240608559150209_state @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_377_rev__image__eqI,axiom,
    ! [X: set_state,A3: set_set_state,B: option_state,F: set_state > option_state] :
      ( ( member_set_state @ X @ A3 )
     => ( ( B
          = ( F @ X ) )
       => ( member_option_state @ B @ ( image_8427833934475094273_state @ F @ A3 ) ) ) ) ).

% rev_image_eqI
thf(fact_378_combine__options__cases,axiom,
    ! [X: option_state,P: option_state > option_option_state > $o,Y3: option_option_state] :
      ( ( ( X = none_state )
       => ( P @ X @ Y3 ) )
     => ( ( ( Y3 = none_option_state )
         => ( P @ X @ Y3 ) )
       => ( ! [A2: state,B6: option_state] :
              ( ( X
                = ( some_state @ A2 ) )
             => ( ( Y3
                  = ( some_option_state @ B6 ) )
               => ( P @ X @ Y3 ) ) )
         => ( P @ X @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_379_combine__options__cases,axiom,
    ! [X: option_option_state,P: option_option_state > option_state > $o,Y3: option_state] :
      ( ( ( X = none_option_state )
       => ( P @ X @ Y3 ) )
     => ( ( ( Y3 = none_state )
         => ( P @ X @ Y3 ) )
       => ( ! [A2: option_state,B6: state] :
              ( ( X
                = ( some_option_state @ A2 ) )
             => ( ( Y3
                  = ( some_state @ B6 ) )
               => ( P @ X @ Y3 ) ) )
         => ( P @ X @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_380_combine__options__cases,axiom,
    ! [X: option_option_state,P: option_option_state > option_option_state > $o,Y3: option_option_state] :
      ( ( ( X = none_option_state )
       => ( P @ X @ Y3 ) )
     => ( ( ( Y3 = none_option_state )
         => ( P @ X @ Y3 ) )
       => ( ! [A2: option_state,B6: option_state] :
              ( ( X
                = ( some_option_state @ A2 ) )
             => ( ( Y3
                  = ( some_option_state @ B6 ) )
               => ( P @ X @ Y3 ) ) )
         => ( P @ X @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_381_combine__options__cases,axiom,
    ! [X: option_state,P: option_state > option_state > $o,Y3: option_state] :
      ( ( ( X = none_state )
       => ( P @ X @ Y3 ) )
     => ( ( ( Y3 = none_state )
         => ( P @ X @ Y3 ) )
       => ( ! [A2: state,B6: state] :
              ( ( X
                = ( some_state @ A2 ) )
             => ( ( Y3
                  = ( some_state @ B6 ) )
               => ( P @ X @ Y3 ) ) )
         => ( P @ X @ Y3 ) ) ) ) ).

% combine_options_cases
thf(fact_382_split__option__all,axiom,
    ( ( ^ [P3: option_option_state > $o] :
        ! [X6: option_option_state] : ( P3 @ X6 ) )
    = ( ^ [P2: option_option_state > $o] :
          ( ( P2 @ none_option_state )
          & ! [X3: option_state] : ( P2 @ ( some_option_state @ X3 ) ) ) ) ) ).

% split_option_all
thf(fact_383_split__option__all,axiom,
    ( ( ^ [P3: option_state > $o] :
        ! [X6: option_state] : ( P3 @ X6 ) )
    = ( ^ [P2: option_state > $o] :
          ( ( P2 @ none_state )
          & ! [X3: state] : ( P2 @ ( some_state @ X3 ) ) ) ) ) ).

% split_option_all
thf(fact_384_split__option__ex,axiom,
    ( ( ^ [P3: option_option_state > $o] :
        ? [X6: option_option_state] : ( P3 @ X6 ) )
    = ( ^ [P2: option_option_state > $o] :
          ( ( P2 @ none_option_state )
          | ? [X3: option_state] : ( P2 @ ( some_option_state @ X3 ) ) ) ) ) ).

% split_option_ex
thf(fact_385_split__option__ex,axiom,
    ( ( ^ [P3: option_state > $o] :
        ? [X6: option_state] : ( P3 @ X6 ) )
    = ( ^ [P2: option_state > $o] :
          ( ( P2 @ none_state )
          | ? [X3: state] : ( P2 @ ( some_state @ X3 ) ) ) ) ) ).

% split_option_ex
thf(fact_386_option_Oexhaust,axiom,
    ! [Y3: option_option_state] :
      ( ( Y3 != none_option_state )
     => ~ ! [X22: option_state] :
            ( Y3
           != ( some_option_state @ X22 ) ) ) ).

% option.exhaust
thf(fact_387_option_Oexhaust,axiom,
    ! [Y3: option_state] :
      ( ( Y3 != none_state )
     => ~ ! [X22: state] :
            ( Y3
           != ( some_state @ X22 ) ) ) ).

% option.exhaust
thf(fact_388_option_OdiscI,axiom,
    ! [Option: option_option_state,X2: option_state] :
      ( ( Option
        = ( some_option_state @ X2 ) )
     => ( Option != none_option_state ) ) ).

% option.discI
thf(fact_389_option_OdiscI,axiom,
    ! [Option: option_state,X2: state] :
      ( ( Option
        = ( some_state @ X2 ) )
     => ( Option != none_state ) ) ).

% option.discI
thf(fact_390_option_Odistinct_I1_J,axiom,
    ! [X2: option_state] :
      ( none_option_state
     != ( some_option_state @ X2 ) ) ).

% option.distinct(1)
thf(fact_391_option_Odistinct_I1_J,axiom,
    ! [X2: state] :
      ( none_state
     != ( some_state @ X2 ) ) ).

% option.distinct(1)
thf(fact_392_PartialSA_Omono__prop__set,axiom,
    ! [A3: set_state,B2: set_state,P: state > $o] :
      ( ( greater_set @ A3 @ B2 )
     => ( ( sep_setify_state @ P @ B2 )
       => ( ( sep_mono_prop_state @ plus @ P )
         => ( sep_setify_state @ P @ A3 ) ) ) ) ).

% PartialSA.mono_prop_set
thf(fact_393_PartialSA_Obigger__set,axiom,
    ! [A6: set_state,A3: set_state,B2: set_state] :
      ( ( greater_set @ A6 @ A3 )
     => ( greater_set @ ( add_set @ A6 @ B2 ) @ ( add_set @ A3 @ B2 ) ) ) ).

% PartialSA.bigger_set
thf(fact_394_asso2,axiom,
    ! [A: state,B: state,Ab: state,C: state] :
      ( ( ( ( plus @ A @ B )
          = ( some_state @ Ab ) )
        & ( ( plus @ B @ C )
          = none_state ) )
     => ( ( plus @ Ab @ C )
        = none_state ) ) ).

% asso2
thf(fact_395_PartialSA_Oasso3,axiom,
    ! [A: state,B: state,C: state,Bc: state] :
      ( ( ( plus @ A @ B )
        = none_state )
     => ( ( ( plus @ B @ C )
          = ( some_state @ Bc ) )
       => ( ( plus @ A @ Bc )
          = none_state ) ) ) ).

% PartialSA.asso3
thf(fact_396_option_Osimps_I14_J,axiom,
    ( ( set_op4970154267292507491_state @ none_P348328851727313334_state )
    = bot_bo9041262728264437921_state ) ).

% option.simps(14)
thf(fact_397_option_Osimps_I14_J,axiom,
    ( ( set_op4197959913983417475_state @ none_P2148290358184556502_state )
    = bot_bo1080640394036989633_state ) ).

% option.simps(14)
thf(fact_398_option_Osimps_I14_J,axiom,
    ( ( set_op5162993263733338108_state @ none_option_state )
    = bot_bo710180891245420500_state ) ).

% option.simps(14)
thf(fact_399_option_Osimps_I14_J,axiom,
    ( ( set_option_set_state2 @ none_set_state )
    = bot_bo2271482359692755898_state ) ).

% option.simps(14)
thf(fact_400_option_Osimps_I14_J,axiom,
    ( ( set_option_state2 @ none_state )
    = bot_bot_set_state ) ).

% option.simps(14)
thf(fact_401_PartialSA_Osplus_Osimps_I1_J,axiom,
    ! [Uu: option_state] :
      ( ( sep_splus_state @ plus @ none_state @ Uu )
      = none_state ) ).

% PartialSA.splus.simps(1)
thf(fact_402_the__elem__image__unique,axiom,
    ! [A3: set_state_o,F: ( state > $o ) > set_state,X: state > $o] :
      ( ( A3 != bot_bot_set_state_o2 )
     => ( ! [Y: state > $o] :
            ( ( member_state_o @ Y @ A3 )
           => ( ( F @ Y )
              = ( F @ X ) ) )
       => ( ( the_elem_set_state @ ( image_7376656169852520768_state @ F @ A3 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_403_the__elem__image__unique,axiom,
    ! [A3: set_nat,F: nat > state,X: nat] :
      ( ( A3 != bot_bot_set_nat )
     => ( ! [Y: nat] :
            ( ( member_nat @ Y @ A3 )
           => ( ( F @ Y )
              = ( F @ X ) ) )
       => ( ( the_elem_state @ ( image_nat_state @ F @ A3 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_404_the__elem__image__unique,axiom,
    ! [A3: set_state,F: state > option_state,X: state] :
      ( ( A3 != bot_bot_set_state )
     => ( ! [Y: state] :
            ( ( member_state @ Y @ A3 )
           => ( ( F @ Y )
              = ( F @ X ) ) )
       => ( ( the_el1618976816499768149_state @ ( image_6076465424260689483_state @ F @ A3 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_405_the__elem__image__unique,axiom,
    ! [A3: set_state,F: state > set_state,X: state] :
      ( ( A3 != bot_bot_set_state )
     => ( ! [Y: state] :
            ( ( member_state @ Y @ A3 )
           => ( ( F @ Y )
              = ( F @ X ) ) )
       => ( ( the_elem_set_state @ ( image_4774290769506072625_state @ F @ A3 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_406_the__elem__image__unique,axiom,
    ! [A3: set_state,F: state > state,X: state] :
      ( ( A3 != bot_bot_set_state )
     => ( ! [Y: state] :
            ( ( member_state @ Y @ A3 )
           => ( ( F @ Y )
              = ( F @ X ) ) )
       => ( ( the_elem_state @ ( image_state_state @ F @ A3 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_407_the__elem__image__unique,axiom,
    ! [A3: set_Pr1785066336555260981_state,F: produc8023240190789890773_state > state,X: produc8023240190789890773_state] :
      ( ( A3 != bot_bo9041262728264437921_state )
     => ( ! [Y: produc8023240190789890773_state] :
            ( ( member753036827967488894_state @ Y @ A3 )
           => ( ( F @ Y )
              = ( F @ X ) ) )
       => ( ( the_elem_state @ ( image_5145414166468158282_state @ F @ A3 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_408_the__elem__image__unique,axiom,
    ! [A3: set_Pr1688445902015331925_state,F: produc3142500478612311029_state > state,X: produc3142500478612311029_state] :
      ( ( A3 != bot_bo1080640394036989633_state )
     => ( ! [Y: produc3142500478612311029_state] :
            ( ( member3029510603097127326_state @ Y @ A3 )
           => ( ( F @ Y )
              = ( F @ X ) ) )
       => ( ( the_elem_state @ ( image_393491784373993066_state @ F @ A3 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_409_the__elem__image__unique,axiom,
    ! [A3: set_option_state,F: option_state > state,X: option_state] :
      ( ( A3 != bot_bo710180891245420500_state )
     => ( ! [Y: option_state] :
            ( ( member_option_state @ Y @ A3 )
           => ( ( F @ Y )
              = ( F @ X ) ) )
       => ( ( the_elem_state @ ( image_3532137647693456075_state @ F @ A3 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_410_the__elem__image__unique,axiom,
    ! [A3: set_set_state,F: set_state > set_state,X: set_state] :
      ( ( A3 != bot_bo2271482359692755898_state )
     => ( ! [Y: set_state] :
            ( ( member_set_state @ Y @ A3 )
           => ( ( F @ Y )
              = ( F @ X ) ) )
       => ( ( the_elem_set_state @ ( image_2476256681063834599_state @ F @ A3 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_411_the__elem__image__unique,axiom,
    ! [A3: set_set_state,F: set_state > state,X: set_state] :
      ( ( A3 != bot_bo2271482359692755898_state )
     => ( ! [Y: set_state] :
            ( ( member_set_state @ Y @ A3 )
           => ( ( F @ Y )
              = ( F @ X ) ) )
       => ( ( the_elem_state @ ( image_4575879259649255985_state @ F @ A3 ) )
          = ( F @ X ) ) ) ) ).

% the_elem_image_unique
thf(fact_412_Collect__empty__eq__bot,axiom,
    ! [P: produc8023240190789890773_state > $o] :
      ( ( ( collec7320380983431419584_state @ P )
        = bot_bo9041262728264437921_state )
      = ( P = bot_bo2162275076026452348tate_o ) ) ).

% Collect_empty_eq_bot
thf(fact_413_Collect__empty__eq__bot,axiom,
    ! [P: produc3142500478612311029_state > $o] :
      ( ( ( collec8144523193623705312_state @ P )
        = bot_bo1080640394036989633_state )
      = ( P = bot_bo4049596492272799580tate_o ) ) ).

% Collect_empty_eq_bot
thf(fact_414_Collect__empty__eq__bot,axiom,
    ! [P: option_state > $o] :
      ( ( ( collect_option_state @ P )
        = bot_bo710180891245420500_state )
      = ( P = bot_bo4453335400789057457tate_o ) ) ).

% Collect_empty_eq_bot
thf(fact_415_Collect__empty__eq__bot,axiom,
    ! [P: set_state > $o] :
      ( ( ( collect_set_state @ P )
        = bot_bo2271482359692755898_state )
      = ( P = bot_bot_set_state_o ) ) ).

% Collect_empty_eq_bot
thf(fact_416_Collect__empty__eq__bot,axiom,
    ! [P: state > $o] :
      ( ( ( collect_state @ P )
        = bot_bot_set_state )
      = ( P = bot_bot_state_o ) ) ).

% Collect_empty_eq_bot
thf(fact_417_bot__empty__eq,axiom,
    ( bot_bo2162275076026452348tate_o
    = ( ^ [X3: produc8023240190789890773_state] : ( member753036827967488894_state @ X3 @ bot_bo9041262728264437921_state ) ) ) ).

% bot_empty_eq
thf(fact_418_bot__empty__eq,axiom,
    ( bot_bo4049596492272799580tate_o
    = ( ^ [X3: produc3142500478612311029_state] : ( member3029510603097127326_state @ X3 @ bot_bo1080640394036989633_state ) ) ) ).

% bot_empty_eq
thf(fact_419_bot__empty__eq,axiom,
    ( bot_bo4453335400789057457tate_o
    = ( ^ [X3: option_state] : ( member_option_state @ X3 @ bot_bo710180891245420500_state ) ) ) ).

% bot_empty_eq
thf(fact_420_bot__empty__eq,axiom,
    ( bot_bot_set_state_o
    = ( ^ [X3: set_state] : ( member_set_state @ X3 @ bot_bo2271482359692755898_state ) ) ) ).

% bot_empty_eq
thf(fact_421_bot__empty__eq,axiom,
    ( bot_bot_state_o
    = ( ^ [X3: state] : ( member_state @ X3 @ bot_bot_set_state ) ) ) ).

% bot_empty_eq
thf(fact_422_compatible__options_Oelims_I2_J,axiom,
    ! [X: option_option_state,Xa: option_option_state] :
      ( ( compat839418488507666022_state @ X @ Xa )
     => ( ! [A2: option_state] :
            ( ( X
              = ( some_option_state @ A2 ) )
           => ! [B6: option_state] :
                ( ( Xa
                  = ( some_option_state @ B6 ) )
               => ( A2 != B6 ) ) )
       => ( ( X != none_option_state )
         => ( Xa = none_option_state ) ) ) ) ).

% compatible_options.elims(2)
thf(fact_423_compatible__options_Oelims_I2_J,axiom,
    ! [X: option_state,Xa: option_state] :
      ( ( compat2278460363914054422_state @ X @ Xa )
     => ( ! [A2: state] :
            ( ( X
              = ( some_state @ A2 ) )
           => ! [B6: state] :
                ( ( Xa
                  = ( some_state @ B6 ) )
               => ( A2 != B6 ) ) )
       => ( ( X != none_state )
         => ( Xa = none_state ) ) ) ) ).

% compatible_options.elims(2)
thf(fact_424_compatible__options_Oelims_I1_J,axiom,
    ! [X: option_option_state,Xa: option_option_state,Y3: $o] :
      ( ( ( compat839418488507666022_state @ X @ Xa )
        = Y3 )
     => ( ! [A2: option_state] :
            ( ( X
              = ( some_option_state @ A2 ) )
           => ! [B6: option_state] :
                ( ( Xa
                  = ( some_option_state @ B6 ) )
               => ( Y3
                  = ( A2 != B6 ) ) ) )
       => ( ( ( X = none_option_state )
           => ~ Y3 )
         => ~ ( ( Xa = none_option_state )
             => ~ Y3 ) ) ) ) ).

% compatible_options.elims(1)
thf(fact_425_compatible__options_Oelims_I1_J,axiom,
    ! [X: option_state,Xa: option_state,Y3: $o] :
      ( ( ( compat2278460363914054422_state @ X @ Xa )
        = Y3 )
     => ( ! [A2: state] :
            ( ( X
              = ( some_state @ A2 ) )
           => ! [B6: state] :
                ( ( Xa
                  = ( some_state @ B6 ) )
               => ( Y3
                  = ( A2 != B6 ) ) ) )
       => ( ( ( X = none_state )
           => ~ Y3 )
         => ~ ( ( Xa = none_state )
             => ~ Y3 ) ) ) ) ).

% compatible_options.elims(1)
thf(fact_426_PartialSA_Obigger__singleton,axiom,
    ! [Phi2: state,Phi: state] :
      ( ( greater @ Phi2 @ Phi )
     => ( greater_set @ ( insert_state @ Phi2 @ bot_bot_set_state ) @ ( insert_state @ Phi @ bot_bot_set_state ) ) ) ).

% PartialSA.bigger_singleton
thf(fact_427_sep__algebra_Omono__prop__set__equiv,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_mono_prop_state @ Plus @ P )
       => ( ( sep_equiv_state @ Plus @ A3 @ B2 )
         => ( ( sep_setify_state @ P @ A3 )
            = ( sep_setify_state @ P @ B2 ) ) ) ) ) ).

% sep_algebra.mono_prop_set_equiv
thf(fact_428_PartialSA_Oup__close__equiv,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( sep_up_closed_state @ plus @ A3 )
     => ( ( sep_up_closed_state @ plus @ B2 )
       => ( ( sep_equiv_state @ plus @ A3 @ B2 )
          = ( A3 = B2 ) ) ) ) ).

% PartialSA.up_close_equiv
thf(fact_429_greater__set__def,axiom,
    ( greater_set
    = ( sep_gr7105985528888466643_state @ plus ) ) ).

% greater_set_def
thf(fact_430_Sup_OSUP__cong,axiom,
    ! [A3: set_nat,B2: set_nat,C3: nat > state,D2: nat > state,Sup: set_state > state] :
      ( ( A3 = B2 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ B2 )
           => ( ( C3 @ X4 )
              = ( D2 @ X4 ) ) )
       => ( ( Sup @ ( image_nat_state @ C3 @ A3 ) )
          = ( Sup @ ( image_nat_state @ D2 @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_431_Sup_OSUP__cong,axiom,
    ! [A3: set_state_o,B2: set_state_o,C3: ( state > $o ) > set_state,D2: ( state > $o ) > set_state,Sup: set_set_state > set_state] :
      ( ( A3 = B2 )
     => ( ! [X4: state > $o] :
            ( ( member_state_o @ X4 @ B2 )
           => ( ( C3 @ X4 )
              = ( D2 @ X4 ) ) )
       => ( ( Sup @ ( image_7376656169852520768_state @ C3 @ A3 ) )
          = ( Sup @ ( image_7376656169852520768_state @ D2 @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_432_Sup_OSUP__cong,axiom,
    ! [A3: set_state,B2: set_state,C3: state > option_state,D2: state > option_state,Sup: set_option_state > option_state] :
      ( ( A3 = B2 )
     => ( ! [X4: state] :
            ( ( member_state @ X4 @ B2 )
           => ( ( C3 @ X4 )
              = ( D2 @ X4 ) ) )
       => ( ( Sup @ ( image_6076465424260689483_state @ C3 @ A3 ) )
          = ( Sup @ ( image_6076465424260689483_state @ D2 @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_433_Sup_OSUP__cong,axiom,
    ! [A3: set_state,B2: set_state,C3: state > set_state,D2: state > set_state,Sup: set_set_state > set_state] :
      ( ( A3 = B2 )
     => ( ! [X4: state] :
            ( ( member_state @ X4 @ B2 )
           => ( ( C3 @ X4 )
              = ( D2 @ X4 ) ) )
       => ( ( Sup @ ( image_4774290769506072625_state @ C3 @ A3 ) )
          = ( Sup @ ( image_4774290769506072625_state @ D2 @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_434_Sup_OSUP__cong,axiom,
    ! [A3: set_set_state,B2: set_set_state,C3: set_state > set_state,D2: set_state > set_state,Sup: set_set_state > set_state] :
      ( ( A3 = B2 )
     => ( ! [X4: set_state] :
            ( ( member_set_state @ X4 @ B2 )
           => ( ( C3 @ X4 )
              = ( D2 @ X4 ) ) )
       => ( ( Sup @ ( image_2476256681063834599_state @ C3 @ A3 ) )
          = ( Sup @ ( image_2476256681063834599_state @ D2 @ B2 ) ) ) ) ) ).

% Sup.SUP_cong
thf(fact_435_these__image__Some__eq,axiom,
    ! [A3: set_option_state] :
      ( ( these_option_state @ ( image_4760606469461393131_state @ some_option_state @ A3 ) )
      = A3 ) ).

% these_image_Some_eq
thf(fact_436_these__image__Some__eq,axiom,
    ! [A3: set_state] :
      ( ( these_state @ ( image_6076465424260689483_state @ some_state @ A3 ) )
      = A3 ) ).

% these_image_Some_eq
thf(fact_437_sep__algebra_Ogreater__set_Ocong,axiom,
    sep_gr7105985528888466643_state = sep_gr7105985528888466643_state ).

% sep_algebra.greater_set.cong
thf(fact_438_sep__algebra_Olarger__set__refl,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( sep_gr7105985528888466643_state @ Plus @ A3 @ A3 ) ) ).

% sep_algebra.larger_set_refl
thf(fact_439_sep__algebra_Oup__closed_Ocong,axiom,
    sep_up_closed_state = sep_up_closed_state ).

% sep_algebra.up_closed.cong
thf(fact_440_sep__algebra_Osucc__set__trans,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state,C3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_gr7105985528888466643_state @ Plus @ A3 @ B2 )
       => ( ( sep_gr7105985528888466643_state @ Plus @ B2 @ C3 )
         => ( sep_gr7105985528888466643_state @ Plus @ A3 @ C3 ) ) ) ) ).

% sep_algebra.succ_set_trans
thf(fact_441_sep__algebra_Ocommutative,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( Plus @ A @ B )
        = ( Plus @ B @ A ) ) ) ).

% sep_algebra.commutative
thf(fact_442_PartialSA_Osucc__antisym,axiom,
    ! [A: state,B: state] :
      ( ( greater @ A @ B )
     => ( ( greater @ B @ A )
       => ( A = B ) ) ) ).

% PartialSA.succ_antisym
thf(fact_443_PartialSA_Osucc__trans,axiom,
    ! [A: state,B: state,C: state] :
      ( ( greater @ A @ B )
     => ( ( greater @ B @ C )
       => ( greater @ A @ C ) ) ) ).

% PartialSA.succ_trans
thf(fact_444_PartialSA_Osucc__refl,axiom,
    ! [A: state] : ( greater @ A @ A ) ).

% PartialSA.succ_refl
thf(fact_445_PartialSA_Oup__closed__def,axiom,
    ! [A3: set_state] :
      ( ( sep_up_closed_state @ plus @ A3 )
      = ( ! [Phi3: state] :
            ( ? [X3: state] :
                ( ( member_state @ X3 @ A3 )
                & ( greater @ Phi3 @ X3 ) )
           => ( member_state @ Phi3 @ A3 ) ) ) ) ).

% PartialSA.up_closed_def
thf(fact_446_PartialSA_Oup__closedI,axiom,
    ! [A3: set_state] :
      ( ! [Phi4: state,Phi5: state] :
          ( ( ( greater @ Phi4 @ Phi5 )
            & ( member_state @ Phi5 @ A3 ) )
         => ( member_state @ Phi4 @ A3 ) )
     => ( sep_up_closed_state @ plus @ A3 ) ) ).

% PartialSA.up_closedI
thf(fact_447_sep__algebra_Oequiv__def,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_equiv_state @ Plus @ A3 @ B2 )
        = ( ( sep_gr7105985528888466643_state @ Plus @ A3 @ B2 )
          & ( sep_gr7105985528888466643_state @ Plus @ B2 @ A3 ) ) ) ) ).

% sep_algebra.equiv_def
thf(fact_448_sep__algebra_OequivI,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_gr7105985528888466643_state @ Plus @ A3 @ B2 )
       => ( ( sep_gr7105985528888466643_state @ Plus @ B2 @ A3 )
         => ( sep_equiv_state @ Plus @ A3 @ B2 ) ) ) ) ).

% sep_algebra.equivI
thf(fact_449_sep__algebra_Oup__close__equiv,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_up_closed_state @ Plus @ A3 )
       => ( ( sep_up_closed_state @ Plus @ B2 )
         => ( ( sep_equiv_state @ Plus @ A3 @ B2 )
            = ( A3 = B2 ) ) ) ) ) ).

% sep_algebra.up_close_equiv
thf(fact_450_sep__algebra_Oasso1,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,A: option_state,B: option_state,Ab: option_state,C: option_state,Bc: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( ( ( Plus @ A @ B )
            = ( some_option_state @ Ab ) )
          & ( ( Plus @ B @ C )
            = ( some_option_state @ Bc ) ) )
       => ( ( Plus @ Ab @ C )
          = ( Plus @ A @ Bc ) ) ) ) ).

% sep_algebra.asso1
thf(fact_451_sep__algebra_Oasso1,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state,Ab: state,C: state,Bc: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( ( Plus @ A @ B )
            = ( some_state @ Ab ) )
          & ( ( Plus @ B @ C )
            = ( some_state @ Bc ) ) )
       => ( ( Plus @ Ab @ C )
          = ( Plus @ A @ Bc ) ) ) ) ).

% sep_algebra.asso1
thf(fact_452_sep__algebra_Ocore__max,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,X: option_state,C: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( ( some_option_state @ X )
          = ( Plus @ X @ C ) )
       => ? [R: option_state] :
            ( ( some_option_state @ ( Core @ X ) )
            = ( Plus @ C @ R ) ) ) ) ).

% sep_algebra.core_max
thf(fact_453_sep__algebra_Ocore__max,axiom,
    ! [Plus: state > state > option_state,Core: state > state,X: state,C: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ X )
          = ( Plus @ X @ C ) )
       => ? [R: state] :
            ( ( some_state @ ( Core @ X ) )
            = ( Plus @ C @ R ) ) ) ) ).

% sep_algebra.core_max
thf(fact_454_sep__algebra_Ocore__sum,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,C: option_state,A: option_state,B: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( ( some_option_state @ C )
          = ( Plus @ A @ B ) )
       => ( ( some_option_state @ ( Core @ C ) )
          = ( Plus @ ( Core @ A ) @ ( Core @ B ) ) ) ) ) ).

% sep_algebra.core_sum
thf(fact_455_sep__algebra_Ocore__sum,axiom,
    ! [Plus: state > state > option_state,Core: state > state,C: state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ C )
          = ( Plus @ A @ B ) )
       => ( ( some_state @ ( Core @ C ) )
          = ( Plus @ ( Core @ A ) @ ( Core @ B ) ) ) ) ) ).

% sep_algebra.core_sum
thf(fact_456_sep__algebra_Opositivity,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,A: option_state,B: option_state,C: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( ( Plus @ A @ B )
          = ( some_option_state @ C ) )
       => ( ( ( some_option_state @ C )
            = ( Plus @ C @ C ) )
         => ( ( some_option_state @ A )
            = ( Plus @ A @ A ) ) ) ) ) ).

% sep_algebra.positivity
thf(fact_457_sep__algebra_Opositivity,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state,C: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( Plus @ A @ B )
          = ( some_state @ C ) )
       => ( ( ( some_state @ C )
            = ( Plus @ C @ C ) )
         => ( ( some_state @ A )
            = ( Plus @ A @ A ) ) ) ) ) ).

% sep_algebra.positivity
thf(fact_458_sep__algebra_Ocancellative,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,A: option_state,B: option_state,X: option_state,Y3: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( ( some_option_state @ A )
          = ( Plus @ B @ X ) )
       => ( ( ( some_option_state @ A )
            = ( Plus @ B @ Y3 ) )
         => ( ( ( Core @ X )
              = ( Core @ Y3 ) )
           => ( X = Y3 ) ) ) ) ) ).

% sep_algebra.cancellative
thf(fact_459_sep__algebra_Ocancellative,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state,X: state,Y3: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ A )
          = ( Plus @ B @ X ) )
       => ( ( ( some_state @ A )
            = ( Plus @ B @ Y3 ) )
         => ( ( ( Core @ X )
              = ( Core @ Y3 ) )
           => ( X = Y3 ) ) ) ) ) ).

% sep_algebra.cancellative
thf(fact_460_sep__algebra_Ocore__is__pure,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,X: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( some_option_state @ ( Core @ X ) )
        = ( Plus @ ( Core @ X ) @ ( Core @ X ) ) ) ) ).

% sep_algebra.core_is_pure
thf(fact_461_sep__algebra_Ocore__is__pure,axiom,
    ! [Plus: state > state > option_state,Core: state > state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( some_state @ ( Core @ X ) )
        = ( Plus @ ( Core @ X ) @ ( Core @ X ) ) ) ) ).

% sep_algebra.core_is_pure
thf(fact_462_sep__algebra_Ocore__is__smaller,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,X: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( some_option_state @ X )
        = ( Plus @ X @ ( Core @ X ) ) ) ) ).

% sep_algebra.core_is_smaller
thf(fact_463_sep__algebra_Ocore__is__smaller,axiom,
    ! [Plus: state > state > option_state,Core: state > state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( some_state @ X )
        = ( Plus @ X @ ( Core @ X ) ) ) ) ).

% sep_algebra.core_is_smaller
thf(fact_464_sep__algebra_Osplus__asso,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: option_state,B: option_state,C: option_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_splus_state @ Plus @ ( sep_splus_state @ Plus @ A @ B ) @ C )
        = ( sep_splus_state @ Plus @ A @ ( sep_splus_state @ Plus @ B @ C ) ) ) ) ).

% sep_algebra.splus_asso
thf(fact_465_sep__algebra_Osplus__comm,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: option_state,B: option_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_splus_state @ Plus @ A @ B )
        = ( sep_splus_state @ Plus @ B @ A ) ) ) ).

% sep_algebra.splus_comm
thf(fact_466_sep__algebra_Osetify__def,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,A3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_setify_state @ P @ A3 )
        = ( ! [X3: state] :
              ( ( member_state @ X3 @ A3 )
             => ( P @ X3 ) ) ) ) ) ).

% sep_algebra.setify_def
thf(fact_467_PartialSA_Ogreater__set__def,axiom,
    ( greater_set
    = ( ^ [A5: set_state,B5: set_state] :
        ! [X3: state] :
          ( ( member_state @ X3 @ A5 )
         => ? [Y4: state] :
              ( ( member_state @ Y4 @ B5 )
              & ( greater @ X3 @ Y4 ) ) ) ) ) ).

% PartialSA.greater_set_def
thf(fact_468_PartialSA_Ogreater__setI,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ! [A2: state] :
          ( ( member_state @ A2 @ A3 )
         => ? [X5: state] :
              ( ( member_state @ X5 @ B2 )
              & ( greater @ A2 @ X5 ) ) )
     => ( greater_set @ A3 @ B2 ) ) ).

% PartialSA.greater_setI
thf(fact_469_sep__algebra_Omono__prop__set,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state,P: state > $o] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_gr7105985528888466643_state @ Plus @ A3 @ B2 )
       => ( ( sep_setify_state @ P @ B2 )
         => ( ( sep_mono_prop_state @ Plus @ P )
           => ( sep_setify_state @ P @ A3 ) ) ) ) ) ).

% sep_algebra.mono_prop_set
thf(fact_470_R__smaller,axiom,
    ! [W: state,A: state] : ( greater @ W @ ( r @ A @ W ) ) ).

% R_smaller
thf(fact_471_sep__algebra_Oasso2,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,A: option_state,B: option_state,Ab: option_state,C: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( ( ( Plus @ A @ B )
            = ( some_option_state @ Ab ) )
          & ( ( Plus @ B @ C )
            = none_option_state ) )
       => ( ( Plus @ Ab @ C )
          = none_option_state ) ) ) ).

% sep_algebra.asso2
thf(fact_472_sep__algebra_Oasso2,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state,Ab: state,C: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( ( Plus @ A @ B )
            = ( some_state @ Ab ) )
          & ( ( Plus @ B @ C )
            = none_state ) )
       => ( ( Plus @ Ab @ C )
          = none_state ) ) ) ).

% sep_algebra.asso2
thf(fact_473_sep__algebra_Oasso3,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,A: option_state,B: option_state,C: option_state,Bc: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( ( Plus @ A @ B )
          = none_option_state )
       => ( ( ( Plus @ B @ C )
            = ( some_option_state @ Bc ) )
         => ( ( Plus @ A @ Bc )
            = none_option_state ) ) ) ) ).

% sep_algebra.asso3
thf(fact_474_sep__algebra_Oasso3,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state,C: state,Bc: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( Plus @ A @ B )
          = none_state )
       => ( ( ( Plus @ B @ C )
            = ( some_state @ Bc ) )
         => ( ( Plus @ A @ Bc )
            = none_state ) ) ) ) ).

% sep_algebra.asso3
thf(fact_475_sep__algebra_Ointro,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state] :
      ( ! [A2: option_state,B6: option_state] :
          ( ( Plus @ A2 @ B6 )
          = ( Plus @ B6 @ A2 ) )
     => ( ! [A2: option_state,B6: option_state,Ab2: option_state,C4: option_state,Bc2: option_state] :
            ( ( ( ( Plus @ A2 @ B6 )
                = ( some_option_state @ Ab2 ) )
              & ( ( Plus @ B6 @ C4 )
                = ( some_option_state @ Bc2 ) ) )
           => ( ( Plus @ Ab2 @ C4 )
              = ( Plus @ A2 @ Bc2 ) ) )
       => ( ! [A2: option_state,B6: option_state,Ab2: option_state,C4: option_state] :
              ( ( ( ( Plus @ A2 @ B6 )
                  = ( some_option_state @ Ab2 ) )
                & ( ( Plus @ B6 @ C4 )
                  = none_option_state ) )
             => ( ( Plus @ Ab2 @ C4 )
                = none_option_state ) )
         => ( ! [X4: option_state] :
                ( ( some_option_state @ X4 )
                = ( Plus @ X4 @ ( Core @ X4 ) ) )
           => ( ! [X4: option_state] :
                  ( ( some_option_state @ ( Core @ X4 ) )
                  = ( Plus @ ( Core @ X4 ) @ ( Core @ X4 ) ) )
             => ( ! [X4: option_state,C4: option_state] :
                    ( ( ( some_option_state @ X4 )
                      = ( Plus @ X4 @ C4 ) )
                   => ? [R2: option_state] :
                        ( ( some_option_state @ ( Core @ X4 ) )
                        = ( Plus @ C4 @ R2 ) ) )
               => ( ! [C4: option_state,A2: option_state,B6: option_state] :
                      ( ( ( some_option_state @ C4 )
                        = ( Plus @ A2 @ B6 ) )
                     => ( ( some_option_state @ ( Core @ C4 ) )
                        = ( Plus @ ( Core @ A2 ) @ ( Core @ B6 ) ) ) )
                 => ( ! [A2: option_state,B6: option_state,C4: option_state] :
                        ( ( ( Plus @ A2 @ B6 )
                          = ( some_option_state @ C4 ) )
                       => ( ( ( some_option_state @ C4 )
                            = ( Plus @ C4 @ C4 ) )
                         => ( ( some_option_state @ A2 )
                            = ( Plus @ A2 @ A2 ) ) ) )
                   => ( ! [A2: option_state,B6: option_state,X4: option_state,Y: option_state] :
                          ( ( ( some_option_state @ A2 )
                            = ( Plus @ B6 @ X4 ) )
                         => ( ( ( some_option_state @ A2 )
                              = ( Plus @ B6 @ Y ) )
                           => ( ( ( Core @ X4 )
                                = ( Core @ Y ) )
                             => ( X4 = Y ) ) ) )
                     => ( sep_al511465913568422763_state @ Plus @ Core ) ) ) ) ) ) ) ) ) ) ).

