TPTP Problem File: SLH0152^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Median_Method/0000_Median/prob_00075_002599__14641004_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1653 ( 516 unt; 375 typ;   0 def)
%            Number of atoms       : 3698 (1147 equ;   0 cnn)
%            Maximal formula atoms :   14 (   2 avg)
%            Number of connectives : 12857 ( 280   ~;  12   |; 157   &;10702   @)
%                                         (   0 <=>;1706  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   7 avg)
%            Number of types       :   52 (  51 usr)
%            Number of type conns  : 1049 (1049   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  325 ( 324 usr;  28 con; 0-3 aty)
%            Number of variables   : 3340 ( 109   ^;3173   !;  58   ?;3340   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-19 15:43:18.741
%------------------------------------------------------------------------------
% Could-be-implicit typings (51)
thf(ty_n_t__Set__Oset_I_062_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J_J,type,
    set_se5993948446613689905nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J_J,type,
    set_Ex4629243626970651003nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Set__Oset_It__Real__Oreal_J_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J_J,type,
    set_se6192103498290354981nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_Mt__Set__Oset_It__Real__Oreal_J_J_J,type,
    set_se3106664747148989349t_real: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    set_Ex7514979451064110021nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Set__Oset_Itf__a_J_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J_J,type,
    set_se2858003755320519069nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_Mt__Set__Oset_Itf__a_J_J_J,type,
    set_se2341910093884376583_set_a: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    sigma_5394977995791401948nnreal: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J_J,type,
    set_se2490721793304844655nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Real__Oreal_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J_J,type,
    set_re634636480907793903nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Set__Oset_It__Real__Oreal_J_J_J,type,
    set_Ex1976581565604454895t_real: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    sigma_523634232904505671nnreal: $tType ).

thf(ty_n_t__Set__Oset_It__Sigma____Algebra__Omeasure_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    set_Si97717610131227249nnreal: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J_J,type,
    set_se8256708918794385754nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__a_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J_J,type,
    set_a_7828589535950383165nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Set__Oset_Itf__a_J_J_J,type,
    set_Ex166883028395225405_set_a: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Set__Oset_It__Real__Oreal_J_Mt__Set__Oset_It__Real__Oreal_J_J_J,type,
    set_se3821091506293227161t_real: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    set_re5328672808648366137nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Real__Oreal_J_J,type,
    set_Ex5658717452565810105l_real: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_It__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_7234349610311085201nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Set__Oset_Itf__a_J_Mt__Set__Oset_It__Real__Oreal_J_J_J,type,
    set_set_a_set_real: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Set__Oset_It__Real__Oreal_J_Mt__Set__Oset_Itf__a_J_J_J,type,
    set_set_real_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    set_se4580700918925141924nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__a_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    set_a_7161065143582548615nnreal: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Extended____Nonnegative____Real__Oennreal_Mtf__a_J_J,type,
    set_Ex2249781601450085341real_a: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Real__Oreal_Mt__Set__Oset_It__Real__Oreal_J_J_J,type,
    set_real_set_real: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Set__Oset_Itf__a_J_Mt__Set__Oset_Itf__a_J_J_J,type,
    set_set_a_set_a: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_It__Set__Oset_It__Real__Oreal_J_J,type,
    sigma_3733394171116455995t_real: $tType ).

thf(ty_n_t__Set__Oset_It__Sigma____Algebra__Omeasure_It__Real__Oreal_J_J,type,
    set_Si6059263944882162789e_real: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_It__Real__Oreal_J_J_J,type,
    set_set_set_real: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__a_Mt__Set__Oset_It__Real__Oreal_J_J_J,type,
    set_a_set_real: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Real__Oreal_Mt__Set__Oset_Itf__a_J_J_J,type,
    set_real_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    set_Ex3793607809372303086nnreal: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_It__Set__Oset_Itf__a_J_J,type,
    sigma_measure_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Sigma____Algebra__Omeasure_Itf__a_J_J,type,
    set_Sigma_measure_a: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    set_real_real: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Set__Oset_Itf__a_J_J_J,type,
    set_set_set_a: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__a_Mt__Set__Oset_Itf__a_J_J_J,type,
    set_a_set_a: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_It__Real__Oreal_J,type,
    sigma_measure_real: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Real__Oreal_J_J,type,
    set_set_real: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__a_Mt__Real__Oreal_J_J,type,
    set_a_real: $tType ).

thf(ty_n_t__Set__Oset_I_062_It__Real__Oreal_Mtf__a_J_J,type,
    set_real_a: $tType ).

thf(ty_n_t__Extended____Nonnegative____Real__Oennreal,type,
    extend8495563244428889912nnreal: $tType ).

thf(ty_n_t__Sigma____Algebra__Omeasure_Itf__a_J,type,
    sigma_measure_a: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_a: $tType ).

thf(ty_n_t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    set_a_a: $tType ).

thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
    set_real: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Real__Oreal,type,
    real: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (324)
thf(sy_c_Borel__Space_Ois__borel_001t__Real__Oreal_001t__Extended____Nonnegative____Real__Oennreal,type,
    borel_3656262399657348386nnreal: ( real > extend8495563244428889912nnreal ) > sigma_measure_real > $o ).

thf(sy_c_Borel__Space_Otopological__space__class_Oborel_001t__Extended____Nonnegative____Real__Oennreal,type,
    borel_6524799422816628122nnreal: sigma_7234349610311085201nnreal ).

thf(sy_c_Borel__Space_Otopological__space__class_Oborel_001t__Real__Oreal,type,
    borel_5078946678739801102l_real: sigma_measure_real ).

thf(sy_c_Borel__Space_Otopological__space__class_Oborel_001tf__a,type,
    borel_5459123734250506524orel_a: sigma_measure_a ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    comple2814930536884499286nnreal: set_re5328672808648366137nnreal > real > extend8495563244428889912nnreal ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Extended____Nonnegative____Real__Oennreal,type,
    comple6814414086264997003nnreal: set_Ex3793607809372303086nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Real__Oreal,type,
    comple1385675409528146559p_real: set_real > real ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    comple4226387801268262977nnreal: set_se4580700918925141924nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_It__Real__Oreal_J,type,
    comple3096694443085538997t_real: set_set_real > set_real ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Set__Oset_Itf__a_J,type,
    comple2307003609928055243_set_a: set_set_a > set_a ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Sigma____Algebra__Omeasure_It__Extended____Nonnegative____Real__Oennreal_J,type,
    comple2394123286901040126nnreal: set_Si97717610131227249nnreal > sigma_7234349610311085201nnreal ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Sigma____Algebra__Omeasure_It__Real__Oreal_J,type,
    comple1433435454551854066e_real: set_Si6059263944882162789e_real > sigma_measure_real ).

thf(sy_c_Complete__Lattices_OSup__class_OSup_001t__Sigma____Algebra__Omeasure_Itf__a_J,type,
    comple2239804592135895886sure_a: set_Sigma_measure_a > sigma_measure_a ).

thf(sy_c_Complete__Measure_Ocomplete__measure_001t__Extended____Nonnegative____Real__Oennreal,type,
    comple9105848400330859749nnreal: sigma_7234349610311085201nnreal > $o ).

thf(sy_c_Complete__Measure_Ocomplete__measure_001t__Real__Oreal,type,
    comple9032484589293727193e_real: sigma_measure_real > $o ).

thf(sy_c_Complete__Measure_Ocomplete__measure_001tf__a,type,
    comple8155536527497655953sure_a: sigma_measure_a > $o ).

thf(sy_c_Complete__Measure_Ocompletion_001t__Extended____Nonnegative____Real__Oennreal,type,
    comple6668017395272084142nnreal: sigma_7234349610311085201nnreal > sigma_7234349610311085201nnreal ).

thf(sy_c_Complete__Measure_Ocompletion_001t__Real__Oreal,type,
    comple3506806835435775778n_real: sigma_measure_real > sigma_measure_real ).

thf(sy_c_Complete__Measure_Ocompletion_001tf__a,type,
    comple3428971583294703880tion_a: sigma_measure_a > sigma_measure_a ).

thf(sy_c_Complete__Measure_Omain__part_001t__Extended____Nonnegative____Real__Oennreal,type,
    comple2904675884154540190nnreal: sigma_7234349610311085201nnreal > set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Complete__Measure_Omain__part_001t__Real__Oreal,type,
    comple5203310272383980818t_real: sigma_measure_real > set_real > set_real ).

thf(sy_c_Complete__Measure_Omain__part_001tf__a,type,
    complete_main_part_a: sigma_measure_a > set_a > set_a ).

thf(sy_c_Complete__Measure_Onull__part_001t__Extended____Nonnegative____Real__Oennreal,type,
    comple6358047150840085292nnreal: sigma_7234349610311085201nnreal > set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Complete__Measure_Onull__part_001t__Real__Oreal,type,
    comple4917500974405109920t_real: sigma_measure_real > set_real > set_real ).

thf(sy_c_Complete__Measure_Onull__part_001tf__a,type,
    complete_null_part_a: sigma_measure_a > set_a > set_a ).

thf(sy_c_Countable__Set_Ocountable_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    counta6024778199358870792nnreal: set_re5328672808648366137nnreal > $o ).

thf(sy_c_Countable__Set_Ocountable_001t__Extended____Nonnegative____Real__Oennreal,type,
    counta8439243037236335165nnreal: set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_Countable__Set_Ocountable_001t__Real__Oreal,type,
    counta7319604579010473777e_real: set_real > $o ).

thf(sy_c_Countable__Set_Ocountable_001t__Set__Oset_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    counta1475001235576645950nnreal: set_se2490721793304844655nnreal > $o ).

thf(sy_c_Countable__Set_Ocountable_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    counta2425349316461633011nnreal: set_se4580700918925141924nnreal > $o ).

thf(sy_c_Countable__Set_Ocountable_001t__Set__Oset_It__Real__Oreal_J,type,
    counta8054315614235329383t_real: set_set_real > $o ).

thf(sy_c_Countable__Set_Ocountable_001t__Set__Oset_Itf__a_J,type,
    counta6168152590877469849_set_a: set_set_a > $o ).

thf(sy_c_Countable__Set_Ocountable_001tf__a,type,
    counta4098120917673242425able_a: set_a > $o ).

thf(sy_c_Equivalence__Measurable__On__Borel_Omeasurable__on_001t__Real__Oreal_001t__Real__Oreal,type,
    equiva5980327992511004390l_real: ( real > real ) > set_real > $o ).

thf(sy_c_Extended__Nonnegative__Real_Oennreal,type,
    extend7643940197134561352nnreal: real > extend8495563244428889912nnreal ).

thf(sy_c_Fun_Oid_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    id_rea5353623948652148818nnreal: ( real > extend8495563244428889912nnreal ) > real > extend8495563244428889912nnreal ).

thf(sy_c_Fun_Oid_001t__Extended____Nonnegative____Real__Oennreal,type,
    id_Ext8331313139072774535nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Fun_Oid_001t__Real__Oreal,type,
    id_real: real > real ).

thf(sy_c_Fun_Oid_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    id_set2823833123132642621nnreal: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Fun_Oid_001t__Set__Oset_It__Real__Oreal_J,type,
    id_set_real: set_real > set_real ).

thf(sy_c_Fun_Oid_001t__Set__Oset_Itf__a_J,type,
    id_set_a: set_a > set_a ).

thf(sy_c_Fun_Oid_001tf__a,type,
    id_a: a > a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
    minus_minus_real: real > real > real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    minus_3708639258518406418nnreal: set_re5328672808648366137nnreal > set_re5328672808648366137nnreal > set_re5328672808648366137nnreal ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    minus_104578273773384135nnreal: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Real__Oreal_J,type,
    minus_minus_set_real: set_real > set_real > set_real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    minus_5908140721592501885nnreal: set_se4580700918925141924nnreal > set_se4580700918925141924nnreal > set_se4580700918925141924nnreal ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_It__Real__Oreal_J_J,type,
    minus_5467046032205032049t_real: set_set_real > set_set_real > set_set_real ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    minus_5736297505244876581_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
    uminus_uminus_real: real > real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    uminus2275888197404385410nnreal: set_re5328672808648366137nnreal > set_re5328672808648366137nnreal ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    uminus5517552291522096439nnreal: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Real__Oreal_J,type,
    uminus612125837232591019t_real: set_real > set_real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    uminus4762152451731718637nnreal: set_se4580700918925141924nnreal > set_se4580700918925141924nnreal ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_It__Real__Oreal_J_J,type,
    uminus708787163358948833t_real: set_set_real > set_set_real ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    uminus6103902357914783669_set_a: set_set_a > set_set_a ).

thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Set__Oset_Itf__a_J,type,
    uminus_uminus_set_a: set_a > set_a ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nonnegative____Real__Oennreal,type,
    zero_z7100319975126383169nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
    zero_zero_real: real ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Real__Oreal,type,
    inf_inf_real: real > real > real ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    inf_in8454409011496165067nnreal: set_re5328672808648366137nnreal > set_re5328672808648366137nnreal > set_re5328672808648366137nnreal ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    inf_in3368558534146122112nnreal: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Real__Oreal_J,type,
    inf_inf_set_real: set_real > set_real > set_real ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    inf_in5190865051653673526nnreal: set_se4580700918925141924nnreal > set_se4580700918925141924nnreal > set_se4580700918925141924nnreal ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_It__Real__Oreal_J_J,type,
    inf_inf_set_set_real: set_set_real > set_set_real > set_set_real ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    inf_inf_set_set_a: set_set_a > set_set_a > set_set_a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
    inf_inf_set_a: set_a > set_a > set_a ).

thf(sy_c_Lebesgue__Measure_Ofsigma_001t__Extended____Nonnegative____Real__Oennreal,type,
    lebesg3344469894415766602nnreal: set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_Lebesgue__Measure_Ofsigma_001t__Real__Oreal,type,
    lebesgue_fsigma_real: set_real > $o ).

thf(sy_c_Lebesgue__Measure_Ofsigma_001tf__a,type,
    lebesgue_fsigma_a: set_a > $o ).

thf(sy_c_Lebesgue__Measure_Ogdelta_001t__Extended____Nonnegative____Real__Oennreal,type,
    lebesg8314085847218018492nnreal: set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_Lebesgue__Measure_Ogdelta_001t__Real__Oreal,type,
    lebesgue_gdelta_real: set_real > $o ).

thf(sy_c_Lebesgue__Measure_Ogdelta_001tf__a,type,
    lebesgue_gdelta_a: set_a > $o ).

thf(sy_c_Lebesgue__Measure_Olborel_001t__Real__Oreal,type,
    lebesgue_lborel_real: sigma_measure_real ).

thf(sy_c_Measure__Space_OSup__measure_H_001t__Extended____Nonnegative____Real__Oennreal,type,
    measur1651139276328235014nnreal: set_Si97717610131227249nnreal > sigma_7234349610311085201nnreal ).

thf(sy_c_Measure__Space_OSup__measure_H_001t__Real__Oreal,type,
    measur8657758558638653562e_real: set_Si6059263944882162789e_real > sigma_measure_real ).

thf(sy_c_Measure__Space_OSup__measure_H_001tf__a,type,
    measur7752348538237249968sure_a: set_Sigma_measure_a > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001t__Extended____Nonnegative____Real__Oennreal_001t__Extended____Nonnegative____Real__Oennreal,type,
    measur2549461466288632554nnreal: sigma_7234349610311085201nnreal > sigma_7234349610311085201nnreal > ( extend8495563244428889912nnreal > extend8495563244428889912nnreal ) > sigma_7234349610311085201nnreal ).

thf(sy_c_Measure__Space_Odistr_001t__Extended____Nonnegative____Real__Oennreal_001t__Real__Oreal,type,
    measur6862244029252366686l_real: sigma_7234349610311085201nnreal > sigma_measure_real > ( extend8495563244428889912nnreal > real ) > sigma_measure_real ).

thf(sy_c_Measure__Space_Odistr_001t__Extended____Nonnegative____Real__Oennreal_001tf__a,type,
    measur7655964997769656268real_a: sigma_7234349610311085201nnreal > sigma_measure_a > ( extend8495563244428889912nnreal > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001t__Real__Oreal_001t__Extended____Nonnegative____Real__Oennreal,type,
    measur8829990298702910942nnreal: sigma_measure_real > sigma_7234349610311085201nnreal > ( real > extend8495563244428889912nnreal ) > sigma_7234349610311085201nnreal ).

thf(sy_c_Measure__Space_Odistr_001t__Real__Oreal_001t__Real__Oreal,type,
    measur2993149975067245138l_real: sigma_measure_real > sigma_measure_real > ( real > real ) > sigma_measure_real ).

thf(sy_c_Measure__Space_Odistr_001t__Real__Oreal_001tf__a,type,
    measure_distr_real_a: sigma_measure_real > sigma_measure_a > ( real > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001t__Extended____Nonnegative____Real__Oennreal,type,
    measur5959735445204559520nnreal: sigma_523634232904505671nnreal > sigma_7234349610311085201nnreal > ( set_Ex3793607809372303086nnreal > extend8495563244428889912nnreal ) > sigma_7234349610311085201nnreal ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001t__Real__Oreal,type,
    measur4516463063617886740l_real: sigma_523634232904505671nnreal > sigma_measure_real > ( set_Ex3793607809372303086nnreal > real ) > sigma_measure_real ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001tf__a,type,
    measur4356243891041408406real_a: sigma_523634232904505671nnreal > sigma_measure_a > ( set_Ex3793607809372303086nnreal > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_It__Real__Oreal_J_001t__Extended____Nonnegative____Real__Oennreal,type,
    measur174208488455492116nnreal: sigma_3733394171116455995t_real > sigma_7234349610311085201nnreal > ( set_real > extend8495563244428889912nnreal ) > sigma_7234349610311085201nnreal ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_It__Real__Oreal_J_001t__Real__Oreal,type,
    measur874465376107064200l_real: sigma_3733394171116455995t_real > sigma_measure_real > ( set_real > real ) > sigma_measure_real ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_It__Real__Oreal_J_001tf__a,type,
    measur8448229113228689186real_a: sigma_3733394171116455995t_real > sigma_measure_a > ( set_real > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_Itf__a_J_001t__Extended____Nonnegative____Real__Oennreal,type,
    measur2970674797653026974nnreal: sigma_measure_set_a > sigma_7234349610311085201nnreal > ( set_a > extend8495563244428889912nnreal ) > sigma_7234349610311085201nnreal ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_Itf__a_J_001t__Real__Oreal,type,
    measur3755146993059376402a_real: sigma_measure_set_a > sigma_measure_real > ( set_a > real ) > sigma_measure_real ).

thf(sy_c_Measure__Space_Odistr_001t__Set__Oset_Itf__a_J_001tf__a,type,
    measur7064479691503150872et_a_a: sigma_measure_set_a > sigma_measure_a > ( set_a > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Odistr_001tf__a_001t__Extended____Nonnegative____Real__Oennreal,type,
    measur4839436603801885502nnreal: sigma_measure_a > sigma_7234349610311085201nnreal > ( a > extend8495563244428889912nnreal ) > sigma_7234349610311085201nnreal ).

thf(sy_c_Measure__Space_Odistr_001tf__a_001t__Real__Oreal,type,
    measure_distr_a_real: sigma_measure_a > sigma_measure_real > ( a > real ) > sigma_measure_real ).

thf(sy_c_Measure__Space_Odistr_001tf__a_001tf__a,type,
    measure_distr_a_a: sigma_measure_a > sigma_measure_a > ( a > a ) > sigma_measure_a ).

thf(sy_c_Measure__Space_Ofmeasurable_001t__Real__Oreal,type,
    measur3487404108341735616e_real: sigma_measure_real > set_set_real ).

thf(sy_c_Measure__Space_Oincreasing_001t__Extended____Nonnegative____Real__Oennreal_001t__Real__Oreal,type,
    measur2890506508110839833l_real: set_se4580700918925141924nnreal > ( set_Ex3793607809372303086nnreal > real ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001t__Real__Oreal_001t__Real__Oreal,type,
    measur4480787322886042509l_real: set_set_real > ( set_real > real ) > $o ).

thf(sy_c_Measure__Space_Oincreasing_001tf__a_001t__Real__Oreal,type,
    measur1776380161843274167a_real: set_set_a > ( set_a > real ) > $o ).

thf(sy_c_Measure__Space_Onull__sets_001t__Extended____Nonnegative____Real__Oennreal,type,
    measur1209175464439008069nnreal: sigma_7234349610311085201nnreal > set_se4580700918925141924nnreal ).

thf(sy_c_Measure__Space_Onull__sets_001t__Real__Oreal,type,
    measur3710062792471635001s_real: sigma_measure_real > set_set_real ).

thf(sy_c_Measure__Space_Onull__sets_001tf__a,type,
    measure_null_sets_a: sigma_measure_a > set_set_a ).

thf(sy_c_Measure__Space_Osup__measure_H_001t__Extended____Nonnegative____Real__Oennreal,type,
    measur4473656680840910822nnreal: sigma_7234349610311085201nnreal > sigma_7234349610311085201nnreal > sigma_7234349610311085201nnreal ).

thf(sy_c_Measure__Space_Osup__measure_H_001t__Real__Oreal,type,
    measur2147279183506585690e_real: sigma_measure_real > sigma_measure_real > sigma_measure_real ).

thf(sy_c_Measure__Space_Osup__measure_H_001tf__a,type,
    measur3004909623614618064sure_a: sigma_measure_a > sigma_measure_a > sigma_measure_a ).

thf(sy_c_Median_Odown__ray_001t__Real__Oreal,type,
    down_ray_real: set_real > $o ).

thf(sy_c_Median_Odown__ray_001tf__a,type,
    down_ray_a: set_a > $o ).

thf(sy_c_Median_Ointerval_001t__Real__Oreal,type,
    interval_real: set_real > $o ).

thf(sy_c_Median_Oup__ray_001t__Extended____Nonnegative____Real__Oennreal,type,
    up_ray4546996785294415186nnreal: set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_Median_Oup__ray_001t__Real__Oreal,type,
    up_ray_real: set_real > $o ).

thf(sy_c_Median_Oup__ray_001tf__a,type,
    up_ray_a: set_a > $o ).

thf(sy_c_Nonnegative__Lebesgue__Integration_Ouniform__count__measure_001t__Extended____Nonnegative____Real__Oennreal,type,
    nonneg1394255657502361022nnreal: set_Ex3793607809372303086nnreal > sigma_7234349610311085201nnreal ).

thf(sy_c_Nonnegative__Lebesgue__Integration_Ouniform__count__measure_001t__Real__Oreal,type,
    nonneg387815094551837234e_real: set_real > sigma_measure_real ).

thf(sy_c_Nonnegative__Lebesgue__Integration_Ouniform__count__measure_001tf__a,type,
    nonneg7367794086797660664sure_a: set_a > sigma_measure_a ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_M_Eo_J,type,
    bot_bo6758561407716789752real_o: ( real > extend8495563244428889912nnreal ) > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    bot_bo1396364965732655767nnreal: real > extend8495563244428889912nnreal ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_M_Eo_J,type,
    bot_bo5002694753204610125real_o: set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Set__Oset_It__Real__Oreal_J_M_Eo_J,type,
    bot_bot_set_real_o: set_real > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_It__Set__Oset_Itf__a_J_M_Eo_J,type,
    bot_bot_set_a_o: set_a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    bot_bo6037503491064675021nnreal: set_re5328672808648366137nnreal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    bot_bo4854962954004695426nnreal: set_Ex3793607809372303086nnreal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Real__Oreal_J,type,
    bot_bot_set_real: set_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    bot_bo2988155216863113784nnreal: set_se4580700918925141924nnreal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_It__Real__Oreal_J_J,type,
    bot_bot_set_set_real: set_set_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    bot_bot_set_set_a: set_set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Sigma____Algebra__Omeasure_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    bot_bo8227844048696536285nnreal: set_Si97717610131227249nnreal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Sigma____Algebra__Omeasure_It__Real__Oreal_J_J,type,
    bot_bo5686449298802467025e_real: set_Si6059263944882162789e_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Sigma____Algebra__Omeasure_Itf__a_J_J,type,
    bot_bo5171090233048072389sure_a: set_Sigma_measure_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Sigma____Algebra__Omeasure_It__Extended____Nonnegative____Real__Oennreal_J,type,
    bot_bo1740529460517930749nnreal: sigma_7234349610311085201nnreal ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Sigma____Algebra__Omeasure_It__Real__Oreal_J,type,
    bot_bo5982154664989874033e_real: sigma_measure_real ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Sigma____Algebra__Omeasure_Itf__a_J,type,
    bot_bo2108912051383640591sure_a: sigma_measure_a ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    ord_le1618294441215897699nnreal: ( real > extend8495563244428889912nnreal ) > ( real > extend8495563244428889912nnreal ) > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nonnegative____Real__Oennreal,type,
    ord_le3935885782089961368nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
    ord_less_eq_real: real > real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    ord_le2847260637007690789nnreal: set_Ex7514979451064110021nnreal > set_Ex7514979451064110021nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Real__Oreal_J_J,type,
    ord_le2792513217584188441l_real: set_Ex5658717452565810105l_real > set_Ex5658717452565810105l_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Extended____Nonnegative____Real__Oennreal_Mtf__a_J_J,type,
    ord_le5319533700100273021real_a: set_Ex2249781601450085341real_a > set_Ex2249781601450085341real_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    ord_le2462468573666744473nnreal: set_re5328672808648366137nnreal > set_re5328672808648366137nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Real__Oreal_Mt__Real__Oreal_J_J,type,
    ord_le4198349162570665613l_real: set_real_real > set_real_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_It__Real__Oreal_Mtf__a_J_J,type,
    ord_le5743406823621094409real_a: set_real_a > set_real_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_Itf__a_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    ord_le1007445205377960487nnreal: set_a_7161065143582548615nnreal > set_a_7161065143582548615nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_Itf__a_Mt__Real__Oreal_J_J,type,
    ord_le3334967407727675675a_real: set_a_real > set_a_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_I_062_Itf__a_Mtf__a_J_J,type,
    ord_less_eq_set_a_a: set_a_a > set_a_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    ord_le6787938422905777998nnreal: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Real__Oreal_J,type,
    ord_less_eq_set_real: set_real > set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    ord_le3366939622266546180nnreal: set_se4580700918925141924nnreal > set_se4580700918925141924nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Real__Oreal_J_J,type,
    ord_le3558479182127378552t_real: set_set_real > set_set_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    ord_le3724670747650509150_set_a: set_set_a > set_set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Sigma____Algebra__Omeasure_It__Extended____Nonnegative____Real__Oennreal_J,type,
    ord_le1854472233513649201nnreal: sigma_7234349610311085201nnreal > sigma_7234349610311085201nnreal > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Sigma____Algebra__Omeasure_It__Real__Oreal_J,type,
    ord_le487379304121309861e_real: sigma_measure_real > sigma_measure_real > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Sigma____Algebra__Omeasure_Itf__a_J,type,
    ord_le254669795585780187sure_a: sigma_measure_a > sigma_measure_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001tf__a,type,
    ord_less_eq_a: a > a > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_M_Eo_J,type,
    top_to199868804852128988real_o: ( real > extend8495563244428889912nnreal ) > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Extended____Nonnegative____Real__Oennreal_M_Eo_J,type,
    top_to5118619752887738471real_o: extend8495563244428889912nnreal > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Real__Oreal_M_Eo_J,type,
    top_top_real_o: real > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    top_to4050977978985836211nnreal: real > extend8495563244428889912nnreal ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_M_Eo_J,type,
    top_to5272770551662541617real_o: set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Set__Oset_It__Real__Oreal_J_M_Eo_J,type,
    top_top_set_real_o: set_real > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_It__Set__Oset_Itf__a_J_M_Eo_J,type,
    top_top_set_a_o: set_a > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001_062_Itf__a_M_Eo_J,type,
    top_top_a_o: a > $o ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Extended____Nonnegative____Real__Oennreal,type,
    top_to1496364449551166952nnreal: extend8495563244428889912nnreal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    top_to315565310957491945nnreal: set_re5328672808648366137nnreal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    top_to7994903218803871134nnreal: set_Ex3793607809372303086nnreal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Real__Oreal_J,type,
    top_top_set_real: set_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    top_to3356475028079756884nnreal: set_se4580700918925141924nnreal ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_It__Real__Oreal_J_J,type,
    top_top_set_set_real: set_set_real ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    top_top_set_set_a: set_set_a ).

thf(sy_c_Orderings_Otop__class_Otop_001t__Set__Oset_Itf__a_J,type,
    top_top_set_a: set_a ).

thf(sy_c_Radon__Nikodym_Odiff__measure_001t__Extended____Nonnegative____Real__Oennreal,type,
    radon_8175693640339213217nnreal: sigma_7234349610311085201nnreal > sigma_7234349610311085201nnreal > sigma_7234349610311085201nnreal ).

thf(sy_c_Radon__Nikodym_Odiff__measure_001t__Real__Oreal,type,
    radon_5355578694595008149e_real: sigma_measure_real > sigma_measure_real > sigma_measure_real ).

thf(sy_c_Radon__Nikodym_Odiff__measure_001tf__a,type,
    radon_diff_measure_a: sigma_measure_a > sigma_measure_a > sigma_measure_a ).

thf(sy_c_Set_OCollect_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    collec9130413544115709400nnreal: ( ( real > extend8495563244428889912nnreal ) > $o ) > set_re5328672808648366137nnreal ).

thf(sy_c_Set_OCollect_001t__Extended____Nonnegative____Real__Oennreal,type,
    collec6648975593938027277nnreal: ( extend8495563244428889912nnreal > $o ) > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
    collect_real: ( real > $o ) > set_real ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    collec4858231573021281987nnreal: ( set_Ex3793607809372303086nnreal > $o ) > set_se4580700918925141924nnreal ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Real__Oreal_J,type,
    collect_set_real: ( set_real > $o ) > set_set_real ).

thf(sy_c_Set_OCollect_001t__Set__Oset_Itf__a_J,type,
    collect_set_a: ( set_a > $o ) > set_set_a ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_Oinsert_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    insert152533262698245683nnreal: ( real > extend8495563244428889912nnreal ) > set_re5328672808648366137nnreal > set_re5328672808648366137nnreal ).

thf(sy_c_Set_Oinsert_001t__Extended____Nonnegative____Real__Oennreal,type,
    insert7407984058720857448nnreal: extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set_Oinsert_001t__Real__Oreal,type,
    insert_real: real > set_real > set_real ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    insert1343806209672318238nnreal: set_Ex3793607809372303086nnreal > set_se4580700918925141924nnreal > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_It__Real__Oreal_J,type,
    insert_set_real: set_real > set_set_real > set_set_real ).

thf(sy_c_Set_Oinsert_001t__Set__Oset_Itf__a_J,type,
    insert_set_a: set_a > set_set_a > set_set_a ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_Set_Ois__singleton_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    is_sin8880349622731141135nnreal: set_re5328672808648366137nnreal > $o ).

thf(sy_c_Set_Ois__singleton_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    is_sin9058363718368806650nnreal: set_se4580700918925141924nnreal > $o ).

thf(sy_c_Set_Ois__singleton_001t__Set__Oset_It__Real__Oreal_J,type,
    is_sin3548895728136638702t_real: set_set_real > $o ).

thf(sy_c_Set_Ois__singleton_001t__Set__Oset_Itf__a_J,type,
    is_singleton_set_a: set_set_a > $o ).

thf(sy_c_Set_Oremove_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    remove389474404184257502nnreal: ( real > extend8495563244428889912nnreal ) > set_re5328672808648366137nnreal > set_re5328672808648366137nnreal ).

thf(sy_c_Set_Oremove_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    remove6680540689449789641nnreal: set_Ex3793607809372303086nnreal > set_se4580700918925141924nnreal > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Oremove_001t__Set__Oset_It__Real__Oreal_J,type,
    remove_set_real: set_real > set_set_real > set_set_real ).

thf(sy_c_Set_Oremove_001t__Set__Oset_Itf__a_J,type,
    remove_set_a: set_a > set_set_a > set_set_a ).

thf(sy_c_Set_Ovimage_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_001t__Set__Oset_Itf__a_J,type,
    vimage1816238162123171230_set_a: ( ( real > extend8495563244428889912nnreal ) > set_a ) > set_set_a > set_re5328672808648366137nnreal ).

thf(sy_c_Set_Ovimage_001t__Extended____Nonnegative____Real__Oennreal_001t__Extended____Nonnegative____Real__Oennreal,type,
    vimage3650734033530794285nnreal: ( extend8495563244428889912nnreal > extend8495563244428889912nnreal ) > set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set_Ovimage_001t__Extended____Nonnegative____Real__Oennreal_001t__Real__Oreal,type,
    vimage4399055823842842145l_real: ( extend8495563244428889912nnreal > real ) > set_real > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set_Ovimage_001t__Extended____Nonnegative____Real__Oennreal_001tf__a,type,
    vimage4075187267506941001real_a: ( extend8495563244428889912nnreal > a ) > set_a > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set_Ovimage_001t__Real__Oreal_001t__Extended____Nonnegative____Real__Oennreal,type,
    vimage6366802093293386401nnreal: ( real > extend8495563244428889912nnreal ) > set_Ex3793607809372303086nnreal > set_real ).

thf(sy_c_Set_Ovimage_001t__Real__Oreal_001t__Real__Oreal,type,
    vimage_real_real: ( real > real ) > set_real > set_real ).

thf(sy_c_Set_Ovimage_001t__Real__Oreal_001tf__a,type,
    vimage_real_a: ( real > a ) > set_a > set_real ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    vimage7483462650094439577nnreal: ( set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ) > set_se4580700918925141924nnreal > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001t__Set__Oset_It__Real__Oreal_J,type,
    vimage2976515561842077453t_real: ( set_Ex3793607809372303086nnreal > set_real ) > set_set_real > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001t__Set__Oset_Itf__a_J,type,
    vimage9012950911561050995_set_a: ( set_Ex3793607809372303086nnreal > set_a ) > set_set_a > set_se4580700918925141924nnreal ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_It__Real__Oreal_J_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    vimage1211383488014126733nnreal: ( set_real > set_Ex3793607809372303086nnreal ) > set_se4580700918925141924nnreal > set_set_real ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_It__Real__Oreal_J_001t__Set__Oset_It__Real__Oreal_J,type,
    vimage2667142749230307073t_real: ( set_real > set_real ) > set_set_real > set_set_real ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_It__Real__Oreal_J_001t__Set__Oset_Itf__a_J,type,
    vimage4921045269514575487_set_a: ( set_real > set_a ) > set_set_a > set_set_real ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_Itf__a_J_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    vimage6157622615598462950nnreal: ( set_a > real > extend8495563244428889912nnreal ) > set_re5328672808648366137nnreal > set_set_a ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_Itf__a_J_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    vimage3731165941878406353nnreal: ( set_a > set_Ex3793607809372303086nnreal ) > set_se4580700918925141924nnreal > set_set_a ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_Itf__a_J_001t__Set__Oset_It__Real__Oreal_J,type,
    vimage1623514241378321221t_real: ( set_a > set_real ) > set_set_real > set_set_a ).

thf(sy_c_Set_Ovimage_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    vimage_set_a_set_a: ( set_a > set_a ) > set_set_a > set_set_a ).

thf(sy_c_Set_Ovimage_001tf__a_001t__Extended____Nonnegative____Real__Oennreal,type,
    vimage1258658873539170235nnreal: ( a > extend8495563244428889912nnreal ) > set_Ex3793607809372303086nnreal > set_a ).

thf(sy_c_Set_Ovimage_001tf__a_001t__Real__Oreal,type,
    vimage_a_real: ( a > real ) > set_real > set_a ).

thf(sy_c_Set_Ovimage_001tf__a_001t__Set__Oset_Itf__a_J,type,
    vimage_a_set_a: ( a > set_a ) > set_set_a > set_a ).

thf(sy_c_Set_Ovimage_001tf__a_001tf__a,type,
    vimage_a_a: ( a > a ) > set_a > set_a ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Extended____Nonnegative____Real__Oennreal,type,
    set_or4532334673728481768nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001t__Real__Oreal,type,
    set_or2392270231875598684t_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanAtMost_001tf__a,type,
    set_or4472690218693186638Most_a: a > a > set_a ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Extended____Nonnegative____Real__Oennreal,type,
    set_or1838662946377535116nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001t__Real__Oreal,type,
    set_or1633881224788618240n_real: real > real > set_real ).

thf(sy_c_Set__Interval_Oord__class_OgreaterThanLessThan_001tf__a,type,
    set_or5939364468397584554Than_a: a > a > set_a ).

thf(sy_c_Sigma__Algebra_Ocount__space_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_2847285985465031850nnreal: set_re5328672808648366137nnreal > sigma_5394977995791401948nnreal ).

thf(sy_c_Sigma__Algebra_Ocount__space_001t__Extended____Nonnegative____Real__Oennreal,type,
    sigma_7204664791115113951nnreal: set_Ex3793607809372303086nnreal > sigma_7234349610311085201nnreal ).

thf(sy_c_Sigma__Algebra_Ocount__space_001t__Real__Oreal,type,
    sigma_8508918144308765139e_real: set_real > sigma_measure_real ).

thf(sy_c_Sigma__Algebra_Ocount__space_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_384769719376554389nnreal: set_se4580700918925141924nnreal > sigma_523634232904505671nnreal ).

thf(sy_c_Sigma__Algebra_Ocount__space_001t__Set__Oset_It__Real__Oreal_J,type,
    sigma_3507695683712708105t_real: set_set_real > sigma_3733394171116455995t_real ).

thf(sy_c_Sigma__Algebra_Ocount__space_001t__Set__Oset_Itf__a_J,type,
    sigma_1106005778614564215_set_a: set_set_a > sigma_measure_set_a ).

thf(sy_c_Sigma__Algebra_Ocount__space_001tf__a,type,
    sigma_count_space_a: set_a > sigma_measure_a ).

thf(sy_c_Sigma__Algebra_Oemeasure_001t__Extended____Nonnegative____Real__Oennreal,type,
    sigma_6589832970846575905nnreal: sigma_7234349610311085201nnreal > set_Ex3793607809372303086nnreal > extend8495563244428889912nnreal ).

thf(sy_c_Sigma__Algebra_Oemeasure_001t__Real__Oreal,type,
    sigma_emeasure_real: sigma_measure_real > set_real > extend8495563244428889912nnreal ).

thf(sy_c_Sigma__Algebra_Oemeasure_001tf__a,type,
    sigma_emeasure_a: sigma_measure_a > set_a > extend8495563244428889912nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Extended____Nonnegative____Real__Oennreal_001t__Extended____Nonnegative____Real__Oennreal,type,
    sigma_7926153774531450434nnreal: sigma_7234349610311085201nnreal > sigma_7234349610311085201nnreal > set_Ex7514979451064110021nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Extended____Nonnegative____Real__Oennreal_001t__Real__Oreal,type,
    sigma_7049758200512112822l_real: sigma_7234349610311085201nnreal > sigma_measure_real > set_Ex5658717452565810105l_real ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Extended____Nonnegative____Real__Oennreal_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_1941770836459163128nnreal: sigma_7234349610311085201nnreal > sigma_523634232904505671nnreal > set_Ex4629243626970651003nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Extended____Nonnegative____Real__Oennreal_001t__Set__Oset_It__Real__Oreal_J,type,
    sigma_5175731160935721196t_real: sigma_7234349610311085201nnreal > sigma_3733394171116455995t_real > set_Ex1976581565604454895t_real ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Extended____Nonnegative____Real__Oennreal_001t__Set__Oset_Itf__a_J,type,
    sigma_7624677704890010580_set_a: sigma_7234349610311085201nnreal > sigma_measure_set_a > set_Ex166883028395225405_set_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Extended____Nonnegative____Real__Oennreal_001tf__a,type,
    sigma_3031480723531659892real_a: sigma_7234349610311085201nnreal > sigma_measure_a > set_Ex2249781601450085341real_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Real__Oreal_001t__Extended____Nonnegative____Real__Oennreal,type,
    sigma_9017504469962657078nnreal: sigma_measure_real > sigma_7234349610311085201nnreal > set_re5328672808648366137nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Real__Oreal_001t__Real__Oreal,type,
    sigma_5267869275261027754l_real: sigma_measure_real > sigma_measure_real > set_real_real ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Real__Oreal_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_2400199819729843436nnreal: sigma_measure_real > sigma_523634232904505671nnreal > set_re634636480907793903nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Real__Oreal_001t__Set__Oset_It__Real__Oreal_J,type,
    sigma_6606012509476713952t_real: sigma_measure_real > sigma_3733394171116455995t_real > set_real_set_real ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Real__Oreal_001t__Set__Oset_Itf__a_J,type,
    sigma_4283435981211228640_set_a: sigma_measure_real > sigma_measure_set_a > set_real_set_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Real__Oreal_001tf__a,type,
    sigma_523072396149930112real_a: sigma_measure_real > sigma_measure_a > set_real_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_8870595382113208750nnreal: sigma_523634232904505671nnreal > sigma_523634232904505671nnreal > set_se5993948446613689905nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001t__Set__Oset_It__Real__Oreal_J,type,
    sigma_6728074762985347490t_real: sigma_523634232904505671nnreal > sigma_3733394171116455995t_real > set_se3106664747148989349t_real ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_001t__Set__Oset_Itf__a_J,type,
    sigma_7598581795090538910_set_a: sigma_523634232904505671nnreal > sigma_measure_set_a > set_se2341910093884376583_set_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Set__Oset_It__Real__Oreal_J_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_4962942689157396770nnreal: sigma_3733394171116455995t_real > sigma_523634232904505671nnreal > set_se6192103498290354981nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Set__Oset_It__Real__Oreal_J_001t__Set__Oset_It__Real__Oreal_J,type,
    sigma_8759315257289043734t_real: sigma_3733394171116455995t_real > sigma_3733394171116455995t_real > set_se3821091506293227161t_real ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Set__Oset_It__Real__Oreal_J_001t__Set__Oset_Itf__a_J,type,
    sigma_8826535904794920746_set_a: sigma_3733394171116455995t_real > sigma_measure_set_a > set_set_real_set_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Set__Oset_Itf__a_J_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_2316796825407894268nnreal: sigma_measure_set_a > sigma_523634232904505671nnreal > set_se2858003755320519069nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Set__Oset_Itf__a_J_001t__Set__Oset_It__Real__Oreal_J,type,
    sigma_5529004876658666480t_real: sigma_measure_set_a > sigma_3733394171116455995t_real > set_set_a_set_real ).

thf(sy_c_Sigma__Algebra_Omeasurable_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    sigma_5212894042034225104_set_a: sigma_measure_set_a > sigma_measure_set_a > set_set_a_set_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__a_001t__Extended____Nonnegative____Real__Oennreal,type,
    sigma_214952329563889126nnreal: sigma_measure_a > sigma_7234349610311085201nnreal > set_a_7161065143582548615nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__a_001t__Real__Oreal,type,
    sigma_9116425665531756122a_real: sigma_measure_a > sigma_measure_real > set_a_real ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__a_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_7596264061814621596nnreal: sigma_measure_a > sigma_523634232904505671nnreal > set_a_7828589535950383165nnreal ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__a_001t__Set__Oset_It__Real__Oreal_J,type,
    sigma_739038748264640144t_real: sigma_measure_a > sigma_3733394171116455995t_real > set_a_set_real ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__a_001t__Set__Oset_Itf__a_J,type,
    sigma_3685133166752798000_set_a: sigma_measure_a > sigma_measure_set_a > set_a_set_a ).

thf(sy_c_Sigma__Algebra_Omeasurable_001tf__a_001tf__a,type,
    sigma_measurable_a_a: sigma_measure_a > sigma_measure_a > set_a_a ).

thf(sy_c_Sigma__Algebra_Omeasure_001t__Extended____Nonnegative____Real__Oennreal,type,
    sigma_5736856438657861608nnreal: sigma_7234349610311085201nnreal > set_Ex3793607809372303086nnreal > real ).

thf(sy_c_Sigma__Algebra_Omeasure_001t__Real__Oreal,type,
    sigma_measure_real2: sigma_measure_real > set_real > real ).

thf(sy_c_Sigma__Algebra_Omeasure_001tf__a,type,
    sigma_measure_a2: sigma_measure_a > set_a > real ).

thf(sy_c_Sigma__Algebra_Orestrict__space_001t__Extended____Nonnegative____Real__Oennreal,type,
    sigma_4884701650823297268nnreal: sigma_7234349610311085201nnreal > set_Ex3793607809372303086nnreal > sigma_7234349610311085201nnreal ).

thf(sy_c_Sigma__Algebra_Orestrict__space_001t__Real__Oreal,type,
    sigma_5414646170262037096e_real: sigma_measure_real > set_real > sigma_measure_real ).

thf(sy_c_Sigma__Algebra_Orestrict__space_001tf__a,type,
    sigma_8692839461743104066pace_a: sigma_measure_a > set_a > sigma_measure_a ).

thf(sy_c_Sigma__Algebra_Osets_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_3125015092713243876nnreal: sigma_5394977995791401948nnreal > set_se2490721793304844655nnreal ).

thf(sy_c_Sigma__Algebra_Osets_001t__Extended____Nonnegative____Real__Oennreal,type,
    sigma_5465916536984168985nnreal: sigma_7234349610311085201nnreal > set_se4580700918925141924nnreal ).

thf(sy_c_Sigma__Algebra_Osets_001t__Real__Oreal,type,
    sigma_sets_real: sigma_measure_real > set_set_real ).

thf(sy_c_Sigma__Algebra_Osets_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_5308793447563920847nnreal: sigma_523634232904505671nnreal > set_se8256708918794385754nnreal ).

thf(sy_c_Sigma__Algebra_Osets_001t__Set__Oset_It__Real__Oreal_J,type,
    sigma_sets_set_real: sigma_3733394171116455995t_real > set_set_set_real ).

thf(sy_c_Sigma__Algebra_Osets_001t__Set__Oset_Itf__a_J,type,
    sigma_sets_set_a: sigma_measure_set_a > set_set_set_a ).

thf(sy_c_Sigma__Algebra_Osets_001tf__a,type,
    sigma_sets_a: sigma_measure_a > set_set_a ).

thf(sy_c_Sigma__Algebra_Ospace_001t__Extended____Nonnegative____Real__Oennreal,type,
    sigma_3147302497200244656nnreal: sigma_7234349610311085201nnreal > set_Ex3793607809372303086nnreal ).

thf(sy_c_Sigma__Algebra_Ospace_001t__Real__Oreal,type,
    sigma_space_real: sigma_measure_real > set_real ).

thf(sy_c_Sigma__Algebra_Ospace_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    sigma_2539764534872131430nnreal: sigma_523634232904505671nnreal > set_se4580700918925141924nnreal ).

thf(sy_c_Sigma__Algebra_Ospace_001t__Set__Oset_It__Real__Oreal_J,type,
    sigma_space_set_real: sigma_3733394171116455995t_real > set_set_real ).

thf(sy_c_Sigma__Algebra_Ospace_001t__Set__Oset_Itf__a_J,type,
    sigma_space_set_a: sigma_measure_set_a > set_set_a ).

thf(sy_c_Sigma__Algebra_Ospace_001tf__a,type,
    sigma_space_a: sigma_measure_a > set_a ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    topolo3503219976281768444nnreal: set_re5328672808648366137nnreal > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Extended____Nonnegative____Real__Oennreal,type,
    topolo1037242508615874353nnreal: set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001t__Real__Oreal,type,
    topolo4860482606490270245n_real: set_real > $o ).

thf(sy_c_Topological__Spaces_Oopen__class_Oopen_001tf__a,type,
    topolo8477419352202985285open_a: set_a > $o ).

thf(sy_c_member_001_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    member8329810500450651686nnreal: ( extend8495563244428889912nnreal > extend8495563244428889912nnreal ) > set_Ex7514979451064110021nnreal > $o ).

thf(sy_c_member_001_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Real__Oreal_J,type,
    member2874014351250825754l_real: ( extend8495563244428889912nnreal > real ) > set_Ex5658717452565810105l_real > $o ).

thf(sy_c_member_001_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    member4416662722526258908nnreal: ( extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal ) > set_Ex4629243626970651003nnreal > $o ).

thf(sy_c_member_001_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Set__Oset_It__Real__Oreal_J_J,type,
    member6764088077590758224t_real: ( extend8495563244428889912nnreal > set_real ) > set_Ex1976581565604454895t_real > $o ).

thf(sy_c_member_001_062_It__Extended____Nonnegative____Real__Oennreal_Mt__Set__Oset_Itf__a_J_J,type,
    member6799942265337811078_set_a: ( extend8495563244428889912nnreal > set_a ) > set_Ex166883028395225405_set_a > $o ).

thf(sy_c_member_001_062_It__Extended____Nonnegative____Real__Oennreal_Mtf__a_J,type,
    member4924430693770431270real_a: ( extend8495563244428889912nnreal > a ) > set_Ex2249781601450085341real_a > $o ).

thf(sy_c_member_001_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    member2919562650594848410nnreal: ( real > extend8495563244428889912nnreal ) > set_re5328672808648366137nnreal > $o ).

thf(sy_c_member_001_062_It__Real__Oreal_Mt__Real__Oreal_J,type,
    member_real_real: ( real > real ) > set_real_real > $o ).

thf(sy_c_member_001_062_It__Real__Oreal_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    member8689841359643572048nnreal: ( real > set_Ex3793607809372303086nnreal ) > set_re634636480907793903nnreal > $o ).

thf(sy_c_member_001_062_It__Real__Oreal_Mt__Set__Oset_It__Real__Oreal_J_J,type,
    member_real_set_real: ( real > set_real ) > set_real_set_real > $o ).

thf(sy_c_member_001_062_It__Real__Oreal_Mt__Set__Oset_Itf__a_J_J,type,
    member_real_set_a: ( real > set_a ) > set_real_set_a > $o ).

thf(sy_c_member_001_062_It__Real__Oreal_Mtf__a_J,type,
    member_real_a: ( real > a ) > set_real_a > $o ).

thf(sy_c_member_001_062_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    member9048868947896282770nnreal: ( set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal ) > set_se5993948446613689905nnreal > $o ).

thf(sy_c_member_001_062_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_Mt__Set__Oset_It__Real__Oreal_J_J,type,
    member7536123422392205318t_real: ( set_Ex3793607809372303086nnreal > set_real ) > set_se3106664747148989349t_real > $o ).

thf(sy_c_member_001_062_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_Mt__Set__Oset_Itf__a_J_J,type,
    member8849812955461179984_set_a: ( set_Ex3793607809372303086nnreal > set_a ) > set_se2341910093884376583_set_a > $o ).

thf(sy_c_member_001_062_It__Set__Oset_It__Real__Oreal_J_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    member1248903934968170374nnreal: ( set_real > set_Ex3793607809372303086nnreal ) > set_se6192103498290354981nnreal > $o ).

thf(sy_c_member_001_062_It__Set__Oset_It__Real__Oreal_J_Mt__Set__Oset_It__Real__Oreal_J_J,type,
    member8820419758626733818t_real: ( set_real > set_real ) > set_se3821091506293227161t_real > $o ).

thf(sy_c_member_001_062_It__Set__Oset_It__Real__Oreal_J_Mt__Set__Oset_Itf__a_J_J,type,
    member9134392423035811420_set_a: ( set_real > set_a ) > set_set_real_set_a > $o ).

thf(sy_c_member_001_062_It__Set__Oset_Itf__a_J_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    member8552228822107236582nnreal: ( set_a > set_Ex3793607809372303086nnreal ) > set_se2858003755320519069nnreal > $o ).

thf(sy_c_member_001_062_It__Set__Oset_Itf__a_J_Mt__Set__Oset_It__Real__Oreal_J_J,type,
    member6119777607969566810t_real: ( set_a > set_real ) > set_set_a_set_real > $o ).

thf(sy_c_member_001_062_It__Set__Oset_Itf__a_J_Mt__Set__Oset_Itf__a_J_J,type,
    member_set_a_set_a: ( set_a > set_a ) > set_set_a_set_a > $o ).

thf(sy_c_member_001_062_Itf__a_Mt__Extended____Nonnegative____Real__Oennreal_J,type,
    member298456594901751504nnreal: ( a > extend8495563244428889912nnreal ) > set_a_7161065143582548615nnreal > $o ).

thf(sy_c_member_001_062_Itf__a_Mt__Real__Oreal_J,type,
    member_a_real: ( a > real ) > set_a_real > $o ).

thf(sy_c_member_001_062_Itf__a_Mt__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    member2532357421736347526nnreal: ( a > set_Ex3793607809372303086nnreal ) > set_a_7828589535950383165nnreal > $o ).

thf(sy_c_member_001_062_Itf__a_Mt__Set__Oset_It__Real__Oreal_J_J,type,
    member_a_set_real: ( a > set_real ) > set_a_set_real > $o ).

thf(sy_c_member_001_062_Itf__a_Mt__Set__Oset_Itf__a_J_J,type,
    member_a_set_a: ( a > set_a ) > set_a_set_a > $o ).

thf(sy_c_member_001_062_Itf__a_Mtf__a_J,type,
    member_a_a: ( a > a ) > set_a_a > $o ).

thf(sy_c_member_001t__Extended____Nonnegative____Real__Oennreal,type,
    member7908768830364227535nnreal: extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal > $o ).

thf(sy_c_member_001t__Real__Oreal,type,
    member_real: real > set_real > $o ).

thf(sy_c_member_001t__Set__Oset_I_062_It__Real__Oreal_Mt__Extended____Nonnegative____Real__Oennreal_J_J,type,
    member524040414084610768nnreal: set_re5328672808648366137nnreal > set_se2490721793304844655nnreal > $o ).

thf(sy_c_member_001t__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J,type,
    member603777416030116741nnreal: set_Ex3793607809372303086nnreal > set_se4580700918925141924nnreal > $o ).

thf(sy_c_member_001t__Set__Oset_It__Real__Oreal_J,type,
    member_set_real: set_real > set_set_real > $o ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_It__Extended____Nonnegative____Real__Oennreal_J_J,type,
    member6568240578637133883nnreal: set_se4580700918925141924nnreal > set_se8256708918794385754nnreal > $o ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_It__Real__Oreal_J_J,type,
    member_set_set_real: set_set_real > set_set_set_real > $o ).

thf(sy_c_member_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    member_set_set_a: set_set_a > set_set_set_a > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
    member_set_a: set_a > set_set_a > $o ).

thf(sy_c_member_001t__Sigma____Algebra__Omeasure_It__Extended____Nonnegative____Real__Oennreal_J,type,
    member6261374078160781754nnreal: sigma_7234349610311085201nnreal > set_Si97717610131227249nnreal > $o ).

thf(sy_c_member_001t__Sigma____Algebra__Omeasure_It__Real__Oreal_J,type,
    member4553183543495551918e_real: sigma_measure_real > set_Si6059263944882162789e_real > $o ).

thf(sy_c_member_001t__Sigma____Algebra__Omeasure_Itf__a_J,type,
    member3534519376729797778sure_a: sigma_measure_a > set_Sigma_measure_a > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_I,type,
    i: set_a ).

% Relevant facts (1277)
thf(fact_0_assms,axiom,
    down_ray_a @ i ).

% assms
thf(fact_1__092_060open_062_N_AI_A_092_060in_062_Asets_Aborel_092_060close_062,axiom,
    member_set_a @ ( uminus_uminus_set_a @ i ) @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ).

% \<open>- I \<in> sets borel\<close>
thf(fact_2__092_060open_062up__ray_A_I_N_AI_J_092_060close_062,axiom,
    up_ray_a @ ( uminus_uminus_set_a @ i ) ).

% \<open>up_ray (- I)\<close>
thf(fact_3_up__ray__borel,axiom,
    ! [I: set_a] :
      ( ( up_ray_a @ I )
     => ( member_set_a @ I @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ) ) ).

% up_ray_borel
thf(fact_4_up__ray__borel,axiom,
    ! [I: set_real] :
      ( ( up_ray_real @ I )
     => ( member_set_real @ I @ ( sigma_sets_real @ borel_5078946678739801102l_real ) ) ) ).

% up_ray_borel
thf(fact_5_up__ray__borel,axiom,
    ! [I: set_Ex3793607809372303086nnreal] :
      ( ( up_ray4546996785294415186nnreal @ I )
     => ( member603777416030116741nnreal @ I @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) ) ) ).

% up_ray_borel
thf(fact_6_borel__comp,axiom,
    ! [A: set_a] :
      ( ( member_set_a @ A @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) )
     => ( member_set_a @ ( uminus_uminus_set_a @ A ) @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ) ) ).

% borel_comp
thf(fact_7_borel__comp,axiom,
    ! [A: set_real] :
      ( ( member_set_real @ A @ ( sigma_sets_real @ borel_5078946678739801102l_real ) )
     => ( member_set_real @ ( uminus612125837232591019t_real @ A ) @ ( sigma_sets_real @ borel_5078946678739801102l_real ) ) ) ).

% borel_comp
thf(fact_8_borel__comp,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) )
     => ( member603777416030116741nnreal @ ( uminus5517552291522096439nnreal @ A ) @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) ) ) ).

% borel_comp
thf(fact_9_sets__Ball,axiom,
    ! [I: set_set_a,A: set_a > set_real,M: set_a > sigma_measure_real,I2: set_a] :
      ( ! [X: set_a] :
          ( ( member_set_a @ X @ I )
         => ( member_set_real @ ( A @ X ) @ ( sigma_sets_real @ ( M @ X ) ) ) )
     => ( ( member_set_a @ I2 @ I )
       => ( member_set_real @ ( A @ I2 ) @ ( sigma_sets_real @ ( M @ I2 ) ) ) ) ) ).

% sets_Ball
thf(fact_10_sets__Ball,axiom,
    ! [I: set_set_real,A: set_real > set_real,M: set_real > sigma_measure_real,I2: set_real] :
      ( ! [X: set_real] :
          ( ( member_set_real @ X @ I )
         => ( member_set_real @ ( A @ X ) @ ( sigma_sets_real @ ( M @ X ) ) ) )
     => ( ( member_set_real @ I2 @ I )
       => ( member_set_real @ ( A @ I2 ) @ ( sigma_sets_real @ ( M @ I2 ) ) ) ) ) ).

% sets_Ball
thf(fact_11_sets__Ball,axiom,
    ! [I: set_set_a,A: set_a > set_a,M: set_a > sigma_measure_a,I2: set_a] :
      ( ! [X: set_a] :
          ( ( member_set_a @ X @ I )
         => ( member_set_a @ ( A @ X ) @ ( sigma_sets_a @ ( M @ X ) ) ) )
     => ( ( member_set_a @ I2 @ I )
       => ( member_set_a @ ( A @ I2 ) @ ( sigma_sets_a @ ( M @ I2 ) ) ) ) ) ).

% sets_Ball
thf(fact_12_sets__Ball,axiom,
    ! [I: set_set_real,A: set_real > set_a,M: set_real > sigma_measure_a,I2: set_real] :
      ( ! [X: set_real] :
          ( ( member_set_real @ X @ I )
         => ( member_set_a @ ( A @ X ) @ ( sigma_sets_a @ ( M @ X ) ) ) )
     => ( ( member_set_real @ I2 @ I )
       => ( member_set_a @ ( A @ I2 ) @ ( sigma_sets_a @ ( M @ I2 ) ) ) ) ) ).

% sets_Ball
thf(fact_13_sets__Ball,axiom,
    ! [I: set_re5328672808648366137nnreal,A: ( real > extend8495563244428889912nnreal ) > set_real,M: ( real > extend8495563244428889912nnreal ) > sigma_measure_real,I2: real > extend8495563244428889912nnreal] :
      ( ! [X: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ X @ I )
         => ( member_set_real @ ( A @ X ) @ ( sigma_sets_real @ ( M @ X ) ) ) )
     => ( ( member2919562650594848410nnreal @ I2 @ I )
       => ( member_set_real @ ( A @ I2 ) @ ( sigma_sets_real @ ( M @ I2 ) ) ) ) ) ).

% sets_Ball
thf(fact_14_sets__Ball,axiom,
    ! [I: set_re5328672808648366137nnreal,A: ( real > extend8495563244428889912nnreal ) > set_a,M: ( real > extend8495563244428889912nnreal ) > sigma_measure_a,I2: real > extend8495563244428889912nnreal] :
      ( ! [X: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ X @ I )
         => ( member_set_a @ ( A @ X ) @ ( sigma_sets_a @ ( M @ X ) ) ) )
     => ( ( member2919562650594848410nnreal @ I2 @ I )
       => ( member_set_a @ ( A @ I2 ) @ ( sigma_sets_a @ ( M @ I2 ) ) ) ) ) ).

% sets_Ball
thf(fact_15_sets__Ball,axiom,
    ! [I: set_se4580700918925141924nnreal,A: set_Ex3793607809372303086nnreal > set_a,M: set_Ex3793607809372303086nnreal > sigma_measure_a,I2: set_Ex3793607809372303086nnreal] :
      ( ! [X: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ X @ I )
         => ( member_set_a @ ( A @ X ) @ ( sigma_sets_a @ ( M @ X ) ) ) )
     => ( ( member603777416030116741nnreal @ I2 @ I )
       => ( member_set_a @ ( A @ I2 ) @ ( sigma_sets_a @ ( M @ I2 ) ) ) ) ) ).