% sep_algebra.intro
thf(fact_476_sep__algebra_Ointro,axiom,
    ! [Plus: state > state > option_state,Core: state > state] :
      ( ! [A2: state,B6: state] :
          ( ( Plus @ A2 @ B6 )
          = ( Plus @ B6 @ A2 ) )
     => ( ! [A2: state,B6: state,Ab2: state,C4: state,Bc2: state] :
            ( ( ( ( Plus @ A2 @ B6 )
                = ( some_state @ Ab2 ) )
              & ( ( Plus @ B6 @ C4 )
                = ( some_state @ Bc2 ) ) )
           => ( ( Plus @ Ab2 @ C4 )
              = ( Plus @ A2 @ Bc2 ) ) )
       => ( ! [A2: state,B6: state,Ab2: state,C4: state] :
              ( ( ( ( Plus @ A2 @ B6 )
                  = ( some_state @ Ab2 ) )
                & ( ( Plus @ B6 @ C4 )
                  = none_state ) )
             => ( ( Plus @ Ab2 @ C4 )
                = none_state ) )
         => ( ! [X4: state] :
                ( ( some_state @ X4 )
                = ( Plus @ X4 @ ( Core @ X4 ) ) )
           => ( ! [X4: state] :
                  ( ( some_state @ ( Core @ X4 ) )
                  = ( Plus @ ( Core @ X4 ) @ ( Core @ X4 ) ) )
             => ( ! [X4: state,C4: state] :
                    ( ( ( some_state @ X4 )
                      = ( Plus @ X4 @ C4 ) )
                   => ? [R2: state] :
                        ( ( some_state @ ( Core @ X4 ) )
                        = ( Plus @ C4 @ R2 ) ) )
               => ( ! [C4: state,A2: state,B6: state] :
                      ( ( ( some_state @ C4 )
                        = ( Plus @ A2 @ B6 ) )
                     => ( ( some_state @ ( Core @ C4 ) )
                        = ( Plus @ ( Core @ A2 ) @ ( Core @ B6 ) ) ) )
                 => ( ! [A2: state,B6: state,C4: state] :
                        ( ( ( Plus @ A2 @ B6 )
                          = ( some_state @ C4 ) )
                       => ( ( ( some_state @ C4 )
                            = ( Plus @ C4 @ C4 ) )
                         => ( ( some_state @ A2 )
                            = ( Plus @ A2 @ A2 ) ) ) )
                   => ( ! [A2: state,B6: state,X4: state,Y: state] :
                          ( ( ( some_state @ A2 )
                            = ( Plus @ B6 @ X4 ) )
                         => ( ( ( some_state @ A2 )
                              = ( Plus @ B6 @ Y ) )
                           => ( ( ( Core @ X4 )
                                = ( Core @ Y ) )
                             => ( X4 = Y ) ) ) )
                     => ( sep_algebra_state @ Plus @ Core ) ) ) ) ) ) ) ) ) ) ).

% sep_algebra.intro
thf(fact_477_sep__algebra__def,axiom,
    ( sep_al511465913568422763_state
    = ( ^ [Plus2: option_state > option_state > option_option_state,Core2: option_state > option_state] :
          ( ! [A4: option_state,B3: option_state] :
              ( ( Plus2 @ A4 @ B3 )
              = ( Plus2 @ B3 @ A4 ) )
          & ! [A4: option_state,B3: option_state,Ab3: option_state,C5: option_state,Bc3: option_state] :
              ( ( ( ( Plus2 @ A4 @ B3 )
                  = ( some_option_state @ Ab3 ) )
                & ( ( Plus2 @ B3 @ C5 )
                  = ( some_option_state @ Bc3 ) ) )
             => ( ( Plus2 @ Ab3 @ C5 )
                = ( Plus2 @ A4 @ Bc3 ) ) )
          & ! [A4: option_state,B3: option_state,Ab3: option_state,C5: option_state] :
              ( ( ( ( Plus2 @ A4 @ B3 )
                  = ( some_option_state @ Ab3 ) )
                & ( ( Plus2 @ B3 @ C5 )
                  = none_option_state ) )
             => ( ( Plus2 @ Ab3 @ C5 )
                = none_option_state ) )
          & ! [X3: option_state] :
              ( ( some_option_state @ X3 )
              = ( Plus2 @ X3 @ ( Core2 @ X3 ) ) )
          & ! [X3: option_state] :
              ( ( some_option_state @ ( Core2 @ X3 ) )
              = ( Plus2 @ ( Core2 @ X3 ) @ ( Core2 @ X3 ) ) )
          & ! [X3: option_state,C5: option_state] :
              ( ( ( some_option_state @ X3 )
                = ( Plus2 @ X3 @ C5 ) )
             => ? [R3: option_state] :
                  ( ( some_option_state @ ( Core2 @ X3 ) )
                  = ( Plus2 @ C5 @ R3 ) ) )
          & ! [C5: option_state,A4: option_state,B3: option_state] :
              ( ( ( some_option_state @ C5 )
                = ( Plus2 @ A4 @ B3 ) )
             => ( ( some_option_state @ ( Core2 @ C5 ) )
                = ( Plus2 @ ( Core2 @ A4 ) @ ( Core2 @ B3 ) ) ) )
          & ! [A4: option_state,B3: option_state,C5: option_state] :
              ( ( ( Plus2 @ A4 @ B3 )
                = ( some_option_state @ C5 ) )
             => ( ( ( some_option_state @ C5 )
                  = ( Plus2 @ C5 @ C5 ) )
               => ( ( some_option_state @ A4 )
                  = ( Plus2 @ A4 @ A4 ) ) ) )
          & ! [A4: option_state,B3: option_state,X3: option_state,Y4: option_state] :
              ( ( ( some_option_state @ A4 )
                = ( Plus2 @ B3 @ X3 ) )
             => ( ( ( some_option_state @ A4 )
                  = ( Plus2 @ B3 @ Y4 ) )
               => ( ( ( Core2 @ X3 )
                    = ( Core2 @ Y4 ) )
                 => ( X3 = Y4 ) ) ) ) ) ) ) ).

% sep_algebra_def
thf(fact_478_sep__algebra__def,axiom,
    ( sep_algebra_state
    = ( ^ [Plus2: state > state > option_state,Core2: state > state] :
          ( ! [A4: state,B3: state] :
              ( ( Plus2 @ A4 @ B3 )
              = ( Plus2 @ B3 @ A4 ) )
          & ! [A4: state,B3: state,Ab3: state,C5: state,Bc3: state] :
              ( ( ( ( Plus2 @ A4 @ B3 )
                  = ( some_state @ Ab3 ) )
                & ( ( Plus2 @ B3 @ C5 )
                  = ( some_state @ Bc3 ) ) )
             => ( ( Plus2 @ Ab3 @ C5 )
                = ( Plus2 @ A4 @ Bc3 ) ) )
          & ! [A4: state,B3: state,Ab3: state,C5: state] :
              ( ( ( ( Plus2 @ A4 @ B3 )
                  = ( some_state @ Ab3 ) )
                & ( ( Plus2 @ B3 @ C5 )
                  = none_state ) )
             => ( ( Plus2 @ Ab3 @ C5 )
                = none_state ) )
          & ! [X3: state] :
              ( ( some_state @ X3 )
              = ( Plus2 @ X3 @ ( Core2 @ X3 ) ) )
          & ! [X3: state] :
              ( ( some_state @ ( Core2 @ X3 ) )
              = ( Plus2 @ ( Core2 @ X3 ) @ ( Core2 @ X3 ) ) )
          & ! [X3: state,C5: state] :
              ( ( ( some_state @ X3 )
                = ( Plus2 @ X3 @ C5 ) )
             => ? [R3: state] :
                  ( ( some_state @ ( Core2 @ X3 ) )
                  = ( Plus2 @ C5 @ R3 ) ) )
          & ! [C5: state,A4: state,B3: state] :
              ( ( ( some_state @ C5 )
                = ( Plus2 @ A4 @ B3 ) )
             => ( ( some_state @ ( Core2 @ C5 ) )
                = ( Plus2 @ ( Core2 @ A4 ) @ ( Core2 @ B3 ) ) ) )
          & ! [A4: state,B3: state,C5: state] :
              ( ( ( Plus2 @ A4 @ B3 )
                = ( some_state @ C5 ) )
             => ( ( ( some_state @ C5 )
                  = ( Plus2 @ C5 @ C5 ) )
               => ( ( some_state @ A4 )
                  = ( Plus2 @ A4 @ A4 ) ) ) )
          & ! [A4: state,B3: state,X3: state,Y4: state] :
              ( ( ( some_state @ A4 )
                = ( Plus2 @ B3 @ X3 ) )
             => ( ( ( some_state @ A4 )
                  = ( Plus2 @ B3 @ Y4 ) )
               => ( ( ( Core2 @ X3 )
                    = ( Core2 @ Y4 ) )
                 => ( X3 = Y4 ) ) ) ) ) ) ) ).

% sep_algebra_def
thf(fact_479_PartialSA_Obigger__sum,axiom,
    ! [Phi: state,A: state,B: state,Phi2: state] :
      ( ( ( some_state @ Phi )
        = ( plus @ A @ B ) )
     => ( ( greater @ Phi2 @ Phi )
       => ? [B7: state] :
            ( ( greater @ B7 @ B )
            & ( ( some_state @ Phi2 )
              = ( plus @ A @ B7 ) ) ) ) ) ).

% PartialSA.bigger_sum
thf(fact_480_PartialSA_Ogreater__def,axiom,
    ( greater
    = ( ^ [A4: state,B3: state] :
        ? [C5: state] :
          ( ( some_state @ A4 )
          = ( plus @ B3 @ C5 ) ) ) ) ).

% PartialSA.greater_def
thf(fact_481_PartialSA_Ogreater__equiv,axiom,
    ( greater
    = ( ^ [A4: state,B3: state] :
        ? [C5: state] :
          ( ( some_state @ A4 )
          = ( plus @ C5 @ B3 ) ) ) ) ).

% PartialSA.greater_equiv
thf(fact_482_PartialSA_Oaddition__bigger,axiom,
    ! [A7: state,A: state,X7: state,B: state,X: state] :
      ( ( greater @ A7 @ A )
     => ( ( ( some_state @ X7 )
          = ( plus @ A7 @ B ) )
       => ( ( ( some_state @ X )
            = ( plus @ A @ B ) )
         => ( greater @ X7 @ X ) ) ) ) ).

% PartialSA.addition_bigger
thf(fact_483_PartialSA_Obigger__sum__smaller,axiom,
    ! [C: state,A: state,B: state,A7: state] :
      ( ( ( some_state @ C )
        = ( plus @ A @ B ) )
     => ( ( greater @ A @ A7 )
       => ? [B7: state] :
            ( ( greater @ B7 @ B )
            & ( ( some_state @ C )
              = ( plus @ A7 @ B7 ) ) ) ) ) ).

% PartialSA.bigger_sum_smaller
thf(fact_484_sep__algebra_Osplus_Osimps_I3_J,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,A: option_state,B: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( sep_sp2496543662054378344_state @ Plus @ ( some_option_state @ A ) @ ( some_option_state @ B ) )
        = ( Plus @ A @ B ) ) ) ).

% sep_algebra.splus.simps(3)
thf(fact_485_sep__algebra_Osplus_Osimps_I3_J,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_splus_state @ Plus @ ( some_state @ A ) @ ( some_state @ B ) )
        = ( Plus @ A @ B ) ) ) ).

% sep_algebra.splus.simps(3)
thf(fact_486_sep__algebra_Osplus__develop,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,A: option_state,B: option_state,C: option_state,D: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( ( some_option_state @ A )
          = ( Plus @ B @ C ) )
       => ( ( Plus @ A @ D )
          = ( sep_sp2496543662054378344_state @ Plus @ ( sep_sp2496543662054378344_state @ Plus @ ( some_option_state @ B ) @ ( some_option_state @ C ) ) @ ( some_option_state @ D ) ) ) ) ) ).

% sep_algebra.splus_develop
thf(fact_487_sep__algebra_Osplus__develop,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state,C: state,D: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ A )
          = ( Plus @ B @ C ) )
       => ( ( Plus @ A @ D )
          = ( sep_splus_state @ Plus @ ( sep_splus_state @ Plus @ ( some_state @ B ) @ ( some_state @ C ) ) @ ( some_state @ D ) ) ) ) ) ).

% sep_algebra.splus_develop
thf(fact_488_sep__algebra_Osplus_Osimps_I1_J,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,Uu: option_option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( sep_sp2496543662054378344_state @ Plus @ none_option_state @ Uu )
        = none_option_state ) ) ).

% sep_algebra.splus.simps(1)
thf(fact_489_sep__algebra_Osplus_Osimps_I1_J,axiom,
    ! [Plus: state > state > option_state,Core: state > state,Uu: option_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_splus_state @ Plus @ none_state @ Uu )
        = none_state ) ) ).

% sep_algebra.splus.simps(1)
thf(fact_490_None__notin__image__Some,axiom,
    ! [A3: set_option_state] :
      ~ ( member1079230918592710257_state @ none_option_state @ ( image_4760606469461393131_state @ some_option_state @ A3 ) ) ).

% None_notin_image_Some
thf(fact_491_None__notin__image__Some,axiom,
    ! [A3: set_state] :
      ~ ( member_option_state @ none_state @ ( image_6076465424260689483_state @ some_state @ A3 ) ) ).

% None_notin_image_Some
thf(fact_492_compatible__options_Oelims_I3_J,axiom,
    ! [X: option_option_state,Xa: option_option_state] :
      ( ~ ( compat839418488507666022_state @ X @ Xa )
     => ~ ! [A2: option_state] :
            ( ( X
              = ( some_option_state @ A2 ) )
           => ! [B6: option_state] :
                ( ( Xa
                  = ( some_option_state @ B6 ) )
               => ( A2 = B6 ) ) ) ) ).

% compatible_options.elims(3)
thf(fact_493_compatible__options_Oelims_I3_J,axiom,
    ! [X: option_state,Xa: option_state] :
      ( ~ ( compat2278460363914054422_state @ X @ Xa )
     => ~ ! [A2: state] :
            ( ( X
              = ( some_state @ A2 ) )
           => ! [B6: state] :
                ( ( Xa
                  = ( some_state @ B6 ) )
               => ( A2 = B6 ) ) ) ) ).

% compatible_options.elims(3)
thf(fact_494_compatible__options_Osimps_I1_J,axiom,
    ! [A: option_state,B: option_state] :
      ( ( compat839418488507666022_state @ ( some_option_state @ A ) @ ( some_option_state @ B ) )
      = ( A = B ) ) ).

% compatible_options.simps(1)
thf(fact_495_compatible__options_Osimps_I1_J,axiom,
    ! [A: state,B: state] :
      ( ( compat2278460363914054422_state @ ( some_state @ A ) @ ( some_state @ B ) )
      = ( A = B ) ) ).

% compatible_options.simps(1)
thf(fact_496_compatible__options_Osimps_I2_J,axiom,
    ! [Uv: option_option_state] : ( compat839418488507666022_state @ none_option_state @ Uv ) ).

% compatible_options.simps(2)
thf(fact_497_compatible__options_Osimps_I2_J,axiom,
    ! [Uv: option_state] : ( compat2278460363914054422_state @ none_state @ Uv ) ).

% compatible_options.simps(2)
thf(fact_498_compatible__options_Osimps_I3_J,axiom,
    ! [Uu: option_option_state] : ( compat839418488507666022_state @ Uu @ none_option_state ) ).

% compatible_options.simps(3)
thf(fact_499_compatible__options_Osimps_I3_J,axiom,
    ! [Uu: option_state] : ( compat2278460363914054422_state @ Uu @ none_state ) ).

% compatible_options.simps(3)
thf(fact_500_PartialSA_Omono__prop__def,axiom,
    ! [P: state > $o] :
      ( ( sep_mono_prop_state @ plus @ P )
      = ( ! [X3: state,Y4: state] :
            ( ( ( greater @ Y4 @ X3 )
              & ( P @ X3 ) )
           => ( P @ Y4 ) ) ) ) ).

% PartialSA.mono_prop_def
thf(fact_501_PartialSA_Omono__propI,axiom,
    ! [P: state > $o] :
      ( ! [X4: state,Y: state] :
          ( ( ( greater @ Y @ X4 )
            & ( P @ X4 ) )
         => ( P @ Y ) )
     => ( sep_mono_prop_state @ plus @ P ) ) ).

% PartialSA.mono_propI
thf(fact_502_sep__algebra_Osplus_Osimps_I2_J,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,V: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( sep_sp2496543662054378344_state @ Plus @ ( some_option_state @ V ) @ none_option_state )
        = none_option_state ) ) ).

% sep_algebra.splus.simps(2)
thf(fact_503_sep__algebra_Osplus_Osimps_I2_J,axiom,
    ! [Plus: state > state > option_state,Core: state > state,V: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_splus_state @ Plus @ ( some_state @ V ) @ none_state )
        = none_state ) ) ).

% sep_algebra.splus.simps(2)
thf(fact_504_sep__algebra_Osplus_Oelims,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,X: option_option_state,Xa: option_option_state,Y3: option_option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( ( sep_sp2496543662054378344_state @ Plus @ X @ Xa )
          = Y3 )
       => ( ( ( X = none_option_state )
           => ( Y3 != none_option_state ) )
         => ( ( ? [V2: option_state] :
                  ( X
                  = ( some_option_state @ V2 ) )
             => ( ( Xa = none_option_state )
               => ( Y3 != none_option_state ) ) )
           => ~ ! [A2: option_state] :
                  ( ( X
                    = ( some_option_state @ A2 ) )
                 => ! [B6: option_state] :
                      ( ( Xa
                        = ( some_option_state @ B6 ) )
                     => ( Y3
                       != ( Plus @ A2 @ B6 ) ) ) ) ) ) ) ) ).

% sep_algebra.splus.elims
thf(fact_505_sep__algebra_Osplus_Oelims,axiom,
    ! [Plus: state > state > option_state,Core: state > state,X: option_state,Xa: option_state,Y3: option_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( sep_splus_state @ Plus @ X @ Xa )
          = Y3 )
       => ( ( ( X = none_state )
           => ( Y3 != none_state ) )
         => ( ( ? [V2: state] :
                  ( X
                  = ( some_state @ V2 ) )
             => ( ( Xa = none_state )
               => ( Y3 != none_state ) ) )
           => ~ ! [A2: state] :
                  ( ( X
                    = ( some_state @ A2 ) )
                 => ! [B6: state] :
                      ( ( Xa
                        = ( some_state @ B6 ) )
                     => ( Y3
                       != ( Plus @ A2 @ B6 ) ) ) ) ) ) ) ) ).

% sep_algebra.splus.elims
thf(fact_506_PartialSA_Oup__closed__sum,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( sep_up_closed_state @ plus @ A3 )
     => ( sep_up_closed_state @ plus @ ( add_set @ A3 @ B2 ) ) ) ).

% PartialSA.up_closed_sum
thf(fact_507_Inf_OINF__cong,axiom,
    ! [A3: set_nat,B2: set_nat,C3: nat > state,D2: nat > state,Inf: set_state > state] :
      ( ( A3 = B2 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ B2 )
           => ( ( C3 @ X4 )
              = ( D2 @ X4 ) ) )
       => ( ( Inf @ ( image_nat_state @ C3 @ A3 ) )
          = ( Inf @ ( image_nat_state @ D2 @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_508_Inf_OINF__cong,axiom,
    ! [A3: set_state_o,B2: set_state_o,C3: ( state > $o ) > set_state,D2: ( state > $o ) > set_state,Inf: set_set_state > set_state] :
      ( ( A3 = B2 )
     => ( ! [X4: state > $o] :
            ( ( member_state_o @ X4 @ B2 )
           => ( ( C3 @ X4 )
              = ( D2 @ X4 ) ) )
       => ( ( Inf @ ( image_7376656169852520768_state @ C3 @ A3 ) )
          = ( Inf @ ( image_7376656169852520768_state @ D2 @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_509_Inf_OINF__cong,axiom,
    ! [A3: set_state,B2: set_state,C3: state > option_state,D2: state > option_state,Inf: set_option_state > option_state] :
      ( ( A3 = B2 )
     => ( ! [X4: state] :
            ( ( member_state @ X4 @ B2 )
           => ( ( C3 @ X4 )
              = ( D2 @ X4 ) ) )
       => ( ( Inf @ ( image_6076465424260689483_state @ C3 @ A3 ) )
          = ( Inf @ ( image_6076465424260689483_state @ D2 @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_510_Inf_OINF__cong,axiom,
    ! [A3: set_state,B2: set_state,C3: state > set_state,D2: state > set_state,Inf: set_set_state > set_state] :
      ( ( A3 = B2 )
     => ( ! [X4: state] :
            ( ( member_state @ X4 @ B2 )
           => ( ( C3 @ X4 )
              = ( D2 @ X4 ) ) )
       => ( ( Inf @ ( image_4774290769506072625_state @ C3 @ A3 ) )
          = ( Inf @ ( image_4774290769506072625_state @ D2 @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_511_Inf_OINF__cong,axiom,
    ! [A3: set_set_state,B2: set_set_state,C3: set_state > set_state,D2: set_state > set_state,Inf: set_set_state > set_state] :
      ( ( A3 = B2 )
     => ( ! [X4: set_state] :
            ( ( member_set_state @ X4 @ B2 )
           => ( ( C3 @ X4 )
              = ( D2 @ X4 ) ) )
       => ( ( Inf @ ( image_2476256681063834599_state @ C3 @ A3 ) )
          = ( Inf @ ( image_2476256681063834599_state @ D2 @ B2 ) ) ) ) ) ).

% Inf.INF_cong
thf(fact_512_intuitionistic__def,axiom,
    ( intuitionistic
    = ( ^ [A5: set_state] :
        ! [A4: state,B3: state] :
          ( ( ( greater @ A4 @ B3 )
            & ( member_state @ B3 @ A5 ) )
         => ( member_state @ A4 @ A5 ) ) ) ) ).

% intuitionistic_def
thf(fact_513_sep__algebra_Osetify__sum__image,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,P: option_state > $o,F: state > option_state,A3: set_state,B2: set_option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( sep_se2722818254322476245_state @ P @ ( sep_ad494385427648137084_state @ Plus @ ( image_6076465424260689483_state @ F @ A3 ) @ B2 ) )
        = ( ! [X3: state] :
              ( ( member_state @ X3 @ A3 )
             => ( sep_se2722818254322476245_state @ P @ ( sep_ad494385427648137084_state @ Plus @ ( insert_option_state @ ( F @ X3 ) @ bot_bo710180891245420500_state ) @ B2 ) ) ) ) ) ) ).

% sep_algebra.setify_sum_image
thf(fact_514_sep__algebra_Osetify__sum__image,axiom,
    ! [Plus: set_state > set_state > option_set_state,Core: set_state > set_state,P: set_state > $o,F: state > set_state,A3: set_state,B2: set_set_state] :
      ( ( sep_al3379035725709354321_state @ Plus @ Core )
     => ( ( sep_setify_set_state @ P @ ( sep_ad7561664654817782498_state @ Plus @ ( image_4774290769506072625_state @ F @ A3 ) @ B2 ) )
        = ( ! [X3: state] :
              ( ( member_state @ X3 @ A3 )
             => ( sep_setify_set_state @ P @ ( sep_ad7561664654817782498_state @ Plus @ ( insert_set_state @ ( F @ X3 ) @ bot_bo2271482359692755898_state ) @ B2 ) ) ) ) ) ) ).

% sep_algebra.setify_sum_image
thf(fact_515_sep__algebra_Osetify__sum__image,axiom,
    ! [Plus: set_state > set_state > option_set_state,Core: set_state > set_state,P: set_state > $o,F: set_state > set_state,A3: set_set_state,B2: set_set_state] :
      ( ( sep_al3379035725709354321_state @ Plus @ Core )
     => ( ( sep_setify_set_state @ P @ ( sep_ad7561664654817782498_state @ Plus @ ( image_2476256681063834599_state @ F @ A3 ) @ B2 ) )
        = ( ! [X3: set_state] :
              ( ( member_set_state @ X3 @ A3 )
             => ( sep_setify_set_state @ P @ ( sep_ad7561664654817782498_state @ Plus @ ( insert_set_state @ ( F @ X3 ) @ bot_bo2271482359692755898_state ) @ B2 ) ) ) ) ) ) ).

% sep_algebra.setify_sum_image
thf(fact_516_sep__algebra_Osetify__sum__image,axiom,
    ! [Plus: set_state > set_state > option_set_state,Core: set_state > set_state,P: set_state > $o,F: ( state > $o ) > set_state,A3: set_state_o,B2: set_set_state] :
      ( ( sep_al3379035725709354321_state @ Plus @ Core )
     => ( ( sep_setify_set_state @ P @ ( sep_ad7561664654817782498_state @ Plus @ ( image_7376656169852520768_state @ F @ A3 ) @ B2 ) )
        = ( ! [X3: state > $o] :
              ( ( member_state_o @ X3 @ A3 )
             => ( sep_setify_set_state @ P @ ( sep_ad7561664654817782498_state @ Plus @ ( insert_set_state @ ( F @ X3 ) @ bot_bo2271482359692755898_state ) @ B2 ) ) ) ) ) ) ).

% sep_algebra.setify_sum_image
thf(fact_517_sep__algebra_Osetify__sum__image,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,F: nat > state,A3: set_nat,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_setify_state @ P @ ( sep_add_set_state @ Plus @ ( image_nat_state @ F @ A3 ) @ B2 ) )
        = ( ! [X3: nat] :
              ( ( member_nat @ X3 @ A3 )
             => ( sep_setify_state @ P @ ( sep_add_set_state @ Plus @ ( insert_state @ ( F @ X3 ) @ bot_bot_set_state ) @ B2 ) ) ) ) ) ) ).

% sep_algebra.setify_sum_image
thf(fact_518_sep__algebra_Oupper__closure__up__closed,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( sep_up_closed_state @ Plus @ ( sep_up1246176804924251236_state @ Plus @ A3 ) ) ) ).

% sep_algebra.upper_closure_up_closed
thf(fact_519_sep__algebra_Osetify__sum,axiom,
    ! [Plus: produc8023240190789890773_state > produc8023240190789890773_state > option2250103068101548571_state,Core: produc8023240190789890773_state > produc8023240190789890773_state,P: produc8023240190789890773_state > $o,A3: set_Pr1785066336555260981_state,B2: set_Pr1785066336555260981_state] :
      ( ( sep_al7026638520560055732_state @ Plus @ Core )
     => ( ( sep_se8263300668621121226_state @ P @ ( sep_ad3780630032383550947_state @ Plus @ A3 @ B2 ) )
        = ( ! [X3: produc8023240190789890773_state] :
              ( ( member753036827967488894_state @ X3 @ A3 )
             => ( sep_se8263300668621121226_state @ P @ ( sep_ad3780630032383550947_state @ Plus @ ( insert7525286303735658661_state @ X3 @ bot_bo9041262728264437921_state ) @ B2 ) ) ) ) ) ) ).

% sep_algebra.setify_sum
thf(fact_520_sep__algebra_Osetify__sum,axiom,
    ! [Plus: produc3142500478612311029_state > produc3142500478612311029_state > option6833441738159790651_state,Core: produc3142500478612311029_state > produc3142500478612311029_state,P: produc3142500478612311029_state > $o,A3: set_Pr1688445902015331925_state,B2: set_Pr1688445902015331925_state] :
      ( ( sep_al3542390230161005012_state @ Plus @ Core )
     => ( ( sep_se7172211557308979434_state @ P @ ( sep_ad4751565379959694595_state @ Plus @ A3 @ B2 ) )
        = ( ! [X3: produc3142500478612311029_state] :
              ( ( member3029510603097127326_state @ X3 @ A3 )
             => ( sep_se7172211557308979434_state @ P @ ( sep_ad4751565379959694595_state @ Plus @ ( insert4171857611248116165_state @ X3 @ bot_bo1080640394036989633_state ) @ B2 ) ) ) ) ) ) ).

% sep_algebra.setify_sum
thf(fact_521_sep__algebra_Osetify__sum,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,P: option_state > $o,A3: set_option_state,B2: set_option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( sep_se2722818254322476245_state @ P @ ( sep_ad494385427648137084_state @ Plus @ A3 @ B2 ) )
        = ( ! [X3: option_state] :
              ( ( member_option_state @ X3 @ A3 )
             => ( sep_se2722818254322476245_state @ P @ ( sep_ad494385427648137084_state @ Plus @ ( insert_option_state @ X3 @ bot_bo710180891245420500_state ) @ B2 ) ) ) ) ) ) ).

% sep_algebra.setify_sum
thf(fact_522_sep__algebra_Osetify__sum,axiom,
    ! [Plus: set_state > set_state > option_set_state,Core: set_state > set_state,P: set_state > $o,A3: set_set_state,B2: set_set_state] :
      ( ( sep_al3379035725709354321_state @ Plus @ Core )
     => ( ( sep_setify_set_state @ P @ ( sep_ad7561664654817782498_state @ Plus @ A3 @ B2 ) )
        = ( ! [X3: set_state] :
              ( ( member_set_state @ X3 @ A3 )
             => ( sep_setify_set_state @ P @ ( sep_ad7561664654817782498_state @ Plus @ ( insert_set_state @ X3 @ bot_bo2271482359692755898_state ) @ B2 ) ) ) ) ) ) ).

% sep_algebra.setify_sum
thf(fact_523_sep__algebra_Osetify__sum,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_setify_state @ P @ ( sep_add_set_state @ Plus @ A3 @ B2 ) )
        = ( ! [X3: state] :
              ( ( member_state @ X3 @ A3 )
             => ( sep_setify_state @ P @ ( sep_add_set_state @ Plus @ ( insert_state @ X3 @ bot_bot_set_state ) @ B2 ) ) ) ) ) ) ).

% sep_algebra.setify_sum
thf(fact_524_sep__algebra_Osum__then__singleton,axiom,
    ! [Plus: produc8023240190789890773_state > produc8023240190789890773_state > option2250103068101548571_state,Core: produc8023240190789890773_state > produc8023240190789890773_state,A: produc8023240190789890773_state,B: produc8023240190789890773_state,C: produc8023240190789890773_state] :
      ( ( sep_al7026638520560055732_state @ Plus @ Core )
     => ( ( ( some_P8120450764674687802_state @ A )
          = ( Plus @ B @ C ) )
        = ( ( insert7525286303735658661_state @ A @ bot_bo9041262728264437921_state )
          = ( sep_ad3780630032383550947_state @ Plus @ ( insert7525286303735658661_state @ B @ bot_bo9041262728264437921_state ) @ ( insert7525286303735658661_state @ C @ bot_bo9041262728264437921_state ) ) ) ) ) ).

% sep_algebra.sum_then_singleton
thf(fact_525_sep__algebra_Osum__then__singleton,axiom,
    ! [Plus: produc3142500478612311029_state > produc3142500478612311029_state > option6833441738159790651_state,Core: produc3142500478612311029_state > produc3142500478612311029_state,A: produc3142500478612311029_state,B: produc3142500478612311029_state,C: produc3142500478612311029_state] :
      ( ( sep_al3542390230161005012_state @ Plus @ Core )
     => ( ( ( some_P3186401494017672538_state @ A )
          = ( Plus @ B @ C ) )
        = ( ( insert4171857611248116165_state @ A @ bot_bo1080640394036989633_state )
          = ( sep_ad4751565379959694595_state @ Plus @ ( insert4171857611248116165_state @ B @ bot_bo1080640394036989633_state ) @ ( insert4171857611248116165_state @ C @ bot_bo1080640394036989633_state ) ) ) ) ) ).

% sep_algebra.sum_then_singleton
thf(fact_526_sep__algebra_Osum__then__singleton,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,A: option_state,B: option_state,C: option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( ( some_option_state @ A )
          = ( Plus @ B @ C ) )
        = ( ( insert_option_state @ A @ bot_bo710180891245420500_state )
          = ( sep_ad494385427648137084_state @ Plus @ ( insert_option_state @ B @ bot_bo710180891245420500_state ) @ ( insert_option_state @ C @ bot_bo710180891245420500_state ) ) ) ) ) ).

% sep_algebra.sum_then_singleton
thf(fact_527_sep__algebra_Osum__then__singleton,axiom,
    ! [Plus: set_state > set_state > option_set_state,Core: set_state > set_state,A: set_state,B: set_state,C: set_state] :
      ( ( sep_al3379035725709354321_state @ Plus @ Core )
     => ( ( ( some_set_state @ A )
          = ( Plus @ B @ C ) )
        = ( ( insert_set_state @ A @ bot_bo2271482359692755898_state )
          = ( sep_ad7561664654817782498_state @ Plus @ ( insert_set_state @ B @ bot_bo2271482359692755898_state ) @ ( insert_set_state @ C @ bot_bo2271482359692755898_state ) ) ) ) ) ).

% sep_algebra.sum_then_singleton
thf(fact_528_sep__algebra_Osum__then__singleton,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state,C: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ A )
          = ( Plus @ B @ C ) )
        = ( ( insert_state @ A @ bot_bot_set_state )
          = ( sep_add_set_state @ Plus @ ( insert_state @ B @ bot_bot_set_state ) @ ( insert_state @ C @ bot_bot_set_state ) ) ) ) ) ).

% sep_algebra.sum_then_singleton
thf(fact_529_PartialSA_Oupper__closure__up__closed,axiom,
    ! [A3: set_state] : ( sep_up_closed_state @ plus @ ( sep_up1246176804924251236_state @ plus @ A3 ) ) ).

% PartialSA.upper_closure_up_closed
thf(fact_530_sep__algebra_Ox__elem__set__product__splus,axiom,
    ! [Plus: set_state > set_state > option_set_state,Core: set_state > set_state,X: set_state,A3: set_set_state,B2: set_set_state] :
      ( ( sep_al3379035725709354321_state @ Plus @ Core )
     => ( ( member_set_state @ X @ ( sep_ad7561664654817782498_state @ Plus @ A3 @ B2 ) )
        = ( ? [A4: set_state,B3: set_state] :
              ( ( member_set_state @ A4 @ A3 )
              & ( member_set_state @ B3 @ B2 )
              & ( ( some_set_state @ X )
                = ( sep_splus_set_state @ Plus @ ( some_set_state @ A4 ) @ ( some_set_state @ B3 ) ) ) ) ) ) ) ).

% sep_algebra.x_elem_set_product_splus
thf(fact_531_sep__algebra_Ox__elem__set__product__splus,axiom,
    ! [Plus: produc3142500478612311029_state > produc3142500478612311029_state > option6833441738159790651_state,Core: produc3142500478612311029_state > produc3142500478612311029_state,X: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state,B2: set_Pr1688445902015331925_state] :
      ( ( sep_al3542390230161005012_state @ Plus @ Core )
     => ( ( member3029510603097127326_state @ X @ ( sep_ad4751565379959694595_state @ Plus @ A3 @ B2 ) )
        = ( ? [A4: produc3142500478612311029_state,B3: produc3142500478612311029_state] :
              ( ( member3029510603097127326_state @ A4 @ A3 )
              & ( member3029510603097127326_state @ B3 @ B2 )
              & ( ( some_P3186401494017672538_state @ X )
                = ( sep_sp2357042210444369943_state @ Plus @ ( some_P3186401494017672538_state @ A4 ) @ ( some_P3186401494017672538_state @ B3 ) ) ) ) ) ) ) ).

% sep_algebra.x_elem_set_product_splus
thf(fact_532_sep__algebra_Ox__elem__set__product__splus,axiom,
    ! [Plus: produc8023240190789890773_state > produc8023240190789890773_state > option2250103068101548571_state,Core: produc8023240190789890773_state > produc8023240190789890773_state,X: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state,B2: set_Pr1785066336555260981_state] :
      ( ( sep_al7026638520560055732_state @ Plus @ Core )
     => ( ( member753036827967488894_state @ X @ ( sep_ad3780630032383550947_state @ Plus @ A3 @ B2 ) )
        = ( ? [A4: produc8023240190789890773_state,B3: produc8023240190789890773_state] :
              ( ( member753036827967488894_state @ A4 @ A3 )
              & ( member753036827967488894_state @ B3 @ B2 )
              & ( ( some_P8120450764674687802_state @ X )
                = ( sep_sp5678321299423575287_state @ Plus @ ( some_P8120450764674687802_state @ A4 ) @ ( some_P8120450764674687802_state @ B3 ) ) ) ) ) ) ) ).

% sep_algebra.x_elem_set_product_splus
thf(fact_533_sep__algebra_Ox__elem__set__product__splus,axiom,
    ! [Plus: option_state > option_state > option_option_state,Core: option_state > option_state,X: option_state,A3: set_option_state,B2: set_option_state] :
      ( ( sep_al511465913568422763_state @ Plus @ Core )
     => ( ( member_option_state @ X @ ( sep_ad494385427648137084_state @ Plus @ A3 @ B2 ) )
        = ( ? [A4: option_state,B3: option_state] :
              ( ( member_option_state @ A4 @ A3 )
              & ( member_option_state @ B3 @ B2 )
              & ( ( some_option_state @ X )
                = ( sep_sp2496543662054378344_state @ Plus @ ( some_option_state @ A4 ) @ ( some_option_state @ B3 ) ) ) ) ) ) ) ).

% sep_algebra.x_elem_set_product_splus
thf(fact_534_sep__algebra_Ox__elem__set__product__splus,axiom,
    ! [Plus: state > state > option_state,Core: state > state,X: state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( member_state @ X @ ( sep_add_set_state @ Plus @ A3 @ B2 ) )
        = ( ? [A4: state,B3: state] :
              ( ( member_state @ A4 @ A3 )
              & ( member_state @ B3 @ B2 )
              & ( ( some_state @ X )
                = ( sep_splus_state @ Plus @ ( some_state @ A4 ) @ ( some_state @ B3 ) ) ) ) ) ) ) ).

% sep_algebra.x_elem_set_product_splus
thf(fact_535_PartialSA_Oequiv__up__closed__subset,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( sep_up_closed_state @ plus @ A3 )
     => ( ( sep_equiv_state @ plus @ B2 @ C3 )
       => ( ( ord_le2494988322063910608_state @ B2 @ A3 )
          = ( ord_le2494988322063910608_state @ C3 @ A3 ) ) ) ) ).

% PartialSA.equiv_up_closed_subset
thf(fact_536_PartialSA_Oup__closed__plus__UNIV,axiom,
    ! [A3: set_state] : ( sep_up_closed_state @ plus @ ( add_set @ A3 @ top_top_set_state ) ) ).

% PartialSA.up_closed_plus_UNIV
thf(fact_537_order__refl,axiom,
    ! [X: set_set_state] : ( ord_le5175021213330142598_state @ X @ X ) ).

% order_refl
thf(fact_538_order__refl,axiom,
    ! [X: set_Pr1688445902015331925_state] : ( ord_le6423325748750870005_state @ X @ X ) ).

% order_refl
thf(fact_539_order__refl,axiom,
    ! [X: set_Pr1785066336555260981_state] : ( ord_le2777189432094499797_state @ X @ X ) ).

% order_refl
thf(fact_540_order__refl,axiom,
    ! [X: set_option_state] : ( ord_le7116032884704190368_state @ X @ X ) ).

% order_refl
thf(fact_541_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_542_order__refl,axiom,
    ! [X: set_state] : ( ord_le2494988322063910608_state @ X @ X ) ).

% order_refl
thf(fact_543_dual__order_Orefl,axiom,
    ! [A: set_set_state] : ( ord_le5175021213330142598_state @ A @ A ) ).

% dual_order.refl
thf(fact_544_dual__order_Orefl,axiom,
    ! [A: set_Pr1688445902015331925_state] : ( ord_le6423325748750870005_state @ A @ A ) ).

% dual_order.refl
thf(fact_545_dual__order_Orefl,axiom,
    ! [A: set_Pr1785066336555260981_state] : ( ord_le2777189432094499797_state @ A @ A ) ).

% dual_order.refl
thf(fact_546_dual__order_Orefl,axiom,
    ! [A: set_option_state] : ( ord_le7116032884704190368_state @ A @ A ) ).

% dual_order.refl
thf(fact_547_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_548_dual__order_Orefl,axiom,
    ! [A: set_state] : ( ord_le2494988322063910608_state @ A @ A ) ).

% dual_order.refl
thf(fact_549_top__apply,axiom,
    ( top_top_state_o
    = ( ^ [X3: state] : top_top_o ) ) ).

% top_apply
thf(fact_550_UNIV__I,axiom,
    ! [X: produc3142500478612311029_state] : ( member3029510603097127326_state @ X @ top_to5248747511432852389_state ) ).

% UNIV_I
thf(fact_551_UNIV__I,axiom,
    ! [X: produc8023240190789890773_state] : ( member753036827967488894_state @ X @ top_to4183510833390158213_state ) ).

% UNIV_I
thf(fact_552_UNIV__I,axiom,
    ! [X: option_state] : ( member_option_state @ X @ top_to7666338855062656496_state ) ).

% UNIV_I
thf(fact_553_UNIV__I,axiom,
    ! [X: set_state] : ( member_set_state @ X @ top_to5262587396890829782_state ) ).

% UNIV_I
thf(fact_554_UNIV__I,axiom,
    ! [X: nat] : ( member_nat @ X @ top_top_set_nat ) ).

% UNIV_I
thf(fact_555_UNIV__I,axiom,
    ! [X: state] : ( member_state @ X @ top_top_set_state ) ).

% UNIV_I
thf(fact_556_subsetI,axiom,
    ! [A3: set_set_state,B2: set_set_state] :
      ( ! [X4: set_state] :
          ( ( member_set_state @ X4 @ A3 )
         => ( member_set_state @ X4 @ B2 ) )
     => ( ord_le5175021213330142598_state @ A3 @ B2 ) ) ).

% subsetI
thf(fact_557_subsetI,axiom,
    ! [A3: set_Pr1688445902015331925_state,B2: set_Pr1688445902015331925_state] :
      ( ! [X4: produc3142500478612311029_state] :
          ( ( member3029510603097127326_state @ X4 @ A3 )
         => ( member3029510603097127326_state @ X4 @ B2 ) )
     => ( ord_le6423325748750870005_state @ A3 @ B2 ) ) ).

% subsetI
thf(fact_558_subsetI,axiom,
    ! [A3: set_Pr1785066336555260981_state,B2: set_Pr1785066336555260981_state] :
      ( ! [X4: produc8023240190789890773_state] :
          ( ( member753036827967488894_state @ X4 @ A3 )
         => ( member753036827967488894_state @ X4 @ B2 ) )
     => ( ord_le2777189432094499797_state @ A3 @ B2 ) ) ).

% subsetI
thf(fact_559_subsetI,axiom,
    ! [A3: set_option_state,B2: set_option_state] :
      ( ! [X4: option_state] :
          ( ( member_option_state @ X4 @ A3 )
         => ( member_option_state @ X4 @ B2 ) )
     => ( ord_le7116032884704190368_state @ A3 @ B2 ) ) ).

% subsetI
thf(fact_560_subsetI,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ! [X4: state] :
          ( ( member_state @ X4 @ A3 )
         => ( member_state @ X4 @ B2 ) )
     => ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ).

% subsetI
thf(fact_561_empty__subsetI,axiom,
    ! [A3: set_set_state] : ( ord_le5175021213330142598_state @ bot_bo2271482359692755898_state @ A3 ) ).

% empty_subsetI
thf(fact_562_empty__subsetI,axiom,
    ! [A3: set_Pr1688445902015331925_state] : ( ord_le6423325748750870005_state @ bot_bo1080640394036989633_state @ A3 ) ).

% empty_subsetI
thf(fact_563_empty__subsetI,axiom,
    ! [A3: set_Pr1785066336555260981_state] : ( ord_le2777189432094499797_state @ bot_bo9041262728264437921_state @ A3 ) ).

% empty_subsetI
thf(fact_564_empty__subsetI,axiom,
    ! [A3: set_option_state] : ( ord_le7116032884704190368_state @ bot_bo710180891245420500_state @ A3 ) ).

% empty_subsetI
thf(fact_565_empty__subsetI,axiom,
    ! [A3: set_state] : ( ord_le2494988322063910608_state @ bot_bot_set_state @ A3 ) ).

% empty_subsetI
thf(fact_566_subset__empty,axiom,
    ! [A3: set_set_state] :
      ( ( ord_le5175021213330142598_state @ A3 @ bot_bo2271482359692755898_state )
      = ( A3 = bot_bo2271482359692755898_state ) ) ).

% subset_empty
thf(fact_567_subset__empty,axiom,
    ! [A3: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ A3 @ bot_bo1080640394036989633_state )
      = ( A3 = bot_bo1080640394036989633_state ) ) ).

% subset_empty
thf(fact_568_subset__empty,axiom,
    ! [A3: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ A3 @ bot_bo9041262728264437921_state )
      = ( A3 = bot_bo9041262728264437921_state ) ) ).

% subset_empty
thf(fact_569_subset__empty,axiom,
    ! [A3: set_option_state] :
      ( ( ord_le7116032884704190368_state @ A3 @ bot_bo710180891245420500_state )
      = ( A3 = bot_bo710180891245420500_state ) ) ).

% subset_empty
thf(fact_570_subset__empty,axiom,
    ! [A3: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ bot_bot_set_state )
      = ( A3 = bot_bot_set_state ) ) ).

% subset_empty
thf(fact_571_insert__subset,axiom,
    ! [X: set_state,A3: set_set_state,B2: set_set_state] :
      ( ( ord_le5175021213330142598_state @ ( insert_set_state @ X @ A3 ) @ B2 )
      = ( ( member_set_state @ X @ B2 )
        & ( ord_le5175021213330142598_state @ A3 @ B2 ) ) ) ).

% insert_subset
thf(fact_572_insert__subset,axiom,
    ! [X: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state,B2: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ ( insert4171857611248116165_state @ X @ A3 ) @ B2 )
      = ( ( member3029510603097127326_state @ X @ B2 )
        & ( ord_le6423325748750870005_state @ A3 @ B2 ) ) ) ).

% insert_subset
thf(fact_573_insert__subset,axiom,
    ! [X: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state,B2: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ ( insert7525286303735658661_state @ X @ A3 ) @ B2 )
      = ( ( member753036827967488894_state @ X @ B2 )
        & ( ord_le2777189432094499797_state @ A3 @ B2 ) ) ) ).

% insert_subset
thf(fact_574_insert__subset,axiom,
    ! [X: option_state,A3: set_option_state,B2: set_option_state] :
      ( ( ord_le7116032884704190368_state @ ( insert_option_state @ X @ A3 ) @ B2 )
      = ( ( member_option_state @ X @ B2 )
        & ( ord_le7116032884704190368_state @ A3 @ B2 ) ) ) ).

% insert_subset
thf(fact_575_insert__subset,axiom,
    ! [X: state,A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ ( insert_state @ X @ A3 ) @ B2 )
      = ( ( member_state @ X @ B2 )
        & ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ) ).

% insert_subset
thf(fact_576_singleton__insert__inj__eq_H,axiom,
    ! [A: set_state,A3: set_set_state,B: set_state] :
      ( ( ( insert_set_state @ A @ A3 )
        = ( insert_set_state @ B @ bot_bo2271482359692755898_state ) )
      = ( ( A = B )
        & ( ord_le5175021213330142598_state @ A3 @ ( insert_set_state @ B @ bot_bo2271482359692755898_state ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_577_singleton__insert__inj__eq_H,axiom,
    ! [A: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state,B: produc3142500478612311029_state] :
      ( ( ( insert4171857611248116165_state @ A @ A3 )
        = ( insert4171857611248116165_state @ B @ bot_bo1080640394036989633_state ) )
      = ( ( A = B )
        & ( ord_le6423325748750870005_state @ A3 @ ( insert4171857611248116165_state @ B @ bot_bo1080640394036989633_state ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_578_singleton__insert__inj__eq_H,axiom,
    ! [A: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state,B: produc8023240190789890773_state] :
      ( ( ( insert7525286303735658661_state @ A @ A3 )
        = ( insert7525286303735658661_state @ B @ bot_bo9041262728264437921_state ) )
      = ( ( A = B )
        & ( ord_le2777189432094499797_state @ A3 @ ( insert7525286303735658661_state @ B @ bot_bo9041262728264437921_state ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_579_singleton__insert__inj__eq_H,axiom,
    ! [A: option_state,A3: set_option_state,B: option_state] :
      ( ( ( insert_option_state @ A @ A3 )
        = ( insert_option_state @ B @ bot_bo710180891245420500_state ) )
      = ( ( A = B )
        & ( ord_le7116032884704190368_state @ A3 @ ( insert_option_state @ B @ bot_bo710180891245420500_state ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_580_singleton__insert__inj__eq_H,axiom,
    ! [A: state,A3: set_state,B: state] :
      ( ( ( insert_state @ A @ A3 )
        = ( insert_state @ B @ bot_bot_set_state ) )
      = ( ( A = B )
        & ( ord_le2494988322063910608_state @ A3 @ ( insert_state @ B @ bot_bot_set_state ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_581_singleton__insert__inj__eq,axiom,
    ! [B: set_state,A: set_state,A3: set_set_state] :
      ( ( ( insert_set_state @ B @ bot_bo2271482359692755898_state )
        = ( insert_set_state @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le5175021213330142598_state @ A3 @ ( insert_set_state @ B @ bot_bo2271482359692755898_state ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_582_singleton__insert__inj__eq,axiom,
    ! [B: produc3142500478612311029_state,A: produc3142500478612311029_state,A3: set_Pr1688445902015331925_state] :
      ( ( ( insert4171857611248116165_state @ B @ bot_bo1080640394036989633_state )
        = ( insert4171857611248116165_state @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le6423325748750870005_state @ A3 @ ( insert4171857611248116165_state @ B @ bot_bo1080640394036989633_state ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_583_singleton__insert__inj__eq,axiom,
    ! [B: produc8023240190789890773_state,A: produc8023240190789890773_state,A3: set_Pr1785066336555260981_state] :
      ( ( ( insert7525286303735658661_state @ B @ bot_bo9041262728264437921_state )
        = ( insert7525286303735658661_state @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le2777189432094499797_state @ A3 @ ( insert7525286303735658661_state @ B @ bot_bo9041262728264437921_state ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_584_singleton__insert__inj__eq,axiom,
    ! [B: option_state,A: option_state,A3: set_option_state] :
      ( ( ( insert_option_state @ B @ bot_bo710180891245420500_state )
        = ( insert_option_state @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le7116032884704190368_state @ A3 @ ( insert_option_state @ B @ bot_bo710180891245420500_state ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_585_singleton__insert__inj__eq,axiom,
    ! [B: state,A: state,A3: set_state] :
      ( ( ( insert_state @ B @ bot_bot_set_state )
        = ( insert_state @ A @ A3 ) )
      = ( ( A = B )
        & ( ord_le2494988322063910608_state @ A3 @ ( insert_state @ B @ bot_bot_set_state ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_586_range__subsetD,axiom,
    ! [F: state > state,B2: set_state,I: state] :
      ( ( ord_le2494988322063910608_state @ ( image_state_state @ F @ top_top_set_state ) @ B2 )
     => ( member_state @ ( F @ I ) @ B2 ) ) ).

% range_subsetD
thf(fact_587_range__subsetD,axiom,
    ! [F: nat > state,B2: set_state,I: nat] :
      ( ( ord_le2494988322063910608_state @ ( image_nat_state @ F @ top_top_set_nat ) @ B2 )
     => ( member_state @ ( F @ I ) @ B2 ) ) ).

% range_subsetD
thf(fact_588_range__subsetD,axiom,
    ! [F: option_state > state,B2: set_state,I: option_state] :
      ( ( ord_le2494988322063910608_state @ ( image_3532137647693456075_state @ F @ top_to7666338855062656496_state ) @ B2 )
     => ( member_state @ ( F @ I ) @ B2 ) ) ).

% range_subsetD
thf(fact_589_range__subsetD,axiom,
    ! [F: set_state > state,B2: set_state,I: set_state] :
      ( ( ord_le2494988322063910608_state @ ( image_4575879259649255985_state @ F @ top_to5262587396890829782_state ) @ B2 )
     => ( member_state @ ( F @ I ) @ B2 ) ) ).

% range_subsetD
thf(fact_590_range__subsetD,axiom,
    ! [F: state > set_state,B2: set_set_state,I: state] :
      ( ( ord_le5175021213330142598_state @ ( image_4774290769506072625_state @ F @ top_top_set_state ) @ B2 )
     => ( member_set_state @ ( F @ I ) @ B2 ) ) ).

% range_subsetD
thf(fact_591_range__subsetD,axiom,
    ! [F: nat > set_state,B2: set_set_state,I: nat] :
      ( ( ord_le5175021213330142598_state @ ( image_nat_set_state @ F @ top_top_set_nat ) @ B2 )
     => ( member_set_state @ ( F @ I ) @ B2 ) ) ).

% range_subsetD
thf(fact_592_range__subsetD,axiom,
    ! [F: state > option_state,B2: set_option_state,I: state] :
      ( ( ord_le7116032884704190368_state @ ( image_6076465424260689483_state @ F @ top_top_set_state ) @ B2 )
     => ( member_option_state @ ( F @ I ) @ B2 ) ) ).

% range_subsetD
thf(fact_593_range__subsetD,axiom,
    ! [F: nat > option_state,B2: set_option_state,I: nat] :
      ( ( ord_le7116032884704190368_state @ ( image_8240249968597053537_state @ F @ top_top_set_nat ) @ B2 )
     => ( member_option_state @ ( F @ I ) @ B2 ) ) ).

% range_subsetD
thf(fact_594_range__subsetD,axiom,
    ! [F: option_state > set_state,B2: set_set_state,I: option_state] :
      ( ( ord_le5175021213330142598_state @ ( image_3284240608559150209_state @ F @ top_to7666338855062656496_state ) @ B2 )
     => ( member_set_state @ ( F @ I ) @ B2 ) ) ).

% range_subsetD
thf(fact_595_range__subsetD,axiom,
    ! [F: set_state > set_state,B2: set_set_state,I: set_state] :
      ( ( ord_le5175021213330142598_state @ ( image_2476256681063834599_state @ F @ top_to5262587396890829782_state ) @ B2 )
     => ( member_set_state @ ( F @ I ) @ B2 ) ) ).

% range_subsetD
thf(fact_596_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_597_le__cases3,axiom,
    ! [X: nat,Y3: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y3 )
       => ~ ( ord_less_eq_nat @ Y3 @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y3 @ X )
         => ~ ( ord_less_eq_nat @ X @ Z ) )
       => ( ( ( ord_less_eq_nat @ X @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y3 ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y3 )
             => ~ ( ord_less_eq_nat @ Y3 @ X ) )
           => ( ( ( ord_less_eq_nat @ Y3 @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y3 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_598_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_set_state,Z2: set_set_state] : ( Y5 = Z2 ) )
    = ( ^ [X3: set_set_state,Y4: set_set_state] :
          ( ( ord_le5175021213330142598_state @ X3 @ Y4 )
          & ( ord_le5175021213330142598_state @ Y4 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_599_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_Pr1688445902015331925_state,Z2: set_Pr1688445902015331925_state] : ( Y5 = Z2 ) )
    = ( ^ [X3: set_Pr1688445902015331925_state,Y4: set_Pr1688445902015331925_state] :
          ( ( ord_le6423325748750870005_state @ X3 @ Y4 )
          & ( ord_le6423325748750870005_state @ Y4 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_600_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_Pr1785066336555260981_state,Z2: set_Pr1785066336555260981_state] : ( Y5 = Z2 ) )
    = ( ^ [X3: set_Pr1785066336555260981_state,Y4: set_Pr1785066336555260981_state] :
          ( ( ord_le2777189432094499797_state @ X3 @ Y4 )
          & ( ord_le2777189432094499797_state @ Y4 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_601_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_option_state,Z2: set_option_state] : ( Y5 = Z2 ) )
    = ( ^ [X3: set_option_state,Y4: set_option_state] :
          ( ( ord_le7116032884704190368_state @ X3 @ Y4 )
          & ( ord_le7116032884704190368_state @ Y4 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_602_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [X3: nat,Y4: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y4 )
          & ( ord_less_eq_nat @ Y4 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_603_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_state,Z2: set_state] : ( Y5 = Z2 ) )
    = ( ^ [X3: set_state,Y4: set_state] :
          ( ( ord_le2494988322063910608_state @ X3 @ Y4 )
          & ( ord_le2494988322063910608_state @ Y4 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_604_ord__eq__le__trans,axiom,
    ! [A: set_set_state,B: set_set_state,C: set_set_state] :
      ( ( A = B )
     => ( ( ord_le5175021213330142598_state @ B @ C )
       => ( ord_le5175021213330142598_state @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_605_ord__eq__le__trans,axiom,
    ! [A: set_Pr1688445902015331925_state,B: set_Pr1688445902015331925_state,C: set_Pr1688445902015331925_state] :
      ( ( A = B )
     => ( ( ord_le6423325748750870005_state @ B @ C )
       => ( ord_le6423325748750870005_state @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_606_ord__eq__le__trans,axiom,
    ! [A: set_Pr1785066336555260981_state,B: set_Pr1785066336555260981_state,C: set_Pr1785066336555260981_state] :
      ( ( A = B )
     => ( ( ord_le2777189432094499797_state @ B @ C )
       => ( ord_le2777189432094499797_state @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_607_ord__eq__le__trans,axiom,
    ! [A: set_option_state,B: set_option_state,C: set_option_state] :
      ( ( A = B )
     => ( ( ord_le7116032884704190368_state @ B @ C )
       => ( ord_le7116032884704190368_state @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_608_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_609_ord__eq__le__trans,axiom,
    ! [A: set_state,B: set_state,C: set_state] :
      ( ( A = B )
     => ( ( ord_le2494988322063910608_state @ B @ C )
       => ( ord_le2494988322063910608_state @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_610_ord__le__eq__trans,axiom,
    ! [A: set_set_state,B: set_set_state,C: set_set_state] :
      ( ( ord_le5175021213330142598_state @ A @ B )
     => ( ( B = C )
       => ( ord_le5175021213330142598_state @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_611_ord__le__eq__trans,axiom,
    ! [A: set_Pr1688445902015331925_state,B: set_Pr1688445902015331925_state,C: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ A @ B )
     => ( ( B = C )
       => ( ord_le6423325748750870005_state @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_612_ord__le__eq__trans,axiom,
    ! [A: set_Pr1785066336555260981_state,B: set_Pr1785066336555260981_state,C: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ A @ B )
     => ( ( B = C )
       => ( ord_le2777189432094499797_state @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_613_ord__le__eq__trans,axiom,
    ! [A: set_option_state,B: set_option_state,C: set_option_state] :
      ( ( ord_le7116032884704190368_state @ A @ B )
     => ( ( B = C )
       => ( ord_le7116032884704190368_state @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_614_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_615_ord__le__eq__trans,axiom,
    ! [A: set_state,B: set_state,C: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( B = C )
       => ( ord_le2494988322063910608_state @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_616_order__antisym,axiom,
    ! [X: set_set_state,Y3: set_set_state] :
      ( ( ord_le5175021213330142598_state @ X @ Y3 )
     => ( ( ord_le5175021213330142598_state @ Y3 @ X )
       => ( X = Y3 ) ) ) ).

% order_antisym
thf(fact_617_order__antisym,axiom,
    ! [X: set_Pr1688445902015331925_state,Y3: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ X @ Y3 )
     => ( ( ord_le6423325748750870005_state @ Y3 @ X )
       => ( X = Y3 ) ) ) ).

% order_antisym
thf(fact_618_order__antisym,axiom,
    ! [X: set_Pr1785066336555260981_state,Y3: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ X @ Y3 )
     => ( ( ord_le2777189432094499797_state @ Y3 @ X )
       => ( X = Y3 ) ) ) ).

% order_antisym
thf(fact_619_order__antisym,axiom,
    ! [X: set_option_state,Y3: set_option_state] :
      ( ( ord_le7116032884704190368_state @ X @ Y3 )
     => ( ( ord_le7116032884704190368_state @ Y3 @ X )
       => ( X = Y3 ) ) ) ).

% order_antisym
thf(fact_620_order__antisym,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X @ Y3 )
     => ( ( ord_less_eq_nat @ Y3 @ X )
       => ( X = Y3 ) ) ) ).

% order_antisym
thf(fact_621_order__antisym,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( ord_le2494988322063910608_state @ X @ Y3 )
     => ( ( ord_le2494988322063910608_state @ Y3 @ X )
       => ( X = Y3 ) ) ) ).

% order_antisym
thf(fact_622_order_Otrans,axiom,
    ! [A: set_set_state,B: set_set_state,C: set_set_state] :
      ( ( ord_le5175021213330142598_state @ A @ B )
     => ( ( ord_le5175021213330142598_state @ B @ C )
       => ( ord_le5175021213330142598_state @ A @ C ) ) ) ).

% order.trans
thf(fact_623_order_Otrans,axiom,
    ! [A: set_Pr1688445902015331925_state,B: set_Pr1688445902015331925_state,C: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ A @ B )
     => ( ( ord_le6423325748750870005_state @ B @ C )
       => ( ord_le6423325748750870005_state @ A @ C ) ) ) ).

% order.trans
thf(fact_624_order_Otrans,axiom,
    ! [A: set_Pr1785066336555260981_state,B: set_Pr1785066336555260981_state,C: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ A @ B )
     => ( ( ord_le2777189432094499797_state @ B @ C )
       => ( ord_le2777189432094499797_state @ A @ C ) ) ) ).

% order.trans
thf(fact_625_order_Otrans,axiom,
    ! [A: set_option_state,B: set_option_state,C: set_option_state] :
      ( ( ord_le7116032884704190368_state @ A @ B )
     => ( ( ord_le7116032884704190368_state @ B @ C )
       => ( ord_le7116032884704190368_state @ A @ C ) ) ) ).

% order.trans
thf(fact_626_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_627_order_Otrans,axiom,
    ! [A: set_state,B: set_state,C: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ord_le2494988322063910608_state @ B @ C )
       => ( ord_le2494988322063910608_state @ A @ C ) ) ) ).

% order.trans
thf(fact_628_order__trans,axiom,
    ! [X: set_set_state,Y3: set_set_state,Z: set_set_state] :
      ( ( ord_le5175021213330142598_state @ X @ Y3 )
     => ( ( ord_le5175021213330142598_state @ Y3 @ Z )
       => ( ord_le5175021213330142598_state @ X @ Z ) ) ) ).

% order_trans
thf(fact_629_order__trans,axiom,
    ! [X: set_Pr1688445902015331925_state,Y3: set_Pr1688445902015331925_state,Z: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ X @ Y3 )
     => ( ( ord_le6423325748750870005_state @ Y3 @ Z )
       => ( ord_le6423325748750870005_state @ X @ Z ) ) ) ).

% order_trans
thf(fact_630_order__trans,axiom,
    ! [X: set_Pr1785066336555260981_state,Y3: set_Pr1785066336555260981_state,Z: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ X @ Y3 )
     => ( ( ord_le2777189432094499797_state @ Y3 @ Z )
       => ( ord_le2777189432094499797_state @ X @ Z ) ) ) ).

% order_trans
thf(fact_631_order__trans,axiom,
    ! [X: set_option_state,Y3: set_option_state,Z: set_option_state] :
      ( ( ord_le7116032884704190368_state @ X @ Y3 )
     => ( ( ord_le7116032884704190368_state @ Y3 @ Z )
       => ( ord_le7116032884704190368_state @ X @ Z ) ) ) ).

% order_trans
thf(fact_632_order__trans,axiom,
    ! [X: nat,Y3: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y3 )
     => ( ( ord_less_eq_nat @ Y3 @ Z )
       => ( ord_less_eq_nat @ X @ Z ) ) ) ).

% order_trans
thf(fact_633_order__trans,axiom,
    ! [X: set_state,Y3: set_state,Z: set_state] :
      ( ( ord_le2494988322063910608_state @ X @ Y3 )
     => ( ( ord_le2494988322063910608_state @ Y3 @ Z )
       => ( ord_le2494988322063910608_state @ X @ Z ) ) ) ).

% order_trans
thf(fact_634_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A2: nat,B6: nat] :
          ( ( ord_less_eq_nat @ A2 @ B6 )
         => ( P @ A2 @ B6 ) )
     => ( ! [A2: nat,B6: nat] :
            ( ( P @ B6 @ A2 )
           => ( P @ A2 @ B6 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_635_top__greatest,axiom,
    ! [A: state > $o] : ( ord_less_eq_state_o @ A @ top_top_state_o ) ).

% top_greatest
thf(fact_636_top__greatest,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ top_top_set_nat ) ).

% top_greatest
thf(fact_637_top__greatest,axiom,
    ! [A: set_set_state] : ( ord_le5175021213330142598_state @ A @ top_to5262587396890829782_state ) ).

% top_greatest
thf(fact_638_top__greatest,axiom,
    ! [A: set_Pr1688445902015331925_state] : ( ord_le6423325748750870005_state @ A @ top_to5248747511432852389_state ) ).

% top_greatest
thf(fact_639_top__greatest,axiom,
    ! [A: set_Pr1785066336555260981_state] : ( ord_le2777189432094499797_state @ A @ top_to4183510833390158213_state ) ).

% top_greatest
thf(fact_640_top__greatest,axiom,
    ! [A: set_option_state] : ( ord_le7116032884704190368_state @ A @ top_to7666338855062656496_state ) ).

% top_greatest
thf(fact_641_top__greatest,axiom,
    ! [A: set_state] : ( ord_le2494988322063910608_state @ A @ top_top_set_state ) ).

% top_greatest
thf(fact_642_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_set_state,Z2: set_set_state] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_set_state,B3: set_set_state] :
          ( ( ord_le5175021213330142598_state @ B3 @ A4 )
          & ( ord_le5175021213330142598_state @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_643_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_Pr1688445902015331925_state,Z2: set_Pr1688445902015331925_state] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_Pr1688445902015331925_state,B3: set_Pr1688445902015331925_state] :
          ( ( ord_le6423325748750870005_state @ B3 @ A4 )
          & ( ord_le6423325748750870005_state @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_644_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_Pr1785066336555260981_state,Z2: set_Pr1785066336555260981_state] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_Pr1785066336555260981_state,B3: set_Pr1785066336555260981_state] :
          ( ( ord_le2777189432094499797_state @ B3 @ A4 )
          & ( ord_le2777189432094499797_state @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_645_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_option_state,Z2: set_option_state] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_option_state,B3: set_option_state] :
          ( ( ord_le7116032884704190368_state @ B3 @ A4 )
          & ( ord_le7116032884704190368_state @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_646_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_647_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y5: set_state,Z2: set_state] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_state,B3: set_state] :
          ( ( ord_le2494988322063910608_state @ B3 @ A4 )
          & ( ord_le2494988322063910608_state @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_648_dual__order_Oantisym,axiom,
    ! [B: set_set_state,A: set_set_state] :
      ( ( ord_le5175021213330142598_state @ B @ A )
     => ( ( ord_le5175021213330142598_state @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_649_dual__order_Oantisym,axiom,
    ! [B: set_Pr1688445902015331925_state,A: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ B @ A )
     => ( ( ord_le6423325748750870005_state @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_650_dual__order_Oantisym,axiom,
    ! [B: set_Pr1785066336555260981_state,A: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ B @ A )
     => ( ( ord_le2777189432094499797_state @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_651_dual__order_Oantisym,axiom,
    ! [B: set_option_state,A: set_option_state] :
      ( ( ord_le7116032884704190368_state @ B @ A )
     => ( ( ord_le7116032884704190368_state @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_652_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_653_dual__order_Oantisym,axiom,
    ! [B: set_state,A: set_state] :
      ( ( ord_le2494988322063910608_state @ B @ A )
     => ( ( ord_le2494988322063910608_state @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_654_dual__order_Otrans,axiom,
    ! [B: set_set_state,A: set_set_state,C: set_set_state] :
      ( ( ord_le5175021213330142598_state @ B @ A )
     => ( ( ord_le5175021213330142598_state @ C @ B )
       => ( ord_le5175021213330142598_state @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_655_dual__order_Otrans,axiom,
    ! [B: set_Pr1688445902015331925_state,A: set_Pr1688445902015331925_state,C: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ B @ A )
     => ( ( ord_le6423325748750870005_state @ C @ B )
       => ( ord_le6423325748750870005_state @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_656_dual__order_Otrans,axiom,
    ! [B: set_Pr1785066336555260981_state,A: set_Pr1785066336555260981_state,C: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ B @ A )
     => ( ( ord_le2777189432094499797_state @ C @ B )
       => ( ord_le2777189432094499797_state @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_657_dual__order_Otrans,axiom,
    ! [B: set_option_state,A: set_option_state,C: set_option_state] :
      ( ( ord_le7116032884704190368_state @ B @ A )
     => ( ( ord_le7116032884704190368_state @ C @ B )
       => ( ord_le7116032884704190368_state @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_658_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_659_dual__order_Otrans,axiom,
    ! [B: set_state,A: set_state,C: set_state] :
      ( ( ord_le2494988322063910608_state @ B @ A )
     => ( ( ord_le2494988322063910608_state @ C @ B )
       => ( ord_le2494988322063910608_state @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_660_top_Oextremum__unique,axiom,
    ! [A: state > $o] :
      ( ( ord_less_eq_state_o @ top_top_state_o @ A )
      = ( A = top_top_state_o ) ) ).

% top.extremum_unique
thf(fact_661_top_Oextremum__unique,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ top_top_set_nat @ A )
      = ( A = top_top_set_nat ) ) ).

% top.extremum_unique
thf(fact_662_top_Oextremum__unique,axiom,
    ! [A: set_set_state] :
      ( ( ord_le5175021213330142598_state @ top_to5262587396890829782_state @ A )
      = ( A = top_to5262587396890829782_state ) ) ).

% top.extremum_unique
thf(fact_663_top_Oextremum__unique,axiom,
    ! [A: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ top_to5248747511432852389_state @ A )
      = ( A = top_to5248747511432852389_state ) ) ).

% top.extremum_unique
thf(fact_664_top_Oextremum__unique,axiom,
    ! [A: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ top_to4183510833390158213_state @ A )
      = ( A = top_to4183510833390158213_state ) ) ).

% top.extremum_unique
thf(fact_665_top_Oextremum__unique,axiom,
    ! [A: set_option_state] :
      ( ( ord_le7116032884704190368_state @ top_to7666338855062656496_state @ A )
      = ( A = top_to7666338855062656496_state ) ) ).

% top.extremum_unique
thf(fact_666_top_Oextremum__unique,axiom,
    ! [A: set_state] :
      ( ( ord_le2494988322063910608_state @ top_top_set_state @ A )
      = ( A = top_top_set_state ) ) ).

% top.extremum_unique
thf(fact_667_top_Oextremum__uniqueI,axiom,
    ! [A: state > $o] :
      ( ( ord_less_eq_state_o @ top_top_state_o @ A )
     => ( A = top_top_state_o ) ) ).

% top.extremum_uniqueI
thf(fact_668_top_Oextremum__uniqueI,axiom,
    ! [A: set_nat] :
      ( ( ord_less_eq_set_nat @ top_top_set_nat @ A )
     => ( A = top_top_set_nat ) ) ).

% top.extremum_uniqueI
thf(fact_669_top_Oextremum__uniqueI,axiom,
    ! [A: set_set_state] :
      ( ( ord_le5175021213330142598_state @ top_to5262587396890829782_state @ A )
     => ( A = top_to5262587396890829782_state ) ) ).

% top.extremum_uniqueI
thf(fact_670_top_Oextremum__uniqueI,axiom,
    ! [A: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ top_to5248747511432852389_state @ A )
     => ( A = top_to5248747511432852389_state ) ) ).

% top.extremum_uniqueI
thf(fact_671_top_Oextremum__uniqueI,axiom,
    ! [A: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ top_to4183510833390158213_state @ A )
     => ( A = top_to4183510833390158213_state ) ) ).

% top.extremum_uniqueI
thf(fact_672_top_Oextremum__uniqueI,axiom,
    ! [A: set_option_state] :
      ( ( ord_le7116032884704190368_state @ top_to7666338855062656496_state @ A )
     => ( A = top_to7666338855062656496_state ) ) ).

% top.extremum_uniqueI
thf(fact_673_top_Oextremum__uniqueI,axiom,
    ! [A: set_state] :
      ( ( ord_le2494988322063910608_state @ top_top_set_state @ A )
     => ( A = top_top_set_state ) ) ).

% top.extremum_uniqueI
thf(fact_674_antisym,axiom,
    ! [A: set_set_state,B: set_set_state] :
      ( ( ord_le5175021213330142598_state @ A @ B )
     => ( ( ord_le5175021213330142598_state @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_675_antisym,axiom,
    ! [A: set_Pr1688445902015331925_state,B: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ A @ B )
     => ( ( ord_le6423325748750870005_state @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_676_antisym,axiom,
    ! [A: set_Pr1785066336555260981_state,B: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ A @ B )
     => ( ( ord_le2777189432094499797_state @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_677_antisym,axiom,
    ! [A: set_option_state,B: set_option_state] :
      ( ( ord_le7116032884704190368_state @ A @ B )
     => ( ( ord_le7116032884704190368_state @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_678_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_679_antisym,axiom,
    ! [A: set_state,B: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ord_le2494988322063910608_state @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_680_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_set_state,Z2: set_set_state] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_set_state,B3: set_set_state] :
          ( ( ord_le5175021213330142598_state @ A4 @ B3 )
          & ( ord_le5175021213330142598_state @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_681_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_Pr1688445902015331925_state,Z2: set_Pr1688445902015331925_state] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_Pr1688445902015331925_state,B3: set_Pr1688445902015331925_state] :
          ( ( ord_le6423325748750870005_state @ A4 @ B3 )
          & ( ord_le6423325748750870005_state @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_682_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_Pr1785066336555260981_state,Z2: set_Pr1785066336555260981_state] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_Pr1785066336555260981_state,B3: set_Pr1785066336555260981_state] :
          ( ( ord_le2777189432094499797_state @ A4 @ B3 )
          & ( ord_le2777189432094499797_state @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_683_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_option_state,Z2: set_option_state] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_option_state,B3: set_option_state] :
          ( ( ord_le7116032884704190368_state @ A4 @ B3 )
          & ( ord_le7116032884704190368_state @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_684_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: nat,Z2: nat] : ( Y5 = Z2 ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_685_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y5: set_state,Z2: set_state] : ( Y5 = Z2 ) )
    = ( ^ [A4: set_state,B3: set_state] :
          ( ( ord_le2494988322063910608_state @ A4 @ B3 )
          & ( ord_le2494988322063910608_state @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_686_order__subst1,axiom,
    ! [A: set_state,F: set_state > set_state,B: set_state,C: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ ( F @ B ) )
     => ( ( ord_le2494988322063910608_state @ B @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2494988322063910608_state @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_687_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_688_order__subst1,axiom,
    ! [A: set_state,F: nat > set_state,B: nat,C: nat] :
      ( ( ord_le2494988322063910608_state @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2494988322063910608_state @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_689_order__subst1,axiom,
    ! [A: nat,F: set_state > nat,B: set_state,C: set_state] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_le2494988322063910608_state @ B @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_690_order__subst1,axiom,
    ! [A: set_set_state,F: nat > set_set_state,B: nat,C: nat] :
      ( ( ord_le5175021213330142598_state @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le5175021213330142598_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le5175021213330142598_state @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_691_order__subst1,axiom,
    ! [A: set_option_state,F: nat > set_option_state,B: nat,C: nat] :
      ( ( ord_le7116032884704190368_state @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le7116032884704190368_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le7116032884704190368_state @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_692_order__subst1,axiom,
    ! [A: nat,F: set_set_state > nat,B: set_set_state,C: set_set_state] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_le5175021213330142598_state @ B @ C )
       => ( ! [X4: set_set_state,Y: set_set_state] :
              ( ( ord_le5175021213330142598_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_693_order__subst1,axiom,
    ! [A: nat,F: set_option_state > nat,B: set_option_state,C: set_option_state] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_le7116032884704190368_state @ B @ C )
       => ( ! [X4: set_option_state,Y: set_option_state] :
              ( ( ord_le7116032884704190368_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_694_order__subst1,axiom,
    ! [A: set_state,F: set_set_state > set_state,B: set_set_state,C: set_set_state] :
      ( ( ord_le2494988322063910608_state @ A @ ( F @ B ) )
     => ( ( ord_le5175021213330142598_state @ B @ C )
       => ( ! [X4: set_set_state,Y: set_set_state] :
              ( ( ord_le5175021213330142598_state @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2494988322063910608_state @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_695_order__subst1,axiom,
    ! [A: set_state,F: set_option_state > set_state,B: set_option_state,C: set_option_state] :
      ( ( ord_le2494988322063910608_state @ A @ ( F @ B ) )
     => ( ( ord_le7116032884704190368_state @ B @ C )
       => ( ! [X4: set_option_state,Y: set_option_state] :
              ( ( ord_le7116032884704190368_state @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2494988322063910608_state @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_696_order__subst2,axiom,
    ! [A: set_state,B: set_state,F: set_state > set_state,C: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ord_le2494988322063910608_state @ ( F @ B ) @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2494988322063910608_state @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_697_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_698_order__subst2,axiom,
    ! [A: set_state,B: set_state,F: set_state > nat,C: nat] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_699_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_state,C: set_state] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_le2494988322063910608_state @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2494988322063910608_state @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_700_order__subst2,axiom,
    ! [A: set_set_state,B: set_set_state,F: set_set_state > nat,C: nat] :
      ( ( ord_le5175021213330142598_state @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: set_set_state,Y: set_set_state] :
              ( ( ord_le5175021213330142598_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_701_order__subst2,axiom,
    ! [A: set_option_state,B: set_option_state,F: set_option_state > nat,C: nat] :
      ( ( ord_le7116032884704190368_state @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: set_option_state,Y: set_option_state] :
              ( ( ord_le7116032884704190368_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_702_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_set_state,C: set_set_state] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_le5175021213330142598_state @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le5175021213330142598_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le5175021213330142598_state @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_703_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_option_state,C: set_option_state] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_le7116032884704190368_state @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le7116032884704190368_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le7116032884704190368_state @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_704_order__subst2,axiom,
    ! [A: set_state,B: set_state,F: set_state > set_set_state,C: set_set_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ord_le5175021213330142598_state @ ( F @ B ) @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le5175021213330142598_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le5175021213330142598_state @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_705_order__subst2,axiom,
    ! [A: set_state,B: set_state,F: set_state > set_option_state,C: set_option_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ord_le7116032884704190368_state @ ( F @ B ) @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le7116032884704190368_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le7116032884704190368_state @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_706_order__eq__refl,axiom,
    ! [X: set_set_state,Y3: set_set_state] :
      ( ( X = Y3 )
     => ( ord_le5175021213330142598_state @ X @ Y3 ) ) ).