% sets_Ball
thf(fact_16_sets__Ball,axiom,
    ! [I: set_set_a,A: set_a > set_Ex3793607809372303086nnreal,M: set_a > sigma_7234349610311085201nnreal,I2: set_a] :
      ( ! [X: set_a] :
          ( ( member_set_a @ X @ I )
         => ( member603777416030116741nnreal @ ( A @ X ) @ ( sigma_5465916536984168985nnreal @ ( M @ X ) ) ) )
     => ( ( member_set_a @ I2 @ I )
       => ( member603777416030116741nnreal @ ( A @ I2 ) @ ( sigma_5465916536984168985nnreal @ ( M @ I2 ) ) ) ) ) ).

% sets_Ball
thf(fact_17_sets__Ball,axiom,
    ! [I: set_set_real,A: set_real > set_Ex3793607809372303086nnreal,M: set_real > sigma_7234349610311085201nnreal,I2: set_real] :
      ( ! [X: set_real] :
          ( ( member_set_real @ X @ I )
         => ( member603777416030116741nnreal @ ( A @ X ) @ ( sigma_5465916536984168985nnreal @ ( M @ X ) ) ) )
     => ( ( member_set_real @ I2 @ I )
       => ( member603777416030116741nnreal @ ( A @ I2 ) @ ( sigma_5465916536984168985nnreal @ ( M @ I2 ) ) ) ) ) ).

% sets_Ball
thf(fact_18_sets__Ball,axiom,
    ! [I: set_se4580700918925141924nnreal,A: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal,M: set_Ex3793607809372303086nnreal > sigma_7234349610311085201nnreal,I2: set_Ex3793607809372303086nnreal] :
      ( ! [X: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ X @ I )
         => ( member603777416030116741nnreal @ ( A @ X ) @ ( sigma_5465916536984168985nnreal @ ( M @ X ) ) ) )
     => ( ( member603777416030116741nnreal @ I2 @ I )
       => ( member603777416030116741nnreal @ ( A @ I2 ) @ ( sigma_5465916536984168985nnreal @ ( M @ I2 ) ) ) ) ) ).

% sets_Ball
thf(fact_19_sets__diff__measure,axiom,
    ! [M: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( sigma_5465916536984168985nnreal @ ( radon_8175693640339213217nnreal @ M @ N ) )
      = ( sigma_5465916536984168985nnreal @ M ) ) ).

% sets_diff_measure
thf(fact_20_sets__diff__measure,axiom,
    ! [M: sigma_measure_real,N: sigma_measure_real] :
      ( ( sigma_sets_real @ ( radon_5355578694595008149e_real @ M @ N ) )
      = ( sigma_sets_real @ M ) ) ).

% sets_diff_measure
thf(fact_21_sets__diff__measure,axiom,
    ! [M: sigma_measure_a,N: sigma_measure_a] :
      ( ( sigma_sets_a @ ( radon_diff_measure_a @ M @ N ) )
      = ( sigma_sets_a @ M ) ) ).

% sets_diff_measure
thf(fact_22_sets__lborel,axiom,
    ( ( sigma_sets_real @ lebesgue_lborel_real )
    = ( sigma_sets_real @ borel_5078946678739801102l_real ) ) ).

% sets_lborel
thf(fact_23_space__in__borel,axiom,
    member_set_a @ top_top_set_a @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ).

% space_in_borel
thf(fact_24_space__in__borel,axiom,
    member_set_real @ top_top_set_real @ ( sigma_sets_real @ borel_5078946678739801102l_real ) ).

% space_in_borel
thf(fact_25_space__in__borel,axiom,
    member603777416030116741nnreal @ top_to7994903218803871134nnreal @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) ).

% space_in_borel
thf(fact_26_lborelD,axiom,
    ! [A: set_real] :
      ( ( member_set_real @ A @ ( sigma_sets_real @ borel_5078946678739801102l_real ) )
     => ( member_set_real @ A @ ( sigma_sets_real @ lebesgue_lborel_real ) ) ) ).

% lborelD
thf(fact_27_greaterThanLessThan__borel,axiom,
    ! [A2: a,B: a] : ( member_set_a @ ( set_or5939364468397584554Than_a @ A2 @ B ) @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ) ).

% greaterThanLessThan_borel
thf(fact_28_greaterThanLessThan__borel,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] : ( member603777416030116741nnreal @ ( set_or1838662946377535116nnreal @ A2 @ B ) @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) ) ).

% greaterThanLessThan_borel
thf(fact_29_greaterThanLessThan__borel,axiom,
    ! [A2: real,B: real] : ( member_set_real @ ( set_or1633881224788618240n_real @ A2 @ B ) @ ( sigma_sets_real @ borel_5078946678739801102l_real ) ) ).

% greaterThanLessThan_borel
thf(fact_30_greaterThanAtMost__borel,axiom,
    ! [A2: a,B: a] : ( member_set_a @ ( set_or4472690218693186638Most_a @ A2 @ B ) @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ) ).

% greaterThanAtMost_borel
thf(fact_31_greaterThanAtMost__borel,axiom,
    ! [A2: real,B: real] : ( member_set_real @ ( set_or2392270231875598684t_real @ A2 @ B ) @ ( sigma_sets_real @ borel_5078946678739801102l_real ) ) ).

% greaterThanAtMost_borel
thf(fact_32_greaterThanAtMost__borel,axiom,
    ! [A2: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] : ( member603777416030116741nnreal @ ( set_or4532334673728481768nnreal @ A2 @ B ) @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) ) ).

% greaterThanAtMost_borel
thf(fact_33_borel__singleton,axiom,
    ! [A: set_a,X2: a] :
      ( ( member_set_a @ A @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) )
     => ( member_set_a @ ( insert_a @ X2 @ A ) @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ) ) ).

% borel_singleton
thf(fact_34_borel__singleton,axiom,
    ! [A: set_real,X2: real] :
      ( ( member_set_real @ A @ ( sigma_sets_real @ borel_5078946678739801102l_real ) )
     => ( member_set_real @ ( insert_real @ X2 @ A ) @ ( sigma_sets_real @ borel_5078946678739801102l_real ) ) ) ).

% borel_singleton
thf(fact_35_borel__singleton,axiom,
    ! [A: set_Ex3793607809372303086nnreal,X2: extend8495563244428889912nnreal] :
      ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) )
     => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X2 @ A ) @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) ) ) ).

% borel_singleton
thf(fact_36_borel__open,axiom,
    ! [A: set_a] :
      ( ( topolo8477419352202985285open_a @ A )
     => ( member_set_a @ A @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ) ) ).

% borel_open
thf(fact_37_borel__open,axiom,
    ! [A: set_real] :
      ( ( topolo4860482606490270245n_real @ A )
     => ( member_set_real @ A @ ( sigma_sets_real @ borel_5078946678739801102l_real ) ) ) ).

% borel_open
thf(fact_38_borel__open,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( topolo1037242508615874353nnreal @ A )
     => ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) ) ) ).

% borel_open
thf(fact_39_open__UNIV,axiom,
    topolo1037242508615874353nnreal @ top_to7994903218803871134nnreal ).

% open_UNIV
thf(fact_40_open__UNIV,axiom,
    topolo4860482606490270245n_real @ top_top_set_real ).

% open_UNIV
thf(fact_41_open__UNIV,axiom,
    topolo8477419352202985285open_a @ top_top_set_a ).

% open_UNIV
thf(fact_42_ComplI,axiom,
    ! [C: set_a,A: set_set_a] :
      ( ~ ( member_set_a @ C @ A )
     => ( member_set_a @ C @ ( uminus6103902357914783669_set_a @ A ) ) ) ).

% ComplI
thf(fact_43_ComplI,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ~ ( member2919562650594848410nnreal @ C @ A )
     => ( member2919562650594848410nnreal @ C @ ( uminus2275888197404385410nnreal @ A ) ) ) ).

% ComplI
thf(fact_44_ComplI,axiom,
    ! [C: set_real,A: set_set_real] :
      ( ~ ( member_set_real @ C @ A )
     => ( member_set_real @ C @ ( uminus708787163358948833t_real @ A ) ) ) ).

% ComplI
thf(fact_45_ComplI,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ~ ( member603777416030116741nnreal @ C @ A )
     => ( member603777416030116741nnreal @ C @ ( uminus4762152451731718637nnreal @ A ) ) ) ).

% ComplI
thf(fact_46_ComplI,axiom,
    ! [C: a,A: set_a] :
      ( ~ ( member_a @ C @ A )
     => ( member_a @ C @ ( uminus_uminus_set_a @ A ) ) ) ).

% ComplI
thf(fact_47_ComplI,axiom,
    ! [C: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ~ ( member7908768830364227535nnreal @ C @ A )
     => ( member7908768830364227535nnreal @ C @ ( uminus5517552291522096439nnreal @ A ) ) ) ).

% ComplI
thf(fact_48_ComplI,axiom,
    ! [C: real,A: set_real] :
      ( ~ ( member_real @ C @ A )
     => ( member_real @ C @ ( uminus612125837232591019t_real @ A ) ) ) ).

% ComplI
thf(fact_49_Compl__iff,axiom,
    ! [C: set_a,A: set_set_a] :
      ( ( member_set_a @ C @ ( uminus6103902357914783669_set_a @ A ) )
      = ( ~ ( member_set_a @ C @ A ) ) ) ).

% Compl_iff
thf(fact_50_Compl__iff,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ ( uminus2275888197404385410nnreal @ A ) )
      = ( ~ ( member2919562650594848410nnreal @ C @ A ) ) ) ).

% Compl_iff
thf(fact_51_Compl__iff,axiom,
    ! [C: set_real,A: set_set_real] :
      ( ( member_set_real @ C @ ( uminus708787163358948833t_real @ A ) )
      = ( ~ ( member_set_real @ C @ A ) ) ) ).

% Compl_iff
thf(fact_52_Compl__iff,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ ( uminus4762152451731718637nnreal @ A ) )
      = ( ~ ( member603777416030116741nnreal @ C @ A ) ) ) ).

% Compl_iff
thf(fact_53_Compl__iff,axiom,
    ! [C: a,A: set_a] :
      ( ( member_a @ C @ ( uminus_uminus_set_a @ A ) )
      = ( ~ ( member_a @ C @ A ) ) ) ).

% Compl_iff
thf(fact_54_Compl__iff,axiom,
    ! [C: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C @ ( uminus5517552291522096439nnreal @ A ) )
      = ( ~ ( member7908768830364227535nnreal @ C @ A ) ) ) ).

% Compl_iff
thf(fact_55_Compl__iff,axiom,
    ! [C: real,A: set_real] :
      ( ( member_real @ C @ ( uminus612125837232591019t_real @ A ) )
      = ( ~ ( member_real @ C @ A ) ) ) ).

% Compl_iff
thf(fact_56_Compl__eq__Compl__iff,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( ( uminus_uminus_set_a @ A )
        = ( uminus_uminus_set_a @ B2 ) )
      = ( A = B2 ) ) ).

% Compl_eq_Compl_iff
thf(fact_57_Compl__eq__Compl__iff,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( ( uminus5517552291522096439nnreal @ A )
        = ( uminus5517552291522096439nnreal @ B2 ) )
      = ( A = B2 ) ) ).

% Compl_eq_Compl_iff
thf(fact_58_Compl__eq__Compl__iff,axiom,
    ! [A: set_real,B2: set_real] :
      ( ( ( uminus612125837232591019t_real @ A )
        = ( uminus612125837232591019t_real @ B2 ) )
      = ( A = B2 ) ) ).

% Compl_eq_Compl_iff
thf(fact_59_insertCI,axiom,
    ! [A2: set_a,B2: set_set_a,B: set_a] :
      ( ( ~ ( member_set_a @ A2 @ B2 )
       => ( A2 = B ) )
     => ( member_set_a @ A2 @ ( insert_set_a @ B @ B2 ) ) ) ).

% insertCI
thf(fact_60_insertCI,axiom,
    ! [A2: real > extend8495563244428889912nnreal,B2: set_re5328672808648366137nnreal,B: real > extend8495563244428889912nnreal] :
      ( ( ~ ( member2919562650594848410nnreal @ A2 @ B2 )
       => ( A2 = B ) )
     => ( member2919562650594848410nnreal @ A2 @ ( insert152533262698245683nnreal @ B @ B2 ) ) ) ).

% insertCI
thf(fact_61_insertCI,axiom,
    ! [A2: set_real,B2: set_set_real,B: set_real] :
      ( ( ~ ( member_set_real @ A2 @ B2 )
       => ( A2 = B ) )
     => ( member_set_real @ A2 @ ( insert_set_real @ B @ B2 ) ) ) ).

% insertCI
thf(fact_62_insertCI,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( ~ ( member603777416030116741nnreal @ A2 @ B2 )
       => ( A2 = B ) )
     => ( member603777416030116741nnreal @ A2 @ ( insert1343806209672318238nnreal @ B @ B2 ) ) ) ).

% insertCI
thf(fact_63_insert__iff,axiom,
    ! [A2: set_a,B: set_a,A: set_set_a] :
      ( ( member_set_a @ A2 @ ( insert_set_a @ B @ A ) )
      = ( ( A2 = B )
        | ( member_set_a @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_64_insert__iff,axiom,
    ! [A2: real > extend8495563244428889912nnreal,B: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ A2 @ ( insert152533262698245683nnreal @ B @ A ) )
      = ( ( A2 = B )
        | ( member2919562650594848410nnreal @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_65_insert__iff,axiom,
    ! [A2: set_real,B: set_real,A: set_set_real] :
      ( ( member_set_real @ A2 @ ( insert_set_real @ B @ A ) )
      = ( ( A2 = B )
        | ( member_set_real @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_66_insert__iff,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,B: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ ( insert1343806209672318238nnreal @ B @ A ) )
      = ( ( A2 = B )
        | ( member603777416030116741nnreal @ A2 @ A ) ) ) ).

% insert_iff
thf(fact_67_verit__minus__simplify_I4_J,axiom,
    ! [B: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
      = B ) ).

% verit_minus_simplify(4)
thf(fact_68_add_Oinverse__inverse,axiom,
    ! [A2: real] :
      ( ( uminus_uminus_real @ ( uminus_uminus_real @ A2 ) )
      = A2 ) ).

% add.inverse_inverse
thf(fact_69_neg__equal__iff__equal,axiom,
    ! [A2: real,B: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = ( uminus_uminus_real @ B ) )
      = ( A2 = B ) ) ).

% neg_equal_iff_equal
thf(fact_70_boolean__algebra__class_Oboolean__algebra_Odouble__compl,axiom,
    ! [X2: set_a] :
      ( ( uminus_uminus_set_a @ ( uminus_uminus_set_a @ X2 ) )
      = X2 ) ).

% boolean_algebra_class.boolean_algebra.double_compl
thf(fact_71_boolean__algebra__class_Oboolean__algebra_Odouble__compl,axiom,
    ! [X2: set_Ex3793607809372303086nnreal] :
      ( ( uminus5517552291522096439nnreal @ ( uminus5517552291522096439nnreal @ X2 ) )
      = X2 ) ).

% boolean_algebra_class.boolean_algebra.double_compl
thf(fact_72_boolean__algebra__class_Oboolean__algebra_Odouble__compl,axiom,
    ! [X2: set_real] :
      ( ( uminus612125837232591019t_real @ ( uminus612125837232591019t_real @ X2 ) )
      = X2 ) ).

% boolean_algebra_class.boolean_algebra.double_compl
thf(fact_73_UNIV__I,axiom,
    ! [X2: set_a] : ( member_set_a @ X2 @ top_top_set_set_a ) ).

% UNIV_I
thf(fact_74_UNIV__I,axiom,
    ! [X2: real > extend8495563244428889912nnreal] : ( member2919562650594848410nnreal @ X2 @ top_to315565310957491945nnreal ) ).

% UNIV_I
thf(fact_75_UNIV__I,axiom,
    ! [X2: set_real] : ( member_set_real @ X2 @ top_top_set_set_real ) ).

% UNIV_I
thf(fact_76_UNIV__I,axiom,
    ! [X2: set_Ex3793607809372303086nnreal] : ( member603777416030116741nnreal @ X2 @ top_to3356475028079756884nnreal ) ).

% UNIV_I
thf(fact_77_UNIV__I,axiom,
    ! [X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ top_to7994903218803871134nnreal ) ).

% UNIV_I
thf(fact_78_UNIV__I,axiom,
    ! [X2: real] : ( member_real @ X2 @ top_top_set_real ) ).

% UNIV_I
thf(fact_79_UNIV__I,axiom,
    ! [X2: a] : ( member_a @ X2 @ top_top_set_a ) ).

% UNIV_I
thf(fact_80_boolean__algebra__class_Oboolean__algebra_Ocompl__eq__compl__iff,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( ( uminus_uminus_set_a @ X2 )
        = ( uminus_uminus_set_a @ Y ) )
      = ( X2 = Y ) ) ).

% boolean_algebra_class.boolean_algebra.compl_eq_compl_iff
thf(fact_81_boolean__algebra__class_Oboolean__algebra_Ocompl__eq__compl__iff,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal] :
      ( ( ( uminus5517552291522096439nnreal @ X2 )
        = ( uminus5517552291522096439nnreal @ Y ) )
      = ( X2 = Y ) ) ).

% boolean_algebra_class.boolean_algebra.compl_eq_compl_iff
thf(fact_82_boolean__algebra__class_Oboolean__algebra_Ocompl__eq__compl__iff,axiom,
    ! [X2: set_real,Y: set_real] :
      ( ( ( uminus612125837232591019t_real @ X2 )
        = ( uminus612125837232591019t_real @ Y ) )
      = ( X2 = Y ) ) ).

% boolean_algebra_class.boolean_algebra.compl_eq_compl_iff
thf(fact_83_UNIV__witness,axiom,
    ? [X: set_a] : ( member_set_a @ X @ top_top_set_set_a ) ).

% UNIV_witness
thf(fact_84_UNIV__witness,axiom,
    ? [X: real > extend8495563244428889912nnreal] : ( member2919562650594848410nnreal @ X @ top_to315565310957491945nnreal ) ).

% UNIV_witness
thf(fact_85_UNIV__witness,axiom,
    ? [X: set_real] : ( member_set_real @ X @ top_top_set_set_real ) ).

% UNIV_witness
thf(fact_86_UNIV__witness,axiom,
    ? [X: set_Ex3793607809372303086nnreal] : ( member603777416030116741nnreal @ X @ top_to3356475028079756884nnreal ) ).

% UNIV_witness
thf(fact_87_UNIV__witness,axiom,
    ? [X: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X @ top_to7994903218803871134nnreal ) ).

% UNIV_witness
thf(fact_88_UNIV__witness,axiom,
    ? [X: real] : ( member_real @ X @ top_top_set_real ) ).

% UNIV_witness
thf(fact_89_UNIV__witness,axiom,
    ? [X: a] : ( member_a @ X @ top_top_set_a ) ).

% UNIV_witness
thf(fact_90_UNIV__eq__I,axiom,
    ! [A: set_set_a] :
      ( ! [X: set_a] : ( member_set_a @ X @ A )
     => ( top_top_set_set_a = A ) ) ).

% UNIV_eq_I
thf(fact_91_UNIV__eq__I,axiom,
    ! [A: set_re5328672808648366137nnreal] :
      ( ! [X: real > extend8495563244428889912nnreal] : ( member2919562650594848410nnreal @ X @ A )
     => ( top_to315565310957491945nnreal = A ) ) ).

% UNIV_eq_I
thf(fact_92_UNIV__eq__I,axiom,
    ! [A: set_set_real] :
      ( ! [X: set_real] : ( member_set_real @ X @ A )
     => ( top_top_set_set_real = A ) ) ).

% UNIV_eq_I
thf(fact_93_UNIV__eq__I,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ! [X: set_Ex3793607809372303086nnreal] : ( member603777416030116741nnreal @ X @ A )
     => ( top_to3356475028079756884nnreal = A ) ) ).

% UNIV_eq_I
thf(fact_94_UNIV__eq__I,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ! [X: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X @ A )
     => ( top_to7994903218803871134nnreal = A ) ) ).

% UNIV_eq_I
thf(fact_95_UNIV__eq__I,axiom,
    ! [A: set_real] :
      ( ! [X: real] : ( member_real @ X @ A )
     => ( top_top_set_real = A ) ) ).

% UNIV_eq_I
thf(fact_96_UNIV__eq__I,axiom,
    ! [A: set_a] :
      ( ! [X: a] : ( member_a @ X @ A )
     => ( top_top_set_a = A ) ) ).

% UNIV_eq_I
thf(fact_97_minus__equation__iff,axiom,
    ! [A2: real,B: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = B )
      = ( ( uminus_uminus_real @ B )
        = A2 ) ) ).

% minus_equation_iff
thf(fact_98_equation__minus__iff,axiom,
    ! [A2: real,B: real] :
      ( ( A2
        = ( uminus_uminus_real @ B ) )
      = ( B
        = ( uminus_uminus_real @ A2 ) ) ) ).

% equation_minus_iff
thf(fact_99_verit__negate__coefficient_I3_J,axiom,
    ! [A2: real,B: real] :
      ( ( A2 = B )
     => ( ( uminus_uminus_real @ A2 )
        = ( uminus_uminus_real @ B ) ) ) ).

% verit_negate_coefficient(3)
thf(fact_100_mk__disjoint__insert,axiom,
    ! [A2: set_a,A: set_set_a] :
      ( ( member_set_a @ A2 @ A )
     => ? [B3: set_set_a] :
          ( ( A
            = ( insert_set_a @ A2 @ B3 ) )
          & ~ ( member_set_a @ A2 @ B3 ) ) ) ).

% mk_disjoint_insert
thf(fact_101_mk__disjoint__insert,axiom,
    ! [A2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ A2 @ A )
     => ? [B3: set_re5328672808648366137nnreal] :
          ( ( A
            = ( insert152533262698245683nnreal @ A2 @ B3 ) )
          & ~ ( member2919562650594848410nnreal @ A2 @ B3 ) ) ) ).

% mk_disjoint_insert
thf(fact_102_mk__disjoint__insert,axiom,
    ! [A2: set_real,A: set_set_real] :
      ( ( member_set_real @ A2 @ A )
     => ? [B3: set_set_real] :
          ( ( A
            = ( insert_set_real @ A2 @ B3 ) )
          & ~ ( member_set_real @ A2 @ B3 ) ) ) ).

% mk_disjoint_insert
thf(fact_103_mk__disjoint__insert,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ A )
     => ? [B3: set_se4580700918925141924nnreal] :
          ( ( A
            = ( insert1343806209672318238nnreal @ A2 @ B3 ) )
          & ~ ( member603777416030116741nnreal @ A2 @ B3 ) ) ) ).

% mk_disjoint_insert
thf(fact_104_insert__eq__iff,axiom,
    ! [A2: set_a,A: set_set_a,B: set_a,B2: set_set_a] :
      ( ~ ( member_set_a @ A2 @ A )
     => ( ~ ( member_set_a @ B @ B2 )
       => ( ( ( insert_set_a @ A2 @ A )
            = ( insert_set_a @ B @ B2 ) )
          = ( ( ( A2 = B )
             => ( A = B2 ) )
            & ( ( A2 != B )
             => ? [C2: set_set_a] :
                  ( ( A
                    = ( insert_set_a @ B @ C2 ) )
                  & ~ ( member_set_a @ B @ C2 )
                  & ( B2
                    = ( insert_set_a @ A2 @ C2 ) )
                  & ~ ( member_set_a @ A2 @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_105_insert__eq__iff,axiom,
    ! [A2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B: real > extend8495563244428889912nnreal,B2: set_re5328672808648366137nnreal] :
      ( ~ ( member2919562650594848410nnreal @ A2 @ A )
     => ( ~ ( member2919562650594848410nnreal @ B @ B2 )
       => ( ( ( insert152533262698245683nnreal @ A2 @ A )
            = ( insert152533262698245683nnreal @ B @ B2 ) )
          = ( ( ( A2 = B )
             => ( A = B2 ) )
            & ( ( A2 != B )
             => ? [C2: set_re5328672808648366137nnreal] :
                  ( ( A
                    = ( insert152533262698245683nnreal @ B @ C2 ) )
                  & ~ ( member2919562650594848410nnreal @ B @ C2 )
                  & ( B2
                    = ( insert152533262698245683nnreal @ A2 @ C2 ) )
                  & ~ ( member2919562650594848410nnreal @ A2 @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_106_insert__eq__iff,axiom,
    ! [A2: set_real,A: set_set_real,B: set_real,B2: set_set_real] :
      ( ~ ( member_set_real @ A2 @ A )
     => ( ~ ( member_set_real @ B @ B2 )
       => ( ( ( insert_set_real @ A2 @ A )
            = ( insert_set_real @ B @ B2 ) )
          = ( ( ( A2 = B )
             => ( A = B2 ) )
            & ( ( A2 != B )
             => ? [C2: set_set_real] :
                  ( ( A
                    = ( insert_set_real @ B @ C2 ) )
                  & ~ ( member_set_real @ B @ C2 )
                  & ( B2
                    = ( insert_set_real @ A2 @ C2 ) )
                  & ~ ( member_set_real @ A2 @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_107_insert__eq__iff,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ~ ( member603777416030116741nnreal @ A2 @ A )
     => ( ~ ( member603777416030116741nnreal @ B @ B2 )
       => ( ( ( insert1343806209672318238nnreal @ A2 @ A )
            = ( insert1343806209672318238nnreal @ B @ B2 ) )
          = ( ( ( A2 = B )
             => ( A = B2 ) )
            & ( ( A2 != B )
             => ? [C2: set_se4580700918925141924nnreal] :
                  ( ( A
                    = ( insert1343806209672318238nnreal @ B @ C2 ) )
                  & ~ ( member603777416030116741nnreal @ B @ C2 )
                  & ( B2
                    = ( insert1343806209672318238nnreal @ A2 @ C2 ) )
                  & ~ ( member603777416030116741nnreal @ A2 @ C2 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_108_insert__absorb,axiom,
    ! [A2: set_a,A: set_set_a] :
      ( ( member_set_a @ A2 @ A )
     => ( ( insert_set_a @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_109_insert__absorb,axiom,
    ! [A2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ A2 @ A )
     => ( ( insert152533262698245683nnreal @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_110_insert__absorb,axiom,
    ! [A2: set_real,A: set_set_real] :
      ( ( member_set_real @ A2 @ A )
     => ( ( insert_set_real @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_111_insert__absorb,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ A )
     => ( ( insert1343806209672318238nnreal @ A2 @ A )
        = A ) ) ).

% insert_absorb
thf(fact_112_insert__ident,axiom,
    ! [X2: set_a,A: set_set_a,B2: set_set_a] :
      ( ~ ( member_set_a @ X2 @ A )
     => ( ~ ( member_set_a @ X2 @ B2 )
       => ( ( ( insert_set_a @ X2 @ A )
            = ( insert_set_a @ X2 @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% insert_ident
thf(fact_113_insert__ident,axiom,
    ! [X2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ~ ( member2919562650594848410nnreal @ X2 @ A )
     => ( ~ ( member2919562650594848410nnreal @ X2 @ B2 )
       => ( ( ( insert152533262698245683nnreal @ X2 @ A )
            = ( insert152533262698245683nnreal @ X2 @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% insert_ident
thf(fact_114_insert__ident,axiom,
    ! [X2: set_real,A: set_set_real,B2: set_set_real] :
      ( ~ ( member_set_real @ X2 @ A )
     => ( ~ ( member_set_real @ X2 @ B2 )
       => ( ( ( insert_set_real @ X2 @ A )
            = ( insert_set_real @ X2 @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% insert_ident
thf(fact_115_insert__ident,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ~ ( member603777416030116741nnreal @ X2 @ A )
     => ( ~ ( member603777416030116741nnreal @ X2 @ B2 )
       => ( ( ( insert1343806209672318238nnreal @ X2 @ A )
            = ( insert1343806209672318238nnreal @ X2 @ B2 ) )
          = ( A = B2 ) ) ) ) ).

% insert_ident
thf(fact_116_Set_Oset__insert,axiom,
    ! [X2: set_a,A: set_set_a] :
      ( ( member_set_a @ X2 @ A )
     => ~ ! [B3: set_set_a] :
            ( ( A
              = ( insert_set_a @ X2 @ B3 ) )
           => ( member_set_a @ X2 @ B3 ) ) ) ).

% Set.set_insert
thf(fact_117_Set_Oset__insert,axiom,
    ! [X2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ X2 @ A )
     => ~ ! [B3: set_re5328672808648366137nnreal] :
            ( ( A
              = ( insert152533262698245683nnreal @ X2 @ B3 ) )
           => ( member2919562650594848410nnreal @ X2 @ B3 ) ) ) ).

% Set.set_insert
thf(fact_118_Set_Oset__insert,axiom,
    ! [X2: set_real,A: set_set_real] :
      ( ( member_set_real @ X2 @ A )
     => ~ ! [B3: set_set_real] :
            ( ( A
              = ( insert_set_real @ X2 @ B3 ) )
           => ( member_set_real @ X2 @ B3 ) ) ) ).

% Set.set_insert
thf(fact_119_Set_Oset__insert,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ X2 @ A )
     => ~ ! [B3: set_se4580700918925141924nnreal] :
            ( ( A
              = ( insert1343806209672318238nnreal @ X2 @ B3 ) )
           => ( member603777416030116741nnreal @ X2 @ B3 ) ) ) ).

% Set.set_insert
thf(fact_120_insertI2,axiom,
    ! [A2: set_a,B2: set_set_a,B: set_a] :
      ( ( member_set_a @ A2 @ B2 )
     => ( member_set_a @ A2 @ ( insert_set_a @ B @ B2 ) ) ) ).

% insertI2
thf(fact_121_insertI2,axiom,
    ! [A2: real > extend8495563244428889912nnreal,B2: set_re5328672808648366137nnreal,B: real > extend8495563244428889912nnreal] :
      ( ( member2919562650594848410nnreal @ A2 @ B2 )
     => ( member2919562650594848410nnreal @ A2 @ ( insert152533262698245683nnreal @ B @ B2 ) ) ) ).

% insertI2
thf(fact_122_insertI2,axiom,
    ! [A2: set_real,B2: set_set_real,B: set_real] :
      ( ( member_set_real @ A2 @ B2 )
     => ( member_set_real @ A2 @ ( insert_set_real @ B @ B2 ) ) ) ).

% insertI2
thf(fact_123_insertI2,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ B2 )
     => ( member603777416030116741nnreal @ A2 @ ( insert1343806209672318238nnreal @ B @ B2 ) ) ) ).

% insertI2
thf(fact_124_insertI1,axiom,
    ! [A2: set_a,B2: set_set_a] : ( member_set_a @ A2 @ ( insert_set_a @ A2 @ B2 ) ) ).

% insertI1
thf(fact_125_insertI1,axiom,
    ! [A2: real > extend8495563244428889912nnreal,B2: set_re5328672808648366137nnreal] : ( member2919562650594848410nnreal @ A2 @ ( insert152533262698245683nnreal @ A2 @ B2 ) ) ).

% insertI1
thf(fact_126_insertI1,axiom,
    ! [A2: set_real,B2: set_set_real] : ( member_set_real @ A2 @ ( insert_set_real @ A2 @ B2 ) ) ).

% insertI1
thf(fact_127_insertI1,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] : ( member603777416030116741nnreal @ A2 @ ( insert1343806209672318238nnreal @ A2 @ B2 ) ) ).

% insertI1
thf(fact_128_insertE,axiom,
    ! [A2: set_a,B: set_a,A: set_set_a] :
      ( ( member_set_a @ A2 @ ( insert_set_a @ B @ A ) )
     => ( ( A2 != B )
       => ( member_set_a @ A2 @ A ) ) ) ).

% insertE
thf(fact_129_insertE,axiom,
    ! [A2: real > extend8495563244428889912nnreal,B: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ A2 @ ( insert152533262698245683nnreal @ B @ A ) )
     => ( ( A2 != B )
       => ( member2919562650594848410nnreal @ A2 @ A ) ) ) ).

% insertE
thf(fact_130_insertE,axiom,
    ! [A2: set_real,B: set_real,A: set_set_real] :
      ( ( member_set_real @ A2 @ ( insert_set_real @ B @ A ) )
     => ( ( A2 != B )
       => ( member_set_real @ A2 @ A ) ) ) ).

% insertE
thf(fact_131_insertE,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,B: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ ( insert1343806209672318238nnreal @ B @ A ) )
     => ( ( A2 != B )
       => ( member603777416030116741nnreal @ A2 @ A ) ) ) ).

% insertE
thf(fact_132_mem__Collect__eq,axiom,
    ! [A2: set_a,P: set_a > $o] :
      ( ( member_set_a @ A2 @ ( collect_set_a @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_133_mem__Collect__eq,axiom,
    ! [A2: real > extend8495563244428889912nnreal,P: ( real > extend8495563244428889912nnreal ) > $o] :
      ( ( member2919562650594848410nnreal @ A2 @ ( collec9130413544115709400nnreal @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_134_mem__Collect__eq,axiom,
    ! [A2: set_real,P: set_real > $o] :
      ( ( member_set_real @ A2 @ ( collect_set_real @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_135_mem__Collect__eq,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,P: set_Ex3793607809372303086nnreal > $o] :
      ( ( member603777416030116741nnreal @ A2 @ ( collec4858231573021281987nnreal @ P ) )
      = ( P @ A2 ) ) ).

% mem_Collect_eq
thf(fact_136_Collect__mem__eq,axiom,
    ! [A: set_set_a] :
      ( ( collect_set_a
        @ ^ [X3: set_a] : ( member_set_a @ X3 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_137_Collect__mem__eq,axiom,
    ! [A: set_re5328672808648366137nnreal] :
      ( ( collec9130413544115709400nnreal
        @ ^ [X3: real > extend8495563244428889912nnreal] : ( member2919562650594848410nnreal @ X3 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_138_Collect__mem__eq,axiom,
    ! [A: set_set_real] :
      ( ( collect_set_real
        @ ^ [X3: set_real] : ( member_set_real @ X3 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_139_Collect__mem__eq,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ( collec4858231573021281987nnreal
        @ ^ [X3: set_Ex3793607809372303086nnreal] : ( member603777416030116741nnreal @ X3 @ A ) )
      = A ) ).

% Collect_mem_eq
thf(fact_140_double__complement,axiom,
    ! [A: set_a] :
      ( ( uminus_uminus_set_a @ ( uminus_uminus_set_a @ A ) )
      = A ) ).

% double_complement
thf(fact_141_double__complement,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( uminus5517552291522096439nnreal @ ( uminus5517552291522096439nnreal @ A ) )
      = A ) ).

% double_complement
thf(fact_142_double__complement,axiom,
    ! [A: set_real] :
      ( ( uminus612125837232591019t_real @ ( uminus612125837232591019t_real @ A ) )
      = A ) ).

% double_complement
thf(fact_143_ComplD,axiom,
    ! [C: set_a,A: set_set_a] :
      ( ( member_set_a @ C @ ( uminus6103902357914783669_set_a @ A ) )
     => ~ ( member_set_a @ C @ A ) ) ).

% ComplD
thf(fact_144_ComplD,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ ( uminus2275888197404385410nnreal @ A ) )
     => ~ ( member2919562650594848410nnreal @ C @ A ) ) ).

% ComplD
thf(fact_145_ComplD,axiom,
    ! [C: set_real,A: set_set_real] :
      ( ( member_set_real @ C @ ( uminus708787163358948833t_real @ A ) )
     => ~ ( member_set_real @ C @ A ) ) ).

% ComplD
thf(fact_146_ComplD,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ ( uminus4762152451731718637nnreal @ A ) )
     => ~ ( member603777416030116741nnreal @ C @ A ) ) ).

% ComplD
thf(fact_147_ComplD,axiom,
    ! [C: a,A: set_a] :
      ( ( member_a @ C @ ( uminus_uminus_set_a @ A ) )
     => ~ ( member_a @ C @ A ) ) ).

% ComplD
thf(fact_148_ComplD,axiom,
    ! [C: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ C @ ( uminus5517552291522096439nnreal @ A ) )
     => ~ ( member7908768830364227535nnreal @ C @ A ) ) ).

% ComplD
thf(fact_149_ComplD,axiom,
    ! [C: real,A: set_real] :
      ( ( member_real @ C @ ( uminus612125837232591019t_real @ A ) )
     => ~ ( member_real @ C @ A ) ) ).

% ComplD
thf(fact_150_insert__UNIV,axiom,
    ! [X2: extend8495563244428889912nnreal] :
      ( ( insert7407984058720857448nnreal @ X2 @ top_to7994903218803871134nnreal )
      = top_to7994903218803871134nnreal ) ).

% insert_UNIV
thf(fact_151_insert__UNIV,axiom,
    ! [X2: real] :
      ( ( insert_real @ X2 @ top_top_set_real )
      = top_top_set_real ) ).

% insert_UNIV
thf(fact_152_insert__UNIV,axiom,
    ! [X2: a] :
      ( ( insert_a @ X2 @ top_top_set_a )
      = top_top_set_a ) ).

% insert_UNIV
thf(fact_153_open__greaterThanLessThan,axiom,
    ! [A2: real,B: real] : ( topolo4860482606490270245n_real @ ( set_or1633881224788618240n_real @ A2 @ B ) ) ).

% open_greaterThanLessThan
thf(fact_154_iso__tuple__UNIV__I,axiom,
    ! [X2: set_a] : ( member_set_a @ X2 @ top_top_set_set_a ) ).

% iso_tuple_UNIV_I
thf(fact_155_iso__tuple__UNIV__I,axiom,
    ! [X2: real > extend8495563244428889912nnreal] : ( member2919562650594848410nnreal @ X2 @ top_to315565310957491945nnreal ) ).

% iso_tuple_UNIV_I
thf(fact_156_iso__tuple__UNIV__I,axiom,
    ! [X2: set_real] : ( member_set_real @ X2 @ top_top_set_set_real ) ).

% iso_tuple_UNIV_I
thf(fact_157_iso__tuple__UNIV__I,axiom,
    ! [X2: set_Ex3793607809372303086nnreal] : ( member603777416030116741nnreal @ X2 @ top_to3356475028079756884nnreal ) ).

% iso_tuple_UNIV_I
thf(fact_158_iso__tuple__UNIV__I,axiom,
    ! [X2: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X2 @ top_to7994903218803871134nnreal ) ).

% iso_tuple_UNIV_I
thf(fact_159_iso__tuple__UNIV__I,axiom,
    ! [X2: real] : ( member_real @ X2 @ top_top_set_real ) ).

% iso_tuple_UNIV_I
thf(fact_160_iso__tuple__UNIV__I,axiom,
    ! [X2: a] : ( member_a @ X2 @ top_top_set_a ) ).

% iso_tuple_UNIV_I
thf(fact_161_exists__diff,axiom,
    ! [P: set_a > $o] :
      ( ( ? [S: set_a] : ( P @ ( uminus_uminus_set_a @ S ) ) )
      = ( ? [X4: set_a] : ( P @ X4 ) ) ) ).

% exists_diff
thf(fact_162_exists__diff,axiom,
    ! [P: set_Ex3793607809372303086nnreal > $o] :
      ( ( ? [S: set_Ex3793607809372303086nnreal] : ( P @ ( uminus5517552291522096439nnreal @ S ) ) )
      = ( ? [X4: set_Ex3793607809372303086nnreal] : ( P @ X4 ) ) ) ).

% exists_diff
thf(fact_163_exists__diff,axiom,
    ! [P: set_real > $o] :
      ( ( ? [S: set_real] : ( P @ ( uminus612125837232591019t_real @ S ) ) )
      = ( ? [X4: set_real] : ( P @ X4 ) ) ) ).

% exists_diff
thf(fact_164_Compl__in__sets__lebesgue,axiom,
    ! [A: set_real] :
      ( ( member_set_real @ ( uminus612125837232591019t_real @ A ) @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) )
      = ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) ) ) ).

% Compl_in_sets_lebesgue
thf(fact_165_fsigma__UNIV,axiom,
    lebesgue_fsigma_real @ top_top_set_real ).

% fsigma_UNIV
thf(fact_166_space__lborel,axiom,
    ( ( sigma_space_real @ lebesgue_lborel_real )
    = ( sigma_space_real @ borel_5078946678739801102l_real ) ) ).

% space_lborel
thf(fact_167_space__borel,axiom,
    ( ( sigma_space_a @ borel_5459123734250506524orel_a )
    = top_top_set_a ) ).

% space_borel
thf(fact_168_space__borel,axiom,
    ( ( sigma_space_real @ borel_5078946678739801102l_real )
    = top_top_set_real ) ).

% space_borel
thf(fact_169_space__borel,axiom,
    ( ( sigma_3147302497200244656nnreal @ borel_6524799422816628122nnreal )
    = top_to7994903218803871134nnreal ) ).

% space_borel
thf(fact_170_sets__uniform__count__measure__eq__UNIV_I1_J,axiom,
    ( ( sigma_5465916536984168985nnreal @ ( nonneg1394255657502361022nnreal @ top_to7994903218803871134nnreal ) )
    = top_to3356475028079756884nnreal ) ).

% sets_uniform_count_measure_eq_UNIV(1)
thf(fact_171_sets__uniform__count__measure__eq__UNIV_I1_J,axiom,
    ( ( sigma_sets_real @ ( nonneg387815094551837234e_real @ top_top_set_real ) )
    = top_top_set_set_real ) ).

% sets_uniform_count_measure_eq_UNIV(1)
thf(fact_172_sets__uniform__count__measure__eq__UNIV_I1_J,axiom,
    ( ( sigma_sets_a @ ( nonneg7367794086797660664sure_a @ top_top_set_a ) )
    = top_top_set_set_a ) ).

% sets_uniform_count_measure_eq_UNIV(1)
thf(fact_173_space__diff__measure,axiom,
    ! [M: sigma_measure_a,N: sigma_measure_a] :
      ( ( sigma_space_a @ ( radon_diff_measure_a @ M @ N ) )
      = ( sigma_space_a @ M ) ) ).

% space_diff_measure
thf(fact_174_sets__uniform__count__measure__eq__UNIV_I2_J,axiom,
    ( top_to3356475028079756884nnreal
    = ( sigma_5465916536984168985nnreal @ ( nonneg1394255657502361022nnreal @ top_to7994903218803871134nnreal ) ) ) ).

% sets_uniform_count_measure_eq_UNIV(2)
thf(fact_175_sets__uniform__count__measure__eq__UNIV_I2_J,axiom,
    ( top_top_set_set_real
    = ( sigma_sets_real @ ( nonneg387815094551837234e_real @ top_top_set_real ) ) ) ).

% sets_uniform_count_measure_eq_UNIV(2)
thf(fact_176_sets__uniform__count__measure__eq__UNIV_I2_J,axiom,
    ( top_top_set_set_a
    = ( sigma_sets_a @ ( nonneg7367794086797660664sure_a @ top_top_set_a ) ) ) ).

% sets_uniform_count_measure_eq_UNIV(2)
thf(fact_177_sets__uniform__count__measure__count__space,axiom,
    ! [A: set_a] :
      ( ( sigma_sets_a @ ( nonneg7367794086797660664sure_a @ A ) )
      = ( sigma_sets_a @ ( sigma_count_space_a @ A ) ) ) ).

% sets_uniform_count_measure_count_space
thf(fact_178_sets__uniform__count__measure__count__space,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( sigma_5465916536984168985nnreal @ ( nonneg1394255657502361022nnreal @ A ) )
      = ( sigma_5465916536984168985nnreal @ ( sigma_7204664791115113951nnreal @ A ) ) ) ).

% sets_uniform_count_measure_count_space
thf(fact_179_sets__uniform__count__measure__count__space,axiom,
    ! [A: set_real] :
      ( ( sigma_sets_real @ ( nonneg387815094551837234e_real @ A ) )
      = ( sigma_sets_real @ ( sigma_8508918144308765139e_real @ A ) ) ) ).

% sets_uniform_count_measure_count_space
thf(fact_180_top__set__def,axiom,
    ( top_to7994903218803871134nnreal
    = ( collec6648975593938027277nnreal @ top_to5118619752887738471real_o ) ) ).

% top_set_def
thf(fact_181_top__set__def,axiom,
    ( top_top_set_real
    = ( collect_real @ top_top_real_o ) ) ).

% top_set_def
thf(fact_182_top__set__def,axiom,
    ( top_top_set_a
    = ( collect_a @ top_top_a_o ) ) ).

% top_set_def
thf(fact_183_lborel__neq__count__space,axiom,
    ! [A: set_real] :
      ( lebesgue_lborel_real
     != ( sigma_8508918144308765139e_real @ A ) ) ).

% lborel_neq_count_space
thf(fact_184_sets__UNIV,axiom,
    ! [A: set_Ex3793607809372303086nnreal] : ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( sigma_7204664791115113951nnreal @ top_to7994903218803871134nnreal ) ) ) ).

% sets_UNIV
thf(fact_185_sets__UNIV,axiom,
    ! [A: set_real] : ( member_set_real @ A @ ( sigma_sets_real @ ( sigma_8508918144308765139e_real @ top_top_set_real ) ) ) ).

% sets_UNIV
thf(fact_186_sets__UNIV,axiom,
    ! [A: set_a] : ( member_set_a @ A @ ( sigma_sets_a @ ( sigma_count_space_a @ top_top_set_a ) ) ) ).

% sets_UNIV
thf(fact_187_measurable__count__space__insert,axiom,
    ! [S2: set_a,S3: set_set_a,A: set_set_a] :
      ( ( member_set_a @ S2 @ S3 )
     => ( ( member_set_set_a @ A @ ( sigma_sets_set_a @ ( sigma_1106005778614564215_set_a @ S3 ) ) )
       => ( member_set_set_a @ ( insert_set_a @ S2 @ A ) @ ( sigma_sets_set_a @ ( sigma_1106005778614564215_set_a @ S3 ) ) ) ) ) ).

% measurable_count_space_insert
thf(fact_188_measurable__count__space__insert,axiom,
    ! [S2: real > extend8495563244428889912nnreal,S3: set_re5328672808648366137nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ S2 @ S3 )
     => ( ( member524040414084610768nnreal @ A @ ( sigma_3125015092713243876nnreal @ ( sigma_2847285985465031850nnreal @ S3 ) ) )
       => ( member524040414084610768nnreal @ ( insert152533262698245683nnreal @ S2 @ A ) @ ( sigma_3125015092713243876nnreal @ ( sigma_2847285985465031850nnreal @ S3 ) ) ) ) ) ).

% measurable_count_space_insert
thf(fact_189_measurable__count__space__insert,axiom,
    ! [S2: set_real,S3: set_set_real,A: set_set_real] :
      ( ( member_set_real @ S2 @ S3 )
     => ( ( member_set_set_real @ A @ ( sigma_sets_set_real @ ( sigma_3507695683712708105t_real @ S3 ) ) )
       => ( member_set_set_real @ ( insert_set_real @ S2 @ A ) @ ( sigma_sets_set_real @ ( sigma_3507695683712708105t_real @ S3 ) ) ) ) ) ).

% measurable_count_space_insert
thf(fact_190_measurable__count__space__insert,axiom,
    ! [S2: set_Ex3793607809372303086nnreal,S3: set_se4580700918925141924nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ S2 @ S3 )
     => ( ( member6568240578637133883nnreal @ A @ ( sigma_5308793447563920847nnreal @ ( sigma_384769719376554389nnreal @ S3 ) ) )
       => ( member6568240578637133883nnreal @ ( insert1343806209672318238nnreal @ S2 @ A ) @ ( sigma_5308793447563920847nnreal @ ( sigma_384769719376554389nnreal @ S3 ) ) ) ) ) ).

% measurable_count_space_insert
thf(fact_191_measurable__count__space__insert,axiom,
    ! [S2: a,S3: set_a,A: set_a] :
      ( ( member_a @ S2 @ S3 )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ ( sigma_count_space_a @ S3 ) ) )
       => ( member_set_a @ ( insert_a @ S2 @ A ) @ ( sigma_sets_a @ ( sigma_count_space_a @ S3 ) ) ) ) ) ).

% measurable_count_space_insert
thf(fact_192_measurable__count__space__insert,axiom,
    ! [S2: extend8495563244428889912nnreal,S3: set_Ex3793607809372303086nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member7908768830364227535nnreal @ S2 @ S3 )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( sigma_7204664791115113951nnreal @ S3 ) ) )
       => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ S2 @ A ) @ ( sigma_5465916536984168985nnreal @ ( sigma_7204664791115113951nnreal @ S3 ) ) ) ) ) ).

% measurable_count_space_insert
thf(fact_193_measurable__count__space__insert,axiom,
    ! [S2: real,S3: set_real,A: set_real] :
      ( ( member_real @ S2 @ S3 )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ ( sigma_8508918144308765139e_real @ S3 ) ) )
       => ( member_set_real @ ( insert_real @ S2 @ A ) @ ( sigma_sets_real @ ( sigma_8508918144308765139e_real @ S3 ) ) ) ) ) ).

% measurable_count_space_insert
thf(fact_194_space__completion,axiom,
    ! [M: sigma_measure_real] :
      ( ( sigma_space_real @ ( comple3506806835435775778n_real @ M ) )
      = ( sigma_space_real @ M ) ) ).

% space_completion
thf(fact_195_sets__completionI__sets,axiom,
    ! [A: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
     => ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ).

% sets_completionI_sets
thf(fact_196_sets__completionI__sets,axiom,
    ! [A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ).

% sets_completionI_sets
thf(fact_197_sets__completionI__sets,axiom,
    ! [A: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
     => ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ).

% sets_completionI_sets
thf(fact_198_sets_Otop,axiom,
    ! [M: sigma_measure_a] : ( member_set_a @ ( sigma_space_a @ M ) @ ( sigma_sets_a @ M ) ) ).

% sets.top
thf(fact_199_sets_Otop,axiom,
    ! [M: sigma_7234349610311085201nnreal] : ( member603777416030116741nnreal @ ( sigma_3147302497200244656nnreal @ M ) @ ( sigma_5465916536984168985nnreal @ M ) ) ).

% sets.top
thf(fact_200_sets_Otop,axiom,
    ! [M: sigma_measure_real] : ( member_set_real @ ( sigma_space_real @ M ) @ ( sigma_sets_real @ M ) ) ).

% sets.top
thf(fact_201_sets__eq__imp__space__eq,axiom,
    ! [M: sigma_measure_a,M2: sigma_measure_a] :
      ( ( ( sigma_sets_a @ M )
        = ( sigma_sets_a @ M2 ) )
     => ( ( sigma_space_a @ M )
        = ( sigma_space_a @ M2 ) ) ) ).

% sets_eq_imp_space_eq
thf(fact_202_sets__eq__imp__space__eq,axiom,
    ! [M: sigma_7234349610311085201nnreal,M2: sigma_7234349610311085201nnreal] :
      ( ( ( sigma_5465916536984168985nnreal @ M )
        = ( sigma_5465916536984168985nnreal @ M2 ) )
     => ( ( sigma_3147302497200244656nnreal @ M )
        = ( sigma_3147302497200244656nnreal @ M2 ) ) ) ).

% sets_eq_imp_space_eq
thf(fact_203_sets__eq__imp__space__eq,axiom,
    ! [M: sigma_measure_real,M2: sigma_measure_real] :
      ( ( ( sigma_sets_real @ M )
        = ( sigma_sets_real @ M2 ) )
     => ( ( sigma_space_real @ M )
        = ( sigma_space_real @ M2 ) ) ) ).

% sets_eq_imp_space_eq
thf(fact_204_fsigma__imp__gdelta,axiom,
    ! [S3: set_a] :
      ( ( lebesgue_fsigma_a @ S3 )
     => ( lebesgue_gdelta_a @ ( uminus_uminus_set_a @ S3 ) ) ) ).

% fsigma_imp_gdelta
thf(fact_205_fsigma__imp__gdelta,axiom,
    ! [S3: set_Ex3793607809372303086nnreal] :
      ( ( lebesg3344469894415766602nnreal @ S3 )
     => ( lebesg8314085847218018492nnreal @ ( uminus5517552291522096439nnreal @ S3 ) ) ) ).

% fsigma_imp_gdelta
thf(fact_206_fsigma__imp__gdelta,axiom,
    ! [S3: set_real] :
      ( ( lebesgue_fsigma_real @ S3 )
     => ( lebesgue_gdelta_real @ ( uminus612125837232591019t_real @ S3 ) ) ) ).

% fsigma_imp_gdelta
thf(fact_207_gdelta__complement,axiom,
    ! [S3: set_a] :
      ( ( lebesgue_gdelta_a @ ( uminus_uminus_set_a @ S3 ) )
      = ( lebesgue_fsigma_a @ S3 ) ) ).

% gdelta_complement
thf(fact_208_gdelta__complement,axiom,
    ! [S3: set_Ex3793607809372303086nnreal] :
      ( ( lebesg8314085847218018492nnreal @ ( uminus5517552291522096439nnreal @ S3 ) )
      = ( lebesg3344469894415766602nnreal @ S3 ) ) ).

% gdelta_complement
thf(fact_209_gdelta__complement,axiom,
    ! [S3: set_real] :
      ( ( lebesgue_gdelta_real @ ( uminus612125837232591019t_real @ S3 ) )
      = ( lebesgue_fsigma_real @ S3 ) ) ).

% gdelta_complement
thf(fact_210_gdelta__imp__fsigma,axiom,
    ! [S3: set_a] :
      ( ( lebesgue_gdelta_a @ S3 )
     => ( lebesgue_fsigma_a @ ( uminus_uminus_set_a @ S3 ) ) ) ).

% gdelta_imp_fsigma
thf(fact_211_gdelta__imp__fsigma,axiom,
    ! [S3: set_Ex3793607809372303086nnreal] :
      ( ( lebesg8314085847218018492nnreal @ S3 )
     => ( lebesg3344469894415766602nnreal @ ( uminus5517552291522096439nnreal @ S3 ) ) ) ).

% gdelta_imp_fsigma
thf(fact_212_gdelta__imp__fsigma,axiom,
    ! [S3: set_real] :
      ( ( lebesgue_gdelta_real @ S3 )
     => ( lebesgue_fsigma_real @ ( uminus612125837232591019t_real @ S3 ) ) ) ).

% gdelta_imp_fsigma
thf(fact_213_insert__null__sets__iff,axiom,
    ! [A2: real,N: set_real] :
      ( ( member_set_real @ ( insert_real @ A2 @ N ) @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) )
      = ( member_set_real @ N @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) ) ) ).

% insert_null_sets_iff
thf(fact_214_space__lebesgue__on,axiom,
    ! [S3: set_real] :
      ( ( sigma_space_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) )
      = S3 ) ).

% space_lebesgue_on
thf(fact_215_sets__restrict__UNIV,axiom,
    ! [M: sigma_7234349610311085201nnreal] :
      ( ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ M @ top_to7994903218803871134nnreal ) )
      = ( sigma_5465916536984168985nnreal @ M ) ) ).

% sets_restrict_UNIV
thf(fact_216_sets__restrict__UNIV,axiom,
    ! [M: sigma_measure_real] :
      ( ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ M @ top_top_set_real ) )
      = ( sigma_sets_real @ M ) ) ).

% sets_restrict_UNIV
thf(fact_217_sets__restrict__UNIV,axiom,
    ! [M: sigma_measure_a] :
      ( ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ M @ top_top_set_a ) )
      = ( sigma_sets_a @ M ) ) ).

% sets_restrict_UNIV
thf(fact_218_space__restrict__space2,axiom,
    ! [Omega: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ Omega @ ( sigma_sets_a @ M ) )
     => ( ( sigma_space_a @ ( sigma_8692839461743104066pace_a @ M @ Omega ) )
        = Omega ) ) ).

% space_restrict_space2
thf(fact_219_space__restrict__space2,axiom,
    ! [Omega: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ Omega @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( sigma_3147302497200244656nnreal @ ( sigma_4884701650823297268nnreal @ M @ Omega ) )
        = Omega ) ) ).

% space_restrict_space2
thf(fact_220_space__restrict__space2,axiom,
    ! [Omega: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ Omega @ ( sigma_sets_real @ M ) )
     => ( ( sigma_space_real @ ( sigma_5414646170262037096e_real @ M @ Omega ) )
        = Omega ) ) ).

% space_restrict_space2
thf(fact_221_sets__lebesgue__on__refl,axiom,
    ! [S3: set_real] : ( member_set_real @ S3 @ ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) ) ) ).

% sets_lebesgue_on_refl
thf(fact_222_insert__null__sets__lebesgue__on__iff,axiom,
    ! [A2: real,S3: set_real,N: set_real] :
      ( ( member_real @ A2 @ S3 )
     => ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) )
       => ( ( member_set_real @ ( insert_real @ A2 @ N ) @ ( measur3710062792471635001s_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) ) )
          = ( member_set_real @ N @ ( measur3710062792471635001s_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) ) ) ) ) ) ).

% insert_null_sets_lebesgue_on_iff
thf(fact_223_restrict__space__sets__cong,axiom,
    ! [A: set_a,B2: set_a,M: sigma_measure_a,N: sigma_measure_a] :
      ( ( A = B2 )
     => ( ( ( sigma_sets_a @ M )
          = ( sigma_sets_a @ N ) )
       => ( ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ M @ A ) )
          = ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ N @ B2 ) ) ) ) ) ).

% restrict_space_sets_cong
thf(fact_224_restrict__space__sets__cong,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( A = B2 )
     => ( ( ( sigma_5465916536984168985nnreal @ M )
          = ( sigma_5465916536984168985nnreal @ N ) )
       => ( ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ M @ A ) )
          = ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ N @ B2 ) ) ) ) ) ).

% restrict_space_sets_cong
thf(fact_225_restrict__space__sets__cong,axiom,
    ! [A: set_real,B2: set_real,M: sigma_measure_real,N: sigma_measure_real] :
      ( ( A = B2 )
     => ( ( ( sigma_sets_real @ M )
          = ( sigma_sets_real @ N ) )
       => ( ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ M @ A ) )
          = ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ N @ B2 ) ) ) ) ) ).

% restrict_space_sets_cong
thf(fact_226_sets__restrict__space__cong,axiom,
    ! [M: sigma_measure_a,N: sigma_measure_a,Omega: set_a] :
      ( ( ( sigma_sets_a @ M )
        = ( sigma_sets_a @ N ) )
     => ( ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ M @ Omega ) )
        = ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ N @ Omega ) ) ) ) ).

% sets_restrict_space_cong
thf(fact_227_sets__restrict__space__cong,axiom,
    ! [M: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal,Omega: set_Ex3793607809372303086nnreal] :
      ( ( ( sigma_5465916536984168985nnreal @ M )
        = ( sigma_5465916536984168985nnreal @ N ) )
     => ( ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ M @ Omega ) )
        = ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ N @ Omega ) ) ) ) ).

% sets_restrict_space_cong
thf(fact_228_sets__restrict__space__cong,axiom,
    ! [M: sigma_measure_real,N: sigma_measure_real,Omega: set_real] :
      ( ( ( sigma_sets_real @ M )
        = ( sigma_sets_real @ N ) )
     => ( ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ M @ Omega ) )
        = ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ N @ Omega ) ) ) ) ).

% sets_restrict_space_cong
thf(fact_229_null__sets__completionI,axiom,
    ! [N: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ N @ ( measure_null_sets_a @ M ) )
     => ( member_set_a @ N @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ).

% null_sets_completionI
thf(fact_230_null__sets__completionI,axiom,
    ! [N: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ N @ ( measur1209175464439008069nnreal @ M ) )
     => ( member603777416030116741nnreal @ N @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ).

% null_sets_completionI
thf(fact_231_null__sets__completionI,axiom,
    ! [N: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ N @ ( measur3710062792471635001s_real @ M ) )
     => ( member_set_real @ N @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ).

% null_sets_completionI
thf(fact_232_null__sets__completion__iff,axiom,
    ! [N: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ N @ ( sigma_sets_a @ M ) )
     => ( ( member_set_a @ N @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
        = ( member_set_a @ N @ ( measure_null_sets_a @ M ) ) ) ) ).

% null_sets_completion_iff
thf(fact_233_null__sets__completion__iff,axiom,
    ! [N: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ N @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ N @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
        = ( member603777416030116741nnreal @ N @ ( measur1209175464439008069nnreal @ M ) ) ) ) ).

% null_sets_completion_iff
thf(fact_234_null__sets__completion__iff,axiom,
    ! [N: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ N @ ( sigma_sets_real @ M ) )
     => ( ( member_set_real @ N @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) )
        = ( member_set_real @ N @ ( measur3710062792471635001s_real @ M ) ) ) ) ).

% null_sets_completion_iff
thf(fact_235_lebesgue__on__UNIV__eq,axiom,
    ( ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ top_top_set_real )
    = ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) ).

% lebesgue_on_UNIV_eq
thf(fact_236_top__empty__eq,axiom,
    ( top_top_set_a_o
    = ( ^ [X3: set_a] : ( member_set_a @ X3 @ top_top_set_set_a ) ) ) ).

% top_empty_eq
thf(fact_237_top__empty__eq,axiom,
    ( top_to199868804852128988real_o
    = ( ^ [X3: real > extend8495563244428889912nnreal] : ( member2919562650594848410nnreal @ X3 @ top_to315565310957491945nnreal ) ) ) ).