% order_eq_refl
thf(fact_707_order__eq__refl,axiom,
    ! [X: set_Pr1688445902015331925_state,Y3: set_Pr1688445902015331925_state] :
      ( ( X = Y3 )
     => ( ord_le6423325748750870005_state @ X @ Y3 ) ) ).

% order_eq_refl
thf(fact_708_order__eq__refl,axiom,
    ! [X: set_Pr1785066336555260981_state,Y3: set_Pr1785066336555260981_state] :
      ( ( X = Y3 )
     => ( ord_le2777189432094499797_state @ X @ Y3 ) ) ).

% order_eq_refl
thf(fact_709_order__eq__refl,axiom,
    ! [X: set_option_state,Y3: set_option_state] :
      ( ( X = Y3 )
     => ( ord_le7116032884704190368_state @ X @ Y3 ) ) ).

% order_eq_refl
thf(fact_710_order__eq__refl,axiom,
    ! [X: nat,Y3: nat] :
      ( ( X = Y3 )
     => ( ord_less_eq_nat @ X @ Y3 ) ) ).

% order_eq_refl
thf(fact_711_order__eq__refl,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( X = Y3 )
     => ( ord_le2494988322063910608_state @ X @ Y3 ) ) ).

% order_eq_refl
thf(fact_712_linorder__linear,axiom,
    ! [X: nat,Y3: nat] :
      ( ( ord_less_eq_nat @ X @ Y3 )
      | ( ord_less_eq_nat @ Y3 @ X ) ) ).

% linorder_linear
thf(fact_713_ord__eq__le__subst,axiom,
    ! [A: set_state,F: set_state > set_state,B: set_state,C: set_state] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2494988322063910608_state @ B @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2494988322063910608_state @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_714_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_715_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_state > nat,B: set_state,C: set_state] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2494988322063910608_state @ B @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_716_ord__eq__le__subst,axiom,
    ! [A: set_state,F: nat > set_state,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2494988322063910608_state @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_717_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_set_state > nat,B: set_set_state,C: set_set_state] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le5175021213330142598_state @ B @ C )
       => ( ! [X4: set_set_state,Y: set_set_state] :
              ( ( ord_le5175021213330142598_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_718_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_option_state > nat,B: set_option_state,C: set_option_state] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le7116032884704190368_state @ B @ C )
       => ( ! [X4: set_option_state,Y: set_option_state] :
              ( ( ord_le7116032884704190368_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_719_ord__eq__le__subst,axiom,
    ! [A: set_set_state,F: nat > set_set_state,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le5175021213330142598_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le5175021213330142598_state @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_720_ord__eq__le__subst,axiom,
    ! [A: set_option_state,F: nat > set_option_state,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le7116032884704190368_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le7116032884704190368_state @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_721_ord__eq__le__subst,axiom,
    ! [A: set_set_state,F: set_state > set_set_state,B: set_state,C: set_state] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2494988322063910608_state @ B @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le5175021213330142598_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le5175021213330142598_state @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_722_ord__eq__le__subst,axiom,
    ! [A: set_option_state,F: set_state > set_option_state,B: set_state,C: set_state] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_le2494988322063910608_state @ B @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le7116032884704190368_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le7116032884704190368_state @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_723_ord__le__eq__subst,axiom,
    ! [A: set_state,B: set_state,F: set_state > set_state,C: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2494988322063910608_state @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_724_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_725_ord__le__eq__subst,axiom,
    ! [A: set_state,B: set_state,F: set_state > nat,C: nat] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_726_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_state,C: set_state] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le2494988322063910608_state @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_727_ord__le__eq__subst,axiom,
    ! [A: set_set_state,B: set_set_state,F: set_set_state > nat,C: nat] :
      ( ( ord_le5175021213330142598_state @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: set_set_state,Y: set_set_state] :
              ( ( ord_le5175021213330142598_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_728_ord__le__eq__subst,axiom,
    ! [A: set_option_state,B: set_option_state,F: set_option_state > nat,C: nat] :
      ( ( ord_le7116032884704190368_state @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: set_option_state,Y: set_option_state] :
              ( ( ord_le7116032884704190368_state @ X4 @ Y )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_729_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_set_state,C: set_set_state] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le5175021213330142598_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le5175021213330142598_state @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_730_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_option_state,C: set_option_state] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y )
             => ( ord_le7116032884704190368_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le7116032884704190368_state @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_731_ord__le__eq__subst,axiom,
    ! [A: set_state,B: set_state,F: set_state > set_set_state,C: set_set_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le5175021213330142598_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le5175021213330142598_state @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_732_ord__le__eq__subst,axiom,
    ! [A: set_state,B: set_state,F: set_state > set_option_state,C: set_option_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le7116032884704190368_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_le7116032884704190368_state @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_733_linorder__le__cases,axiom,
    ! [X: nat,Y3: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y3 )
     => ( ord_less_eq_nat @ Y3 @ X ) ) ).

% linorder_le_cases
thf(fact_734_order__antisym__conv,axiom,
    ! [Y3: set_set_state,X: set_set_state] :
      ( ( ord_le5175021213330142598_state @ Y3 @ X )
     => ( ( ord_le5175021213330142598_state @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_735_order__antisym__conv,axiom,
    ! [Y3: set_Pr1688445902015331925_state,X: set_Pr1688445902015331925_state] :
      ( ( ord_le6423325748750870005_state @ Y3 @ X )
     => ( ( ord_le6423325748750870005_state @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_736_order__antisym__conv,axiom,
    ! [Y3: set_Pr1785066336555260981_state,X: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ Y3 @ X )
     => ( ( ord_le2777189432094499797_state @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_737_order__antisym__conv,axiom,
    ! [Y3: set_option_state,X: set_option_state] :
      ( ( ord_le7116032884704190368_state @ Y3 @ X )
     => ( ( ord_le7116032884704190368_state @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_738_order__antisym__conv,axiom,
    ! [Y3: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y3 @ X )
     => ( ( ord_less_eq_nat @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_739_order__antisym__conv,axiom,
    ! [Y3: set_state,X: set_state] :
      ( ( ord_le2494988322063910608_state @ Y3 @ X )
     => ( ( ord_le2494988322063910608_state @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% order_antisym_conv
thf(fact_740_in__mono,axiom,
    ! [A3: set_Pr1688445902015331925_state,B2: set_Pr1688445902015331925_state,X: produc3142500478612311029_state] :
      ( ( ord_le6423325748750870005_state @ A3 @ B2 )
     => ( ( member3029510603097127326_state @ X @ A3 )
       => ( member3029510603097127326_state @ X @ B2 ) ) ) ).

% in_mono
thf(fact_741_in__mono,axiom,
    ! [A3: set_Pr1785066336555260981_state,B2: set_Pr1785066336555260981_state,X: produc8023240190789890773_state] :
      ( ( ord_le2777189432094499797_state @ A3 @ B2 )
     => ( ( member753036827967488894_state @ X @ A3 )
       => ( member753036827967488894_state @ X @ B2 ) ) ) ).

% in_mono
thf(fact_742_in__mono,axiom,
    ! [A3: set_option_state,B2: set_option_state,X: option_state] :
      ( ( ord_le7116032884704190368_state @ A3 @ B2 )
     => ( ( member_option_state @ X @ A3 )
       => ( member_option_state @ X @ B2 ) ) ) ).

% in_mono
thf(fact_743_in__mono,axiom,
    ! [A3: set_state,B2: set_state,X: state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ( member_state @ X @ A3 )
       => ( member_state @ X @ B2 ) ) ) ).

% in_mono
thf(fact_744_subsetD,axiom,
    ! [A3: set_state,B2: set_state,C: state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ( member_state @ C @ A3 )
       => ( member_state @ C @ B2 ) ) ) ).

% subsetD
thf(fact_745_UNIV__eq__I,axiom,
    ! [A3: set_state] :
      ( ! [X4: state] : ( member_state @ X4 @ A3 )
     => ( top_top_set_state = A3 ) ) ).

% UNIV_eq_I
thf(fact_746_equalityE,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( A3 = B2 )
     => ~ ( ( ord_le2494988322063910608_state @ A3 @ B2 )
         => ~ ( ord_le2494988322063910608_state @ B2 @ A3 ) ) ) ).

% equalityE
thf(fact_747_subset__eq,axiom,
    ( ord_le2494988322063910608_state
    = ( ^ [A5: set_state,B5: set_state] :
        ! [X3: state] :
          ( ( member_state @ X3 @ A5 )
         => ( member_state @ X3 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_748_equalityD1,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( A3 = B2 )
     => ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ).

% equalityD1
thf(fact_749_equalityD2,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( A3 = B2 )
     => ( ord_le2494988322063910608_state @ B2 @ A3 ) ) ).

% equalityD2
thf(fact_750_subset__iff,axiom,
    ( ord_le2494988322063910608_state
    = ( ^ [A5: set_state,B5: set_state] :
        ! [T: state] :
          ( ( member_state @ T @ A5 )
         => ( member_state @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_751_subset__UNIV,axiom,
    ! [A3: set_state] : ( ord_le2494988322063910608_state @ A3 @ top_top_set_state ) ).

% subset_UNIV
thf(fact_752_subset__refl,axiom,
    ! [A3: set_state] : ( ord_le2494988322063910608_state @ A3 @ A3 ) ).

% subset_refl
thf(fact_753_Collect__mono,axiom,
    ! [P: state > $o,Q: state > $o] :
      ( ! [X4: state] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_le2494988322063910608_state @ ( collect_state @ P ) @ ( collect_state @ Q ) ) ) ).

% Collect_mono
thf(fact_754_UNIV__witness,axiom,
    ? [X4: state] : ( member_state @ X4 @ top_top_set_state ) ).

% UNIV_witness
thf(fact_755_subset__trans,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ( ord_le2494988322063910608_state @ B2 @ C3 )
       => ( ord_le2494988322063910608_state @ A3 @ C3 ) ) ) ).

% subset_trans
thf(fact_756_set__eq__subset,axiom,
    ( ( ^ [Y5: set_state,Z2: set_state] : ( Y5 = Z2 ) )
    = ( ^ [A5: set_state,B5: set_state] :
          ( ( ord_le2494988322063910608_state @ A5 @ B5 )
          & ( ord_le2494988322063910608_state @ B5 @ A5 ) ) ) ) ).

% set_eq_subset
thf(fact_757_Collect__mono__iff,axiom,
    ! [P: state > $o,Q: state > $o] :
      ( ( ord_le2494988322063910608_state @ ( collect_state @ P ) @ ( collect_state @ Q ) )
      = ( ! [X3: state] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_758_sep__algebra_Oadd__set_Ocong,axiom,
    sep_add_set_state = sep_add_set_state ).

% sep_algebra.add_set.cong
thf(fact_759_sep__algebra_Oupper__closure_Ocong,axiom,
    sep_up1246176804924251236_state = sep_up1246176804924251236_state ).

% sep_algebra.upper_closure.cong
thf(fact_760_bot_Oextremum__uniqueI,axiom,
    ! [A: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ bot_bot_set_state )
     => ( A = bot_bot_set_state ) ) ).

% bot.extremum_uniqueI
thf(fact_761_bot_Oextremum__unique,axiom,
    ! [A: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ bot_bot_set_state )
      = ( A = bot_bot_set_state ) ) ).

% bot.extremum_unique
thf(fact_762_bot_Oextremum,axiom,
    ! [A: set_state] : ( ord_le2494988322063910608_state @ bot_bot_set_state @ A ) ).

% bot.extremum
thf(fact_763_image__mono,axiom,
    ! [A3: set_state,B2: set_state,F: state > state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ord_le2494988322063910608_state @ ( image_state_state @ F @ A3 ) @ ( image_state_state @ F @ B2 ) ) ) ).

% image_mono
thf(fact_764_image__subsetI,axiom,
    ! [A3: set_state,F: state > state,B2: set_state] :
      ( ! [X4: state] :
          ( ( member_state @ X4 @ A3 )
         => ( member_state @ ( F @ X4 ) @ B2 ) )
     => ( ord_le2494988322063910608_state @ ( image_state_state @ F @ A3 ) @ B2 ) ) ).

% image_subsetI
thf(fact_765_subset__imageE,axiom,
    ! [B2: set_state,F: state > state,A3: set_state] :
      ( ( ord_le2494988322063910608_state @ B2 @ ( image_state_state @ F @ A3 ) )
     => ~ ! [C6: set_state] :
            ( ( ord_le2494988322063910608_state @ C6 @ A3 )
           => ( B2
             != ( image_state_state @ F @ C6 ) ) ) ) ).

% subset_imageE
thf(fact_766_subset__image__iff,axiom,
    ! [B2: set_state,F: state > state,A3: set_state] :
      ( ( ord_le2494988322063910608_state @ B2 @ ( image_state_state @ F @ A3 ) )
      = ( ? [AA: set_state] :
            ( ( ord_le2494988322063910608_state @ AA @ A3 )
            & ( B2
              = ( image_state_state @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_767_subset__insertI2,axiom,
    ! [A3: set_state,B2: set_state,B: state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ord_le2494988322063910608_state @ A3 @ ( insert_state @ B @ B2 ) ) ) ).

% subset_insertI2
thf(fact_768_subset__insertI,axiom,
    ! [B2: set_state,A: state] : ( ord_le2494988322063910608_state @ B2 @ ( insert_state @ A @ B2 ) ) ).

% subset_insertI
thf(fact_769_subset__insert,axiom,
    ! [X: state,A3: set_state,B2: set_state] :
      ( ~ ( member_state @ X @ A3 )
     => ( ( ord_le2494988322063910608_state @ A3 @ ( insert_state @ X @ B2 ) )
        = ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ) ).

% subset_insert
thf(fact_770_insert__mono,axiom,
    ! [C3: set_state,D2: set_state,A: state] :
      ( ( ord_le2494988322063910608_state @ C3 @ D2 )
     => ( ord_le2494988322063910608_state @ ( insert_state @ A @ C3 ) @ ( insert_state @ A @ D2 ) ) ) ).

% insert_mono
thf(fact_771_rangeI,axiom,
    ! [F: state > state,X: state] : ( member_state @ ( F @ X ) @ ( image_state_state @ F @ top_top_set_state ) ) ).

% rangeI
thf(fact_772_range__eqI,axiom,
    ! [B: state,F: state > state,X: state] :
      ( ( B
        = ( F @ X ) )
     => ( member_state @ B @ ( image_state_state @ F @ top_top_set_state ) ) ) ).

% range_eqI
thf(fact_773_empty__not__UNIV,axiom,
    bot_bot_set_state != top_top_set_state ).

% empty_not_UNIV
thf(fact_774_insert__UNIV,axiom,
    ! [X: state] :
      ( ( insert_state @ X @ top_top_set_state )
      = top_top_set_state ) ).

% insert_UNIV
thf(fact_775_sep__algebra_Oup__closed__plus__UNIV,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( sep_up_closed_state @ Plus @ ( sep_add_set_state @ Plus @ A3 @ top_top_set_state ) ) ) ).

% sep_algebra.up_closed_plus_UNIV
thf(fact_776_PartialSA_Osub__bigger,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( greater_set @ A3 @ B2 ) ) ).

% PartialSA.sub_bigger
thf(fact_777_sep__algebra_Oadd__set__asso,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state,C3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_add_set_state @ Plus @ ( sep_add_set_state @ Plus @ A3 @ B2 ) @ C3 )
        = ( sep_add_set_state @ Plus @ A3 @ ( sep_add_set_state @ Plus @ B2 @ C3 ) ) ) ) ).

% sep_algebra.add_set_asso
thf(fact_778_sep__algebra_Oadd__set__commm,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_add_set_state @ Plus @ A3 @ B2 )
        = ( sep_add_set_state @ Plus @ B2 @ A3 ) ) ) ).

% sep_algebra.add_set_commm
thf(fact_779_UNIV__option__conv,axiom,
    ( top_to7666338855062656496_state
    = ( insert_option_state @ none_state @ ( image_6076465424260689483_state @ some_state @ top_top_set_state ) ) ) ).

% UNIV_option_conv
thf(fact_780_subset__singleton__iff,axiom,
    ! [X8: set_state,A: state] :
      ( ( ord_le2494988322063910608_state @ X8 @ ( insert_state @ A @ bot_bot_set_state ) )
      = ( ( X8 = bot_bot_set_state )
        | ( X8
          = ( insert_state @ A @ bot_bot_set_state ) ) ) ) ).

% subset_singleton_iff
thf(fact_781_subset__singletonD,axiom,
    ! [A3: set_state,X: state] :
      ( ( ord_le2494988322063910608_state @ A3 @ ( insert_state @ X @ bot_bot_set_state ) )
     => ( ( A3 = bot_bot_set_state )
        | ( A3
          = ( insert_state @ X @ bot_bot_set_state ) ) ) ) ).

% subset_singletonD
thf(fact_782_notin__range__Some,axiom,
    ! [X: option_state] :
      ( ( ~ ( member_option_state @ X @ ( image_6076465424260689483_state @ some_state @ top_top_set_state ) ) )
      = ( X = none_state ) ) ).

% notin_range_Some
thf(fact_783_sep__algebra_Osub__bigger,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ord_le2494988322063910608_state @ A3 @ B2 )
       => ( sep_gr7105985528888466643_state @ Plus @ A3 @ B2 ) ) ) ).

% sep_algebra.sub_bigger
thf(fact_784_sep__algebra_Oempty__set__sum,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_add_set_state @ Plus @ bot_bot_set_state @ A3 )
        = bot_bot_set_state ) ) ).

% sep_algebra.empty_set_sum
thf(fact_785_sep__algebra_Ox__elem__set__product,axiom,
    ! [Plus: state > state > option_state,Core: state > state,X: state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( member_state @ X @ ( sep_add_set_state @ Plus @ A3 @ B2 ) )
        = ( ? [A4: state,B3: state] :
              ( ( member_state @ A4 @ A3 )
              & ( member_state @ B3 @ B2 )
              & ( ( some_state @ X )
                = ( Plus @ A4 @ B3 ) ) ) ) ) ) ).

% sep_algebra.x_elem_set_product
thf(fact_786_sep__algebra_Oadd__set__elem,axiom,
    ! [Plus: state > state > option_state,Core: state > state,Phi: state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( member_state @ Phi @ ( sep_add_set_state @ Plus @ A3 @ B2 ) )
        = ( ? [A4: state,B3: state] :
              ( ( ( some_state @ Phi )
                = ( Plus @ A4 @ B3 ) )
              & ( member_state @ A4 @ A3 )
              & ( member_state @ B3 @ B2 ) ) ) ) ) ).

% sep_algebra.add_set_elem
thf(fact_787_add__set__def,axiom,
    ( add_set
    = ( sep_add_set_state @ plus ) ) ).

% add_set_def
thf(fact_788_sep__algebra_Oup__closed__sum,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_up_closed_state @ Plus @ A3 )
       => ( sep_up_closed_state @ Plus @ ( sep_add_set_state @ Plus @ A3 @ B2 ) ) ) ) ).

% sep_algebra.up_closed_sum
thf(fact_789_sep__algebra_Obigger__set,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A6: set_state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_gr7105985528888466643_state @ Plus @ A6 @ A3 )
       => ( sep_gr7105985528888466643_state @ Plus @ ( sep_add_set_state @ Plus @ A6 @ B2 ) @ ( sep_add_set_state @ Plus @ A3 @ B2 ) ) ) ) ).

% sep_algebra.bigger_set
thf(fact_790_sep__algebra_Oequiv__stable__sum,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state,C3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_equiv_state @ Plus @ A3 @ B2 )
       => ( sep_equiv_state @ Plus @ ( sep_add_set_state @ Plus @ A3 @ C3 ) @ ( sep_add_set_state @ Plus @ B2 @ C3 ) ) ) ) ).

% sep_algebra.equiv_stable_sum
thf(fact_791_range__eq__singletonD,axiom,
    ! [F: state > state,A: state,X: state] :
      ( ( ( image_state_state @ F @ top_top_set_state )
        = ( insert_state @ A @ bot_bot_set_state ) )
     => ( ( F @ X )
        = A ) ) ).

% range_eq_singletonD
thf(fact_792_sep__algebra_Oup__closed__bigger__subset,axiom,
    ! [Plus: state > state > option_state,Core: state > state,B2: set_state,A3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_up_closed_state @ Plus @ B2 )
       => ( ( sep_gr7105985528888466643_state @ Plus @ A3 @ B2 )
         => ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ) ) ).

% sep_algebra.up_closed_bigger_subset
thf(fact_793_sep__algebra_Oequiv__up__closed__subset,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state,C3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_up_closed_state @ Plus @ A3 )
       => ( ( sep_equiv_state @ Plus @ B2 @ C3 )
         => ( ( ord_le2494988322063910608_state @ B2 @ A3 )
            = ( ord_le2494988322063910608_state @ C3 @ A3 ) ) ) ) ) ).

% sep_algebra.equiv_up_closed_subset
thf(fact_794_PartialSA_Oup__closed__bigger__subset,axiom,
    ! [B2: set_state,A3: set_state] :
      ( ( sep_up_closed_state @ plus @ B2 )
     => ( ( greater_set @ A3 @ B2 )
       => ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ) ).

% PartialSA.up_closed_bigger_subset
thf(fact_795_insert__subsetI,axiom,
    ! [X: state,A3: set_state,X8: set_state] :
      ( ( member_state @ X @ A3 )
     => ( ( ord_le2494988322063910608_state @ X8 @ A3 )
       => ( ord_le2494988322063910608_state @ ( insert_state @ X @ X8 ) @ A3 ) ) ) ).

% insert_subsetI
thf(fact_796_subset__emptyI,axiom,
    ! [A3: set_state] :
      ( ! [X4: state] :
          ~ ( member_state @ X4 @ A3 )
     => ( ord_le2494988322063910608_state @ A3 @ bot_bot_set_state ) ) ).

% subset_emptyI
thf(fact_797_all__subset__image,axiom,
    ! [F: state > state,A3: set_state,P: set_state > $o] :
      ( ( ! [B5: set_state] :
            ( ( ord_le2494988322063910608_state @ B5 @ ( image_state_state @ F @ A3 ) )
           => ( P @ B5 ) ) )
      = ( ! [B5: set_state] :
            ( ( ord_le2494988322063910608_state @ B5 @ A3 )
           => ( P @ ( image_state_state @ F @ B5 ) ) ) ) ) ).

% all_subset_image
thf(fact_798_surj__def,axiom,
    ! [F: state > state] :
      ( ( ( image_state_state @ F @ top_top_set_state )
        = top_top_set_state )
      = ( ! [Y4: state] :
          ? [X3: state] :
            ( Y4
            = ( F @ X3 ) ) ) ) ).

% surj_def
thf(fact_799_surjI,axiom,
    ! [G: state > state,F: state > state] :
      ( ! [X4: state] :
          ( ( G @ ( F @ X4 ) )
          = X4 )
     => ( ( image_state_state @ G @ top_top_set_state )
        = top_top_set_state ) ) ).

% surjI
thf(fact_800_surjE,axiom,
    ! [F: state > state,Y3: state] :
      ( ( ( image_state_state @ F @ top_top_set_state )
        = top_top_set_state )
     => ~ ! [X4: state] :
            ( Y3
           != ( F @ X4 ) ) ) ).

% surjE
thf(fact_801_surjD,axiom,
    ! [F: state > state,Y3: state] :
      ( ( ( image_state_state @ F @ top_top_set_state )
        = top_top_set_state )
     => ? [X4: state] :
          ( Y3
          = ( F @ X4 ) ) ) ).

% surjD
thf(fact_802_PartialSA_Osmaller__pure__sum__smaller,axiom,
    ! [Y3: state,A: state,B: state,X: state] :
      ( ( greater @ Y3 @ A )
     => ( ( greater @ Y3 @ B )
       => ( ( ( some_state @ X )
            = ( plus @ A @ B ) )
         => ( ( sep_pure_state @ plus @ B )
           => ( greater @ Y3 @ X ) ) ) ) ) ).

% PartialSA.smaller_pure_sum_smaller
thf(fact_803_sep__algebra_Opure_Ocong,axiom,
    sep_pure_state = sep_pure_state ).

% sep_algebra.pure.cong
thf(fact_804_top__set__def,axiom,
    ( top_top_set_state
    = ( collect_state @ top_top_state_o ) ) ).

% top_set_def
thf(fact_805_top__empty__eq,axiom,
    ( top_top_state_o
    = ( ^ [X3: state] : ( member_state @ X3 @ top_top_set_state ) ) ) ).

% top_empty_eq
thf(fact_806_PartialSA_Opure__def,axiom,
    ! [A: state] :
      ( ( sep_pure_state @ plus @ A )
      = ( ( some_state @ A )
        = ( plus @ A @ A ) ) ) ).

% PartialSA.pure_def
thf(fact_807_PartialSA_Opure__stable,axiom,
    ! [A: state,B: state,C: state] :
      ( ( sep_pure_state @ plus @ A )
     => ( ( sep_pure_state @ plus @ B )
       => ( ( ( some_state @ C )
            = ( plus @ A @ B ) )
         => ( sep_pure_state @ plus @ C ) ) ) ) ).

% PartialSA.pure_stable
thf(fact_808_PartialSA_Opure__smaller,axiom,
    ! [A: state,B: state] :
      ( ( sep_pure_state @ plus @ A )
     => ( ( greater @ A @ B )
       => ( sep_pure_state @ plus @ B ) ) ) ).

% PartialSA.pure_smaller
thf(fact_809_sep__algebra_Opure__def,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_pure_state @ Plus @ A )
        = ( ( some_state @ A )
          = ( Plus @ A @ A ) ) ) ) ).

% sep_algebra.pure_def
thf(fact_810_sep__algebra_Opure__stable,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state,C: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_pure_state @ Plus @ A )
       => ( ( sep_pure_state @ Plus @ B )
         => ( ( ( some_state @ C )
              = ( Plus @ A @ B ) )
           => ( sep_pure_state @ Plus @ C ) ) ) ) ) ).

% sep_algebra.pure_stable
thf(fact_811_PartialSA_Omono__pruner__def,axiom,
    ! [P4: state > $o] :
      ( ( packag2456304381420842418_state @ plus @ P4 )
      = ( ! [Phi3: state,Phi6: state,R3: state] :
            ( ( ( sep_pure_state @ plus @ R3 )
              & ( P4 @ Phi6 )
              & ( ( some_state @ Phi3 )
                = ( plus @ Phi6 @ R3 ) ) )
           => ( P4 @ Phi3 ) ) ) ) ).

% PartialSA.mono_pruner_def
thf(fact_812_sep__algebra_Omax__projection__prop__pure__core,axiom,
    ! [Plus: state > state > option_state,Core: state > state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( sep_ma8214210560313151521_state @ Plus @ ( sep_pure_state @ Plus ) @ Core ) ) ).

% sep_algebra.max_projection_prop_pure_core
thf(fact_813_PartialSA_Ointuitionistic__def,axiom,
    ! [A3: state > $o] :
      ( ( packag8361946002163212404_state @ plus @ A3 )
      = ( ! [Phi3: state,Phi6: state] :
            ( ( ( greater @ Phi3 @ Phi6 )
              & ( A3 @ Phi6 ) )
           => ( A3 @ Phi3 ) ) ) ) ).

% PartialSA.intuitionistic_def
thf(fact_814_PartialSA_Ominus__sum,axiom,
    ! [A: state,B: state,C: state,X: state] :
      ( ( ( some_state @ A )
        = ( plus @ B @ C ) )
     => ( ( greater @ X @ A )
       => ( ( minus @ X @ A )
          = ( minus @ ( minus @ X @ B ) @ C ) ) ) ) ).

% PartialSA.minus_sum
thf(fact_815_PartialSA_Ominus__some,axiom,
    ! [A: state,B: state] :
      ( ( greater @ A @ B )
     => ( ( some_state @ A )
        = ( plus @ B @ ( minus @ A @ B ) ) ) ) ).

% PartialSA.minus_some
thf(fact_816_PartialSA_Ominus__bigger,axiom,
    ! [X: state,A: state,B: state] :
      ( ( ( some_state @ X )
        = ( plus @ A @ B ) )
     => ( greater @ ( minus @ X @ A ) @ B ) ) ).

% PartialSA.minus_bigger
thf(fact_817_sep__algebra_Omax__projection__prop_Ocong,axiom,
    sep_ma8214210560313151521_state = sep_ma8214210560313151521_state ).

% sep_algebra.max_projection_prop.cong
thf(fact_818_PartialSA_Ominus__default,axiom,
    ! [B: state,A: state] :
      ( ~ ( greater @ B @ A )
     => ( ( minus @ B @ A )
        = B ) ) ).

% PartialSA.minus_default
thf(fact_819_PartialSA_Ominus__smaller,axiom,
    ! [X: state,A: state] :
      ( ( greater @ X @ A )
     => ( greater @ X @ ( minus @ X @ A ) ) ) ).

% PartialSA.minus_smaller
thf(fact_820_PartialSA_Ogreater__minus__trans,axiom,
    ! [Y3: state,X: state,A: state] :
      ( ( greater @ Y3 @ X )
     => ( ( greater @ X @ A )
       => ( greater @ ( minus @ Y3 @ A ) @ ( minus @ X @ A ) ) ) ) ).

% PartialSA.greater_minus_trans
thf(fact_821_PartialSA_Ompp__prop,axiom,
    ! [P: state > $o,F: state > state,X: state] :
      ( ( sep_ma8214210560313151521_state @ plus @ P @ F )
     => ( P @ ( F @ X ) ) ) ).

% PartialSA.mpp_prop
thf(fact_822_PartialSA_Ompp__invo,axiom,
    ! [P: state > $o,F: state > state,X: state] :
      ( ( sep_ma8214210560313151521_state @ plus @ P @ F )
     => ( ( F @ ( F @ X ) )
        = ( F @ X ) ) ) ).

% PartialSA.mpp_invo
thf(fact_823_sep__algebra_Ompp__invo,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,F: state > state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_ma8214210560313151521_state @ Plus @ P @ F )
       => ( ( F @ ( F @ X ) )
          = ( F @ X ) ) ) ) ).

% sep_algebra.mpp_invo
thf(fact_824_sep__algebra_Ompp__prop,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,F: state > state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_ma8214210560313151521_state @ Plus @ P @ F )
       => ( P @ ( F @ X ) ) ) ) ).

% sep_algebra.mpp_prop
thf(fact_825_PartialSA_Omax__projection__propE_I3_J,axiom,
    ! [P: state > $o,F: state > state,P4: state,X: state] :
      ( ( sep_ma8214210560313151521_state @ plus @ P @ F )
     => ( ( ( P @ P4 )
          & ( greater @ X @ P4 ) )
       => ( greater @ ( F @ X ) @ P4 ) ) ) ).

% PartialSA.max_projection_propE(3)
thf(fact_826_PartialSA_OmppI,axiom,
    ! [P: state > $o,F: state > state,A: state,X: state] :
      ( ( sep_ma8214210560313151521_state @ plus @ P @ F )
     => ( ( greater @ A @ X )
       => ( ( P @ X )
         => ( ( greater @ X @ ( F @ A ) )
           => ( X
              = ( F @ A ) ) ) ) ) ) ).

% PartialSA.mppI
thf(fact_827_PartialSA_Ompp__mono,axiom,
    ! [P: state > $o,F: state > state,A: state,B: state] :
      ( ( sep_ma8214210560313151521_state @ plus @ P @ F )
     => ( ( greater @ A @ B )
       => ( greater @ ( F @ A ) @ ( F @ B ) ) ) ) ).

% PartialSA.mpp_mono
thf(fact_828_PartialSA_Ompp__smaller,axiom,
    ! [P: state > $o,F: state > state,X: state] :
      ( ( sep_ma8214210560313151521_state @ plus @ P @ F )
     => ( greater @ X @ ( F @ X ) ) ) ).

% PartialSA.mpp_smaller
thf(fact_829_PartialSA_Omax__projection__propI,axiom,
    ! [F: state > state,P: state > $o] :
      ( ! [X4: state] : ( greater @ X4 @ ( F @ X4 ) )
     => ( ! [X4: state] : ( P @ ( F @ X4 ) )
       => ( ! [X4: state,P5: state] :
              ( ( ( P @ P5 )
                & ( greater @ X4 @ P5 ) )
             => ( greater @ ( F @ X4 ) @ P5 ) )
         => ( sep_ma8214210560313151521_state @ plus @ P @ F ) ) ) ) ).

% PartialSA.max_projection_propI
thf(fact_830_PartialSA_Omax__projection__prop__def,axiom,
    ! [P: state > $o,F: state > state] :
      ( ( sep_ma8214210560313151521_state @ plus @ P @ F )
      = ( ! [X3: state] :
            ( ( greater @ X3 @ ( F @ X3 ) )
            & ( P @ ( F @ X3 ) )
            & ! [P6: state] :
                ( ( ( P @ P6 )
                  & ( greater @ X3 @ P6 ) )
               => ( greater @ ( F @ X3 ) @ P6 ) ) ) ) ) ).

% PartialSA.max_projection_prop_def
thf(fact_831_PartialSA_Oprove__last__completeness,axiom,
    ! [A7: state,A: state,Nf1: state,F2: state] :
      ( ( greater @ A7 @ A )
     => ( ( ( some_state @ A )
          = ( plus @ Nf1 @ F2 ) )
       => ( greater @ ( minus @ A7 @ Nf1 ) @ F2 ) ) ) ).

% PartialSA.prove_last_completeness
thf(fact_832_PartialSA_Ominus__and__plus,axiom,
    ! [Omega: state,Omega2: state,R4: state,A: state] :
      ( ( ( some_state @ Omega )
        = ( plus @ Omega2 @ R4 ) )
     => ( ( greater @ Omega2 @ A )
       => ( ( some_state @ ( minus @ Omega @ A ) )
          = ( plus @ ( minus @ Omega2 @ A ) @ R4 ) ) ) ) ).

% PartialSA.minus_and_plus
thf(fact_833_PartialSA_Ominus__equiv__def,axiom,
    ! [B: state,A: state] :
      ( ( greater @ B @ A )
     => ( ( ( some_state @ B )
          = ( plus @ A @ ( minus @ B @ A ) ) )
        & ( greater @ ( minus @ B @ A ) @ ( core @ B ) ) ) ) ).

% PartialSA.minus_equiv_def
thf(fact_834_PartialSA_OminusI,axiom,
    ! [B: state,A: state,X: state] :
      ( ( ( some_state @ B )
        = ( plus @ A @ X ) )
     => ( ( greater @ X @ ( core @ B ) )
       => ( X
          = ( minus @ B @ A ) ) ) ) ).

% PartialSA.minusI
thf(fact_835_sep__algebra_Obigger__singleton,axiom,
    ! [Plus: state > state > option_state,Core: state > state,Phi2: state,Phi: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ Phi2 @ Phi )
       => ( sep_gr7105985528888466643_state @ Plus @ ( insert_state @ Phi2 @ bot_bot_set_state ) @ ( insert_state @ Phi @ bot_bot_set_state ) ) ) ) ).

% sep_algebra.bigger_singleton
thf(fact_836_subset__Compl__singleton,axiom,
    ! [A3: set_state,B: state] :
      ( ( ord_le2494988322063910608_state @ A3 @ ( uminus472742206872269241_state @ ( insert_state @ B @ bot_bot_set_state ) ) )
      = ( ~ ( member_state @ B @ A3 ) ) ) ).

% subset_Compl_singleton
thf(fact_837_GreatestI2__order,axiom,
    ! [P: set_state > $o,X: set_state,Q: set_state > $o] :
      ( ( P @ X )
     => ( ! [Y: set_state] :
            ( ( P @ Y )
           => ( ord_le2494988322063910608_state @ Y @ X ) )
       => ( ! [X4: set_state] :
              ( ( P @ X4 )
             => ( ! [Y6: set_state] :
                    ( ( P @ Y6 )
                   => ( ord_le2494988322063910608_state @ Y6 @ X4 ) )
               => ( Q @ X4 ) ) )
         => ( Q @ ( order_2642746146112740183_state @ P ) ) ) ) ) ).

% GreatestI2_order
thf(fact_838_Compl__iff,axiom,
    ! [C: state,A3: set_state] :
      ( ( member_state @ C @ ( uminus472742206872269241_state @ A3 ) )
      = ( ~ ( member_state @ C @ A3 ) ) ) ).

% Compl_iff
thf(fact_839_ComplI,axiom,
    ! [C: state,A3: set_state] :
      ( ~ ( member_state @ C @ A3 )
     => ( member_state @ C @ ( uminus472742206872269241_state @ A3 ) ) ) ).

% ComplI
thf(fact_840_Compl__subset__Compl__iff,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ ( uminus472742206872269241_state @ A3 ) @ ( uminus472742206872269241_state @ B2 ) )
      = ( ord_le2494988322063910608_state @ B2 @ A3 ) ) ).

% Compl_subset_Compl_iff
thf(fact_841_Compl__anti__mono,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ord_le2494988322063910608_state @ ( uminus472742206872269241_state @ B2 ) @ ( uminus472742206872269241_state @ A3 ) ) ) ).

% Compl_anti_mono
thf(fact_842_sep__algebra_Ogreater_Ocong,axiom,
    sep_greater_state = sep_greater_state ).

% sep_algebra.greater.cong
thf(fact_843_ComplD,axiom,
    ! [C: state,A3: set_state] :
      ( ( member_state @ C @ ( uminus472742206872269241_state @ A3 ) )
     => ~ ( member_state @ C @ A3 ) ) ).

% ComplD
thf(fact_844_sep__algebra_Osucc__antisym,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ A @ B )
       => ( ( sep_greater_state @ Plus @ B @ A )
         => ( A = B ) ) ) ) ).