% top_empty_eq
thf(fact_238_top__empty__eq,axiom,
    ( top_top_set_real_o
    = ( ^ [X3: set_real] : ( member_set_real @ X3 @ top_top_set_set_real ) ) ) ).

% top_empty_eq
thf(fact_239_top__empty__eq,axiom,
    ( top_to5272770551662541617real_o
    = ( ^ [X3: set_Ex3793607809372303086nnreal] : ( member603777416030116741nnreal @ X3 @ top_to3356475028079756884nnreal ) ) ) ).

% top_empty_eq
thf(fact_240_top__empty__eq,axiom,
    ( top_to5118619752887738471real_o
    = ( ^ [X3: extend8495563244428889912nnreal] : ( member7908768830364227535nnreal @ X3 @ top_to7994903218803871134nnreal ) ) ) ).

% top_empty_eq
thf(fact_241_top__empty__eq,axiom,
    ( top_top_real_o
    = ( ^ [X3: real] : ( member_real @ X3 @ top_top_set_real ) ) ) ).

% top_empty_eq
thf(fact_242_top__empty__eq,axiom,
    ( top_top_a_o
    = ( ^ [X3: a] : ( member_a @ X3 @ top_top_set_a ) ) ) ).

% top_empty_eq
thf(fact_243_null__setsD2,axiom,
    ! [A: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ A @ ( measure_null_sets_a @ M ) )
     => ( member_set_a @ A @ ( sigma_sets_a @ M ) ) ) ).

% null_setsD2
thf(fact_244_null__setsD2,axiom,
    ! [A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ M ) )
     => ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% null_setsD2
thf(fact_245_null__setsD2,axiom,
    ! [A: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ M ) )
     => ( member_set_real @ A @ ( sigma_sets_real @ M ) ) ) ).

% null_setsD2
thf(fact_246_null__part__null__sets,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
     => ( member_set_a @ ( complete_null_part_a @ M @ S3 ) @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ).

% null_part_null_sets
thf(fact_247_null__part__null__sets,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
     => ( member603777416030116741nnreal @ ( comple6358047150840085292nnreal @ M @ S3 ) @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ).

% null_part_null_sets
thf(fact_248_null__part__null__sets,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) )
     => ( member_set_real @ ( comple4917500974405109920t_real @ M @ S3 ) @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ).

% null_part_null_sets
thf(fact_249_main__part__sets,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
     => ( member_set_a @ ( complete_main_part_a @ M @ S3 ) @ ( sigma_sets_a @ M ) ) ) ).

% main_part_sets
thf(fact_250_main__part__sets,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
     => ( member603777416030116741nnreal @ ( comple2904675884154540190nnreal @ M @ S3 ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% main_part_sets
thf(fact_251_main__part__sets,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) )
     => ( member_set_real @ ( comple5203310272383980818t_real @ M @ S3 ) @ ( sigma_sets_real @ M ) ) ) ).

% main_part_sets
thf(fact_252_restrict__space__singleton,axiom,
    ! [X2: a,M: sigma_measure_a] :
      ( ( member_set_a @ ( insert_a @ X2 @ bot_bot_set_a ) @ ( sigma_sets_a @ M ) )
     => ( ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ M @ ( insert_a @ X2 @ bot_bot_set_a ) ) )
        = ( sigma_sets_a @ ( sigma_count_space_a @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ) ).

% restrict_space_singleton
thf(fact_253_restrict__space__singleton,axiom,
    ! [X2: extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X2 @ bot_bo4854962954004695426nnreal ) @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ M @ ( insert7407984058720857448nnreal @ X2 @ bot_bo4854962954004695426nnreal ) ) )
        = ( sigma_5465916536984168985nnreal @ ( sigma_7204664791115113951nnreal @ ( insert7407984058720857448nnreal @ X2 @ bot_bo4854962954004695426nnreal ) ) ) ) ) ).

% restrict_space_singleton
thf(fact_254_restrict__space__singleton,axiom,
    ! [X2: real,M: sigma_measure_real] :
      ( ( member_set_real @ ( insert_real @ X2 @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) )
     => ( ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ M @ ( insert_real @ X2 @ bot_bot_set_real ) ) )
        = ( sigma_sets_real @ ( sigma_8508918144308765139e_real @ ( insert_real @ X2 @ bot_bot_set_real ) ) ) ) ) ).

% restrict_space_singleton
thf(fact_255_lebesgue__measurable__diff__null,axiom,
    ! [N: set_real,F: real > real] :
      ( ( member_set_real @ N @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) )
     => ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ ( uminus612125837232591019t_real @ N ) ) @ borel_5078946678739801102l_real ) )
        = ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ borel_5078946678739801102l_real ) ) ) ) ).

% lebesgue_measurable_diff_null
thf(fact_256_measurable__top,axiom,
    ! [M: sigma_measure_real] : ( member2919562650594848410nnreal @ top_to4050977978985836211nnreal @ ( sigma_9017504469962657078nnreal @ M @ ( sigma_7204664791115113951nnreal @ top_to7994903218803871134nnreal ) ) ) ).

% measurable_top
thf(fact_257_all__not__in__conv,axiom,
    ! [A: set_set_a] :
      ( ( ! [X3: set_a] :
            ~ ( member_set_a @ X3 @ A ) )
      = ( A = bot_bot_set_set_a ) ) ).

% all_not_in_conv
thf(fact_258_all__not__in__conv,axiom,
    ! [A: set_re5328672808648366137nnreal] :
      ( ( ! [X3: real > extend8495563244428889912nnreal] :
            ~ ( member2919562650594848410nnreal @ X3 @ A ) )
      = ( A = bot_bo6037503491064675021nnreal ) ) ).

% all_not_in_conv
thf(fact_259_all__not__in__conv,axiom,
    ! [A: set_set_real] :
      ( ( ! [X3: set_real] :
            ~ ( member_set_real @ X3 @ A ) )
      = ( A = bot_bot_set_set_real ) ) ).

% all_not_in_conv
thf(fact_260_all__not__in__conv,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ( ! [X3: set_Ex3793607809372303086nnreal] :
            ~ ( member603777416030116741nnreal @ X3 @ A ) )
      = ( A = bot_bo2988155216863113784nnreal ) ) ).

% all_not_in_conv
thf(fact_261_empty__iff,axiom,
    ! [C: set_a] :
      ~ ( member_set_a @ C @ bot_bot_set_set_a ) ).

% empty_iff
thf(fact_262_empty__iff,axiom,
    ! [C: real > extend8495563244428889912nnreal] :
      ~ ( member2919562650594848410nnreal @ C @ bot_bo6037503491064675021nnreal ) ).

% empty_iff
thf(fact_263_empty__iff,axiom,
    ! [C: set_real] :
      ~ ( member_set_real @ C @ bot_bot_set_set_real ) ).

% empty_iff
thf(fact_264_empty__iff,axiom,
    ! [C: set_Ex3793607809372303086nnreal] :
      ~ ( member603777416030116741nnreal @ C @ bot_bo2988155216863113784nnreal ) ).

% empty_iff
thf(fact_265_singletonI,axiom,
    ! [A2: set_a] : ( member_set_a @ A2 @ ( insert_set_a @ A2 @ bot_bot_set_set_a ) ) ).

% singletonI
thf(fact_266_singletonI,axiom,
    ! [A2: real > extend8495563244428889912nnreal] : ( member2919562650594848410nnreal @ A2 @ ( insert152533262698245683nnreal @ A2 @ bot_bo6037503491064675021nnreal ) ) ).

% singletonI
thf(fact_267_singletonI,axiom,
    ! [A2: set_real] : ( member_set_real @ A2 @ ( insert_set_real @ A2 @ bot_bot_set_set_real ) ) ).

% singletonI
thf(fact_268_singletonI,axiom,
    ! [A2: set_Ex3793607809372303086nnreal] : ( member603777416030116741nnreal @ A2 @ ( insert1343806209672318238nnreal @ A2 @ bot_bo2988155216863113784nnreal ) ) ).

% singletonI
thf(fact_269_sets_Oempty__sets,axiom,
    ! [M: sigma_measure_a] : ( member_set_a @ bot_bot_set_a @ ( sigma_sets_a @ M ) ) ).

% sets.empty_sets
thf(fact_270_sets_Oempty__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal] : ( member603777416030116741nnreal @ bot_bo4854962954004695426nnreal @ ( sigma_5465916536984168985nnreal @ M ) ) ).

% sets.empty_sets
thf(fact_271_sets_Oempty__sets,axiom,
    ! [M: sigma_measure_real] : ( member_set_real @ bot_bot_set_real @ ( sigma_sets_real @ M ) ) ).

% sets.empty_sets
thf(fact_272_null__sets_Oempty__sets,axiom,
    ! [M: sigma_measure_a] : ( member_set_a @ bot_bot_set_a @ ( measure_null_sets_a @ M ) ) ).

% null_sets.empty_sets
thf(fact_273_null__sets_Oempty__sets,axiom,
    ! [M: sigma_measure_real] : ( member_set_real @ bot_bot_set_real @ ( measur3710062792471635001s_real @ M ) ) ).

% null_sets.empty_sets
thf(fact_274_null__sets_Oempty__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal] : ( member603777416030116741nnreal @ bot_bo4854962954004695426nnreal @ ( measur1209175464439008069nnreal @ M ) ) ).

% null_sets.empty_sets
thf(fact_275_main__part,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( sigma_sets_a @ M ) )
     => ( ( complete_main_part_a @ M @ S3 )
        = S3 ) ) ).

% main_part
thf(fact_276_main__part,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( comple2904675884154540190nnreal @ M @ S3 )
        = S3 ) ) ).

% main_part
thf(fact_277_main__part,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ M ) )
     => ( ( comple5203310272383980818t_real @ M @ S3 )
        = S3 ) ) ).

% main_part
thf(fact_278_null__part__sets_I1_J,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( sigma_sets_a @ M ) )
     => ( member_set_a @ ( complete_null_part_a @ M @ S3 ) @ ( sigma_sets_a @ M ) ) ) ).

% null_part_sets(1)
thf(fact_279_null__part__sets_I1_J,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( member603777416030116741nnreal @ ( comple6358047150840085292nnreal @ M @ S3 ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% null_part_sets(1)
thf(fact_280_null__part__sets_I1_J,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ M ) )
     => ( member_set_real @ ( comple4917500974405109920t_real @ M @ S3 ) @ ( sigma_sets_real @ M ) ) ) ).

% null_part_sets(1)
thf(fact_281_boolean__algebra_Ocompl__one,axiom,
    ( ( uminus_uminus_set_a @ top_top_set_a )
    = bot_bot_set_a ) ).

% boolean_algebra.compl_one
thf(fact_282_boolean__algebra_Ocompl__one,axiom,
    ( ( uminus5517552291522096439nnreal @ top_to7994903218803871134nnreal )
    = bot_bo4854962954004695426nnreal ) ).

% boolean_algebra.compl_one
thf(fact_283_boolean__algebra_Ocompl__one,axiom,
    ( ( uminus612125837232591019t_real @ top_top_set_real )
    = bot_bot_set_real ) ).

% boolean_algebra.compl_one
thf(fact_284_boolean__algebra_Ocompl__zero,axiom,
    ( ( uminus_uminus_set_a @ bot_bot_set_a )
    = top_top_set_a ) ).

% boolean_algebra.compl_zero
thf(fact_285_boolean__algebra_Ocompl__zero,axiom,
    ( ( uminus5517552291522096439nnreal @ bot_bo4854962954004695426nnreal )
    = top_to7994903218803871134nnreal ) ).

% boolean_algebra.compl_zero
thf(fact_286_boolean__algebra_Ocompl__zero,axiom,
    ( ( uminus612125837232591019t_real @ bot_bot_set_real )
    = top_top_set_real ) ).

% boolean_algebra.compl_zero
thf(fact_287_measurable__lborel2,axiom,
    ! [M: sigma_7234349610311085201nnreal] :
      ( ( sigma_9017504469962657078nnreal @ lebesgue_lborel_real @ M )
      = ( sigma_9017504469962657078nnreal @ borel_5078946678739801102l_real @ M ) ) ).

% measurable_lborel2
thf(fact_288_ex__in__conv,axiom,
    ! [A: set_set_a] :
      ( ( ? [X3: set_a] : ( member_set_a @ X3 @ A ) )
      = ( A != bot_bot_set_set_a ) ) ).

% ex_in_conv
thf(fact_289_ex__in__conv,axiom,
    ! [A: set_re5328672808648366137nnreal] :
      ( ( ? [X3: real > extend8495563244428889912nnreal] : ( member2919562650594848410nnreal @ X3 @ A ) )
      = ( A != bot_bo6037503491064675021nnreal ) ) ).

% ex_in_conv
thf(fact_290_ex__in__conv,axiom,
    ! [A: set_set_real] :
      ( ( ? [X3: set_real] : ( member_set_real @ X3 @ A ) )
      = ( A != bot_bot_set_set_real ) ) ).

% ex_in_conv
thf(fact_291_ex__in__conv,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ( ? [X3: set_Ex3793607809372303086nnreal] : ( member603777416030116741nnreal @ X3 @ A ) )
      = ( A != bot_bo2988155216863113784nnreal ) ) ).

% ex_in_conv
thf(fact_292_equals0I,axiom,
    ! [A: set_set_a] :
      ( ! [Y2: set_a] :
          ~ ( member_set_a @ Y2 @ A )
     => ( A = bot_bot_set_set_a ) ) ).

% equals0I
thf(fact_293_equals0I,axiom,
    ! [A: set_re5328672808648366137nnreal] :
      ( ! [Y2: real > extend8495563244428889912nnreal] :
          ~ ( member2919562650594848410nnreal @ Y2 @ A )
     => ( A = bot_bo6037503491064675021nnreal ) ) ).

% equals0I
thf(fact_294_equals0I,axiom,
    ! [A: set_set_real] :
      ( ! [Y2: set_real] :
          ~ ( member_set_real @ Y2 @ A )
     => ( A = bot_bot_set_set_real ) ) ).

% equals0I
thf(fact_295_equals0I,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ! [Y2: set_Ex3793607809372303086nnreal] :
          ~ ( member603777416030116741nnreal @ Y2 @ A )
     => ( A = bot_bo2988155216863113784nnreal ) ) ).

% equals0I
thf(fact_296_equals0D,axiom,
    ! [A: set_set_a,A2: set_a] :
      ( ( A = bot_bot_set_set_a )
     => ~ ( member_set_a @ A2 @ A ) ) ).

% equals0D
thf(fact_297_equals0D,axiom,
    ! [A: set_re5328672808648366137nnreal,A2: real > extend8495563244428889912nnreal] :
      ( ( A = bot_bo6037503491064675021nnreal )
     => ~ ( member2919562650594848410nnreal @ A2 @ A ) ) ).

% equals0D
thf(fact_298_equals0D,axiom,
    ! [A: set_set_real,A2: set_real] :
      ( ( A = bot_bot_set_set_real )
     => ~ ( member_set_real @ A2 @ A ) ) ).

% equals0D
thf(fact_299_equals0D,axiom,
    ! [A: set_se4580700918925141924nnreal,A2: set_Ex3793607809372303086nnreal] :
      ( ( A = bot_bo2988155216863113784nnreal )
     => ~ ( member603777416030116741nnreal @ A2 @ A ) ) ).

% equals0D
thf(fact_300_emptyE,axiom,
    ! [A2: set_a] :
      ~ ( member_set_a @ A2 @ bot_bot_set_set_a ) ).

% emptyE
thf(fact_301_emptyE,axiom,
    ! [A2: real > extend8495563244428889912nnreal] :
      ~ ( member2919562650594848410nnreal @ A2 @ bot_bo6037503491064675021nnreal ) ).

% emptyE
thf(fact_302_emptyE,axiom,
    ! [A2: set_real] :
      ~ ( member_set_real @ A2 @ bot_bot_set_set_real ) ).

% emptyE
thf(fact_303_emptyE,axiom,
    ! [A2: set_Ex3793607809372303086nnreal] :
      ~ ( member603777416030116741nnreal @ A2 @ bot_bo2988155216863113784nnreal ) ).

% emptyE
thf(fact_304_measurable__empty__iff,axiom,
    ! [N: sigma_7234349610311085201nnreal,F: real > extend8495563244428889912nnreal,M: sigma_measure_real] :
      ( ( ( sigma_3147302497200244656nnreal @ N )
        = bot_bo4854962954004695426nnreal )
     => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
        = ( ( sigma_space_real @ M )
          = bot_bot_set_real ) ) ) ).

% measurable_empty_iff
thf(fact_305_space__empty__iff,axiom,
    ! [N: sigma_measure_a] :
      ( ( ( sigma_space_a @ N )
        = bot_bot_set_a )
      = ( ( sigma_sets_a @ N )
        = ( insert_set_a @ bot_bot_set_a @ bot_bot_set_set_a ) ) ) ).

% space_empty_iff
thf(fact_306_space__empty__iff,axiom,
    ! [N: sigma_7234349610311085201nnreal] :
      ( ( ( sigma_3147302497200244656nnreal @ N )
        = bot_bo4854962954004695426nnreal )
      = ( ( sigma_5465916536984168985nnreal @ N )
        = ( insert1343806209672318238nnreal @ bot_bo4854962954004695426nnreal @ bot_bo2988155216863113784nnreal ) ) ) ).

% space_empty_iff
thf(fact_307_space__empty__iff,axiom,
    ! [N: sigma_measure_real] :
      ( ( ( sigma_space_real @ N )
        = bot_bot_set_real )
      = ( ( sigma_sets_real @ N )
        = ( insert_set_real @ bot_bot_set_real @ bot_bot_set_set_real ) ) ) ).

% space_empty_iff
thf(fact_308_measurable__cong__sets,axiom,
    ! [M: sigma_measure_a,M2: sigma_measure_a,N: sigma_measure_a,N2: sigma_measure_a] :
      ( ( ( sigma_sets_a @ M )
        = ( sigma_sets_a @ M2 ) )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ N2 ) )
       => ( ( sigma_measurable_a_a @ M @ N )
          = ( sigma_measurable_a_a @ M2 @ N2 ) ) ) ) ).

% measurable_cong_sets
thf(fact_309_measurable__cong__sets,axiom,
    ! [M: sigma_measure_a,M2: sigma_measure_a,N: sigma_7234349610311085201nnreal,N2: sigma_7234349610311085201nnreal] :
      ( ( ( sigma_sets_a @ M )
        = ( sigma_sets_a @ M2 ) )
     => ( ( ( sigma_5465916536984168985nnreal @ N )
          = ( sigma_5465916536984168985nnreal @ N2 ) )
       => ( ( sigma_214952329563889126nnreal @ M @ N )
          = ( sigma_214952329563889126nnreal @ M2 @ N2 ) ) ) ) ).

% measurable_cong_sets
thf(fact_310_measurable__cong__sets,axiom,
    ! [M: sigma_measure_a,M2: sigma_measure_a,N: sigma_measure_real,N2: sigma_measure_real] :
      ( ( ( sigma_sets_a @ M )
        = ( sigma_sets_a @ M2 ) )
     => ( ( ( sigma_sets_real @ N )
          = ( sigma_sets_real @ N2 ) )
       => ( ( sigma_9116425665531756122a_real @ M @ N )
          = ( sigma_9116425665531756122a_real @ M2 @ N2 ) ) ) ) ).

% measurable_cong_sets
thf(fact_311_measurable__cong__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal,M2: sigma_7234349610311085201nnreal,N: sigma_measure_a,N2: sigma_measure_a] :
      ( ( ( sigma_5465916536984168985nnreal @ M )
        = ( sigma_5465916536984168985nnreal @ M2 ) )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ N2 ) )
       => ( ( sigma_3031480723531659892real_a @ M @ N )
          = ( sigma_3031480723531659892real_a @ M2 @ N2 ) ) ) ) ).

% measurable_cong_sets
thf(fact_312_measurable__cong__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal,M2: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal,N2: sigma_7234349610311085201nnreal] :
      ( ( ( sigma_5465916536984168985nnreal @ M )
        = ( sigma_5465916536984168985nnreal @ M2 ) )
     => ( ( ( sigma_5465916536984168985nnreal @ N )
          = ( sigma_5465916536984168985nnreal @ N2 ) )
       => ( ( sigma_7926153774531450434nnreal @ M @ N )
          = ( sigma_7926153774531450434nnreal @ M2 @ N2 ) ) ) ) ).

% measurable_cong_sets
thf(fact_313_measurable__cong__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal,M2: sigma_7234349610311085201nnreal,N: sigma_measure_real,N2: sigma_measure_real] :
      ( ( ( sigma_5465916536984168985nnreal @ M )
        = ( sigma_5465916536984168985nnreal @ M2 ) )
     => ( ( ( sigma_sets_real @ N )
          = ( sigma_sets_real @ N2 ) )
       => ( ( sigma_7049758200512112822l_real @ M @ N )
          = ( sigma_7049758200512112822l_real @ M2 @ N2 ) ) ) ) ).

% measurable_cong_sets
thf(fact_314_measurable__cong__sets,axiom,
    ! [M: sigma_measure_real,M2: sigma_measure_real,N: sigma_measure_a,N2: sigma_measure_a] :
      ( ( ( sigma_sets_real @ M )
        = ( sigma_sets_real @ M2 ) )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ N2 ) )
       => ( ( sigma_523072396149930112real_a @ M @ N )
          = ( sigma_523072396149930112real_a @ M2 @ N2 ) ) ) ) ).

% measurable_cong_sets
thf(fact_315_measurable__cong__sets,axiom,
    ! [M: sigma_measure_real,M2: sigma_measure_real,N: sigma_measure_real,N2: sigma_measure_real] :
      ( ( ( sigma_sets_real @ M )
        = ( sigma_sets_real @ M2 ) )
     => ( ( ( sigma_sets_real @ N )
          = ( sigma_sets_real @ N2 ) )
       => ( ( sigma_5267869275261027754l_real @ M @ N )
          = ( sigma_5267869275261027754l_real @ M2 @ N2 ) ) ) ) ).

% measurable_cong_sets
thf(fact_316_measurable__cong__sets,axiom,
    ! [M: sigma_measure_real,M2: sigma_measure_real,N: sigma_7234349610311085201nnreal,N2: sigma_7234349610311085201nnreal] :
      ( ( ( sigma_sets_real @ M )
        = ( sigma_sets_real @ M2 ) )
     => ( ( ( sigma_5465916536984168985nnreal @ N )
          = ( sigma_5465916536984168985nnreal @ N2 ) )
       => ( ( sigma_9017504469962657078nnreal @ M @ N )
          = ( sigma_9017504469962657078nnreal @ M2 @ N2 ) ) ) ) ).

% measurable_cong_sets
thf(fact_317_measurable__cong,axiom,
    ! [M: sigma_measure_real,F: real > extend8495563244428889912nnreal,G: real > extend8495563244428889912nnreal,M2: sigma_7234349610311085201nnreal] :
      ( ! [W: real] :
          ( ( member_real @ W @ ( sigma_space_real @ M ) )
         => ( ( F @ W )
            = ( G @ W ) ) )
     => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ M2 ) )
        = ( member2919562650594848410nnreal @ G @ ( sigma_9017504469962657078nnreal @ M @ M2 ) ) ) ) ).

% measurable_cong
thf(fact_318_measurable__space,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,A: sigma_7234349610311085201nnreal,X2: real] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ A ) )
     => ( ( member_real @ X2 @ ( sigma_space_real @ M ) )
       => ( member7908768830364227535nnreal @ ( F @ X2 ) @ ( sigma_3147302497200244656nnreal @ A ) ) ) ) ).

% measurable_space
thf(fact_319_measurable__space,axiom,
    ! [F: set_a > set_a,M: sigma_measure_set_a,A: sigma_measure_set_a,X2: set_a] :
      ( ( member_set_a_set_a @ F @ ( sigma_5212894042034225104_set_a @ M @ A ) )
     => ( ( member_set_a @ X2 @ ( sigma_space_set_a @ M ) )
       => ( member_set_a @ ( F @ X2 ) @ ( sigma_space_set_a @ A ) ) ) ) ).

% measurable_space
thf(fact_320_measurable__space,axiom,
    ! [F: set_a > set_real,M: sigma_measure_set_a,A: sigma_3733394171116455995t_real,X2: set_a] :
      ( ( member6119777607969566810t_real @ F @ ( sigma_5529004876658666480t_real @ M @ A ) )
     => ( ( member_set_a @ X2 @ ( sigma_space_set_a @ M ) )
       => ( member_set_real @ ( F @ X2 ) @ ( sigma_space_set_real @ A ) ) ) ) ).

% measurable_space
thf(fact_321_measurable__space,axiom,
    ! [F: set_a > set_Ex3793607809372303086nnreal,M: sigma_measure_set_a,A: sigma_523634232904505671nnreal,X2: set_a] :
      ( ( member8552228822107236582nnreal @ F @ ( sigma_2316796825407894268nnreal @ M @ A ) )
     => ( ( member_set_a @ X2 @ ( sigma_space_set_a @ M ) )
       => ( member603777416030116741nnreal @ ( F @ X2 ) @ ( sigma_2539764534872131430nnreal @ A ) ) ) ) ).

% measurable_space
thf(fact_322_measurable__space,axiom,
    ! [F: set_real > set_a,M: sigma_3733394171116455995t_real,A: sigma_measure_set_a,X2: set_real] :
      ( ( member9134392423035811420_set_a @ F @ ( sigma_8826535904794920746_set_a @ M @ A ) )
     => ( ( member_set_real @ X2 @ ( sigma_space_set_real @ M ) )
       => ( member_set_a @ ( F @ X2 ) @ ( sigma_space_set_a @ A ) ) ) ) ).

% measurable_space
thf(fact_323_measurable__space,axiom,
    ! [F: set_real > set_real,M: sigma_3733394171116455995t_real,A: sigma_3733394171116455995t_real,X2: set_real] :
      ( ( member8820419758626733818t_real @ F @ ( sigma_8759315257289043734t_real @ M @ A ) )
     => ( ( member_set_real @ X2 @ ( sigma_space_set_real @ M ) )
       => ( member_set_real @ ( F @ X2 ) @ ( sigma_space_set_real @ A ) ) ) ) ).

% measurable_space
thf(fact_324_measurable__space,axiom,
    ! [F: set_real > set_Ex3793607809372303086nnreal,M: sigma_3733394171116455995t_real,A: sigma_523634232904505671nnreal,X2: set_real] :
      ( ( member1248903934968170374nnreal @ F @ ( sigma_4962942689157396770nnreal @ M @ A ) )
     => ( ( member_set_real @ X2 @ ( sigma_space_set_real @ M ) )
       => ( member603777416030116741nnreal @ ( F @ X2 ) @ ( sigma_2539764534872131430nnreal @ A ) ) ) ) ).

% measurable_space
thf(fact_325_measurable__space,axiom,
    ! [F: set_Ex3793607809372303086nnreal > set_a,M: sigma_523634232904505671nnreal,A: sigma_measure_set_a,X2: set_Ex3793607809372303086nnreal] :
      ( ( member8849812955461179984_set_a @ F @ ( sigma_7598581795090538910_set_a @ M @ A ) )
     => ( ( member603777416030116741nnreal @ X2 @ ( sigma_2539764534872131430nnreal @ M ) )
       => ( member_set_a @ ( F @ X2 ) @ ( sigma_space_set_a @ A ) ) ) ) ).

% measurable_space
thf(fact_326_measurable__space,axiom,
    ! [F: set_Ex3793607809372303086nnreal > set_real,M: sigma_523634232904505671nnreal,A: sigma_3733394171116455995t_real,X2: set_Ex3793607809372303086nnreal] :
      ( ( member7536123422392205318t_real @ F @ ( sigma_6728074762985347490t_real @ M @ A ) )
     => ( ( member603777416030116741nnreal @ X2 @ ( sigma_2539764534872131430nnreal @ M ) )
       => ( member_set_real @ ( F @ X2 ) @ ( sigma_space_set_real @ A ) ) ) ) ).

% measurable_space
thf(fact_327_measurable__space,axiom,
    ! [F: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal,M: sigma_523634232904505671nnreal,A: sigma_523634232904505671nnreal,X2: set_Ex3793607809372303086nnreal] :
      ( ( member9048868947896282770nnreal @ F @ ( sigma_8870595382113208750nnreal @ M @ A ) )
     => ( ( member603777416030116741nnreal @ X2 @ ( sigma_2539764534872131430nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( F @ X2 ) @ ( sigma_2539764534872131430nnreal @ A ) ) ) ) ).

% measurable_space
thf(fact_328_measurable__cong__simp,axiom,
    ! [M: sigma_measure_real,N: sigma_measure_real,M2: sigma_7234349610311085201nnreal,N2: sigma_7234349610311085201nnreal,F: real > extend8495563244428889912nnreal,G: real > extend8495563244428889912nnreal] :
      ( ( M = N )
     => ( ( M2 = N2 )
       => ( ! [W: real] :
              ( ( member_real @ W @ ( sigma_space_real @ M ) )
             => ( ( F @ W )
                = ( G @ W ) ) )
         => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ M2 ) )
            = ( member2919562650594848410nnreal @ G @ ( sigma_9017504469962657078nnreal @ N @ N2 ) ) ) ) ) ) ).

% measurable_cong_simp
thf(fact_329_measurable__completion,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
     => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( comple3506806835435775778n_real @ M ) @ N ) ) ) ).

% measurable_completion
thf(fact_330_measurable__restrict__space1,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal,Omega: set_real] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
     => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( sigma_5414646170262037096e_real @ M @ Omega ) @ N ) ) ) ).

% measurable_restrict_space1
thf(fact_331_empty__not__UNIV,axiom,
    bot_bo4854962954004695426nnreal != top_to7994903218803871134nnreal ).

% empty_not_UNIV
thf(fact_332_empty__not__UNIV,axiom,
    bot_bot_set_real != top_top_set_real ).

% empty_not_UNIV
thf(fact_333_empty__not__UNIV,axiom,
    bot_bot_set_a != top_top_set_a ).

% empty_not_UNIV
thf(fact_334_singletonD,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( member_set_a @ B @ ( insert_set_a @ A2 @ bot_bot_set_set_a ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_335_singletonD,axiom,
    ! [B: real > extend8495563244428889912nnreal,A2: real > extend8495563244428889912nnreal] :
      ( ( member2919562650594848410nnreal @ B @ ( insert152533262698245683nnreal @ A2 @ bot_bo6037503491064675021nnreal ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_336_singletonD,axiom,
    ! [B: set_real,A2: set_real] :
      ( ( member_set_real @ B @ ( insert_set_real @ A2 @ bot_bot_set_set_real ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_337_singletonD,axiom,
    ! [B: set_Ex3793607809372303086nnreal,A2: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ B @ ( insert1343806209672318238nnreal @ A2 @ bot_bo2988155216863113784nnreal ) )
     => ( B = A2 ) ) ).

% singletonD
thf(fact_338_singleton__iff,axiom,
    ! [B: set_a,A2: set_a] :
      ( ( member_set_a @ B @ ( insert_set_a @ A2 @ bot_bot_set_set_a ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_339_singleton__iff,axiom,
    ! [B: real > extend8495563244428889912nnreal,A2: real > extend8495563244428889912nnreal] :
      ( ( member2919562650594848410nnreal @ B @ ( insert152533262698245683nnreal @ A2 @ bot_bo6037503491064675021nnreal ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_340_singleton__iff,axiom,
    ! [B: set_real,A2: set_real] :
      ( ( member_set_real @ B @ ( insert_set_real @ A2 @ bot_bot_set_set_real ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_341_singleton__iff,axiom,
    ! [B: set_Ex3793607809372303086nnreal,A2: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ B @ ( insert1343806209672318238nnreal @ A2 @ bot_bo2988155216863113784nnreal ) )
      = ( B = A2 ) ) ).

% singleton_iff
thf(fact_342_null__sets_Oinsert__in__sets,axiom,
    ! [X2: a,M: sigma_measure_a,A: set_a] :
      ( ( member_set_a @ ( insert_a @ X2 @ bot_bot_set_a ) @ ( measure_null_sets_a @ M ) )
     => ( ( member_set_a @ A @ ( measure_null_sets_a @ M ) )
       => ( member_set_a @ ( insert_a @ X2 @ A ) @ ( measure_null_sets_a @ M ) ) ) ) ).

% null_sets.insert_in_sets
thf(fact_343_null__sets_Oinsert__in__sets,axiom,
    ! [X2: real,M: sigma_measure_real,A: set_real] :
      ( ( member_set_real @ ( insert_real @ X2 @ bot_bot_set_real ) @ ( measur3710062792471635001s_real @ M ) )
     => ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ M ) )
       => ( member_set_real @ ( insert_real @ X2 @ A ) @ ( measur3710062792471635001s_real @ M ) ) ) ) ).

% null_sets.insert_in_sets
thf(fact_344_null__sets_Oinsert__in__sets,axiom,
    ! [X2: extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X2 @ bot_bo4854962954004695426nnreal ) @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X2 @ A ) @ ( measur1209175464439008069nnreal @ M ) ) ) ) ).

% null_sets.insert_in_sets
thf(fact_345_measurable__count__space,axiom,
    ! [F: real > extend8495563244428889912nnreal,A: set_real] : ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( sigma_8508918144308765139e_real @ A ) @ ( sigma_7204664791115113951nnreal @ top_to7994903218803871134nnreal ) ) ) ).

% measurable_count_space
thf(fact_346_borel__measurable__count__space,axiom,
    ! [F: real > extend8495563244428889912nnreal,S3: set_real] : ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( sigma_8508918144308765139e_real @ S3 ) @ borel_6524799422816628122nnreal ) ) ).

% borel_measurable_count_space
thf(fact_347_perfect__space__class_OUNIV__not__singleton,axiom,
    ! [X2: extend8495563244428889912nnreal] :
      ( top_to7994903218803871134nnreal
     != ( insert7407984058720857448nnreal @ X2 @ bot_bo4854962954004695426nnreal ) ) ).

% perfect_space_class.UNIV_not_singleton
thf(fact_348_perfect__space__class_OUNIV__not__singleton,axiom,
    ! [X2: real] :
      ( top_top_set_real
     != ( insert_real @ X2 @ bot_bot_set_real ) ) ).

% perfect_space_class.UNIV_not_singleton
thf(fact_349_sets_Oinsert__in__sets,axiom,
    ! [X2: a,M: sigma_measure_a,A: set_a] :
      ( ( member_set_a @ ( insert_a @ X2 @ bot_bot_set_a ) @ ( sigma_sets_a @ M ) )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
       => ( member_set_a @ ( insert_a @ X2 @ A ) @ ( sigma_sets_a @ M ) ) ) ) ).

% sets.insert_in_sets
thf(fact_350_sets_Oinsert__in__sets,axiom,
    ! [X2: extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X2 @ bot_bo4854962954004695426nnreal ) @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X2 @ A ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ).

% sets.insert_in_sets
thf(fact_351_sets_Oinsert__in__sets,axiom,
    ! [X2: real,M: sigma_measure_real,A: set_real] :
      ( ( member_set_real @ ( insert_real @ X2 @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
       => ( member_set_real @ ( insert_real @ X2 @ A ) @ ( sigma_sets_real @ M ) ) ) ) ).

% sets.insert_in_sets
thf(fact_352_Compl__UNIV__eq,axiom,
    ( ( uminus_uminus_set_a @ top_top_set_a )
    = bot_bot_set_a ) ).

% Compl_UNIV_eq
thf(fact_353_Compl__UNIV__eq,axiom,
    ( ( uminus5517552291522096439nnreal @ top_to7994903218803871134nnreal )
    = bot_bo4854962954004695426nnreal ) ).

% Compl_UNIV_eq
thf(fact_354_Compl__UNIV__eq,axiom,
    ( ( uminus612125837232591019t_real @ top_top_set_real )
    = bot_bot_set_real ) ).

% Compl_UNIV_eq
thf(fact_355_Compl__empty__eq,axiom,
    ( ( uminus_uminus_set_a @ bot_bot_set_a )
    = top_top_set_a ) ).

% Compl_empty_eq
thf(fact_356_Compl__empty__eq,axiom,
    ( ( uminus5517552291522096439nnreal @ bot_bo4854962954004695426nnreal )
    = top_to7994903218803871134nnreal ) ).

% Compl_empty_eq
thf(fact_357_Compl__empty__eq,axiom,
    ( ( uminus612125837232591019t_real @ bot_bot_set_real )
    = top_top_set_real ) ).

% Compl_empty_eq
thf(fact_358_measurable__lebesgue__cong,axiom,
    ! [S3: set_real,F: real > extend8495563244428889912nnreal,G: real > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal] :
      ( ! [X: real] :
          ( ( member_real @ X @ S3 )
         => ( ( F @ X )
            = ( G @ X ) ) )
     => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) @ M ) )
        = ( member2919562650594848410nnreal @ G @ ( sigma_9017504469962657078nnreal @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) @ M ) ) ) ) ).

% measurable_lebesgue_cong
thf(fact_359_is__borel__def,axiom,
    ( borel_3656262399657348386nnreal
    = ( ^ [F2: real > extend8495563244428889912nnreal,M3: sigma_measure_real] : ( member2919562650594848410nnreal @ F2 @ ( sigma_9017504469962657078nnreal @ M3 @ borel_6524799422816628122nnreal ) ) ) ) ).

% is_borel_def
thf(fact_360_borel__measurable__diff__null,axiom,
    ! [N: set_real,S3: set_real,F: real > real] :
      ( ( member_set_real @ N @ ( measur3710062792471635001s_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) ) )
     => ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) )
       => ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ ( minus_minus_set_real @ S3 @ N ) ) @ borel_5078946678739801102l_real ) )
          = ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) @ borel_5078946678739801102l_real ) ) ) ) ) ).

% borel_measurable_diff_null
thf(fact_361_main__part__null__part__Int,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
     => ( ( inf_inf_set_a @ ( complete_main_part_a @ M @ S3 ) @ ( complete_null_part_a @ M @ S3 ) )
        = bot_bot_set_a ) ) ).

% main_part_null_part_Int
thf(fact_362_main__part__null__part__Int,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
     => ( ( inf_in3368558534146122112nnreal @ ( comple2904675884154540190nnreal @ M @ S3 ) @ ( comple6358047150840085292nnreal @ M @ S3 ) )
        = bot_bo4854962954004695426nnreal ) ) ).

% main_part_null_part_Int
thf(fact_363_main__part__null__part__Int,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) )
     => ( ( inf_inf_set_real @ ( comple5203310272383980818t_real @ M @ S3 ) @ ( comple4917500974405109920t_real @ M @ S3 ) )
        = bot_bot_set_real ) ) ).

% main_part_null_part_Int
thf(fact_364_measurable__restrict__countable,axiom,
    ! [X5: set_real,M: sigma_measure_real,F: real > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( counta7319604579010473777e_real @ X5 )
     => ( ! [X: real] :
            ( ( member_real @ X @ X5 )
           => ( member_set_real @ ( insert_real @ X @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) ) )
       => ( ! [X: real] :
              ( ( member_real @ X @ X5 )
             => ( member7908768830364227535nnreal @ ( F @ X ) @ ( sigma_3147302497200244656nnreal @ N ) ) )
         => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( sigma_5414646170262037096e_real @ M @ ( uminus612125837232591019t_real @ X5 ) ) @ N ) )
           => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) ) ) ) ) ) ).

% measurable_restrict_countable
thf(fact_365_measurable__restrict__countable,axiom,
    ! [X5: set_a,M: sigma_measure_a,F: a > set_a,N: sigma_measure_set_a] :
      ( ( counta4098120917673242425able_a @ X5 )
     => ( ! [X: a] :
            ( ( member_a @ X @ X5 )
           => ( member_set_a @ ( insert_a @ X @ bot_bot_set_a ) @ ( sigma_sets_a @ M ) ) )
       => ( ! [X: a] :
              ( ( member_a @ X @ X5 )
             => ( member_set_a @ ( F @ X ) @ ( sigma_space_set_a @ N ) ) )
         => ( ( member_a_set_a @ F @ ( sigma_3685133166752798000_set_a @ ( sigma_8692839461743104066pace_a @ M @ ( uminus_uminus_set_a @ X5 ) ) @ N ) )
           => ( member_a_set_a @ F @ ( sigma_3685133166752798000_set_a @ M @ N ) ) ) ) ) ) ).

% measurable_restrict_countable
thf(fact_366_measurable__restrict__countable,axiom,
    ! [X5: set_a,M: sigma_measure_a,F: a > set_real,N: sigma_3733394171116455995t_real] :
      ( ( counta4098120917673242425able_a @ X5 )
     => ( ! [X: a] :
            ( ( member_a @ X @ X5 )
           => ( member_set_a @ ( insert_a @ X @ bot_bot_set_a ) @ ( sigma_sets_a @ M ) ) )
       => ( ! [X: a] :
              ( ( member_a @ X @ X5 )
             => ( member_set_real @ ( F @ X ) @ ( sigma_space_set_real @ N ) ) )
         => ( ( member_a_set_real @ F @ ( sigma_739038748264640144t_real @ ( sigma_8692839461743104066pace_a @ M @ ( uminus_uminus_set_a @ X5 ) ) @ N ) )
           => ( member_a_set_real @ F @ ( sigma_739038748264640144t_real @ M @ N ) ) ) ) ) ) ).

% measurable_restrict_countable
thf(fact_367_measurable__restrict__countable,axiom,
    ! [X5: set_a,M: sigma_measure_a,F: a > set_Ex3793607809372303086nnreal,N: sigma_523634232904505671nnreal] :
      ( ( counta4098120917673242425able_a @ X5 )
     => ( ! [X: a] :
            ( ( member_a @ X @ X5 )
           => ( member_set_a @ ( insert_a @ X @ bot_bot_set_a ) @ ( sigma_sets_a @ M ) ) )
       => ( ! [X: a] :
              ( ( member_a @ X @ X5 )
             => ( member603777416030116741nnreal @ ( F @ X ) @ ( sigma_2539764534872131430nnreal @ N ) ) )
         => ( ( member2532357421736347526nnreal @ F @ ( sigma_7596264061814621596nnreal @ ( sigma_8692839461743104066pace_a @ M @ ( uminus_uminus_set_a @ X5 ) ) @ N ) )
           => ( member2532357421736347526nnreal @ F @ ( sigma_7596264061814621596nnreal @ M @ N ) ) ) ) ) ) ).

% measurable_restrict_countable
thf(fact_368_measurable__restrict__countable,axiom,
    ! [X5: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > set_a,N: sigma_measure_set_a] :
      ( ( counta8439243037236335165nnreal @ X5 )
     => ( ! [X: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X @ X5 )
           => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X @ bot_bo4854962954004695426nnreal ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
       => ( ! [X: extend8495563244428889912nnreal] :
              ( ( member7908768830364227535nnreal @ X @ X5 )
             => ( member_set_a @ ( F @ X ) @ ( sigma_space_set_a @ N ) ) )
         => ( ( member6799942265337811078_set_a @ F @ ( sigma_7624677704890010580_set_a @ ( sigma_4884701650823297268nnreal @ M @ ( uminus5517552291522096439nnreal @ X5 ) ) @ N ) )
           => ( member6799942265337811078_set_a @ F @ ( sigma_7624677704890010580_set_a @ M @ N ) ) ) ) ) ) ).

% measurable_restrict_countable
thf(fact_369_measurable__restrict__countable,axiom,
    ! [X5: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > set_real,N: sigma_3733394171116455995t_real] :
      ( ( counta8439243037236335165nnreal @ X5 )
     => ( ! [X: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X @ X5 )
           => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X @ bot_bo4854962954004695426nnreal ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
       => ( ! [X: extend8495563244428889912nnreal] :
              ( ( member7908768830364227535nnreal @ X @ X5 )
             => ( member_set_real @ ( F @ X ) @ ( sigma_space_set_real @ N ) ) )
         => ( ( member6764088077590758224t_real @ F @ ( sigma_5175731160935721196t_real @ ( sigma_4884701650823297268nnreal @ M @ ( uminus5517552291522096439nnreal @ X5 ) ) @ N ) )
           => ( member6764088077590758224t_real @ F @ ( sigma_5175731160935721196t_real @ M @ N ) ) ) ) ) ) ).

% measurable_restrict_countable
thf(fact_370_measurable__restrict__countable,axiom,
    ! [X5: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal,N: sigma_523634232904505671nnreal] :
      ( ( counta8439243037236335165nnreal @ X5 )
     => ( ! [X: extend8495563244428889912nnreal] :
            ( ( member7908768830364227535nnreal @ X @ X5 )
           => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X @ bot_bo4854962954004695426nnreal ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
       => ( ! [X: extend8495563244428889912nnreal] :
              ( ( member7908768830364227535nnreal @ X @ X5 )
             => ( member603777416030116741nnreal @ ( F @ X ) @ ( sigma_2539764534872131430nnreal @ N ) ) )
         => ( ( member4416662722526258908nnreal @ F @ ( sigma_1941770836459163128nnreal @ ( sigma_4884701650823297268nnreal @ M @ ( uminus5517552291522096439nnreal @ X5 ) ) @ N ) )
           => ( member4416662722526258908nnreal @ F @ ( sigma_1941770836459163128nnreal @ M @ N ) ) ) ) ) ) ).

% measurable_restrict_countable
thf(fact_371_measurable__restrict__countable,axiom,
    ! [X5: set_real,M: sigma_measure_real,F: real > set_a,N: sigma_measure_set_a] :
      ( ( counta7319604579010473777e_real @ X5 )
     => ( ! [X: real] :
            ( ( member_real @ X @ X5 )
           => ( member_set_real @ ( insert_real @ X @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) ) )
       => ( ! [X: real] :
              ( ( member_real @ X @ X5 )
             => ( member_set_a @ ( F @ X ) @ ( sigma_space_set_a @ N ) ) )
         => ( ( member_real_set_a @ F @ ( sigma_4283435981211228640_set_a @ ( sigma_5414646170262037096e_real @ M @ ( uminus612125837232591019t_real @ X5 ) ) @ N ) )
           => ( member_real_set_a @ F @ ( sigma_4283435981211228640_set_a @ M @ N ) ) ) ) ) ) ).

% measurable_restrict_countable
thf(fact_372_measurable__restrict__countable,axiom,
    ! [X5: set_real,M: sigma_measure_real,F: real > set_real,N: sigma_3733394171116455995t_real] :
      ( ( counta7319604579010473777e_real @ X5 )
     => ( ! [X: real] :
            ( ( member_real @ X @ X5 )
           => ( member_set_real @ ( insert_real @ X @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) ) )
       => ( ! [X: real] :
              ( ( member_real @ X @ X5 )
             => ( member_set_real @ ( F @ X ) @ ( sigma_space_set_real @ N ) ) )
         => ( ( member_real_set_real @ F @ ( sigma_6606012509476713952t_real @ ( sigma_5414646170262037096e_real @ M @ ( uminus612125837232591019t_real @ X5 ) ) @ N ) )
           => ( member_real_set_real @ F @ ( sigma_6606012509476713952t_real @ M @ N ) ) ) ) ) ) ).

% measurable_restrict_countable
thf(fact_373_measurable__restrict__countable,axiom,
    ! [X5: set_real,M: sigma_measure_real,F: real > set_Ex3793607809372303086nnreal,N: sigma_523634232904505671nnreal] :
      ( ( counta7319604579010473777e_real @ X5 )
     => ( ! [X: real] :
            ( ( member_real @ X @ X5 )
           => ( member_set_real @ ( insert_real @ X @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) ) )
       => ( ! [X: real] :
              ( ( member_real @ X @ X5 )
             => ( member603777416030116741nnreal @ ( F @ X ) @ ( sigma_2539764534872131430nnreal @ N ) ) )
         => ( ( member8689841359643572048nnreal @ F @ ( sigma_2400199819729843436nnreal @ ( sigma_5414646170262037096e_real @ M @ ( uminus612125837232591019t_real @ X5 ) ) @ N ) )
           => ( member8689841359643572048nnreal @ F @ ( sigma_2400199819729843436nnreal @ M @ N ) ) ) ) ) ) ).

% measurable_restrict_countable
thf(fact_374_space__sup__measure_H,axiom,
    ! [B2: sigma_measure_a,A: sigma_measure_a] :
      ( ( ( sigma_sets_a @ B2 )
        = ( sigma_sets_a @ A ) )
     => ( ( sigma_space_a @ ( measur3004909623614618064sure_a @ A @ B2 ) )
        = ( sigma_space_a @ A ) ) ) ).

% space_sup_measure'
thf(fact_375_space__sup__measure_H,axiom,
    ! [B2: sigma_7234349610311085201nnreal,A: sigma_7234349610311085201nnreal] :
      ( ( ( sigma_5465916536984168985nnreal @ B2 )
        = ( sigma_5465916536984168985nnreal @ A ) )
     => ( ( sigma_3147302497200244656nnreal @ ( measur4473656680840910822nnreal @ A @ B2 ) )
        = ( sigma_3147302497200244656nnreal @ A ) ) ) ).

% space_sup_measure'
thf(fact_376_space__sup__measure_H,axiom,
    ! [B2: sigma_measure_real,A: sigma_measure_real] :
      ( ( ( sigma_sets_real @ B2 )
        = ( sigma_sets_real @ A ) )
     => ( ( sigma_space_real @ ( measur2147279183506585690e_real @ A @ B2 ) )
        = ( sigma_space_real @ A ) ) ) ).

% space_sup_measure'
thf(fact_377_measurable__on__iff__borel__measurable,axiom,
    ! [S3: set_real,F: real > real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) )
     => ( ( equiva5980327992511004390l_real @ F @ S3 )
        = ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) @ borel_5078946678739801102l_real ) ) ) ) ).

% measurable_on_iff_borel_measurable
thf(fact_378_measurable__on__imp__borel__measurable__lebesgue,axiom,
    ! [F: real > real,S3: set_real] :
      ( ( equiva5980327992511004390l_real @ F @ S3 )
     => ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) )
       => ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) @ borel_5078946678739801102l_real ) ) ) ) ).

% measurable_on_imp_borel_measurable_lebesgue
thf(fact_379_id__borel__measurable__lebesgue__on,axiom,
    ! [S3: set_real] : ( member_real_real @ id_real @ ( sigma_5267869275261027754l_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) @ borel_5078946678739801102l_real ) ) ).

% id_borel_measurable_lebesgue_on
thf(fact_380_IntI,axiom,
    ! [C: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ A )
     => ( ( member_set_a @ C @ B2 )
       => ( member_set_a @ C @ ( inf_inf_set_set_a @ A @ B2 ) ) ) ) ).

% IntI
thf(fact_381_IntI,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ A )
     => ( ( member2919562650594848410nnreal @ C @ B2 )
       => ( member2919562650594848410nnreal @ C @ ( inf_in8454409011496165067nnreal @ A @ B2 ) ) ) ) ).

% IntI
thf(fact_382_IntI,axiom,
    ! [C: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ C @ A )
     => ( ( member_set_real @ C @ B2 )
       => ( member_set_real @ C @ ( inf_inf_set_set_real @ A @ B2 ) ) ) ) ).

% IntI
thf(fact_383_IntI,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ A )
     => ( ( member603777416030116741nnreal @ C @ B2 )
       => ( member603777416030116741nnreal @ C @ ( inf_in5190865051653673526nnreal @ A @ B2 ) ) ) ) ).

% IntI
thf(fact_384_Int__iff,axiom,
    ! [C: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( inf_inf_set_set_a @ A @ B2 ) )
      = ( ( member_set_a @ C @ A )
        & ( member_set_a @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_385_Int__iff,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ ( inf_in8454409011496165067nnreal @ A @ B2 ) )
      = ( ( member2919562650594848410nnreal @ C @ A )
        & ( member2919562650594848410nnreal @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_386_Int__iff,axiom,
    ! [C: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ C @ ( inf_inf_set_set_real @ A @ B2 ) )
      = ( ( member_set_real @ C @ A )
        & ( member_set_real @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_387_Int__iff,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ ( inf_in5190865051653673526nnreal @ A @ B2 ) )
      = ( ( member603777416030116741nnreal @ C @ A )
        & ( member603777416030116741nnreal @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_388_DiffI,axiom,
    ! [C: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ A )
     => ( ~ ( member_set_a @ C @ B2 )
       => ( member_set_a @ C @ ( minus_5736297505244876581_set_a @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_389_DiffI,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ A )
     => ( ~ ( member2919562650594848410nnreal @ C @ B2 )
       => ( member2919562650594848410nnreal @ C @ ( minus_3708639258518406418nnreal @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_390_DiffI,axiom,
    ! [C: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ C @ A )
     => ( ~ ( member_set_real @ C @ B2 )
       => ( member_set_real @ C @ ( minus_5467046032205032049t_real @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_391_DiffI,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ A )
     => ( ~ ( member603777416030116741nnreal @ C @ B2 )
       => ( member603777416030116741nnreal @ C @ ( minus_5908140721592501885nnreal @ A @ B2 ) ) ) ) ).

% DiffI
thf(fact_392_Diff__iff,axiom,
    ! [C: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( minus_5736297505244876581_set_a @ A @ B2 ) )
      = ( ( member_set_a @ C @ A )
        & ~ ( member_set_a @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_393_Diff__iff,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ ( minus_3708639258518406418nnreal @ A @ B2 ) )
      = ( ( member2919562650594848410nnreal @ C @ A )
        & ~ ( member2919562650594848410nnreal @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_394_Diff__iff,axiom,
    ! [C: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ C @ ( minus_5467046032205032049t_real @ A @ B2 ) )
      = ( ( member_set_real @ C @ A )
        & ~ ( member_set_real @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_395_Diff__iff,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ ( minus_5908140721592501885nnreal @ A @ B2 ) )
      = ( ( member603777416030116741nnreal @ C @ A )
        & ~ ( member603777416030116741nnreal @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_396_minus__diff__eq,axiom,
    ! [A2: real,B: real] :
      ( ( uminus_uminus_real @ ( minus_minus_real @ A2 @ B ) )
      = ( minus_minus_real @ B @ A2 ) ) ).

% minus_diff_eq
thf(fact_397_inf__top_Oright__neutral,axiom,
    ! [A2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ A2 @ top_to7994903218803871134nnreal )
      = A2 ) ).

% inf_top.right_neutral
thf(fact_398_inf__top_Oright__neutral,axiom,
    ! [A2: set_real] :
      ( ( inf_inf_set_real @ A2 @ top_top_set_real )
      = A2 ) ).

% inf_top.right_neutral
thf(fact_399_inf__top_Oright__neutral,axiom,
    ! [A2: set_a] :
      ( ( inf_inf_set_a @ A2 @ top_top_set_a )
      = A2 ) ).

% inf_top.right_neutral
thf(fact_400_inf__top_Oneutr__eq__iff,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( top_to7994903218803871134nnreal
        = ( inf_in3368558534146122112nnreal @ A2 @ B ) )
      = ( ( A2 = top_to7994903218803871134nnreal )
        & ( B = top_to7994903218803871134nnreal ) ) ) ).

% inf_top.neutr_eq_iff
thf(fact_401_inf__top_Oneutr__eq__iff,axiom,
    ! [A2: set_real,B: set_real] :
      ( ( top_top_set_real
        = ( inf_inf_set_real @ A2 @ B ) )
      = ( ( A2 = top_top_set_real )
        & ( B = top_top_set_real ) ) ) ).

% inf_top.neutr_eq_iff
thf(fact_402_inf__top_Oneutr__eq__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( top_top_set_a
        = ( inf_inf_set_a @ A2 @ B ) )
      = ( ( A2 = top_top_set_a )
        & ( B = top_top_set_a ) ) ) ).

% inf_top.neutr_eq_iff
thf(fact_403_inf__top_Oleft__neutral,axiom,
    ! [A2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ top_to7994903218803871134nnreal @ A2 )
      = A2 ) ).

% inf_top.left_neutral
thf(fact_404_inf__top_Oleft__neutral,axiom,
    ! [A2: set_real] :
      ( ( inf_inf_set_real @ top_top_set_real @ A2 )
      = A2 ) ).

% inf_top.left_neutral
thf(fact_405_inf__top_Oleft__neutral,axiom,
    ! [A2: set_a] :
      ( ( inf_inf_set_a @ top_top_set_a @ A2 )
      = A2 ) ).

% inf_top.left_neutral
thf(fact_406_inf__top_Oeq__neutr__iff,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( ( inf_in3368558534146122112nnreal @ A2 @ B )
        = top_to7994903218803871134nnreal )
      = ( ( A2 = top_to7994903218803871134nnreal )
        & ( B = top_to7994903218803871134nnreal ) ) ) ).

% inf_top.eq_neutr_iff
thf(fact_407_inf__top_Oeq__neutr__iff,axiom,
    ! [A2: set_real,B: set_real] :
      ( ( ( inf_inf_set_real @ A2 @ B )
        = top_top_set_real )
      = ( ( A2 = top_top_set_real )
        & ( B = top_top_set_real ) ) ) ).

% inf_top.eq_neutr_iff
thf(fact_408_inf__top_Oeq__neutr__iff,axiom,
    ! [A2: set_a,B: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B )
        = top_top_set_a )
      = ( ( A2 = top_top_set_a )
        & ( B = top_top_set_a ) ) ) ).

% inf_top.eq_neutr_iff
thf(fact_409_top__eq__inf__iff,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal] :
      ( ( top_to7994903218803871134nnreal
        = ( inf_in3368558534146122112nnreal @ X2 @ Y ) )
      = ( ( X2 = top_to7994903218803871134nnreal )
        & ( Y = top_to7994903218803871134nnreal ) ) ) ).

% top_eq_inf_iff
thf(fact_410_top__eq__inf__iff,axiom,
    ! [X2: set_real,Y: set_real] :
      ( ( top_top_set_real
        = ( inf_inf_set_real @ X2 @ Y ) )
      = ( ( X2 = top_top_set_real )
        & ( Y = top_top_set_real ) ) ) ).

% top_eq_inf_iff
thf(fact_411_top__eq__inf__iff,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( top_top_set_a
        = ( inf_inf_set_a @ X2 @ Y ) )
      = ( ( X2 = top_top_set_a )
        & ( Y = top_top_set_a ) ) ) ).

% top_eq_inf_iff
thf(fact_412_inf__eq__top__iff,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal] :
      ( ( ( inf_in3368558534146122112nnreal @ X2 @ Y )
        = top_to7994903218803871134nnreal )
      = ( ( X2 = top_to7994903218803871134nnreal )
        & ( Y = top_to7994903218803871134nnreal ) ) ) ).

% inf_eq_top_iff
thf(fact_413_inf__eq__top__iff,axiom,
    ! [X2: set_real,Y: set_real] :
      ( ( ( inf_inf_set_real @ X2 @ Y )
        = top_top_set_real )
      = ( ( X2 = top_top_set_real )
        & ( Y = top_top_set_real ) ) ) ).

% inf_eq_top_iff
thf(fact_414_inf__eq__top__iff,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( ( inf_inf_set_a @ X2 @ Y )
        = top_top_set_a )
      = ( ( X2 = top_top_set_a )
        & ( Y = top_top_set_a ) ) ) ).

% inf_eq_top_iff
thf(fact_415_inf__top__right,axiom,
    ! [X2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ X2 @ top_to7994903218803871134nnreal )
      = X2 ) ).

% inf_top_right
thf(fact_416_inf__top__right,axiom,
    ! [X2: set_real] :
      ( ( inf_inf_set_real @ X2 @ top_top_set_real )
      = X2 ) ).

% inf_top_right
thf(fact_417_inf__top__right,axiom,
    ! [X2: set_a] :
      ( ( inf_inf_set_a @ X2 @ top_top_set_a )
      = X2 ) ).

% inf_top_right
thf(fact_418_inf__top__left,axiom,
    ! [X2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ top_to7994903218803871134nnreal @ X2 )
      = X2 ) ).

% inf_top_left
thf(fact_419_inf__top__left,axiom,
    ! [X2: set_real] :
      ( ( inf_inf_set_real @ top_top_set_real @ X2 )
      = X2 ) ).

% inf_top_left
thf(fact_420_inf__top__left,axiom,
    ! [X2: set_a] :
      ( ( inf_inf_set_a @ top_top_set_a @ X2 )
      = X2 ) ).

% inf_top_left
thf(fact_421_Int__UNIV,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( ( inf_in3368558534146122112nnreal @ A @ B2 )
        = top_to7994903218803871134nnreal )
      = ( ( A = top_to7994903218803871134nnreal )
        & ( B2 = top_to7994903218803871134nnreal ) ) ) ).

% Int_UNIV
thf(fact_422_Int__UNIV,axiom,
    ! [A: set_real,B2: set_real] :
      ( ( ( inf_inf_set_real @ A @ B2 )
        = top_top_set_real )
      = ( ( A = top_top_set_real )
        & ( B2 = top_top_set_real ) ) ) ).

% Int_UNIV
thf(fact_423_Int__UNIV,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A @ B2 )
        = top_top_set_a )
      = ( ( A = top_top_set_a )
        & ( B2 = top_top_set_a ) ) ) ).

% Int_UNIV
thf(fact_424_Int__insert__right__if1,axiom,
    ! [A2: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ A2 @ A )
     => ( ( inf_inf_set_set_a @ A @ ( insert_set_a @ A2 @ B2 ) )
        = ( insert_set_a @ A2 @ ( inf_inf_set_set_a @ A @ B2 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_425_Int__insert__right__if1,axiom,
    ! [A2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ A2 @ A )
     => ( ( inf_in8454409011496165067nnreal @ A @ ( insert152533262698245683nnreal @ A2 @ B2 ) )
        = ( insert152533262698245683nnreal @ A2 @ ( inf_in8454409011496165067nnreal @ A @ B2 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_426_Int__insert__right__if1,axiom,
    ! [A2: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ A2 @ A )
     => ( ( inf_inf_set_set_real @ A @ ( insert_set_real @ A2 @ B2 ) )
        = ( insert_set_real @ A2 @ ( inf_inf_set_set_real @ A @ B2 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_427_Int__insert__right__if1,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ A )
     => ( ( inf_in5190865051653673526nnreal @ A @ ( insert1343806209672318238nnreal @ A2 @ B2 ) )
        = ( insert1343806209672318238nnreal @ A2 @ ( inf_in5190865051653673526nnreal @ A @ B2 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_428_Int__insert__right__if0,axiom,
    ! [A2: set_a,A: set_set_a,B2: set_set_a] :
      ( ~ ( member_set_a @ A2 @ A )
     => ( ( inf_inf_set_set_a @ A @ ( insert_set_a @ A2 @ B2 ) )
        = ( inf_inf_set_set_a @ A @ B2 ) ) ) ).

% Int_insert_right_if0
thf(fact_429_Int__insert__right__if0,axiom,
    ! [A2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ~ ( member2919562650594848410nnreal @ A2 @ A )
     => ( ( inf_in8454409011496165067nnreal @ A @ ( insert152533262698245683nnreal @ A2 @ B2 ) )
        = ( inf_in8454409011496165067nnreal @ A @ B2 ) ) ) ).

% Int_insert_right_if0
thf(fact_430_Int__insert__right__if0,axiom,
    ! [A2: set_real,A: set_set_real,B2: set_set_real] :
      ( ~ ( member_set_real @ A2 @ A )
     => ( ( inf_inf_set_set_real @ A @ ( insert_set_real @ A2 @ B2 ) )
        = ( inf_inf_set_set_real @ A @ B2 ) ) ) ).

% Int_insert_right_if0
thf(fact_431_Int__insert__right__if0,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ~ ( member603777416030116741nnreal @ A2 @ A )
     => ( ( inf_in5190865051653673526nnreal @ A @ ( insert1343806209672318238nnreal @ A2 @ B2 ) )
        = ( inf_in5190865051653673526nnreal @ A @ B2 ) ) ) ).

% Int_insert_right_if0
thf(fact_432_Int__insert__left__if1,axiom,
    ! [A2: set_a,C3: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ A2 @ C3 )
     => ( ( inf_inf_set_set_a @ ( insert_set_a @ A2 @ B2 ) @ C3 )
        = ( insert_set_a @ A2 @ ( inf_inf_set_set_a @ B2 @ C3 ) ) ) ) ).

% Int_insert_left_if1
thf(fact_433_Int__insert__left__if1,axiom,
    ! [A2: real > extend8495563244428889912nnreal,C3: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ A2 @ C3 )
     => ( ( inf_in8454409011496165067nnreal @ ( insert152533262698245683nnreal @ A2 @ B2 ) @ C3 )
        = ( insert152533262698245683nnreal @ A2 @ ( inf_in8454409011496165067nnreal @ B2 @ C3 ) ) ) ) ).

% Int_insert_left_if1
thf(fact_434_Int__insert__left__if1,axiom,
    ! [A2: set_real,C3: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ A2 @ C3 )
     => ( ( inf_inf_set_set_real @ ( insert_set_real @ A2 @ B2 ) @ C3 )
        = ( insert_set_real @ A2 @ ( inf_inf_set_set_real @ B2 @ C3 ) ) ) ) ).

% Int_insert_left_if1
thf(fact_435_Int__insert__left__if1,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,C3: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ C3 )
     => ( ( inf_in5190865051653673526nnreal @ ( insert1343806209672318238nnreal @ A2 @ B2 ) @ C3 )
        = ( insert1343806209672318238nnreal @ A2 @ ( inf_in5190865051653673526nnreal @ B2 @ C3 ) ) ) ) ).

% Int_insert_left_if1
thf(fact_436_Int__insert__left__if0,axiom,
    ! [A2: set_a,C3: set_set_a,B2: set_set_a] :
      ( ~ ( member_set_a @ A2 @ C3 )
     => ( ( inf_inf_set_set_a @ ( insert_set_a @ A2 @ B2 ) @ C3 )
        = ( inf_inf_set_set_a @ B2 @ C3 ) ) ) ).

% Int_insert_left_if0
thf(fact_437_Int__insert__left__if0,axiom,
    ! [A2: real > extend8495563244428889912nnreal,C3: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ~ ( member2919562650594848410nnreal @ A2 @ C3 )
     => ( ( inf_in8454409011496165067nnreal @ ( insert152533262698245683nnreal @ A2 @ B2 ) @ C3 )
        = ( inf_in8454409011496165067nnreal @ B2 @ C3 ) ) ) ).

% Int_insert_left_if0
thf(fact_438_Int__insert__left__if0,axiom,
    ! [A2: set_real,C3: set_set_real,B2: set_set_real] :
      ( ~ ( member_set_real @ A2 @ C3 )
     => ( ( inf_inf_set_set_real @ ( insert_set_real @ A2 @ B2 ) @ C3 )
        = ( inf_inf_set_set_real @ B2 @ C3 ) ) ) ).

% Int_insert_left_if0
thf(fact_439_Int__insert__left__if0,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,C3: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ~ ( member603777416030116741nnreal @ A2 @ C3 )
     => ( ( inf_in5190865051653673526nnreal @ ( insert1343806209672318238nnreal @ A2 @ B2 ) @ C3 )
        = ( inf_in5190865051653673526nnreal @ B2 @ C3 ) ) ) ).

% Int_insert_left_if0
thf(fact_440_sets_OInt,axiom,
    ! [A2: set_a,M: sigma_measure_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ M ) )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ M ) )
       => ( member_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( sigma_sets_a @ M ) ) ) ) ).

% sets.Int
thf(fact_441_sets_OInt,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ B @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ A2 @ B ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ).

% sets.Int
thf(fact_442_sets_OInt,axiom,
    ! [A2: set_real,M: sigma_measure_real,B: set_real] :
      ( ( member_set_real @ A2 @ ( sigma_sets_real @ M ) )
     => ( ( member_set_real @ B @ ( sigma_sets_real @ M ) )
       => ( member_set_real @ ( inf_inf_set_real @ A2 @ B ) @ ( sigma_sets_real @ M ) ) ) ) ).

% sets.Int
thf(fact_443_insert__Diff1,axiom,
    ! [X2: set_a,B2: set_set_a,A: set_set_a] :
      ( ( member_set_a @ X2 @ B2 )
     => ( ( minus_5736297505244876581_set_a @ ( insert_set_a @ X2 @ A ) @ B2 )
        = ( minus_5736297505244876581_set_a @ A @ B2 ) ) ) ).

% insert_Diff1
thf(fact_444_insert__Diff1,axiom,
    ! [X2: real > extend8495563244428889912nnreal,B2: set_re5328672808648366137nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ X2 @ B2 )
     => ( ( minus_3708639258518406418nnreal @ ( insert152533262698245683nnreal @ X2 @ A ) @ B2 )
        = ( minus_3708639258518406418nnreal @ A @ B2 ) ) ) ).

% insert_Diff1
thf(fact_445_insert__Diff1,axiom,
    ! [X2: set_real,B2: set_set_real,A: set_set_real] :
      ( ( member_set_real @ X2 @ B2 )
     => ( ( minus_5467046032205032049t_real @ ( insert_set_real @ X2 @ A ) @ B2 )
        = ( minus_5467046032205032049t_real @ A @ B2 ) ) ) ).

% insert_Diff1
thf(fact_446_insert__Diff1,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ X2 @ B2 )
     => ( ( minus_5908140721592501885nnreal @ ( insert1343806209672318238nnreal @ X2 @ A ) @ B2 )
        = ( minus_5908140721592501885nnreal @ A @ B2 ) ) ) ).

% insert_Diff1
thf(fact_447_Diff__insert0,axiom,
    ! [X2: set_a,A: set_set_a,B2: set_set_a] :
      ( ~ ( member_set_a @ X2 @ A )
     => ( ( minus_5736297505244876581_set_a @ A @ ( insert_set_a @ X2 @ B2 ) )
        = ( minus_5736297505244876581_set_a @ A @ B2 ) ) ) ).

% Diff_insert0
thf(fact_448_Diff__insert0,axiom,
    ! [X2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ~ ( member2919562650594848410nnreal @ X2 @ A )
     => ( ( minus_3708639258518406418nnreal @ A @ ( insert152533262698245683nnreal @ X2 @ B2 ) )
        = ( minus_3708639258518406418nnreal @ A @ B2 ) ) ) ).

% Diff_insert0
thf(fact_449_Diff__insert0,axiom,
    ! [X2: set_real,A: set_set_real,B2: set_set_real] :
      ( ~ ( member_set_real @ X2 @ A )
     => ( ( minus_5467046032205032049t_real @ A @ ( insert_set_real @ X2 @ B2 ) )
        = ( minus_5467046032205032049t_real @ A @ B2 ) ) ) ).

% Diff_insert0
thf(fact_450_Diff__insert0,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ~ ( member603777416030116741nnreal @ X2 @ A )
     => ( ( minus_5908140721592501885nnreal @ A @ ( insert1343806209672318238nnreal @ X2 @ B2 ) )
        = ( minus_5908140721592501885nnreal @ A @ B2 ) ) ) ).

% Diff_insert0
thf(fact_451_sets_ODiff,axiom,
    ! [A2: set_a,M: sigma_measure_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ M ) )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ M ) )
       => ( member_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( sigma_sets_a @ M ) ) ) ) ).

% sets.Diff
thf(fact_452_sets_ODiff,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ B @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( minus_104578273773384135nnreal @ A2 @ B ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ).

% sets.Diff
thf(fact_453_sets_ODiff,axiom,
    ! [A2: set_real,M: sigma_measure_real,B: set_real] :
      ( ( member_set_real @ A2 @ ( sigma_sets_real @ M ) )
     => ( ( member_set_real @ B @ ( sigma_sets_real @ M ) )
       => ( member_set_real @ ( minus_minus_set_real @ A2 @ B ) @ ( sigma_sets_real @ M ) ) ) ) ).

% sets.Diff
thf(fact_454_null__sets_OInt,axiom,
    ! [A2: set_a,M: sigma_measure_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( measure_null_sets_a @ M ) )
     => ( ( member_set_a @ B @ ( measure_null_sets_a @ M ) )
       => ( member_set_a @ ( inf_inf_set_a @ A2 @ B ) @ ( measure_null_sets_a @ M ) ) ) ) ).

% null_sets.Int
thf(fact_455_null__sets_OInt,axiom,
    ! [A2: set_real,M: sigma_measure_real,B: set_real] :
      ( ( member_set_real @ A2 @ ( measur3710062792471635001s_real @ M ) )
     => ( ( member_set_real @ B @ ( measur3710062792471635001s_real @ M ) )
       => ( member_set_real @ ( inf_inf_set_real @ A2 @ B ) @ ( measur3710062792471635001s_real @ M ) ) ) ) ).

% null_sets.Int
thf(fact_456_null__sets_OInt,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ B @ ( measur1209175464439008069nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ A2 @ B ) @ ( measur1209175464439008069nnreal @ M ) ) ) ) ).

% null_sets.Int
thf(fact_457_null__sets_ODiff,axiom,
    ! [A2: set_a,M: sigma_measure_a,B: set_a] :
      ( ( member_set_a @ A2 @ ( measure_null_sets_a @ M ) )
     => ( ( member_set_a @ B @ ( measure_null_sets_a @ M ) )
       => ( member_set_a @ ( minus_minus_set_a @ A2 @ B ) @ ( measure_null_sets_a @ M ) ) ) ) ).

% null_sets.Diff
thf(fact_458_null__sets_ODiff,axiom,
    ! [A2: set_real,M: sigma_measure_real,B: set_real] :
      ( ( member_set_real @ A2 @ ( measur3710062792471635001s_real @ M ) )
     => ( ( member_set_real @ B @ ( measur3710062792471635001s_real @ M ) )
       => ( member_set_real @ ( minus_minus_set_real @ A2 @ B ) @ ( measur3710062792471635001s_real @ M ) ) ) ) ).

% null_sets.Diff
thf(fact_459_null__sets_ODiff,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ B @ ( measur1209175464439008069nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( minus_104578273773384135nnreal @ A2 @ B ) @ ( measur1209175464439008069nnreal @ M ) ) ) ) ).

% null_sets.Diff
thf(fact_460_sets__sup__measure_H,axiom,
    ! [B2: sigma_measure_a,A: sigma_measure_a] :
      ( ( ( sigma_sets_a @ B2 )
        = ( sigma_sets_a @ A ) )
     => ( ( sigma_sets_a @ ( measur3004909623614618064sure_a @ A @ B2 ) )
        = ( sigma_sets_a @ A ) ) ) ).

% sets_sup_measure'
thf(fact_461_sets__sup__measure_H,axiom,
    ! [B2: sigma_7234349610311085201nnreal,A: sigma_7234349610311085201nnreal] :
      ( ( ( sigma_5465916536984168985nnreal @ B2 )
        = ( sigma_5465916536984168985nnreal @ A ) )
     => ( ( sigma_5465916536984168985nnreal @ ( measur4473656680840910822nnreal @ A @ B2 ) )
        = ( sigma_5465916536984168985nnreal @ A ) ) ) ).

% sets_sup_measure'
thf(fact_462_sets__sup__measure_H,axiom,
    ! [B2: sigma_measure_real,A: sigma_measure_real] :
      ( ( ( sigma_sets_real @ B2 )
        = ( sigma_sets_real @ A ) )
     => ( ( sigma_sets_real @ ( measur2147279183506585690e_real @ A @ B2 ) )
        = ( sigma_sets_real @ A ) ) ) ).

% sets_sup_measure'
thf(fact_463_boolean__algebra_Oconj__cancel__right,axiom,
    ! [X2: set_a] :
      ( ( inf_inf_set_a @ X2 @ ( uminus_uminus_set_a @ X2 ) )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_cancel_right
thf(fact_464_boolean__algebra_Oconj__cancel__right,axiom,
    ! [X2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ X2 @ ( uminus5517552291522096439nnreal @ X2 ) )
      = bot_bo4854962954004695426nnreal ) ).

% boolean_algebra.conj_cancel_right
thf(fact_465_boolean__algebra_Oconj__cancel__right,axiom,
    ! [X2: set_real] :
      ( ( inf_inf_set_real @ X2 @ ( uminus612125837232591019t_real @ X2 ) )
      = bot_bot_set_real ) ).

% boolean_algebra.conj_cancel_right
thf(fact_466_boolean__algebra_Oconj__cancel__left,axiom,
    ! [X2: set_a] :
      ( ( inf_inf_set_a @ ( uminus_uminus_set_a @ X2 ) @ X2 )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_cancel_left
thf(fact_467_boolean__algebra_Oconj__cancel__left,axiom,
    ! [X2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ ( uminus5517552291522096439nnreal @ X2 ) @ X2 )
      = bot_bo4854962954004695426nnreal ) ).

% boolean_algebra.conj_cancel_left
thf(fact_468_boolean__algebra_Oconj__cancel__left,axiom,
    ! [X2: set_real] :
      ( ( inf_inf_set_real @ ( uminus612125837232591019t_real @ X2 ) @ X2 )
      = bot_bot_set_real ) ).

% boolean_algebra.conj_cancel_left
thf(fact_469_inf__compl__bot__right,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X2 @ ( inf_inf_set_a @ Y @ ( uminus_uminus_set_a @ X2 ) ) )
      = bot_bot_set_a ) ).

% inf_compl_bot_right
thf(fact_470_inf__compl__bot__right,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ X2 @ ( inf_in3368558534146122112nnreal @ Y @ ( uminus5517552291522096439nnreal @ X2 ) ) )
      = bot_bo4854962954004695426nnreal ) ).

% inf_compl_bot_right
thf(fact_471_inf__compl__bot__right,axiom,
    ! [X2: set_real,Y: set_real] :
      ( ( inf_inf_set_real @ X2 @ ( inf_inf_set_real @ Y @ ( uminus612125837232591019t_real @ X2 ) ) )
      = bot_bot_set_real ) ).

% inf_compl_bot_right
thf(fact_472_inf__compl__bot__left2,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X2 @ ( inf_inf_set_a @ ( uminus_uminus_set_a @ X2 ) @ Y ) )
      = bot_bot_set_a ) ).

% inf_compl_bot_left2
thf(fact_473_inf__compl__bot__left2,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ X2 @ ( inf_in3368558534146122112nnreal @ ( uminus5517552291522096439nnreal @ X2 ) @ Y ) )
      = bot_bo4854962954004695426nnreal ) ).

% inf_compl_bot_left2
thf(fact_474_inf__compl__bot__left2,axiom,
    ! [X2: set_real,Y: set_real] :
      ( ( inf_inf_set_real @ X2 @ ( inf_inf_set_real @ ( uminus612125837232591019t_real @ X2 ) @ Y ) )
      = bot_bot_set_real ) ).

% inf_compl_bot_left2
thf(fact_475_inf__compl__bot__left1,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ ( uminus_uminus_set_a @ X2 ) @ ( inf_inf_set_a @ X2 @ Y ) )
      = bot_bot_set_a ) ).

% inf_compl_bot_left1
thf(fact_476_inf__compl__bot__left1,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ ( uminus5517552291522096439nnreal @ X2 ) @ ( inf_in3368558534146122112nnreal @ X2 @ Y ) )
      = bot_bo4854962954004695426nnreal ) ).

% inf_compl_bot_left1
thf(fact_477_inf__compl__bot__left1,axiom,
    ! [X2: set_real,Y: set_real] :
      ( ( inf_inf_set_real @ ( uminus612125837232591019t_real @ X2 ) @ ( inf_inf_set_real @ X2 @ Y ) )
      = bot_bot_set_real ) ).

% inf_compl_bot_left1
thf(fact_478_disjoint__insert_I2_J,axiom,
    ! [A: set_set_a,B: set_a,B2: set_set_a] :
      ( ( bot_bot_set_set_a
        = ( inf_inf_set_set_a @ A @ ( insert_set_a @ B @ B2 ) ) )
      = ( ~ ( member_set_a @ B @ A )
        & ( bot_bot_set_set_a
          = ( inf_inf_set_set_a @ A @ B2 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_479_disjoint__insert_I2_J,axiom,
    ! [A: set_re5328672808648366137nnreal,B: real > extend8495563244428889912nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( bot_bo6037503491064675021nnreal
        = ( inf_in8454409011496165067nnreal @ A @ ( insert152533262698245683nnreal @ B @ B2 ) ) )
      = ( ~ ( member2919562650594848410nnreal @ B @ A )
        & ( bot_bo6037503491064675021nnreal
          = ( inf_in8454409011496165067nnreal @ A @ B2 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_480_disjoint__insert_I2_J,axiom,
    ! [A: set_set_real,B: set_real,B2: set_set_real] :
      ( ( bot_bot_set_set_real
        = ( inf_inf_set_set_real @ A @ ( insert_set_real @ B @ B2 ) ) )
      = ( ~ ( member_set_real @ B @ A )
        & ( bot_bot_set_set_real
          = ( inf_inf_set_set_real @ A @ B2 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_481_disjoint__insert_I2_J,axiom,
    ! [A: set_se4580700918925141924nnreal,B: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( bot_bo2988155216863113784nnreal
        = ( inf_in5190865051653673526nnreal @ A @ ( insert1343806209672318238nnreal @ B @ B2 ) ) )
      = ( ~ ( member603777416030116741nnreal @ B @ A )
        & ( bot_bo2988155216863113784nnreal
          = ( inf_in5190865051653673526nnreal @ A @ B2 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_482_disjoint__insert_I1_J,axiom,
    ! [B2: set_set_a,A2: set_a,A: set_set_a] :
      ( ( ( inf_inf_set_set_a @ B2 @ ( insert_set_a @ A2 @ A ) )
        = bot_bot_set_set_a )
      = ( ~ ( member_set_a @ A2 @ B2 )
        & ( ( inf_inf_set_set_a @ B2 @ A )
          = bot_bot_set_set_a ) ) ) ).

% disjoint_insert(1)
thf(fact_483_disjoint__insert_I1_J,axiom,
    ! [B2: set_re5328672808648366137nnreal,A2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( ( inf_in8454409011496165067nnreal @ B2 @ ( insert152533262698245683nnreal @ A2 @ A ) )
        = bot_bo6037503491064675021nnreal )
      = ( ~ ( member2919562650594848410nnreal @ A2 @ B2 )
        & ( ( inf_in8454409011496165067nnreal @ B2 @ A )
          = bot_bo6037503491064675021nnreal ) ) ) ).

% disjoint_insert(1)
thf(fact_484_disjoint__insert_I1_J,axiom,
    ! [B2: set_set_real,A2: set_real,A: set_set_real] :
      ( ( ( inf_inf_set_set_real @ B2 @ ( insert_set_real @ A2 @ A ) )
        = bot_bot_set_set_real )
      = ( ~ ( member_set_real @ A2 @ B2 )
        & ( ( inf_inf_set_set_real @ B2 @ A )
          = bot_bot_set_set_real ) ) ) ).

% disjoint_insert(1)
thf(fact_485_disjoint__insert_I1_J,axiom,
    ! [B2: set_se4580700918925141924nnreal,A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( ( inf_in5190865051653673526nnreal @ B2 @ ( insert1343806209672318238nnreal @ A2 @ A ) )
        = bot_bo2988155216863113784nnreal )
      = ( ~ ( member603777416030116741nnreal @ A2 @ B2 )
        & ( ( inf_in5190865051653673526nnreal @ B2 @ A )
          = bot_bo2988155216863113784nnreal ) ) ) ).

% disjoint_insert(1)
thf(fact_486_insert__disjoint_I2_J,axiom,
    ! [A2: set_a,A: set_set_a,B2: set_set_a] :
      ( ( bot_bot_set_set_a
        = ( inf_inf_set_set_a @ ( insert_set_a @ A2 @ A ) @ B2 ) )
      = ( ~ ( member_set_a @ A2 @ B2 )
        & ( bot_bot_set_set_a
          = ( inf_inf_set_set_a @ A @ B2 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_487_insert__disjoint_I2_J,axiom,
    ! [A2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( bot_bo6037503491064675021nnreal
        = ( inf_in8454409011496165067nnreal @ ( insert152533262698245683nnreal @ A2 @ A ) @ B2 ) )
      = ( ~ ( member2919562650594848410nnreal @ A2 @ B2 )
        & ( bot_bo6037503491064675021nnreal
          = ( inf_in8454409011496165067nnreal @ A @ B2 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_488_insert__disjoint_I2_J,axiom,
    ! [A2: set_real,A: set_set_real,B2: set_set_real] :
      ( ( bot_bot_set_set_real
        = ( inf_inf_set_set_real @ ( insert_set_real @ A2 @ A ) @ B2 ) )
      = ( ~ ( member_set_real @ A2 @ B2 )
        & ( bot_bot_set_set_real
          = ( inf_inf_set_set_real @ A @ B2 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_489_insert__disjoint_I2_J,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( bot_bo2988155216863113784nnreal
        = ( inf_in5190865051653673526nnreal @ ( insert1343806209672318238nnreal @ A2 @ A ) @ B2 ) )
      = ( ~ ( member603777416030116741nnreal @ A2 @ B2 )
        & ( bot_bo2988155216863113784nnreal
          = ( inf_in5190865051653673526nnreal @ A @ B2 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_490_insert__disjoint_I1_J,axiom,
    ! [A2: set_a,A: set_set_a,B2: set_set_a] :
      ( ( ( inf_inf_set_set_a @ ( insert_set_a @ A2 @ A ) @ B2 )
        = bot_bot_set_set_a )
      = ( ~ ( member_set_a @ A2 @ B2 )
        & ( ( inf_inf_set_set_a @ A @ B2 )
          = bot_bot_set_set_a ) ) ) ).

% insert_disjoint(1)
thf(fact_491_insert__disjoint_I1_J,axiom,
    ! [A2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( ( inf_in8454409011496165067nnreal @ ( insert152533262698245683nnreal @ A2 @ A ) @ B2 )
        = bot_bo6037503491064675021nnreal )
      = ( ~ ( member2919562650594848410nnreal @ A2 @ B2 )
        & ( ( inf_in8454409011496165067nnreal @ A @ B2 )
          = bot_bo6037503491064675021nnreal ) ) ) ).

% insert_disjoint(1)
thf(fact_492_insert__disjoint_I1_J,axiom,
    ! [A2: set_real,A: set_set_real,B2: set_set_real] :
      ( ( ( inf_inf_set_set_real @ ( insert_set_real @ A2 @ A ) @ B2 )
        = bot_bot_set_set_real )
      = ( ~ ( member_set_real @ A2 @ B2 )
        & ( ( inf_inf_set_set_real @ A @ B2 )
          = bot_bot_set_set_real ) ) ) ).

% insert_disjoint(1)
thf(fact_493_insert__disjoint_I1_J,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( ( inf_in5190865051653673526nnreal @ ( insert1343806209672318238nnreal @ A2 @ A ) @ B2 )
        = bot_bo2988155216863113784nnreal )
      = ( ~ ( member603777416030116741nnreal @ A2 @ B2 )
        & ( ( inf_in5190865051653673526nnreal @ A @ B2 )
          = bot_bo2988155216863113784nnreal ) ) ) ).

% insert_disjoint(1)
thf(fact_494_Diff__UNIV,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( minus_104578273773384135nnreal @ A @ top_to7994903218803871134nnreal )
      = bot_bo4854962954004695426nnreal ) ).

% Diff_UNIV
thf(fact_495_Diff__UNIV,axiom,
    ! [A: set_real] :
      ( ( minus_minus_set_real @ A @ top_top_set_real )
      = bot_bot_set_real ) ).

% Diff_UNIV
thf(fact_496_Diff__UNIV,axiom,
    ! [A: set_a] :
      ( ( minus_minus_set_a @ A @ top_top_set_a )
      = bot_bot_set_a ) ).

% Diff_UNIV
thf(fact_497_sets_OInt__space__eq1,axiom,
    ! [X2: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ X2 @ ( sigma_sets_a @ M ) )
     => ( ( inf_inf_set_a @ ( sigma_space_a @ M ) @ X2 )
        = X2 ) ) ).

% sets.Int_space_eq1
thf(fact_498_sets_OInt__space__eq1,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ X2 @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( inf_in3368558534146122112nnreal @ ( sigma_3147302497200244656nnreal @ M ) @ X2 )
        = X2 ) ) ).

% sets.Int_space_eq1
thf(fact_499_sets_OInt__space__eq1,axiom,
    ! [X2: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ X2 @ ( sigma_sets_real @ M ) )
     => ( ( inf_inf_set_real @ ( sigma_space_real @ M ) @ X2 )
        = X2 ) ) ).

% sets.Int_space_eq1
thf(fact_500_sets_OInt__space__eq2,axiom,
    ! [X2: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ X2 @ ( sigma_sets_a @ M ) )
     => ( ( inf_inf_set_a @ X2 @ ( sigma_space_a @ M ) )
        = X2 ) ) ).

% sets.Int_space_eq2
thf(fact_501_sets_OInt__space__eq2,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ X2 @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( inf_in3368558534146122112nnreal @ X2 @ ( sigma_3147302497200244656nnreal @ M ) )
        = X2 ) ) ).

% sets.Int_space_eq2
thf(fact_502_sets_OInt__space__eq2,axiom,
    ! [X2: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ X2 @ ( sigma_sets_real @ M ) )
     => ( ( inf_inf_set_real @ X2 @ ( sigma_space_real @ M ) )
        = X2 ) ) ).

% sets.Int_space_eq2
thf(fact_503_sets_Ocompl__sets,axiom,
    ! [A2: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ A2 @ ( sigma_sets_a @ M ) )
     => ( member_set_a @ ( minus_minus_set_a @ ( sigma_space_a @ M ) @ A2 ) @ ( sigma_sets_a @ M ) ) ) ).

% sets.compl_sets
thf(fact_504_sets_Ocompl__sets,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( member603777416030116741nnreal @ ( minus_104578273773384135nnreal @ ( sigma_3147302497200244656nnreal @ M ) @ A2 ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% sets.compl_sets
thf(fact_505_sets_Ocompl__sets,axiom,
    ! [A2: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ A2 @ ( sigma_sets_real @ M ) )
     => ( member_set_real @ ( minus_minus_set_real @ ( sigma_space_real @ M ) @ A2 ) @ ( sigma_sets_real @ M ) ) ) ).

% sets.compl_sets
thf(fact_506_Compl__disjoint,axiom,
    ! [A: set_a] :
      ( ( inf_inf_set_a @ A @ ( uminus_uminus_set_a @ A ) )
      = bot_bot_set_a ) ).

% Compl_disjoint
thf(fact_507_Compl__disjoint,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ A @ ( uminus5517552291522096439nnreal @ A ) )
      = bot_bo4854962954004695426nnreal ) ).

% Compl_disjoint
thf(fact_508_Compl__disjoint,axiom,
    ! [A: set_real] :
      ( ( inf_inf_set_real @ A @ ( uminus612125837232591019t_real @ A ) )
      = bot_bot_set_real ) ).

% Compl_disjoint
thf(fact_509_Compl__disjoint2,axiom,
    ! [A: set_a] :
      ( ( inf_inf_set_a @ ( uminus_uminus_set_a @ A ) @ A )
      = bot_bot_set_a ) ).

% Compl_disjoint2
thf(fact_510_Compl__disjoint2,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ ( uminus5517552291522096439nnreal @ A ) @ A )
      = bot_bo4854962954004695426nnreal ) ).

% Compl_disjoint2
thf(fact_511_Compl__disjoint2,axiom,
    ! [A: set_real] :
      ( ( inf_inf_set_real @ ( uminus612125837232591019t_real @ A ) @ A )
      = bot_bot_set_real ) ).

% Compl_disjoint2
thf(fact_512_null__sets_OInt__space__eq1,axiom,
    ! [X2: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ X2 @ ( measure_null_sets_a @ M ) )
     => ( ( inf_inf_set_a @ ( sigma_space_a @ M ) @ X2 )
        = X2 ) ) ).

% null_sets.Int_space_eq1
thf(fact_513_null__sets_OInt__space__eq1,axiom,
    ! [X2: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ X2 @ ( measur3710062792471635001s_real @ M ) )
     => ( ( inf_inf_set_real @ ( sigma_space_real @ M ) @ X2 )
        = X2 ) ) ).

% null_sets.Int_space_eq1
thf(fact_514_null__sets_OInt__space__eq1,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ X2 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( inf_in3368558534146122112nnreal @ ( sigma_3147302497200244656nnreal @ M ) @ X2 )
        = X2 ) ) ).

% null_sets.Int_space_eq1
thf(fact_515_null__sets_OInt__space__eq2,axiom,
    ! [X2: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ X2 @ ( measure_null_sets_a @ M ) )
     => ( ( inf_inf_set_a @ X2 @ ( sigma_space_a @ M ) )
        = X2 ) ) ).

% null_sets.Int_space_eq2
thf(fact_516_null__sets_OInt__space__eq2,axiom,
    ! [X2: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ X2 @ ( measur3710062792471635001s_real @ M ) )
     => ( ( inf_inf_set_real @ X2 @ ( sigma_space_real @ M ) )
        = X2 ) ) ).

% null_sets.Int_space_eq2
thf(fact_517_null__sets_OInt__space__eq2,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ X2 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( inf_in3368558534146122112nnreal @ X2 @ ( sigma_3147302497200244656nnreal @ M ) )
        = X2 ) ) ).

% null_sets.Int_space_eq2
thf(fact_518_Diff__Compl,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( minus_minus_set_a @ A @ ( uminus_uminus_set_a @ B2 ) )
      = ( inf_inf_set_a @ A @ B2 ) ) ).

% Diff_Compl
thf(fact_519_Diff__Compl,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( minus_104578273773384135nnreal @ A @ ( uminus5517552291522096439nnreal @ B2 ) )
      = ( inf_in3368558534146122112nnreal @ A @ B2 ) ) ).

% Diff_Compl
thf(fact_520_Diff__Compl,axiom,
    ! [A: set_real,B2: set_real] :
      ( ( minus_minus_set_real @ A @ ( uminus612125837232591019t_real @ B2 ) )
      = ( inf_inf_set_real @ A @ B2 ) ) ).

% Diff_Compl
thf(fact_521_sets__bot,axiom,
    ( ( sigma_sets_a @ bot_bo2108912051383640591sure_a )
    = ( insert_set_a @ bot_bot_set_a @ bot_bot_set_set_a ) ) ).

% sets_bot
thf(fact_522_sets__bot,axiom,
    ( ( sigma_5465916536984168985nnreal @ bot_bo1740529460517930749nnreal )
    = ( insert1343806209672318238nnreal @ bot_bo4854962954004695426nnreal @ bot_bo2988155216863113784nnreal ) ) ).

% sets_bot
thf(fact_523_sets__bot,axiom,
    ( ( sigma_sets_real @ bot_bo5982154664989874033e_real )
    = ( insert_set_real @ bot_bot_set_real @ bot_bot_set_set_real ) ) ).

% sets_bot
thf(fact_524_id__borel__measurable__lebesgue,axiom,
    member_real_real @ id_real @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ borel_5078946678739801102l_real ) ).

% id_borel_measurable_lebesgue
thf(fact_525_Diff__eq,axiom,
    ( minus_minus_set_a
    = ( ^ [A3: set_a,B4: set_a] : ( inf_inf_set_a @ A3 @ ( uminus_uminus_set_a @ B4 ) ) ) ) ).

% Diff_eq
thf(fact_526_Diff__eq,axiom,
    ( minus_104578273773384135nnreal
    = ( ^ [A3: set_Ex3793607809372303086nnreal,B4: set_Ex3793607809372303086nnreal] : ( inf_in3368558534146122112nnreal @ A3 @ ( uminus5517552291522096439nnreal @ B4 ) ) ) ) ).

% Diff_eq
thf(fact_527_Diff__eq,axiom,
    ( minus_minus_set_real
    = ( ^ [A3: set_real,B4: set_real] : ( inf_inf_set_real @ A3 @ ( uminus612125837232591019t_real @ B4 ) ) ) ) ).

% Diff_eq
thf(fact_528_diff__eq,axiom,
    ( minus_minus_set_a
    = ( ^ [X3: set_a,Y3: set_a] : ( inf_inf_set_a @ X3 @ ( uminus_uminus_set_a @ Y3 ) ) ) ) ).

% diff_eq
thf(fact_529_diff__eq,axiom,
    ( minus_104578273773384135nnreal
    = ( ^ [X3: set_Ex3793607809372303086nnreal,Y3: set_Ex3793607809372303086nnreal] : ( inf_in3368558534146122112nnreal @ X3 @ ( uminus5517552291522096439nnreal @ Y3 ) ) ) ) ).

% diff_eq
thf(fact_530_diff__eq,axiom,
    ( minus_minus_set_real
    = ( ^ [X3: set_real,Y3: set_real] : ( inf_inf_set_real @ X3 @ ( uminus612125837232591019t_real @ Y3 ) ) ) ) ).

% diff_eq
thf(fact_531_diff__eq__diff__eq,axiom,
    ! [A2: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A2 @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( A2 = B )
        = ( C = D ) ) ) ).

% diff_eq_diff_eq
thf(fact_532_cancel__ab__semigroup__add__class_Odiff__right__commute,axiom,
    ! [A2: real,C: real,B: real] :
      ( ( minus_minus_real @ ( minus_minus_real @ A2 @ C ) @ B )
      = ( minus_minus_real @ ( minus_minus_real @ A2 @ B ) @ C ) ) ).

% cancel_ab_semigroup_add_class.diff_right_commute
thf(fact_533_IntE,axiom,
    ! [C: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( inf_inf_set_set_a @ A @ B2 ) )
     => ~ ( ( member_set_a @ C @ A )
         => ~ ( member_set_a @ C @ B2 ) ) ) ).

% IntE
thf(fact_534_IntE,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ ( inf_in8454409011496165067nnreal @ A @ B2 ) )
     => ~ ( ( member2919562650594848410nnreal @ C @ A )
         => ~ ( member2919562650594848410nnreal @ C @ B2 ) ) ) ).

% IntE
thf(fact_535_IntE,axiom,
    ! [C: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ C @ ( inf_inf_set_set_real @ A @ B2 ) )
     => ~ ( ( member_set_real @ C @ A )
         => ~ ( member_set_real @ C @ B2 ) ) ) ).

% IntE
thf(fact_536_IntE,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ ( inf_in5190865051653673526nnreal @ A @ B2 ) )
     => ~ ( ( member603777416030116741nnreal @ C @ A )
         => ~ ( member603777416030116741nnreal @ C @ B2 ) ) ) ).

% IntE
thf(fact_537_DiffE,axiom,
    ! [C: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( minus_5736297505244876581_set_a @ A @ B2 ) )
     => ~ ( ( member_set_a @ C @ A )
         => ( member_set_a @ C @ B2 ) ) ) ).

% DiffE
thf(fact_538_DiffE,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ ( minus_3708639258518406418nnreal @ A @ B2 ) )
     => ~ ( ( member2919562650594848410nnreal @ C @ A )
         => ( member2919562650594848410nnreal @ C @ B2 ) ) ) ).

% DiffE
thf(fact_539_DiffE,axiom,
    ! [C: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ C @ ( minus_5467046032205032049t_real @ A @ B2 ) )
     => ~ ( ( member_set_real @ C @ A )
         => ( member_set_real @ C @ B2 ) ) ) ).

% DiffE
thf(fact_540_DiffE,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ ( minus_5908140721592501885nnreal @ A @ B2 ) )
     => ~ ( ( member603777416030116741nnreal @ C @ A )
         => ( member603777416030116741nnreal @ C @ B2 ) ) ) ).

% DiffE
thf(fact_541_IntD1,axiom,
    ! [C: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( inf_inf_set_set_a @ A @ B2 ) )
     => ( member_set_a @ C @ A ) ) ).

% IntD1
thf(fact_542_IntD1,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ ( inf_in8454409011496165067nnreal @ A @ B2 ) )
     => ( member2919562650594848410nnreal @ C @ A ) ) ).

% IntD1
thf(fact_543_IntD1,axiom,
    ! [C: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ C @ ( inf_inf_set_set_real @ A @ B2 ) )
     => ( member_set_real @ C @ A ) ) ).

% IntD1
thf(fact_544_IntD1,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ ( inf_in5190865051653673526nnreal @ A @ B2 ) )
     => ( member603777416030116741nnreal @ C @ A ) ) ).

% IntD1
thf(fact_545_IntD2,axiom,
    ! [C: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( inf_inf_set_set_a @ A @ B2 ) )
     => ( member_set_a @ C @ B2 ) ) ).

% IntD2
thf(fact_546_IntD2,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ ( inf_in8454409011496165067nnreal @ A @ B2 ) )
     => ( member2919562650594848410nnreal @ C @ B2 ) ) ).

% IntD2
thf(fact_547_IntD2,axiom,
    ! [C: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ C @ ( inf_inf_set_set_real @ A @ B2 ) )
     => ( member_set_real @ C @ B2 ) ) ).

% IntD2
thf(fact_548_IntD2,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ ( inf_in5190865051653673526nnreal @ A @ B2 ) )
     => ( member603777416030116741nnreal @ C @ B2 ) ) ).

% IntD2
thf(fact_549_DiffD1,axiom,
    ! [C: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( minus_5736297505244876581_set_a @ A @ B2 ) )
     => ( member_set_a @ C @ A ) ) ).

% DiffD1
thf(fact_550_DiffD1,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ ( minus_3708639258518406418nnreal @ A @ B2 ) )
     => ( member2919562650594848410nnreal @ C @ A ) ) ).

% DiffD1
thf(fact_551_DiffD1,axiom,
    ! [C: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ C @ ( minus_5467046032205032049t_real @ A @ B2 ) )
     => ( member_set_real @ C @ A ) ) ).

% DiffD1
thf(fact_552_DiffD1,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ ( minus_5908140721592501885nnreal @ A @ B2 ) )
     => ( member603777416030116741nnreal @ C @ A ) ) ).

% DiffD1
thf(fact_553_DiffD2,axiom,
    ! [C: set_a,A: set_set_a,B2: set_set_a] :
      ( ( member_set_a @ C @ ( minus_5736297505244876581_set_a @ A @ B2 ) )
     => ~ ( member_set_a @ C @ B2 ) ) ).

% DiffD2
thf(fact_554_DiffD2,axiom,
    ! [C: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ C @ ( minus_3708639258518406418nnreal @ A @ B2 ) )
     => ~ ( member2919562650594848410nnreal @ C @ B2 ) ) ).

% DiffD2
thf(fact_555_DiffD2,axiom,
    ! [C: set_real,A: set_set_real,B2: set_set_real] :
      ( ( member_set_real @ C @ ( minus_5467046032205032049t_real @ A @ B2 ) )
     => ~ ( member_set_real @ C @ B2 ) ) ).

% DiffD2
thf(fact_556_DiffD2,axiom,
    ! [C: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ C @ ( minus_5908140721592501885nnreal @ A @ B2 ) )
     => ~ ( member603777416030116741nnreal @ C @ B2 ) ) ).

% DiffD2
thf(fact_557_bot__empty__eq,axiom,
    ( bot_bot_set_a_o
    = ( ^ [X3: set_a] : ( member_set_a @ X3 @ bot_bot_set_set_a ) ) ) ).

% bot_empty_eq
thf(fact_558_bot__empty__eq,axiom,
    ( bot_bo6758561407716789752real_o
    = ( ^ [X3: real > extend8495563244428889912nnreal] : ( member2919562650594848410nnreal @ X3 @ bot_bo6037503491064675021nnreal ) ) ) ).

% bot_empty_eq
thf(fact_559_bot__empty__eq,axiom,
    ( bot_bot_set_real_o
    = ( ^ [X3: set_real] : ( member_set_real @ X3 @ bot_bot_set_set_real ) ) ) ).

% bot_empty_eq
thf(fact_560_bot__empty__eq,axiom,
    ( bot_bo5002694753204610125real_o
    = ( ^ [X3: set_Ex3793607809372303086nnreal] : ( member603777416030116741nnreal @ X3 @ bot_bo2988155216863113784nnreal ) ) ) ).

% bot_empty_eq
thf(fact_561_boolean__algebra_Oconj__one__right,axiom,
    ! [X2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ X2 @ top_to7994903218803871134nnreal )
      = X2 ) ).

% boolean_algebra.conj_one_right
thf(fact_562_boolean__algebra_Oconj__one__right,axiom,
    ! [X2: set_real] :
      ( ( inf_inf_set_real @ X2 @ top_top_set_real )
      = X2 ) ).

% boolean_algebra.conj_one_right
thf(fact_563_boolean__algebra_Oconj__one__right,axiom,
    ! [X2: set_a] :
      ( ( inf_inf_set_a @ X2 @ top_top_set_a )
      = X2 ) ).

% boolean_algebra.conj_one_right
thf(fact_564_minus__diff__commute,axiom,
    ! [B: real,A2: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ B ) @ A2 )
      = ( minus_minus_real @ ( uminus_uminus_real @ A2 ) @ B ) ) ).

% minus_diff_commute
thf(fact_565_Int__UNIV__right,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ A @ top_to7994903218803871134nnreal )
      = A ) ).

% Int_UNIV_right
thf(fact_566_Int__UNIV__right,axiom,
    ! [A: set_real] :
      ( ( inf_inf_set_real @ A @ top_top_set_real )
      = A ) ).

% Int_UNIV_right
thf(fact_567_Int__UNIV__right,axiom,
    ! [A: set_a] :
      ( ( inf_inf_set_a @ A @ top_top_set_a )
      = A ) ).

% Int_UNIV_right
thf(fact_568_Int__UNIV__left,axiom,
    ! [B2: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ top_to7994903218803871134nnreal @ B2 )
      = B2 ) ).

% Int_UNIV_left
thf(fact_569_Int__UNIV__left,axiom,
    ! [B2: set_real] :
      ( ( inf_inf_set_real @ top_top_set_real @ B2 )
      = B2 ) ).

% Int_UNIV_left
thf(fact_570_Int__UNIV__left,axiom,
    ! [B2: set_a] :
      ( ( inf_inf_set_a @ top_top_set_a @ B2 )
      = B2 ) ).

% Int_UNIV_left
thf(fact_571_Int__emptyI,axiom,
    ! [A: set_set_a,B2: set_set_a] :
      ( ! [X: set_a] :
          ( ( member_set_a @ X @ A )
         => ~ ( member_set_a @ X @ B2 ) )
     => ( ( inf_inf_set_set_a @ A @ B2 )
        = bot_bot_set_set_a ) ) ).

% Int_emptyI
thf(fact_572_Int__emptyI,axiom,
    ! [A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ! [X: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ X @ A )
         => ~ ( member2919562650594848410nnreal @ X @ B2 ) )
     => ( ( inf_in8454409011496165067nnreal @ A @ B2 )
        = bot_bo6037503491064675021nnreal ) ) ).

% Int_emptyI
thf(fact_573_Int__emptyI,axiom,
    ! [A: set_set_real,B2: set_set_real] :
      ( ! [X: set_real] :
          ( ( member_set_real @ X @ A )
         => ~ ( member_set_real @ X @ B2 ) )
     => ( ( inf_inf_set_set_real @ A @ B2 )
        = bot_bot_set_set_real ) ) ).

% Int_emptyI
thf(fact_574_Int__emptyI,axiom,
    ! [A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ! [X: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ X @ A )
         => ~ ( member603777416030116741nnreal @ X @ B2 ) )
     => ( ( inf_in5190865051653673526nnreal @ A @ B2 )
        = bot_bo2988155216863113784nnreal ) ) ).

% Int_emptyI
thf(fact_575_disjoint__iff,axiom,
    ! [A: set_set_a,B2: set_set_a] :
      ( ( ( inf_inf_set_set_a @ A @ B2 )
        = bot_bot_set_set_a )
      = ( ! [X3: set_a] :
            ( ( member_set_a @ X3 @ A )
           => ~ ( member_set_a @ X3 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_576_disjoint__iff,axiom,
    ! [A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( ( inf_in8454409011496165067nnreal @ A @ B2 )
        = bot_bo6037503491064675021nnreal )
      = ( ! [X3: real > extend8495563244428889912nnreal] :
            ( ( member2919562650594848410nnreal @ X3 @ A )
           => ~ ( member2919562650594848410nnreal @ X3 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_577_disjoint__iff,axiom,
    ! [A: set_set_real,B2: set_set_real] :
      ( ( ( inf_inf_set_set_real @ A @ B2 )
        = bot_bot_set_set_real )
      = ( ! [X3: set_real] :
            ( ( member_set_real @ X3 @ A )
           => ~ ( member_set_real @ X3 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_578_disjoint__iff,axiom,
    ! [A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( ( inf_in5190865051653673526nnreal @ A @ B2 )
        = bot_bo2988155216863113784nnreal )
      = ( ! [X3: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X3 @ A )
           => ~ ( member603777416030116741nnreal @ X3 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_579_Int__insert__right,axiom,
    ! [A2: set_a,A: set_set_a,B2: set_set_a] :
      ( ( ( member_set_a @ A2 @ A )
       => ( ( inf_inf_set_set_a @ A @ ( insert_set_a @ A2 @ B2 ) )
          = ( insert_set_a @ A2 @ ( inf_inf_set_set_a @ A @ B2 ) ) ) )
      & ( ~ ( member_set_a @ A2 @ A )
       => ( ( inf_inf_set_set_a @ A @ ( insert_set_a @ A2 @ B2 ) )
          = ( inf_inf_set_set_a @ A @ B2 ) ) ) ) ).

% Int_insert_right
thf(fact_580_Int__insert__right,axiom,
    ! [A2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( ( member2919562650594848410nnreal @ A2 @ A )
       => ( ( inf_in8454409011496165067nnreal @ A @ ( insert152533262698245683nnreal @ A2 @ B2 ) )
          = ( insert152533262698245683nnreal @ A2 @ ( inf_in8454409011496165067nnreal @ A @ B2 ) ) ) )
      & ( ~ ( member2919562650594848410nnreal @ A2 @ A )
       => ( ( inf_in8454409011496165067nnreal @ A @ ( insert152533262698245683nnreal @ A2 @ B2 ) )
          = ( inf_in8454409011496165067nnreal @ A @ B2 ) ) ) ) ).

% Int_insert_right
thf(fact_581_Int__insert__right,axiom,
    ! [A2: set_real,A: set_set_real,B2: set_set_real] :
      ( ( ( member_set_real @ A2 @ A )
       => ( ( inf_inf_set_set_real @ A @ ( insert_set_real @ A2 @ B2 ) )
          = ( insert_set_real @ A2 @ ( inf_inf_set_set_real @ A @ B2 ) ) ) )
      & ( ~ ( member_set_real @ A2 @ A )
       => ( ( inf_inf_set_set_real @ A @ ( insert_set_real @ A2 @ B2 ) )
          = ( inf_inf_set_set_real @ A @ B2 ) ) ) ) ).

% Int_insert_right
thf(fact_582_Int__insert__right,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( ( member603777416030116741nnreal @ A2 @ A )
       => ( ( inf_in5190865051653673526nnreal @ A @ ( insert1343806209672318238nnreal @ A2 @ B2 ) )
          = ( insert1343806209672318238nnreal @ A2 @ ( inf_in5190865051653673526nnreal @ A @ B2 ) ) ) )
      & ( ~ ( member603777416030116741nnreal @ A2 @ A )
       => ( ( inf_in5190865051653673526nnreal @ A @ ( insert1343806209672318238nnreal @ A2 @ B2 ) )
          = ( inf_in5190865051653673526nnreal @ A @ B2 ) ) ) ) ).

% Int_insert_right
thf(fact_583_Int__insert__left,axiom,
    ! [A2: set_a,C3: set_set_a,B2: set_set_a] :
      ( ( ( member_set_a @ A2 @ C3 )
       => ( ( inf_inf_set_set_a @ ( insert_set_a @ A2 @ B2 ) @ C3 )
          = ( insert_set_a @ A2 @ ( inf_inf_set_set_a @ B2 @ C3 ) ) ) )
      & ( ~ ( member_set_a @ A2 @ C3 )
       => ( ( inf_inf_set_set_a @ ( insert_set_a @ A2 @ B2 ) @ C3 )
          = ( inf_inf_set_set_a @ B2 @ C3 ) ) ) ) ).

% Int_insert_left
thf(fact_584_Int__insert__left,axiom,
    ! [A2: real > extend8495563244428889912nnreal,C3: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( ( member2919562650594848410nnreal @ A2 @ C3 )
       => ( ( inf_in8454409011496165067nnreal @ ( insert152533262698245683nnreal @ A2 @ B2 ) @ C3 )
          = ( insert152533262698245683nnreal @ A2 @ ( inf_in8454409011496165067nnreal @ B2 @ C3 ) ) ) )
      & ( ~ ( member2919562650594848410nnreal @ A2 @ C3 )
       => ( ( inf_in8454409011496165067nnreal @ ( insert152533262698245683nnreal @ A2 @ B2 ) @ C3 )
          = ( inf_in8454409011496165067nnreal @ B2 @ C3 ) ) ) ) ).

% Int_insert_left
thf(fact_585_Int__insert__left,axiom,
    ! [A2: set_real,C3: set_set_real,B2: set_set_real] :
      ( ( ( member_set_real @ A2 @ C3 )
       => ( ( inf_inf_set_set_real @ ( insert_set_real @ A2 @ B2 ) @ C3 )
          = ( insert_set_real @ A2 @ ( inf_inf_set_set_real @ B2 @ C3 ) ) ) )
      & ( ~ ( member_set_real @ A2 @ C3 )
       => ( ( inf_inf_set_set_real @ ( insert_set_real @ A2 @ B2 ) @ C3 )
          = ( inf_inf_set_set_real @ B2 @ C3 ) ) ) ) ).

% Int_insert_left
thf(fact_586_Int__insert__left,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,C3: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( ( member603777416030116741nnreal @ A2 @ C3 )
       => ( ( inf_in5190865051653673526nnreal @ ( insert1343806209672318238nnreal @ A2 @ B2 ) @ C3 )
          = ( insert1343806209672318238nnreal @ A2 @ ( inf_in5190865051653673526nnreal @ B2 @ C3 ) ) ) )
      & ( ~ ( member603777416030116741nnreal @ A2 @ C3 )
       => ( ( inf_in5190865051653673526nnreal @ ( insert1343806209672318238nnreal @ A2 @ B2 ) @ C3 )
          = ( inf_in5190865051653673526nnreal @ B2 @ C3 ) ) ) ) ).

% Int_insert_left
thf(fact_587_insert__Diff__if,axiom,
    ! [X2: set_a,B2: set_set_a,A: set_set_a] :
      ( ( ( member_set_a @ X2 @ B2 )
       => ( ( minus_5736297505244876581_set_a @ ( insert_set_a @ X2 @ A ) @ B2 )
          = ( minus_5736297505244876581_set_a @ A @ B2 ) ) )
      & ( ~ ( member_set_a @ X2 @ B2 )
       => ( ( minus_5736297505244876581_set_a @ ( insert_set_a @ X2 @ A ) @ B2 )
          = ( insert_set_a @ X2 @ ( minus_5736297505244876581_set_a @ A @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_588_insert__Diff__if,axiom,
    ! [X2: real > extend8495563244428889912nnreal,B2: set_re5328672808648366137nnreal,A: set_re5328672808648366137nnreal] :
      ( ( ( member2919562650594848410nnreal @ X2 @ B2 )
       => ( ( minus_3708639258518406418nnreal @ ( insert152533262698245683nnreal @ X2 @ A ) @ B2 )
          = ( minus_3708639258518406418nnreal @ A @ B2 ) ) )
      & ( ~ ( member2919562650594848410nnreal @ X2 @ B2 )
       => ( ( minus_3708639258518406418nnreal @ ( insert152533262698245683nnreal @ X2 @ A ) @ B2 )
          = ( insert152533262698245683nnreal @ X2 @ ( minus_3708639258518406418nnreal @ A @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_589_insert__Diff__if,axiom,
    ! [X2: set_real,B2: set_set_real,A: set_set_real] :
      ( ( ( member_set_real @ X2 @ B2 )
       => ( ( minus_5467046032205032049t_real @ ( insert_set_real @ X2 @ A ) @ B2 )
          = ( minus_5467046032205032049t_real @ A @ B2 ) ) )
      & ( ~ ( member_set_real @ X2 @ B2 )
       => ( ( minus_5467046032205032049t_real @ ( insert_set_real @ X2 @ A ) @ B2 )
          = ( insert_set_real @ X2 @ ( minus_5467046032205032049t_real @ A @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_590_insert__Diff__if,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal,A: set_se4580700918925141924nnreal] :
      ( ( ( member603777416030116741nnreal @ X2 @ B2 )
       => ( ( minus_5908140721592501885nnreal @ ( insert1343806209672318238nnreal @ X2 @ A ) @ B2 )
          = ( minus_5908140721592501885nnreal @ A @ B2 ) ) )
      & ( ~ ( member603777416030116741nnreal @ X2 @ B2 )
       => ( ( minus_5908140721592501885nnreal @ ( insert1343806209672318238nnreal @ X2 @ A ) @ B2 )
          = ( insert1343806209672318238nnreal @ X2 @ ( minus_5908140721592501885nnreal @ A @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_591_inf__cancel__left2,axiom,
    ! [X2: set_a,A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ ( uminus_uminus_set_a @ X2 ) @ A2 ) @ ( inf_inf_set_a @ X2 @ B ) )
      = bot_bot_set_a ) ).

% inf_cancel_left2
thf(fact_592_inf__cancel__left2,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,A2: set_Ex3793607809372303086nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ ( inf_in3368558534146122112nnreal @ ( uminus5517552291522096439nnreal @ X2 ) @ A2 ) @ ( inf_in3368558534146122112nnreal @ X2 @ B ) )
      = bot_bo4854962954004695426nnreal ) ).

% inf_cancel_left2
thf(fact_593_inf__cancel__left2,axiom,
    ! [X2: set_real,A2: set_real,B: set_real] :
      ( ( inf_inf_set_real @ ( inf_inf_set_real @ ( uminus612125837232591019t_real @ X2 ) @ A2 ) @ ( inf_inf_set_real @ X2 @ B ) )
      = bot_bot_set_real ) ).

% inf_cancel_left2
thf(fact_594_inf__cancel__left1,axiom,
    ! [X2: set_a,A2: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X2 @ A2 ) @ ( inf_inf_set_a @ ( uminus_uminus_set_a @ X2 ) @ B ) )
      = bot_bot_set_a ) ).

% inf_cancel_left1
thf(fact_595_inf__cancel__left1,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,A2: set_Ex3793607809372303086nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( inf_in3368558534146122112nnreal @ ( inf_in3368558534146122112nnreal @ X2 @ A2 ) @ ( inf_in3368558534146122112nnreal @ ( uminus5517552291522096439nnreal @ X2 ) @ B ) )
      = bot_bo4854962954004695426nnreal ) ).

% inf_cancel_left1
thf(fact_596_inf__cancel__left1,axiom,
    ! [X2: set_real,A2: set_real,B: set_real] :
      ( ( inf_inf_set_real @ ( inf_inf_set_real @ X2 @ A2 ) @ ( inf_inf_set_real @ ( uminus612125837232591019t_real @ X2 ) @ B ) )
      = bot_bot_set_real ) ).

% inf_cancel_left1
thf(fact_597_sets__eq__bot,axiom,
    ! [M: sigma_measure_a] :
      ( ( ( sigma_sets_a @ M )
        = ( insert_set_a @ bot_bot_set_a @ bot_bot_set_set_a ) )
      = ( M = bot_bo2108912051383640591sure_a ) ) ).

% sets_eq_bot
thf(fact_598_sets__eq__bot,axiom,
    ! [M: sigma_7234349610311085201nnreal] :
      ( ( ( sigma_5465916536984168985nnreal @ M )
        = ( insert1343806209672318238nnreal @ bot_bo4854962954004695426nnreal @ bot_bo2988155216863113784nnreal ) )
      = ( M = bot_bo1740529460517930749nnreal ) ) ).

% sets_eq_bot
thf(fact_599_sets__eq__bot,axiom,
    ! [M: sigma_measure_real] :
      ( ( ( sigma_sets_real @ M )
        = ( insert_set_real @ bot_bot_set_real @ bot_bot_set_set_real ) )
      = ( M = bot_bo5982154664989874033e_real ) ) ).

% sets_eq_bot
thf(fact_600_sets__eq__bot2,axiom,
    ! [M: sigma_measure_a] :
      ( ( ( insert_set_a @ bot_bot_set_a @ bot_bot_set_set_a )
        = ( sigma_sets_a @ M ) )
      = ( M = bot_bo2108912051383640591sure_a ) ) ).

% sets_eq_bot2
thf(fact_601_sets__eq__bot2,axiom,
    ! [M: sigma_7234349610311085201nnreal] :
      ( ( ( insert1343806209672318238nnreal @ bot_bo4854962954004695426nnreal @ bot_bo2988155216863113784nnreal )
        = ( sigma_5465916536984168985nnreal @ M ) )
      = ( M = bot_bo1740529460517930749nnreal ) ) ).

% sets_eq_bot2
thf(fact_602_sets__eq__bot2,axiom,
    ! [M: sigma_measure_real] :
      ( ( ( insert_set_real @ bot_bot_set_real @ bot_bot_set_set_real )
        = ( sigma_sets_real @ M ) )
      = ( M = bot_bo5982154664989874033e_real ) ) ).

% sets_eq_bot2
thf(fact_603_countable__imp__null__set__lborel,axiom,
    ! [A: set_real] :
      ( ( counta7319604579010473777e_real @ A )
     => ( member_set_real @ A @ ( measur3710062792471635001s_real @ lebesgue_lborel_real ) ) ) ).

% countable_imp_null_set_lborel
thf(fact_604_insert__Diff,axiom,
    ! [A2: set_a,A: set_set_a] :
      ( ( member_set_a @ A2 @ A )
     => ( ( insert_set_a @ A2 @ ( minus_5736297505244876581_set_a @ A @ ( insert_set_a @ A2 @ bot_bot_set_set_a ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_605_insert__Diff,axiom,
    ! [A2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ A2 @ A )
     => ( ( insert152533262698245683nnreal @ A2 @ ( minus_3708639258518406418nnreal @ A @ ( insert152533262698245683nnreal @ A2 @ bot_bo6037503491064675021nnreal ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_606_insert__Diff,axiom,
    ! [A2: set_real,A: set_set_real] :
      ( ( member_set_real @ A2 @ A )
     => ( ( insert_set_real @ A2 @ ( minus_5467046032205032049t_real @ A @ ( insert_set_real @ A2 @ bot_bot_set_set_real ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_607_insert__Diff,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ A )
     => ( ( insert1343806209672318238nnreal @ A2 @ ( minus_5908140721592501885nnreal @ A @ ( insert1343806209672318238nnreal @ A2 @ bot_bo2988155216863113784nnreal ) ) )
        = A ) ) ).