% sep_algebra.succ_antisym
thf(fact_845_sep__algebra_Osucc__trans,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state,C: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ A @ B )
       => ( ( sep_greater_state @ Plus @ B @ C )
         => ( sep_greater_state @ Plus @ A @ C ) ) ) ) ).

% sep_algebra.succ_trans
thf(fact_846_sep__algebra_Osucc__refl,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( sep_greater_state @ Plus @ A @ A ) ) ).

% sep_algebra.succ_refl
thf(fact_847_PartialSA_Osep__algebra__axioms,axiom,
    sep_algebra_state @ plus @ core ).

% PartialSA.sep_algebra_axioms
thf(fact_848_PartialSA_Ocore__mono,axiom,
    ! [A: state,B: state] :
      ( ( greater @ A @ B )
     => ( greater @ ( core @ A ) @ ( core @ B ) ) ) ).

% PartialSA.core_mono
thf(fact_849_PartialSA_Ominus__core__weaker,axiom,
    ! [A: state,B: state] :
      ( ( core @ ( minus @ A @ B ) )
      = ( minus @ ( core @ A ) @ ( core @ B ) ) ) ).

% PartialSA.minus_core_weaker
thf(fact_850_PartialSA_Ominus__core,axiom,
    ! [A: state,B: state] :
      ( ( core @ ( minus @ A @ B ) )
      = ( core @ A ) ) ).

% PartialSA.minus_core
thf(fact_851_sep__algebra_Obigger__sum__smaller,axiom,
    ! [Plus: state > state > option_state,Core: state > state,C: state,A: state,B: state,A7: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ C )
          = ( Plus @ A @ B ) )
       => ( ( sep_greater_state @ Plus @ A @ A7 )
         => ? [B7: state] :
              ( ( sep_greater_state @ Plus @ B7 @ B )
              & ( ( some_state @ C )
                = ( Plus @ A7 @ B7 ) ) ) ) ) ) ).

% sep_algebra.bigger_sum_smaller
thf(fact_852_sep__algebra_Osmaller__than__core,axiom,
    ! [Plus: state > state > option_state,Core: state > state,Y3: state,X: state,Z: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ Y3 @ X )
       => ( ( ( some_state @ Z )
            = ( Plus @ X @ ( Core @ Y3 ) ) )
         => ( ( Core @ Z )
            = ( Core @ Y3 ) ) ) ) ) ).

% sep_algebra.smaller_than_core
thf(fact_853_sep__algebra_Oaddition__bigger,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A7: state,A: state,X7: state,B: state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ A7 @ A )
       => ( ( ( some_state @ X7 )
            = ( Plus @ A7 @ B ) )
         => ( ( ( some_state @ X )
              = ( Plus @ A @ B ) )
           => ( sep_greater_state @ Plus @ X7 @ X ) ) ) ) ) ).

% sep_algebra.addition_bigger
thf(fact_854_sep__algebra_Ogreater__equiv,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ A @ B )
        = ( ? [C5: state] :
              ( ( some_state @ A )
              = ( Plus @ C5 @ B ) ) ) ) ) ).

% sep_algebra.greater_equiv
thf(fact_855_sep__algebra_Ominus__unique,axiom,
    ! [Plus: state > state > option_state,Core: state > state,B: state,A: state,X: state,Y3: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( ( some_state @ B )
            = ( Plus @ A @ X ) )
          & ( sep_greater_state @ Plus @ X @ ( Core @ B ) ) )
       => ( ( ( ( some_state @ B )
              = ( Plus @ A @ Y3 ) )
            & ( sep_greater_state @ Plus @ Y3 @ ( Core @ B ) ) )
         => ( X = Y3 ) ) ) ) ).

% sep_algebra.minus_unique
thf(fact_856_sep__algebra_Ominus__exists,axiom,
    ! [Plus: state > state > option_state,Core: state > state,B: state,A: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ B @ A )
       => ? [X4: state] :
            ( ( ( some_state @ B )
              = ( Plus @ A @ X4 ) )
            & ( sep_greater_state @ Plus @ X4 @ ( Core @ B ) ) ) ) ) ).

% sep_algebra.minus_exists
thf(fact_857_sep__algebra_Oextract__core,axiom,
    ! [Plus: state > state > option_state,Core: state > state,B: state,A: state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( ( some_state @ B )
            = ( Plus @ A @ X ) )
          & ( sep_greater_state @ Plus @ X @ ( Core @ B ) ) )
       => ( ( Core @ X )
          = ( Core @ B ) ) ) ) ).

% sep_algebra.extract_core
thf(fact_858_sep__algebra_Ogreater__def,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ A @ B )
        = ( ? [C5: state] :
              ( ( some_state @ A )
              = ( Plus @ B @ C5 ) ) ) ) ) ).

% sep_algebra.greater_def
thf(fact_859_greater__def,axiom,
    ( greater
    = ( sep_greater_state @ plus ) ) ).

% greater_def
thf(fact_860_core__max,axiom,
    ! [X: state,C: state] :
      ( ( ( some_state @ X )
        = ( plus @ X @ C ) )
     => ? [R: state] :
          ( ( some_state @ ( core @ X ) )
          = ( plus @ C @ R ) ) ) ).

% core_max
thf(fact_861_core__sum,axiom,
    ! [C: state,A: state,B: state] :
      ( ( ( some_state @ C )
        = ( plus @ A @ B ) )
     => ( ( some_state @ ( core @ C ) )
        = ( plus @ ( core @ A ) @ ( core @ B ) ) ) ) ).

% core_sum
thf(fact_862_cancellative,axiom,
    ! [A: state,B: state,X: state,Y3: state] :
      ( ( ( some_state @ A )
        = ( plus @ B @ X ) )
     => ( ( ( some_state @ A )
          = ( plus @ B @ Y3 ) )
       => ( ( ( core @ X )
            = ( core @ Y3 ) )
         => ( X = Y3 ) ) ) ) ).

% cancellative
thf(fact_863_core__is__pure,axiom,
    ! [X: state] :
      ( ( some_state @ ( core @ X ) )
      = ( plus @ ( core @ X ) @ ( core @ X ) ) ) ).

% core_is_pure
thf(fact_864_core__is__smaller,axiom,
    ( some_state
    = ( ^ [X3: state] : ( plus @ X3 @ ( core @ X3 ) ) ) ) ).

% core_is_smaller
thf(fact_865_sep__algebra_Opure__smaller,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_pure_state @ Plus @ A )
       => ( ( sep_greater_state @ Plus @ A @ B )
         => ( sep_pure_state @ Plus @ B ) ) ) ) ).

% sep_algebra.pure_smaller
thf(fact_866_Compl__UNIV__eq,axiom,
    ( ( uminus472742206872269241_state @ top_top_set_state )
    = bot_bot_set_state ) ).

% Compl_UNIV_eq
thf(fact_867_Compl__empty__eq,axiom,
    ( ( uminus472742206872269241_state @ bot_bot_set_state )
    = top_top_set_state ) ).

% Compl_empty_eq
thf(fact_868_sep__algebra_Oup__closed__def,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_up_closed_state @ Plus @ A3 )
        = ( ! [Phi3: state] :
              ( ? [X3: state] :
                  ( ( member_state @ X3 @ A3 )
                  & ( sep_greater_state @ Plus @ Phi3 @ X3 ) )
             => ( member_state @ Phi3 @ A3 ) ) ) ) ) ).

% sep_algebra.up_closed_def
thf(fact_869_sep__algebra_Oup__closedI,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ! [Phi4: state,Phi5: state] :
            ( ( ( sep_greater_state @ Plus @ Phi4 @ Phi5 )
              & ( member_state @ Phi5 @ A3 ) )
           => ( member_state @ Phi4 @ A3 ) )
       => ( sep_up_closed_state @ Plus @ A3 ) ) ) ).

% sep_algebra.up_closedI
thf(fact_870_sep__algebra_Omax__projection__propE_I3_J,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,F: state > state,P4: state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_ma8214210560313151521_state @ Plus @ P @ F )
       => ( ( ( P @ P4 )
            & ( sep_greater_state @ Plus @ X @ P4 ) )
         => ( sep_greater_state @ Plus @ ( F @ X ) @ P4 ) ) ) ) ).

% sep_algebra.max_projection_propE(3)
thf(fact_871_sep__algebra_OmppI,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,F: state > state,A: state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_ma8214210560313151521_state @ Plus @ P @ F )
       => ( ( sep_greater_state @ Plus @ A @ X )
         => ( ( P @ X )
           => ( ( sep_greater_state @ Plus @ X @ ( F @ A ) )
             => ( X
                = ( F @ A ) ) ) ) ) ) ) ).

% sep_algebra.mppI
thf(fact_872_sep__algebra_Ompp__mono,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,F: state > state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_ma8214210560313151521_state @ Plus @ P @ F )
       => ( ( sep_greater_state @ Plus @ A @ B )
         => ( sep_greater_state @ Plus @ ( F @ A ) @ ( F @ B ) ) ) ) ) ).

% sep_algebra.mpp_mono
thf(fact_873_sep__algebra_Ompp__smaller,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,F: state > state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_ma8214210560313151521_state @ Plus @ P @ F )
       => ( sep_greater_state @ Plus @ X @ ( F @ X ) ) ) ) ).

% sep_algebra.mpp_smaller
thf(fact_874_sep__algebra_Omax__projection__propI,axiom,
    ! [Plus: state > state > option_state,Core: state > state,F: state > state,P: state > $o] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ! [X4: state] : ( sep_greater_state @ Plus @ X4 @ ( F @ X4 ) )
       => ( ! [X4: state] : ( P @ ( F @ X4 ) )
         => ( ! [X4: state,P5: state] :
                ( ( ( P @ P5 )
                  & ( sep_greater_state @ Plus @ X4 @ P5 ) )
               => ( sep_greater_state @ Plus @ ( F @ X4 ) @ P5 ) )
           => ( sep_ma8214210560313151521_state @ Plus @ P @ F ) ) ) ) ) ).

% sep_algebra.max_projection_propI
thf(fact_875_sep__algebra_Omax__projection__prop__def,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o,F: state > state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_ma8214210560313151521_state @ Plus @ P @ F )
        = ( ! [X3: state] :
              ( ( sep_greater_state @ Plus @ X3 @ ( F @ X3 ) )
              & ( P @ ( F @ X3 ) )
              & ! [P6: state] :
                  ( ( ( P @ P6 )
                    & ( sep_greater_state @ Plus @ X3 @ P6 ) )
                 => ( sep_greater_state @ Plus @ ( F @ X3 ) @ P6 ) ) ) ) ) ) ).

% sep_algebra.max_projection_prop_def
thf(fact_876_subset__Compl__self__eq,axiom,
    ! [A3: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ ( uminus472742206872269241_state @ A3 ) )
      = ( A3 = bot_bot_set_state ) ) ).

% subset_Compl_self_eq
thf(fact_877_sep__algebra_Ogreater__set__def,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_gr7105985528888466643_state @ Plus @ A3 @ B2 )
        = ( ! [X3: state] :
              ( ( member_state @ X3 @ A3 )
             => ? [Y4: state] :
                  ( ( member_state @ Y4 @ B2 )
                  & ( sep_greater_state @ Plus @ X3 @ Y4 ) ) ) ) ) ) ).

% sep_algebra.greater_set_def
thf(fact_878_sep__algebra_Ogreater__setI,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A3: set_state,B2: set_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ! [A2: state] :
            ( ( member_state @ A2 @ A3 )
           => ? [X5: state] :
                ( ( member_state @ X5 @ B2 )
                & ( sep_greater_state @ Plus @ A2 @ X5 ) ) )
       => ( sep_gr7105985528888466643_state @ Plus @ A3 @ B2 ) ) ) ).

% sep_algebra.greater_setI
thf(fact_879_empty__in__Fpow,axiom,
    ! [A3: set_state] : ( member_set_state @ bot_bot_set_state @ ( finite_Fpow_state @ A3 ) ) ).

% empty_in_Fpow
thf(fact_880_sep__algebra_Omono__propI,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ! [X4: state,Y: state] :
            ( ( ( sep_greater_state @ Plus @ Y @ X4 )
              & ( P @ X4 ) )
           => ( P @ Y ) )
       => ( sep_mono_prop_state @ Plus @ P ) ) ) ).

% sep_algebra.mono_propI
thf(fact_881_sep__algebra_Omono__prop__def,axiom,
    ! [Plus: state > state > option_state,Core: state > state,P: state > $o] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_mono_prop_state @ Plus @ P )
        = ( ! [X3: state,Y4: state] :
              ( ( ( sep_greater_state @ Plus @ Y4 @ X3 )
                & ( P @ X3 ) )
             => ( P @ Y4 ) ) ) ) ) ).

% sep_algebra.mono_prop_def
thf(fact_882_PartialSA_Omax__projection__prop__pure__core,axiom,
    sep_ma8214210560313151521_state @ plus @ ( sep_pure_state @ plus ) @ core ).

% PartialSA.max_projection_prop_pure_core
thf(fact_883_sep__algebra_Osmaller__pure__sum__smaller,axiom,
    ! [Plus: state > state > option_state,Core: state > state,Y3: state,A: state,B: state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ Y3 @ A )
       => ( ( sep_greater_state @ Plus @ Y3 @ B )
         => ( ( ( some_state @ X )
              = ( Plus @ A @ B ) )
           => ( ( sep_pure_state @ Plus @ B )
             => ( sep_greater_state @ Plus @ Y3 @ X ) ) ) ) ) ) ).

% sep_algebra.smaller_pure_sum_smaller
thf(fact_884_surj__Compl__image__subset,axiom,
    ! [F: state > state,A3: set_state] :
      ( ( ( image_state_state @ F @ top_top_set_state )
        = top_top_set_state )
     => ( ord_le2494988322063910608_state @ ( uminus472742206872269241_state @ ( image_state_state @ F @ A3 ) ) @ ( image_state_state @ F @ ( uminus472742206872269241_state @ A3 ) ) ) ) ).

% surj_Compl_image_subset
thf(fact_885_PartialSA_Oextract__core,axiom,
    ! [B: state,A: state,X: state] :
      ( ( ( ( some_state @ B )
          = ( plus @ A @ X ) )
        & ( greater @ X @ ( core @ B ) ) )
     => ( ( core @ X )
        = ( core @ B ) ) ) ).

% PartialSA.extract_core
thf(fact_886_PartialSA_Ominus__exists,axiom,
    ! [B: state,A: state] :
      ( ( greater @ B @ A )
     => ? [X4: state] :
          ( ( ( some_state @ B )
            = ( plus @ A @ X4 ) )
          & ( greater @ X4 @ ( core @ B ) ) ) ) ).

% PartialSA.minus_exists
thf(fact_887_PartialSA_Ominus__unique,axiom,
    ! [B: state,A: state,X: state,Y3: state] :
      ( ( ( ( some_state @ B )
          = ( plus @ A @ X ) )
        & ( greater @ X @ ( core @ B ) ) )
     => ( ( ( ( some_state @ B )
            = ( plus @ A @ Y3 ) )
          & ( greater @ Y3 @ ( core @ B ) ) )
       => ( X = Y3 ) ) ) ).

% PartialSA.minus_unique
thf(fact_888_PartialSA_Osmaller__than__core,axiom,
    ! [Y3: state,X: state,Z: state] :
      ( ( greater @ Y3 @ X )
     => ( ( ( some_state @ Z )
          = ( plus @ X @ ( core @ Y3 ) ) )
       => ( ( core @ Z )
          = ( core @ Y3 ) ) ) ) ).

% PartialSA.smaller_than_core
thf(fact_889_PartialSA_Obigger__core__sum__defined,axiom,
    ! [A: state,B: state] :
      ( ( greater @ ( core @ A ) @ B )
     => ( ( some_state @ A )
        = ( plus @ A @ B ) ) ) ).

% PartialSA.bigger_core_sum_defined
thf(fact_890_PartialSA_Ogreater__than__sum__exists,axiom,
    ! [A: state,B: state,B1: state,B22: state] :
      ( ( greater @ A @ B )
     => ( ( ( some_state @ B )
          = ( plus @ B1 @ B22 ) )
       => ? [R: state] :
            ( ( ( some_state @ A )
              = ( plus @ R @ B22 ) )
            & ( greater @ ( core @ R ) @ ( core @ A ) )
            & ( greater @ R @ B1 ) ) ) ) ).

% PartialSA.greater_than_sum_exists
thf(fact_891_PartialSA_Ominus__equiv__def__any__elem,axiom,
    ! [X: state,A: state,B: state] :
      ( ( ( some_state @ X )
        = ( plus @ A @ B ) )
     => ( ( some_state @ ( minus @ X @ A ) )
        = ( plus @ B @ ( core @ X ) ) ) ) ).

% PartialSA.minus_equiv_def_any_elem
thf(fact_892_Greatest__equality,axiom,
    ! [P: set_state > $o,X: set_state] :
      ( ( P @ X )
     => ( ! [Y: set_state] :
            ( ( P @ Y )
           => ( ord_le2494988322063910608_state @ Y @ X ) )
       => ( ( order_2642746146112740183_state @ P )
          = X ) ) ) ).

% Greatest_equality
thf(fact_893_boolean__algebra_Ocompl__one,axiom,
    ( ( uminus472742206872269241_state @ top_top_set_state )
    = bot_bot_set_state ) ).

% boolean_algebra.compl_one
thf(fact_894_boolean__algebra_Ocompl__zero,axiom,
    ( ( uminus472742206872269241_state @ bot_bot_set_state )
    = top_top_set_state ) ).

% boolean_algebra.compl_zero
thf(fact_895_PartialSA_Omono__pure__cond__def,axiom,
    ! [B: state > $o] :
      ( ( packag6595153354952283300_state @ plus @ core @ B )
      = ( ! [Phi6: state] :
            ( ( B @ Phi6 )
            = ( B @ ( core @ Phi6 ) ) )
        & ! [Phi3: state,Phi6: state,R3: state] :
            ( ( ( sep_pure_state @ plus @ R3 )
              & ( ( some_state @ Phi3 )
                = ( plus @ Phi6 @ R3 ) )
              & ~ ( B @ Phi6 ) )
           => ~ ( B @ Phi3 ) ) ) ) ).

% PartialSA.mono_pure_cond_def
thf(fact_896_PartialSA_Omono__pure__condI,axiom,
    ! [B: state > $o] :
      ( ! [Phi5: state] :
          ( ( B @ Phi5 )
          = ( B @ ( core @ Phi5 ) ) )
     => ( ! [Phi5: state,Phi4: state,R: state] :
            ( ( ( sep_pure_state @ plus @ R )
              & ( ( some_state @ Phi4 )
                = ( plus @ Phi5 @ R ) )
              & ~ ( B @ Phi5 ) )
           => ~ ( B @ Phi4 ) )
       => ( packag6595153354952283300_state @ plus @ core @ B ) ) ) ).

% PartialSA.mono_pure_condI
thf(fact_897_PartialSA_Obigger__the,axiom,
    ! [A: state,X7: state,Y3: state,X: state] :
      ( ( ( some_state @ A )
        = ( plus @ X7 @ Y3 ) )
     => ( ( greater @ X7 @ X )
       => ( greater @ ( the_state @ ( plus @ ( core @ A ) @ X7 ) ) @ ( the_state @ ( plus @ ( core @ A ) @ X ) ) ) ) ) ).

% PartialSA.bigger_the
thf(fact_898_Pow__UNIV,axiom,
    ( ( pow_state @ top_top_set_state )
    = top_to5262587396890829782_state ) ).

% Pow_UNIV
thf(fact_899_Pow__empty,axiom,
    ( ( pow_state @ bot_bot_set_state )
    = ( insert_set_state @ bot_bot_set_state @ bot_bo2271482359692755898_state ) ) ).

% Pow_empty
thf(fact_900_Pow__singleton__iff,axiom,
    ! [X8: set_state,Y7: set_state] :
      ( ( ( pow_state @ X8 )
        = ( insert_set_state @ Y7 @ bot_bo2271482359692755898_state ) )
      = ( ( X8 = bot_bot_set_state )
        & ( Y7 = bot_bot_set_state ) ) ) ).

% Pow_singleton_iff
thf(fact_901_PowI,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( member_set_state @ A3 @ ( pow_state @ B2 ) ) ) ).

% PowI
thf(fact_902_Pow__iff,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( member_set_state @ A3 @ ( pow_state @ B2 ) )
      = ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ).

% Pow_iff
thf(fact_903_option_Ocollapse,axiom,
    ! [Option: option_state] :
      ( ( Option != none_state )
     => ( ( some_state @ ( the_state @ Option ) )
        = Option ) ) ).

% option.collapse
thf(fact_904_Pow__bottom,axiom,
    ! [B2: set_state] : ( member_set_state @ bot_bot_set_state @ ( pow_state @ B2 ) ) ).

% Pow_bottom
thf(fact_905_PowD,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( member_set_state @ A3 @ ( pow_state @ B2 ) )
     => ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ).

% PowD
thf(fact_906_option_Osel,axiom,
    ! [X2: state] :
      ( ( the_state @ ( some_state @ X2 ) )
      = X2 ) ).

% option.sel
thf(fact_907_option_Oexpand,axiom,
    ! [Option: option_state,Option2: option_state] :
      ( ( ( Option = none_state )
        = ( Option2 = none_state ) )
     => ( ( ( Option != none_state )
         => ( ( Option2 != none_state )
           => ( ( the_state @ Option )
              = ( the_state @ Option2 ) ) ) )
       => ( Option = Option2 ) ) ) ).

% option.expand
thf(fact_908_option_Oexhaust__sel,axiom,
    ! [Option: option_state] :
      ( ( Option != none_state )
     => ( Option
        = ( some_state @ ( the_state @ Option ) ) ) ) ).

% option.exhaust_sel
thf(fact_909_Pow__mono,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ord_le5175021213330142598_state @ ( pow_state @ A3 ) @ ( pow_state @ B2 ) ) ) ).

% Pow_mono
thf(fact_910_option_Oset__sel,axiom,
    ! [A: option_state] :
      ( ( A != none_state )
     => ( member_state @ ( the_state @ A ) @ ( set_option_state2 @ A ) ) ) ).

% option.set_sel
thf(fact_911_PartialSA_Omono__pure__cond__conj,axiom,
    ! [Pc: state > $o,B: state > $o] :
      ( ( packag6595153354952283300_state @ plus @ core @ Pc )
     => ( ( packag6595153354952283300_state @ plus @ core @ B )
       => ( packag6595153354952283300_state @ plus @ core @ ( packag1330488657391168505_state @ Pc @ B ) ) ) ) ).

% PartialSA.mono_pure_cond_conj
thf(fact_912_inj__image__Compl__subset,axiom,
    ! [F: state > state,A3: set_state] :
      ( ( inj_on_state_state @ F @ top_top_set_state )
     => ( ord_le2494988322063910608_state @ ( image_state_state @ F @ ( uminus472742206872269241_state @ A3 ) ) @ ( uminus472742206872269241_state @ ( image_state_state @ F @ A3 ) ) ) ) ).

% inj_image_Compl_subset
thf(fact_913_minus__def,axiom,
    ( minus
    = ( sep_minus_state @ plus @ core ) ) ).

% minus_def
thf(fact_914_inj__Some,axiom,
    ! [A3: set_state] : ( inj_on3577428053172332983_state @ some_state @ A3 ) ).

% inj_Some
thf(fact_915_sep__algebra_Ominus_Ocong,axiom,
    sep_minus_state = sep_minus_state ).

% sep_algebra.minus.cong
thf(fact_916_PartialSA_Obool__conj__def,axiom,
    ( packag1330488657391168505_state
    = ( ^ [A4: state > $o,B3: state > $o,X3: state] :
          ( ( A4 @ X3 )
          & ( B3 @ X3 ) ) ) ) ).

% PartialSA.bool_conj_def
thf(fact_917_sep__algebra_Ominus__core__weaker,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( Core @ ( sep_minus_state @ Plus @ Core @ A @ B ) )
        = ( sep_minus_state @ Plus @ Core @ ( Core @ A ) @ ( Core @ B ) ) ) ) ).

% sep_algebra.minus_core_weaker
thf(fact_918_sep__algebra_Ominus__core,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( Core @ ( sep_minus_state @ Plus @ Core @ A @ B ) )
        = ( Core @ A ) ) ) ).

% sep_algebra.minus_core
thf(fact_919_range__ex1__eq,axiom,
    ! [F: state > state,B: state] :
      ( ( inj_on_state_state @ F @ top_top_set_state )
     => ( ( member_state @ B @ ( image_state_state @ F @ top_top_set_state ) )
        = ( ? [X3: state] :
              ( ( B
                = ( F @ X3 ) )
              & ! [Y4: state] :
                  ( ( B
                    = ( F @ Y4 ) )
                 => ( Y4 = X3 ) ) ) ) ) ) ).

% range_ex1_eq
thf(fact_920_inj__image__mem__iff,axiom,
    ! [F: state > state,A: state,A3: set_state] :
      ( ( inj_on_state_state @ F @ top_top_set_state )
     => ( ( member_state @ ( F @ A ) @ ( image_state_state @ F @ A3 ) )
        = ( member_state @ A @ A3 ) ) ) ).

% inj_image_mem_iff
thf(fact_921_inj__on__image__mem__iff,axiom,
    ! [F: state > state,B2: set_state,A: state,A3: set_state] :
      ( ( inj_on_state_state @ F @ B2 )
     => ( ( member_state @ A @ B2 )
       => ( ( ord_le2494988322063910608_state @ A3 @ B2 )
         => ( ( member_state @ ( F @ A ) @ ( image_state_state @ F @ A3 ) )
            = ( member_state @ A @ A3 ) ) ) ) ) ).

% inj_on_image_mem_iff
thf(fact_922_inj__img__insertE,axiom,
    ! [F: state > state,A3: set_state,X: state,B2: set_state] :
      ( ( inj_on_state_state @ F @ A3 )
     => ( ~ ( member_state @ X @ B2 )
       => ( ( ( insert_state @ X @ B2 )
            = ( image_state_state @ F @ A3 ) )
         => ~ ! [X9: state,A8: set_state] :
                ( ~ ( member_state @ X9 @ A8 )
               => ( ( A3
                    = ( insert_state @ X9 @ A8 ) )
                 => ( ( X
                      = ( F @ X9 ) )
                   => ( B2
                     != ( image_state_state @ F @ A8 ) ) ) ) ) ) ) ) ).

% inj_img_insertE
thf(fact_923_sep__algebra_Ominus__equiv__def__any__elem,axiom,
    ! [Plus: state > state > option_state,Core: state > state,X: state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ X )
          = ( Plus @ A @ B ) )
       => ( ( some_state @ ( sep_minus_state @ Plus @ Core @ X @ A ) )
          = ( Plus @ B @ ( Core @ X ) ) ) ) ) ).

% sep_algebra.minus_equiv_def_any_elem
thf(fact_924_sep__algebra_Ominus__default,axiom,
    ! [Plus: state > state > option_state,Core: state > state,B: state,A: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ~ ( sep_greater_state @ Plus @ B @ A )
       => ( ( sep_minus_state @ Plus @ Core @ B @ A )
          = B ) ) ) ).

% sep_algebra.minus_default
thf(fact_925_sep__algebra_Ominus__smaller,axiom,
    ! [Plus: state > state > option_state,Core: state > state,X: state,A: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ X @ A )
       => ( sep_greater_state @ Plus @ X @ ( sep_minus_state @ Plus @ Core @ X @ A ) ) ) ) ).

% sep_algebra.minus_smaller
thf(fact_926_sep__algebra_Ogreater__minus__trans,axiom,
    ! [Plus: state > state > option_state,Core: state > state,Y3: state,X: state,A: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ Y3 @ X )
       => ( ( sep_greater_state @ Plus @ X @ A )
         => ( sep_greater_state @ Plus @ ( sep_minus_state @ Plus @ Core @ Y3 @ A ) @ ( sep_minus_state @ Plus @ Core @ X @ A ) ) ) ) ) ).

% sep_algebra.greater_minus_trans
thf(fact_927_inj__image__subset__iff,axiom,
    ! [F: state > state,A3: set_state,B2: set_state] :
      ( ( inj_on_state_state @ F @ top_top_set_state )
     => ( ( ord_le2494988322063910608_state @ ( image_state_state @ F @ A3 ) @ ( image_state_state @ F @ B2 ) )
        = ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ) ).

% inj_image_subset_iff
thf(fact_928_sep__algebra_Ominus__equiv__def,axiom,
    ! [Plus: state > state > option_state,Core: state > state,B: state,A: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( sep_greater_state @ Plus @ B @ A )
       => ( ( ( some_state @ B )
            = ( Plus @ A @ ( sep_minus_state @ Plus @ Core @ B @ A ) ) )
          & ( sep_greater_state @ Plus @ ( sep_minus_state @ Plus @ Core @ B @ A ) @ ( Core @ B ) ) ) ) ) ).

% sep_algebra.minus_equiv_def
thf(fact_929_sep__algebra_Ominus__and__plus,axiom,
    ! [Plus: state > state > option_state,Core: state > state,Omega: state,Omega2: state,R4: state,A: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ Omega )
          = ( Plus @ Omega2 @ R4 ) )
       => ( ( sep_greater_state @ Plus @ Omega2 @ A )
         => ( ( some_state @ ( sep_minus_state @ Plus @ Core @ Omega @ A ) )
            = ( Plus @ ( sep_minus_state @ Plus @ Core @ Omega2 @ A ) @ R4 ) ) ) ) ) ).

% sep_algebra.minus_and_plus
thf(fact_930_sep__algebra_Ominus__bigger,axiom,
    ! [Plus: state > state > option_state,Core: state > state,X: state,A: state,B: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ X )
          = ( Plus @ A @ B ) )
       => ( sep_greater_state @ Plus @ ( sep_minus_state @ Plus @ Core @ X @ A ) @ B ) ) ) ).

% sep_algebra.minus_bigger
thf(fact_931_sep__algebra_Ominus__sum,axiom,
    ! [Plus: state > state > option_state,Core: state > state,A: state,B: state,C: state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ A )
          = ( Plus @ B @ C ) )
       => ( ( sep_greater_state @ Plus @ X @ A )
         => ( ( sep_minus_state @ Plus @ Core @ X @ A )
            = ( sep_minus_state @ Plus @ Core @ ( sep_minus_state @ Plus @ Core @ X @ B ) @ C ) ) ) ) ) ).

% sep_algebra.minus_sum
thf(fact_932_sep__algebra_OminusI,axiom,
    ! [Plus: state > state > option_state,Core: state > state,B: state,A: state,X: state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ( ( some_state @ B )
          = ( Plus @ A @ X ) )
       => ( ( sep_greater_state @ Plus @ X @ ( Core @ B ) )
         => ( X
            = ( sep_minus_state @ Plus @ Core @ B @ A ) ) ) ) ) ).

% sep_algebra.minusI
thf(fact_933_inj__on__iff__surj,axiom,
    ! [A3: set_state,A6: set_state] :
      ( ( A3 != bot_bot_set_state )
     => ( ( ? [F3: state > state] :
              ( ( inj_on_state_state @ F3 @ A3 )
              & ( ord_le2494988322063910608_state @ ( image_state_state @ F3 @ A3 ) @ A6 ) ) )
        = ( ? [G2: state > state] :
              ( ( image_state_state @ G2 @ A6 )
              = A3 ) ) ) ) ).

% inj_on_iff_surj
thf(fact_934_subset__image__inj,axiom,
    ! [S: set_state,F: state > state,T2: set_state] :
      ( ( ord_le2494988322063910608_state @ S @ ( image_state_state @ F @ T2 ) )
      = ( ? [U: set_state] :
            ( ( ord_le2494988322063910608_state @ U @ T2 )
            & ( inj_on_state_state @ F @ U )
            & ( S
              = ( image_state_state @ F @ U ) ) ) ) ) ).

% subset_image_inj
thf(fact_935_inj__on__insert,axiom,
    ! [F: state > state,A: state,A3: set_state] :
      ( ( inj_on_state_state @ F @ ( insert_state @ A @ A3 ) )
      = ( ( inj_on_state_state @ F @ A3 )
        & ~ ( member_state @ ( F @ A ) @ ( image_state_state @ F @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ A @ bot_bot_set_state ) ) ) ) ) ) ).

% inj_on_insert
thf(fact_936_the__inv__into__into,axiom,
    ! [F: state > state,A3: set_state,X: state,B2: set_state] :
      ( ( inj_on_state_state @ F @ A3 )
     => ( ( member_state @ X @ ( image_state_state @ F @ A3 ) )
       => ( ( ord_le2494988322063910608_state @ A3 @ B2 )
         => ( member_state @ ( the_in3035302284364921129_state @ A3 @ F @ X ) @ B2 ) ) ) ) ).

% the_inv_into_into
thf(fact_937_DiffI,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ A3 )
     => ( ~ ( member_state @ C @ B2 )
       => ( member_state @ C @ ( minus_3933957440811877961_state @ A3 @ B2 ) ) ) ) ).

% DiffI
thf(fact_938_Diff__iff,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ ( minus_3933957440811877961_state @ A3 @ B2 ) )
      = ( ( member_state @ C @ A3 )
        & ~ ( member_state @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_939_Diff__cancel,axiom,
    ! [A3: set_state] :
      ( ( minus_3933957440811877961_state @ A3 @ A3 )
      = bot_bot_set_state ) ).

% Diff_cancel
thf(fact_940_empty__Diff,axiom,
    ! [A3: set_state] :
      ( ( minus_3933957440811877961_state @ bot_bot_set_state @ A3 )
      = bot_bot_set_state ) ).

% empty_Diff
thf(fact_941_Diff__empty,axiom,
    ! [A3: set_state] :
      ( ( minus_3933957440811877961_state @ A3 @ bot_bot_set_state )
      = A3 ) ).

% Diff_empty
thf(fact_942_insert__Diff1,axiom,
    ! [X: state,B2: set_state,A3: set_state] :
      ( ( member_state @ X @ B2 )
     => ( ( minus_3933957440811877961_state @ ( insert_state @ X @ A3 ) @ B2 )
        = ( minus_3933957440811877961_state @ A3 @ B2 ) ) ) ).

% insert_Diff1
thf(fact_943_Diff__insert0,axiom,
    ! [X: state,A3: set_state,B2: set_state] :
      ( ~ ( member_state @ X @ A3 )
     => ( ( minus_3933957440811877961_state @ A3 @ ( insert_state @ X @ B2 ) )
        = ( minus_3933957440811877961_state @ A3 @ B2 ) ) ) ).

% Diff_insert0
thf(fact_944_Diff__UNIV,axiom,
    ! [A3: set_state] :
      ( ( minus_3933957440811877961_state @ A3 @ top_top_set_state )
      = bot_bot_set_state ) ).

% Diff_UNIV
thf(fact_945_Diff__eq__empty__iff,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ( minus_3933957440811877961_state @ A3 @ B2 )
        = bot_bot_set_state )
      = ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ).

% Diff_eq_empty_iff
thf(fact_946_insert__Diff__single,axiom,
    ! [A: state,A3: set_state] :
      ( ( insert_state @ A @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ A @ bot_bot_set_state ) ) )
      = ( insert_state @ A @ A3 ) ) ).

% insert_Diff_single
thf(fact_947_double__diff,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ( ord_le2494988322063910608_state @ B2 @ C3 )
       => ( ( minus_3933957440811877961_state @ B2 @ ( minus_3933957440811877961_state @ C3 @ A3 ) )
          = A3 ) ) ) ).

% double_diff
thf(fact_948_Diff__subset,axiom,
    ! [A3: set_state,B2: set_state] : ( ord_le2494988322063910608_state @ ( minus_3933957440811877961_state @ A3 @ B2 ) @ A3 ) ).

% Diff_subset
thf(fact_949_Diff__mono,axiom,
    ! [A3: set_state,C3: set_state,D2: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ C3 )
     => ( ( ord_le2494988322063910608_state @ D2 @ B2 )
       => ( ord_le2494988322063910608_state @ ( minus_3933957440811877961_state @ A3 @ B2 ) @ ( minus_3933957440811877961_state @ C3 @ D2 ) ) ) ) ).

% Diff_mono
thf(fact_950_insert__Diff__if,axiom,
    ! [X: state,B2: set_state,A3: set_state] :
      ( ( ( member_state @ X @ B2 )
       => ( ( minus_3933957440811877961_state @ ( insert_state @ X @ A3 ) @ B2 )
          = ( minus_3933957440811877961_state @ A3 @ B2 ) ) )
      & ( ~ ( member_state @ X @ B2 )
       => ( ( minus_3933957440811877961_state @ ( insert_state @ X @ A3 ) @ B2 )
          = ( insert_state @ X @ ( minus_3933957440811877961_state @ A3 @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_951_DiffE,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ ( minus_3933957440811877961_state @ A3 @ B2 ) )
     => ~ ( ( member_state @ C @ A3 )
         => ( member_state @ C @ B2 ) ) ) ).

% DiffE
thf(fact_952_DiffD1,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ ( minus_3933957440811877961_state @ A3 @ B2 ) )
     => ( member_state @ C @ A3 ) ) ).

% DiffD1
thf(fact_953_DiffD2,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ ( minus_3933957440811877961_state @ A3 @ B2 ) )
     => ~ ( member_state @ C @ B2 ) ) ).

% DiffD2
thf(fact_954_diff__shunt__var,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( ( minus_3933957440811877961_state @ X @ Y3 )
        = bot_bot_set_state )
      = ( ord_le2494988322063910608_state @ X @ Y3 ) ) ).

% diff_shunt_var
thf(fact_955_Diff__insert__absorb,axiom,
    ! [X: state,A3: set_state] :
      ( ~ ( member_state @ X @ A3 )
     => ( ( minus_3933957440811877961_state @ ( insert_state @ X @ A3 ) @ ( insert_state @ X @ bot_bot_set_state ) )
        = A3 ) ) ).

% Diff_insert_absorb
thf(fact_956_Diff__insert2,axiom,
    ! [A3: set_state,A: state,B2: set_state] :
      ( ( minus_3933957440811877961_state @ A3 @ ( insert_state @ A @ B2 ) )
      = ( minus_3933957440811877961_state @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ A @ bot_bot_set_state ) ) @ B2 ) ) ).

% Diff_insert2
thf(fact_957_insert__Diff,axiom,
    ! [A: state,A3: set_state] :
      ( ( member_state @ A @ A3 )
     => ( ( insert_state @ A @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ A @ bot_bot_set_state ) ) )
        = A3 ) ) ).

% insert_Diff
thf(fact_958_Diff__insert,axiom,
    ! [A3: set_state,A: state,B2: set_state] :
      ( ( minus_3933957440811877961_state @ A3 @ ( insert_state @ A @ B2 ) )
      = ( minus_3933957440811877961_state @ ( minus_3933957440811877961_state @ A3 @ B2 ) @ ( insert_state @ A @ bot_bot_set_state ) ) ) ).

% Diff_insert
thf(fact_959_subset__Diff__insert,axiom,
    ! [A3: set_state,B2: set_state,X: state,C3: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ ( minus_3933957440811877961_state @ B2 @ ( insert_state @ X @ C3 ) ) )
      = ( ( ord_le2494988322063910608_state @ A3 @ ( minus_3933957440811877961_state @ B2 @ C3 ) )
        & ~ ( member_state @ X @ A3 ) ) ) ).

% subset_Diff_insert
thf(fact_960_Compl__eq__Diff__UNIV,axiom,
    ( uminus472742206872269241_state
    = ( minus_3933957440811877961_state @ top_top_set_state ) ) ).

% Compl_eq_Diff_UNIV
thf(fact_961_Diff__single__insert,axiom,
    ! [A3: set_state,X: state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ X @ bot_bot_set_state ) ) @ B2 )
     => ( ord_le2494988322063910608_state @ A3 @ ( insert_state @ X @ B2 ) ) ) ).

% Diff_single_insert
thf(fact_962_subset__insert__iff,axiom,
    ! [A3: set_state,X: state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ ( insert_state @ X @ B2 ) )
      = ( ( ( member_state @ X @ A3 )
         => ( ord_le2494988322063910608_state @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ X @ bot_bot_set_state ) ) @ B2 ) )
        & ( ~ ( member_state @ X @ A3 )
         => ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_963_Compl__insert,axiom,
    ! [X: state,A3: set_state] :
      ( ( uminus472742206872269241_state @ ( insert_state @ X @ A3 ) )
      = ( minus_3933957440811877961_state @ ( uminus472742206872269241_state @ A3 ) @ ( insert_state @ X @ bot_bot_set_state ) ) ) ).

% Compl_insert
thf(fact_964_in__image__insert__iff,axiom,
    ! [B2: set_set_state,X: state,A3: set_state] :
      ( ! [C6: set_state] :
          ( ( member_set_state @ C6 @ B2 )
         => ~ ( member_state @ X @ C6 ) )
     => ( ( member_set_state @ A3 @ ( image_2476256681063834599_state @ ( insert_state @ X ) @ B2 ) )
        = ( ( member_state @ X @ A3 )
          & ( member_set_state @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ X @ bot_bot_set_state ) ) @ B2 ) ) ) ) ).

% in_image_insert_iff
thf(fact_965_remove__def,axiom,
    ( remove_state
    = ( ^ [X3: state,A5: set_state] : ( minus_3933957440811877961_state @ A5 @ ( insert_state @ X3 @ bot_bot_set_state ) ) ) ) ).

% remove_def
thf(fact_966_fun__upd__image,axiom,
    ! [X: state,A3: set_state,F: state > state,Y3: state] :
      ( ( ( member_state @ X @ A3 )
       => ( ( image_state_state @ ( fun_upd_state_state @ F @ X @ Y3 ) @ A3 )
          = ( insert_state @ Y3 @ ( image_state_state @ F @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ X @ bot_bot_set_state ) ) ) ) ) )
      & ( ~ ( member_state @ X @ A3 )
       => ( ( image_state_state @ ( fun_upd_state_state @ F @ X @ Y3 ) @ A3 )
          = ( image_state_state @ F @ A3 ) ) ) ) ).

% fun_upd_image
thf(fact_967_pairwise__alt,axiom,
    ( pairwise_state
    = ( ^ [R5: state > state > $o,S2: set_state] :
        ! [X3: state] :
          ( ( member_state @ X3 @ S2 )
         => ! [Y4: state] :
              ( ( member_state @ Y4 @ ( minus_3933957440811877961_state @ S2 @ ( insert_state @ X3 @ bot_bot_set_state ) ) )
             => ( R5 @ X3 @ Y4 ) ) ) ) ) ).

% pairwise_alt
thf(fact_968_psubset__insert__iff,axiom,
    ! [A3: set_state,X: state,B2: set_state] :
      ( ( ord_less_set_state @ A3 @ ( insert_state @ X @ B2 ) )
      = ( ( ( member_state @ X @ B2 )
         => ( ord_less_set_state @ A3 @ B2 ) )
        & ( ~ ( member_state @ X @ B2 )
         => ( ( ( member_state @ X @ A3 )
             => ( ord_less_set_state @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ X @ bot_bot_set_state ) ) @ B2 ) )
            & ( ~ ( member_state @ X @ A3 )
             => ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_969_finite__remove__induct,axiom,
    ! [B2: set_state,P: set_state > $o] :
      ( ( finite_finite_state @ B2 )
     => ( ( P @ bot_bot_set_state )
       => ( ! [A9: set_state] :
              ( ( finite_finite_state @ A9 )
             => ( ( A9 != bot_bot_set_state )
               => ( ( ord_le2494988322063910608_state @ A9 @ B2 )
                 => ( ! [X5: state] :
                        ( ( member_state @ X5 @ A9 )
                       => ( P @ ( minus_3933957440811877961_state @ A9 @ ( insert_state @ X5 @ bot_bot_set_state ) ) ) )
                   => ( P @ A9 ) ) ) ) )
         => ( P @ B2 ) ) ) ) ).

% finite_remove_induct
thf(fact_970_member__remove,axiom,
    ! [X: state,Y3: state,A3: set_state] :
      ( ( member_state @ X @ ( remove_state @ Y3 @ A3 ) )
      = ( ( member_state @ X @ A3 )
        & ( X != Y3 ) ) ) ).

% member_remove
thf(fact_971_finite__insert,axiom,
    ! [A: state,A3: set_state] :
      ( ( finite_finite_state @ ( insert_state @ A @ A3 ) )
      = ( finite_finite_state @ A3 ) ) ).

% finite_insert
thf(fact_972_psubsetI,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ( A3 != B2 )
       => ( ord_less_set_state @ A3 @ B2 ) ) ) ).

% psubsetI
thf(fact_973_finite__Diff__insert,axiom,
    ! [A3: set_state,A: state,B2: set_state] :
      ( ( finite_finite_state @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ A @ B2 ) ) )
      = ( finite_finite_state @ ( minus_3933957440811877961_state @ A3 @ B2 ) ) ) ).

% finite_Diff_insert
thf(fact_974_finite__option__UNIV,axiom,
    ( ( finite3180955649987104801_state @ top_to7666338855062656496_state )
    = ( finite_finite_state @ top_top_set_state ) ) ).

% finite_option_UNIV
thf(fact_975_infinite__countable__subset,axiom,
    ! [S: set_state] :
      ( ~ ( finite_finite_state @ S )
     => ? [F4: nat > state] :
          ( ( inj_on_nat_state @ F4 @ top_top_set_nat )
          & ( ord_le2494988322063910608_state @ ( image_nat_state @ F4 @ top_top_set_nat ) @ S ) ) ) ).

% infinite_countable_subset
thf(fact_976_infinite__iff__countable__subset,axiom,
    ! [S: set_state] :
      ( ( ~ ( finite_finite_state @ S ) )
      = ( ? [F3: nat > state] :
            ( ( inj_on_nat_state @ F3 @ top_top_set_nat )
            & ( ord_le2494988322063910608_state @ ( image_nat_state @ F3 @ top_top_set_nat ) @ S ) ) ) ) ).

% infinite_iff_countable_subset
thf(fact_977_psubset__imp__ex__mem,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_less_set_state @ A3 @ B2 )
     => ? [B6: state] : ( member_state @ B6 @ ( minus_3933957440811877961_state @ B2 @ A3 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_978_pairwiseI,axiom,
    ! [S: set_state,R6: state > state > $o] :
      ( ! [X4: state,Y: state] :
          ( ( member_state @ X4 @ S )
         => ( ( member_state @ Y @ S )
           => ( ( X4 != Y )
             => ( R6 @ X4 @ Y ) ) ) )
     => ( pairwise_state @ R6 @ S ) ) ).

% pairwiseI
thf(fact_979_pairwiseD,axiom,
    ! [R6: state > state > $o,S: set_state,X: state,Y3: state] :
      ( ( pairwise_state @ R6 @ S )
     => ( ( member_state @ X @ S )
       => ( ( member_state @ Y3 @ S )
         => ( ( X != Y3 )
           => ( R6 @ X @ Y3 ) ) ) ) ) ).

% pairwiseD
thf(fact_980_psubsetD,axiom,
    ! [A3: set_state,B2: set_state,C: state] :
      ( ( ord_less_set_state @ A3 @ B2 )
     => ( ( member_state @ C @ A3 )
       => ( member_state @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_981_psubsetE,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_less_set_state @ A3 @ B2 )
     => ~ ( ( ord_le2494988322063910608_state @ A3 @ B2 )
         => ( ord_le2494988322063910608_state @ B2 @ A3 ) ) ) ).

% psubsetE
thf(fact_982_psubset__eq,axiom,
    ( ord_less_set_state
    = ( ^ [A5: set_state,B5: set_state] :
          ( ( ord_le2494988322063910608_state @ A5 @ B5 )
          & ( A5 != B5 ) ) ) ) ).

% psubset_eq
thf(fact_983_psubset__imp__subset,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_less_set_state @ A3 @ B2 )
     => ( ord_le2494988322063910608_state @ A3 @ B2 ) ) ).

% psubset_imp_subset
thf(fact_984_psubset__subset__trans,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( ord_less_set_state @ A3 @ B2 )
     => ( ( ord_le2494988322063910608_state @ B2 @ C3 )
       => ( ord_less_set_state @ A3 @ C3 ) ) ) ).

% psubset_subset_trans
thf(fact_985_subset__not__subset__eq,axiom,
    ( ord_less_set_state
    = ( ^ [A5: set_state,B5: set_state] :
          ( ( ord_le2494988322063910608_state @ A5 @ B5 )
          & ~ ( ord_le2494988322063910608_state @ B5 @ A5 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_986_subset__psubset__trans,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ( ord_less_set_state @ B2 @ C3 )
       => ( ord_less_set_state @ A3 @ C3 ) ) ) ).

% subset_psubset_trans
thf(fact_987_subset__iff__psubset__eq,axiom,
    ( ord_le2494988322063910608_state
    = ( ^ [A5: set_state,B5: set_state] :
          ( ( ord_less_set_state @ A5 @ B5 )
          | ( A5 = B5 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_988_not__psubset__empty,axiom,
    ! [A3: set_state] :
      ~ ( ord_less_set_state @ A3 @ bot_bot_set_state ) ).

% not_psubset_empty
thf(fact_989_finite_OinsertI,axiom,
    ! [A3: set_state,A: state] :
      ( ( finite_finite_state @ A3 )
     => ( finite_finite_state @ ( insert_state @ A @ A3 ) ) ) ).

% finite.insertI
thf(fact_990_top_Oextremum__strict,axiom,
    ! [A: set_state] :
      ~ ( ord_less_set_state @ top_top_set_state @ A ) ).

% top.extremum_strict
thf(fact_991_top_Onot__eq__extremum,axiom,
    ! [A: set_state] :
      ( ( A != top_top_set_state )
      = ( ord_less_set_state @ A @ top_top_set_state ) ) ).

% top.not_eq_extremum
thf(fact_992_bot_Onot__eq__extremum,axiom,
    ! [A: set_state] :
      ( ( A != bot_bot_set_state )
      = ( ord_less_set_state @ bot_bot_set_state @ A ) ) ).

% bot.not_eq_extremum
thf(fact_993_bot_Oextremum__strict,axiom,
    ! [A: set_state] :
      ~ ( ord_less_set_state @ A @ bot_bot_set_state ) ).

% bot.extremum_strict
thf(fact_994_finite_OemptyI,axiom,
    finite_finite_state @ bot_bot_set_state ).

% finite.emptyI
thf(fact_995_infinite__imp__nonempty,axiom,
    ! [S: set_state] :
      ( ~ ( finite_finite_state @ S )
     => ( S != bot_bot_set_state ) ) ).

% infinite_imp_nonempty
thf(fact_996_leD,axiom,
    ! [Y3: set_state,X: set_state] :
      ( ( ord_le2494988322063910608_state @ Y3 @ X )
     => ~ ( ord_less_set_state @ X @ Y3 ) ) ).

% leD
thf(fact_997_nless__le,axiom,
    ! [A: set_state,B: set_state] :
      ( ( ~ ( ord_less_set_state @ A @ B ) )
      = ( ~ ( ord_le2494988322063910608_state @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_998_antisym__conv1,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ~ ( ord_less_set_state @ X @ Y3 )
     => ( ( ord_le2494988322063910608_state @ X @ Y3 )
        = ( X = Y3 ) ) ) ).

% antisym_conv1
thf(fact_999_antisym__conv2,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( ord_le2494988322063910608_state @ X @ Y3 )
     => ( ( ~ ( ord_less_set_state @ X @ Y3 ) )
        = ( X = Y3 ) ) ) ).

% antisym_conv2
thf(fact_1000_less__le__not__le,axiom,
    ( ord_less_set_state
    = ( ^ [X3: set_state,Y4: set_state] :
          ( ( ord_le2494988322063910608_state @ X3 @ Y4 )
          & ~ ( ord_le2494988322063910608_state @ Y4 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1001_order_Oorder__iff__strict,axiom,
    ( ord_le2494988322063910608_state
    = ( ^ [A4: set_state,B3: set_state] :
          ( ( ord_less_set_state @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1002_order_Ostrict__iff__order,axiom,
    ( ord_less_set_state
    = ( ^ [A4: set_state,B3: set_state] :
          ( ( ord_le2494988322063910608_state @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1003_order_Ostrict__trans1,axiom,
    ! [A: set_state,B: set_state,C: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ord_less_set_state @ B @ C )
       => ( ord_less_set_state @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1004_order_Ostrict__trans2,axiom,
    ! [A: set_state,B: set_state,C: set_state] :
      ( ( ord_less_set_state @ A @ B )
     => ( ( ord_le2494988322063910608_state @ B @ C )
       => ( ord_less_set_state @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1005_order_Ostrict__iff__not,axiom,
    ( ord_less_set_state
    = ( ^ [A4: set_state,B3: set_state] :
          ( ( ord_le2494988322063910608_state @ A4 @ B3 )
          & ~ ( ord_le2494988322063910608_state @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1006_dual__order_Oorder__iff__strict,axiom,
    ( ord_le2494988322063910608_state
    = ( ^ [B3: set_state,A4: set_state] :
          ( ( ord_less_set_state @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1007_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_state
    = ( ^ [B3: set_state,A4: set_state] :
          ( ( ord_le2494988322063910608_state @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1008_dual__order_Ostrict__trans1,axiom,
    ! [B: set_state,A: set_state,C: set_state] :
      ( ( ord_le2494988322063910608_state @ B @ A )
     => ( ( ord_less_set_state @ C @ B )
       => ( ord_less_set_state @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1009_dual__order_Ostrict__trans2,axiom,
    ! [B: set_state,A: set_state,C: set_state] :
      ( ( ord_less_set_state @ B @ A )
     => ( ( ord_le2494988322063910608_state @ C @ B )
       => ( ord_less_set_state @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1010_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_state
    = ( ^ [B3: set_state,A4: set_state] :
          ( ( ord_le2494988322063910608_state @ B3 @ A4 )
          & ~ ( ord_le2494988322063910608_state @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1011_order_Ostrict__implies__order,axiom,
    ! [A: set_state,B: set_state] :
      ( ( ord_less_set_state @ A @ B )
     => ( ord_le2494988322063910608_state @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1012_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_state,A: set_state] :
      ( ( ord_less_set_state @ B @ A )
     => ( ord_le2494988322063910608_state @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1013_order__le__less,axiom,
    ( ord_le2494988322063910608_state
    = ( ^ [X3: set_state,Y4: set_state] :
          ( ( ord_less_set_state @ X3 @ Y4 )
          | ( X3 = Y4 ) ) ) ) ).

% order_le_less
thf(fact_1014_order__less__le,axiom,
    ( ord_less_set_state
    = ( ^ [X3: set_state,Y4: set_state] :
          ( ( ord_le2494988322063910608_state @ X3 @ Y4 )
          & ( X3 != Y4 ) ) ) ) ).

% order_less_le
thf(fact_1015_order__less__imp__le,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( ord_less_set_state @ X @ Y3 )
     => ( ord_le2494988322063910608_state @ X @ Y3 ) ) ).

% order_less_imp_le
thf(fact_1016_order__le__neq__trans,axiom,
    ! [A: set_state,B: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_state @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1017_order__neq__le__trans,axiom,
    ! [A: set_state,B: set_state] :
      ( ( A != B )
     => ( ( ord_le2494988322063910608_state @ A @ B )
       => ( ord_less_set_state @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1018_order__le__less__trans,axiom,
    ! [X: set_state,Y3: set_state,Z: set_state] :
      ( ( ord_le2494988322063910608_state @ X @ Y3 )
     => ( ( ord_less_set_state @ Y3 @ Z )
       => ( ord_less_set_state @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1019_order__less__le__trans,axiom,
    ! [X: set_state,Y3: set_state,Z: set_state] :
      ( ( ord_less_set_state @ X @ Y3 )
     => ( ( ord_le2494988322063910608_state @ Y3 @ Z )
       => ( ord_less_set_state @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1020_order__le__less__subst2,axiom,
    ! [A: set_state,B: set_state,F: set_state > set_state,C: set_state] :
      ( ( ord_le2494988322063910608_state @ A @ B )
     => ( ( ord_less_set_state @ ( F @ B ) @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_set_state @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1021_order__less__le__subst1,axiom,
    ! [A: set_state,F: set_state > set_state,B: set_state,C: set_state] :
      ( ( ord_less_set_state @ A @ ( F @ B ) )
     => ( ( ord_le2494988322063910608_state @ B @ C )
       => ( ! [X4: set_state,Y: set_state] :
              ( ( ord_le2494988322063910608_state @ X4 @ Y )
             => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( F @ Y ) ) )
         => ( ord_less_set_state @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1022_order__le__imp__less__or__eq,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( ord_le2494988322063910608_state @ X @ Y3 )
     => ( ( ord_less_set_state @ X @ Y3 )
        | ( X = Y3 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1023_finite__induct__select,axiom,
    ! [S: set_state,P: set_state > $o] :
      ( ( finite_finite_state @ S )
     => ( ( P @ bot_bot_set_state )
       => ( ! [T3: set_state] :
              ( ( ord_less_set_state @ T3 @ S )
             => ( ( P @ T3 )
               => ? [X5: state] :
                    ( ( member_state @ X5 @ ( minus_3933957440811877961_state @ S @ T3 ) )
                    & ( P @ ( insert_state @ X5 @ T3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_induct_select
thf(fact_1024_pairwise__empty,axiom,
    ! [P: state > state > $o] : ( pairwise_state @ P @ bot_bot_set_state ) ).

% pairwise_empty
thf(fact_1025_pairwise__subset,axiom,
    ! [P: state > state > $o,S: set_state,T2: set_state] :
      ( ( pairwise_state @ P @ S )
     => ( ( ord_le2494988322063910608_state @ T2 @ S )
       => ( pairwise_state @ P @ T2 ) ) ) ).

% pairwise_subset
thf(fact_1026_pairwise__mono,axiom,
    ! [P: state > state > $o,A3: set_state,Q: state > state > $o,B2: set_state] :
      ( ( pairwise_state @ P @ A3 )
     => ( ! [X4: state,Y: state] :
            ( ( P @ X4 @ Y )
           => ( Q @ X4 @ Y ) )
       => ( ( ord_le2494988322063910608_state @ B2 @ A3 )
         => ( pairwise_state @ Q @ B2 ) ) ) ) ).

% pairwise_mono
thf(fact_1027_pairwise__insert,axiom,
    ! [R4: state > state > $o,X: state,S3: set_state] :
      ( ( pairwise_state @ R4 @ ( insert_state @ X @ S3 ) )
      = ( ! [Y4: state] :
            ( ( ( member_state @ Y4 @ S3 )
              & ( Y4 != X ) )
           => ( ( R4 @ X @ Y4 )
              & ( R4 @ Y4 @ X ) ) )
        & ( pairwise_state @ R4 @ S3 ) ) ) ).

% pairwise_insert
thf(fact_1028_finite__range__Some,axiom,
    ( ( finite3180955649987104801_state @ ( image_6076465424260689483_state @ some_state @ top_top_set_state ) )
    = ( finite_finite_state @ top_top_set_state ) ) ).

% finite_range_Some
thf(fact_1029_finite__has__maximal,axiom,
    ! [A3: set_set_state] :
      ( ( finite4951987536711252743_state @ A3 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ? [X4: set_state] :
            ( ( member_set_state @ X4 @ A3 )
            & ! [Xa2: set_state] :
                ( ( member_set_state @ Xa2 @ A3 )
               => ( ( ord_le2494988322063910608_state @ X4 @ Xa2 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_1030_finite__has__minimal,axiom,
    ! [A3: set_set_state] :
      ( ( finite4951987536711252743_state @ A3 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ? [X4: set_state] :
            ( ( member_set_state @ X4 @ A3 )
            & ! [Xa2: set_state] :
                ( ( member_set_state @ Xa2 @ A3 )
               => ( ( ord_le2494988322063910608_state @ Xa2 @ X4 )
                 => ( X4 = Xa2 ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_1031_finite__subset__image,axiom,
    ! [B2: set_state,F: state > state,A3: set_state] :
      ( ( finite_finite_state @ B2 )
     => ( ( ord_le2494988322063910608_state @ B2 @ ( image_state_state @ F @ A3 ) )
       => ? [C6: set_state] :
            ( ( ord_le2494988322063910608_state @ C6 @ A3 )
            & ( finite_finite_state @ C6 )
            & ( B2
              = ( image_state_state @ F @ C6 ) ) ) ) ) ).

% finite_subset_image
thf(fact_1032_ex__finite__subset__image,axiom,
    ! [F: state > state,A3: set_state,P: set_state > $o] :
      ( ( ? [B5: set_state] :
            ( ( finite_finite_state @ B5 )
            & ( ord_le2494988322063910608_state @ B5 @ ( image_state_state @ F @ A3 ) )
            & ( P @ B5 ) ) )
      = ( ? [B5: set_state] :
            ( ( finite_finite_state @ B5 )
            & ( ord_le2494988322063910608_state @ B5 @ A3 )
            & ( P @ ( image_state_state @ F @ B5 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_1033_all__finite__subset__image,axiom,
    ! [F: state > state,A3: set_state,P: set_state > $o] :
      ( ( ! [B5: set_state] :
            ( ( ( finite_finite_state @ B5 )
              & ( ord_le2494988322063910608_state @ B5 @ ( image_state_state @ F @ A3 ) ) )
           => ( P @ B5 ) ) )
      = ( ! [B5: set_state] :
            ( ( ( finite_finite_state @ B5 )
              & ( ord_le2494988322063910608_state @ B5 @ A3 ) )
           => ( P @ ( image_state_state @ F @ B5 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_1034_finite_Ocases,axiom,
    ! [A: set_state] :
      ( ( finite_finite_state @ A )
     => ( ( A != bot_bot_set_state )
       => ~ ! [A9: set_state] :
              ( ? [A2: state] :
                  ( A
                  = ( insert_state @ A2 @ A9 ) )
             => ~ ( finite_finite_state @ A9 ) ) ) ) ).

% finite.cases
thf(fact_1035_finite_Osimps,axiom,
    ( finite_finite_state
    = ( ^ [A4: set_state] :
          ( ( A4 = bot_bot_set_state )
          | ? [A5: set_state,B3: state] :
              ( ( A4
                = ( insert_state @ B3 @ A5 ) )
              & ( finite_finite_state @ A5 ) ) ) ) ) ).

% finite.simps
thf(fact_1036_finite__induct,axiom,
    ! [F5: set_state,P: set_state > $o] :
      ( ( finite_finite_state @ F5 )
     => ( ( P @ bot_bot_set_state )
       => ( ! [X4: state,F6: set_state] :
              ( ( finite_finite_state @ F6 )
             => ( ~ ( member_state @ X4 @ F6 )
               => ( ( P @ F6 )
                 => ( P @ ( insert_state @ X4 @ F6 ) ) ) ) )
         => ( P @ F5 ) ) ) ) ).

% finite_induct
thf(fact_1037_finite__ne__induct,axiom,
    ! [F5: set_state,P: set_state > $o] :
      ( ( finite_finite_state @ F5 )
     => ( ( F5 != bot_bot_set_state )
       => ( ! [X4: state] : ( P @ ( insert_state @ X4 @ bot_bot_set_state ) )
         => ( ! [X4: state,F6: set_state] :
                ( ( finite_finite_state @ F6 )
               => ( ( F6 != bot_bot_set_state )
                 => ( ~ ( member_state @ X4 @ F6 )
                   => ( ( P @ F6 )
                     => ( P @ ( insert_state @ X4 @ F6 ) ) ) ) ) )
           => ( P @ F5 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_1038_infinite__finite__induct,axiom,
    ! [P: set_state > $o,A3: set_state] :
      ( ! [A9: set_state] :
          ( ~ ( finite_finite_state @ A9 )
         => ( P @ A9 ) )
     => ( ( P @ bot_bot_set_state )
       => ( ! [X4: state,F6: set_state] :
              ( ( finite_finite_state @ F6 )
             => ( ~ ( member_state @ X4 @ F6 )
               => ( ( P @ F6 )
                 => ( P @ ( insert_state @ X4 @ F6 ) ) ) ) )
         => ( P @ A3 ) ) ) ) ).

% infinite_finite_induct
thf(fact_1039_pairwise__singleton,axiom,
    ! [P: state > state > $o,A3: state] : ( pairwise_state @ P @ ( insert_state @ A3 @ bot_bot_set_state ) ) ).

% pairwise_singleton
thf(fact_1040_finite__subset__induct,axiom,
    ! [F5: set_state,A3: set_state,P: set_state > $o] :
      ( ( finite_finite_state @ F5 )
     => ( ( ord_le2494988322063910608_state @ F5 @ A3 )
       => ( ( P @ bot_bot_set_state )
         => ( ! [A2: state,F6: set_state] :
                ( ( finite_finite_state @ F6 )
               => ( ( member_state @ A2 @ A3 )
                 => ( ~ ( member_state @ A2 @ F6 )
                   => ( ( P @ F6 )
                     => ( P @ ( insert_state @ A2 @ F6 ) ) ) ) ) )
           => ( P @ F5 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_1041_finite__subset__induct_H,axiom,
    ! [F5: set_state,A3: set_state,P: set_state > $o] :
      ( ( finite_finite_state @ F5 )
     => ( ( ord_le2494988322063910608_state @ F5 @ A3 )
       => ( ( P @ bot_bot_set_state )
         => ( ! [A2: state,F6: set_state] :
                ( ( finite_finite_state @ F6 )
               => ( ( member_state @ A2 @ A3 )
                 => ( ( ord_le2494988322063910608_state @ F6 @ A3 )
                   => ( ~ ( member_state @ A2 @ F6 )
                     => ( ( P @ F6 )
                       => ( P @ ( insert_state @ A2 @ F6 ) ) ) ) ) ) )
           => ( P @ F5 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_1042_finite__UNIV__surj__inj,axiom,
    ! [F: state > state] :
      ( ( finite_finite_state @ top_top_set_state )
     => ( ( ( image_state_state @ F @ top_top_set_state )
          = top_top_set_state )
       => ( inj_on_state_state @ F @ top_top_set_state ) ) ) ).

% finite_UNIV_surj_inj
thf(fact_1043_finite__UNIV__inj__surj,axiom,
    ! [F: state > state] :
      ( ( finite_finite_state @ top_top_set_state )
     => ( ( inj_on_state_state @ F @ top_top_set_state )
       => ( ( image_state_state @ F @ top_top_set_state )
          = top_top_set_state ) ) ) ).

% finite_UNIV_inj_surj
thf(fact_1044_finite__surj__inj,axiom,
    ! [A3: set_state,F: state > state] :
      ( ( finite_finite_state @ A3 )
     => ( ( ord_le2494988322063910608_state @ A3 @ ( image_state_state @ F @ A3 ) )
       => ( inj_on_state_state @ F @ A3 ) ) ) ).

% finite_surj_inj
thf(fact_1045_endo__inj__surj,axiom,
    ! [A3: set_state,F: state > state] :
      ( ( finite_finite_state @ A3 )
     => ( ( ord_le2494988322063910608_state @ ( image_state_state @ F @ A3 ) @ A3 )
       => ( ( inj_on_state_state @ F @ A3 )
         => ( ( image_state_state @ F @ A3 )
            = A3 ) ) ) ) ).

% endo_inj_surj
thf(fact_1046_finite__empty__induct,axiom,
    ! [A3: set_state,P: set_state > $o] :
      ( ( finite_finite_state @ A3 )
     => ( ( P @ A3 )
       => ( ! [A2: state,A9: set_state] :
              ( ( finite_finite_state @ A9 )
             => ( ( member_state @ A2 @ A9 )
               => ( ( P @ A9 )
                 => ( P @ ( minus_3933957440811877961_state @ A9 @ ( insert_state @ A2 @ bot_bot_set_state ) ) ) ) ) )
         => ( P @ bot_bot_set_state ) ) ) ) ).

% finite_empty_induct
thf(fact_1047_infinite__coinduct,axiom,
    ! [X8: set_state > $o,A3: set_state] :
      ( ( X8 @ A3 )
     => ( ! [A9: set_state] :
            ( ( X8 @ A9 )
           => ? [X5: state] :
                ( ( member_state @ X5 @ A9 )
                & ( ( X8 @ ( minus_3933957440811877961_state @ A9 @ ( insert_state @ X5 @ bot_bot_set_state ) ) )
                  | ~ ( finite_finite_state @ ( minus_3933957440811877961_state @ A9 @ ( insert_state @ X5 @ bot_bot_set_state ) ) ) ) ) )
       => ~ ( finite_finite_state @ A3 ) ) ) ).

% infinite_coinduct
thf(fact_1048_infinite__remove,axiom,
    ! [S: set_state,A: state] :
      ( ~ ( finite_finite_state @ S )
     => ~ ( finite_finite_state @ ( minus_3933957440811877961_state @ S @ ( insert_state @ A @ bot_bot_set_state ) ) ) ) ).

% infinite_remove
thf(fact_1049_remove__induct,axiom,
    ! [P: set_state > $o,B2: set_state] :
      ( ( P @ bot_bot_set_state )
     => ( ( ~ ( finite_finite_state @ B2 )
         => ( P @ B2 ) )
       => ( ! [A9: set_state] :
              ( ( finite_finite_state @ A9 )
             => ( ( A9 != bot_bot_set_state )
               => ( ( ord_le2494988322063910608_state @ A9 @ B2 )
                 => ( ! [X5: state] :
                        ( ( member_state @ X5 @ A9 )
                       => ( P @ ( minus_3933957440811877961_state @ A9 @ ( insert_state @ X5 @ bot_bot_set_state ) ) ) )
                   => ( P @ A9 ) ) ) ) )
         => ( P @ B2 ) ) ) ) ).

% remove_induct
thf(fact_1050_image__map__upd,axiom,
    ! [X: state,A3: set_state,M2: state > option_state,Y3: state] :
      ( ~ ( member_state @ X @ A3 )
     => ( ( image_6076465424260689483_state @ ( fun_up8843634000204221123_state @ M2 @ X @ ( some_state @ Y3 ) ) @ A3 )
        = ( image_6076465424260689483_state @ M2 @ A3 ) ) ) ).

% image_map_upd
thf(fact_1051_finite__range__updI,axiom,
    ! [F: state > option_state,A: state,B: state] :
      ( ( finite3180955649987104801_state @ ( image_6076465424260689483_state @ F @ top_top_set_state ) )
     => ( finite3180955649987104801_state @ ( image_6076465424260689483_state @ ( fun_up8843634000204221123_state @ F @ A @ ( some_state @ B ) ) @ top_top_set_state ) ) ) ).

% finite_range_updI
thf(fact_1052_cofinite__bot,axiom,
    ( ( cofinite_state = bot_bot_filter_state )
    = ( finite_finite_state @ top_top_set_state ) ) ).

% cofinite_bot
thf(fact_1053_restrict__upd__same,axiom,
    ! [M2: state > option_state,X: state,Y3: state] :
      ( ( restri2287918369865870758_state @ ( fun_up8843634000204221123_state @ M2 @ X @ ( some_state @ Y3 ) ) @ ( uminus472742206872269241_state @ ( insert_state @ X @ bot_bot_set_state ) ) )
      = ( restri2287918369865870758_state @ M2 @ ( uminus472742206872269241_state @ ( insert_state @ X @ bot_bot_set_state ) ) ) ) ).

% restrict_upd_same
thf(fact_1054_fun__upd__None__restrict,axiom,
    ! [X: state,D2: set_state,M2: state > option_state] :
      ( ( ( member_state @ X @ D2 )
       => ( ( fun_up8843634000204221123_state @ ( restri2287918369865870758_state @ M2 @ D2 ) @ X @ none_state )
          = ( restri2287918369865870758_state @ M2 @ ( minus_3933957440811877961_state @ D2 @ ( insert_state @ X @ bot_bot_set_state ) ) ) ) )
      & ( ~ ( member_state @ X @ D2 )
       => ( ( fun_up8843634000204221123_state @ ( restri2287918369865870758_state @ M2 @ D2 ) @ X @ none_state )
          = ( restri2287918369865870758_state @ M2 @ D2 ) ) ) ) ).

% fun_upd_None_restrict
thf(fact_1055_restrict__out,axiom,
    ! [X: state,A3: set_state,M2: state > option_state] :
      ( ~ ( member_state @ X @ A3 )
     => ( ( restri2287918369865870758_state @ M2 @ A3 @ X )
        = none_state ) ) ).

% restrict_out
thf(fact_1056_restrict__map__to__empty,axiom,
    ! [M2: state > option_state] :
      ( ( restri2287918369865870758_state @ M2 @ bot_bot_set_state )
      = ( ^ [X3: state] : none_state ) ) ).

% restrict_map_to_empty
thf(fact_1057_restrict__map__def,axiom,
    ( restri2287918369865870758_state
    = ( ^ [M3: state > option_state,A5: set_state,X3: state] : ( if_option_state @ ( member_state @ X3 @ A5 ) @ ( M3 @ X3 ) @ none_state ) ) ) ).

% restrict_map_def
thf(fact_1058_restrict__complement__singleton__eq,axiom,
    ! [F: state > option_state,X: state] :
      ( ( restri2287918369865870758_state @ F @ ( uminus472742206872269241_state @ ( insert_state @ X @ bot_bot_set_state ) ) )
      = ( fun_up8843634000204221123_state @ F @ X @ none_state ) ) ).

% restrict_complement_singleton_eq
thf(fact_1059_dom__fun__upd,axiom,
    ! [Y3: option_state,F: state > option_state,X: state] :
      ( ( ( Y3 = none_state )
       => ( ( dom_state_state @ ( fun_up8843634000204221123_state @ F @ X @ Y3 ) )
          = ( minus_3933957440811877961_state @ ( dom_state_state @ F ) @ ( insert_state @ X @ bot_bot_set_state ) ) ) )
      & ( ( Y3 != none_state )
       => ( ( dom_state_state @ ( fun_up8843634000204221123_state @ F @ X @ Y3 ) )
          = ( insert_state @ X @ ( dom_state_state @ F ) ) ) ) ) ).

% dom_fun_upd
thf(fact_1060_top_Oordering__top__axioms,axiom,
    orderi2162033302644881791_state @ ord_le2494988322063910608_state @ ord_less_set_state @ top_top_set_state ).

% top.ordering_top_axioms
thf(fact_1061_Sup__fin_Osubset__imp,axiom,
    ! [A3: set_set_state,B2: set_set_state] :
      ( ( ord_le5175021213330142598_state @ A3 @ B2 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ( ( finite4951987536711252743_state @ B2 )
         => ( ord_le2494988322063910608_state @ ( lattic1454283544731368441_state @ A3 ) @ ( lattic1454283544731368441_state @ B2 ) ) ) ) ) ).

% Sup_fin.subset_imp
thf(fact_1062_dom__eq__empty__conv,axiom,
    ! [F: state > option_state] :
      ( ( ( dom_state_state @ F )
        = bot_bot_set_state )
      = ( F
        = ( ^ [X3: state] : none_state ) ) ) ).

% dom_eq_empty_conv
thf(fact_1063_fun__upd__None__if__notin__dom,axiom,
    ! [K: state,M2: state > option_state] :
      ( ~ ( member_state @ K @ ( dom_state_state @ M2 ) )
     => ( ( fun_up8843634000204221123_state @ M2 @ K @ none_state )
        = M2 ) ) ).

% fun_upd_None_if_notin_dom
thf(fact_1064_domD,axiom,
    ! [A: state,M2: state > option_state] :
      ( ( member_state @ A @ ( dom_state_state @ M2 ) )
     => ? [B6: state] :
          ( ( M2 @ A )
          = ( some_state @ B6 ) ) ) ).

% domD
thf(fact_1065_domI,axiom,
    ! [M2: state > option_state,A: state,B: state] :
      ( ( ( M2 @ A )
        = ( some_state @ B ) )
     => ( member_state @ A @ ( dom_state_state @ M2 ) ) ) ).

% domI
thf(fact_1066_domIff,axiom,
    ! [A: state,M2: state > option_state] :
      ( ( member_state @ A @ ( dom_state_state @ M2 ) )
      = ( ( M2 @ A )
       != none_state ) ) ).

% domIff
thf(fact_1067_insert__dom,axiom,
    ! [F: state > option_state,X: state,Y3: state] :
      ( ( ( F @ X )
        = ( some_state @ Y3 ) )
     => ( ( insert_state @ X @ ( dom_state_state @ F ) )
        = ( dom_state_state @ F ) ) ) ).

% insert_dom
thf(fact_1068_finite__map__freshness,axiom,
    ! [F: state > option_state] :
      ( ( finite_finite_state @ ( dom_state_state @ F ) )
     => ( ~ ( finite_finite_state @ top_top_set_state )
       => ? [X4: state] :
            ( ( F @ X4 )
            = none_state ) ) ) ).