% insert_Diff
thf(fact_608_Diff__insert__absorb,axiom,
    ! [X2: set_a,A: set_set_a] :
      ( ~ ( member_set_a @ X2 @ A )
     => ( ( minus_5736297505244876581_set_a @ ( insert_set_a @ X2 @ A ) @ ( insert_set_a @ X2 @ bot_bot_set_set_a ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_609_Diff__insert__absorb,axiom,
    ! [X2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ~ ( member2919562650594848410nnreal @ X2 @ A )
     => ( ( minus_3708639258518406418nnreal @ ( insert152533262698245683nnreal @ X2 @ A ) @ ( insert152533262698245683nnreal @ X2 @ bot_bo6037503491064675021nnreal ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_610_Diff__insert__absorb,axiom,
    ! [X2: set_real,A: set_set_real] :
      ( ~ ( member_set_real @ X2 @ A )
     => ( ( minus_5467046032205032049t_real @ ( insert_set_real @ X2 @ A ) @ ( insert_set_real @ X2 @ bot_bot_set_set_real ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_611_Diff__insert__absorb,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ~ ( member603777416030116741nnreal @ X2 @ A )
     => ( ( minus_5908140721592501885nnreal @ ( insert1343806209672318238nnreal @ X2 @ A ) @ ( insert1343806209672318238nnreal @ X2 @ bot_bo2988155216863113784nnreal ) )
        = A ) ) ).

% Diff_insert_absorb
thf(fact_612_Compl__eq__Diff__UNIV,axiom,
    ( uminus_uminus_set_a
    = ( minus_minus_set_a @ top_top_set_a ) ) ).

% Compl_eq_Diff_UNIV
thf(fact_613_Compl__eq__Diff__UNIV,axiom,
    ( uminus5517552291522096439nnreal
    = ( minus_104578273773384135nnreal @ top_to7994903218803871134nnreal ) ) ).

% Compl_eq_Diff_UNIV
thf(fact_614_Compl__eq__Diff__UNIV,axiom,
    ( uminus612125837232591019t_real
    = ( minus_minus_set_real @ top_top_set_real ) ) ).

% Compl_eq_Diff_UNIV
thf(fact_615_null__set__Int1,axiom,
    ! [B2: set_a,M: sigma_measure_a,A: set_a] :
      ( ( member_set_a @ B2 @ ( measure_null_sets_a @ M ) )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
       => ( member_set_a @ ( inf_inf_set_a @ A @ B2 ) @ ( measure_null_sets_a @ M ) ) ) ) ).

% null_set_Int1
thf(fact_616_null__set__Int1,axiom,
    ! [B2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ B2 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ A @ B2 ) @ ( measur1209175464439008069nnreal @ M ) ) ) ) ).

% null_set_Int1
thf(fact_617_null__set__Int1,axiom,
    ! [B2: set_real,M: sigma_measure_real,A: set_real] :
      ( ( member_set_real @ B2 @ ( measur3710062792471635001s_real @ M ) )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
       => ( member_set_real @ ( inf_inf_set_real @ A @ B2 ) @ ( measur3710062792471635001s_real @ M ) ) ) ) ).

% null_set_Int1
thf(fact_618_null__set__Int2,axiom,
    ! [B2: set_a,M: sigma_measure_a,A: set_a] :
      ( ( member_set_a @ B2 @ ( measure_null_sets_a @ M ) )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
       => ( member_set_a @ ( inf_inf_set_a @ B2 @ A ) @ ( measure_null_sets_a @ M ) ) ) ) ).

% null_set_Int2
thf(fact_619_null__set__Int2,axiom,
    ! [B2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ B2 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ B2 @ A ) @ ( measur1209175464439008069nnreal @ M ) ) ) ) ).

% null_set_Int2
thf(fact_620_null__set__Int2,axiom,
    ! [B2: set_real,M: sigma_measure_real,A: set_real] :
      ( ( member_set_real @ B2 @ ( measur3710062792471635001s_real @ M ) )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
       => ( member_set_real @ ( inf_inf_set_real @ B2 @ A ) @ ( measur3710062792471635001s_real @ M ) ) ) ) ).

% null_set_Int2
thf(fact_621_null__set__Diff,axiom,
    ! [B2: set_a,M: sigma_measure_a,A: set_a] :
      ( ( member_set_a @ B2 @ ( measure_null_sets_a @ M ) )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
       => ( member_set_a @ ( minus_minus_set_a @ B2 @ A ) @ ( measure_null_sets_a @ M ) ) ) ) ).

% null_set_Diff
thf(fact_622_null__set__Diff,axiom,
    ! [B2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ B2 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( minus_104578273773384135nnreal @ B2 @ A ) @ ( measur1209175464439008069nnreal @ M ) ) ) ) ).

% null_set_Diff
thf(fact_623_null__set__Diff,axiom,
    ! [B2: set_real,M: sigma_measure_real,A: set_real] :
      ( ( member_set_real @ B2 @ ( measur3710062792471635001s_real @ M ) )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
       => ( member_set_real @ ( minus_minus_set_real @ B2 @ A ) @ ( measur3710062792471635001s_real @ M ) ) ) ) ).

% null_set_Diff
thf(fact_624_sets__restrict__restrict__space,axiom,
    ! [M: sigma_measure_a,A: set_a,B2: set_a] :
      ( ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ ( sigma_8692839461743104066pace_a @ M @ A ) @ B2 ) )
      = ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ M @ ( inf_inf_set_a @ A @ B2 ) ) ) ) ).

% sets_restrict_restrict_space
thf(fact_625_sets__restrict__restrict__space,axiom,
    ! [M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ ( sigma_4884701650823297268nnreal @ M @ A ) @ B2 ) )
      = ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ M @ ( inf_in3368558534146122112nnreal @ A @ B2 ) ) ) ) ).

% sets_restrict_restrict_space
thf(fact_626_sets__restrict__restrict__space,axiom,
    ! [M: sigma_measure_real,A: set_real,B2: set_real] :
      ( ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ ( sigma_5414646170262037096e_real @ M @ A ) @ B2 ) )
      = ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ M @ ( inf_inf_set_real @ A @ B2 ) ) ) ) ).

% sets_restrict_restrict_space
thf(fact_627_is__singletonI_H,axiom,
    ! [A: set_set_a] :
      ( ( A != bot_bot_set_set_a )
     => ( ! [X: set_a,Y2: set_a] :
            ( ( member_set_a @ X @ A )
           => ( ( member_set_a @ Y2 @ A )
             => ( X = Y2 ) ) )
       => ( is_singleton_set_a @ A ) ) ) ).

% is_singletonI'
thf(fact_628_is__singletonI_H,axiom,
    ! [A: set_re5328672808648366137nnreal] :
      ( ( A != bot_bo6037503491064675021nnreal )
     => ( ! [X: real > extend8495563244428889912nnreal,Y2: real > extend8495563244428889912nnreal] :
            ( ( member2919562650594848410nnreal @ X @ A )
           => ( ( member2919562650594848410nnreal @ Y2 @ A )
             => ( X = Y2 ) ) )
       => ( is_sin8880349622731141135nnreal @ A ) ) ) ).

% is_singletonI'
thf(fact_629_is__singletonI_H,axiom,
    ! [A: set_set_real] :
      ( ( A != bot_bot_set_set_real )
     => ( ! [X: set_real,Y2: set_real] :
            ( ( member_set_real @ X @ A )
           => ( ( member_set_real @ Y2 @ A )
             => ( X = Y2 ) ) )
       => ( is_sin3548895728136638702t_real @ A ) ) ) ).

% is_singletonI'
thf(fact_630_is__singletonI_H,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ( A != bot_bo2988155216863113784nnreal )
     => ( ! [X: set_Ex3793607809372303086nnreal,Y2: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X @ A )
           => ( ( member603777416030116741nnreal @ Y2 @ A )
             => ( X = Y2 ) ) )
       => ( is_sin9058363718368806650nnreal @ A ) ) ) ).

% is_singletonI'
thf(fact_631_measurable__bot,axiom,
    ! [M: sigma_measure_real] : ( member2919562650594848410nnreal @ bot_bo1396364965732655767nnreal @ ( sigma_9017504469962657078nnreal @ M @ ( sigma_7204664791115113951nnreal @ top_to7994903218803871134nnreal ) ) ) ).

% measurable_bot
thf(fact_632_lebesgue__measurable__imp__measurable__on__real,axiom,
    ! [U: real > real,S3: set_real] :
      ( ( member_real_real @ U @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ borel_5078946678739801102l_real ) )
     => ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) )
       => ( equiva5980327992511004390l_real @ U @ S3 ) ) ) ).

% lebesgue_measurable_imp_measurable_on_real
thf(fact_633_sets_Ocountable,axiom,
    ! [A: set_set_a,M: sigma_measure_set_a] :
      ( ! [A4: set_a] :
          ( ( member_set_a @ A4 @ A )
         => ( member_set_set_a @ ( insert_set_a @ A4 @ bot_bot_set_set_a ) @ ( sigma_sets_set_a @ M ) ) )
     => ( ( counta6168152590877469849_set_a @ A )
       => ( member_set_set_a @ A @ ( sigma_sets_set_a @ M ) ) ) ) ).

% sets.countable
thf(fact_634_sets_Ocountable,axiom,
    ! [A: set_re5328672808648366137nnreal,M: sigma_5394977995791401948nnreal] :
      ( ! [A4: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ A4 @ A )
         => ( member524040414084610768nnreal @ ( insert152533262698245683nnreal @ A4 @ bot_bo6037503491064675021nnreal ) @ ( sigma_3125015092713243876nnreal @ M ) ) )
     => ( ( counta6024778199358870792nnreal @ A )
       => ( member524040414084610768nnreal @ A @ ( sigma_3125015092713243876nnreal @ M ) ) ) ) ).

% sets.countable
thf(fact_635_sets_Ocountable,axiom,
    ! [A: set_set_real,M: sigma_3733394171116455995t_real] :
      ( ! [A4: set_real] :
          ( ( member_set_real @ A4 @ A )
         => ( member_set_set_real @ ( insert_set_real @ A4 @ bot_bot_set_set_real ) @ ( sigma_sets_set_real @ M ) ) )
     => ( ( counta8054315614235329383t_real @ A )
       => ( member_set_set_real @ A @ ( sigma_sets_set_real @ M ) ) ) ) ).

% sets.countable
thf(fact_636_sets_Ocountable,axiom,
    ! [A: set_se4580700918925141924nnreal,M: sigma_523634232904505671nnreal] :
      ( ! [A4: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ A4 @ A )
         => ( member6568240578637133883nnreal @ ( insert1343806209672318238nnreal @ A4 @ bot_bo2988155216863113784nnreal ) @ ( sigma_5308793447563920847nnreal @ M ) ) )
     => ( ( counta2425349316461633011nnreal @ A )
       => ( member6568240578637133883nnreal @ A @ ( sigma_5308793447563920847nnreal @ M ) ) ) ) ).

% sets.countable
thf(fact_637_sets_Ocountable,axiom,
    ! [A: set_a,M: sigma_measure_a] :
      ( ! [A4: a] :
          ( ( member_a @ A4 @ A )
         => ( member_set_a @ ( insert_a @ A4 @ bot_bot_set_a ) @ ( sigma_sets_a @ M ) ) )
     => ( ( counta4098120917673242425able_a @ A )
       => ( member_set_a @ A @ ( sigma_sets_a @ M ) ) ) ) ).

% sets.countable
thf(fact_638_sets_Ocountable,axiom,
    ! [A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ! [A4: extend8495563244428889912nnreal] :
          ( ( member7908768830364227535nnreal @ A4 @ A )
         => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ A4 @ bot_bo4854962954004695426nnreal ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
     => ( ( counta8439243037236335165nnreal @ A )
       => ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ).

% sets.countable
thf(fact_639_sets_Ocountable,axiom,
    ! [A: set_real,M: sigma_measure_real] :
      ( ! [A4: real] :
          ( ( member_real @ A4 @ A )
         => ( member_set_real @ ( insert_real @ A4 @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) ) )
     => ( ( counta7319604579010473777e_real @ A )
       => ( member_set_real @ A @ ( sigma_sets_real @ M ) ) ) ) ).

% sets.countable
thf(fact_640_Compl__insert,axiom,
    ! [X2: a,A: set_a] :
      ( ( uminus_uminus_set_a @ ( insert_a @ X2 @ A ) )
      = ( minus_minus_set_a @ ( uminus_uminus_set_a @ A ) @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) ).

% Compl_insert
thf(fact_641_Compl__insert,axiom,
    ! [X2: extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( uminus5517552291522096439nnreal @ ( insert7407984058720857448nnreal @ X2 @ A ) )
      = ( minus_104578273773384135nnreal @ ( uminus5517552291522096439nnreal @ A ) @ ( insert7407984058720857448nnreal @ X2 @ bot_bo4854962954004695426nnreal ) ) ) ).

% Compl_insert
thf(fact_642_Compl__insert,axiom,
    ! [X2: real,A: set_real] :
      ( ( uminus612125837232591019t_real @ ( insert_real @ X2 @ A ) )
      = ( minus_minus_set_real @ ( uminus612125837232591019t_real @ A ) @ ( insert_real @ X2 @ bot_bot_set_real ) ) ) ).

% Compl_insert
thf(fact_643_restrict__restrict__space,axiom,
    ! [A: set_a,M: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ ( inf_inf_set_a @ A @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) )
     => ( ( member_set_a @ ( inf_inf_set_a @ B2 @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) )
       => ( ( sigma_8692839461743104066pace_a @ ( sigma_8692839461743104066pace_a @ M @ A ) @ B2 )
          = ( sigma_8692839461743104066pace_a @ M @ ( inf_inf_set_a @ A @ B2 ) ) ) ) ) ).

% restrict_restrict_space
thf(fact_644_restrict__restrict__space,axiom,
    ! [A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ A @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ B2 @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( ( sigma_4884701650823297268nnreal @ ( sigma_4884701650823297268nnreal @ M @ A ) @ B2 )
          = ( sigma_4884701650823297268nnreal @ M @ ( inf_in3368558534146122112nnreal @ A @ B2 ) ) ) ) ) ).

% restrict_restrict_space
thf(fact_645_restrict__restrict__space,axiom,
    ! [A: set_real,M: sigma_measure_real,B2: set_real] :
      ( ( member_set_real @ ( inf_inf_set_real @ A @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) )
     => ( ( member_set_real @ ( inf_inf_set_real @ B2 @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) )
       => ( ( sigma_5414646170262037096e_real @ ( sigma_5414646170262037096e_real @ M @ A ) @ B2 )
          = ( sigma_5414646170262037096e_real @ M @ ( inf_inf_set_real @ A @ B2 ) ) ) ) ) ).

% restrict_restrict_space
thf(fact_646_sets__restrict__space__count__space,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ ( sigma_count_space_a @ A ) @ B2 ) )
      = ( sigma_sets_a @ ( sigma_count_space_a @ ( inf_inf_set_a @ A @ B2 ) ) ) ) ).

% sets_restrict_space_count_space
thf(fact_647_sets__restrict__space__count__space,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ ( sigma_7204664791115113951nnreal @ A ) @ B2 ) )
      = ( sigma_5465916536984168985nnreal @ ( sigma_7204664791115113951nnreal @ ( inf_in3368558534146122112nnreal @ A @ B2 ) ) ) ) ).

% sets_restrict_space_count_space
thf(fact_648_sets__restrict__space__count__space,axiom,
    ! [A: set_real,B2: set_real] :
      ( ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ ( sigma_8508918144308765139e_real @ A ) @ B2 ) )
      = ( sigma_sets_real @ ( sigma_8508918144308765139e_real @ ( inf_inf_set_real @ A @ B2 ) ) ) ) ).

% sets_restrict_space_count_space
thf(fact_649_measurable__discrete__difference,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal,X5: set_real,G: real > extend8495563244428889912nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
     => ( ( counta7319604579010473777e_real @ X5 )
       => ( ! [X: real] :
              ( ( member_real @ X @ X5 )
             => ( member_set_real @ ( insert_real @ X @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) ) )
         => ( ! [X: real] :
                ( ( member_real @ X @ X5 )
               => ( member7908768830364227535nnreal @ ( G @ X ) @ ( sigma_3147302497200244656nnreal @ N ) ) )
           => ( ! [X: real] :
                  ( ( member_real @ X @ ( sigma_space_real @ M ) )
                 => ( ~ ( member_real @ X @ X5 )
                   => ( ( F @ X )
                      = ( G @ X ) ) ) )
             => ( member2919562650594848410nnreal @ G @ ( sigma_9017504469962657078nnreal @ M @ N ) ) ) ) ) ) ) ).

% measurable_discrete_difference
thf(fact_650_measurable__discrete__difference,axiom,
    ! [F: a > set_a,M: sigma_measure_a,N: sigma_measure_set_a,X5: set_a,G: a > set_a] :
      ( ( member_a_set_a @ F @ ( sigma_3685133166752798000_set_a @ M @ N ) )
     => ( ( counta4098120917673242425able_a @ X5 )
       => ( ! [X: a] :
              ( ( member_a @ X @ X5 )
             => ( member_set_a @ ( insert_a @ X @ bot_bot_set_a ) @ ( sigma_sets_a @ M ) ) )
         => ( ! [X: a] :
                ( ( member_a @ X @ X5 )
               => ( member_set_a @ ( G @ X ) @ ( sigma_space_set_a @ N ) ) )
           => ( ! [X: a] :
                  ( ( member_a @ X @ ( sigma_space_a @ M ) )
                 => ( ~ ( member_a @ X @ X5 )
                   => ( ( F @ X )
                      = ( G @ X ) ) ) )
             => ( member_a_set_a @ G @ ( sigma_3685133166752798000_set_a @ M @ N ) ) ) ) ) ) ) ).

% measurable_discrete_difference
thf(fact_651_measurable__discrete__difference,axiom,
    ! [F: a > set_real,M: sigma_measure_a,N: sigma_3733394171116455995t_real,X5: set_a,G: a > set_real] :
      ( ( member_a_set_real @ F @ ( sigma_739038748264640144t_real @ M @ N ) )
     => ( ( counta4098120917673242425able_a @ X5 )
       => ( ! [X: a] :
              ( ( member_a @ X @ X5 )
             => ( member_set_a @ ( insert_a @ X @ bot_bot_set_a ) @ ( sigma_sets_a @ M ) ) )
         => ( ! [X: a] :
                ( ( member_a @ X @ X5 )
               => ( member_set_real @ ( G @ X ) @ ( sigma_space_set_real @ N ) ) )
           => ( ! [X: a] :
                  ( ( member_a @ X @ ( sigma_space_a @ M ) )
                 => ( ~ ( member_a @ X @ X5 )
                   => ( ( F @ X )
                      = ( G @ X ) ) ) )
             => ( member_a_set_real @ G @ ( sigma_739038748264640144t_real @ M @ N ) ) ) ) ) ) ) ).

% measurable_discrete_difference
thf(fact_652_measurable__discrete__difference,axiom,
    ! [F: a > set_Ex3793607809372303086nnreal,M: sigma_measure_a,N: sigma_523634232904505671nnreal,X5: set_a,G: a > set_Ex3793607809372303086nnreal] :
      ( ( member2532357421736347526nnreal @ F @ ( sigma_7596264061814621596nnreal @ M @ N ) )
     => ( ( counta4098120917673242425able_a @ X5 )
       => ( ! [X: a] :
              ( ( member_a @ X @ X5 )
             => ( member_set_a @ ( insert_a @ X @ bot_bot_set_a ) @ ( sigma_sets_a @ M ) ) )
         => ( ! [X: a] :
                ( ( member_a @ X @ X5 )
               => ( member603777416030116741nnreal @ ( G @ X ) @ ( sigma_2539764534872131430nnreal @ N ) ) )
           => ( ! [X: a] :
                  ( ( member_a @ X @ ( sigma_space_a @ M ) )
                 => ( ~ ( member_a @ X @ X5 )
                   => ( ( F @ X )
                      = ( G @ X ) ) ) )
             => ( member2532357421736347526nnreal @ G @ ( sigma_7596264061814621596nnreal @ M @ N ) ) ) ) ) ) ) ).

% measurable_discrete_difference
thf(fact_653_measurable__discrete__difference,axiom,
    ! [F: extend8495563244428889912nnreal > set_a,M: sigma_7234349610311085201nnreal,N: sigma_measure_set_a,X5: set_Ex3793607809372303086nnreal,G: extend8495563244428889912nnreal > set_a] :
      ( ( member6799942265337811078_set_a @ F @ ( sigma_7624677704890010580_set_a @ M @ N ) )
     => ( ( counta8439243037236335165nnreal @ X5 )
       => ( ! [X: extend8495563244428889912nnreal] :
              ( ( member7908768830364227535nnreal @ X @ X5 )
             => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X @ bot_bo4854962954004695426nnreal ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
         => ( ! [X: extend8495563244428889912nnreal] :
                ( ( member7908768830364227535nnreal @ X @ X5 )
               => ( member_set_a @ ( G @ X ) @ ( sigma_space_set_a @ N ) ) )
           => ( ! [X: extend8495563244428889912nnreal] :
                  ( ( member7908768830364227535nnreal @ X @ ( sigma_3147302497200244656nnreal @ M ) )
                 => ( ~ ( member7908768830364227535nnreal @ X @ X5 )
                   => ( ( F @ X )
                      = ( G @ X ) ) ) )
             => ( member6799942265337811078_set_a @ G @ ( sigma_7624677704890010580_set_a @ M @ N ) ) ) ) ) ) ) ).

% measurable_discrete_difference
thf(fact_654_measurable__discrete__difference,axiom,
    ! [F: extend8495563244428889912nnreal > set_real,M: sigma_7234349610311085201nnreal,N: sigma_3733394171116455995t_real,X5: set_Ex3793607809372303086nnreal,G: extend8495563244428889912nnreal > set_real] :
      ( ( member6764088077590758224t_real @ F @ ( sigma_5175731160935721196t_real @ M @ N ) )
     => ( ( counta8439243037236335165nnreal @ X5 )
       => ( ! [X: extend8495563244428889912nnreal] :
              ( ( member7908768830364227535nnreal @ X @ X5 )
             => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X @ bot_bo4854962954004695426nnreal ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
         => ( ! [X: extend8495563244428889912nnreal] :
                ( ( member7908768830364227535nnreal @ X @ X5 )
               => ( member_set_real @ ( G @ X ) @ ( sigma_space_set_real @ N ) ) )
           => ( ! [X: extend8495563244428889912nnreal] :
                  ( ( member7908768830364227535nnreal @ X @ ( sigma_3147302497200244656nnreal @ M ) )
                 => ( ~ ( member7908768830364227535nnreal @ X @ X5 )
                   => ( ( F @ X )
                      = ( G @ X ) ) ) )
             => ( member6764088077590758224t_real @ G @ ( sigma_5175731160935721196t_real @ M @ N ) ) ) ) ) ) ) ).

% measurable_discrete_difference
thf(fact_655_measurable__discrete__difference,axiom,
    ! [F: extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,N: sigma_523634232904505671nnreal,X5: set_Ex3793607809372303086nnreal,G: extend8495563244428889912nnreal > set_Ex3793607809372303086nnreal] :
      ( ( member4416662722526258908nnreal @ F @ ( sigma_1941770836459163128nnreal @ M @ N ) )
     => ( ( counta8439243037236335165nnreal @ X5 )
       => ( ! [X: extend8495563244428889912nnreal] :
              ( ( member7908768830364227535nnreal @ X @ X5 )
             => ( member603777416030116741nnreal @ ( insert7407984058720857448nnreal @ X @ bot_bo4854962954004695426nnreal ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
         => ( ! [X: extend8495563244428889912nnreal] :
                ( ( member7908768830364227535nnreal @ X @ X5 )
               => ( member603777416030116741nnreal @ ( G @ X ) @ ( sigma_2539764534872131430nnreal @ N ) ) )
           => ( ! [X: extend8495563244428889912nnreal] :
                  ( ( member7908768830364227535nnreal @ X @ ( sigma_3147302497200244656nnreal @ M ) )
                 => ( ~ ( member7908768830364227535nnreal @ X @ X5 )
                   => ( ( F @ X )
                      = ( G @ X ) ) ) )
             => ( member4416662722526258908nnreal @ G @ ( sigma_1941770836459163128nnreal @ M @ N ) ) ) ) ) ) ) ).

% measurable_discrete_difference
thf(fact_656_measurable__discrete__difference,axiom,
    ! [F: real > set_a,M: sigma_measure_real,N: sigma_measure_set_a,X5: set_real,G: real > set_a] :
      ( ( member_real_set_a @ F @ ( sigma_4283435981211228640_set_a @ M @ N ) )
     => ( ( counta7319604579010473777e_real @ X5 )
       => ( ! [X: real] :
              ( ( member_real @ X @ X5 )
             => ( member_set_real @ ( insert_real @ X @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) ) )
         => ( ! [X: real] :
                ( ( member_real @ X @ X5 )
               => ( member_set_a @ ( G @ X ) @ ( sigma_space_set_a @ N ) ) )
           => ( ! [X: real] :
                  ( ( member_real @ X @ ( sigma_space_real @ M ) )
                 => ( ~ ( member_real @ X @ X5 )
                   => ( ( F @ X )
                      = ( G @ X ) ) ) )
             => ( member_real_set_a @ G @ ( sigma_4283435981211228640_set_a @ M @ N ) ) ) ) ) ) ) ).

% measurable_discrete_difference
thf(fact_657_measurable__discrete__difference,axiom,
    ! [F: real > set_real,M: sigma_measure_real,N: sigma_3733394171116455995t_real,X5: set_real,G: real > set_real] :
      ( ( member_real_set_real @ F @ ( sigma_6606012509476713952t_real @ M @ N ) )
     => ( ( counta7319604579010473777e_real @ X5 )
       => ( ! [X: real] :
              ( ( member_real @ X @ X5 )
             => ( member_set_real @ ( insert_real @ X @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) ) )
         => ( ! [X: real] :
                ( ( member_real @ X @ X5 )
               => ( member_set_real @ ( G @ X ) @ ( sigma_space_set_real @ N ) ) )
           => ( ! [X: real] :
                  ( ( member_real @ X @ ( sigma_space_real @ M ) )
                 => ( ~ ( member_real @ X @ X5 )
                   => ( ( F @ X )
                      = ( G @ X ) ) ) )
             => ( member_real_set_real @ G @ ( sigma_6606012509476713952t_real @ M @ N ) ) ) ) ) ) ) ).

% measurable_discrete_difference
thf(fact_658_measurable__discrete__difference,axiom,
    ! [F: real > set_Ex3793607809372303086nnreal,M: sigma_measure_real,N: sigma_523634232904505671nnreal,X5: set_real,G: real > set_Ex3793607809372303086nnreal] :
      ( ( member8689841359643572048nnreal @ F @ ( sigma_2400199819729843436nnreal @ M @ N ) )
     => ( ( counta7319604579010473777e_real @ X5 )
       => ( ! [X: real] :
              ( ( member_real @ X @ X5 )
             => ( member_set_real @ ( insert_real @ X @ bot_bot_set_real ) @ ( sigma_sets_real @ M ) ) )
         => ( ! [X: real] :
                ( ( member_real @ X @ X5 )
               => ( member603777416030116741nnreal @ ( G @ X ) @ ( sigma_2539764534872131430nnreal @ N ) ) )
           => ( ! [X: real] :
                  ( ( member_real @ X @ ( sigma_space_real @ M ) )
                 => ( ~ ( member_real @ X @ X5 )
                   => ( ( F @ X )
                      = ( G @ X ) ) ) )
             => ( member8689841359643572048nnreal @ G @ ( sigma_2400199819729843436nnreal @ M @ N ) ) ) ) ) ) ) ).

% measurable_discrete_difference
thf(fact_659_measurable__on__imp__borel__measurable__lebesgue__UNIV,axiom,
    ! [F: real > real] :
      ( ( equiva5980327992511004390l_real @ F @ top_top_set_real )
     => ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ borel_5078946678739801102l_real ) ) ) ).

% measurable_on_imp_borel_measurable_lebesgue_UNIV
thf(fact_660_lebesgue__measurable__imp__measurable__on,axiom,
    ! [F: real > real,S3: set_real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ borel_5078946678739801102l_real ) )
     => ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) )
       => ( equiva5980327992511004390l_real @ F @ S3 ) ) ) ).

% lebesgue_measurable_imp_measurable_on
thf(fact_661_ivl__disj__int__two_I2_J,axiom,
    ! [L: real,M4: real,U: real] :
      ( ( inf_inf_set_real @ ( set_or2392270231875598684t_real @ L @ M4 ) @ ( set_or1633881224788618240n_real @ M4 @ U ) )
      = bot_bot_set_real ) ).

% ivl_disj_int_two(2)
thf(fact_662_ivl__disj__int__two_I6_J,axiom,
    ! [L: real,M4: real,U: real] :
      ( ( inf_inf_set_real @ ( set_or2392270231875598684t_real @ L @ M4 ) @ ( set_or2392270231875598684t_real @ M4 @ U ) )
      = bot_bot_set_real ) ).

% ivl_disj_int_two(6)
thf(fact_663_DEADID_Oin__rel,axiom,
    ( ( ^ [Y4: set_a,Z: set_a] : ( Y4 = Z ) )
    = ( ^ [A5: set_a,B5: set_a] :
        ? [Z2: set_a] :
          ( ( member_set_a @ Z2 @ top_top_set_set_a )
          & ( ( id_set_a @ Z2 )
            = A5 )
          & ( ( id_set_a @ Z2 )
            = B5 ) ) ) ) ).

% DEADID.in_rel
thf(fact_664_DEADID_Oin__rel,axiom,
    ( ( ^ [Y4: real > extend8495563244428889912nnreal,Z: real > extend8495563244428889912nnreal] : ( Y4 = Z ) )
    = ( ^ [A5: real > extend8495563244428889912nnreal,B5: real > extend8495563244428889912nnreal] :
        ? [Z2: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ Z2 @ top_to315565310957491945nnreal )
          & ( ( id_rea5353623948652148818nnreal @ Z2 )
            = A5 )
          & ( ( id_rea5353623948652148818nnreal @ Z2 )
            = B5 ) ) ) ) ).

% DEADID.in_rel
thf(fact_665_DEADID_Oin__rel,axiom,
    ( ( ^ [Y4: set_real,Z: set_real] : ( Y4 = Z ) )
    = ( ^ [A5: set_real,B5: set_real] :
        ? [Z2: set_real] :
          ( ( member_set_real @ Z2 @ top_top_set_set_real )
          & ( ( id_set_real @ Z2 )
            = A5 )
          & ( ( id_set_real @ Z2 )
            = B5 ) ) ) ) ).

% DEADID.in_rel
thf(fact_666_DEADID_Oin__rel,axiom,
    ( ( ^ [Y4: set_Ex3793607809372303086nnreal,Z: set_Ex3793607809372303086nnreal] : ( Y4 = Z ) )
    = ( ^ [A5: set_Ex3793607809372303086nnreal,B5: set_Ex3793607809372303086nnreal] :
        ? [Z2: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ Z2 @ top_to3356475028079756884nnreal )
          & ( ( id_set2823833123132642621nnreal @ Z2 )
            = A5 )
          & ( ( id_set2823833123132642621nnreal @ Z2 )
            = B5 ) ) ) ) ).

% DEADID.in_rel
thf(fact_667_DEADID_Oin__rel,axiom,
    ( ( ^ [Y4: extend8495563244428889912nnreal,Z: extend8495563244428889912nnreal] : ( Y4 = Z ) )
    = ( ^ [A5: extend8495563244428889912nnreal,B5: extend8495563244428889912nnreal] :
        ? [Z2: extend8495563244428889912nnreal] :
          ( ( member7908768830364227535nnreal @ Z2 @ top_to7994903218803871134nnreal )
          & ( ( id_Ext8331313139072774535nnreal @ Z2 )
            = A5 )
          & ( ( id_Ext8331313139072774535nnreal @ Z2 )
            = B5 ) ) ) ) ).

% DEADID.in_rel
thf(fact_668_DEADID_Oin__rel,axiom,
    ( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
    = ( ^ [A5: real,B5: real] :
        ? [Z2: real] :
          ( ( member_real @ Z2 @ top_top_set_real )
          & ( ( id_real @ Z2 )
            = A5 )
          & ( ( id_real @ Z2 )
            = B5 ) ) ) ) ).

% DEADID.in_rel
thf(fact_669_DEADID_Oin__rel,axiom,
    ( ( ^ [Y4: a,Z: a] : ( Y4 = Z ) )
    = ( ^ [A5: a,B5: a] :
        ? [Z2: a] :
          ( ( member_a @ Z2 @ top_top_set_a )
          & ( ( id_a @ Z2 )
            = A5 )
          & ( ( id_a @ Z2 )
            = B5 ) ) ) ) ).

% DEADID.in_rel
thf(fact_670_minus__diff__minus,axiom,
    ! [A2: real,B: real] :
      ( ( minus_minus_real @ ( uminus_uminus_real @ A2 ) @ ( uminus_uminus_real @ B ) )
      = ( uminus_uminus_real @ ( minus_minus_real @ A2 @ B ) ) ) ).

% minus_diff_minus
thf(fact_671_diff__null__sets__lebesgue,axiom,
    ! [N: set_real,S3: set_real,X5: set_real] :
      ( ( member_set_real @ N @ ( measur3710062792471635001s_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) ) )
     => ( ( member_set_real @ ( minus_minus_set_real @ X5 @ N ) @ ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) ) )
       => ( ( ord_less_eq_set_real @ N @ X5 )
         => ( member_set_real @ X5 @ ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ S3 ) ) ) ) ) ) ).

% diff_null_sets_lebesgue
thf(fact_672_borel__measurable__vimage,axiom,
    ! [F: a > a,M: sigma_measure_a,X2: a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M @ borel_5459123734250506524orel_a ) )
     => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ ( insert_a @ X2 @ bot_bot_set_a ) ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ).

% borel_measurable_vimage
thf(fact_673_borel__measurable__vimage,axiom,
    ! [F: extend8495563244428889912nnreal > a,M: sigma_7234349610311085201nnreal,X2: a] :
      ( ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ M @ borel_5459123734250506524orel_a ) )
     => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ ( insert_a @ X2 @ bot_bot_set_a ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% borel_measurable_vimage
thf(fact_674_borel__measurable__vimage,axiom,
    ! [F: real > a,M: sigma_measure_real,X2: a] :
      ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ borel_5459123734250506524orel_a ) )
     => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ ( insert_a @ X2 @ bot_bot_set_a ) ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ).

% borel_measurable_vimage
thf(fact_675_borel__measurable__vimage,axiom,
    ! [F: a > real,M: sigma_measure_a,X2: real] :
      ( ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ M @ borel_5078946678739801102l_real ) )
     => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ ( insert_real @ X2 @ bot_bot_set_real ) ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ).

% borel_measurable_vimage
thf(fact_676_borel__measurable__vimage,axiom,
    ! [F: extend8495563244428889912nnreal > real,M: sigma_7234349610311085201nnreal,X2: real] :
      ( ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ M @ borel_5078946678739801102l_real ) )
     => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ ( insert_real @ X2 @ bot_bot_set_real ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% borel_measurable_vimage
thf(fact_677_borel__measurable__vimage,axiom,
    ! [F: real > real,M: sigma_measure_real,X2: real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ borel_5078946678739801102l_real ) )
     => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ ( insert_real @ X2 @ bot_bot_set_real ) ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ).

% borel_measurable_vimage
thf(fact_678_borel__measurable__vimage,axiom,
    ! [F: a > extend8495563244428889912nnreal,M: sigma_measure_a,X2: extend8495563244428889912nnreal] :
      ( ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ M @ borel_6524799422816628122nnreal ) )
     => ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ ( insert7407984058720857448nnreal @ X2 @ bot_bo4854962954004695426nnreal ) ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ).

% borel_measurable_vimage
thf(fact_679_borel__measurable__vimage,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal,X2: extend8495563244428889912nnreal] :
      ( ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ M @ borel_6524799422816628122nnreal ) )
     => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ ( insert7407984058720857448nnreal @ X2 @ bot_bo4854962954004695426nnreal ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% borel_measurable_vimage
thf(fact_680_borel__measurable__vimage,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,X2: extend8495563244428889912nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ borel_6524799422816628122nnreal ) )
     => ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ ( insert7407984058720857448nnreal @ X2 @ bot_bo4854962954004695426nnreal ) ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ).

% borel_measurable_vimage
thf(fact_681_order__refl,axiom,
    ! [X2: real] : ( ord_less_eq_real @ X2 @ X2 ) ).

% order_refl
thf(fact_682_dual__order_Orefl,axiom,
    ! [A2: real] : ( ord_less_eq_real @ A2 @ A2 ) ).

% dual_order.refl
thf(fact_683_subsetI,axiom,
    ! [A: set_set_a,B2: set_set_a] :
      ( ! [X: set_a] :
          ( ( member_set_a @ X @ A )
         => ( member_set_a @ X @ B2 ) )
     => ( ord_le3724670747650509150_set_a @ A @ B2 ) ) ).

% subsetI
thf(fact_684_subsetI,axiom,
    ! [A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ! [X: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ X @ A )
         => ( member2919562650594848410nnreal @ X @ B2 ) )
     => ( ord_le2462468573666744473nnreal @ A @ B2 ) ) ).

% subsetI
thf(fact_685_subsetI,axiom,
    ! [A: set_set_real,B2: set_set_real] :
      ( ! [X: set_real] :
          ( ( member_set_real @ X @ A )
         => ( member_set_real @ X @ B2 ) )
     => ( ord_le3558479182127378552t_real @ A @ B2 ) ) ).

% subsetI
thf(fact_686_subsetI,axiom,
    ! [A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ! [X: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ X @ A )
         => ( member603777416030116741nnreal @ X @ B2 ) )
     => ( ord_le3366939622266546180nnreal @ A @ B2 ) ) ).

% subsetI
thf(fact_687_vimageI,axiom,
    ! [F: set_a > set_a,A2: set_a,B: set_a,B2: set_set_a] :
      ( ( ( F @ A2 )
        = B )
     => ( ( member_set_a @ B @ B2 )
       => ( member_set_a @ A2 @ ( vimage_set_a_set_a @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_688_vimageI,axiom,
    ! [F: set_real > set_a,A2: set_real,B: set_a,B2: set_set_a] :
      ( ( ( F @ A2 )
        = B )
     => ( ( member_set_a @ B @ B2 )
       => ( member_set_real @ A2 @ ( vimage4921045269514575487_set_a @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_689_vimageI,axiom,
    ! [F: set_Ex3793607809372303086nnreal > set_a,A2: set_Ex3793607809372303086nnreal,B: set_a,B2: set_set_a] :
      ( ( ( F @ A2 )
        = B )
     => ( ( member_set_a @ B @ B2 )
       => ( member603777416030116741nnreal @ A2 @ ( vimage9012950911561050995_set_a @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_690_vimageI,axiom,
    ! [F: set_a > set_real,A2: set_a,B: set_real,B2: set_set_real] :
      ( ( ( F @ A2 )
        = B )
     => ( ( member_set_real @ B @ B2 )
       => ( member_set_a @ A2 @ ( vimage1623514241378321221t_real @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_691_vimageI,axiom,
    ! [F: set_real > set_real,A2: set_real,B: set_real,B2: set_set_real] :
      ( ( ( F @ A2 )
        = B )
     => ( ( member_set_real @ B @ B2 )
       => ( member_set_real @ A2 @ ( vimage2667142749230307073t_real @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_692_vimageI,axiom,
    ! [F: set_Ex3793607809372303086nnreal > set_real,A2: set_Ex3793607809372303086nnreal,B: set_real,B2: set_set_real] :
      ( ( ( F @ A2 )
        = B )
     => ( ( member_set_real @ B @ B2 )
       => ( member603777416030116741nnreal @ A2 @ ( vimage2976515561842077453t_real @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_693_vimageI,axiom,
    ! [F: set_a > set_Ex3793607809372303086nnreal,A2: set_a,B: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( ( F @ A2 )
        = B )
     => ( ( member603777416030116741nnreal @ B @ B2 )
       => ( member_set_a @ A2 @ ( vimage3731165941878406353nnreal @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_694_vimageI,axiom,
    ! [F: set_real > set_Ex3793607809372303086nnreal,A2: set_real,B: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( ( F @ A2 )
        = B )
     => ( ( member603777416030116741nnreal @ B @ B2 )
       => ( member_set_real @ A2 @ ( vimage1211383488014126733nnreal @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_695_vimageI,axiom,
    ! [F: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal,A2: set_Ex3793607809372303086nnreal,B: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( ( F @ A2 )
        = B )
     => ( ( member603777416030116741nnreal @ B @ B2 )
       => ( member603777416030116741nnreal @ A2 @ ( vimage7483462650094439577nnreal @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_696_vimageI,axiom,
    ! [F: ( real > extend8495563244428889912nnreal ) > set_a,A2: real > extend8495563244428889912nnreal,B: set_a,B2: set_set_a] :
      ( ( ( F @ A2 )
        = B )
     => ( ( member_set_a @ B @ B2 )
       => ( member2919562650594848410nnreal @ A2 @ ( vimage1816238162123171230_set_a @ F @ B2 ) ) ) ) ).

% vimageI
thf(fact_697_vimage__eq,axiom,
    ! [A2: set_a,F: set_a > set_a,B2: set_set_a] :
      ( ( member_set_a @ A2 @ ( vimage_set_a_set_a @ F @ B2 ) )
      = ( member_set_a @ ( F @ A2 ) @ B2 ) ) ).

% vimage_eq
thf(fact_698_vimage__eq,axiom,
    ! [A2: set_a,F: set_a > set_real,B2: set_set_real] :
      ( ( member_set_a @ A2 @ ( vimage1623514241378321221t_real @ F @ B2 ) )
      = ( member_set_real @ ( F @ A2 ) @ B2 ) ) ).

% vimage_eq
thf(fact_699_vimage__eq,axiom,
    ! [A2: set_a,F: set_a > set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member_set_a @ A2 @ ( vimage3731165941878406353nnreal @ F @ B2 ) )
      = ( member603777416030116741nnreal @ ( F @ A2 ) @ B2 ) ) ).

% vimage_eq
thf(fact_700_vimage__eq,axiom,
    ! [A2: set_real,F: set_real > set_a,B2: set_set_a] :
      ( ( member_set_real @ A2 @ ( vimage4921045269514575487_set_a @ F @ B2 ) )
      = ( member_set_a @ ( F @ A2 ) @ B2 ) ) ).

% vimage_eq
thf(fact_701_vimage__eq,axiom,
    ! [A2: set_real,F: set_real > set_real,B2: set_set_real] :
      ( ( member_set_real @ A2 @ ( vimage2667142749230307073t_real @ F @ B2 ) )
      = ( member_set_real @ ( F @ A2 ) @ B2 ) ) ).

% vimage_eq
thf(fact_702_vimage__eq,axiom,
    ! [A2: set_real,F: set_real > set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member_set_real @ A2 @ ( vimage1211383488014126733nnreal @ F @ B2 ) )
      = ( member603777416030116741nnreal @ ( F @ A2 ) @ B2 ) ) ).

% vimage_eq
thf(fact_703_vimage__eq,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,F: set_Ex3793607809372303086nnreal > set_a,B2: set_set_a] :
      ( ( member603777416030116741nnreal @ A2 @ ( vimage9012950911561050995_set_a @ F @ B2 ) )
      = ( member_set_a @ ( F @ A2 ) @ B2 ) ) ).

% vimage_eq
thf(fact_704_vimage__eq,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,F: set_Ex3793607809372303086nnreal > set_real,B2: set_set_real] :
      ( ( member603777416030116741nnreal @ A2 @ ( vimage2976515561842077453t_real @ F @ B2 ) )
      = ( member_set_real @ ( F @ A2 ) @ B2 ) ) ).

% vimage_eq
thf(fact_705_vimage__eq,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,F: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ ( vimage7483462650094439577nnreal @ F @ B2 ) )
      = ( member603777416030116741nnreal @ ( F @ A2 ) @ B2 ) ) ).

% vimage_eq
thf(fact_706_vimage__eq,axiom,
    ! [A2: set_a,F: set_a > real > extend8495563244428889912nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member_set_a @ A2 @ ( vimage6157622615598462950nnreal @ F @ B2 ) )
      = ( member2919562650594848410nnreal @ ( F @ A2 ) @ B2 ) ) ).

% vimage_eq
thf(fact_707_member__remove,axiom,
    ! [X2: set_a,Y: set_a,A: set_set_a] :
      ( ( member_set_a @ X2 @ ( remove_set_a @ Y @ A ) )
      = ( ( member_set_a @ X2 @ A )
        & ( X2 != Y ) ) ) ).

% member_remove
thf(fact_708_member__remove,axiom,
    ! [X2: real > extend8495563244428889912nnreal,Y: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ X2 @ ( remove389474404184257502nnreal @ Y @ A ) )
      = ( ( member2919562650594848410nnreal @ X2 @ A )
        & ( X2 != Y ) ) ) ).

% member_remove
thf(fact_709_member__remove,axiom,
    ! [X2: set_real,Y: set_real,A: set_set_real] :
      ( ( member_set_real @ X2 @ ( remove_set_real @ Y @ A ) )
      = ( ( member_set_real @ X2 @ A )
        & ( X2 != Y ) ) ) ).

% member_remove
thf(fact_710_member__remove,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ X2 @ ( remove6680540689449789641nnreal @ Y @ A ) )
      = ( ( member603777416030116741nnreal @ X2 @ A )
        & ( X2 != Y ) ) ) ).

% member_remove
thf(fact_711_compl__le__compl__iff,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ X2 ) @ ( uminus_uminus_set_a @ Y ) )
      = ( ord_less_eq_set_a @ Y @ X2 ) ) ).

% compl_le_compl_iff
thf(fact_712_compl__le__compl__iff,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal] :
      ( ( ord_le6787938422905777998nnreal @ ( uminus5517552291522096439nnreal @ X2 ) @ ( uminus5517552291522096439nnreal @ Y ) )
      = ( ord_le6787938422905777998nnreal @ Y @ X2 ) ) ).

% compl_le_compl_iff
thf(fact_713_compl__le__compl__iff,axiom,
    ! [X2: set_real,Y: set_real] :
      ( ( ord_less_eq_set_real @ ( uminus612125837232591019t_real @ X2 ) @ ( uminus612125837232591019t_real @ Y ) )
      = ( ord_less_eq_set_real @ Y @ X2 ) ) ).

% compl_le_compl_iff
thf(fact_714_neg__le__iff__le,axiom,
    ! [B: real,A2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_eq_real @ A2 @ B ) ) ).

% neg_le_iff_le
thf(fact_715_le__inf__iff,axiom,
    ! [X2: real,Y: real,Z3: real] :
      ( ( ord_less_eq_real @ X2 @ ( inf_inf_real @ Y @ Z3 ) )
      = ( ( ord_less_eq_real @ X2 @ Y )
        & ( ord_less_eq_real @ X2 @ Z3 ) ) ) ).

% le_inf_iff
thf(fact_716_inf_Obounded__iff,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ ( inf_inf_real @ B @ C ) )
      = ( ( ord_less_eq_real @ A2 @ B )
        & ( ord_less_eq_real @ A2 @ C ) ) ) ).

% inf.bounded_iff
thf(fact_717_insert__subset,axiom,
    ! [X2: set_a,A: set_set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( insert_set_a @ X2 @ A ) @ B2 )
      = ( ( member_set_a @ X2 @ B2 )
        & ( ord_le3724670747650509150_set_a @ A @ B2 ) ) ) ).

% insert_subset
thf(fact_718_insert__subset,axiom,
    ! [X2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( ord_le2462468573666744473nnreal @ ( insert152533262698245683nnreal @ X2 @ A ) @ B2 )
      = ( ( member2919562650594848410nnreal @ X2 @ B2 )
        & ( ord_le2462468573666744473nnreal @ A @ B2 ) ) ) ).

% insert_subset
thf(fact_719_insert__subset,axiom,
    ! [X2: set_real,A: set_set_real,B2: set_set_real] :
      ( ( ord_le3558479182127378552t_real @ ( insert_set_real @ X2 @ A ) @ B2 )
      = ( ( member_set_real @ X2 @ B2 )
        & ( ord_le3558479182127378552t_real @ A @ B2 ) ) ) ).

% insert_subset
thf(fact_720_insert__subset,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( ord_le3366939622266546180nnreal @ ( insert1343806209672318238nnreal @ X2 @ A ) @ B2 )
      = ( ( member603777416030116741nnreal @ X2 @ B2 )
        & ( ord_le3366939622266546180nnreal @ A @ B2 ) ) ) ).

% insert_subset
thf(fact_721_vimage__UNIV,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal] :
      ( ( vimage3650734033530794285nnreal @ F @ top_to7994903218803871134nnreal )
      = top_to7994903218803871134nnreal ) ).

% vimage_UNIV
thf(fact_722_vimage__UNIV,axiom,
    ! [F: real > extend8495563244428889912nnreal] :
      ( ( vimage6366802093293386401nnreal @ F @ top_to7994903218803871134nnreal )
      = top_top_set_real ) ).

% vimage_UNIV
thf(fact_723_vimage__UNIV,axiom,
    ! [F: a > extend8495563244428889912nnreal] :
      ( ( vimage1258658873539170235nnreal @ F @ top_to7994903218803871134nnreal )
      = top_top_set_a ) ).

% vimage_UNIV
thf(fact_724_vimage__UNIV,axiom,
    ! [F: extend8495563244428889912nnreal > real] :
      ( ( vimage4399055823842842145l_real @ F @ top_top_set_real )
      = top_to7994903218803871134nnreal ) ).

% vimage_UNIV
thf(fact_725_vimage__UNIV,axiom,
    ! [F: real > real] :
      ( ( vimage_real_real @ F @ top_top_set_real )
      = top_top_set_real ) ).

% vimage_UNIV
thf(fact_726_vimage__UNIV,axiom,
    ! [F: a > real] :
      ( ( vimage_a_real @ F @ top_top_set_real )
      = top_top_set_a ) ).

% vimage_UNIV
thf(fact_727_vimage__UNIV,axiom,
    ! [F: extend8495563244428889912nnreal > a] :
      ( ( vimage4075187267506941001real_a @ F @ top_top_set_a )
      = top_to7994903218803871134nnreal ) ).

% vimage_UNIV
thf(fact_728_vimage__UNIV,axiom,
    ! [F: real > a] :
      ( ( vimage_real_a @ F @ top_top_set_a )
      = top_top_set_real ) ).

% vimage_UNIV
thf(fact_729_vimage__UNIV,axiom,
    ! [F: a > a] :
      ( ( vimage_a_a @ F @ top_top_set_a )
      = top_top_set_a ) ).

% vimage_UNIV
thf(fact_730_Compl__subset__Compl__iff,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ A ) @ ( uminus_uminus_set_a @ B2 ) )
      = ( ord_less_eq_set_a @ B2 @ A ) ) ).

% Compl_subset_Compl_iff
thf(fact_731_Compl__subset__Compl__iff,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( ord_le6787938422905777998nnreal @ ( uminus5517552291522096439nnreal @ A ) @ ( uminus5517552291522096439nnreal @ B2 ) )
      = ( ord_le6787938422905777998nnreal @ B2 @ A ) ) ).

% Compl_subset_Compl_iff
thf(fact_732_Compl__subset__Compl__iff,axiom,
    ! [A: set_real,B2: set_real] :
      ( ( ord_less_eq_set_real @ ( uminus612125837232591019t_real @ A ) @ ( uminus612125837232591019t_real @ B2 ) )
      = ( ord_less_eq_set_real @ B2 @ A ) ) ).

% Compl_subset_Compl_iff
thf(fact_733_Compl__anti__mono,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ B2 ) @ ( uminus_uminus_set_a @ A ) ) ) ).

% Compl_anti_mono
thf(fact_734_Compl__anti__mono,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( ord_le6787938422905777998nnreal @ A @ B2 )
     => ( ord_le6787938422905777998nnreal @ ( uminus5517552291522096439nnreal @ B2 ) @ ( uminus5517552291522096439nnreal @ A ) ) ) ).

% Compl_anti_mono
thf(fact_735_Compl__anti__mono,axiom,
    ! [A: set_real,B2: set_real] :
      ( ( ord_less_eq_set_real @ A @ B2 )
     => ( ord_less_eq_set_real @ ( uminus612125837232591019t_real @ B2 ) @ ( uminus612125837232591019t_real @ A ) ) ) ).

% Compl_anti_mono
thf(fact_736_greaterThanLessThan__empty,axiom,
    ! [L: real,K: real] :
      ( ( ord_less_eq_real @ L @ K )
     => ( ( set_or1633881224788618240n_real @ K @ L )
        = bot_bot_set_real ) ) ).

% greaterThanLessThan_empty
thf(fact_737_greaterThanLessThan__empty__iff,axiom,
    ! [A2: real,B: real] :
      ( ( ( set_or1633881224788618240n_real @ A2 @ B )
        = bot_bot_set_real )
      = ( ord_less_eq_real @ B @ A2 ) ) ).

% greaterThanLessThan_empty_iff
thf(fact_738_greaterThanLessThan__empty__iff2,axiom,
    ! [A2: real,B: real] :
      ( ( bot_bot_set_real
        = ( set_or1633881224788618240n_real @ A2 @ B ) )
      = ( ord_less_eq_real @ B @ A2 ) ) ).

% greaterThanLessThan_empty_iff2
thf(fact_739_greaterThanAtMost__empty,axiom,
    ! [L: real,K: real] :
      ( ( ord_less_eq_real @ L @ K )
     => ( ( set_or2392270231875598684t_real @ K @ L )
        = bot_bot_set_real ) ) ).

% greaterThanAtMost_empty
thf(fact_740_subset__Compl__singleton,axiom,
    ! [A: set_set_a,B: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ ( uminus6103902357914783669_set_a @ ( insert_set_a @ B @ bot_bot_set_set_a ) ) )
      = ( ~ ( member_set_a @ B @ A ) ) ) ).

% subset_Compl_singleton
thf(fact_741_subset__Compl__singleton,axiom,
    ! [A: set_re5328672808648366137nnreal,B: real > extend8495563244428889912nnreal] :
      ( ( ord_le2462468573666744473nnreal @ A @ ( uminus2275888197404385410nnreal @ ( insert152533262698245683nnreal @ B @ bot_bo6037503491064675021nnreal ) ) )
      = ( ~ ( member2919562650594848410nnreal @ B @ A ) ) ) ).

% subset_Compl_singleton
thf(fact_742_subset__Compl__singleton,axiom,
    ! [A: set_set_real,B: set_real] :
      ( ( ord_le3558479182127378552t_real @ A @ ( uminus708787163358948833t_real @ ( insert_set_real @ B @ bot_bot_set_set_real ) ) )
      = ( ~ ( member_set_real @ B @ A ) ) ) ).

% subset_Compl_singleton
thf(fact_743_subset__Compl__singleton,axiom,
    ! [A: set_se4580700918925141924nnreal,B: set_Ex3793607809372303086nnreal] :
      ( ( ord_le3366939622266546180nnreal @ A @ ( uminus4762152451731718637nnreal @ ( insert1343806209672318238nnreal @ B @ bot_bo2988155216863113784nnreal ) ) )
      = ( ~ ( member603777416030116741nnreal @ B @ A ) ) ) ).

% subset_Compl_singleton
thf(fact_744_subset__Compl__singleton,axiom,
    ! [A: set_a,B: a] :
      ( ( ord_less_eq_set_a @ A @ ( uminus_uminus_set_a @ ( insert_a @ B @ bot_bot_set_a ) ) )
      = ( ~ ( member_a @ B @ A ) ) ) ).

% subset_Compl_singleton
thf(fact_745_subset__Compl__singleton,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B: extend8495563244428889912nnreal] :
      ( ( ord_le6787938422905777998nnreal @ A @ ( uminus5517552291522096439nnreal @ ( insert7407984058720857448nnreal @ B @ bot_bo4854962954004695426nnreal ) ) )
      = ( ~ ( member7908768830364227535nnreal @ B @ A ) ) ) ).

% subset_Compl_singleton
thf(fact_746_subset__Compl__singleton,axiom,
    ! [A: set_real,B: real] :
      ( ( ord_less_eq_set_real @ A @ ( uminus612125837232591019t_real @ ( insert_real @ B @ bot_bot_set_real ) ) )
      = ( ~ ( member_real @ B @ A ) ) ) ).

% subset_Compl_singleton
thf(fact_747_Ioc__subset__iff,axiom,
    ! [A2: real,B: real,C: real,D: real] :
      ( ( ord_less_eq_set_real @ ( set_or2392270231875598684t_real @ A2 @ B ) @ ( set_or2392270231875598684t_real @ C @ D ) )
      = ( ( ord_less_eq_real @ B @ A2 )
        | ( ( ord_less_eq_real @ C @ A2 )
          & ( ord_less_eq_real @ B @ D ) ) ) ) ).

% Ioc_subset_iff
thf(fact_748_nle__le,axiom,
    ! [A2: real,B: real] :
      ( ( ~ ( ord_less_eq_real @ A2 @ B ) )
      = ( ( ord_less_eq_real @ B @ A2 )
        & ( B != A2 ) ) ) ).

% nle_le
thf(fact_749_le__cases3,axiom,
    ! [X2: real,Y: real,Z3: real] :
      ( ( ( ord_less_eq_real @ X2 @ Y )
       => ~ ( ord_less_eq_real @ Y @ Z3 ) )
     => ( ( ( ord_less_eq_real @ Y @ X2 )
         => ~ ( ord_less_eq_real @ X2 @ Z3 ) )
       => ( ( ( ord_less_eq_real @ X2 @ Z3 )
           => ~ ( ord_less_eq_real @ Z3 @ Y ) )
         => ( ( ( ord_less_eq_real @ Z3 @ Y )
             => ~ ( ord_less_eq_real @ Y @ X2 ) )
           => ( ( ( ord_less_eq_real @ Y @ Z3 )
               => ~ ( ord_less_eq_real @ Z3 @ X2 ) )
             => ~ ( ( ord_less_eq_real @ Z3 @ X2 )
                 => ~ ( ord_less_eq_real @ X2 @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_750_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
    = ( ^ [X3: real,Y3: real] :
          ( ( ord_less_eq_real @ X3 @ Y3 )
          & ( ord_less_eq_real @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_751_ord__eq__le__trans,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( A2 = B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_752_ord__le__eq__trans,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( B = C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_753_order__antisym,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
     => ( ( ord_less_eq_real @ Y @ X2 )
       => ( X2 = Y ) ) ) ).

% order_antisym
thf(fact_754_order_Otrans,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ord_less_eq_real @ A2 @ C ) ) ) ).

% order.trans
thf(fact_755_order__trans,axiom,
    ! [X2: real,Y: real,Z3: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
     => ( ( ord_less_eq_real @ Y @ Z3 )
       => ( ord_less_eq_real @ X2 @ Z3 ) ) ) ).

% order_trans
thf(fact_756_linorder__wlog,axiom,
    ! [P: real > real > $o,A2: real,B: real] :
      ( ! [A4: real,B6: real] :
          ( ( ord_less_eq_real @ A4 @ B6 )
         => ( P @ A4 @ B6 ) )
     => ( ! [A4: real,B6: real] :
            ( ( P @ B6 @ A4 )
           => ( P @ A4 @ B6 ) )
       => ( P @ A2 @ B ) ) ) ).

% linorder_wlog
thf(fact_757_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
    = ( ^ [A5: real,B5: real] :
          ( ( ord_less_eq_real @ B5 @ A5 )
          & ( ord_less_eq_real @ A5 @ B5 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_758_dual__order_Oantisym,axiom,
    ! [B: real,A2: real] :
      ( ( ord_less_eq_real @ B @ A2 )
     => ( ( ord_less_eq_real @ A2 @ B )
       => ( A2 = B ) ) ) ).

% dual_order.antisym
thf(fact_759_dual__order_Otrans,axiom,
    ! [B: real,A2: real,C: real] :
      ( ( ord_less_eq_real @ B @ A2 )
     => ( ( ord_less_eq_real @ C @ B )
       => ( ord_less_eq_real @ C @ A2 ) ) ) ).

% dual_order.trans
thf(fact_760_antisym,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_eq_real @ B @ A2 )
       => ( A2 = B ) ) ) ).

% antisym
thf(fact_761_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
    = ( ^ [A5: real,B5: real] :
          ( ( ord_less_eq_real @ A5 @ B5 )
          & ( ord_less_eq_real @ B5 @ A5 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_762_order__subst1,axiom,
    ! [A2: real,F: real > real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X: real,Y2: real] :
              ( ( ord_less_eq_real @ X @ Y2 )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_763_order__subst2,axiom,
    ! [A2: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_eq_real @ ( F @ B ) @ C )
       => ( ! [X: real,Y2: real] :
              ( ( ord_less_eq_real @ X @ Y2 )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% order_subst2
thf(fact_764_order__eq__refl,axiom,
    ! [X2: real,Y: real] :
      ( ( X2 = Y )
     => ( ord_less_eq_real @ X2 @ Y ) ) ).