% finite_map_freshness
thf(fact_1069_dom__minus,axiom,
    ! [F: state > option_state,X: state,A3: set_state] :
      ( ( ( F @ X )
        = none_state )
     => ( ( minus_3933957440811877961_state @ ( dom_state_state @ F ) @ ( insert_state @ X @ A3 ) )
        = ( minus_3933957440811877961_state @ ( dom_state_state @ F ) @ A3 ) ) ) ).

% dom_minus
thf(fact_1070_Sup__fin_OboundedE,axiom,
    ! [A3: set_set_state,X: set_state] :
      ( ( finite4951987536711252743_state @ A3 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ( ( ord_le2494988322063910608_state @ ( lattic1454283544731368441_state @ A3 ) @ X )
         => ! [A10: set_state] :
              ( ( member_set_state @ A10 @ A3 )
             => ( ord_le2494988322063910608_state @ A10 @ X ) ) ) ) ) ).

% Sup_fin.boundedE
thf(fact_1071_Sup__fin_OboundedI,axiom,
    ! [A3: set_set_state,X: set_state] :
      ( ( finite4951987536711252743_state @ A3 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ( ! [A2: set_state] :
              ( ( member_set_state @ A2 @ A3 )
             => ( ord_le2494988322063910608_state @ A2 @ X ) )
         => ( ord_le2494988322063910608_state @ ( lattic1454283544731368441_state @ A3 ) @ X ) ) ) ) ).

% Sup_fin.boundedI
thf(fact_1072_Sup__fin_Obounded__iff,axiom,
    ! [A3: set_set_state,X: set_state] :
      ( ( finite4951987536711252743_state @ A3 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ( ( ord_le2494988322063910608_state @ ( lattic1454283544731368441_state @ A3 ) @ X )
          = ( ! [X3: set_state] :
                ( ( member_set_state @ X3 @ A3 )
               => ( ord_le2494988322063910608_state @ X3 @ X ) ) ) ) ) ) ).

% Sup_fin.bounded_iff
thf(fact_1073_UnCI,axiom,
    ! [C: state,B2: set_state,A3: set_state] :
      ( ( ~ ( member_state @ C @ B2 )
       => ( member_state @ C @ A3 ) )
     => ( member_state @ C @ ( sup_sup_set_state @ A3 @ B2 ) ) ) ).

% UnCI
thf(fact_1074_Un__iff,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ ( sup_sup_set_state @ A3 @ B2 ) )
      = ( ( member_state @ C @ A3 )
        | ( member_state @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_1075_Un__empty,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ( sup_sup_set_state @ A3 @ B2 )
        = bot_bot_set_state )
      = ( ( A3 = bot_bot_set_state )
        & ( B2 = bot_bot_set_state ) ) ) ).

% Un_empty
thf(fact_1076_Un__subset__iff,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( ord_le2494988322063910608_state @ ( sup_sup_set_state @ A3 @ B2 ) @ C3 )
      = ( ( ord_le2494988322063910608_state @ A3 @ C3 )
        & ( ord_le2494988322063910608_state @ B2 @ C3 ) ) ) ).

% Un_subset_iff
thf(fact_1077_Un__insert__left,axiom,
    ! [A: state,B2: set_state,C3: set_state] :
      ( ( sup_sup_set_state @ ( insert_state @ A @ B2 ) @ C3 )
      = ( insert_state @ A @ ( sup_sup_set_state @ B2 @ C3 ) ) ) ).

% Un_insert_left
thf(fact_1078_Un__insert__right,axiom,
    ! [A3: set_state,A: state,B2: set_state] :
      ( ( sup_sup_set_state @ A3 @ ( insert_state @ A @ B2 ) )
      = ( insert_state @ A @ ( sup_sup_set_state @ A3 @ B2 ) ) ) ).

% Un_insert_right
thf(fact_1079_Un__empty__left,axiom,
    ! [B2: set_state] :
      ( ( sup_sup_set_state @ bot_bot_set_state @ B2 )
      = B2 ) ).

% Un_empty_left
thf(fact_1080_Un__empty__right,axiom,
    ! [A3: set_state] :
      ( ( sup_sup_set_state @ A3 @ bot_bot_set_state )
      = A3 ) ).

% Un_empty_right
thf(fact_1081_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_state] :
      ( ( sup_sup_set_state @ X @ bot_bot_set_state )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_1082_subset__Un__eq,axiom,
    ( ord_le2494988322063910608_state
    = ( ^ [A5: set_state,B5: set_state] :
          ( ( sup_sup_set_state @ A5 @ B5 )
          = B5 ) ) ) ).

% subset_Un_eq
thf(fact_1083_subset__UnE,axiom,
    ! [C3: set_state,A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ C3 @ ( sup_sup_set_state @ A3 @ B2 ) )
     => ~ ! [A8: set_state] :
            ( ( ord_le2494988322063910608_state @ A8 @ A3 )
           => ! [B8: set_state] :
                ( ( ord_le2494988322063910608_state @ B8 @ B2 )
               => ( C3
                 != ( sup_sup_set_state @ A8 @ B8 ) ) ) ) ) ).

% subset_UnE
thf(fact_1084_Un__absorb2,axiom,
    ! [B2: set_state,A3: set_state] :
      ( ( ord_le2494988322063910608_state @ B2 @ A3 )
     => ( ( sup_sup_set_state @ A3 @ B2 )
        = A3 ) ) ).

% Un_absorb2
thf(fact_1085_Un__absorb1,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ( sup_sup_set_state @ A3 @ B2 )
        = B2 ) ) ).

% Un_absorb1
thf(fact_1086_Un__upper2,axiom,
    ! [B2: set_state,A3: set_state] : ( ord_le2494988322063910608_state @ B2 @ ( sup_sup_set_state @ A3 @ B2 ) ) ).

% Un_upper2
thf(fact_1087_Un__upper1,axiom,
    ! [A3: set_state,B2: set_state] : ( ord_le2494988322063910608_state @ A3 @ ( sup_sup_set_state @ A3 @ B2 ) ) ).

% Un_upper1
thf(fact_1088_Un__least,axiom,
    ! [A3: set_state,C3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ C3 )
     => ( ( ord_le2494988322063910608_state @ B2 @ C3 )
       => ( ord_le2494988322063910608_state @ ( sup_sup_set_state @ A3 @ B2 ) @ C3 ) ) ) ).

% Un_least
thf(fact_1089_Un__mono,axiom,
    ! [A3: set_state,C3: set_state,B2: set_state,D2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ C3 )
     => ( ( ord_le2494988322063910608_state @ B2 @ D2 )
       => ( ord_le2494988322063910608_state @ ( sup_sup_set_state @ A3 @ B2 ) @ ( sup_sup_set_state @ C3 @ D2 ) ) ) ) ).

% Un_mono
thf(fact_1090_UnE,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ ( sup_sup_set_state @ A3 @ B2 ) )
     => ( ~ ( member_state @ C @ A3 )
       => ( member_state @ C @ B2 ) ) ) ).

% UnE
thf(fact_1091_UnI1,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ A3 )
     => ( member_state @ C @ ( sup_sup_set_state @ A3 @ B2 ) ) ) ).

% UnI1
thf(fact_1092_UnI2,axiom,
    ! [C: state,B2: set_state,A3: set_state] :
      ( ( member_state @ C @ B2 )
     => ( member_state @ C @ ( sup_sup_set_state @ A3 @ B2 ) ) ) ).

% UnI2
thf(fact_1093_Un__UNIV__right,axiom,
    ! [A3: set_state] :
      ( ( sup_sup_set_state @ A3 @ top_top_set_state )
      = top_top_set_state ) ).

% Un_UNIV_right
thf(fact_1094_Un__UNIV__left,axiom,
    ! [B2: set_state] :
      ( ( sup_sup_set_state @ top_top_set_state @ B2 )
      = top_top_set_state ) ).

% Un_UNIV_left
thf(fact_1095_singleton__Un__iff,axiom,
    ! [X: state,A3: set_state,B2: set_state] :
      ( ( ( insert_state @ X @ bot_bot_set_state )
        = ( sup_sup_set_state @ A3 @ B2 ) )
      = ( ( ( A3 = bot_bot_set_state )
          & ( B2
            = ( insert_state @ X @ bot_bot_set_state ) ) )
        | ( ( A3
            = ( insert_state @ X @ bot_bot_set_state ) )
          & ( B2 = bot_bot_set_state ) )
        | ( ( A3
            = ( insert_state @ X @ bot_bot_set_state ) )
          & ( B2
            = ( insert_state @ X @ bot_bot_set_state ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_1096_Un__singleton__iff,axiom,
    ! [A3: set_state,B2: set_state,X: state] :
      ( ( ( sup_sup_set_state @ A3 @ B2 )
        = ( insert_state @ X @ bot_bot_set_state ) )
      = ( ( ( A3 = bot_bot_set_state )
          & ( B2
            = ( insert_state @ X @ bot_bot_set_state ) ) )
        | ( ( A3
            = ( insert_state @ X @ bot_bot_set_state ) )
          & ( B2 = bot_bot_set_state ) )
        | ( ( A3
            = ( insert_state @ X @ bot_bot_set_state ) )
          & ( B2
            = ( insert_state @ X @ bot_bot_set_state ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_1097_insert__is__Un,axiom,
    ( insert_state
    = ( ^ [A4: state] : ( sup_sup_set_state @ ( insert_state @ A4 @ bot_bot_set_state ) ) ) ) ).

% insert_is_Un
thf(fact_1098_Diff__subset__conv,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( ord_le2494988322063910608_state @ ( minus_3933957440811877961_state @ A3 @ B2 ) @ C3 )
      = ( ord_le2494988322063910608_state @ A3 @ ( sup_sup_set_state @ B2 @ C3 ) ) ) ).

% Diff_subset_conv
thf(fact_1099_Diff__partition,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ( sup_sup_set_state @ A3 @ ( minus_3933957440811877961_state @ B2 @ A3 ) )
        = B2 ) ) ).

% Diff_partition
thf(fact_1100_Compl__partition2,axiom,
    ! [A3: set_state] :
      ( ( sup_sup_set_state @ ( uminus472742206872269241_state @ A3 ) @ A3 )
      = top_top_set_state ) ).

% Compl_partition2
thf(fact_1101_Compl__partition,axiom,
    ! [A3: set_state] :
      ( ( sup_sup_set_state @ A3 @ ( uminus472742206872269241_state @ A3 ) )
      = top_top_set_state ) ).

% Compl_partition
thf(fact_1102_Pow__insert,axiom,
    ! [A: state,A3: set_state] :
      ( ( pow_state @ ( insert_state @ A @ A3 ) )
      = ( sup_su4188871578264421970_state @ ( pow_state @ A3 ) @ ( image_2476256681063834599_state @ ( insert_state @ A ) @ ( pow_state @ A3 ) ) ) ) ).

% Pow_insert
thf(fact_1103_sup__bot__left,axiom,
    ! [X: set_state] :
      ( ( sup_sup_set_state @ bot_bot_set_state @ X )
      = X ) ).

% sup_bot_left
thf(fact_1104_sup__bot__right,axiom,
    ! [X: set_state] :
      ( ( sup_sup_set_state @ X @ bot_bot_set_state )
      = X ) ).

% sup_bot_right
thf(fact_1105_bot__eq__sup__iff,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( bot_bot_set_state
        = ( sup_sup_set_state @ X @ Y3 ) )
      = ( ( X = bot_bot_set_state )
        & ( Y3 = bot_bot_set_state ) ) ) ).

% bot_eq_sup_iff
thf(fact_1106_sup__bot_Oright__neutral,axiom,
    ! [A: set_state] :
      ( ( sup_sup_set_state @ A @ bot_bot_set_state )
      = A ) ).

% sup_bot.right_neutral
thf(fact_1107_sup__bot_Oneutr__eq__iff,axiom,
    ! [A: set_state,B: set_state] :
      ( ( bot_bot_set_state
        = ( sup_sup_set_state @ A @ B ) )
      = ( ( A = bot_bot_set_state )
        & ( B = bot_bot_set_state ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_1108_sup__bot_Oleft__neutral,axiom,
    ! [A: set_state] :
      ( ( sup_sup_set_state @ bot_bot_set_state @ A )
      = A ) ).

% sup_bot.left_neutral
thf(fact_1109_sup__bot_Oeq__neutr__iff,axiom,
    ! [A: set_state,B: set_state] :
      ( ( ( sup_sup_set_state @ A @ B )
        = bot_bot_set_state )
      = ( ( A = bot_bot_set_state )
        & ( B = bot_bot_set_state ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_1110_sup__eq__bot__iff,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( ( sup_sup_set_state @ X @ Y3 )
        = bot_bot_set_state )
      = ( ( X = bot_bot_set_state )
        & ( Y3 = bot_bot_set_state ) ) ) ).

% sup_eq_bot_iff
thf(fact_1111_UNION__fun__upd,axiom,
    ! [A3: state > set_state,I: state,B2: set_state,J: set_state] :
      ( ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ ( fun_up837824997938104489_state @ A3 @ I @ B2 ) @ J ) )
      = ( sup_sup_set_state @ ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ A3 @ ( minus_3933957440811877961_state @ J @ ( insert_state @ I @ bot_bot_set_state ) ) ) ) @ ( if_set_state @ ( member_state @ I @ J ) @ B2 @ bot_bot_set_state ) ) ) ).

% UNION_fun_upd
thf(fact_1112_Inf__fin__le__Sup__fin,axiom,
    ! [A3: set_set_state] :
      ( ( finite4951987536711252743_state @ A3 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ( ord_le2494988322063910608_state @ ( lattic4879230916095660051_state @ A3 ) @ ( lattic1454283544731368441_state @ A3 ) ) ) ) ).

% Inf_fin_le_Sup_fin
thf(fact_1113_IntI,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ A3 )
     => ( ( member_state @ C @ B2 )
       => ( member_state @ C @ ( inf_inf_set_state @ A3 @ B2 ) ) ) ) ).

% IntI
thf(fact_1114_Int__iff,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ ( inf_inf_set_state @ A3 @ B2 ) )
      = ( ( member_state @ C @ A3 )
        & ( member_state @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_1115_UnionI,axiom,
    ! [X8: set_state,C3: set_set_state,A3: state] :
      ( ( member_set_state @ X8 @ C3 )
     => ( ( member_state @ A3 @ X8 )
       => ( member_state @ A3 @ ( comple4352483261711748803_state @ C3 ) ) ) ) ).

% UnionI
thf(fact_1116_Union__iff,axiom,
    ! [A3: state,C3: set_set_state] :
      ( ( member_state @ A3 @ ( comple4352483261711748803_state @ C3 ) )
      = ( ? [X3: set_state] :
            ( ( member_set_state @ X3 @ C3 )
            & ( member_state @ A3 @ X3 ) ) ) ) ).

% Union_iff
thf(fact_1117_inf__bot__right,axiom,
    ! [X: set_state] :
      ( ( inf_inf_set_state @ X @ bot_bot_set_state )
      = bot_bot_set_state ) ).

% inf_bot_right
thf(fact_1118_inf__bot__left,axiom,
    ! [X: set_state] :
      ( ( inf_inf_set_state @ bot_bot_set_state @ X )
      = bot_bot_set_state ) ).

% inf_bot_left
thf(fact_1119_boolean__algebra_Oconj__zero__left,axiom,
    ! [X: set_state] :
      ( ( inf_inf_set_state @ bot_bot_set_state @ X )
      = bot_bot_set_state ) ).

% boolean_algebra.conj_zero_left
thf(fact_1120_boolean__algebra_Oconj__zero__right,axiom,
    ! [X: set_state] :
      ( ( inf_inf_set_state @ X @ bot_bot_set_state )
      = bot_bot_set_state ) ).

% boolean_algebra.conj_zero_right
thf(fact_1121_Sup__bot__conv_I1_J,axiom,
    ! [A3: set_set_state] :
      ( ( ( comple4352483261711748803_state @ A3 )
        = bot_bot_set_state )
      = ( ! [X3: set_state] :
            ( ( member_set_state @ X3 @ A3 )
           => ( X3 = bot_bot_set_state ) ) ) ) ).

% Sup_bot_conv(1)
thf(fact_1122_Sup__bot__conv_I2_J,axiom,
    ! [A3: set_set_state] :
      ( ( bot_bot_set_state
        = ( comple4352483261711748803_state @ A3 ) )
      = ( ! [X3: set_state] :
            ( ( member_set_state @ X3 @ A3 )
           => ( X3 = bot_bot_set_state ) ) ) ) ).

% Sup_bot_conv(2)
thf(fact_1123_Int__UNIV,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ( inf_inf_set_state @ A3 @ B2 )
        = top_top_set_state )
      = ( ( A3 = top_top_set_state )
        & ( B2 = top_top_set_state ) ) ) ).

% Int_UNIV
thf(fact_1124_Int__subset__iff,axiom,
    ! [C3: set_state,A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ C3 @ ( inf_inf_set_state @ A3 @ B2 ) )
      = ( ( ord_le2494988322063910608_state @ C3 @ A3 )
        & ( ord_le2494988322063910608_state @ C3 @ B2 ) ) ) ).

% Int_subset_iff
thf(fact_1125_Int__insert__left__if0,axiom,
    ! [A: state,C3: set_state,B2: set_state] :
      ( ~ ( member_state @ A @ C3 )
     => ( ( inf_inf_set_state @ ( insert_state @ A @ B2 ) @ C3 )
        = ( inf_inf_set_state @ B2 @ C3 ) ) ) ).

% Int_insert_left_if0
thf(fact_1126_Int__insert__left__if1,axiom,
    ! [A: state,C3: set_state,B2: set_state] :
      ( ( member_state @ A @ C3 )
     => ( ( inf_inf_set_state @ ( insert_state @ A @ B2 ) @ C3 )
        = ( insert_state @ A @ ( inf_inf_set_state @ B2 @ C3 ) ) ) ) ).

% Int_insert_left_if1
thf(fact_1127_insert__inter__insert,axiom,
    ! [A: state,A3: set_state,B2: set_state] :
      ( ( inf_inf_set_state @ ( insert_state @ A @ A3 ) @ ( insert_state @ A @ B2 ) )
      = ( insert_state @ A @ ( inf_inf_set_state @ A3 @ B2 ) ) ) ).

% insert_inter_insert
thf(fact_1128_Int__insert__right__if0,axiom,
    ! [A: state,A3: set_state,B2: set_state] :
      ( ~ ( member_state @ A @ A3 )
     => ( ( inf_inf_set_state @ A3 @ ( insert_state @ A @ B2 ) )
        = ( inf_inf_set_state @ A3 @ B2 ) ) ) ).

% Int_insert_right_if0
thf(fact_1129_Int__insert__right__if1,axiom,
    ! [A: state,A3: set_state,B2: set_state] :
      ( ( member_state @ A @ A3 )
     => ( ( inf_inf_set_state @ A3 @ ( insert_state @ A @ B2 ) )
        = ( insert_state @ A @ ( inf_inf_set_state @ A3 @ B2 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_1130_boolean__algebra_Oconj__cancel__right,axiom,
    ! [X: set_state] :
      ( ( inf_inf_set_state @ X @ ( uminus472742206872269241_state @ X ) )
      = bot_bot_set_state ) ).

% boolean_algebra.conj_cancel_right
thf(fact_1131_boolean__algebra_Oconj__cancel__left,axiom,
    ! [X: set_state] :
      ( ( inf_inf_set_state @ ( uminus472742206872269241_state @ X ) @ X )
      = bot_bot_set_state ) ).

% boolean_algebra.conj_cancel_left
thf(fact_1132_inf__compl__bot__right,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( inf_inf_set_state @ X @ ( inf_inf_set_state @ Y3 @ ( uminus472742206872269241_state @ X ) ) )
      = bot_bot_set_state ) ).

% inf_compl_bot_right
thf(fact_1133_inf__compl__bot__left2,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( inf_inf_set_state @ X @ ( inf_inf_set_state @ ( uminus472742206872269241_state @ X ) @ Y3 ) )
      = bot_bot_set_state ) ).

% inf_compl_bot_left2
thf(fact_1134_inf__compl__bot__left1,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( inf_inf_set_state @ ( uminus472742206872269241_state @ X ) @ ( inf_inf_set_state @ X @ Y3 ) )
      = bot_bot_set_state ) ).

% inf_compl_bot_left1
thf(fact_1135_Sup__empty,axiom,
    ( ( comple4352483261711748803_state @ bot_bo2271482359692755898_state )
    = bot_bot_set_state ) ).

% Sup_empty
thf(fact_1136_Sup__UNIV,axiom,
    ( ( comple4352483261711748803_state @ top_to5262587396890829782_state )
    = top_top_set_state ) ).

% Sup_UNIV
thf(fact_1137_insert__disjoint_I1_J,axiom,
    ! [A: state,A3: set_state,B2: set_state] :
      ( ( ( inf_inf_set_state @ ( insert_state @ A @ A3 ) @ B2 )
        = bot_bot_set_state )
      = ( ~ ( member_state @ A @ B2 )
        & ( ( inf_inf_set_state @ A3 @ B2 )
          = bot_bot_set_state ) ) ) ).

% insert_disjoint(1)
thf(fact_1138_insert__disjoint_I2_J,axiom,
    ! [A: state,A3: set_state,B2: set_state] :
      ( ( bot_bot_set_state
        = ( inf_inf_set_state @ ( insert_state @ A @ A3 ) @ B2 ) )
      = ( ~ ( member_state @ A @ B2 )
        & ( bot_bot_set_state
          = ( inf_inf_set_state @ A3 @ B2 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_1139_disjoint__insert_I1_J,axiom,
    ! [B2: set_state,A: state,A3: set_state] :
      ( ( ( inf_inf_set_state @ B2 @ ( insert_state @ A @ A3 ) )
        = bot_bot_set_state )
      = ( ~ ( member_state @ A @ B2 )
        & ( ( inf_inf_set_state @ B2 @ A3 )
          = bot_bot_set_state ) ) ) ).

% disjoint_insert(1)
thf(fact_1140_disjoint__insert_I2_J,axiom,
    ! [A3: set_state,B: state,B2: set_state] :
      ( ( bot_bot_set_state
        = ( inf_inf_set_state @ A3 @ ( insert_state @ B @ B2 ) ) )
      = ( ~ ( member_state @ B @ A3 )
        & ( bot_bot_set_state
          = ( inf_inf_set_state @ A3 @ B2 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_1141_Diff__disjoint,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( inf_inf_set_state @ A3 @ ( minus_3933957440811877961_state @ B2 @ A3 ) )
      = bot_bot_set_state ) ).

% Diff_disjoint
thf(fact_1142_Compl__disjoint2,axiom,
    ! [A3: set_state] :
      ( ( inf_inf_set_state @ ( uminus472742206872269241_state @ A3 ) @ A3 )
      = bot_bot_set_state ) ).

% Compl_disjoint2
thf(fact_1143_Compl__disjoint,axiom,
    ! [A3: set_state] :
      ( ( inf_inf_set_state @ A3 @ ( uminus472742206872269241_state @ A3 ) )
      = bot_bot_set_state ) ).

% Compl_disjoint
thf(fact_1144_inf__cancel__left1,axiom,
    ! [X: set_state,A: set_state,B: set_state] :
      ( ( inf_inf_set_state @ ( inf_inf_set_state @ X @ A ) @ ( inf_inf_set_state @ ( uminus472742206872269241_state @ X ) @ B ) )
      = bot_bot_set_state ) ).

% inf_cancel_left1
thf(fact_1145_inf__cancel__left2,axiom,
    ! [X: set_state,A: set_state,B: set_state] :
      ( ( inf_inf_set_state @ ( inf_inf_set_state @ ( uminus472742206872269241_state @ X ) @ A ) @ ( inf_inf_set_state @ X @ B ) )
      = bot_bot_set_state ) ).

% inf_cancel_left2
thf(fact_1146_Int__Diff__disjoint,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( inf_inf_set_state @ ( inf_inf_set_state @ A3 @ B2 ) @ ( minus_3933957440811877961_state @ A3 @ B2 ) )
      = bot_bot_set_state ) ).

% Int_Diff_disjoint
thf(fact_1147_Diff__triv,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ( inf_inf_set_state @ A3 @ B2 )
        = bot_bot_set_state )
     => ( ( minus_3933957440811877961_state @ A3 @ B2 )
        = A3 ) ) ).

% Diff_triv
thf(fact_1148_Un__Int__assoc__eq,axiom,
    ! [A3: set_state,B2: set_state,C3: set_state] :
      ( ( ( sup_sup_set_state @ ( inf_inf_set_state @ A3 @ B2 ) @ C3 )
        = ( inf_inf_set_state @ A3 @ ( sup_sup_set_state @ B2 @ C3 ) ) )
      = ( ord_le2494988322063910608_state @ C3 @ A3 ) ) ).

% Un_Int_assoc_eq
thf(fact_1149_Sup__inf__eq__bot__iff,axiom,
    ! [B2: set_set_state,A: set_state] :
      ( ( ( inf_inf_set_state @ ( comple4352483261711748803_state @ B2 ) @ A )
        = bot_bot_set_state )
      = ( ! [X3: set_state] :
            ( ( member_set_state @ X3 @ B2 )
           => ( ( inf_inf_set_state @ X3 @ A )
              = bot_bot_set_state ) ) ) ) ).

% Sup_inf_eq_bot_iff
thf(fact_1150_disjoint__iff__not__equal,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ( inf_inf_set_state @ A3 @ B2 )
        = bot_bot_set_state )
      = ( ! [X3: state] :
            ( ( member_state @ X3 @ A3 )
           => ! [Y4: state] :
                ( ( member_state @ Y4 @ B2 )
               => ( X3 != Y4 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_1151_Int__empty__right,axiom,
    ! [A3: set_state] :
      ( ( inf_inf_set_state @ A3 @ bot_bot_set_state )
      = bot_bot_set_state ) ).

% Int_empty_right
thf(fact_1152_Int__empty__left,axiom,
    ! [B2: set_state] :
      ( ( inf_inf_set_state @ bot_bot_set_state @ B2 )
      = bot_bot_set_state ) ).

% Int_empty_left
thf(fact_1153_disjoint__iff,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ( inf_inf_set_state @ A3 @ B2 )
        = bot_bot_set_state )
      = ( ! [X3: state] :
            ( ( member_state @ X3 @ A3 )
           => ~ ( member_state @ X3 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_1154_Int__emptyI,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ! [X4: state] :
          ( ( member_state @ X4 @ A3 )
         => ~ ( member_state @ X4 @ B2 ) )
     => ( ( inf_inf_set_state @ A3 @ B2 )
        = bot_bot_set_state ) ) ).

% Int_emptyI
thf(fact_1155_insert__partition,axiom,
    ! [X: set_state,F5: set_set_state] :
      ( ~ ( member_set_state @ X @ F5 )
     => ( ! [X4: set_state] :
            ( ( member_set_state @ X4 @ ( insert_set_state @ X @ F5 ) )
           => ! [Xa3: set_state] :
                ( ( member_set_state @ Xa3 @ ( insert_set_state @ X @ F5 ) )
               => ( ( X4 != Xa3 )
                 => ( ( inf_inf_set_state @ X4 @ Xa3 )
                    = bot_bot_set_state ) ) ) )
       => ( ( inf_inf_set_state @ X @ ( comple4352483261711748803_state @ F5 ) )
          = bot_bot_set_state ) ) ) ).

% insert_partition
thf(fact_1156_Union__disjoint,axiom,
    ! [C3: set_set_state,A3: set_state] :
      ( ( ( inf_inf_set_state @ ( comple4352483261711748803_state @ C3 ) @ A3 )
        = bot_bot_set_state )
      = ( ! [X3: set_state] :
            ( ( member_set_state @ X3 @ C3 )
           => ( ( inf_inf_set_state @ X3 @ A3 )
              = bot_bot_set_state ) ) ) ) ).

% Union_disjoint
thf(fact_1157_Union__empty__conv,axiom,
    ! [A3: set_set_state] :
      ( ( ( comple4352483261711748803_state @ A3 )
        = bot_bot_set_state )
      = ( ! [X3: set_state] :
            ( ( member_set_state @ X3 @ A3 )
           => ( X3 = bot_bot_set_state ) ) ) ) ).

% Union_empty_conv
thf(fact_1158_empty__Union__conv,axiom,
    ! [A3: set_set_state] :
      ( ( bot_bot_set_state
        = ( comple4352483261711748803_state @ A3 ) )
      = ( ! [X3: set_state] :
            ( ( member_set_state @ X3 @ A3 )
           => ( X3 = bot_bot_set_state ) ) ) ) ).

% empty_Union_conv
thf(fact_1159_Union__subsetI,axiom,
    ! [A3: set_set_state,B2: set_set_state] :
      ( ! [X4: set_state] :
          ( ( member_set_state @ X4 @ A3 )
         => ? [Y6: set_state] :
              ( ( member_set_state @ Y6 @ B2 )
              & ( ord_le2494988322063910608_state @ X4 @ Y6 ) ) )
     => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ A3 ) @ ( comple4352483261711748803_state @ B2 ) ) ) ).

% Union_subsetI
thf(fact_1160_Union__upper,axiom,
    ! [B2: set_state,A3: set_set_state] :
      ( ( member_set_state @ B2 @ A3 )
     => ( ord_le2494988322063910608_state @ B2 @ ( comple4352483261711748803_state @ A3 ) ) ) ).

% Union_upper
thf(fact_1161_Union__least,axiom,
    ! [A3: set_set_state,C3: set_state] :
      ( ! [X10: set_state] :
          ( ( member_set_state @ X10 @ A3 )
         => ( ord_le2494988322063910608_state @ X10 @ C3 ) )
     => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ A3 ) @ C3 ) ) ).

% Union_least
thf(fact_1162_Int__Collect__mono,axiom,
    ! [A3: set_state,B2: set_state,P: state > $o,Q: state > $o] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ! [X4: state] :
            ( ( member_state @ X4 @ A3 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_le2494988322063910608_state @ ( inf_inf_set_state @ A3 @ ( collect_state @ P ) ) @ ( inf_inf_set_state @ B2 @ ( collect_state @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_1163_Int__greatest,axiom,
    ! [C3: set_state,A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ C3 @ A3 )
     => ( ( ord_le2494988322063910608_state @ C3 @ B2 )
       => ( ord_le2494988322063910608_state @ C3 @ ( inf_inf_set_state @ A3 @ B2 ) ) ) ) ).

% Int_greatest
thf(fact_1164_Int__absorb2,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ( inf_inf_set_state @ A3 @ B2 )
        = A3 ) ) ).

% Int_absorb2
thf(fact_1165_Int__absorb1,axiom,
    ! [B2: set_state,A3: set_state] :
      ( ( ord_le2494988322063910608_state @ B2 @ A3 )
     => ( ( inf_inf_set_state @ A3 @ B2 )
        = B2 ) ) ).

% Int_absorb1
thf(fact_1166_Int__lower2,axiom,
    ! [A3: set_state,B2: set_state] : ( ord_le2494988322063910608_state @ ( inf_inf_set_state @ A3 @ B2 ) @ B2 ) ).

% Int_lower2
thf(fact_1167_Int__lower1,axiom,
    ! [A3: set_state,B2: set_state] : ( ord_le2494988322063910608_state @ ( inf_inf_set_state @ A3 @ B2 ) @ A3 ) ).

% Int_lower1
thf(fact_1168_Int__mono,axiom,
    ! [A3: set_state,C3: set_state,B2: set_state,D2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ C3 )
     => ( ( ord_le2494988322063910608_state @ B2 @ D2 )
       => ( ord_le2494988322063910608_state @ ( inf_inf_set_state @ A3 @ B2 ) @ ( inf_inf_set_state @ C3 @ D2 ) ) ) ) ).

% Int_mono
thf(fact_1169_Int__insert__left,axiom,
    ! [A: state,C3: set_state,B2: set_state] :
      ( ( ( member_state @ A @ C3 )
       => ( ( inf_inf_set_state @ ( insert_state @ A @ B2 ) @ C3 )
          = ( insert_state @ A @ ( inf_inf_set_state @ B2 @ C3 ) ) ) )
      & ( ~ ( member_state @ A @ C3 )
       => ( ( inf_inf_set_state @ ( insert_state @ A @ B2 ) @ C3 )
          = ( inf_inf_set_state @ B2 @ C3 ) ) ) ) ).

% Int_insert_left
thf(fact_1170_Int__insert__right,axiom,
    ! [A: state,A3: set_state,B2: set_state] :
      ( ( ( member_state @ A @ A3 )
       => ( ( inf_inf_set_state @ A3 @ ( insert_state @ A @ B2 ) )
          = ( insert_state @ A @ ( inf_inf_set_state @ A3 @ B2 ) ) ) )
      & ( ~ ( member_state @ A @ A3 )
       => ( ( inf_inf_set_state @ A3 @ ( insert_state @ A @ B2 ) )
          = ( inf_inf_set_state @ A3 @ B2 ) ) ) ) ).

% Int_insert_right
thf(fact_1171_Union__Int__subset,axiom,
    ! [A3: set_set_state,B2: set_set_state] : ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ ( inf_in8939913482472430008_state @ A3 @ B2 ) ) @ ( inf_inf_set_state @ ( comple4352483261711748803_state @ A3 ) @ ( comple4352483261711748803_state @ B2 ) ) ) ).

% Union_Int_subset
thf(fact_1172_Sup__inter__less__eq,axiom,
    ! [A3: set_set_state,B2: set_set_state] : ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ ( inf_in8939913482472430008_state @ A3 @ B2 ) ) @ ( inf_inf_set_state @ ( comple4352483261711748803_state @ A3 ) @ ( comple4352483261711748803_state @ B2 ) ) ) ).

% Sup_inter_less_eq
thf(fact_1173_UnionE,axiom,
    ! [A3: state,C3: set_set_state] :
      ( ( member_state @ A3 @ ( comple4352483261711748803_state @ C3 ) )
     => ~ ! [X10: set_state] :
            ( ( member_state @ A3 @ X10 )
           => ~ ( member_set_state @ X10 @ C3 ) ) ) ).

% UnionE
thf(fact_1174_IntE,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ ( inf_inf_set_state @ A3 @ B2 ) )
     => ~ ( ( member_state @ C @ A3 )
         => ~ ( member_state @ C @ B2 ) ) ) ).

% IntE
thf(fact_1175_IntD1,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ ( inf_inf_set_state @ A3 @ B2 ) )
     => ( member_state @ C @ A3 ) ) ).

% IntD1
thf(fact_1176_IntD2,axiom,
    ! [C: state,A3: set_state,B2: set_state] :
      ( ( member_state @ C @ ( inf_inf_set_state @ A3 @ B2 ) )
     => ( member_state @ C @ B2 ) ) ).

% IntD2
thf(fact_1177_Sup__upper2,axiom,
    ! [U2: set_state,A3: set_set_state,V: set_state] :
      ( ( member_set_state @ U2 @ A3 )
     => ( ( ord_le2494988322063910608_state @ V @ U2 )
       => ( ord_le2494988322063910608_state @ V @ ( comple4352483261711748803_state @ A3 ) ) ) ) ).

% Sup_upper2
thf(fact_1178_Sup__le__iff,axiom,
    ! [A3: set_set_state,B: set_state] :
      ( ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ A3 ) @ B )
      = ( ! [X3: set_state] :
            ( ( member_set_state @ X3 @ A3 )
           => ( ord_le2494988322063910608_state @ X3 @ B ) ) ) ) ).

% Sup_le_iff
thf(fact_1179_Sup__upper,axiom,
    ! [X: set_state,A3: set_set_state] :
      ( ( member_set_state @ X @ A3 )
     => ( ord_le2494988322063910608_state @ X @ ( comple4352483261711748803_state @ A3 ) ) ) ).

% Sup_upper
thf(fact_1180_Sup__least,axiom,
    ! [A3: set_set_state,Z: set_state] :
      ( ! [X4: set_state] :
          ( ( member_set_state @ X4 @ A3 )
         => ( ord_le2494988322063910608_state @ X4 @ Z ) )
     => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ A3 ) @ Z ) ) ).

% Sup_least
thf(fact_1181_Sup__mono,axiom,
    ! [A3: set_set_state,B2: set_set_state] :
      ( ! [A2: set_state] :
          ( ( member_set_state @ A2 @ A3 )
         => ? [X5: set_state] :
              ( ( member_set_state @ X5 @ B2 )
              & ( ord_le2494988322063910608_state @ A2 @ X5 ) ) )
     => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ A3 ) @ ( comple4352483261711748803_state @ B2 ) ) ) ).

% Sup_mono
thf(fact_1182_Sup__eqI,axiom,
    ! [A3: set_set_state,X: set_state] :
      ( ! [Y: set_state] :
          ( ( member_set_state @ Y @ A3 )
         => ( ord_le2494988322063910608_state @ Y @ X ) )
     => ( ! [Y: set_state] :
            ( ! [Z3: set_state] :
                ( ( member_set_state @ Z3 @ A3 )
               => ( ord_le2494988322063910608_state @ Z3 @ Y ) )
           => ( ord_le2494988322063910608_state @ X @ Y ) )
       => ( ( comple4352483261711748803_state @ A3 )
          = X ) ) ) ).

% Sup_eqI
thf(fact_1183_Int__UNIV__left,axiom,
    ! [B2: set_state] :
      ( ( inf_inf_set_state @ top_top_set_state @ B2 )
      = B2 ) ).

% Int_UNIV_left
thf(fact_1184_Int__UNIV__right,axiom,
    ! [A3: set_state] :
      ( ( inf_inf_set_state @ A3 @ top_top_set_state )
      = A3 ) ).

% Int_UNIV_right
thf(fact_1185_Sup__subset__mono,axiom,
    ! [A3: set_set_state,B2: set_set_state] :
      ( ( ord_le5175021213330142598_state @ A3 @ B2 )
     => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ A3 ) @ ( comple4352483261711748803_state @ B2 ) ) ) ).

% Sup_subset_mono
thf(fact_1186_less__eq__Sup,axiom,
    ! [A3: set_set_state,U2: set_state] :
      ( ! [V2: set_state] :
          ( ( member_set_state @ V2 @ A3 )
         => ( ord_le2494988322063910608_state @ U2 @ V2 ) )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ( ord_le2494988322063910608_state @ U2 @ ( comple4352483261711748803_state @ A3 ) ) ) ) ).

% less_eq_Sup
thf(fact_1187_SUP__eq,axiom,
    ! [A3: set_state,B2: set_state,F: state > set_state,G: state > set_state] :
      ( ! [I2: state] :
          ( ( member_state @ I2 @ A3 )
         => ? [X5: state] :
              ( ( member_state @ X5 @ B2 )
              & ( ord_le2494988322063910608_state @ ( F @ I2 ) @ ( G @ X5 ) ) ) )
     => ( ! [J2: state] :
            ( ( member_state @ J2 @ B2 )
           => ? [X5: state] :
                ( ( member_state @ X5 @ A3 )
                & ( ord_le2494988322063910608_state @ ( G @ J2 ) @ ( F @ X5 ) ) ) )
       => ( ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ F @ A3 ) )
          = ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ G @ B2 ) ) ) ) ) ).

% SUP_eq
thf(fact_1188_Union__mono,axiom,
    ! [A3: set_set_state,B2: set_set_state] :
      ( ( ord_le5175021213330142598_state @ A3 @ B2 )
     => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ A3 ) @ ( comple4352483261711748803_state @ B2 ) ) ) ).

% Union_mono
thf(fact_1189_Union__empty,axiom,
    ( ( comple4352483261711748803_state @ bot_bo2271482359692755898_state )
    = bot_bot_set_state ) ).

% Union_empty
thf(fact_1190_Union__UNIV,axiom,
    ( ( comple4352483261711748803_state @ top_to5262587396890829782_state )
    = top_top_set_state ) ).

% Union_UNIV
thf(fact_1191_SUP__eq__iff,axiom,
    ! [I3: set_state,C: set_state,F: state > set_state] :
      ( ( I3 != bot_bot_set_state )
     => ( ! [I2: state] :
            ( ( member_state @ I2 @ I3 )
           => ( ord_le2494988322063910608_state @ C @ ( F @ I2 ) ) )
       => ( ( ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ F @ I3 ) )
            = C )
          = ( ! [X3: state] :
                ( ( member_state @ X3 @ I3 )
               => ( ( F @ X3 )
                  = C ) ) ) ) ) ) ).

% SUP_eq_iff
thf(fact_1192_inf__shunt,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( ( inf_inf_set_state @ X @ Y3 )
        = bot_bot_set_state )
      = ( ord_le2494988322063910608_state @ X @ ( uminus472742206872269241_state @ Y3 ) ) ) ).

% inf_shunt
thf(fact_1193_boolean__algebra_Ocomplement__unique,axiom,
    ! [A: set_state,X: set_state,Y3: set_state] :
      ( ( ( inf_inf_set_state @ A @ X )
        = bot_bot_set_state )
     => ( ( ( sup_sup_set_state @ A @ X )
          = top_top_set_state )
       => ( ( ( inf_inf_set_state @ A @ Y3 )
            = bot_bot_set_state )
         => ( ( ( sup_sup_set_state @ A @ Y3 )
              = top_top_set_state )
           => ( X = Y3 ) ) ) ) ) ).

% boolean_algebra.complement_unique
thf(fact_1194_disjoint__eq__subset__Compl,axiom,
    ! [A3: set_state,B2: set_state] :
      ( ( ( inf_inf_set_state @ A3 @ B2 )
        = bot_bot_set_state )
      = ( ord_le2494988322063910608_state @ A3 @ ( uminus472742206872269241_state @ B2 ) ) ) ).

% disjoint_eq_subset_Compl
thf(fact_1195_Inf__fin_Obounded__iff,axiom,
    ! [A3: set_set_state,X: set_state] :
      ( ( finite4951987536711252743_state @ A3 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ( ( ord_le2494988322063910608_state @ X @ ( lattic4879230916095660051_state @ A3 ) )
          = ( ! [X3: set_state] :
                ( ( member_set_state @ X3 @ A3 )
               => ( ord_le2494988322063910608_state @ X @ X3 ) ) ) ) ) ) ).

% Inf_fin.bounded_iff
thf(fact_1196_Inf__fin_OboundedI,axiom,
    ! [A3: set_set_state,X: set_state] :
      ( ( finite4951987536711252743_state @ A3 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ( ! [A2: set_state] :
              ( ( member_set_state @ A2 @ A3 )
             => ( ord_le2494988322063910608_state @ X @ A2 ) )
         => ( ord_le2494988322063910608_state @ X @ ( lattic4879230916095660051_state @ A3 ) ) ) ) ) ).

% Inf_fin.boundedI
thf(fact_1197_Inf__fin_OboundedE,axiom,
    ! [A3: set_set_state,X: set_state] :
      ( ( finite4951987536711252743_state @ A3 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ( ( ord_le2494988322063910608_state @ X @ ( lattic4879230916095660051_state @ A3 ) )
         => ! [A10: set_state] :
              ( ( member_set_state @ A10 @ A3 )
             => ( ord_le2494988322063910608_state @ X @ A10 ) ) ) ) ) ).

% Inf_fin.boundedE
thf(fact_1198_boolean__algebra__class_Oboolean__algebra_Ocompl__unique,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( ( inf_inf_set_state @ X @ Y3 )
        = bot_bot_set_state )
     => ( ( ( sup_sup_set_state @ X @ Y3 )
          = top_top_set_state )
       => ( ( uminus472742206872269241_state @ X )
          = Y3 ) ) ) ).

% boolean_algebra_class.boolean_algebra.compl_unique
thf(fact_1199_Inf__fin_Osubset__imp,axiom,
    ! [A3: set_set_state,B2: set_set_state] :
      ( ( ord_le5175021213330142598_state @ A3 @ B2 )
     => ( ( A3 != bot_bo2271482359692755898_state )
       => ( ( finite4951987536711252743_state @ B2 )
         => ( ord_le2494988322063910608_state @ ( lattic4879230916095660051_state @ B2 ) @ ( lattic4879230916095660051_state @ A3 ) ) ) ) ) ).

% Inf_fin.subset_imp
thf(fact_1200_Sup__SUP__eq,axiom,
    ( comple1664268212576242562tate_o
    = ( ^ [S2: set_state_o,X3: state] : ( member_state @ X3 @ ( comple4352483261711748803_state @ ( image_7376656169852520768_state @ collect_state @ S2 ) ) ) ) ) ).

% Sup_SUP_eq
thf(fact_1201_cSup__least,axiom,
    ! [X8: set_set_state,Z: set_state] :
      ( ( X8 != bot_bo2271482359692755898_state )
     => ( ! [X4: set_state] :
            ( ( member_set_state @ X4 @ X8 )
           => ( ord_le2494988322063910608_state @ X4 @ Z ) )
       => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ X8 ) @ Z ) ) ) ).

% cSup_least
thf(fact_1202_cSup__eq__non__empty,axiom,
    ! [X8: set_set_state,A: set_state] :
      ( ( X8 != bot_bo2271482359692755898_state )
     => ( ! [X4: set_state] :
            ( ( member_set_state @ X4 @ X8 )
           => ( ord_le2494988322063910608_state @ X4 @ A ) )
       => ( ! [Y: set_state] :
              ( ! [X5: set_state] :
                  ( ( member_set_state @ X5 @ X8 )
                 => ( ord_le2494988322063910608_state @ X5 @ Y ) )
             => ( ord_le2494988322063910608_state @ A @ Y ) )
         => ( ( comple4352483261711748803_state @ X8 )
            = A ) ) ) ) ).

% cSup_eq_non_empty
thf(fact_1203_cSUP__least,axiom,
    ! [A3: set_state,F: state > set_state,M: set_state] :
      ( ( A3 != bot_bot_set_state )
     => ( ! [X4: state] :
            ( ( member_state @ X4 @ A3 )
           => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ M ) )
       => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ F @ A3 ) ) @ M ) ) ) ).

% cSUP_least
thf(fact_1204_map__add__upd__left,axiom,
    ! [M2: state,E2: state > option_state,E1: state > option_state,U1: state] :
      ( ~ ( member_state @ M2 @ ( dom_state_state @ E2 ) )
     => ( ( map_add_state_state @ ( fun_up8843634000204221123_state @ E1 @ M2 @ ( some_state @ U1 ) ) @ E2 )
        = ( fun_up8843634000204221123_state @ ( map_add_state_state @ E1 @ E2 ) @ M2 @ ( some_state @ U1 ) ) ) ) ).

% map_add_upd_left
thf(fact_1205_boolean__algebra_Oabstract__boolean__algebra__axioms,axiom,
    boolea5298875108296682874_state @ inf_inf_set_state @ sup_sup_set_state @ uminus472742206872269241_state @ bot_bot_set_state @ top_top_set_state ).

% boolean_algebra.abstract_boolean_algebra_axioms
thf(fact_1206_graph__map__upd,axiom,
    ! [M2: option_state > option_option_state,K: option_state,V: option_state] :
      ( ( graph_628825510059920660_state @ ( fun_up8433615654909047651_state @ M2 @ K @ ( some_option_state @ V ) ) )
      = ( insert4171857611248116165_state @ ( produc9160152616361873709_state @ K @ V ) @ ( graph_628825510059920660_state @ ( fun_up8433615654909047651_state @ M2 @ K @ none_option_state ) ) ) ) ).

% graph_map_upd
thf(fact_1207_in__graphD,axiom,
    ! [K: option_state,V: option_state,M2: option_state > option_option_state] :
      ( ( member3029510603097127326_state @ ( produc9160152616361873709_state @ K @ V ) @ ( graph_628825510059920660_state @ M2 ) )
     => ( ( M2 @ K )
        = ( some_option_state @ V ) ) ) ).

% in_graphD
thf(fact_1208_in__graphI,axiom,
    ! [M2: option_state > option_option_state,K: option_state,V: option_state] :
      ( ( ( M2 @ K )
        = ( some_option_state @ V ) )
     => ( member3029510603097127326_state @ ( produc9160152616361873709_state @ K @ V ) @ ( graph_628825510059920660_state @ M2 ) ) ) ).

% in_graphI
thf(fact_1209_compatible__options_Ocases,axiom,
    ! [X: produc3142500478612311029_state] :
      ( ! [A2: state,B6: state] :
          ( X
         != ( produc9160152616361873709_state @ ( some_state @ A2 ) @ ( some_state @ B6 ) ) )
     => ( ! [Uv2: option_state] :
            ( X
           != ( produc9160152616361873709_state @ none_state @ Uv2 ) )
       => ~ ! [Uu2: option_state] :
              ( X
             != ( produc9160152616361873709_state @ Uu2 @ none_state ) ) ) ) ).

% compatible_options.cases
thf(fact_1210_subrelI,axiom,
    ! [R4: set_Pr1688445902015331925_state,S3: set_Pr1688445902015331925_state] :
      ( ! [X4: option_state,Y: option_state] :
          ( ( member3029510603097127326_state @ ( produc9160152616361873709_state @ X4 @ Y ) @ R4 )
         => ( member3029510603097127326_state @ ( produc9160152616361873709_state @ X4 @ Y ) @ S3 ) )
     => ( ord_le6423325748750870005_state @ R4 @ S3 ) ) ).

% subrelI
thf(fact_1211_PartialSA_Osplus_Ocases,axiom,
    ! [X: produc3142500478612311029_state] :
      ( ! [Uu2: option_state] :
          ( X
         != ( produc9160152616361873709_state @ none_state @ Uu2 ) )
     => ( ! [V2: state] :
            ( X
           != ( produc9160152616361873709_state @ ( some_state @ V2 ) @ none_state ) )
       => ~ ! [A2: state,B6: state] :
              ( X
             != ( produc9160152616361873709_state @ ( some_state @ A2 ) @ ( some_state @ B6 ) ) ) ) ) ).

% PartialSA.splus.cases
thf(fact_1212_sep__algebra_Osplus_Ocases,axiom,
    ! [Plus: state > state > option_state,Core: state > state,X: produc3142500478612311029_state] :
      ( ( sep_algebra_state @ Plus @ Core )
     => ( ! [Uu2: option_state] :
            ( X
           != ( produc9160152616361873709_state @ none_state @ Uu2 ) )
       => ( ! [V2: state] :
              ( X
             != ( produc9160152616361873709_state @ ( some_state @ V2 ) @ none_state ) )
         => ~ ! [A2: state,B6: state] :
                ( X
               != ( produc9160152616361873709_state @ ( some_state @ A2 ) @ ( some_state @ B6 ) ) ) ) ) ) ).

% sep_algebra.splus.cases
thf(fact_1213_graph__restrictD_I2_J,axiom,
    ! [K: option_state,V: option_state,M2: option_state > option_option_state,A3: set_option_state] :
      ( ( member3029510603097127326_state @ ( produc9160152616361873709_state @ K @ V ) @ ( graph_628825510059920660_state @ ( restri6741197069250724038_state @ M2 @ A3 ) ) )
     => ( ( M2 @ K )
        = ( some_option_state @ V ) ) ) ).

% graph_restrictD(2)
thf(fact_1214_Field__insert,axiom,
    ! [A: option_state,B: option_state,R4: set_Pr1688445902015331925_state] :
      ( ( field_option_state @ ( insert4171857611248116165_state @ ( produc9160152616361873709_state @ A @ B ) @ R4 ) )
      = ( sup_su99422728725954156_state @ ( insert_option_state @ A @ ( insert_option_state @ B @ bot_bo710180891245420500_state ) ) @ ( field_option_state @ R4 ) ) ) ).

% Field_insert
thf(fact_1215_Field__insert,axiom,
    ! [A: state,B: state,R4: set_Pr1785066336555260981_state] :
      ( ( field_state @ ( insert7525286303735658661_state @ ( produc544653723139640077_state @ A @ B ) @ R4 ) )
      = ( sup_sup_set_state @ ( insert_state @ A @ ( insert_state @ B @ bot_bot_set_state ) ) @ ( field_state @ R4 ) ) ) ).

% Field_insert
thf(fact_1216_Field__empty,axiom,
    ( ( field_state @ bot_bo9041262728264437921_state )
    = bot_bot_set_state ) ).

% Field_empty
thf(fact_1217_FieldI2,axiom,
    ! [I: state,J3: state,R6: set_Pr1785066336555260981_state] :
      ( ( member753036827967488894_state @ ( produc544653723139640077_state @ I @ J3 ) @ R6 )
     => ( member_state @ J3 @ ( field_state @ R6 ) ) ) ).

% FieldI2
thf(fact_1218_FieldI2,axiom,
    ! [I: option_state,J3: option_state,R6: set_Pr1688445902015331925_state] :
      ( ( member3029510603097127326_state @ ( produc9160152616361873709_state @ I @ J3 ) @ R6 )
     => ( member_option_state @ J3 @ ( field_option_state @ R6 ) ) ) ).

% FieldI2
thf(fact_1219_FieldI1,axiom,
    ! [I: state,J3: state,R6: set_Pr1785066336555260981_state] :
      ( ( member753036827967488894_state @ ( produc544653723139640077_state @ I @ J3 ) @ R6 )
     => ( member_state @ I @ ( field_state @ R6 ) ) ) ).

% FieldI1
thf(fact_1220_FieldI1,axiom,
    ! [I: option_state,J3: option_state,R6: set_Pr1688445902015331925_state] :
      ( ( member3029510603097127326_state @ ( produc9160152616361873709_state @ I @ J3 ) @ R6 )
     => ( member_option_state @ I @ ( field_option_state @ R6 ) ) ) ).

% FieldI1
thf(fact_1221_cSup__mono,axiom,
    ! [B2: set_set_state,A3: set_set_state] :
      ( ( B2 != bot_bo2271482359692755898_state )
     => ( ( condit2486170202803819276_state @ A3 )
       => ( ! [B6: set_state] :
              ( ( member_set_state @ B6 @ B2 )
             => ? [X5: set_state] :
                  ( ( member_set_state @ X5 @ A3 )
                  & ( ord_le2494988322063910608_state @ B6 @ X5 ) ) )
         => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ B2 ) @ ( comple4352483261711748803_state @ A3 ) ) ) ) ) ).

% cSup_mono
thf(fact_1222_cSup__le__iff,axiom,
    ! [S: set_set_state,A: set_state] :
      ( ( S != bot_bo2271482359692755898_state )
     => ( ( condit2486170202803819276_state @ S )
       => ( ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ S ) @ A )
          = ( ! [X3: set_state] :
                ( ( member_set_state @ X3 @ S )
               => ( ord_le2494988322063910608_state @ X3 @ A ) ) ) ) ) ) ).

% cSup_le_iff
thf(fact_1223_mono__Field,axiom,
    ! [R4: set_Pr1785066336555260981_state,S3: set_Pr1785066336555260981_state] :
      ( ( ord_le2777189432094499797_state @ R4 @ S3 )
     => ( ord_le2494988322063910608_state @ ( field_state @ R4 ) @ ( field_state @ S3 ) ) ) ).

% mono_Field
thf(fact_1224_bdd__above_OI2,axiom,
    ! [A3: set_state,F: state > set_state,M: set_state] :
      ( ! [X4: state] :
          ( ( member_state @ X4 @ A3 )
         => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ M ) )
     => ( condit2486170202803819276_state @ ( image_4774290769506072625_state @ F @ A3 ) ) ) ).

% bdd_above.I2
thf(fact_1225_cSUP__upper,axiom,
    ! [X: state,A3: set_state,F: state > set_state] :
      ( ( member_state @ X @ A3 )
     => ( ( condit2486170202803819276_state @ ( image_4774290769506072625_state @ F @ A3 ) )
       => ( ord_le2494988322063910608_state @ ( F @ X ) @ ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ F @ A3 ) ) ) ) ) ).

% cSUP_upper
thf(fact_1226_cSUP__upper2,axiom,
    ! [F: state > set_state,A3: set_state,X: state,U2: set_state] :
      ( ( condit2486170202803819276_state @ ( image_4774290769506072625_state @ F @ A3 ) )
     => ( ( member_state @ X @ A3 )
       => ( ( ord_le2494988322063910608_state @ U2 @ ( F @ X ) )
         => ( ord_le2494988322063910608_state @ U2 @ ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ F @ A3 ) ) ) ) ) ) ).

% cSUP_upper2
thf(fact_1227_cSUP__le__iff,axiom,
    ! [A3: set_state,F: state > set_state,U2: set_state] :
      ( ( A3 != bot_bot_set_state )
     => ( ( condit2486170202803819276_state @ ( image_4774290769506072625_state @ F @ A3 ) )
       => ( ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ F @ A3 ) ) @ U2 )
          = ( ! [X3: state] :
                ( ( member_state @ X3 @ A3 )
               => ( ord_le2494988322063910608_state @ ( F @ X3 ) @ U2 ) ) ) ) ) ) ).

% cSUP_le_iff
thf(fact_1228_cSup__subset__mono,axiom,
    ! [A3: set_set_state,B2: set_set_state] :
      ( ( A3 != bot_bo2271482359692755898_state )
     => ( ( condit2486170202803819276_state @ B2 )
       => ( ( ord_le5175021213330142598_state @ A3 @ B2 )
         => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ A3 ) @ ( comple4352483261711748803_state @ B2 ) ) ) ) ) ).

% cSup_subset_mono
thf(fact_1229_cSUP__subset__mono,axiom,
    ! [A3: set_state,G: state > set_state,B2: set_state,F: state > set_state] :
      ( ( A3 != bot_bot_set_state )
     => ( ( condit2486170202803819276_state @ ( image_4774290769506072625_state @ G @ B2 ) )
       => ( ( ord_le2494988322063910608_state @ A3 @ B2 )
         => ( ! [X4: state] :
                ( ( member_state @ X4 @ A3 )
               => ( ord_le2494988322063910608_state @ ( F @ X4 ) @ ( G @ X4 ) ) )
           => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ F @ A3 ) ) @ ( comple4352483261711748803_state @ ( image_4774290769506072625_state @ G @ B2 ) ) ) ) ) ) ) ).

% cSUP_subset_mono
thf(fact_1230_cSup__inter__less__eq,axiom,
    ! [A3: set_set_state,B2: set_set_state] :
      ( ( condit2486170202803819276_state @ A3 )
     => ( ( condit2486170202803819276_state @ B2 )
       => ( ( ( inf_in8939913482472430008_state @ A3 @ B2 )
           != bot_bo2271482359692755898_state )
         => ( ord_le2494988322063910608_state @ ( comple4352483261711748803_state @ ( inf_in8939913482472430008_state @ A3 @ B2 ) ) @ ( sup_sup_set_state @ ( comple4352483261711748803_state @ A3 ) @ ( comple4352483261711748803_state @ B2 ) ) ) ) ) ) ).

% cSup_inter_less_eq
thf(fact_1231_Range__insert,axiom,
    ! [A: option_state,B: option_state,R4: set_Pr1688445902015331925_state] :
      ( ( range_718955123782594827_state @ ( insert4171857611248116165_state @ ( produc9160152616361873709_state @ A @ B ) @ R4 ) )
      = ( insert_option_state @ B @ ( range_718955123782594827_state @ R4 ) ) ) ).

% Range_insert
thf(fact_1232_refl__on__singleton,axiom,
    ! [X: option_state] : ( refl_on_option_state @ ( insert_option_state @ X @ bot_bo710180891245420500_state ) @ ( insert4171857611248116165_state @ ( produc9160152616361873709_state @ X @ X ) @ bot_bo1080640394036989633_state ) ) ).

% refl_on_singleton
thf(fact_1233_refl__on__singleton,axiom,
    ! [X: state] : ( refl_on_state @ ( insert_state @ X @ bot_bot_set_state ) @ ( insert7525286303735658661_state @ ( produc544653723139640077_state @ X @ X ) @ bot_bo9041262728264437921_state ) ) ).

% refl_on_singleton
thf(fact_1234_reflD,axiom,
    ! [R4: set_Pr1688445902015331925_state,A: option_state] :
      ( ( refl_on_option_state @ top_to7666338855062656496_state @ R4 )
     => ( member3029510603097127326_state @ ( produc9160152616361873709_state @ A @ A ) @ R4 ) ) ).

% reflD
thf(fact_1235_reflD,axiom,
    ! [R4: set_Pr1785066336555260981_state,A: state] :
      ( ( refl_on_state @ top_top_set_state @ R4 )
     => ( member753036827967488894_state @ ( produc544653723139640077_state @ A @ A ) @ R4 ) ) ).

% reflD
thf(fact_1236_reflI,axiom,
    ! [R4: set_Pr1688445902015331925_state] :
      ( ! [X4: option_state] : ( member3029510603097127326_state @ ( produc9160152616361873709_state @ X4 @ X4 ) @ R4 )
     => ( refl_on_option_state @ top_to7666338855062656496_state @ R4 ) ) ).

% reflI
thf(fact_1237_reflI,axiom,
    ! [R4: set_Pr1785066336555260981_state] :
      ( ! [X4: state] : ( member753036827967488894_state @ ( produc544653723139640077_state @ X4 @ X4 ) @ R4 )
     => ( refl_on_state @ top_top_set_state @ R4 ) ) ).

% reflI
thf(fact_1238_refl__onD2,axiom,
    ! [A3: set_state,R4: set_Pr1785066336555260981_state,X: state,Y3: state] :
      ( ( refl_on_state @ A3 @ R4 )
     => ( ( member753036827967488894_state @ ( produc544653723139640077_state @ X @ Y3 ) @ R4 )
       => ( member_state @ Y3 @ A3 ) ) ) ).

% refl_onD2
thf(fact_1239_refl__onD2,axiom,
    ! [A3: set_option_state,R4: set_Pr1688445902015331925_state,X: option_state,Y3: option_state] :
      ( ( refl_on_option_state @ A3 @ R4 )
     => ( ( member3029510603097127326_state @ ( produc9160152616361873709_state @ X @ Y3 ) @ R4 )
       => ( member_option_state @ Y3 @ A3 ) ) ) ).

% refl_onD2
thf(fact_1240_refl__onD1,axiom,
    ! [A3: set_state,R4: set_Pr1785066336555260981_state,X: state,Y3: state] :
      ( ( refl_on_state @ A3 @ R4 )
     => ( ( member753036827967488894_state @ ( produc544653723139640077_state @ X @ Y3 ) @ R4 )
       => ( member_state @ X @ A3 ) ) ) ).

% refl_onD1
thf(fact_1241_refl__onD1,axiom,
    ! [A3: set_option_state,R4: set_Pr1688445902015331925_state,X: option_state,Y3: option_state] :
      ( ( refl_on_option_state @ A3 @ R4 )
     => ( ( member3029510603097127326_state @ ( produc9160152616361873709_state @ X @ Y3 ) @ R4 )
       => ( member_option_state @ X @ A3 ) ) ) ).

% refl_onD1
thf(fact_1242_Range__iff,axiom,
    ! [A: option_state,R4: set_Pr1688445902015331925_state] :
      ( ( member_option_state @ A @ ( range_718955123782594827_state @ R4 ) )
      = ( ? [Y4: option_state] : ( member3029510603097127326_state @ ( produc9160152616361873709_state @ Y4 @ A ) @ R4 ) ) ) ).

% Range_iff
thf(fact_1243_refl__onD,axiom,
    ! [A3: set_state,R4: set_Pr1785066336555260981_state,A: state] :
      ( ( refl_on_state @ A3 @ R4 )
     => ( ( member_state @ A @ A3 )
       => ( member753036827967488894_state @ ( produc544653723139640077_state @ A @ A ) @ R4 ) ) ) ).

% refl_onD
thf(fact_1244_refl__onD,axiom,
    ! [A3: set_option_state,R4: set_Pr1688445902015331925_state,A: option_state] :
      ( ( refl_on_option_state @ A3 @ R4 )
     => ( ( member_option_state @ A @ A3 )
       => ( member3029510603097127326_state @ ( produc9160152616361873709_state @ A @ A ) @ R4 ) ) ) ).

% refl_onD
thf(fact_1245_RangeE,axiom,
    ! [B: option_state,R4: set_Pr1688445902015331925_state] :
      ( ( member_option_state @ B @ ( range_718955123782594827_state @ R4 ) )
     => ~ ! [A2: option_state] :
            ~ ( member3029510603097127326_state @ ( produc9160152616361873709_state @ A2 @ B ) @ R4 ) ) ).

% RangeE
thf(fact_1246_Range_Ointros,axiom,
    ! [A: option_state,B: option_state,R4: set_Pr1688445902015331925_state] :
      ( ( member3029510603097127326_state @ ( produc9160152616361873709_state @ A @ B ) @ R4 )
     => ( member_option_state @ B @ ( range_718955123782594827_state @ R4 ) ) ) ).

% Range.intros
thf(fact_1247_Range_Osimps,axiom,
    ! [A: option_state,R4: set_Pr1688445902015331925_state] :
      ( ( member_option_state @ A @ ( range_718955123782594827_state @ R4 ) )
      = ( ? [A4: option_state,B3: option_state] :
            ( ( A = B3 )
            & ( member3029510603097127326_state @ ( produc9160152616361873709_state @ A4 @ B3 ) @ R4 ) ) ) ) ).

% Range.simps
thf(fact_1248_Range_Ocases,axiom,
    ! [A: option_state,R4: set_Pr1688445902015331925_state] :
      ( ( member_option_state @ A @ ( range_718955123782594827_state @ R4 ) )
     => ~ ! [A2: option_state] :
            ~ ( member3029510603097127326_state @ ( produc9160152616361873709_state @ A2 @ A ) @ R4 ) ) ).

% Range.cases
thf(fact_1249_refl__on__empty,axiom,
    refl_on_state @ bot_bot_set_state @ bot_bo9041262728264437921_state ).

% refl_on_empty
thf(fact_1250_linear__order__on__singleton,axiom,
    ! [X: option_state] : ( order_7502633587729487893_state @ ( insert_option_state @ X @ bot_bo710180891245420500_state ) @ ( insert4171857611248116165_state @ ( produc9160152616361873709_state @ X @ X ) @ bot_bo1080640394036989633_state ) ) ).

% linear_order_on_singleton
thf(fact_1251_linear__order__on__singleton,axiom,
    ! [X: state] : ( order_7174064491916216133_state @ ( insert_state @ X @ bot_bot_set_state ) @ ( insert7525286303735658661_state @ ( produc544653723139640077_state @ X @ X ) @ bot_bo9041262728264437921_state ) ) ).

% linear_order_on_singleton
thf(fact_1252_vimageI,axiom,
    ! [F: state > state,A: state,B: state,B2: set_state] :
      ( ( ( F @ A )
        = B )
     => ( ( member_state @ B @ B2 )
       => ( member_state @ A @ ( vimage_state_state @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_1253_vimage__eq,axiom,
    ! [A: state,F: state > state,B2: set_state] :
      ( ( member_state @ A @ ( vimage_state_state @ F @ B2 ) )
      = ( member_state @ ( F @ A ) @ B2 ) ) ).

% vimage_eq
thf(fact_1254_vimage__UNIV,axiom,
    ! [F: state > state] :
      ( ( vimage_state_state @ F @ top_top_set_state )
      = top_top_set_state ) ).

% vimage_UNIV
thf(fact_1255_vimage__empty,axiom,
    ! [F: state > state] :
      ( ( vimage_state_state @ F @ bot_bot_set_state )
      = bot_bot_set_state ) ).

% vimage_empty
thf(fact_1256_image__subset__iff__subset__vimage,axiom,
    ! [F: state > state,A3: set_state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ ( image_state_state @ F @ A3 ) @ B2 )
      = ( ord_le2494988322063910608_state @ A3 @ ( vimage_state_state @ F @ B2 ) ) ) ).

% image_subset_iff_subset_vimage
thf(fact_1257_vimage__subsetD,axiom,
    ! [F: state > state,B2: set_state,A3: set_state] :
      ( ( ( image_state_state @ F @ top_top_set_state )
        = top_top_set_state )
     => ( ( ord_le2494988322063910608_state @ ( vimage_state_state @ F @ B2 ) @ A3 )
       => ( ord_le2494988322063910608_state @ B2 @ ( image_state_state @ F @ A3 ) ) ) ) ).

% vimage_subsetD
thf(fact_1258_surj__vimage__empty,axiom,
    ! [F: state > state,A3: set_state] :
      ( ( ( image_state_state @ F @ top_top_set_state )
        = top_top_set_state )
     => ( ( ( vimage_state_state @ F @ A3 )
          = bot_bot_set_state )
        = ( A3 = bot_bot_set_state ) ) ) ).

% surj_vimage_empty
thf(fact_1259_finite__vimageD,axiom,
    ! [H: state > state,F5: set_state] :
      ( ( finite_finite_state @ ( vimage_state_state @ H @ F5 ) )
     => ( ( ( image_state_state @ H @ top_top_set_state )
          = top_top_set_state )
       => ( finite_finite_state @ F5 ) ) ) ).

% finite_vimageD
thf(fact_1260_surj__image__vimage__eq,axiom,
    ! [F: state > state,A3: set_state] :
      ( ( ( image_state_state @ F @ top_top_set_state )
        = top_top_set_state )
     => ( ( image_state_state @ F @ ( vimage_state_state @ F @ A3 ) )
        = A3 ) ) ).

% surj_image_vimage_eq
thf(fact_1261_lnear__order__on__empty,axiom,
    order_7174064491916216133_state @ bot_bot_set_state @ bot_bo9041262728264437921_state ).

% lnear_order_on_empty
thf(fact_1262_vimage__singleton__eq,axiom,
    ! [A: state,F: state > state,B: state] :
      ( ( member_state @ A @ ( vimage_state_state @ F @ ( insert_state @ B @ bot_bot_set_state ) ) )
      = ( ( F @ A )
        = B ) ) ).

% vimage_singleton_eq
thf(fact_1263_vimageD,axiom,
    ! [A: state,F: state > state,A3: set_state] :
      ( ( member_state @ A @ ( vimage_state_state @ F @ A3 ) )
     => ( member_state @ ( F @ A ) @ A3 ) ) ).

% vimageD
thf(fact_1264_vimageE,axiom,
    ! [A: state,F: state > state,B2: set_state] :
      ( ( member_state @ A @ ( vimage_state_state @ F @ B2 ) )
     => ( member_state @ ( F @ A ) @ B2 ) ) ).

% vimageE
thf(fact_1265_vimageI2,axiom,
    ! [F: state > state,A: state,A3: set_state] :
      ( ( member_state @ ( F @ A ) @ A3 )
     => ( member_state @ A @ ( vimage_state_state @ F @ A3 ) ) ) ).

% vimageI2
thf(fact_1266_vimage__mono,axiom,
    ! [A3: set_state,B2: set_state,F: state > state] :
      ( ( ord_le2494988322063910608_state @ A3 @ B2 )
     => ( ord_le2494988322063910608_state @ ( vimage_state_state @ F @ A3 ) @ ( vimage_state_state @ F @ B2 ) ) ) ).

% vimage_mono
thf(fact_1267_subset__vimage__iff,axiom,
    ! [A3: set_state,F: state > state,B2: set_state] :
      ( ( ord_le2494988322063910608_state @ A3 @ ( vimage_state_state @ F @ B2 ) )
      = ( ! [X3: state] :
            ( ( member_state @ X3 @ A3 )
           => ( member_state @ ( F @ X3 ) @ B2 ) ) ) ) ).

% subset_vimage_iff
thf(fact_1268_finite__vimageD_H,axiom,
    ! [F: state > state,A3: set_state] :
      ( ( finite_finite_state @ ( vimage_state_state @ F @ A3 ) )
     => ( ( ord_le2494988322063910608_state @ A3 @ ( image_state_state @ F @ top_top_set_state ) )
       => ( finite_finite_state @ A3 ) ) ) ).

% finite_vimageD'
thf(fact_1269_vimage__subsetI,axiom,
    ! [F: state > state,B2: set_state,A3: set_state] :
      ( ( inj_on_state_state @ F @ top_top_set_state )
     => ( ( ord_le2494988322063910608_state @ B2 @ ( image_state_state @ F @ A3 ) )
       => ( ord_le2494988322063910608_state @ ( vimage_state_state @ F @ B2 ) @ A3 ) ) ) ).

% vimage_subsetI
thf(fact_1270_card__vimage__inj,axiom,
    ! [F: state > state,A3: set_state] :
      ( ( inj_on_state_state @ F @ top_top_set_state )
     => ( ( ord_le2494988322063910608_state @ A3 @ ( image_state_state @ F @ top_top_set_state ) )
       => ( ( finite_card_state @ ( vimage_state_state @ F @ A3 ) )
          = ( finite_card_state @ A3 ) ) ) ) ).

% card_vimage_inj
thf(fact_1271_Linear__order__Well__order__iff,axiom,
    ! [R4: set_Pr1688445902015331925_state] :
      ( ( order_7502633587729487893_state @ ( field_option_state @ R4 ) @ R4 )
     => ( ( order_4461428600198971116_state @ ( field_option_state @ R4 ) @ R4 )
        = ( ! [A5: set_option_state] :
              ( ( ord_le7116032884704190368_state @ A5 @ ( field_option_state @ R4 ) )
             => ( ( A5 != bot_bo710180891245420500_state )
               => ? [X3: option_state] :
                    ( ( member_option_state @ X3 @ A5 )
                    & ! [Y4: option_state] :
                        ( ( member_option_state @ Y4 @ A5 )
                       => ( member3029510603097127326_state @ ( produc9160152616361873709_state @ X3 @ Y4 ) @ R4 ) ) ) ) ) ) ) ) ).

% Linear_order_Well_order_iff
thf(fact_1272_Linear__order__Well__order__iff,axiom,
    ! [R4: set_Pr1785066336555260981_state] :
      ( ( order_7174064491916216133_state @ ( field_state @ R4 ) @ R4 )
     => ( ( order_3972865417222356124_state @ ( field_state @ R4 ) @ R4 )
        = ( ! [A5: set_state] :
              ( ( ord_le2494988322063910608_state @ A5 @ ( field_state @ R4 ) )
             => ( ( A5 != bot_bot_set_state )
               => ? [X3: state] :
                    ( ( member_state @ X3 @ A5 )
                    & ! [Y4: state] :
                        ( ( member_state @ Y4 @ A5 )
                       => ( member753036827967488894_state @ ( produc544653723139640077_state @ X3 @ Y4 ) @ R4 ) ) ) ) ) ) ) ) ).

% Linear_order_Well_order_iff
thf(fact_1273_card__Diff1__le,axiom,
    ! [A3: set_state,X: state] : ( ord_less_eq_nat @ ( finite_card_state @ ( minus_3933957440811877961_state @ A3 @ ( insert_state @ X @ bot_bot_set_state ) ) ) @ ( finite_card_state @ A3 ) ) ).

% card_Diff1_le
thf(fact_1274_well__order__on__empty,axiom,
    order_3972865417222356124_state @ bot_bot_set_state @ bot_bo9041262728264437921_state ).

% well_order_on_empty
thf(fact_1275_card__insert__le,axiom,
    ! [A3: set_state,X: state] : ( ord_less_eq_nat @ ( finite_card_state @ A3 ) @ ( finite_card_state @ ( insert_state @ X @ A3 ) ) ) ).

% card_insert_le
thf(fact_1276_card__bij__eq,axiom,
    ! [F: state > state,A3: set_state,B2: set_state,G: state > state] :
      ( ( inj_on_state_state @ F @ A3 )
     => ( ( ord_le2494988322063910608_state @ ( image_state_state @ F @ A3 ) @ B2 )
       => ( ( inj_on_state_state @ G @ B2 )
         => ( ( ord_le2494988322063910608_state @ ( image_state_state @ G @ B2 ) @ A3 )
           => ( ( finite_finite_state @ A3 )
             => ( ( finite_finite_state @ B2 )
               => ( ( finite_card_state @ A3 )
                  = ( finite_card_state @ B2 ) ) ) ) ) ) ) ) ).

% card_bij_eq

% Helper facts (5)
thf(help_If_2_1_If_001t__Set__Oset_It__PartialHeapSA__Ostate_J_T,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( if_set_state @ $false @ X @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Set__Oset_It__PartialHeapSA__Ostate_J_T,axiom,
    ! [X: set_state,Y3: set_state] :
      ( ( if_set_state @ $true @ X @ Y3 )
      = X ) ).

thf(help_If_3_1_If_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_T,axiom,
    ! [P: $o] :
      ( ( P = $true )
      | ( P = $false ) ) ).

thf(help_If_2_1_If_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_T,axiom,
    ! [X: option_state,Y3: option_state] :
      ( ( if_option_state @ $false @ X @ Y3 )
      = Y3 ) ).

thf(help_If_1_1_If_001t__Option__Ooption_It__PartialHeapSA__Ostate_J_T,axiom,
    ! [X: option_state,Y3: option_state] :
      ( ( if_option_state @ $true @ X @ Y3 )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    member_state @ x @ b ).

%------------------------------------------------------------------------------