% order_eq_refl
thf(fact_765_linorder__linear,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
      | ( ord_less_eq_real @ Y @ X2 ) ) ).

% linorder_linear
thf(fact_766_ord__eq__le__subst,axiom,
    ! [A2: real,F: real > real,B: real,C: real] :
      ( ( A2
        = ( F @ B ) )
     => ( ( ord_less_eq_real @ B @ C )
       => ( ! [X: real,Y2: real] :
              ( ( ord_less_eq_real @ X @ Y2 )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ A2 @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_767_ord__le__eq__subst,axiom,
    ! [A2: real,B: real,F: real > real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X: real,Y2: real] :
              ( ( ord_less_eq_real @ X @ Y2 )
             => ( ord_less_eq_real @ ( F @ X ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_real @ ( F @ A2 ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_768_linorder__le__cases,axiom,
    ! [X2: real,Y: real] :
      ( ~ ( ord_less_eq_real @ X2 @ Y )
     => ( ord_less_eq_real @ Y @ X2 ) ) ).

% linorder_le_cases
thf(fact_769_order__antisym__conv,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ Y @ X2 )
     => ( ( ord_less_eq_real @ X2 @ Y )
        = ( X2 = Y ) ) ) ).

% order_antisym_conv
thf(fact_770_verit__comp__simplify1_I2_J,axiom,
    ! [A2: real] : ( ord_less_eq_real @ A2 @ A2 ) ).

% verit_comp_simplify1(2)
thf(fact_771_in__mono,axiom,
    ! [A: set_set_a,B2: set_set_a,X2: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B2 )
     => ( ( member_set_a @ X2 @ A )
       => ( member_set_a @ X2 @ B2 ) ) ) ).

% in_mono
thf(fact_772_in__mono,axiom,
    ! [A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal,X2: real > extend8495563244428889912nnreal] :
      ( ( ord_le2462468573666744473nnreal @ A @ B2 )
     => ( ( member2919562650594848410nnreal @ X2 @ A )
       => ( member2919562650594848410nnreal @ X2 @ B2 ) ) ) ).

% in_mono
thf(fact_773_in__mono,axiom,
    ! [A: set_set_real,B2: set_set_real,X2: set_real] :
      ( ( ord_le3558479182127378552t_real @ A @ B2 )
     => ( ( member_set_real @ X2 @ A )
       => ( member_set_real @ X2 @ B2 ) ) ) ).

% in_mono
thf(fact_774_in__mono,axiom,
    ! [A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal,X2: set_Ex3793607809372303086nnreal] :
      ( ( ord_le3366939622266546180nnreal @ A @ B2 )
     => ( ( member603777416030116741nnreal @ X2 @ A )
       => ( member603777416030116741nnreal @ X2 @ B2 ) ) ) ).

% in_mono
thf(fact_775_subsetD,axiom,
    ! [A: set_set_a,B2: set_set_a,C: set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ B2 )
     => ( ( member_set_a @ C @ A )
       => ( member_set_a @ C @ B2 ) ) ) ).

% subsetD
thf(fact_776_subsetD,axiom,
    ! [A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal,C: real > extend8495563244428889912nnreal] :
      ( ( ord_le2462468573666744473nnreal @ A @ B2 )
     => ( ( member2919562650594848410nnreal @ C @ A )
       => ( member2919562650594848410nnreal @ C @ B2 ) ) ) ).

% subsetD
thf(fact_777_subsetD,axiom,
    ! [A: set_set_real,B2: set_set_real,C: set_real] :
      ( ( ord_le3558479182127378552t_real @ A @ B2 )
     => ( ( member_set_real @ C @ A )
       => ( member_set_real @ C @ B2 ) ) ) ).

% subsetD
thf(fact_778_subsetD,axiom,
    ! [A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal,C: set_Ex3793607809372303086nnreal] :
      ( ( ord_le3366939622266546180nnreal @ A @ B2 )
     => ( ( member603777416030116741nnreal @ C @ A )
       => ( member603777416030116741nnreal @ C @ B2 ) ) ) ).

% subsetD
thf(fact_779_vimageD,axiom,
    ! [A2: set_a,F: set_a > set_a,A: set_set_a] :
      ( ( member_set_a @ A2 @ ( vimage_set_a_set_a @ F @ A ) )
     => ( member_set_a @ ( F @ A2 ) @ A ) ) ).

% vimageD
thf(fact_780_vimageD,axiom,
    ! [A2: set_a,F: set_a > set_real,A: set_set_real] :
      ( ( member_set_a @ A2 @ ( vimage1623514241378321221t_real @ F @ A ) )
     => ( member_set_real @ ( F @ A2 ) @ A ) ) ).

% vimageD
thf(fact_781_vimageD,axiom,
    ! [A2: set_a,F: set_a > set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member_set_a @ A2 @ ( vimage3731165941878406353nnreal @ F @ A ) )
     => ( member603777416030116741nnreal @ ( F @ A2 ) @ A ) ) ).

% vimageD
thf(fact_782_vimageD,axiom,
    ! [A2: set_real,F: set_real > set_a,A: set_set_a] :
      ( ( member_set_real @ A2 @ ( vimage4921045269514575487_set_a @ F @ A ) )
     => ( member_set_a @ ( F @ A2 ) @ A ) ) ).

% vimageD
thf(fact_783_vimageD,axiom,
    ! [A2: set_real,F: set_real > set_real,A: set_set_real] :
      ( ( member_set_real @ A2 @ ( vimage2667142749230307073t_real @ F @ A ) )
     => ( member_set_real @ ( F @ A2 ) @ A ) ) ).

% vimageD
thf(fact_784_vimageD,axiom,
    ! [A2: set_real,F: set_real > set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member_set_real @ A2 @ ( vimage1211383488014126733nnreal @ F @ A ) )
     => ( member603777416030116741nnreal @ ( F @ A2 ) @ A ) ) ).

% vimageD
thf(fact_785_vimageD,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,F: set_Ex3793607809372303086nnreal > set_a,A: set_set_a] :
      ( ( member603777416030116741nnreal @ A2 @ ( vimage9012950911561050995_set_a @ F @ A ) )
     => ( member_set_a @ ( F @ A2 ) @ A ) ) ).

% vimageD
thf(fact_786_vimageD,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,F: set_Ex3793607809372303086nnreal > set_real,A: set_set_real] :
      ( ( member603777416030116741nnreal @ A2 @ ( vimage2976515561842077453t_real @ F @ A ) )
     => ( member_set_real @ ( F @ A2 ) @ A ) ) ).

% vimageD
thf(fact_787_vimageD,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,F: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ ( vimage7483462650094439577nnreal @ F @ A ) )
     => ( member603777416030116741nnreal @ ( F @ A2 ) @ A ) ) ).

% vimageD
thf(fact_788_vimageD,axiom,
    ! [A2: set_a,F: set_a > real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal] :
      ( ( member_set_a @ A2 @ ( vimage6157622615598462950nnreal @ F @ A ) )
     => ( member2919562650594848410nnreal @ ( F @ A2 ) @ A ) ) ).

% vimageD
thf(fact_789_vimageE,axiom,
    ! [A2: set_a,F: set_a > set_a,B2: set_set_a] :
      ( ( member_set_a @ A2 @ ( vimage_set_a_set_a @ F @ B2 ) )
     => ( member_set_a @ ( F @ A2 ) @ B2 ) ) ).

% vimageE
thf(fact_790_vimageE,axiom,
    ! [A2: set_a,F: set_a > set_real,B2: set_set_real] :
      ( ( member_set_a @ A2 @ ( vimage1623514241378321221t_real @ F @ B2 ) )
     => ( member_set_real @ ( F @ A2 ) @ B2 ) ) ).

% vimageE
thf(fact_791_vimageE,axiom,
    ! [A2: set_a,F: set_a > set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member_set_a @ A2 @ ( vimage3731165941878406353nnreal @ F @ B2 ) )
     => ( member603777416030116741nnreal @ ( F @ A2 ) @ B2 ) ) ).

% vimageE
thf(fact_792_vimageE,axiom,
    ! [A2: set_real,F: set_real > set_a,B2: set_set_a] :
      ( ( member_set_real @ A2 @ ( vimage4921045269514575487_set_a @ F @ B2 ) )
     => ( member_set_a @ ( F @ A2 ) @ B2 ) ) ).

% vimageE
thf(fact_793_vimageE,axiom,
    ! [A2: set_real,F: set_real > set_real,B2: set_set_real] :
      ( ( member_set_real @ A2 @ ( vimage2667142749230307073t_real @ F @ B2 ) )
     => ( member_set_real @ ( F @ A2 ) @ B2 ) ) ).

% vimageE
thf(fact_794_vimageE,axiom,
    ! [A2: set_real,F: set_real > set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member_set_real @ A2 @ ( vimage1211383488014126733nnreal @ F @ B2 ) )
     => ( member603777416030116741nnreal @ ( F @ A2 ) @ B2 ) ) ).

% vimageE
thf(fact_795_vimageE,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,F: set_Ex3793607809372303086nnreal > set_a,B2: set_set_a] :
      ( ( member603777416030116741nnreal @ A2 @ ( vimage9012950911561050995_set_a @ F @ B2 ) )
     => ( member_set_a @ ( F @ A2 ) @ B2 ) ) ).

% vimageE
thf(fact_796_vimageE,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,F: set_Ex3793607809372303086nnreal > set_real,B2: set_set_real] :
      ( ( member603777416030116741nnreal @ A2 @ ( vimage2976515561842077453t_real @ F @ B2 ) )
     => ( member_set_real @ ( F @ A2 ) @ B2 ) ) ).

% vimageE
thf(fact_797_vimageE,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,F: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ A2 @ ( vimage7483462650094439577nnreal @ F @ B2 ) )
     => ( member603777416030116741nnreal @ ( F @ A2 ) @ B2 ) ) ).

% vimageE
thf(fact_798_vimageE,axiom,
    ! [A2: set_a,F: set_a > real > extend8495563244428889912nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( member_set_a @ A2 @ ( vimage6157622615598462950nnreal @ F @ B2 ) )
     => ( member2919562650594848410nnreal @ ( F @ A2 ) @ B2 ) ) ).

% vimageE
thf(fact_799_vimageI2,axiom,
    ! [F: set_a > set_a,A2: set_a,A: set_set_a] :
      ( ( member_set_a @ ( F @ A2 ) @ A )
     => ( member_set_a @ A2 @ ( vimage_set_a_set_a @ F @ A ) ) ) ).

% vimageI2
thf(fact_800_vimageI2,axiom,
    ! [F: set_real > set_a,A2: set_real,A: set_set_a] :
      ( ( member_set_a @ ( F @ A2 ) @ A )
     => ( member_set_real @ A2 @ ( vimage4921045269514575487_set_a @ F @ A ) ) ) ).

% vimageI2
thf(fact_801_vimageI2,axiom,
    ! [F: set_Ex3793607809372303086nnreal > set_a,A2: set_Ex3793607809372303086nnreal,A: set_set_a] :
      ( ( member_set_a @ ( F @ A2 ) @ A )
     => ( member603777416030116741nnreal @ A2 @ ( vimage9012950911561050995_set_a @ F @ A ) ) ) ).

% vimageI2
thf(fact_802_vimageI2,axiom,
    ! [F: set_a > set_real,A2: set_a,A: set_set_real] :
      ( ( member_set_real @ ( F @ A2 ) @ A )
     => ( member_set_a @ A2 @ ( vimage1623514241378321221t_real @ F @ A ) ) ) ).

% vimageI2
thf(fact_803_vimageI2,axiom,
    ! [F: set_real > set_real,A2: set_real,A: set_set_real] :
      ( ( member_set_real @ ( F @ A2 ) @ A )
     => ( member_set_real @ A2 @ ( vimage2667142749230307073t_real @ F @ A ) ) ) ).

% vimageI2
thf(fact_804_vimageI2,axiom,
    ! [F: set_Ex3793607809372303086nnreal > set_real,A2: set_Ex3793607809372303086nnreal,A: set_set_real] :
      ( ( member_set_real @ ( F @ A2 ) @ A )
     => ( member603777416030116741nnreal @ A2 @ ( vimage2976515561842077453t_real @ F @ A ) ) ) ).

% vimageI2
thf(fact_805_vimageI2,axiom,
    ! [F: set_a > set_Ex3793607809372303086nnreal,A2: set_a,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ ( F @ A2 ) @ A )
     => ( member_set_a @ A2 @ ( vimage3731165941878406353nnreal @ F @ A ) ) ) ).

% vimageI2
thf(fact_806_vimageI2,axiom,
    ! [F: set_real > set_Ex3793607809372303086nnreal,A2: set_real,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ ( F @ A2 ) @ A )
     => ( member_set_real @ A2 @ ( vimage1211383488014126733nnreal @ F @ A ) ) ) ).

% vimageI2
thf(fact_807_vimageI2,axiom,
    ! [F: set_Ex3793607809372303086nnreal > set_Ex3793607809372303086nnreal,A2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ ( F @ A2 ) @ A )
     => ( member603777416030116741nnreal @ A2 @ ( vimage7483462650094439577nnreal @ F @ A ) ) ) ).

% vimageI2
thf(fact_808_vimageI2,axiom,
    ! [F: ( real > extend8495563244428889912nnreal ) > set_a,A2: real > extend8495563244428889912nnreal,A: set_set_a] :
      ( ( member_set_a @ ( F @ A2 ) @ A )
     => ( member2919562650594848410nnreal @ A2 @ ( vimage1816238162123171230_set_a @ F @ A ) ) ) ).

% vimageI2
thf(fact_809_subset__eq,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A3: set_set_a,B4: set_set_a] :
        ! [X3: set_a] :
          ( ( member_set_a @ X3 @ A3 )
         => ( member_set_a @ X3 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_810_subset__eq,axiom,
    ( ord_le2462468573666744473nnreal
    = ( ^ [A3: set_re5328672808648366137nnreal,B4: set_re5328672808648366137nnreal] :
        ! [X3: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ X3 @ A3 )
         => ( member2919562650594848410nnreal @ X3 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_811_subset__eq,axiom,
    ( ord_le3558479182127378552t_real
    = ( ^ [A3: set_set_real,B4: set_set_real] :
        ! [X3: set_real] :
          ( ( member_set_real @ X3 @ A3 )
         => ( member_set_real @ X3 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_812_subset__eq,axiom,
    ( ord_le3366939622266546180nnreal
    = ( ^ [A3: set_se4580700918925141924nnreal,B4: set_se4580700918925141924nnreal] :
        ! [X3: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ X3 @ A3 )
         => ( member603777416030116741nnreal @ X3 @ B4 ) ) ) ) ).

% subset_eq
thf(fact_813_subset__iff,axiom,
    ( ord_le3724670747650509150_set_a
    = ( ^ [A3: set_set_a,B4: set_set_a] :
        ! [T: set_a] :
          ( ( member_set_a @ T @ A3 )
         => ( member_set_a @ T @ B4 ) ) ) ) ).

% subset_iff
thf(fact_814_subset__iff,axiom,
    ( ord_le2462468573666744473nnreal
    = ( ^ [A3: set_re5328672808648366137nnreal,B4: set_re5328672808648366137nnreal] :
        ! [T: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ T @ A3 )
         => ( member2919562650594848410nnreal @ T @ B4 ) ) ) ) ).

% subset_iff
thf(fact_815_subset__iff,axiom,
    ( ord_le3558479182127378552t_real
    = ( ^ [A3: set_set_real,B4: set_set_real] :
        ! [T: set_real] :
          ( ( member_set_real @ T @ A3 )
         => ( member_set_real @ T @ B4 ) ) ) ) ).

% subset_iff
thf(fact_816_subset__iff,axiom,
    ( ord_le3366939622266546180nnreal
    = ( ^ [A3: set_se4580700918925141924nnreal,B4: set_se4580700918925141924nnreal] :
        ! [T: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ T @ A3 )
         => ( member603777416030116741nnreal @ T @ B4 ) ) ) ) ).

% subset_iff
thf(fact_817_verit__la__disequality,axiom,
    ! [A2: real,B: real] :
      ( ( A2 = B )
      | ~ ( ord_less_eq_real @ A2 @ B )
      | ~ ( ord_less_eq_real @ B @ A2 ) ) ).

% verit_la_disequality
thf(fact_818_sets__le__imp__space__le,axiom,
    ! [A: sigma_measure_a,B2: sigma_measure_a] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ A ) @ ( sigma_sets_a @ B2 ) )
     => ( ord_less_eq_set_a @ ( sigma_space_a @ A ) @ ( sigma_space_a @ B2 ) ) ) ).

% sets_le_imp_space_le
thf(fact_819_sets__le__imp__space__le,axiom,
    ! [A: sigma_7234349610311085201nnreal,B2: sigma_7234349610311085201nnreal] :
      ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ A ) @ ( sigma_5465916536984168985nnreal @ B2 ) )
     => ( ord_le6787938422905777998nnreal @ ( sigma_3147302497200244656nnreal @ A ) @ ( sigma_3147302497200244656nnreal @ B2 ) ) ) ).

% sets_le_imp_space_le
thf(fact_820_sets__le__imp__space__le,axiom,
    ! [A: sigma_measure_real,B2: sigma_measure_real] :
      ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ A ) @ ( sigma_sets_real @ B2 ) )
     => ( ord_less_eq_set_real @ ( sigma_space_real @ A ) @ ( sigma_space_real @ B2 ) ) ) ).

% sets_le_imp_space_le
thf(fact_821_vimage__Compl,axiom,
    ! [F: a > a,A: set_a] :
      ( ( vimage_a_a @ F @ ( uminus_uminus_set_a @ A ) )
      = ( uminus_uminus_set_a @ ( vimage_a_a @ F @ A ) ) ) ).

% vimage_Compl
thf(fact_822_vimage__Compl,axiom,
    ! [F: extend8495563244428889912nnreal > a,A: set_a] :
      ( ( vimage4075187267506941001real_a @ F @ ( uminus_uminus_set_a @ A ) )
      = ( uminus5517552291522096439nnreal @ ( vimage4075187267506941001real_a @ F @ A ) ) ) ).

% vimage_Compl
thf(fact_823_vimage__Compl,axiom,
    ! [F: real > a,A: set_a] :
      ( ( vimage_real_a @ F @ ( uminus_uminus_set_a @ A ) )
      = ( uminus612125837232591019t_real @ ( vimage_real_a @ F @ A ) ) ) ).

% vimage_Compl
thf(fact_824_vimage__Compl,axiom,
    ! [F: a > extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( vimage1258658873539170235nnreal @ F @ ( uminus5517552291522096439nnreal @ A ) )
      = ( uminus_uminus_set_a @ ( vimage1258658873539170235nnreal @ F @ A ) ) ) ).

% vimage_Compl
thf(fact_825_vimage__Compl,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( vimage3650734033530794285nnreal @ F @ ( uminus5517552291522096439nnreal @ A ) )
      = ( uminus5517552291522096439nnreal @ ( vimage3650734033530794285nnreal @ F @ A ) ) ) ).

% vimage_Compl
thf(fact_826_vimage__Compl,axiom,
    ! [F: real > extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( vimage6366802093293386401nnreal @ F @ ( uminus5517552291522096439nnreal @ A ) )
      = ( uminus612125837232591019t_real @ ( vimage6366802093293386401nnreal @ F @ A ) ) ) ).

% vimage_Compl
thf(fact_827_vimage__Compl,axiom,
    ! [F: a > real,A: set_real] :
      ( ( vimage_a_real @ F @ ( uminus612125837232591019t_real @ A ) )
      = ( uminus_uminus_set_a @ ( vimage_a_real @ F @ A ) ) ) ).

% vimage_Compl
thf(fact_828_vimage__Compl,axiom,
    ! [F: extend8495563244428889912nnreal > real,A: set_real] :
      ( ( vimage4399055823842842145l_real @ F @ ( uminus612125837232591019t_real @ A ) )
      = ( uminus5517552291522096439nnreal @ ( vimage4399055823842842145l_real @ F @ A ) ) ) ).

% vimage_Compl
thf(fact_829_vimage__Compl,axiom,
    ! [F: real > real,A: set_real] :
      ( ( vimage_real_real @ F @ ( uminus612125837232591019t_real @ A ) )
      = ( uminus612125837232591019t_real @ ( vimage_real_real @ F @ A ) ) ) ).

% vimage_Compl
thf(fact_830_top_Oextremum__uniqueI,axiom,
    ! [A2: set_Ex3793607809372303086nnreal] :
      ( ( ord_le6787938422905777998nnreal @ top_to7994903218803871134nnreal @ A2 )
     => ( A2 = top_to7994903218803871134nnreal ) ) ).

% top.extremum_uniqueI
thf(fact_831_top_Oextremum__uniqueI,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ top_top_set_real @ A2 )
     => ( A2 = top_top_set_real ) ) ).

% top.extremum_uniqueI
thf(fact_832_top_Oextremum__uniqueI,axiom,
    ! [A2: set_a] :
      ( ( ord_less_eq_set_a @ top_top_set_a @ A2 )
     => ( A2 = top_top_set_a ) ) ).

% top.extremum_uniqueI
thf(fact_833_top_Oextremum__unique,axiom,
    ! [A2: set_Ex3793607809372303086nnreal] :
      ( ( ord_le6787938422905777998nnreal @ top_to7994903218803871134nnreal @ A2 )
      = ( A2 = top_to7994903218803871134nnreal ) ) ).

% top.extremum_unique
thf(fact_834_top_Oextremum__unique,axiom,
    ! [A2: set_real] :
      ( ( ord_less_eq_set_real @ top_top_set_real @ A2 )
      = ( A2 = top_top_set_real ) ) ).

% top.extremum_unique
thf(fact_835_top_Oextremum__unique,axiom,
    ! [A2: set_a] :
      ( ( ord_less_eq_set_a @ top_top_set_a @ A2 )
      = ( A2 = top_top_set_a ) ) ).

% top.extremum_unique
thf(fact_836_top__greatest,axiom,
    ! [A2: set_Ex3793607809372303086nnreal] : ( ord_le6787938422905777998nnreal @ A2 @ top_to7994903218803871134nnreal ) ).

% top_greatest
thf(fact_837_top__greatest,axiom,
    ! [A2: set_real] : ( ord_less_eq_set_real @ A2 @ top_top_set_real ) ).

% top_greatest
thf(fact_838_top__greatest,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ top_top_set_a ) ).

% top_greatest
thf(fact_839_diff__mono,axiom,
    ! [A2: real,B: real,D: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_eq_real @ D @ C )
       => ( ord_less_eq_real @ ( minus_minus_real @ A2 @ C ) @ ( minus_minus_real @ B @ D ) ) ) ) ).

% diff_mono
thf(fact_840_diff__left__mono,axiom,
    ! [B: real,A2: real,C: real] :
      ( ( ord_less_eq_real @ B @ A2 )
     => ( ord_less_eq_real @ ( minus_minus_real @ C @ A2 ) @ ( minus_minus_real @ C @ B ) ) ) ).

% diff_left_mono
thf(fact_841_diff__right__mono,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ord_less_eq_real @ ( minus_minus_real @ A2 @ C ) @ ( minus_minus_real @ B @ C ) ) ) ).

% diff_right_mono
thf(fact_842_diff__eq__diff__less__eq,axiom,
    ! [A2: real,B: real,C: real,D: real] :
      ( ( ( minus_minus_real @ A2 @ B )
        = ( minus_minus_real @ C @ D ) )
     => ( ( ord_less_eq_real @ A2 @ B )
        = ( ord_less_eq_real @ C @ D ) ) ) ).

% diff_eq_diff_less_eq
thf(fact_843_compl__le__swap2,axiom,
    ! [Y: set_a,X2: set_a] :
      ( ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ Y ) @ X2 )
     => ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ X2 ) @ Y ) ) ).

% compl_le_swap2
thf(fact_844_compl__le__swap2,axiom,
    ! [Y: set_Ex3793607809372303086nnreal,X2: set_Ex3793607809372303086nnreal] :
      ( ( ord_le6787938422905777998nnreal @ ( uminus5517552291522096439nnreal @ Y ) @ X2 )
     => ( ord_le6787938422905777998nnreal @ ( uminus5517552291522096439nnreal @ X2 ) @ Y ) ) ).

% compl_le_swap2
thf(fact_845_compl__le__swap2,axiom,
    ! [Y: set_real,X2: set_real] :
      ( ( ord_less_eq_set_real @ ( uminus612125837232591019t_real @ Y ) @ X2 )
     => ( ord_less_eq_set_real @ ( uminus612125837232591019t_real @ X2 ) @ Y ) ) ).

% compl_le_swap2
thf(fact_846_compl__le__swap1,axiom,
    ! [Y: set_a,X2: set_a] :
      ( ( ord_less_eq_set_a @ Y @ ( uminus_uminus_set_a @ X2 ) )
     => ( ord_less_eq_set_a @ X2 @ ( uminus_uminus_set_a @ Y ) ) ) ).

% compl_le_swap1
thf(fact_847_compl__le__swap1,axiom,
    ! [Y: set_Ex3793607809372303086nnreal,X2: set_Ex3793607809372303086nnreal] :
      ( ( ord_le6787938422905777998nnreal @ Y @ ( uminus5517552291522096439nnreal @ X2 ) )
     => ( ord_le6787938422905777998nnreal @ X2 @ ( uminus5517552291522096439nnreal @ Y ) ) ) ).

% compl_le_swap1
thf(fact_848_compl__le__swap1,axiom,
    ! [Y: set_real,X2: set_real] :
      ( ( ord_less_eq_set_real @ Y @ ( uminus612125837232591019t_real @ X2 ) )
     => ( ord_less_eq_set_real @ X2 @ ( uminus612125837232591019t_real @ Y ) ) ) ).

% compl_le_swap1
thf(fact_849_compl__mono,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X2 @ Y )
     => ( ord_less_eq_set_a @ ( uminus_uminus_set_a @ Y ) @ ( uminus_uminus_set_a @ X2 ) ) ) ).

% compl_mono
thf(fact_850_compl__mono,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal] :
      ( ( ord_le6787938422905777998nnreal @ X2 @ Y )
     => ( ord_le6787938422905777998nnreal @ ( uminus5517552291522096439nnreal @ Y ) @ ( uminus5517552291522096439nnreal @ X2 ) ) ) ).

% compl_mono
thf(fact_851_compl__mono,axiom,
    ! [X2: set_real,Y: set_real] :
      ( ( ord_less_eq_set_real @ X2 @ Y )
     => ( ord_less_eq_set_real @ ( uminus612125837232591019t_real @ Y ) @ ( uminus612125837232591019t_real @ X2 ) ) ) ).

% compl_mono
thf(fact_852_le__imp__neg__le,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A2 ) ) ) ).

% le_imp_neg_le
thf(fact_853_minus__le__iff,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A2 ) @ B )
      = ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ A2 ) ) ).

% minus_le_iff
thf(fact_854_le__minus__iff,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ A2 @ ( uminus_uminus_real @ B ) )
      = ( ord_less_eq_real @ B @ ( uminus_uminus_real @ A2 ) ) ) ).

% le_minus_iff
thf(fact_855_inf__sup__ord_I2_J,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( inf_inf_real @ X2 @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_856_inf__sup__ord_I1_J,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( inf_inf_real @ X2 @ Y ) @ X2 ) ).

% inf_sup_ord(1)
thf(fact_857_inf__le1,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( inf_inf_real @ X2 @ Y ) @ X2 ) ).

% inf_le1
thf(fact_858_inf__le2,axiom,
    ! [X2: real,Y: real] : ( ord_less_eq_real @ ( inf_inf_real @ X2 @ Y ) @ Y ) ).

% inf_le2
thf(fact_859_le__infE,axiom,
    ! [X2: real,A2: real,B: real] :
      ( ( ord_less_eq_real @ X2 @ ( inf_inf_real @ A2 @ B ) )
     => ~ ( ( ord_less_eq_real @ X2 @ A2 )
         => ~ ( ord_less_eq_real @ X2 @ B ) ) ) ).

% le_infE
thf(fact_860_le__infI,axiom,
    ! [X2: real,A2: real,B: real] :
      ( ( ord_less_eq_real @ X2 @ A2 )
     => ( ( ord_less_eq_real @ X2 @ B )
       => ( ord_less_eq_real @ X2 @ ( inf_inf_real @ A2 @ B ) ) ) ) ).

% le_infI
thf(fact_861_inf__mono,axiom,
    ! [A2: real,C: real,B: real,D: real] :
      ( ( ord_less_eq_real @ A2 @ C )
     => ( ( ord_less_eq_real @ B @ D )
       => ( ord_less_eq_real @ ( inf_inf_real @ A2 @ B ) @ ( inf_inf_real @ C @ D ) ) ) ) ).

% inf_mono
thf(fact_862_le__infI1,axiom,
    ! [A2: real,X2: real,B: real] :
      ( ( ord_less_eq_real @ A2 @ X2 )
     => ( ord_less_eq_real @ ( inf_inf_real @ A2 @ B ) @ X2 ) ) ).

% le_infI1
thf(fact_863_le__infI2,axiom,
    ! [B: real,X2: real,A2: real] :
      ( ( ord_less_eq_real @ B @ X2 )
     => ( ord_less_eq_real @ ( inf_inf_real @ A2 @ B ) @ X2 ) ) ).

% le_infI2
thf(fact_864_inf_OorderE,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( A2
        = ( inf_inf_real @ A2 @ B ) ) ) ).

% inf.orderE
thf(fact_865_inf_OorderI,axiom,
    ! [A2: real,B: real] :
      ( ( A2
        = ( inf_inf_real @ A2 @ B ) )
     => ( ord_less_eq_real @ A2 @ B ) ) ).

% inf.orderI
thf(fact_866_inf__unique,axiom,
    ! [F: real > real > real,X2: real,Y: real] :
      ( ! [X: real,Y2: real] : ( ord_less_eq_real @ ( F @ X @ Y2 ) @ X )
     => ( ! [X: real,Y2: real] : ( ord_less_eq_real @ ( F @ X @ Y2 ) @ Y2 )
       => ( ! [X: real,Y2: real,Z4: real] :
              ( ( ord_less_eq_real @ X @ Y2 )
             => ( ( ord_less_eq_real @ X @ Z4 )
               => ( ord_less_eq_real @ X @ ( F @ Y2 @ Z4 ) ) ) )
         => ( ( inf_inf_real @ X2 @ Y )
            = ( F @ X2 @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_867_le__iff__inf,axiom,
    ( ord_less_eq_real
    = ( ^ [X3: real,Y3: real] :
          ( ( inf_inf_real @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_868_inf_Oabsorb1,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( inf_inf_real @ A2 @ B )
        = A2 ) ) ).

% inf.absorb1
thf(fact_869_inf_Oabsorb2,axiom,
    ! [B: real,A2: real] :
      ( ( ord_less_eq_real @ B @ A2 )
     => ( ( inf_inf_real @ A2 @ B )
        = B ) ) ).

% inf.absorb2
thf(fact_870_inf__absorb1,axiom,
    ! [X2: real,Y: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
     => ( ( inf_inf_real @ X2 @ Y )
        = X2 ) ) ).

% inf_absorb1
thf(fact_871_inf__absorb2,axiom,
    ! [Y: real,X2: real] :
      ( ( ord_less_eq_real @ Y @ X2 )
     => ( ( inf_inf_real @ X2 @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_872_inf_OboundedE,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ ( inf_inf_real @ B @ C ) )
     => ~ ( ( ord_less_eq_real @ A2 @ B )
         => ~ ( ord_less_eq_real @ A2 @ C ) ) ) ).

% inf.boundedE
thf(fact_873_inf_OboundedI,axiom,
    ! [A2: real,B: real,C: real] :
      ( ( ord_less_eq_real @ A2 @ B )
     => ( ( ord_less_eq_real @ A2 @ C )
       => ( ord_less_eq_real @ A2 @ ( inf_inf_real @ B @ C ) ) ) ) ).

% inf.boundedI
thf(fact_874_inf__greatest,axiom,
    ! [X2: real,Y: real,Z3: real] :
      ( ( ord_less_eq_real @ X2 @ Y )
     => ( ( ord_less_eq_real @ X2 @ Z3 )
       => ( ord_less_eq_real @ X2 @ ( inf_inf_real @ Y @ Z3 ) ) ) ) ).

% inf_greatest
thf(fact_875_inf_Oorder__iff,axiom,
    ( ord_less_eq_real
    = ( ^ [A5: real,B5: real] :
          ( A5
          = ( inf_inf_real @ A5 @ B5 ) ) ) ) ).

% inf.order_iff
thf(fact_876_inf_Ocobounded1,axiom,
    ! [A2: real,B: real] : ( ord_less_eq_real @ ( inf_inf_real @ A2 @ B ) @ A2 ) ).

% inf.cobounded1
thf(fact_877_inf_Ocobounded2,axiom,
    ! [A2: real,B: real] : ( ord_less_eq_real @ ( inf_inf_real @ A2 @ B ) @ B ) ).

% inf.cobounded2
thf(fact_878_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_real
    = ( ^ [A5: real,B5: real] :
          ( ( inf_inf_real @ A5 @ B5 )
          = A5 ) ) ) ).

% inf.absorb_iff1
thf(fact_879_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_real
    = ( ^ [B5: real,A5: real] :
          ( ( inf_inf_real @ A5 @ B5 )
          = B5 ) ) ) ).

% inf.absorb_iff2
thf(fact_880_inf_OcoboundedI1,axiom,
    ! [A2: real,C: real,B: real] :
      ( ( ord_less_eq_real @ A2 @ C )
     => ( ord_less_eq_real @ ( inf_inf_real @ A2 @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_881_inf_OcoboundedI2,axiom,
    ! [B: real,C: real,A2: real] :
      ( ( ord_less_eq_real @ B @ C )
     => ( ord_less_eq_real @ ( inf_inf_real @ A2 @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_882_subset__UNIV,axiom,
    ! [A: set_Ex3793607809372303086nnreal] : ( ord_le6787938422905777998nnreal @ A @ top_to7994903218803871134nnreal ) ).

% subset_UNIV
thf(fact_883_subset__UNIV,axiom,
    ! [A: set_real] : ( ord_less_eq_set_real @ A @ top_top_set_real ) ).

% subset_UNIV
thf(fact_884_subset__UNIV,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ top_top_set_a ) ).

% subset_UNIV
thf(fact_885_subset__insert,axiom,
    ! [X2: set_a,A: set_set_a,B2: set_set_a] :
      ( ~ ( member_set_a @ X2 @ A )
     => ( ( ord_le3724670747650509150_set_a @ A @ ( insert_set_a @ X2 @ B2 ) )
        = ( ord_le3724670747650509150_set_a @ A @ B2 ) ) ) ).

% subset_insert
thf(fact_886_subset__insert,axiom,
    ! [X2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal] :
      ( ~ ( member2919562650594848410nnreal @ X2 @ A )
     => ( ( ord_le2462468573666744473nnreal @ A @ ( insert152533262698245683nnreal @ X2 @ B2 ) )
        = ( ord_le2462468573666744473nnreal @ A @ B2 ) ) ) ).

% subset_insert
thf(fact_887_subset__insert,axiom,
    ! [X2: set_real,A: set_set_real,B2: set_set_real] :
      ( ~ ( member_set_real @ X2 @ A )
     => ( ( ord_le3558479182127378552t_real @ A @ ( insert_set_real @ X2 @ B2 ) )
        = ( ord_le3558479182127378552t_real @ A @ B2 ) ) ) ).

% subset_insert
thf(fact_888_subset__insert,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal] :
      ( ~ ( member603777416030116741nnreal @ X2 @ A )
     => ( ( ord_le3366939622266546180nnreal @ A @ ( insert1343806209672318238nnreal @ X2 @ B2 ) )
        = ( ord_le3366939622266546180nnreal @ A @ B2 ) ) ) ).

% subset_insert
thf(fact_889_Int__Collect__mono,axiom,
    ! [A: set_set_a,B2: set_set_a,P: set_a > $o,Q: set_a > $o] :
      ( ( ord_le3724670747650509150_set_a @ A @ B2 )
     => ( ! [X: set_a] :
            ( ( member_set_a @ X @ A )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_le3724670747650509150_set_a @ ( inf_inf_set_set_a @ A @ ( collect_set_a @ P ) ) @ ( inf_inf_set_set_a @ B2 @ ( collect_set_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_890_Int__Collect__mono,axiom,
    ! [A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal,P: ( real > extend8495563244428889912nnreal ) > $o,Q: ( real > extend8495563244428889912nnreal ) > $o] :
      ( ( ord_le2462468573666744473nnreal @ A @ B2 )
     => ( ! [X: real > extend8495563244428889912nnreal] :
            ( ( member2919562650594848410nnreal @ X @ A )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_le2462468573666744473nnreal @ ( inf_in8454409011496165067nnreal @ A @ ( collec9130413544115709400nnreal @ P ) ) @ ( inf_in8454409011496165067nnreal @ B2 @ ( collec9130413544115709400nnreal @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_891_Int__Collect__mono,axiom,
    ! [A: set_set_real,B2: set_set_real,P: set_real > $o,Q: set_real > $o] :
      ( ( ord_le3558479182127378552t_real @ A @ B2 )
     => ( ! [X: set_real] :
            ( ( member_set_real @ X @ A )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_le3558479182127378552t_real @ ( inf_inf_set_set_real @ A @ ( collect_set_real @ P ) ) @ ( inf_inf_set_set_real @ B2 @ ( collect_set_real @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_892_Int__Collect__mono,axiom,
    ! [A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal,P: set_Ex3793607809372303086nnreal > $o,Q: set_Ex3793607809372303086nnreal > $o] :
      ( ( ord_le3366939622266546180nnreal @ A @ B2 )
     => ( ! [X: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X @ A )
           => ( ( P @ X )
             => ( Q @ X ) ) )
       => ( ord_le3366939622266546180nnreal @ ( inf_in5190865051653673526nnreal @ A @ ( collec4858231573021281987nnreal @ P ) ) @ ( inf_in5190865051653673526nnreal @ B2 @ ( collec4858231573021281987nnreal @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_893_open__subopen,axiom,
    ( topolo3503219976281768444nnreal
    = ( ^ [S: set_re5328672808648366137nnreal] :
        ! [X3: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ X3 @ S )
         => ? [T2: set_re5328672808648366137nnreal] :
              ( ( topolo3503219976281768444nnreal @ T2 )
              & ( member2919562650594848410nnreal @ X3 @ T2 )
              & ( ord_le2462468573666744473nnreal @ T2 @ S ) ) ) ) ) ).

% open_subopen
thf(fact_894_topological__space__class_OopenI,axiom,
    ! [S3: set_re5328672808648366137nnreal] :
      ( ! [X: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ X @ S3 )
         => ? [T3: set_re5328672808648366137nnreal] :
              ( ( topolo3503219976281768444nnreal @ T3 )
              & ( member2919562650594848410nnreal @ X @ T3 )
              & ( ord_le2462468573666744473nnreal @ T3 @ S3 ) ) )
     => ( topolo3503219976281768444nnreal @ S3 ) ) ).

% topological_space_class.openI
thf(fact_895_first__countable__basisE,axiom,
    ! [X2: real] :
      ~ ! [A6: set_set_real] :
          ( ( counta8054315614235329383t_real @ A6 )
         => ( ! [A7: set_real] :
                ( ( member_set_real @ A7 @ A6 )
               => ( member_real @ X2 @ A7 ) )
           => ( ! [A7: set_real] :
                  ( ( member_set_real @ A7 @ A6 )
                 => ( topolo4860482606490270245n_real @ A7 ) )
             => ~ ! [S4: set_real] :
                    ( ( topolo4860482606490270245n_real @ S4 )
                   => ( ( member_real @ X2 @ S4 )
                     => ? [X: set_real] :
                          ( ( member_set_real @ X @ A6 )
                          & ( ord_less_eq_set_real @ X @ S4 ) ) ) ) ) ) ) ).

% first_countable_basisE
thf(fact_896_first__countable__basisE,axiom,
    ! [X2: extend8495563244428889912nnreal] :
      ~ ! [A6: set_se4580700918925141924nnreal] :
          ( ( counta2425349316461633011nnreal @ A6 )
         => ( ! [A7: set_Ex3793607809372303086nnreal] :
                ( ( member603777416030116741nnreal @ A7 @ A6 )
               => ( member7908768830364227535nnreal @ X2 @ A7 ) )
           => ( ! [A7: set_Ex3793607809372303086nnreal] :
                  ( ( member603777416030116741nnreal @ A7 @ A6 )
                 => ( topolo1037242508615874353nnreal @ A7 ) )
             => ~ ! [S4: set_Ex3793607809372303086nnreal] :
                    ( ( topolo1037242508615874353nnreal @ S4 )
                   => ( ( member7908768830364227535nnreal @ X2 @ S4 )
                     => ? [X: set_Ex3793607809372303086nnreal] :
                          ( ( member603777416030116741nnreal @ X @ A6 )
                          & ( ord_le6787938422905777998nnreal @ X @ S4 ) ) ) ) ) ) ) ).

% first_countable_basisE
thf(fact_897_first__countableI,axiom,
    ! [A8: set_se2490721793304844655nnreal,X2: real > extend8495563244428889912nnreal] :
      ( ( counta1475001235576645950nnreal @ A8 )
     => ( ! [A9: set_re5328672808648366137nnreal] :
            ( ( member524040414084610768nnreal @ A9 @ A8 )
           => ( member2919562650594848410nnreal @ X2 @ A9 ) )
       => ( ! [A9: set_re5328672808648366137nnreal] :
              ( ( member524040414084610768nnreal @ A9 @ A8 )
             => ( topolo3503219976281768444nnreal @ A9 ) )
         => ( ! [S5: set_re5328672808648366137nnreal] :
                ( ( topolo3503219976281768444nnreal @ S5 )
               => ( ( member2919562650594848410nnreal @ X2 @ S5 )
                 => ? [X6: set_re5328672808648366137nnreal] :
                      ( ( member524040414084610768nnreal @ X6 @ A8 )
                      & ( ord_le2462468573666744473nnreal @ X6 @ S5 ) ) ) )
           => ? [A6: nat > set_re5328672808648366137nnreal] :
                ( ! [I3: nat] :
                    ( ( member2919562650594848410nnreal @ X2 @ ( A6 @ I3 ) )
                    & ( topolo3503219976281768444nnreal @ ( A6 @ I3 ) ) )
                & ! [S4: set_re5328672808648366137nnreal] :
                    ( ( ( topolo3503219976281768444nnreal @ S4 )
                      & ( member2919562650594848410nnreal @ X2 @ S4 ) )
                   => ? [I4: nat] : ( ord_le2462468573666744473nnreal @ ( A6 @ I4 ) @ S4 ) ) ) ) ) ) ) ).

% first_countableI
thf(fact_898_first__countableI,axiom,
    ! [A8: set_set_a,X2: a] :
      ( ( counta6168152590877469849_set_a @ A8 )
     => ( ! [A9: set_a] :
            ( ( member_set_a @ A9 @ A8 )
           => ( member_a @ X2 @ A9 ) )
       => ( ! [A9: set_a] :
              ( ( member_set_a @ A9 @ A8 )
             => ( topolo8477419352202985285open_a @ A9 ) )
         => ( ! [S5: set_a] :
                ( ( topolo8477419352202985285open_a @ S5 )
               => ( ( member_a @ X2 @ S5 )
                 => ? [X6: set_a] :
                      ( ( member_set_a @ X6 @ A8 )
                      & ( ord_less_eq_set_a @ X6 @ S5 ) ) ) )
           => ? [A6: nat > set_a] :
                ( ! [I3: nat] :
                    ( ( member_a @ X2 @ ( A6 @ I3 ) )
                    & ( topolo8477419352202985285open_a @ ( A6 @ I3 ) ) )
                & ! [S4: set_a] :
                    ( ( ( topolo8477419352202985285open_a @ S4 )
                      & ( member_a @ X2 @ S4 ) )
                   => ? [I4: nat] : ( ord_less_eq_set_a @ ( A6 @ I4 ) @ S4 ) ) ) ) ) ) ) ).

% first_countableI
thf(fact_899_first__countableI,axiom,
    ! [A8: set_set_real,X2: real] :
      ( ( counta8054315614235329383t_real @ A8 )
     => ( ! [A9: set_real] :
            ( ( member_set_real @ A9 @ A8 )
           => ( member_real @ X2 @ A9 ) )
       => ( ! [A9: set_real] :
              ( ( member_set_real @ A9 @ A8 )
             => ( topolo4860482606490270245n_real @ A9 ) )
         => ( ! [S5: set_real] :
                ( ( topolo4860482606490270245n_real @ S5 )
               => ( ( member_real @ X2 @ S5 )
                 => ? [X6: set_real] :
                      ( ( member_set_real @ X6 @ A8 )
                      & ( ord_less_eq_set_real @ X6 @ S5 ) ) ) )
           => ? [A6: nat > set_real] :
                ( ! [I3: nat] :
                    ( ( member_real @ X2 @ ( A6 @ I3 ) )
                    & ( topolo4860482606490270245n_real @ ( A6 @ I3 ) ) )
                & ! [S4: set_real] :
                    ( ( ( topolo4860482606490270245n_real @ S4 )
                      & ( member_real @ X2 @ S4 ) )
                   => ? [I4: nat] : ( ord_less_eq_set_real @ ( A6 @ I4 ) @ S4 ) ) ) ) ) ) ) ).

% first_countableI
thf(fact_900_first__countableI,axiom,
    ! [A8: set_se4580700918925141924nnreal,X2: extend8495563244428889912nnreal] :
      ( ( counta2425349316461633011nnreal @ A8 )
     => ( ! [A9: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ A9 @ A8 )
           => ( member7908768830364227535nnreal @ X2 @ A9 ) )
       => ( ! [A9: set_Ex3793607809372303086nnreal] :
              ( ( member603777416030116741nnreal @ A9 @ A8 )
             => ( topolo1037242508615874353nnreal @ A9 ) )
         => ( ! [S5: set_Ex3793607809372303086nnreal] :
                ( ( topolo1037242508615874353nnreal @ S5 )
               => ( ( member7908768830364227535nnreal @ X2 @ S5 )
                 => ? [X6: set_Ex3793607809372303086nnreal] :
                      ( ( member603777416030116741nnreal @ X6 @ A8 )
                      & ( ord_le6787938422905777998nnreal @ X6 @ S5 ) ) ) )
           => ? [A6: nat > set_Ex3793607809372303086nnreal] :
                ( ! [I3: nat] :
                    ( ( member7908768830364227535nnreal @ X2 @ ( A6 @ I3 ) )
                    & ( topolo1037242508615874353nnreal @ ( A6 @ I3 ) ) )
                & ! [S4: set_Ex3793607809372303086nnreal] :
                    ( ( ( topolo1037242508615874353nnreal @ S4 )
                      & ( member7908768830364227535nnreal @ X2 @ S4 ) )
                   => ? [I4: nat] : ( ord_le6787938422905777998nnreal @ ( A6 @ I4 ) @ S4 ) ) ) ) ) ) ) ).

% first_countableI
thf(fact_901_Ioc__inj,axiom,
    ! [A2: real,B: real,C: real,D: real] :
      ( ( ( set_or2392270231875598684t_real @ A2 @ B )
        = ( set_or2392270231875598684t_real @ C @ D ) )
      = ( ( ( ord_less_eq_real @ B @ A2 )
          & ( ord_less_eq_real @ D @ C ) )
        | ( ( A2 = C )
          & ( B = D ) ) ) ) ).

% Ioc_inj
thf(fact_902_measurable__mono,axiom,
    ! [N2: sigma_measure_a,N: sigma_measure_a,M: sigma_measure_a,M2: sigma_measure_a] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ N2 ) @ ( sigma_sets_a @ N ) )
     => ( ( ( sigma_space_a @ N )
          = ( sigma_space_a @ N2 ) )
       => ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ M ) @ ( sigma_sets_a @ M2 ) )
         => ( ( ( sigma_space_a @ M )
              = ( sigma_space_a @ M2 ) )
           => ( ord_less_eq_set_a_a @ ( sigma_measurable_a_a @ M @ N ) @ ( sigma_measurable_a_a @ M2 @ N2 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_903_measurable__mono,axiom,
    ! [N2: sigma_measure_a,N: sigma_measure_a,M: sigma_7234349610311085201nnreal,M2: sigma_7234349610311085201nnreal] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ N2 ) @ ( sigma_sets_a @ N ) )
     => ( ( ( sigma_space_a @ N )
          = ( sigma_space_a @ N2 ) )
       => ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ M ) @ ( sigma_5465916536984168985nnreal @ M2 ) )
         => ( ( ( sigma_3147302497200244656nnreal @ M )
              = ( sigma_3147302497200244656nnreal @ M2 ) )
           => ( ord_le5319533700100273021real_a @ ( sigma_3031480723531659892real_a @ M @ N ) @ ( sigma_3031480723531659892real_a @ M2 @ N2 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_904_measurable__mono,axiom,
    ! [N2: sigma_measure_a,N: sigma_measure_a,M: sigma_measure_real,M2: sigma_measure_real] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ N2 ) @ ( sigma_sets_a @ N ) )
     => ( ( ( sigma_space_a @ N )
          = ( sigma_space_a @ N2 ) )
       => ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ M ) @ ( sigma_sets_real @ M2 ) )
         => ( ( ( sigma_space_real @ M )
              = ( sigma_space_real @ M2 ) )
           => ( ord_le5743406823621094409real_a @ ( sigma_523072396149930112real_a @ M @ N ) @ ( sigma_523072396149930112real_a @ M2 @ N2 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_905_measurable__mono,axiom,
    ! [N2: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal,M: sigma_measure_a,M2: sigma_measure_a] :
      ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ N2 ) @ ( sigma_5465916536984168985nnreal @ N ) )
     => ( ( ( sigma_3147302497200244656nnreal @ N )
          = ( sigma_3147302497200244656nnreal @ N2 ) )
       => ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ M ) @ ( sigma_sets_a @ M2 ) )
         => ( ( ( sigma_space_a @ M )
              = ( sigma_space_a @ M2 ) )
           => ( ord_le1007445205377960487nnreal @ ( sigma_214952329563889126nnreal @ M @ N ) @ ( sigma_214952329563889126nnreal @ M2 @ N2 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_906_measurable__mono,axiom,
    ! [N2: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal,M: sigma_7234349610311085201nnreal,M2: sigma_7234349610311085201nnreal] :
      ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ N2 ) @ ( sigma_5465916536984168985nnreal @ N ) )
     => ( ( ( sigma_3147302497200244656nnreal @ N )
          = ( sigma_3147302497200244656nnreal @ N2 ) )
       => ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ M ) @ ( sigma_5465916536984168985nnreal @ M2 ) )
         => ( ( ( sigma_3147302497200244656nnreal @ M )
              = ( sigma_3147302497200244656nnreal @ M2 ) )
           => ( ord_le2847260637007690789nnreal @ ( sigma_7926153774531450434nnreal @ M @ N ) @ ( sigma_7926153774531450434nnreal @ M2 @ N2 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_907_measurable__mono,axiom,
    ! [N2: sigma_measure_real,N: sigma_measure_real,M: sigma_measure_a,M2: sigma_measure_a] :
      ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ N2 ) @ ( sigma_sets_real @ N ) )
     => ( ( ( sigma_space_real @ N )
          = ( sigma_space_real @ N2 ) )
       => ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ M ) @ ( sigma_sets_a @ M2 ) )
         => ( ( ( sigma_space_a @ M )
              = ( sigma_space_a @ M2 ) )
           => ( ord_le3334967407727675675a_real @ ( sigma_9116425665531756122a_real @ M @ N ) @ ( sigma_9116425665531756122a_real @ M2 @ N2 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_908_measurable__mono,axiom,
    ! [N2: sigma_measure_real,N: sigma_measure_real,M: sigma_7234349610311085201nnreal,M2: sigma_7234349610311085201nnreal] :
      ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ N2 ) @ ( sigma_sets_real @ N ) )
     => ( ( ( sigma_space_real @ N )
          = ( sigma_space_real @ N2 ) )
       => ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ M ) @ ( sigma_5465916536984168985nnreal @ M2 ) )
         => ( ( ( sigma_3147302497200244656nnreal @ M )
              = ( sigma_3147302497200244656nnreal @ M2 ) )
           => ( ord_le2792513217584188441l_real @ ( sigma_7049758200512112822l_real @ M @ N ) @ ( sigma_7049758200512112822l_real @ M2 @ N2 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_909_measurable__mono,axiom,
    ! [N2: sigma_measure_real,N: sigma_measure_real,M: sigma_measure_real,M2: sigma_measure_real] :
      ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ N2 ) @ ( sigma_sets_real @ N ) )
     => ( ( ( sigma_space_real @ N )
          = ( sigma_space_real @ N2 ) )
       => ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ M ) @ ( sigma_sets_real @ M2 ) )
         => ( ( ( sigma_space_real @ M )
              = ( sigma_space_real @ M2 ) )
           => ( ord_le4198349162570665613l_real @ ( sigma_5267869275261027754l_real @ M @ N ) @ ( sigma_5267869275261027754l_real @ M2 @ N2 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_910_measurable__mono,axiom,
    ! [N2: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal,M: sigma_measure_real,M2: sigma_measure_real] :
      ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ N2 ) @ ( sigma_5465916536984168985nnreal @ N ) )
     => ( ( ( sigma_3147302497200244656nnreal @ N )
          = ( sigma_3147302497200244656nnreal @ N2 ) )
       => ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ M ) @ ( sigma_sets_real @ M2 ) )
         => ( ( ( sigma_space_real @ M )
              = ( sigma_space_real @ M2 ) )
           => ( ord_le2462468573666744473nnreal @ ( sigma_9017504469962657078nnreal @ M @ N ) @ ( sigma_9017504469962657078nnreal @ M2 @ N2 ) ) ) ) ) ) ).

% measurable_mono
thf(fact_911_up__ray__def,axiom,
    ( up_ray_a
    = ( ^ [I5: set_a] :
        ! [X3: a,Y3: a] :
          ( ( member_a @ X3 @ I5 )
         => ( ( ord_less_eq_a @ X3 @ Y3 )
           => ( member_a @ Y3 @ I5 ) ) ) ) ) ).

% up_ray_def
thf(fact_912_up__ray__def,axiom,
    ( up_ray4546996785294415186nnreal
    = ( ^ [I5: set_Ex3793607809372303086nnreal] :
        ! [X3: extend8495563244428889912nnreal,Y3: extend8495563244428889912nnreal] :
          ( ( member7908768830364227535nnreal @ X3 @ I5 )
         => ( ( ord_le3935885782089961368nnreal @ X3 @ Y3 )
           => ( member7908768830364227535nnreal @ Y3 @ I5 ) ) ) ) ) ).

% up_ray_def
thf(fact_913_up__ray__def,axiom,
    ( up_ray_real
    = ( ^ [I5: set_real] :
        ! [X3: real,Y3: real] :
          ( ( member_real @ X3 @ I5 )
         => ( ( ord_less_eq_real @ X3 @ Y3 )
           => ( member_real @ Y3 @ I5 ) ) ) ) ) ).

% up_ray_def
thf(fact_914_first__countable__basis__Int__stableE,axiom,
    ! [X2: real] :
      ~ ! [A6: set_set_real] :
          ( ( counta8054315614235329383t_real @ A6 )
         => ( ! [A7: set_real] :
                ( ( member_set_real @ A7 @ A6 )
               => ( member_real @ X2 @ A7 ) )
           => ( ! [A7: set_real] :
                  ( ( member_set_real @ A7 @ A6 )
                 => ( topolo4860482606490270245n_real @ A7 ) )
             => ( ! [S4: set_real] :
                    ( ( topolo4860482606490270245n_real @ S4 )
                   => ( ( member_real @ X2 @ S4 )
                     => ? [X: set_real] :
                          ( ( member_set_real @ X @ A6 )
                          & ( ord_less_eq_set_real @ X @ S4 ) ) ) )
               => ~ ! [A7: set_real] :
                      ( ( member_set_real @ A7 @ A6 )
                     => ! [B7: set_real] :
                          ( ( member_set_real @ B7 @ A6 )
                         => ( member_set_real @ ( inf_inf_set_real @ A7 @ B7 ) @ A6 ) ) ) ) ) ) ) ).

% first_countable_basis_Int_stableE
thf(fact_915_first__countable__basis__Int__stableE,axiom,
    ! [X2: extend8495563244428889912nnreal] :
      ~ ! [A6: set_se4580700918925141924nnreal] :
          ( ( counta2425349316461633011nnreal @ A6 )
         => ( ! [A7: set_Ex3793607809372303086nnreal] :
                ( ( member603777416030116741nnreal @ A7 @ A6 )
               => ( member7908768830364227535nnreal @ X2 @ A7 ) )
           => ( ! [A7: set_Ex3793607809372303086nnreal] :
                  ( ( member603777416030116741nnreal @ A7 @ A6 )
                 => ( topolo1037242508615874353nnreal @ A7 ) )
             => ( ! [S4: set_Ex3793607809372303086nnreal] :
                    ( ( topolo1037242508615874353nnreal @ S4 )
                   => ( ( member7908768830364227535nnreal @ X2 @ S4 )
                     => ? [X: set_Ex3793607809372303086nnreal] :
                          ( ( member603777416030116741nnreal @ X @ A6 )
                          & ( ord_le6787938422905777998nnreal @ X @ S4 ) ) ) )
               => ~ ! [A7: set_Ex3793607809372303086nnreal] :
                      ( ( member603777416030116741nnreal @ A7 @ A6 )
                     => ! [B7: set_Ex3793607809372303086nnreal] :
                          ( ( member603777416030116741nnreal @ B7 @ A6 )
                         => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ A7 @ B7 ) @ A6 ) ) ) ) ) ) ) ).

% first_countable_basis_Int_stableE
thf(fact_916_sets_Osets__into__space,axiom,
    ! [X2: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ X2 @ ( sigma_sets_a @ M ) )
     => ( ord_less_eq_set_a @ X2 @ ( sigma_space_a @ M ) ) ) ).

% sets.sets_into_space
thf(fact_917_sets_Osets__into__space,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ X2 @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ord_le6787938422905777998nnreal @ X2 @ ( sigma_3147302497200244656nnreal @ M ) ) ) ).

% sets.sets_into_space
thf(fact_918_sets_Osets__into__space,axiom,
    ! [X2: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ X2 @ ( sigma_sets_real @ M ) )
     => ( ord_less_eq_set_real @ X2 @ ( sigma_space_real @ M ) ) ) ).

% sets.sets_into_space
thf(fact_919_subset__Diff__insert,axiom,
    ! [A: set_set_a,B2: set_set_a,X2: set_a,C3: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ ( minus_5736297505244876581_set_a @ B2 @ ( insert_set_a @ X2 @ C3 ) ) )
      = ( ( ord_le3724670747650509150_set_a @ A @ ( minus_5736297505244876581_set_a @ B2 @ C3 ) )
        & ~ ( member_set_a @ X2 @ A ) ) ) ).

% subset_Diff_insert
thf(fact_920_subset__Diff__insert,axiom,
    ! [A: set_re5328672808648366137nnreal,B2: set_re5328672808648366137nnreal,X2: real > extend8495563244428889912nnreal,C3: set_re5328672808648366137nnreal] :
      ( ( ord_le2462468573666744473nnreal @ A @ ( minus_3708639258518406418nnreal @ B2 @ ( insert152533262698245683nnreal @ X2 @ C3 ) ) )
      = ( ( ord_le2462468573666744473nnreal @ A @ ( minus_3708639258518406418nnreal @ B2 @ C3 ) )
        & ~ ( member2919562650594848410nnreal @ X2 @ A ) ) ) ).

% subset_Diff_insert
thf(fact_921_subset__Diff__insert,axiom,
    ! [A: set_set_real,B2: set_set_real,X2: set_real,C3: set_set_real] :
      ( ( ord_le3558479182127378552t_real @ A @ ( minus_5467046032205032049t_real @ B2 @ ( insert_set_real @ X2 @ C3 ) ) )
      = ( ( ord_le3558479182127378552t_real @ A @ ( minus_5467046032205032049t_real @ B2 @ C3 ) )
        & ~ ( member_set_real @ X2 @ A ) ) ) ).

% subset_Diff_insert
thf(fact_922_subset__Diff__insert,axiom,
    ! [A: set_se4580700918925141924nnreal,B2: set_se4580700918925141924nnreal,X2: set_Ex3793607809372303086nnreal,C3: set_se4580700918925141924nnreal] :
      ( ( ord_le3366939622266546180nnreal @ A @ ( minus_5908140721592501885nnreal @ B2 @ ( insert1343806209672318238nnreal @ X2 @ C3 ) ) )
      = ( ( ord_le3366939622266546180nnreal @ A @ ( minus_5908140721592501885nnreal @ B2 @ C3 ) )
        & ~ ( member603777416030116741nnreal @ X2 @ A ) ) ) ).

% subset_Diff_insert
thf(fact_923_subset__Compl__self__eq,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( uminus_uminus_set_a @ A ) )
      = ( A = bot_bot_set_a ) ) ).

% subset_Compl_self_eq
thf(fact_924_subset__Compl__self__eq,axiom,
    ! [A: set_Ex3793607809372303086nnreal] :
      ( ( ord_le6787938422905777998nnreal @ A @ ( uminus5517552291522096439nnreal @ A ) )
      = ( A = bot_bo4854962954004695426nnreal ) ) ).

% subset_Compl_self_eq
thf(fact_925_subset__Compl__self__eq,axiom,
    ! [A: set_real] :
      ( ( ord_less_eq_set_real @ A @ ( uminus612125837232591019t_real @ A ) )
      = ( A = bot_bot_set_real ) ) ).

% subset_Compl_self_eq
thf(fact_926_null__sets__subset,axiom,
    ! [B2: set_a,M: sigma_measure_a,A: set_a] :
      ( ( member_set_a @ B2 @ ( measure_null_sets_a @ M ) )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
       => ( ( ord_less_eq_set_a @ A @ B2 )
         => ( member_set_a @ A @ ( measure_null_sets_a @ M ) ) ) ) ) ).

% null_sets_subset
thf(fact_927_null__sets__subset,axiom,
    ! [B2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ B2 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( ( ord_le6787938422905777998nnreal @ A @ B2 )
         => ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ M ) ) ) ) ) ).

% null_sets_subset
thf(fact_928_null__sets__subset,axiom,
    ! [B2: set_real,M: sigma_measure_real,A: set_real] :
      ( ( member_set_real @ B2 @ ( measur3710062792471635001s_real @ M ) )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
       => ( ( ord_less_eq_set_real @ A @ B2 )
         => ( member_set_real @ A @ ( measur3710062792471635001s_real @ M ) ) ) ) ) ).

% null_sets_subset
thf(fact_929_null__sets_Osets__into__space,axiom,
    ! [X2: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ X2 @ ( measure_null_sets_a @ M ) )
     => ( ord_less_eq_set_a @ X2 @ ( sigma_space_a @ M ) ) ) ).

% null_sets.sets_into_space
thf(fact_930_null__sets_Osets__into__space,axiom,
    ! [X2: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ X2 @ ( measur3710062792471635001s_real @ M ) )
     => ( ord_less_eq_set_real @ X2 @ ( sigma_space_real @ M ) ) ) ).

% null_sets.sets_into_space
thf(fact_931_null__sets_Osets__into__space,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ X2 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ord_le6787938422905777998nnreal @ X2 @ ( sigma_3147302497200244656nnreal @ M ) ) ) ).

% null_sets.sets_into_space
thf(fact_932_mono__restrict__space,axiom,
    ! [M: sigma_measure_a,N: sigma_measure_a,X5: set_a] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ M ) @ ( sigma_sets_a @ N ) )
     => ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ M @ X5 ) ) @ ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ N @ X5 ) ) ) ) ).

% mono_restrict_space
thf(fact_933_mono__restrict__space,axiom,
    ! [M: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal,X5: set_Ex3793607809372303086nnreal] :
      ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ M ) @ ( sigma_5465916536984168985nnreal @ N ) )
     => ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ M @ X5 ) ) @ ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ N @ X5 ) ) ) ) ).

% mono_restrict_space
thf(fact_934_mono__restrict__space,axiom,
    ! [M: sigma_measure_real,N: sigma_measure_real,X5: set_real] :
      ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ M ) @ ( sigma_sets_real @ N ) )
     => ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ M @ X5 ) ) @ ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ N @ X5 ) ) ) ) ).

% mono_restrict_space
thf(fact_935_measurable__restrict__mono,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,A: set_real,N: sigma_7234349610311085201nnreal,B2: set_real] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( sigma_5414646170262037096e_real @ M @ A ) @ N ) )
     => ( ( ord_less_eq_set_real @ B2 @ A )
       => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( sigma_5414646170262037096e_real @ M @ B2 ) @ N ) ) ) ) ).

% measurable_restrict_mono
thf(fact_936_completion_Ocomplete2,axiom,
    ! [A: set_a,B2: set_a,M: sigma_measure_a] :
      ( ( ord_less_eq_set_a @ A @ B2 )
     => ( ( member_set_a @ B2 @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
       => ( member_set_a @ A @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ) ).

% completion.complete2
thf(fact_937_completion_Ocomplete2,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( ord_le6787938422905777998nnreal @ A @ B2 )
     => ( ( member603777416030116741nnreal @ B2 @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
       => ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ) ).

% completion.complete2
thf(fact_938_completion_Ocomplete2,axiom,
    ! [A: set_real,B2: set_real,M: sigma_measure_real] :
      ( ( ord_less_eq_set_real @ A @ B2 )
     => ( ( member_set_real @ B2 @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) )
       => ( member_set_real @ A @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ) ).

% completion.complete2
thf(fact_939_null__sets__completion__iff2,axiom,
    ! [A: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ A @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
      = ( ? [X3: set_a] :
            ( ( member_set_a @ X3 @ ( measure_null_sets_a @ M ) )
            & ( ord_less_eq_set_a @ A @ X3 ) ) ) ) ).

% null_sets_completion_iff2
thf(fact_940_null__sets__completion__iff2,axiom,
    ! [A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
      = ( ? [X3: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X3 @ ( measur1209175464439008069nnreal @ M ) )
            & ( ord_le6787938422905777998nnreal @ A @ X3 ) ) ) ) ).

% null_sets_completion_iff2
thf(fact_941_null__sets__completion__iff2,axiom,
    ! [A: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) )
      = ( ? [X3: set_real] :
            ( ( member_set_real @ X3 @ ( measur3710062792471635001s_real @ M ) )
            & ( ord_less_eq_set_real @ A @ X3 ) ) ) ) ).

% null_sets_completion_iff2
thf(fact_942_null__sets__completion__subset,axiom,
    ! [B2: set_a,A: set_a,M: sigma_measure_a] :
      ( ( ord_less_eq_set_a @ B2 @ A )
     => ( ( member_set_a @ A @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
       => ( member_set_a @ B2 @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ) ).

% null_sets_completion_subset
thf(fact_943_null__sets__completion__subset,axiom,
    ! [B2: set_Ex3793607809372303086nnreal,A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( ord_le6787938422905777998nnreal @ B2 @ A )
     => ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
       => ( member603777416030116741nnreal @ B2 @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ) ).

% null_sets_completion_subset
thf(fact_944_null__sets__completion__subset,axiom,
    ! [B2: set_real,A: set_real,M: sigma_measure_real] :
      ( ( ord_less_eq_set_real @ B2 @ A )
     => ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) )
       => ( member_set_real @ B2 @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ) ).

% null_sets_completion_subset
thf(fact_945_down__ray__def,axiom,
    ( down_ray_a
    = ( ^ [I5: set_a] :
        ! [X3: a,Y3: a] :
          ( ( member_a @ Y3 @ I5 )
         => ( ( ord_less_eq_a @ X3 @ Y3 )
           => ( member_a @ X3 @ I5 ) ) ) ) ) ).

% down_ray_def
thf(fact_946_down__ray__def,axiom,
    ( down_ray_real
    = ( ^ [I5: set_real] :
        ! [X3: real,Y3: real] :
          ( ( member_real @ Y3 @ I5 )
         => ( ( ord_less_eq_real @ X3 @ Y3 )
           => ( member_real @ X3 @ I5 ) ) ) ) ) ).

% down_ray_def
thf(fact_947_measurable__sets__borel,axiom,
    ! [F: a > a,M: sigma_measure_a,A: set_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ borel_5459123734250506524orel_a @ M ) )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
       => ( member_set_a @ ( vimage_a_a @ F @ A ) @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ) ) ) ).

% measurable_sets_borel
thf(fact_948_measurable__sets__borel,axiom,
    ! [F: a > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ borel_5459123734250506524orel_a @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member_set_a @ ( vimage1258658873539170235nnreal @ F @ A ) @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ) ) ) ).

% measurable_sets_borel
thf(fact_949_measurable__sets__borel,axiom,
    ! [F: a > real,M: sigma_measure_real,A: set_real] :
      ( ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ borel_5459123734250506524orel_a @ M ) )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
       => ( member_set_a @ ( vimage_a_real @ F @ A ) @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ) ) ) ).

% measurable_sets_borel
thf(fact_950_measurable__sets__borel,axiom,
    ! [F: real > a,M: sigma_measure_a,A: set_a] :
      ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ borel_5078946678739801102l_real @ M ) )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
       => ( member_set_real @ ( vimage_real_a @ F @ A ) @ ( sigma_sets_real @ borel_5078946678739801102l_real ) ) ) ) ).

% measurable_sets_borel
thf(fact_951_measurable__sets__borel,axiom,
    ! [F: real > real,M: sigma_measure_real,A: set_real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ borel_5078946678739801102l_real @ M ) )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
       => ( member_set_real @ ( vimage_real_real @ F @ A ) @ ( sigma_sets_real @ borel_5078946678739801102l_real ) ) ) ) ).

% measurable_sets_borel
thf(fact_952_measurable__sets__borel,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ borel_5078946678739801102l_real @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member_set_real @ ( vimage6366802093293386401nnreal @ F @ A ) @ ( sigma_sets_real @ borel_5078946678739801102l_real ) ) ) ) ).

% measurable_sets_borel
thf(fact_953_measurable__sets__borel,axiom,
    ! [F: extend8495563244428889912nnreal > a,M: sigma_measure_a,A: set_a] :
      ( ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ borel_6524799422816628122nnreal @ M ) )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
       => ( member603777416030116741nnreal @ ( vimage4075187267506941001real_a @ F @ A ) @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) ) ) ) ).

% measurable_sets_borel
thf(fact_954_measurable__sets__borel,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ borel_6524799422816628122nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( vimage3650734033530794285nnreal @ F @ A ) @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) ) ) ) ).

% measurable_sets_borel
thf(fact_955_measurable__sets__borel,axiom,
    ! [F: extend8495563244428889912nnreal > real,M: sigma_measure_real,A: set_real] :
      ( ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ borel_6524799422816628122nnreal @ M ) )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
       => ( member603777416030116741nnreal @ ( vimage4399055823842842145l_real @ F @ A ) @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) ) ) ) ).

% measurable_sets_borel
thf(fact_956_inf__shunt,axiom,
    ! [X2: set_a,Y: set_a] :
      ( ( ( inf_inf_set_a @ X2 @ Y )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ X2 @ ( uminus_uminus_set_a @ Y ) ) ) ).

% inf_shunt
thf(fact_957_inf__shunt,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal] :
      ( ( ( inf_in3368558534146122112nnreal @ X2 @ Y )
        = bot_bo4854962954004695426nnreal )
      = ( ord_le6787938422905777998nnreal @ X2 @ ( uminus5517552291522096439nnreal @ Y ) ) ) ).

% inf_shunt
thf(fact_958_inf__shunt,axiom,
    ! [X2: set_real,Y: set_real] :
      ( ( ( inf_inf_set_real @ X2 @ Y )
        = bot_bot_set_real )
      = ( ord_less_eq_set_real @ X2 @ ( uminus612125837232591019t_real @ Y ) ) ) ).

% inf_shunt
thf(fact_959_subset__insert__iff,axiom,
    ! [A: set_set_a,X2: set_a,B2: set_set_a] :
      ( ( ord_le3724670747650509150_set_a @ A @ ( insert_set_a @ X2 @ B2 ) )
      = ( ( ( member_set_a @ X2 @ A )
         => ( ord_le3724670747650509150_set_a @ ( minus_5736297505244876581_set_a @ A @ ( insert_set_a @ X2 @ bot_bot_set_set_a ) ) @ B2 ) )
        & ( ~ ( member_set_a @ X2 @ A )
         => ( ord_le3724670747650509150_set_a @ A @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_960_subset__insert__iff,axiom,
    ! [A: set_re5328672808648366137nnreal,X2: real > extend8495563244428889912nnreal,B2: set_re5328672808648366137nnreal] :
      ( ( ord_le2462468573666744473nnreal @ A @ ( insert152533262698245683nnreal @ X2 @ B2 ) )
      = ( ( ( member2919562650594848410nnreal @ X2 @ A )
         => ( ord_le2462468573666744473nnreal @ ( minus_3708639258518406418nnreal @ A @ ( insert152533262698245683nnreal @ X2 @ bot_bo6037503491064675021nnreal ) ) @ B2 ) )
        & ( ~ ( member2919562650594848410nnreal @ X2 @ A )
         => ( ord_le2462468573666744473nnreal @ A @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_961_subset__insert__iff,axiom,
    ! [A: set_set_real,X2: set_real,B2: set_set_real] :
      ( ( ord_le3558479182127378552t_real @ A @ ( insert_set_real @ X2 @ B2 ) )
      = ( ( ( member_set_real @ X2 @ A )
         => ( ord_le3558479182127378552t_real @ ( minus_5467046032205032049t_real @ A @ ( insert_set_real @ X2 @ bot_bot_set_set_real ) ) @ B2 ) )
        & ( ~ ( member_set_real @ X2 @ A )
         => ( ord_le3558479182127378552t_real @ A @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_962_subset__insert__iff,axiom,
    ! [A: set_se4580700918925141924nnreal,X2: set_Ex3793607809372303086nnreal,B2: set_se4580700918925141924nnreal] :
      ( ( ord_le3366939622266546180nnreal @ A @ ( insert1343806209672318238nnreal @ X2 @ B2 ) )
      = ( ( ( member603777416030116741nnreal @ X2 @ A )
         => ( ord_le3366939622266546180nnreal @ ( minus_5908140721592501885nnreal @ A @ ( insert1343806209672318238nnreal @ X2 @ bot_bo2988155216863113784nnreal ) ) @ B2 ) )
        & ( ~ ( member603777416030116741nnreal @ X2 @ A )
         => ( ord_le3366939622266546180nnreal @ A @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_963_Ioc__disjoint,axiom,
    ! [A2: real,B: real,C: real,D: real] :
      ( ( ( inf_inf_set_real @ ( set_or2392270231875598684t_real @ A2 @ B ) @ ( set_or2392270231875598684t_real @ C @ D ) )
        = bot_bot_set_real )
      = ( ( ord_less_eq_real @ B @ A2 )
        | ( ord_less_eq_real @ D @ C )
        | ( ord_less_eq_real @ B @ C )
        | ( ord_less_eq_real @ D @ A2 ) ) ) ).

% Ioc_disjoint
thf(fact_964_disjoint__eq__subset__Compl,axiom,
    ! [A: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A @ B2 )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ A @ ( uminus_uminus_set_a @ B2 ) ) ) ).

% disjoint_eq_subset_Compl
thf(fact_965_disjoint__eq__subset__Compl,axiom,
    ! [A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( ( inf_in3368558534146122112nnreal @ A @ B2 )
        = bot_bo4854962954004695426nnreal )
      = ( ord_le6787938422905777998nnreal @ A @ ( uminus5517552291522096439nnreal @ B2 ) ) ) ).

% disjoint_eq_subset_Compl
thf(fact_966_disjoint__eq__subset__Compl,axiom,
    ! [A: set_real,B2: set_real] :
      ( ( ( inf_inf_set_real @ A @ B2 )
        = bot_bot_set_real )
      = ( ord_less_eq_set_real @ A @ ( uminus612125837232591019t_real @ B2 ) ) ) ).

% disjoint_eq_subset_Compl
thf(fact_967_completion_Ocomplete,axiom,
    ! [B2: set_a,A: set_a,M: sigma_measure_a] :
      ( ( ord_less_eq_set_a @ B2 @ A )
     => ( ( member_set_a @ A @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
       => ( member_set_a @ B2 @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ) ).

% completion.complete
thf(fact_968_completion_Ocomplete,axiom,
    ! [B2: set_Ex3793607809372303086nnreal,A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( ord_le6787938422905777998nnreal @ B2 @ A )
     => ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
       => ( member603777416030116741nnreal @ B2 @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ) ).

% completion.complete
thf(fact_969_completion_Ocomplete,axiom,
    ! [B2: set_real,A: set_real,M: sigma_measure_real] :
      ( ( ord_less_eq_set_real @ B2 @ A )
     => ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) )
       => ( member_set_real @ B2 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ) ).

% completion.complete
thf(fact_970_sets__completionI__sub,axiom,
    ! [N2: set_a,M: sigma_measure_a,N: set_a] :
      ( ( member_set_a @ N2 @ ( measure_null_sets_a @ M ) )
     => ( ( ord_less_eq_set_a @ N @ N2 )
       => ( member_set_a @ N @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ) ).

% sets_completionI_sub
thf(fact_971_sets__completionI__sub,axiom,
    ! [N2: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,N: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ N2 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( ord_le6787938422905777998nnreal @ N @ N2 )
       => ( member603777416030116741nnreal @ N @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ) ).

% sets_completionI_sub
thf(fact_972_sets__completionI__sub,axiom,
    ! [N2: set_real,M: sigma_measure_real,N: set_real] :
      ( ( member_set_real @ N2 @ ( measur3710062792471635001s_real @ M ) )
     => ( ( ord_less_eq_set_real @ N @ N2 )
       => ( member_set_real @ N @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ) ).

% sets_completionI_sub
thf(fact_973_sets__restrict__space__subset,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
     => ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ ( comple3428971583294703880tion_a @ M ) @ S3 ) ) @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ).

% sets_restrict_space_subset
thf(fact_974_sets__restrict__space__subset,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
     => ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ ( comple6668017395272084142nnreal @ M ) @ S3 ) ) @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ).

% sets_restrict_space_subset
thf(fact_975_sets__restrict__space__subset,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) )
     => ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ ( comple3506806835435775778n_real @ M ) @ S3 ) ) @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ).

% sets_restrict_space_subset
thf(fact_976_null__sets__restrict__space,axiom,
    ! [Omega: set_a,M: sigma_measure_a,A: set_a] :
      ( ( member_set_a @ Omega @ ( sigma_sets_a @ M ) )
     => ( ( member_set_a @ A @ ( measure_null_sets_a @ ( sigma_8692839461743104066pace_a @ M @ Omega ) ) )
        = ( ( ord_less_eq_set_a @ A @ Omega )
          & ( member_set_a @ A @ ( measure_null_sets_a @ M ) ) ) ) ) ).

% null_sets_restrict_space
thf(fact_977_null__sets__restrict__space,axiom,
    ! [Omega: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ Omega @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ ( sigma_4884701650823297268nnreal @ M @ Omega ) ) )
        = ( ( ord_le6787938422905777998nnreal @ A @ Omega )
          & ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ M ) ) ) ) ) ).

% null_sets_restrict_space
thf(fact_978_null__sets__restrict__space,axiom,
    ! [Omega: set_real,M: sigma_measure_real,A: set_real] :
      ( ( member_set_real @ Omega @ ( sigma_sets_real @ M ) )
     => ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ ( sigma_5414646170262037096e_real @ M @ Omega ) ) )
        = ( ( ord_less_eq_set_real @ A @ Omega )
          & ( member_set_real @ A @ ( measur3710062792471635001s_real @ M ) ) ) ) ) ).

% null_sets_restrict_space
thf(fact_979_measurable__sets,axiom,
    ! [F: a > a,M: sigma_measure_a,A: sigma_measure_a,S3: set_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M @ A ) )
     => ( ( member_set_a @ S3 @ ( sigma_sets_a @ A ) )
       => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ S3 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ) ).

% measurable_sets
thf(fact_980_measurable__sets,axiom,
    ! [F: extend8495563244428889912nnreal > a,M: sigma_7234349610311085201nnreal,A: sigma_measure_a,S3: set_a] :
      ( ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ M @ A ) )
     => ( ( member_set_a @ S3 @ ( sigma_sets_a @ A ) )
       => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ S3 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ).

% measurable_sets
thf(fact_981_measurable__sets,axiom,
    ! [F: real > a,M: sigma_measure_real,A: sigma_measure_a,S3: set_a] :
      ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ A ) )
     => ( ( member_set_a @ S3 @ ( sigma_sets_a @ A ) )
       => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ S3 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ) ).

% measurable_sets
thf(fact_982_measurable__sets,axiom,
    ! [F: a > extend8495563244428889912nnreal,M: sigma_measure_a,A: sigma_7234349610311085201nnreal,S3: set_Ex3793607809372303086nnreal] :
      ( ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ M @ A ) )
     => ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ A ) )
       => ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ S3 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ) ).

% measurable_sets
thf(fact_983_measurable__sets,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal,A: sigma_7234349610311085201nnreal,S3: set_Ex3793607809372303086nnreal] :
      ( ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ M @ A ) )
     => ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ A ) )
       => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ S3 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ).

% measurable_sets
thf(fact_984_measurable__sets,axiom,
    ! [F: a > real,M: sigma_measure_a,A: sigma_measure_real,S3: set_real] :
      ( ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ M @ A ) )
     => ( ( member_set_real @ S3 @ ( sigma_sets_real @ A ) )
       => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ S3 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ) ).

% measurable_sets
thf(fact_985_measurable__sets,axiom,
    ! [F: extend8495563244428889912nnreal > real,M: sigma_7234349610311085201nnreal,A: sigma_measure_real,S3: set_real] :
      ( ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ M @ A ) )
     => ( ( member_set_real @ S3 @ ( sigma_sets_real @ A ) )
       => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ S3 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ).

% measurable_sets
thf(fact_986_measurable__sets,axiom,
    ! [F: real > real,M: sigma_measure_real,A: sigma_measure_real,S3: set_real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ A ) )
     => ( ( member_set_real @ S3 @ ( sigma_sets_real @ A ) )
       => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ S3 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ) ).

% measurable_sets
thf(fact_987_measurable__sets,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,A: sigma_7234349610311085201nnreal,S3: set_Ex3793607809372303086nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ A ) )
     => ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ A ) )
       => ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ S3 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ) ).

% measurable_sets
thf(fact_988_measurableI,axiom,
    ! [M: sigma_measure_a,F: a > a,N: sigma_measure_a] :
      ( ! [X: a] :
          ( ( member_a @ X @ ( sigma_space_a @ M ) )
         => ( member_a @ ( F @ X ) @ ( sigma_space_a @ N ) ) )
     => ( ! [A9: set_a] :
            ( ( member_set_a @ A9 @ ( sigma_sets_a @ N ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ A9 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) )
       => ( member_a_a @ F @ ( sigma_measurable_a_a @ M @ N ) ) ) ) ).

% measurableI
thf(fact_989_measurableI,axiom,
    ! [M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > a,N: sigma_measure_a] :
      ( ! [X: extend8495563244428889912nnreal] :
          ( ( member7908768830364227535nnreal @ X @ ( sigma_3147302497200244656nnreal @ M ) )
         => ( member_a @ ( F @ X ) @ ( sigma_space_a @ N ) ) )
     => ( ! [A9: set_a] :
            ( ( member_set_a @ A9 @ ( sigma_sets_a @ N ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ A9 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
       => ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ M @ N ) ) ) ) ).

% measurableI
thf(fact_990_measurableI,axiom,
    ! [M: sigma_measure_real,F: real > a,N: sigma_measure_a] :
      ( ! [X: real] :
          ( ( member_real @ X @ ( sigma_space_real @ M ) )
         => ( member_a @ ( F @ X ) @ ( sigma_space_a @ N ) ) )
     => ( ! [A9: set_a] :
            ( ( member_set_a @ A9 @ ( sigma_sets_a @ N ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ A9 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) )
       => ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ N ) ) ) ) ).

% measurableI
thf(fact_991_measurableI,axiom,
    ! [M: sigma_measure_a,F: a > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal] :
      ( ! [X: a] :
          ( ( member_a @ X @ ( sigma_space_a @ M ) )
         => ( member7908768830364227535nnreal @ ( F @ X ) @ ( sigma_3147302497200244656nnreal @ N ) ) )
     => ( ! [A9: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ A9 @ ( sigma_5465916536984168985nnreal @ N ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ A9 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) )
       => ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ M @ N ) ) ) ) ).

% measurableI
thf(fact_992_measurableI,axiom,
    ! [M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal] :
      ( ! [X: extend8495563244428889912nnreal] :
          ( ( member7908768830364227535nnreal @ X @ ( sigma_3147302497200244656nnreal @ M ) )
         => ( member7908768830364227535nnreal @ ( F @ X ) @ ( sigma_3147302497200244656nnreal @ N ) ) )
     => ( ! [A9: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ A9 @ ( sigma_5465916536984168985nnreal @ N ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ A9 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
       => ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ M @ N ) ) ) ) ).

% measurableI
thf(fact_993_measurableI,axiom,
    ! [M: sigma_measure_a,F: a > real,N: sigma_measure_real] :
      ( ! [X: a] :
          ( ( member_a @ X @ ( sigma_space_a @ M ) )
         => ( member_real @ ( F @ X ) @ ( sigma_space_real @ N ) ) )
     => ( ! [A9: set_real] :
            ( ( member_set_real @ A9 @ ( sigma_sets_real @ N ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ A9 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) )
       => ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ M @ N ) ) ) ) ).

% measurableI
thf(fact_994_measurableI,axiom,
    ! [M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > real,N: sigma_measure_real] :
      ( ! [X: extend8495563244428889912nnreal] :
          ( ( member7908768830364227535nnreal @ X @ ( sigma_3147302497200244656nnreal @ M ) )
         => ( member_real @ ( F @ X ) @ ( sigma_space_real @ N ) ) )
     => ( ! [A9: set_real] :
            ( ( member_set_real @ A9 @ ( sigma_sets_real @ N ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ A9 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
       => ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ M @ N ) ) ) ) ).

% measurableI
thf(fact_995_measurableI,axiom,
    ! [M: sigma_measure_real,F: real > real,N: sigma_measure_real] :
      ( ! [X: real] :
          ( ( member_real @ X @ ( sigma_space_real @ M ) )
         => ( member_real @ ( F @ X ) @ ( sigma_space_real @ N ) ) )
     => ( ! [A9: set_real] :
            ( ( member_set_real @ A9 @ ( sigma_sets_real @ N ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ A9 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) )
       => ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ N ) ) ) ) ).

% measurableI
thf(fact_996_measurableI,axiom,
    ! [M: sigma_measure_real,F: real > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal] :
      ( ! [X: real] :
          ( ( member_real @ X @ ( sigma_space_real @ M ) )
         => ( member7908768830364227535nnreal @ ( F @ X ) @ ( sigma_3147302497200244656nnreal @ N ) ) )
     => ( ! [A9: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ A9 @ ( sigma_5465916536984168985nnreal @ N ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ A9 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) )
       => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) ) ) ) ).

% measurableI
thf(fact_997_measurableI,axiom,
    ! [M: sigma_measure_a,F: a > set_a,N: sigma_measure_set_a] :
      ( ! [X: a] :
          ( ( member_a @ X @ ( sigma_space_a @ M ) )
         => ( member_set_a @ ( F @ X ) @ ( sigma_space_set_a @ N ) ) )
     => ( ! [A9: set_set_a] :
            ( ( member_set_set_a @ A9 @ ( sigma_sets_set_a @ N ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_set_a @ F @ A9 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) )
       => ( member_a_set_a @ F @ ( sigma_3685133166752798000_set_a @ M @ N ) ) ) ) ).

% measurableI
thf(fact_998_vimage__sets__compl__iff,axiom,
    ! [F: a > a,A: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ A ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) )
      = ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ ( uminus_uminus_set_a @ A ) ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ).

% vimage_sets_compl_iff
thf(fact_999_vimage__sets__compl__iff,axiom,
    ! [F: extend8495563244428889912nnreal > a,A: set_a,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ A ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) )
      = ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ ( uminus_uminus_set_a @ A ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% vimage_sets_compl_iff
thf(fact_1000_vimage__sets__compl__iff,axiom,
    ! [F: real > a,A: set_a,M: sigma_measure_real] :
      ( ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ A ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) )
      = ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ ( uminus_uminus_set_a @ A ) ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ).

% vimage_sets_compl_iff
thf(fact_1001_vimage__sets__compl__iff,axiom,
    ! [F: a > extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,M: sigma_measure_a] :
      ( ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ A ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) )
      = ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ ( uminus5517552291522096439nnreal @ A ) ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ).

% vimage_sets_compl_iff
thf(fact_1002_vimage__sets__compl__iff,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ A ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) )
      = ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ ( uminus5517552291522096439nnreal @ A ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% vimage_sets_compl_iff
thf(fact_1003_vimage__sets__compl__iff,axiom,
    ! [F: real > extend8495563244428889912nnreal,A: set_Ex3793607809372303086nnreal,M: sigma_measure_real] :
      ( ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ A ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) )
      = ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ ( uminus5517552291522096439nnreal @ A ) ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ).

% vimage_sets_compl_iff
thf(fact_1004_vimage__sets__compl__iff,axiom,
    ! [F: a > real,A: set_real,M: sigma_measure_a] :
      ( ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ A ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) )
      = ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ ( uminus612125837232591019t_real @ A ) ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ).

% vimage_sets_compl_iff
thf(fact_1005_vimage__sets__compl__iff,axiom,
    ! [F: extend8495563244428889912nnreal > real,A: set_real,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ A ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) )
      = ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ ( uminus612125837232591019t_real @ A ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% vimage_sets_compl_iff
thf(fact_1006_vimage__sets__compl__iff,axiom,
    ! [F: real > real,A: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ A ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) )
      = ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ ( uminus612125837232591019t_real @ A ) ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ).

% vimage_sets_compl_iff
thf(fact_1007_borel__measurable__subalgebra,axiom,
    ! [N: sigma_measure_a,M: sigma_measure_a,F: a > a] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ N ) @ ( sigma_sets_a @ M ) )
     => ( ( ( sigma_space_a @ N )
          = ( sigma_space_a @ M ) )
       => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ N @ borel_5459123734250506524orel_a ) )
         => ( member_a_a @ F @ ( sigma_measurable_a_a @ M @ borel_5459123734250506524orel_a ) ) ) ) ) ).

% borel_measurable_subalgebra
thf(fact_1008_borel__measurable__subalgebra,axiom,
    ! [N: sigma_7234349610311085201nnreal,M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > a] :
      ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ N ) @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( ( sigma_3147302497200244656nnreal @ N )
          = ( sigma_3147302497200244656nnreal @ M ) )
       => ( ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ N @ borel_5459123734250506524orel_a ) )
         => ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ M @ borel_5459123734250506524orel_a ) ) ) ) ) ).

% borel_measurable_subalgebra
thf(fact_1009_borel__measurable__subalgebra,axiom,
    ! [N: sigma_measure_real,M: sigma_measure_real,F: real > a] :
      ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ N ) @ ( sigma_sets_real @ M ) )
     => ( ( ( sigma_space_real @ N )
          = ( sigma_space_real @ M ) )
       => ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ N @ borel_5459123734250506524orel_a ) )
         => ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ borel_5459123734250506524orel_a ) ) ) ) ) ).

% borel_measurable_subalgebra
thf(fact_1010_borel__measurable__subalgebra,axiom,
    ! [N: sigma_measure_a,M: sigma_measure_a,F: a > real] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ N ) @ ( sigma_sets_a @ M ) )
     => ( ( ( sigma_space_a @ N )
          = ( sigma_space_a @ M ) )
       => ( ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ N @ borel_5078946678739801102l_real ) )
         => ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ M @ borel_5078946678739801102l_real ) ) ) ) ) ).

% borel_measurable_subalgebra
thf(fact_1011_borel__measurable__subalgebra,axiom,
    ! [N: sigma_7234349610311085201nnreal,M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > real] :
      ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ N ) @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( ( sigma_3147302497200244656nnreal @ N )
          = ( sigma_3147302497200244656nnreal @ M ) )
       => ( ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ N @ borel_5078946678739801102l_real ) )
         => ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ M @ borel_5078946678739801102l_real ) ) ) ) ) ).

% borel_measurable_subalgebra
thf(fact_1012_borel__measurable__subalgebra,axiom,
    ! [N: sigma_measure_real,M: sigma_measure_real,F: real > real] :
      ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ N ) @ ( sigma_sets_real @ M ) )
     => ( ( ( sigma_space_real @ N )
          = ( sigma_space_real @ M ) )
       => ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ N @ borel_5078946678739801102l_real ) )
         => ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ borel_5078946678739801102l_real ) ) ) ) ) ).

% borel_measurable_subalgebra
thf(fact_1013_borel__measurable__subalgebra,axiom,
    ! [N: sigma_measure_a,M: sigma_measure_a,F: a > extend8495563244428889912nnreal] :
      ( ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ N ) @ ( sigma_sets_a @ M ) )
     => ( ( ( sigma_space_a @ N )
          = ( sigma_space_a @ M ) )
       => ( ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ N @ borel_6524799422816628122nnreal ) )
         => ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ M @ borel_6524799422816628122nnreal ) ) ) ) ) ).

% borel_measurable_subalgebra
thf(fact_1014_borel__measurable__subalgebra,axiom,
    ! [N: sigma_7234349610311085201nnreal,M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > extend8495563244428889912nnreal] :
      ( ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ N ) @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( ( sigma_3147302497200244656nnreal @ N )
          = ( sigma_3147302497200244656nnreal @ M ) )
       => ( ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ N @ borel_6524799422816628122nnreal ) )
         => ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ M @ borel_6524799422816628122nnreal ) ) ) ) ) ).

% borel_measurable_subalgebra
thf(fact_1015_borel__measurable__subalgebra,axiom,
    ! [N: sigma_measure_real,M: sigma_measure_real,F: real > extend8495563244428889912nnreal] :
      ( ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ N ) @ ( sigma_sets_real @ M ) )
     => ( ( ( sigma_space_real @ N )
          = ( sigma_space_real @ M ) )
       => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ N @ borel_6524799422816628122nnreal ) )
         => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ borel_6524799422816628122nnreal ) ) ) ) ) ).

% borel_measurable_subalgebra
thf(fact_1016_sets__restrict__space__iff,axiom,
    ! [Omega: set_a,M: sigma_measure_a,A: set_a] :
      ( ( member_set_a @ ( inf_inf_set_a @ Omega @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ ( sigma_8692839461743104066pace_a @ M @ Omega ) ) )
        = ( ( ord_less_eq_set_a @ A @ Omega )
          & ( member_set_a @ A @ ( sigma_sets_a @ M ) ) ) ) ) ).

% sets_restrict_space_iff
thf(fact_1017_sets__restrict__space__iff,axiom,
    ! [Omega: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ Omega @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( sigma_4884701650823297268nnreal @ M @ Omega ) ) )
        = ( ( ord_le6787938422905777998nnreal @ A @ Omega )
          & ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ) ).

% sets_restrict_space_iff
thf(fact_1018_sets__restrict__space__iff,axiom,
    ! [Omega: set_real,M: sigma_measure_real,A: set_real] :
      ( ( member_set_real @ ( inf_inf_set_real @ Omega @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ ( sigma_5414646170262037096e_real @ M @ Omega ) ) )
        = ( ( ord_less_eq_set_real @ A @ Omega )
          & ( member_set_real @ A @ ( sigma_sets_real @ M ) ) ) ) ) ).

% sets_restrict_space_iff
thf(fact_1019_in__borel__measurable__borel,axiom,
    ! [F: a > a,M: sigma_measure_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M @ borel_5459123734250506524orel_a ) )
      = ( ! [X3: set_a] :
            ( ( member_set_a @ X3 @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ X3 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ) ) ).

% in_borel_measurable_borel
thf(fact_1020_in__borel__measurable__borel,axiom,
    ! [F: extend8495563244428889912nnreal > a,M: sigma_7234349610311085201nnreal] :
      ( ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ M @ borel_5459123734250506524orel_a ) )
      = ( ! [X3: set_a] :
            ( ( member_set_a @ X3 @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ X3 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ) ).

% in_borel_measurable_borel
thf(fact_1021_in__borel__measurable__borel,axiom,
    ! [F: real > a,M: sigma_measure_real] :
      ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ borel_5459123734250506524orel_a ) )
      = ( ! [X3: set_a] :
            ( ( member_set_a @ X3 @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ X3 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ) ) ).

% in_borel_measurable_borel
thf(fact_1022_in__borel__measurable__borel,axiom,
    ! [F: a > real,M: sigma_measure_a] :
      ( ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ M @ borel_5078946678739801102l_real ) )
      = ( ! [X3: set_real] :
            ( ( member_set_real @ X3 @ ( sigma_sets_real @ borel_5078946678739801102l_real ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ X3 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ) ) ).

% in_borel_measurable_borel
thf(fact_1023_in__borel__measurable__borel,axiom,
    ! [F: extend8495563244428889912nnreal > real,M: sigma_7234349610311085201nnreal] :
      ( ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ M @ borel_5078946678739801102l_real ) )
      = ( ! [X3: set_real] :
            ( ( member_set_real @ X3 @ ( sigma_sets_real @ borel_5078946678739801102l_real ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ X3 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ) ).

% in_borel_measurable_borel
thf(fact_1024_in__borel__measurable__borel,axiom,
    ! [F: real > real,M: sigma_measure_real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ borel_5078946678739801102l_real ) )
      = ( ! [X3: set_real] :
            ( ( member_set_real @ X3 @ ( sigma_sets_real @ borel_5078946678739801102l_real ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ X3 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ) ) ).

% in_borel_measurable_borel
thf(fact_1025_in__borel__measurable__borel,axiom,
    ! [F: a > extend8495563244428889912nnreal,M: sigma_measure_a] :
      ( ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ M @ borel_6524799422816628122nnreal ) )
      = ( ! [X3: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X3 @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ X3 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ) ) ).

% in_borel_measurable_borel
thf(fact_1026_in__borel__measurable__borel,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ M @ borel_6524799422816628122nnreal ) )
      = ( ! [X3: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X3 @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ X3 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ) ).

% in_borel_measurable_borel
thf(fact_1027_in__borel__measurable__borel,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ borel_6524799422816628122nnreal ) )
      = ( ! [X3: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X3 @ ( sigma_5465916536984168985nnreal @ borel_6524799422816628122nnreal ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ X3 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ) ) ).

% in_borel_measurable_borel
thf(fact_1028_null__part,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
     => ? [N3: set_a] :
          ( ( member_set_a @ N3 @ ( measure_null_sets_a @ M ) )
          & ( ord_less_eq_set_a @ ( complete_null_part_a @ M @ S3 ) @ N3 ) ) ) ).

% null_part
thf(fact_1029_null__part,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
     => ? [N3: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ N3 @ ( measur1209175464439008069nnreal @ M ) )
          & ( ord_le6787938422905777998nnreal @ ( comple6358047150840085292nnreal @ M @ S3 ) @ N3 ) ) ) ).

% null_part
thf(fact_1030_null__part,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) )
     => ? [N3: set_real] :
          ( ( member_set_real @ N3 @ ( measur3710062792471635001s_real @ M ) )
          & ( ord_less_eq_set_real @ ( comple4917500974405109920t_real @ M @ S3 ) @ N3 ) ) ) ).

% null_part
thf(fact_1031_borel__measurableI,axiom,
    ! [F: a > a,M: sigma_measure_a] :
      ( ! [S5: set_a] :
          ( ( topolo8477419352202985285open_a @ S5 )
         => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ S5 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) )
     => ( member_a_a @ F @ ( sigma_measurable_a_a @ M @ borel_5459123734250506524orel_a ) ) ) ).

% borel_measurableI
thf(fact_1032_borel__measurableI,axiom,
    ! [F: extend8495563244428889912nnreal > a,M: sigma_7234349610311085201nnreal] :
      ( ! [S5: set_a] :
          ( ( topolo8477419352202985285open_a @ S5 )
         => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ S5 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
     => ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ M @ borel_5459123734250506524orel_a ) ) ) ).

% borel_measurableI
thf(fact_1033_borel__measurableI,axiom,
    ! [F: real > a,M: sigma_measure_real] :
      ( ! [S5: set_a] :
          ( ( topolo8477419352202985285open_a @ S5 )
         => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ S5 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) )
     => ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ borel_5459123734250506524orel_a ) ) ) ).

% borel_measurableI
thf(fact_1034_borel__measurableI,axiom,
    ! [F: a > real,M: sigma_measure_a] :
      ( ! [S5: set_real] :
          ( ( topolo4860482606490270245n_real @ S5 )
         => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ S5 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) )
     => ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ M @ borel_5078946678739801102l_real ) ) ) ).

% borel_measurableI
thf(fact_1035_borel__measurableI,axiom,
    ! [F: extend8495563244428889912nnreal > real,M: sigma_7234349610311085201nnreal] :
      ( ! [S5: set_real] :
          ( ( topolo4860482606490270245n_real @ S5 )
         => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ S5 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
     => ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ M @ borel_5078946678739801102l_real ) ) ) ).

% borel_measurableI
thf(fact_1036_borel__measurableI,axiom,
    ! [F: real > real,M: sigma_measure_real] :
      ( ! [S5: set_real] :
          ( ( topolo4860482606490270245n_real @ S5 )
         => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ S5 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) )
     => ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ borel_5078946678739801102l_real ) ) ) ).

% borel_measurableI
thf(fact_1037_borel__measurableI,axiom,
    ! [F: a > extend8495563244428889912nnreal,M: sigma_measure_a] :
      ( ! [S5: set_Ex3793607809372303086nnreal] :
          ( ( topolo1037242508615874353nnreal @ S5 )
         => ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ S5 ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) )
     => ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ M @ borel_6524799422816628122nnreal ) ) ) ).

% borel_measurableI
thf(fact_1038_borel__measurableI,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal] :
      ( ! [S5: set_Ex3793607809372303086nnreal] :
          ( ( topolo1037242508615874353nnreal @ S5 )
         => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ S5 ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) )
     => ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ M @ borel_6524799422816628122nnreal ) ) ) ).

% borel_measurableI
thf(fact_1039_borel__measurableI,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real] :
      ( ! [S5: set_Ex3793607809372303086nnreal] :
          ( ( topolo1037242508615874353nnreal @ S5 )
         => ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ S5 ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) )
     => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ borel_6524799422816628122nnreal ) ) ) ).

% borel_measurableI
thf(fact_1040_increasingD,axiom,
    ! [M: set_set_a,F: set_a > real,X2: set_a,Y: set_a] :
      ( ( measur1776380161843274167a_real @ M @ F )
     => ( ( ord_less_eq_set_a @ X2 @ Y )
       => ( ( member_set_a @ X2 @ M )
         => ( ( member_set_a @ Y @ M )
           => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) ) ) ) ) ).

% increasingD
thf(fact_1041_increasingD,axiom,
    ! [M: set_set_real,F: set_real > real,X2: set_real,Y: set_real] :
      ( ( measur4480787322886042509l_real @ M @ F )
     => ( ( ord_less_eq_set_real @ X2 @ Y )
       => ( ( member_set_real @ X2 @ M )
         => ( ( member_set_real @ Y @ M )
           => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) ) ) ) ) ).

% increasingD
thf(fact_1042_increasingD,axiom,
    ! [M: set_se4580700918925141924nnreal,F: set_Ex3793607809372303086nnreal > real,X2: set_Ex3793607809372303086nnreal,Y: set_Ex3793607809372303086nnreal] :
      ( ( measur2890506508110839833l_real @ M @ F )
     => ( ( ord_le6787938422905777998nnreal @ X2 @ Y )
       => ( ( member603777416030116741nnreal @ X2 @ M )
         => ( ( member603777416030116741nnreal @ Y @ M )
           => ( ord_less_eq_real @ ( F @ X2 ) @ ( F @ Y ) ) ) ) ) ) ).

% increasingD
thf(fact_1043_interval__def,axiom,
    ( interval_real
    = ( ^ [I5: set_real] :
        ! [X3: real,Y3: real,Z2: real] :
          ( ( member_real @ X3 @ I5 )
         => ( ( member_real @ Z2 @ I5 )
           => ( ( ord_less_eq_real @ X3 @ Y3 )
             => ( ( ord_less_eq_real @ Y3 @ Z2 )
               => ( member_real @ Y3 @ I5 ) ) ) ) ) ) ) ).

% interval_def
thf(fact_1044_completion_Ovimage__null__part__null__sets,axiom,
    ! [F: a > a,M: sigma_measure_a,N: sigma_measure_a,A: set_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ ( comple3428971583294703880tion_a @ M ) @ N ) )
     => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measure_distr_a_a @ ( comple3428971583294703880tion_a @ M ) @ N @ F ) ) )
       => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
         => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_space_a @ ( comple3428971583294703880tion_a @ M ) ) ) @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_null_sets
thf(fact_1045_completion_Ovimage__null__part__null__sets,axiom,
    ! [F: extend8495563244428889912nnreal > a,M: sigma_7234349610311085201nnreal,N: sigma_measure_a,A: set_a] :
      ( ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ ( comple6668017395272084142nnreal @ M ) @ N ) )
     => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measur7655964997769656268real_a @ ( comple6668017395272084142nnreal @ M ) @ N @ F ) ) )
       => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
         => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_null_sets
thf(fact_1046_completion_Ovimage__null__part__null__sets,axiom,
    ! [F: a > extend8495563244428889912nnreal,M: sigma_measure_a,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ ( comple3428971583294703880tion_a @ M ) @ N ) )
     => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur4839436603801885502nnreal @ ( comple3428971583294703880tion_a @ M ) @ N @ F ) ) )
       => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
         => ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_space_a @ ( comple3428971583294703880tion_a @ M ) ) ) @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_null_sets
thf(fact_1047_completion_Ovimage__null__part__null__sets,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ ( comple6668017395272084142nnreal @ M ) @ N ) )
     => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur2549461466288632554nnreal @ ( comple6668017395272084142nnreal @ M ) @ N @ F ) ) )
       => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
         => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_null_sets
thf(fact_1048_completion_Ovimage__null__part__null__sets,axiom,
    ! [F: a > real,M: sigma_measure_a,N: sigma_measure_real,A: set_real] :
      ( ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ ( comple3428971583294703880tion_a @ M ) @ N ) )
     => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measure_distr_a_real @ ( comple3428971583294703880tion_a @ M ) @ N @ F ) ) )
       => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
         => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_space_a @ ( comple3428971583294703880tion_a @ M ) ) ) @ ( measure_null_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_null_sets
thf(fact_1049_completion_Ovimage__null__part__null__sets,axiom,
    ! [F: extend8495563244428889912nnreal > real,M: sigma_7234349610311085201nnreal,N: sigma_measure_real,A: set_real] :
      ( ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ ( comple6668017395272084142nnreal @ M ) @ N ) )
     => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measur6862244029252366686l_real @ ( comple6668017395272084142nnreal @ M ) @ N @ F ) ) )
       => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
         => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) @ ( measur1209175464439008069nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_null_sets
thf(fact_1050_completion_Ovimage__null__part__null__sets,axiom,
    ! [F: real > a,M: sigma_measure_real,N: sigma_measure_a,A: set_a] :
      ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ ( comple3506806835435775778n_real @ M ) @ N ) )
     => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measure_distr_real_a @ ( comple3506806835435775778n_real @ M ) @ N @ F ) ) )
       => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
         => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_space_real @ ( comple3506806835435775778n_real @ M ) ) ) @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_null_sets
thf(fact_1051_completion_Ovimage__null__part__null__sets,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( comple3506806835435775778n_real @ M ) @ N ) )
     => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur8829990298702910942nnreal @ ( comple3506806835435775778n_real @ M ) @ N @ F ) ) )
       => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
         => ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_space_real @ ( comple3506806835435775778n_real @ M ) ) ) @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_null_sets
thf(fact_1052_completion_Ovimage__null__part__null__sets,axiom,
    ! [F: real > real,M: sigma_measure_real,N: sigma_measure_real,A: set_real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ M ) @ N ) )
     => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measur2993149975067245138l_real @ ( comple3506806835435775778n_real @ M ) @ N @ F ) ) )
       => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
         => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_space_real @ ( comple3506806835435775778n_real @ M ) ) ) @ ( measur3710062792471635001s_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_null_sets
thf(fact_1053_completion_Ovimage__null__part__sets,axiom,
    ! [F: a > a,M: sigma_measure_a,N: sigma_measure_a,A: set_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ ( comple3428971583294703880tion_a @ M ) @ N ) )
     => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measure_distr_a_a @ ( comple3428971583294703880tion_a @ M ) @ N @ F ) ) )
       => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
         => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_space_a @ ( comple3428971583294703880tion_a @ M ) ) ) @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_sets
thf(fact_1054_completion_Ovimage__null__part__sets,axiom,
    ! [F: extend8495563244428889912nnreal > a,M: sigma_7234349610311085201nnreal,N: sigma_measure_a,A: set_a] :
      ( ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ ( comple6668017395272084142nnreal @ M ) @ N ) )
     => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measur7655964997769656268real_a @ ( comple6668017395272084142nnreal @ M ) @ N @ F ) ) )
       => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
         => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_sets
thf(fact_1055_completion_Ovimage__null__part__sets,axiom,
    ! [F: a > extend8495563244428889912nnreal,M: sigma_measure_a,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ ( comple3428971583294703880tion_a @ M ) @ N ) )
     => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur4839436603801885502nnreal @ ( comple3428971583294703880tion_a @ M ) @ N @ F ) ) )
       => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
         => ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_space_a @ ( comple3428971583294703880tion_a @ M ) ) ) @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_sets
thf(fact_1056_completion_Ovimage__null__part__sets,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ ( comple6668017395272084142nnreal @ M ) @ N ) )
     => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur2549461466288632554nnreal @ ( comple6668017395272084142nnreal @ M ) @ N @ F ) ) )
       => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
         => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_sets
thf(fact_1057_completion_Ovimage__null__part__sets,axiom,
    ! [F: a > real,M: sigma_measure_a,N: sigma_measure_real,A: set_real] :
      ( ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ ( comple3428971583294703880tion_a @ M ) @ N ) )
     => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measure_distr_a_real @ ( comple3428971583294703880tion_a @ M ) @ N @ F ) ) )
       => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
         => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_space_a @ ( comple3428971583294703880tion_a @ M ) ) ) @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_sets
thf(fact_1058_completion_Ovimage__null__part__sets,axiom,
    ! [F: extend8495563244428889912nnreal > real,M: sigma_7234349610311085201nnreal,N: sigma_measure_real,A: set_real] :
      ( ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ ( comple6668017395272084142nnreal @ M ) @ N ) )
     => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measur6862244029252366686l_real @ ( comple6668017395272084142nnreal @ M ) @ N @ F ) ) )
       => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
         => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_sets
thf(fact_1059_completion_Ovimage__null__part__sets,axiom,
    ! [F: real > a,M: sigma_measure_real,N: sigma_measure_a,A: set_a] :
      ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ ( comple3506806835435775778n_real @ M ) @ N ) )
     => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measure_distr_real_a @ ( comple3506806835435775778n_real @ M ) @ N @ F ) ) )
       => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
         => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_space_real @ ( comple3506806835435775778n_real @ M ) ) ) @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_sets
thf(fact_1060_completion_Ovimage__null__part__sets,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( comple3506806835435775778n_real @ M ) @ N ) )
     => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur8829990298702910942nnreal @ ( comple3506806835435775778n_real @ M ) @ N @ F ) ) )
       => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
         => ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_space_real @ ( comple3506806835435775778n_real @ M ) ) ) @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_sets
thf(fact_1061_completion_Ovimage__null__part__sets,axiom,
    ! [F: real > real,M: sigma_measure_real,N: sigma_measure_real,A: set_real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ M ) @ N ) )
     => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measur2993149975067245138l_real @ ( comple3506806835435775778n_real @ M ) @ N @ F ) ) )
       => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
         => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_space_real @ ( comple3506806835435775778n_real @ M ) ) ) @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) ) ) ) ) ).

% completion.vimage_null_part_sets
thf(fact_1062_sets__distr,axiom,
    ! [M: sigma_measure_real,N: sigma_measure_real,F: real > real] :
      ( ( sigma_sets_real @ ( measur2993149975067245138l_real @ M @ N @ F ) )
      = ( sigma_sets_real @ N ) ) ).

% sets_distr
thf(fact_1063_measurable__distr__eq1,axiom,
    ! [Mf: sigma_measure_real,Nf: sigma_measure_real,F: real > real,Mf2: sigma_7234349610311085201nnreal] :
      ( ( sigma_9017504469962657078nnreal @ ( measur2993149975067245138l_real @ Mf @ Nf @ F ) @ Mf2 )
      = ( sigma_9017504469962657078nnreal @ Nf @ Mf2 ) ) ).

% measurable_distr_eq1
thf(fact_1064_space__distr,axiom,
    ! [M: sigma_measure_real,N: sigma_measure_real,F: real > real] :
      ( ( sigma_space_real @ ( measur2993149975067245138l_real @ M @ N @ F ) )
      = ( sigma_space_real @ N ) ) ).

% space_distr
thf(fact_1065_lborel__distr__uminus,axiom,
    ( ( measur2993149975067245138l_real @ lebesgue_lborel_real @ borel_5078946678739801102l_real @ uminus_uminus_real )
    = lebesgue_lborel_real ) ).

% lborel_distr_uminus
thf(fact_1066_sets__eq__iff__bounded,axiom,
    ! [A: sigma_measure_a,B2: sigma_measure_a,C3: sigma_measure_a] :
      ( ( ord_le254669795585780187sure_a @ A @ B2 )
     => ( ( ord_le254669795585780187sure_a @ B2 @ C3 )
       => ( ( ( sigma_sets_a @ A )
            = ( sigma_sets_a @ C3 ) )
         => ( ( sigma_sets_a @ B2 )
            = ( sigma_sets_a @ A ) ) ) ) ) ).

% sets_eq_iff_bounded
thf(fact_1067_sets__eq__iff__bounded,axiom,
    ! [A: sigma_7234349610311085201nnreal,B2: sigma_7234349610311085201nnreal,C3: sigma_7234349610311085201nnreal] :
      ( ( ord_le1854472233513649201nnreal @ A @ B2 )
     => ( ( ord_le1854472233513649201nnreal @ B2 @ C3 )
       => ( ( ( sigma_5465916536984168985nnreal @ A )
            = ( sigma_5465916536984168985nnreal @ C3 ) )
         => ( ( sigma_5465916536984168985nnreal @ B2 )
            = ( sigma_5465916536984168985nnreal @ A ) ) ) ) ) ).

% sets_eq_iff_bounded
thf(fact_1068_sets__eq__iff__bounded,axiom,
    ! [A: sigma_measure_real,B2: sigma_measure_real,C3: sigma_measure_real] :
      ( ( ord_le487379304121309861e_real @ A @ B2 )
     => ( ( ord_le487379304121309861e_real @ B2 @ C3 )
       => ( ( ( sigma_sets_real @ A )
            = ( sigma_sets_real @ C3 ) )
         => ( ( sigma_sets_real @ B2 )
            = ( sigma_sets_real @ A ) ) ) ) ) ).

% sets_eq_iff_bounded
thf(fact_1069_distr__cong,axiom,
    ! [M: sigma_measure_real,K2: sigma_measure_real,N: sigma_measure_real,L2: sigma_measure_real,F: real > real,G: real > real] :
      ( ( M = K2 )
     => ( ( ( sigma_sets_real @ N )
          = ( sigma_sets_real @ L2 ) )
       => ( ! [X: real] :
              ( ( member_real @ X @ ( sigma_space_real @ M ) )
             => ( ( F @ X )
                = ( G @ X ) ) )
         => ( ( measur2993149975067245138l_real @ M @ N @ F )
            = ( measur2993149975067245138l_real @ K2 @ L2 @ G ) ) ) ) ) ).

% distr_cong
thf(fact_1070_distr__cong,axiom,
    ! [M: sigma_measure_set_a,K2: sigma_measure_set_a,N: sigma_measure_a,L2: sigma_measure_a,F: set_a > a,G: set_a > a] :
      ( ( M = K2 )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ L2 ) )
       => ( ! [X: set_a] :
              ( ( member_set_a @ X @ ( sigma_space_set_a @ M ) )
             => ( ( F @ X )
                = ( G @ X ) ) )
         => ( ( measur7064479691503150872et_a_a @ M @ N @ F )
            = ( measur7064479691503150872et_a_a @ K2 @ L2 @ G ) ) ) ) ) ).

% distr_cong
thf(fact_1071_distr__cong,axiom,
    ! [M: sigma_3733394171116455995t_real,K2: sigma_3733394171116455995t_real,N: sigma_measure_a,L2: sigma_measure_a,F: set_real > a,G: set_real > a] :
      ( ( M = K2 )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ L2 ) )
       => ( ! [X: set_real] :
              ( ( member_set_real @ X @ ( sigma_space_set_real @ M ) )
             => ( ( F @ X )
                = ( G @ X ) ) )
         => ( ( measur8448229113228689186real_a @ M @ N @ F )
            = ( measur8448229113228689186real_a @ K2 @ L2 @ G ) ) ) ) ) ).

% distr_cong
thf(fact_1072_distr__cong,axiom,
    ! [M: sigma_523634232904505671nnreal,K2: sigma_523634232904505671nnreal,N: sigma_measure_a,L2: sigma_measure_a,F: set_Ex3793607809372303086nnreal > a,G: set_Ex3793607809372303086nnreal > a] :
      ( ( M = K2 )
     => ( ( ( sigma_sets_a @ N )
          = ( sigma_sets_a @ L2 ) )
       => ( ! [X: set_Ex3793607809372303086nnreal] :
              ( ( member603777416030116741nnreal @ X @ ( sigma_2539764534872131430nnreal @ M ) )
             => ( ( F @ X )
                = ( G @ X ) ) )
         => ( ( measur4356243891041408406real_a @ M @ N @ F )
            = ( measur4356243891041408406real_a @ K2 @ L2 @ G ) ) ) ) ) ).

% distr_cong
thf(fact_1073_distr__cong,axiom,
    ! [M: sigma_measure_set_a,K2: sigma_measure_set_a,N: sigma_7234349610311085201nnreal,L2: sigma_7234349610311085201nnreal,F: set_a > extend8495563244428889912nnreal,G: set_a > extend8495563244428889912nnreal] :
      ( ( M = K2 )
     => ( ( ( sigma_5465916536984168985nnreal @ N )
          = ( sigma_5465916536984168985nnreal @ L2 ) )
       => ( ! [X: set_a] :
              ( ( member_set_a @ X @ ( sigma_space_set_a @ M ) )
             => ( ( F @ X )
                = ( G @ X ) ) )
         => ( ( measur2970674797653026974nnreal @ M @ N @ F )
            = ( measur2970674797653026974nnreal @ K2 @ L2 @ G ) ) ) ) ) ).

% distr_cong
thf(fact_1074_distr__cong,axiom,
    ! [M: sigma_3733394171116455995t_real,K2: sigma_3733394171116455995t_real,N: sigma_7234349610311085201nnreal,L2: sigma_7234349610311085201nnreal,F: set_real > extend8495563244428889912nnreal,G: set_real > extend8495563244428889912nnreal] :
      ( ( M = K2 )
     => ( ( ( sigma_5465916536984168985nnreal @ N )
          = ( sigma_5465916536984168985nnreal @ L2 ) )
       => ( ! [X: set_real] :
              ( ( member_set_real @ X @ ( sigma_space_set_real @ M ) )
             => ( ( F @ X )
                = ( G @ X ) ) )
         => ( ( measur174208488455492116nnreal @ M @ N @ F )
            = ( measur174208488455492116nnreal @ K2 @ L2 @ G ) ) ) ) ) ).

% distr_cong
thf(fact_1075_distr__cong,axiom,
    ! [M: sigma_523634232904505671nnreal,K2: sigma_523634232904505671nnreal,N: sigma_7234349610311085201nnreal,L2: sigma_7234349610311085201nnreal,F: set_Ex3793607809372303086nnreal > extend8495563244428889912nnreal,G: set_Ex3793607809372303086nnreal > extend8495563244428889912nnreal] :
      ( ( M = K2 )
     => ( ( ( sigma_5465916536984168985nnreal @ N )
          = ( sigma_5465916536984168985nnreal @ L2 ) )
       => ( ! [X: set_Ex3793607809372303086nnreal] :
              ( ( member603777416030116741nnreal @ X @ ( sigma_2539764534872131430nnreal @ M ) )
             => ( ( F @ X )
                = ( G @ X ) ) )
         => ( ( measur5959735445204559520nnreal @ M @ N @ F )
            = ( measur5959735445204559520nnreal @ K2 @ L2 @ G ) ) ) ) ) ).

% distr_cong
thf(fact_1076_distr__cong,axiom,
    ! [M: sigma_measure_set_a,K2: sigma_measure_set_a,N: sigma_measure_real,L2: sigma_measure_real,F: set_a > real,G: set_a > real] :
      ( ( M = K2 )
     => ( ( ( sigma_sets_real @ N )
          = ( sigma_sets_real @ L2 ) )
       => ( ! [X: set_a] :
              ( ( member_set_a @ X @ ( sigma_space_set_a @ M ) )
             => ( ( F @ X )
                = ( G @ X ) ) )
         => ( ( measur3755146993059376402a_real @ M @ N @ F )
            = ( measur3755146993059376402a_real @ K2 @ L2 @ G ) ) ) ) ) ).

% distr_cong
thf(fact_1077_distr__cong,axiom,
    ! [M: sigma_3733394171116455995t_real,K2: sigma_3733394171116455995t_real,N: sigma_measure_real,L2: sigma_measure_real,F: set_real > real,G: set_real > real] :
      ( ( M = K2 )
     => ( ( ( sigma_sets_real @ N )
          = ( sigma_sets_real @ L2 ) )
       => ( ! [X: set_real] :
              ( ( member_set_real @ X @ ( sigma_space_set_real @ M ) )
             => ( ( F @ X )
                = ( G @ X ) ) )
         => ( ( measur874465376107064200l_real @ M @ N @ F )
            = ( measur874465376107064200l_real @ K2 @ L2 @ G ) ) ) ) ) ).

% distr_cong
thf(fact_1078_distr__cong,axiom,
    ! [M: sigma_523634232904505671nnreal,K2: sigma_523634232904505671nnreal,N: sigma_measure_real,L2: sigma_measure_real,F: set_Ex3793607809372303086nnreal > real,G: set_Ex3793607809372303086nnreal > real] :
      ( ( M = K2 )
     => ( ( ( sigma_sets_real @ N )
          = ( sigma_sets_real @ L2 ) )
       => ( ! [X: set_Ex3793607809372303086nnreal] :
              ( ( member603777416030116741nnreal @ X @ ( sigma_2539764534872131430nnreal @ M ) )
             => ( ( F @ X )
                = ( G @ X ) ) )
         => ( ( measur4516463063617886740l_real @ M @ N @ F )
            = ( measur4516463063617886740l_real @ K2 @ L2 @ G ) ) ) ) ) ).

% distr_cong
thf(fact_1079_distr__completion,axiom,
    ! [X5: real > real,M: sigma_measure_real,N: sigma_measure_real] :
      ( ( member_real_real @ X5 @ ( sigma_5267869275261027754l_real @ M @ N ) )
     => ( ( measur2993149975067245138l_real @ ( comple3506806835435775778n_real @ M ) @ N @ X5 )
        = ( measur2993149975067245138l_real @ M @ N @ X5 ) ) ) ).

% distr_completion
thf(fact_1080_distr__completion,axiom,
    ! [X5: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal] :
      ( ( member2919562650594848410nnreal @ X5 @ ( sigma_9017504469962657078nnreal @ M @ N ) )
     => ( ( measur8829990298702910942nnreal @ ( comple3506806835435775778n_real @ M ) @ N @ X5 )
        = ( measur8829990298702910942nnreal @ M @ N @ X5 ) ) ) ).

% distr_completion
thf(fact_1081_le__measureD2,axiom,
    ! [A: sigma_measure_a,B2: sigma_measure_a] :
      ( ( ord_le254669795585780187sure_a @ A @ B2 )
     => ( ( ( sigma_space_a @ A )
          = ( sigma_space_a @ B2 ) )
       => ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ A ) @ ( sigma_sets_a @ B2 ) ) ) ) ).

% le_measureD2
thf(fact_1082_le__measureD2,axiom,
    ! [A: sigma_7234349610311085201nnreal,B2: sigma_7234349610311085201nnreal] :
      ( ( ord_le1854472233513649201nnreal @ A @ B2 )
     => ( ( ( sigma_3147302497200244656nnreal @ A )
          = ( sigma_3147302497200244656nnreal @ B2 ) )
       => ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ A ) @ ( sigma_5465916536984168985nnreal @ B2 ) ) ) ) ).

% le_measureD2
thf(fact_1083_le__measureD2,axiom,
    ! [A: sigma_measure_real,B2: sigma_measure_real] :
      ( ( ord_le487379304121309861e_real @ A @ B2 )
     => ( ( ( sigma_space_real @ A )
          = ( sigma_space_real @ B2 ) )
       => ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ A ) @ ( sigma_sets_real @ B2 ) ) ) ) ).

% le_measureD2
thf(fact_1084_completion_Ocompletion__distr__eq,axiom,
    ! [X5: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal] :
      ( ( member2919562650594848410nnreal @ X5 @ ( sigma_9017504469962657078nnreal @ ( comple3506806835435775778n_real @ M ) @ N ) )
     => ( ( ( measur1209175464439008069nnreal @ ( measur8829990298702910942nnreal @ ( comple3506806835435775778n_real @ M ) @ N @ X5 ) )
          = ( measur1209175464439008069nnreal @ N ) )
       => ( ( comple6668017395272084142nnreal @ ( measur8829990298702910942nnreal @ ( comple3506806835435775778n_real @ M ) @ N @ X5 ) )
          = ( measur8829990298702910942nnreal @ ( comple3506806835435775778n_real @ M ) @ ( comple6668017395272084142nnreal @ N ) @ X5 ) ) ) ) ).

% completion.completion_distr_eq
thf(fact_1085_completion_Ocompletion__distr__eq,axiom,
    ! [X5: real > real,M: sigma_measure_real,N: sigma_measure_real] :
      ( ( member_real_real @ X5 @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ M ) @ N ) )
     => ( ( ( measur3710062792471635001s_real @ ( measur2993149975067245138l_real @ ( comple3506806835435775778n_real @ M ) @ N @ X5 ) )
          = ( measur3710062792471635001s_real @ N ) )
       => ( ( comple3506806835435775778n_real @ ( measur2993149975067245138l_real @ ( comple3506806835435775778n_real @ M ) @ N @ X5 ) )
          = ( measur2993149975067245138l_real @ ( comple3506806835435775778n_real @ M ) @ ( comple3506806835435775778n_real @ N ) @ X5 ) ) ) ) ).

% completion.completion_distr_eq
thf(fact_1086_completion_Omeasurable__completion2,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( comple3506806835435775778n_real @ M ) @ N ) )
     => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur8829990298702910942nnreal @ ( comple3506806835435775778n_real @ M ) @ N @ F ) ) )
       => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( comple3506806835435775778n_real @ M ) @ ( comple6668017395272084142nnreal @ N ) ) ) ) ) ).

% completion.measurable_completion2
thf(fact_1087_completion_Omeasurable__completion2,axiom,
    ! [F: real > real,M: sigma_measure_real,N: sigma_measure_real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ M ) @ N ) )
     => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measur2993149975067245138l_real @ ( comple3506806835435775778n_real @ M ) @ N @ F ) ) )
       => ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ M ) @ ( comple3506806835435775778n_real @ N ) ) ) ) ) ).

% completion.measurable_completion2
thf(fact_1088_null__sets__distr__iff,axiom,
    ! [F: a > a,M: sigma_measure_a,N: sigma_measure_a,A: set_a] :
      ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M @ N ) )
     => ( ( member_set_a @ A @ ( measure_null_sets_a @ ( measure_distr_a_a @ M @ N @ F ) ) )
        = ( ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ A ) @ ( sigma_space_a @ M ) ) @ ( measure_null_sets_a @ M ) )
          & ( member_set_a @ A @ ( sigma_sets_a @ N ) ) ) ) ) ).

% null_sets_distr_iff
thf(fact_1089_null__sets__distr__iff,axiom,
    ! [F: real > a,M: sigma_measure_real,N: sigma_measure_a,A: set_a] :
      ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ N ) )
     => ( ( member_set_a @ A @ ( measure_null_sets_a @ ( measure_distr_real_a @ M @ N @ F ) ) )
        = ( ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ A ) @ ( sigma_space_real @ M ) ) @ ( measur3710062792471635001s_real @ M ) )
          & ( member_set_a @ A @ ( sigma_sets_a @ N ) ) ) ) ) ).

% null_sets_distr_iff
thf(fact_1090_null__sets__distr__iff,axiom,
    ! [F: extend8495563244428889912nnreal > a,M: sigma_7234349610311085201nnreal,N: sigma_measure_a,A: set_a] :
      ( ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ M @ N ) )
     => ( ( member_set_a @ A @ ( measure_null_sets_a @ ( measur7655964997769656268real_a @ M @ N @ F ) ) )
        = ( ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ A ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( measur1209175464439008069nnreal @ M ) )
          & ( member_set_a @ A @ ( sigma_sets_a @ N ) ) ) ) ) ).

% null_sets_distr_iff
thf(fact_1091_null__sets__distr__iff,axiom,
    ! [F: a > extend8495563244428889912nnreal,M: sigma_measure_a,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ M @ N ) )
     => ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ ( measur4839436603801885502nnreal @ M @ N @ F ) ) )
        = ( ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ A ) @ ( sigma_space_a @ M ) ) @ ( measure_null_sets_a @ M ) )
          & ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ N ) ) ) ) ) ).

% null_sets_distr_iff
thf(fact_1092_null__sets__distr__iff,axiom,
    ! [F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,M: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ M @ N ) )
     => ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ ( measur2549461466288632554nnreal @ M @ N @ F ) ) )
        = ( ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ A ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( measur1209175464439008069nnreal @ M ) )
          & ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ N ) ) ) ) ) ).

% null_sets_distr_iff
thf(fact_1093_null__sets__distr__iff,axiom,
    ! [F: a > real,M: sigma_measure_a,N: sigma_measure_real,A: set_real] :
      ( ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ M @ N ) )
     => ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ ( measure_distr_a_real @ M @ N @ F ) ) )
        = ( ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ A ) @ ( sigma_space_a @ M ) ) @ ( measure_null_sets_a @ M ) )
          & ( member_set_real @ A @ ( sigma_sets_real @ N ) ) ) ) ) ).

% null_sets_distr_iff
thf(fact_1094_null__sets__distr__iff,axiom,
    ! [F: extend8495563244428889912nnreal > real,M: sigma_7234349610311085201nnreal,N: sigma_measure_real,A: set_real] :
      ( ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ M @ N ) )
     => ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ ( measur6862244029252366686l_real @ M @ N @ F ) ) )
        = ( ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ A ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( measur1209175464439008069nnreal @ M ) )
          & ( member_set_real @ A @ ( sigma_sets_real @ N ) ) ) ) ) ).

% null_sets_distr_iff
thf(fact_1095_null__sets__distr__iff,axiom,
    ! [F: real > real,M: sigma_measure_real,N: sigma_measure_real,A: set_real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ N ) )
     => ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ ( measur2993149975067245138l_real @ M @ N @ F ) ) )
        = ( ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ A ) @ ( sigma_space_real @ M ) ) @ ( measur3710062792471635001s_real @ M ) )
          & ( member_set_real @ A @ ( sigma_sets_real @ N ) ) ) ) ) ).

% null_sets_distr_iff
thf(fact_1096_null__sets__distr__iff,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
     => ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ ( measur8829990298702910942nnreal @ M @ N @ F ) ) )
        = ( ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ A ) @ ( sigma_space_real @ M ) ) @ ( measur3710062792471635001s_real @ M ) )
          & ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ N ) ) ) ) ) ).

% null_sets_distr_iff
thf(fact_1097_complete__measure_Ovimage__null__part__null__sets,axiom,
    ! [M: sigma_measure_a,F: a > a,N: sigma_measure_a,A: set_a] :
      ( ( comple8155536527497655953sure_a @ M )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M @ N ) )
       => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measure_distr_a_a @ M @ N @ F ) ) )
         => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_space_a @ M ) ) @ ( measure_null_sets_a @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_null_sets
thf(fact_1098_complete__measure_Ovimage__null__part__null__sets,axiom,
    ! [M: sigma_measure_real,F: real > a,N: sigma_measure_a,A: set_a] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ N ) )
       => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measure_distr_real_a @ M @ N @ F ) ) )
         => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_space_real @ M ) ) @ ( measur3710062792471635001s_real @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_null_sets
thf(fact_1099_complete__measure_Ovimage__null__part__null__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > a,N: sigma_measure_a,A: set_a] :
      ( ( comple9105848400330859749nnreal @ M )
     => ( ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ M @ N ) )
       => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measur7655964997769656268real_a @ M @ N @ F ) ) )
         => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( measur1209175464439008069nnreal @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_null_sets
thf(fact_1100_complete__measure_Ovimage__null__part__null__sets,axiom,
    ! [M: sigma_measure_a,F: a > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( comple8155536527497655953sure_a @ M )
     => ( ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ M @ N ) )
       => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur4839436603801885502nnreal @ M @ N @ F ) ) )
         => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_space_a @ M ) ) @ ( measure_null_sets_a @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_null_sets
thf(fact_1101_complete__measure_Ovimage__null__part__null__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( comple9105848400330859749nnreal @ M )
     => ( ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ M @ N ) )
       => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur2549461466288632554nnreal @ M @ N @ F ) ) )
         => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( measur1209175464439008069nnreal @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_null_sets
thf(fact_1102_complete__measure_Ovimage__null__part__null__sets,axiom,
    ! [M: sigma_measure_real,F: real > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
       => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur8829990298702910942nnreal @ M @ N @ F ) ) )
         => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_space_real @ M ) ) @ ( measur3710062792471635001s_real @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_null_sets
thf(fact_1103_complete__measure_Ovimage__null__part__null__sets,axiom,
    ! [M: sigma_measure_a,F: a > real,N: sigma_measure_real,A: set_real] :
      ( ( comple8155536527497655953sure_a @ M )
     => ( ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ M @ N ) )
       => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measure_distr_a_real @ M @ N @ F ) ) )
         => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_space_a @ M ) ) @ ( measure_null_sets_a @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_null_sets
thf(fact_1104_complete__measure_Ovimage__null__part__null__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > real,N: sigma_measure_real,A: set_real] :
      ( ( comple9105848400330859749nnreal @ M )
     => ( ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ M @ N ) )
       => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measur6862244029252366686l_real @ M @ N @ F ) ) )
         => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( measur1209175464439008069nnreal @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_null_sets
thf(fact_1105_complete__measure_Ovimage__null__part__null__sets,axiom,
    ! [M: sigma_measure_real,F: real > real,N: sigma_measure_real,A: set_real] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ N ) )
       => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measur2993149975067245138l_real @ M @ N @ F ) ) )
         => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_space_real @ M ) ) @ ( measur3710062792471635001s_real @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_null_sets
thf(fact_1106_complete__measure_Ovimage__null__part__sets,axiom,
    ! [M: sigma_measure_a,F: a > a,N: sigma_measure_a,A: set_a] :
      ( ( comple8155536527497655953sure_a @ M )
     => ( ( member_a_a @ F @ ( sigma_measurable_a_a @ M @ N ) )
       => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measure_distr_a_a @ M @ N @ F ) ) )
         => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_sets
thf(fact_1107_complete__measure_Ovimage__null__part__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > a,N: sigma_measure_a,A: set_a] :
      ( ( comple9105848400330859749nnreal @ M )
     => ( ( member4924430693770431270real_a @ F @ ( sigma_3031480723531659892real_a @ M @ N ) )
       => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measur7655964997769656268real_a @ M @ N @ F ) ) )
         => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4075187267506941001real_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_sets
thf(fact_1108_complete__measure_Ovimage__null__part__sets,axiom,
    ! [M: sigma_measure_real,F: real > a,N: sigma_measure_a,A: set_a] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ N ) )
       => ( ( ord_le3724670747650509150_set_a @ ( measure_null_sets_a @ N ) @ ( measure_null_sets_a @ ( measure_distr_real_a @ M @ N @ F ) ) )
         => ( ( member_set_a @ A @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ N ) ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_a @ F @ ( complete_null_part_a @ N @ A ) ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_sets
thf(fact_1109_complete__measure_Ovimage__null__part__sets,axiom,
    ! [M: sigma_measure_a,F: a > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( comple8155536527497655953sure_a @ M )
     => ( ( member298456594901751504nnreal @ F @ ( sigma_214952329563889126nnreal @ M @ N ) )
       => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur4839436603801885502nnreal @ M @ N @ F ) ) )
         => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage1258658873539170235nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_sets
thf(fact_1110_complete__measure_Ovimage__null__part__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( comple9105848400330859749nnreal @ M )
     => ( ( member8329810500450651686nnreal @ F @ ( sigma_7926153774531450434nnreal @ M @ N ) )
       => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur2549461466288632554nnreal @ M @ N @ F ) ) )
         => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage3650734033530794285nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_sets
thf(fact_1111_complete__measure_Ovimage__null__part__sets,axiom,
    ! [M: sigma_measure_real,F: real > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
       => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur8829990298702910942nnreal @ M @ N @ F ) ) )
         => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ N ) ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ ( comple6358047150840085292nnreal @ N @ A ) ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_sets
thf(fact_1112_complete__measure_Ovimage__null__part__sets,axiom,
    ! [M: sigma_measure_a,F: a > real,N: sigma_measure_real,A: set_real] :
      ( ( comple8155536527497655953sure_a @ M )
     => ( ( member_a_real @ F @ ( sigma_9116425665531756122a_real @ M @ N ) )
       => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measure_distr_a_real @ M @ N @ F ) ) )
         => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
           => ( member_set_a @ ( inf_inf_set_a @ ( vimage_a_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_sets
thf(fact_1113_complete__measure_Ovimage__null__part__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal,F: extend8495563244428889912nnreal > real,N: sigma_measure_real,A: set_real] :
      ( ( comple9105848400330859749nnreal @ M )
     => ( ( member2874014351250825754l_real @ F @ ( sigma_7049758200512112822l_real @ M @ N ) )
       => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measur6862244029252366686l_real @ M @ N @ F ) ) )
         => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
           => ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ ( vimage4399055823842842145l_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_sets
thf(fact_1114_complete__measure_Ovimage__null__part__sets,axiom,
    ! [M: sigma_measure_real,F: real > real,N: sigma_measure_real,A: set_real] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ N ) )
       => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measur2993149975067245138l_real @ M @ N @ F ) ) )
         => ( ( member_set_real @ A @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ N ) ) )
           => ( member_set_real @ ( inf_inf_set_real @ ( vimage_real_real @ F @ ( comple4917500974405109920t_real @ N @ A ) ) @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) ) ) ) ) ).

% complete_measure.vimage_null_part_sets
thf(fact_1115_lebesgue__measurable__imp__measurable__on__nnreal,axiom,
    ! [U: real > real,S3: set_real] :
      ( ( member_real_real @ U @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ borel_5078946678739801102l_real ) )
     => ( ! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( U @ X ) )
       => ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) )
         => ( equiva5980327992511004390l_real @ U @ S3 ) ) ) ) ).

% lebesgue_measurable_imp_measurable_on_nnreal
thf(fact_1116_lebesgue__measurable__imp__measurable__on__nnreal__UNIV,axiom,
    ! [U: real > real] :
      ( ( member_real_real @ U @ ( sigma_5267869275261027754l_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) @ borel_5078946678739801102l_real ) )
     => ( ! [X: real] : ( ord_less_eq_real @ zero_zero_real @ ( U @ X ) )
       => ( equiva5980327992511004390l_real @ U @ top_top_set_real ) ) ) ).

% lebesgue_measurable_imp_measurable_on_nnreal_UNIV
thf(fact_1117_diff__self,axiom,
    ! [A2: real] :
      ( ( minus_minus_real @ A2 @ A2 )
      = zero_zero_real ) ).

% diff_self
thf(fact_1118_diff__0__right,axiom,
    ! [A2: real] :
      ( ( minus_minus_real @ A2 @ zero_zero_real )
      = A2 ) ).

% diff_0_right
thf(fact_1119_diff__zero,axiom,
    ! [A2: real] :
      ( ( minus_minus_real @ A2 @ zero_zero_real )
      = A2 ) ).

% diff_zero
thf(fact_1120_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A2: real] :
      ( ( minus_minus_real @ A2 @ A2 )
      = zero_zero_real ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_1121_neg__equal__zero,axiom,
    ! [A2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = A2 )
      = ( A2 = zero_zero_real ) ) ).

% neg_equal_zero
thf(fact_1122_equal__neg__zero,axiom,
    ! [A2: real] :
      ( ( A2
        = ( uminus_uminus_real @ A2 ) )
      = ( A2 = zero_zero_real ) ) ).

% equal_neg_zero
thf(fact_1123_neg__equal__0__iff__equal,axiom,
    ! [A2: real] :
      ( ( ( uminus_uminus_real @ A2 )
        = zero_zero_real )
      = ( A2 = zero_zero_real ) ) ).

% neg_equal_0_iff_equal
thf(fact_1124_neg__0__equal__iff__equal,axiom,
    ! [A2: real] :
      ( ( zero_zero_real
        = ( uminus_uminus_real @ A2 ) )
      = ( zero_zero_real = A2 ) ) ).

% neg_0_equal_iff_equal
thf(fact_1125_add_Oinverse__neutral,axiom,
    ( ( uminus_uminus_real @ zero_zero_real )
    = zero_zero_real ) ).

% add.inverse_neutral
thf(fact_1126_diff__ge__0__iff__ge,axiom,
    ! [A2: real,B: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( minus_minus_real @ A2 @ B ) )
      = ( ord_less_eq_real @ B @ A2 ) ) ).

% diff_ge_0_iff_ge
thf(fact_1127_neg__less__eq__nonneg,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A2 ) @ A2 )
      = ( ord_less_eq_real @ zero_zero_real @ A2 ) ) ).

% neg_less_eq_nonneg
thf(fact_1128_less__eq__neg__nonpos,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ A2 @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% less_eq_neg_nonpos
thf(fact_1129_neg__le__0__iff__le,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ ( uminus_uminus_real @ A2 ) @ zero_zero_real )
      = ( ord_less_eq_real @ zero_zero_real @ A2 ) ) ).

% neg_le_0_iff_le
thf(fact_1130_neg__0__le__iff__le,axiom,
    ! [A2: real] :
      ( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A2 ) )
      = ( ord_less_eq_real @ A2 @ zero_zero_real ) ) ).

% neg_0_le_iff_le
thf(fact_1131_verit__minus__simplify_I3_J,axiom,
    ! [B: real] :
      ( ( minus_minus_real @ zero_zero_real @ B )
      = ( uminus_uminus_real @ B ) ) ).

% verit_minus_simplify(3)
thf(fact_1132_diff__0,axiom,
    ! [A2: real] :
      ( ( minus_minus_real @ zero_zero_real @ A2 )
      = ( uminus_uminus_real @ A2 ) ) ).

% diff_0
thf(fact_1133_eq__iff__diff__eq__0,axiom,
    ( ( ^ [Y4: real,Z: real] : ( Y4 = Z ) )
    = ( ^ [A5: real,B5: real] :
          ( ( minus_minus_real @ A5 @ B5 )
          = zero_zero_real ) ) ) ).

% eq_iff_diff_eq_0
thf(fact_1134_completion_Ocomplete__measure__axioms,axiom,
    ! [M: sigma_measure_real] : ( comple9032484589293727193e_real @ ( comple3506806835435775778n_real @ M ) ) ).

% completion.complete_measure_axioms
thf(fact_1135_le__iff__diff__le__0,axiom,
    ( ord_less_eq_real
    = ( ^ [A5: real,B5: real] : ( ord_less_eq_real @ ( minus_minus_real @ A5 @ B5 ) @ zero_zero_real ) ) ) ).

% le_iff_diff_le_0
thf(fact_1136_complete__measure_Ocomplete2,axiom,
    ! [M: sigma_measure_a,A: set_a,B2: set_a] :
      ( ( comple8155536527497655953sure_a @ M )
     => ( ( ord_less_eq_set_a @ A @ B2 )
       => ( ( member_set_a @ B2 @ ( measure_null_sets_a @ M ) )
         => ( member_set_a @ A @ ( measure_null_sets_a @ M ) ) ) ) ) ).

% complete_measure.complete2
thf(fact_1137_complete__measure_Ocomplete2,axiom,
    ! [M: sigma_measure_real,A: set_real,B2: set_real] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( ord_less_eq_set_real @ A @ B2 )
       => ( ( member_set_real @ B2 @ ( measur3710062792471635001s_real @ M ) )
         => ( member_set_real @ A @ ( measur3710062792471635001s_real @ M ) ) ) ) ) ).

% complete_measure.complete2
thf(fact_1138_complete__measure_Ocomplete2,axiom,
    ! [M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( comple9105848400330859749nnreal @ M )
     => ( ( ord_le6787938422905777998nnreal @ A @ B2 )
       => ( ( member603777416030116741nnreal @ B2 @ ( measur1209175464439008069nnreal @ M ) )
         => ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ M ) ) ) ) ) ).

% complete_measure.complete2
thf(fact_1139_complete__measure_Ointro,axiom,
    ! [M: sigma_measure_a] :
      ( ! [A9: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A9 )
         => ( ( member_set_a @ A9 @ ( measure_null_sets_a @ M ) )
           => ( member_set_a @ B3 @ ( sigma_sets_a @ M ) ) ) )
     => ( comple8155536527497655953sure_a @ M ) ) ).

% complete_measure.intro
thf(fact_1140_complete__measure_Ointro,axiom,
    ! [M: sigma_7234349610311085201nnreal] :
      ( ! [A9: set_Ex3793607809372303086nnreal,B3: set_Ex3793607809372303086nnreal] :
          ( ( ord_le6787938422905777998nnreal @ B3 @ A9 )
         => ( ( member603777416030116741nnreal @ A9 @ ( measur1209175464439008069nnreal @ M ) )
           => ( member603777416030116741nnreal @ B3 @ ( sigma_5465916536984168985nnreal @ M ) ) ) )
     => ( comple9105848400330859749nnreal @ M ) ) ).

% complete_measure.intro
thf(fact_1141_complete__measure_Ointro,axiom,
    ! [M: sigma_measure_real] :
      ( ! [A9: set_real,B3: set_real] :
          ( ( ord_less_eq_set_real @ B3 @ A9 )
         => ( ( member_set_real @ A9 @ ( measur3710062792471635001s_real @ M ) )
           => ( member_set_real @ B3 @ ( sigma_sets_real @ M ) ) ) )
     => ( comple9032484589293727193e_real @ M ) ) ).

% complete_measure.intro
thf(fact_1142_complete__measure_Ocomplete,axiom,
    ! [M: sigma_measure_a,B2: set_a,A: set_a] :
      ( ( comple8155536527497655953sure_a @ M )
     => ( ( ord_less_eq_set_a @ B2 @ A )
       => ( ( member_set_a @ A @ ( measure_null_sets_a @ M ) )
         => ( member_set_a @ B2 @ ( sigma_sets_a @ M ) ) ) ) ) ).

% complete_measure.complete
thf(fact_1143_complete__measure_Ocomplete,axiom,
    ! [M: sigma_7234349610311085201nnreal,B2: set_Ex3793607809372303086nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( comple9105848400330859749nnreal @ M )
     => ( ( ord_le6787938422905777998nnreal @ B2 @ A )
       => ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ M ) )
         => ( member603777416030116741nnreal @ B2 @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ) ).

% complete_measure.complete
thf(fact_1144_complete__measure_Ocomplete,axiom,
    ! [M: sigma_measure_real,B2: set_real,A: set_real] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( ord_less_eq_set_real @ B2 @ A )
       => ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ M ) )
         => ( member_set_real @ B2 @ ( sigma_sets_real @ M ) ) ) ) ) ).

% complete_measure.complete
thf(fact_1145_complete__measure__def,axiom,
    ( comple8155536527497655953sure_a
    = ( ^ [M3: sigma_measure_a] :
        ! [A3: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ B4 @ A3 )
         => ( ( member_set_a @ A3 @ ( measure_null_sets_a @ M3 ) )
           => ( member_set_a @ B4 @ ( sigma_sets_a @ M3 ) ) ) ) ) ) ).

% complete_measure_def
thf(fact_1146_complete__measure__def,axiom,
    ( comple9105848400330859749nnreal
    = ( ^ [M3: sigma_7234349610311085201nnreal] :
        ! [A3: set_Ex3793607809372303086nnreal,B4: set_Ex3793607809372303086nnreal] :
          ( ( ord_le6787938422905777998nnreal @ B4 @ A3 )
         => ( ( member603777416030116741nnreal @ A3 @ ( measur1209175464439008069nnreal @ M3 ) )
           => ( member603777416030116741nnreal @ B4 @ ( sigma_5465916536984168985nnreal @ M3 ) ) ) ) ) ) ).

% complete_measure_def
thf(fact_1147_complete__measure__def,axiom,
    ( comple9032484589293727193e_real
    = ( ^ [M3: sigma_measure_real] :
        ! [A3: set_real,B4: set_real] :
          ( ( ord_less_eq_set_real @ B4 @ A3 )
         => ( ( member_set_real @ A3 @ ( measur3710062792471635001s_real @ M3 ) )
           => ( member_set_real @ B4 @ ( sigma_sets_real @ M3 ) ) ) ) ) ) ).

% complete_measure_def
thf(fact_1148_complete__measure_Ocompletion__distr__eq,axiom,
    ! [M: sigma_measure_real,X5: real > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( member2919562650594848410nnreal @ X5 @ ( sigma_9017504469962657078nnreal @ M @ N ) )
       => ( ( ( measur1209175464439008069nnreal @ ( measur8829990298702910942nnreal @ M @ N @ X5 ) )
            = ( measur1209175464439008069nnreal @ N ) )
         => ( ( comple6668017395272084142nnreal @ ( measur8829990298702910942nnreal @ M @ N @ X5 ) )
            = ( measur8829990298702910942nnreal @ M @ ( comple6668017395272084142nnreal @ N ) @ X5 ) ) ) ) ) ).

% complete_measure.completion_distr_eq
thf(fact_1149_complete__measure_Ocompletion__distr__eq,axiom,
    ! [M: sigma_measure_real,X5: real > real,N: sigma_measure_real] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( member_real_real @ X5 @ ( sigma_5267869275261027754l_real @ M @ N ) )
       => ( ( ( measur3710062792471635001s_real @ ( measur2993149975067245138l_real @ M @ N @ X5 ) )
            = ( measur3710062792471635001s_real @ N ) )
         => ( ( comple3506806835435775778n_real @ ( measur2993149975067245138l_real @ M @ N @ X5 ) )
            = ( measur2993149975067245138l_real @ M @ ( comple3506806835435775778n_real @ N ) @ X5 ) ) ) ) ) ).

% complete_measure.completion_distr_eq
thf(fact_1150_complete__measure_Omeasurable__completion2,axiom,
    ! [M: sigma_measure_real,F: real > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
       => ( ( ord_le3366939622266546180nnreal @ ( measur1209175464439008069nnreal @ N ) @ ( measur1209175464439008069nnreal @ ( measur8829990298702910942nnreal @ M @ N @ F ) ) )
         => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ ( comple6668017395272084142nnreal @ N ) ) ) ) ) ) ).

% complete_measure.measurable_completion2
thf(fact_1151_complete__measure_Omeasurable__completion2,axiom,
    ! [M: sigma_measure_real,F: real > real,N: sigma_measure_real] :
      ( ( comple9032484589293727193e_real @ M )
     => ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ N ) )
       => ( ( ord_le3558479182127378552t_real @ ( measur3710062792471635001s_real @ N ) @ ( measur3710062792471635001s_real @ ( measur2993149975067245138l_real @ M @ N @ F ) ) )
         => ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ ( comple3506806835435775778n_real @ N ) ) ) ) ) ) ).

% complete_measure.measurable_completion2
thf(fact_1152_measurable__piecewise__restrict,axiom,
    ! [C3: set_set_real,M: sigma_measure_real,F: real > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( counta8054315614235329383t_real @ C3 )
     => ( ! [Omega2: set_real] :
            ( ( member_set_real @ Omega2 @ C3 )
           => ( member_set_real @ ( inf_inf_set_real @ Omega2 @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) )
       => ( ( ord_less_eq_set_real @ ( sigma_space_real @ M ) @ ( comple3096694443085538997t_real @ C3 ) )
         => ( ! [Omega2: set_real] :
                ( ( member_set_real @ Omega2 @ C3 )
               => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( sigma_5414646170262037096e_real @ M @ Omega2 ) @ N ) ) )
           => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) ) ) ) ) ) ).

% measurable_piecewise_restrict
thf(fact_1153_measurable__piecewise__restrict__iff,axiom,
    ! [C3: set_set_real,M: sigma_measure_real,F: real > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( counta8054315614235329383t_real @ C3 )
     => ( ! [Omega2: set_real] :
            ( ( member_set_real @ Omega2 @ C3 )
           => ( member_set_real @ ( inf_inf_set_real @ Omega2 @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) ) )
       => ( ( ord_less_eq_set_real @ ( sigma_space_real @ M ) @ ( comple3096694443085538997t_real @ C3 ) )
         => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
            = ( ! [X3: set_real] :
                  ( ( member_set_real @ X3 @ C3 )
                 => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( sigma_5414646170262037096e_real @ M @ X3 ) @ N ) ) ) ) ) ) ) ) ).

% measurable_piecewise_restrict_iff
thf(fact_1154_insert__subsetI,axiom,
    ! [X2: set_a,A: set_set_a,X5: set_set_a] :
      ( ( member_set_a @ X2 @ A )
     => ( ( ord_le3724670747650509150_set_a @ X5 @ A )
       => ( ord_le3724670747650509150_set_a @ ( insert_set_a @ X2 @ X5 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_1155_insert__subsetI,axiom,
    ! [X2: real > extend8495563244428889912nnreal,A: set_re5328672808648366137nnreal,X5: set_re5328672808648366137nnreal] :
      ( ( member2919562650594848410nnreal @ X2 @ A )
     => ( ( ord_le2462468573666744473nnreal @ X5 @ A )
       => ( ord_le2462468573666744473nnreal @ ( insert152533262698245683nnreal @ X2 @ X5 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_1156_insert__subsetI,axiom,
    ! [X2: set_real,A: set_set_real,X5: set_set_real] :
      ( ( member_set_real @ X2 @ A )
     => ( ( ord_le3558479182127378552t_real @ X5 @ A )
       => ( ord_le3558479182127378552t_real @ ( insert_set_real @ X2 @ X5 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_1157_insert__subsetI,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,A: set_se4580700918925141924nnreal,X5: set_se4580700918925141924nnreal] :
      ( ( member603777416030116741nnreal @ X2 @ A )
     => ( ( ord_le3366939622266546180nnreal @ X5 @ A )
       => ( ord_le3366939622266546180nnreal @ ( insert1343806209672318238nnreal @ X2 @ X5 ) @ A ) ) ) ).

% insert_subsetI
thf(fact_1158_sets_Ocountable__Union,axiom,
    ! [X5: set_set_a,M: sigma_measure_a] :
      ( ( counta6168152590877469849_set_a @ X5 )
     => ( ( ord_le3724670747650509150_set_a @ X5 @ ( sigma_sets_a @ M ) )
       => ( member_set_a @ ( comple2307003609928055243_set_a @ X5 ) @ ( sigma_sets_a @ M ) ) ) ) ).

% sets.countable_Union
thf(fact_1159_sets_Ocountable__Union,axiom,
    ! [X5: set_se4580700918925141924nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( counta2425349316461633011nnreal @ X5 )
     => ( ( ord_le3366939622266546180nnreal @ X5 @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member603777416030116741nnreal @ ( comple4226387801268262977nnreal @ X5 ) @ ( sigma_5465916536984168985nnreal @ M ) ) ) ) ).

% sets.countable_Union
thf(fact_1160_sets_Ocountable__Union,axiom,
    ! [X5: set_set_real,M: sigma_measure_real] :
      ( ( counta8054315614235329383t_real @ X5 )
     => ( ( ord_le3558479182127378552t_real @ X5 @ ( sigma_sets_real @ M ) )
       => ( member_set_real @ ( comple3096694443085538997t_real @ X5 ) @ ( sigma_sets_real @ M ) ) ) ) ).

% sets.countable_Union
thf(fact_1161_univ__second__countable,axiom,
    ~ ! [B8: set_set_real] :
        ( ( counta8054315614235329383t_real @ B8 )
       => ( ! [C4: set_real] :
              ( ( member_set_real @ C4 @ B8 )
             => ( topolo4860482606490270245n_real @ C4 ) )
         => ~ ! [S4: set_real] :
                ( ( topolo4860482606490270245n_real @ S4 )
               => ? [U2: set_set_real] :
                    ( ( ord_le3558479182127378552t_real @ U2 @ B8 )
                    & ( S4
                      = ( comple3096694443085538997t_real @ U2 ) ) ) ) ) ) ).

% univ_second_countable
thf(fact_1162_univ__second__countable,axiom,
    ~ ! [B8: set_se4580700918925141924nnreal] :
        ( ( counta2425349316461633011nnreal @ B8 )
       => ( ! [C4: set_Ex3793607809372303086nnreal] :
              ( ( member603777416030116741nnreal @ C4 @ B8 )
             => ( topolo1037242508615874353nnreal @ C4 ) )
         => ~ ! [S4: set_Ex3793607809372303086nnreal] :
                ( ( topolo1037242508615874353nnreal @ S4 )
               => ? [U2: set_se4580700918925141924nnreal] :
                    ( ( ord_le3366939622266546180nnreal @ U2 @ B8 )
                    & ( S4
                      = ( comple4226387801268262977nnreal @ U2 ) ) ) ) ) ) ).

% univ_second_countable
thf(fact_1163_Lindelof,axiom,
    ! [F3: set_set_real] :
      ( ! [S5: set_real] :
          ( ( member_set_real @ S5 @ F3 )
         => ( topolo4860482606490270245n_real @ S5 ) )
     => ~ ! [F4: set_set_real] :
            ( ( ord_le3558479182127378552t_real @ F4 @ F3 )
           => ( ( counta8054315614235329383t_real @ F4 )
             => ( ( comple3096694443085538997t_real @ F4 )
               != ( comple3096694443085538997t_real @ F3 ) ) ) ) ) ).

% Lindelof
thf(fact_1164_Lindelof,axiom,
    ! [F3: set_se4580700918925141924nnreal] :
      ( ! [S5: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ S5 @ F3 )
         => ( topolo1037242508615874353nnreal @ S5 ) )
     => ~ ! [F4: set_se4580700918925141924nnreal] :
            ( ( ord_le3366939622266546180nnreal @ F4 @ F3 )
           => ( ( counta2425349316461633011nnreal @ F4 )
             => ( ( comple4226387801268262977nnreal @ F4 )
               != ( comple4226387801268262977nnreal @ F3 ) ) ) ) ) ).

% Lindelof
thf(fact_1165_subset__emptyI,axiom,
    ! [A: set_set_a] :
      ( ! [X: set_a] :
          ~ ( member_set_a @ X @ A )
     => ( ord_le3724670747650509150_set_a @ A @ bot_bot_set_set_a ) ) ).

% subset_emptyI
thf(fact_1166_subset__emptyI,axiom,
    ! [A: set_re5328672808648366137nnreal] :
      ( ! [X: real > extend8495563244428889912nnreal] :
          ~ ( member2919562650594848410nnreal @ X @ A )
     => ( ord_le2462468573666744473nnreal @ A @ bot_bo6037503491064675021nnreal ) ) ).

% subset_emptyI
thf(fact_1167_subset__emptyI,axiom,
    ! [A: set_set_real] :
      ( ! [X: set_real] :
          ~ ( member_set_real @ X @ A )
     => ( ord_le3558479182127378552t_real @ A @ bot_bot_set_set_real ) ) ).

% subset_emptyI
thf(fact_1168_subset__emptyI,axiom,
    ! [A: set_se4580700918925141924nnreal] :
      ( ! [X: set_Ex3793607809372303086nnreal] :
          ~ ( member603777416030116741nnreal @ X @ A )
     => ( ord_le3366939622266546180nnreal @ A @ bot_bo2988155216863113784nnreal ) ) ).

% subset_emptyI
thf(fact_1169_Sup__UNIV,axiom,
    ( ( comple4226387801268262977nnreal @ top_to3356475028079756884nnreal )
    = top_to7994903218803871134nnreal ) ).

% Sup_UNIV
thf(fact_1170_Sup__UNIV,axiom,
    ( ( comple3096694443085538997t_real @ top_top_set_set_real )
    = top_top_set_real ) ).

% Sup_UNIV
thf(fact_1171_Sup__UNIV,axiom,
    ( ( comple2307003609928055243_set_a @ top_top_set_set_a )
    = top_top_set_a ) ).

% Sup_UNIV
thf(fact_1172_Sup__UNIV,axiom,
    ( ( comple6814414086264997003nnreal @ top_to7994903218803871134nnreal )
    = top_to1496364449551166952nnreal ) ).

% Sup_UNIV
thf(fact_1173_in__sets__Sup,axiom,
    ! [M: set_Sigma_measure_a,X5: set_a,M4: sigma_measure_a,A: set_a] :
      ( ! [M5: sigma_measure_a] :
          ( ( member3534519376729797778sure_a @ M5 @ M )
         => ( ( sigma_space_a @ M5 )
            = X5 ) )
     => ( ( member3534519376729797778sure_a @ M4 @ M )
       => ( ( member_set_a @ A @ ( sigma_sets_a @ M4 ) )
         => ( member_set_a @ A @ ( sigma_sets_a @ ( comple2239804592135895886sure_a @ M ) ) ) ) ) ) ).

% in_sets_Sup
thf(fact_1174_in__sets__Sup,axiom,
    ! [M: set_Si97717610131227249nnreal,X5: set_Ex3793607809372303086nnreal,M4: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ! [M5: sigma_7234349610311085201nnreal] :
          ( ( member6261374078160781754nnreal @ M5 @ M )
         => ( ( sigma_3147302497200244656nnreal @ M5 )
            = X5 ) )
     => ( ( member6261374078160781754nnreal @ M4 @ M )
       => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M4 ) )
         => ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ ( comple2394123286901040126nnreal @ M ) ) ) ) ) ) ).

% in_sets_Sup
thf(fact_1175_in__sets__Sup,axiom,
    ! [M: set_Si6059263944882162789e_real,X5: set_real,M4: sigma_measure_real,A: set_real] :
      ( ! [M5: sigma_measure_real] :
          ( ( member4553183543495551918e_real @ M5 @ M )
         => ( ( sigma_space_real @ M5 )
            = X5 ) )
     => ( ( member4553183543495551918e_real @ M4 @ M )
       => ( ( member_set_real @ A @ ( sigma_sets_real @ M4 ) )
         => ( member_set_real @ A @ ( sigma_sets_real @ ( comple1433435454551854066e_real @ M ) ) ) ) ) ) ).

% in_sets_Sup
thf(fact_1176_measurable__Sup1,axiom,
    ! [M4: sigma_measure_real,M: set_Si6059263944882162789e_real,F: real > extend8495563244428889912nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( member4553183543495551918e_real @ M4 @ M )
     => ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M4 @ N ) )
       => ( ! [M5: sigma_measure_real,N4: sigma_measure_real] :
              ( ( member4553183543495551918e_real @ M5 @ M )
             => ( ( member4553183543495551918e_real @ N4 @ M )
               => ( ( sigma_space_real @ M5 )
                  = ( sigma_space_real @ N4 ) ) ) )
         => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ ( comple1433435454551854066e_real @ M ) @ N ) ) ) ) ) ).

% measurable_Sup1
thf(fact_1177_measurable__Sup2,axiom,
    ! [M: set_Si97717610131227249nnreal,F: real > extend8495563244428889912nnreal,N: sigma_measure_real] :
      ( ( M != bot_bo8227844048696536285nnreal )
     => ( ! [M5: sigma_7234349610311085201nnreal] :
            ( ( member6261374078160781754nnreal @ M5 @ M )
           => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ N @ M5 ) ) )
       => ( ! [M5: sigma_7234349610311085201nnreal,N4: sigma_7234349610311085201nnreal] :
              ( ( member6261374078160781754nnreal @ M5 @ M )
             => ( ( member6261374078160781754nnreal @ N4 @ M )
               => ( ( sigma_3147302497200244656nnreal @ M5 )
                  = ( sigma_3147302497200244656nnreal @ N4 ) ) ) )
         => ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ N @ ( comple2394123286901040126nnreal @ M ) ) ) ) ) ) ).

% measurable_Sup2
thf(fact_1178_sets__Sup__in__sets,axiom,
    ! [M: set_Sigma_measure_a,N: sigma_measure_a] :
      ( ( M != bot_bo5171090233048072389sure_a )
     => ( ! [M5: sigma_measure_a] :
            ( ( member3534519376729797778sure_a @ M5 @ M )
           => ( ( sigma_space_a @ M5 )
              = ( sigma_space_a @ N ) ) )
       => ( ! [M5: sigma_measure_a] :
              ( ( member3534519376729797778sure_a @ M5 @ M )
             => ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ M5 ) @ ( sigma_sets_a @ N ) ) )
         => ( ord_le3724670747650509150_set_a @ ( sigma_sets_a @ ( comple2239804592135895886sure_a @ M ) ) @ ( sigma_sets_a @ N ) ) ) ) ) ).

% sets_Sup_in_sets
thf(fact_1179_sets__Sup__in__sets,axiom,
    ! [M: set_Si97717610131227249nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( M != bot_bo8227844048696536285nnreal )
     => ( ! [M5: sigma_7234349610311085201nnreal] :
            ( ( member6261374078160781754nnreal @ M5 @ M )
           => ( ( sigma_3147302497200244656nnreal @ M5 )
              = ( sigma_3147302497200244656nnreal @ N ) ) )
       => ( ! [M5: sigma_7234349610311085201nnreal] :
              ( ( member6261374078160781754nnreal @ M5 @ M )
             => ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ M5 ) @ ( sigma_5465916536984168985nnreal @ N ) ) )
         => ( ord_le3366939622266546180nnreal @ ( sigma_5465916536984168985nnreal @ ( comple2394123286901040126nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ N ) ) ) ) ) ).

% sets_Sup_in_sets
thf(fact_1180_sets__Sup__in__sets,axiom,
    ! [M: set_Si6059263944882162789e_real,N: sigma_measure_real] :
      ( ( M != bot_bo5686449298802467025e_real )
     => ( ! [M5: sigma_measure_real] :
            ( ( member4553183543495551918e_real @ M5 @ M )
           => ( ( sigma_space_real @ M5 )
              = ( sigma_space_real @ N ) ) )
       => ( ! [M5: sigma_measure_real] :
              ( ( member4553183543495551918e_real @ M5 @ M )
             => ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ M5 ) @ ( sigma_sets_real @ N ) ) )
         => ( ord_le3558479182127378552t_real @ ( sigma_sets_real @ ( comple1433435454551854066e_real @ M ) ) @ ( sigma_sets_real @ N ) ) ) ) ) ).

% sets_Sup_in_sets
thf(fact_1181_less__eq__Sup,axiom,
    ! [A: set_set_a,U: set_a] :
      ( ! [V: set_a] :
          ( ( member_set_a @ V @ A )
         => ( ord_less_eq_set_a @ U @ V ) )
     => ( ( A != bot_bot_set_set_a )
       => ( ord_less_eq_set_a @ U @ ( comple2307003609928055243_set_a @ A ) ) ) ) ).

% less_eq_Sup
thf(fact_1182_less__eq__Sup,axiom,
    ! [A: set_re5328672808648366137nnreal,U: real > extend8495563244428889912nnreal] :
      ( ! [V: real > extend8495563244428889912nnreal] :
          ( ( member2919562650594848410nnreal @ V @ A )
         => ( ord_le1618294441215897699nnreal @ U @ V ) )
     => ( ( A != bot_bo6037503491064675021nnreal )
       => ( ord_le1618294441215897699nnreal @ U @ ( comple2814930536884499286nnreal @ A ) ) ) ) ).

% less_eq_Sup
thf(fact_1183_less__eq__Sup,axiom,
    ! [A: set_set_real,U: set_real] :
      ( ! [V: set_real] :
          ( ( member_set_real @ V @ A )
         => ( ord_less_eq_set_real @ U @ V ) )
     => ( ( A != bot_bot_set_set_real )
       => ( ord_less_eq_set_real @ U @ ( comple3096694443085538997t_real @ A ) ) ) ) ).

% less_eq_Sup
thf(fact_1184_less__eq__Sup,axiom,
    ! [A: set_se4580700918925141924nnreal,U: set_Ex3793607809372303086nnreal] :
      ( ! [V: set_Ex3793607809372303086nnreal] :
          ( ( member603777416030116741nnreal @ V @ A )
         => ( ord_le6787938422905777998nnreal @ U @ V ) )
     => ( ( A != bot_bo2988155216863113784nnreal )
       => ( ord_le6787938422905777998nnreal @ U @ ( comple4226387801268262977nnreal @ A ) ) ) ) ).

% less_eq_Sup
thf(fact_1185_cSup__least,axiom,
    ! [X5: set_set_a,Z3: set_a] :
      ( ( X5 != bot_bot_set_set_a )
     => ( ! [X: set_a] :
            ( ( member_set_a @ X @ X5 )
           => ( ord_less_eq_set_a @ X @ Z3 ) )
       => ( ord_less_eq_set_a @ ( comple2307003609928055243_set_a @ X5 ) @ Z3 ) ) ) ).

% cSup_least
thf(fact_1186_cSup__least,axiom,
    ! [X5: set_re5328672808648366137nnreal,Z3: real > extend8495563244428889912nnreal] :
      ( ( X5 != bot_bo6037503491064675021nnreal )
     => ( ! [X: real > extend8495563244428889912nnreal] :
            ( ( member2919562650594848410nnreal @ X @ X5 )
           => ( ord_le1618294441215897699nnreal @ X @ Z3 ) )
       => ( ord_le1618294441215897699nnreal @ ( comple2814930536884499286nnreal @ X5 ) @ Z3 ) ) ) ).

% cSup_least
thf(fact_1187_cSup__least,axiom,
    ! [X5: set_set_real,Z3: set_real] :
      ( ( X5 != bot_bot_set_set_real )
     => ( ! [X: set_real] :
            ( ( member_set_real @ X @ X5 )
           => ( ord_less_eq_set_real @ X @ Z3 ) )
       => ( ord_less_eq_set_real @ ( comple3096694443085538997t_real @ X5 ) @ Z3 ) ) ) ).

% cSup_least
thf(fact_1188_cSup__least,axiom,
    ! [X5: set_se4580700918925141924nnreal,Z3: set_Ex3793607809372303086nnreal] :
      ( ( X5 != bot_bo2988155216863113784nnreal )
     => ( ! [X: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X @ X5 )
           => ( ord_le6787938422905777998nnreal @ X @ Z3 ) )
       => ( ord_le6787938422905777998nnreal @ ( comple4226387801268262977nnreal @ X5 ) @ Z3 ) ) ) ).

% cSup_least
thf(fact_1189_cSup__least,axiom,
    ! [X5: set_real,Z3: real] :
      ( ( X5 != bot_bot_set_real )
     => ( ! [X: real] :
            ( ( member_real @ X @ X5 )
           => ( ord_less_eq_real @ X @ Z3 ) )
       => ( ord_less_eq_real @ ( comple1385675409528146559p_real @ X5 ) @ Z3 ) ) ) ).

% cSup_least
thf(fact_1190_cSup__eq__non__empty,axiom,
    ! [X5: set_set_a,A2: set_a] :
      ( ( X5 != bot_bot_set_set_a )
     => ( ! [X: set_a] :
            ( ( member_set_a @ X @ X5 )
           => ( ord_less_eq_set_a @ X @ A2 ) )
       => ( ! [Y2: set_a] :
              ( ! [X6: set_a] :
                  ( ( member_set_a @ X6 @ X5 )
                 => ( ord_less_eq_set_a @ X6 @ Y2 ) )
             => ( ord_less_eq_set_a @ A2 @ Y2 ) )
         => ( ( comple2307003609928055243_set_a @ X5 )
            = A2 ) ) ) ) ).

% cSup_eq_non_empty
thf(fact_1191_cSup__eq__non__empty,axiom,
    ! [X5: set_re5328672808648366137nnreal,A2: real > extend8495563244428889912nnreal] :
      ( ( X5 != bot_bo6037503491064675021nnreal )
     => ( ! [X: real > extend8495563244428889912nnreal] :
            ( ( member2919562650594848410nnreal @ X @ X5 )
           => ( ord_le1618294441215897699nnreal @ X @ A2 ) )
       => ( ! [Y2: real > extend8495563244428889912nnreal] :
              ( ! [X6: real > extend8495563244428889912nnreal] :
                  ( ( member2919562650594848410nnreal @ X6 @ X5 )
                 => ( ord_le1618294441215897699nnreal @ X6 @ Y2 ) )
             => ( ord_le1618294441215897699nnreal @ A2 @ Y2 ) )
         => ( ( comple2814930536884499286nnreal @ X5 )
            = A2 ) ) ) ) ).

% cSup_eq_non_empty
thf(fact_1192_cSup__eq__non__empty,axiom,
    ! [X5: set_set_real,A2: set_real] :
      ( ( X5 != bot_bot_set_set_real )
     => ( ! [X: set_real] :
            ( ( member_set_real @ X @ X5 )
           => ( ord_less_eq_set_real @ X @ A2 ) )
       => ( ! [Y2: set_real] :
              ( ! [X6: set_real] :
                  ( ( member_set_real @ X6 @ X5 )
                 => ( ord_less_eq_set_real @ X6 @ Y2 ) )
             => ( ord_less_eq_set_real @ A2 @ Y2 ) )
         => ( ( comple3096694443085538997t_real @ X5 )
            = A2 ) ) ) ) ).

% cSup_eq_non_empty
thf(fact_1193_cSup__eq__non__empty,axiom,
    ! [X5: set_se4580700918925141924nnreal,A2: set_Ex3793607809372303086nnreal] :
      ( ( X5 != bot_bo2988155216863113784nnreal )
     => ( ! [X: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X @ X5 )
           => ( ord_le6787938422905777998nnreal @ X @ A2 ) )
       => ( ! [Y2: set_Ex3793607809372303086nnreal] :
              ( ! [X6: set_Ex3793607809372303086nnreal] :
                  ( ( member603777416030116741nnreal @ X6 @ X5 )
                 => ( ord_le6787938422905777998nnreal @ X6 @ Y2 ) )
             => ( ord_le6787938422905777998nnreal @ A2 @ Y2 ) )
         => ( ( comple4226387801268262977nnreal @ X5 )
            = A2 ) ) ) ) ).

% cSup_eq_non_empty
thf(fact_1194_cSup__eq__non__empty,axiom,
    ! [X5: set_real,A2: real] :
      ( ( X5 != bot_bot_set_real )
     => ( ! [X: real] :
            ( ( member_real @ X @ X5 )
           => ( ord_less_eq_real @ X @ A2 ) )
       => ( ! [Y2: real] :
              ( ! [X6: real] :
                  ( ( member_real @ X6 @ X5 )
                 => ( ord_less_eq_real @ X6 @ Y2 ) )
             => ( ord_less_eq_real @ A2 @ Y2 ) )
         => ( ( comple1385675409528146559p_real @ X5 )
            = A2 ) ) ) ) ).

% cSup_eq_non_empty
thf(fact_1195_Union__UNIV,axiom,
    ( ( comple4226387801268262977nnreal @ top_to3356475028079756884nnreal )
    = top_to7994903218803871134nnreal ) ).

% Union_UNIV
thf(fact_1196_Union__UNIV,axiom,
    ( ( comple3096694443085538997t_real @ top_top_set_set_real )
    = top_top_set_real ) ).

% Union_UNIV
thf(fact_1197_Union__UNIV,axiom,
    ( ( comple2307003609928055243_set_a @ top_top_set_set_a )
    = top_top_set_a ) ).

% Union_UNIV
thf(fact_1198_insert__partition,axiom,
    ! [X2: set_a,F5: set_set_a] :
      ( ~ ( member_set_a @ X2 @ F5 )
     => ( ! [X: set_a] :
            ( ( member_set_a @ X @ ( insert_set_a @ X2 @ F5 ) )
           => ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ ( insert_set_a @ X2 @ F5 ) )
               => ( ( X != Xa )
                 => ( ( inf_inf_set_a @ X @ Xa )
                    = bot_bot_set_a ) ) ) )
       => ( ( inf_inf_set_a @ X2 @ ( comple2307003609928055243_set_a @ F5 ) )
          = bot_bot_set_a ) ) ) ).

% insert_partition
thf(fact_1199_insert__partition,axiom,
    ! [X2: set_real,F5: set_set_real] :
      ( ~ ( member_set_real @ X2 @ F5 )
     => ( ! [X: set_real] :
            ( ( member_set_real @ X @ ( insert_set_real @ X2 @ F5 ) )
           => ! [Xa: set_real] :
                ( ( member_set_real @ Xa @ ( insert_set_real @ X2 @ F5 ) )
               => ( ( X != Xa )
                 => ( ( inf_inf_set_real @ X @ Xa )
                    = bot_bot_set_real ) ) ) )
       => ( ( inf_inf_set_real @ X2 @ ( comple3096694443085538997t_real @ F5 ) )
          = bot_bot_set_real ) ) ) ).

% insert_partition
thf(fact_1200_insert__partition,axiom,
    ! [X2: set_Ex3793607809372303086nnreal,F5: set_se4580700918925141924nnreal] :
      ( ~ ( member603777416030116741nnreal @ X2 @ F5 )
     => ( ! [X: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ X @ ( insert1343806209672318238nnreal @ X2 @ F5 ) )
           => ! [Xa: set_Ex3793607809372303086nnreal] :
                ( ( member603777416030116741nnreal @ Xa @ ( insert1343806209672318238nnreal @ X2 @ F5 ) )
               => ( ( X != Xa )
                 => ( ( inf_in3368558534146122112nnreal @ X @ Xa )
                    = bot_bo4854962954004695426nnreal ) ) ) )
       => ( ( inf_in3368558534146122112nnreal @ X2 @ ( comple4226387801268262977nnreal @ F5 ) )
          = bot_bo4854962954004695426nnreal ) ) ) ).

% insert_partition
thf(fact_1201_measure__distr,axiom,
    ! [F: real > a,M: sigma_measure_real,N: sigma_measure_a,S3: set_a] :
      ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ N ) )
     => ( ( member_set_a @ S3 @ ( sigma_sets_a @ N ) )
       => ( ( sigma_measure_a2 @ ( measure_distr_real_a @ M @ N @ F ) @ S3 )
          = ( sigma_measure_real2 @ M @ ( inf_inf_set_real @ ( vimage_real_a @ F @ S3 ) @ ( sigma_space_real @ M ) ) ) ) ) ) ).

% measure_distr
thf(fact_1202_measure__distr,axiom,
    ! [F: real > real,M: sigma_measure_real,N: sigma_measure_real,S3: set_real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ N ) )
     => ( ( member_set_real @ S3 @ ( sigma_sets_real @ N ) )
       => ( ( sigma_measure_real2 @ ( measur2993149975067245138l_real @ M @ N @ F ) @ S3 )
          = ( sigma_measure_real2 @ M @ ( inf_inf_set_real @ ( vimage_real_real @ F @ S3 ) @ ( sigma_space_real @ M ) ) ) ) ) ) ).

% measure_distr
thf(fact_1203_measure__distr,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal,S3: set_Ex3793607809372303086nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
     => ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ N ) )
       => ( ( sigma_5736856438657861608nnreal @ ( measur8829990298702910942nnreal @ M @ N @ F ) @ S3 )
          = ( sigma_measure_real2 @ M @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ S3 ) @ ( sigma_space_real @ M ) ) ) ) ) ) ).

% measure_distr
thf(fact_1204_measure__lborel__Ioo,axiom,
    ! [L: real,U: real] :
      ( ( ord_less_eq_real @ L @ U )
     => ( ( sigma_measure_real2 @ lebesgue_lborel_real @ ( set_or1633881224788618240n_real @ L @ U ) )
        = ( minus_minus_real @ U @ L ) ) ) ).

% measure_lborel_Ioo
thf(fact_1205_measure__lborel__Ioc,axiom,
    ! [L: real,U: real] :
      ( ( ord_less_eq_real @ L @ U )
     => ( ( sigma_measure_real2 @ lebesgue_lborel_real @ ( set_or2392270231875598684t_real @ L @ U ) )
        = ( minus_minus_real @ U @ L ) ) ) ).

% measure_lborel_Ioc
thf(fact_1206_measure__empty,axiom,
    ! [M: sigma_measure_real] :
      ( ( sigma_measure_real2 @ M @ bot_bot_set_real )
      = zero_zero_real ) ).

% measure_empty
thf(fact_1207_measure__completion,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( sigma_sets_a @ M ) )
     => ( ( sigma_measure_a2 @ ( comple3428971583294703880tion_a @ M ) @ S3 )
        = ( sigma_measure_a2 @ M @ S3 ) ) ) ).

% measure_completion
thf(fact_1208_measure__completion,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( sigma_5736856438657861608nnreal @ ( comple6668017395272084142nnreal @ M ) @ S3 )
        = ( sigma_5736856438657861608nnreal @ M @ S3 ) ) ) ).

% measure_completion
thf(fact_1209_measure__completion,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ M ) )
     => ( ( sigma_measure_real2 @ ( comple3506806835435775778n_real @ M ) @ S3 )
        = ( sigma_measure_real2 @ M @ S3 ) ) ) ).

% measure_completion
thf(fact_1210_measure__lborel__singleton,axiom,
    ! [X2: real] :
      ( ( sigma_measure_real2 @ lebesgue_lborel_real @ ( insert_real @ X2 @ bot_bot_set_real ) )
      = zero_zero_real ) ).

% measure_lborel_singleton
thf(fact_1211_measure__le__0__iff,axiom,
    ! [M: sigma_measure_real,X5: set_real] :
      ( ( ord_less_eq_real @ ( sigma_measure_real2 @ M @ X5 ) @ zero_zero_real )
      = ( ( sigma_measure_real2 @ M @ X5 )
        = zero_zero_real ) ) ).

% measure_le_0_iff
thf(fact_1212_measure__nonneg,axiom,
    ! [M: sigma_measure_real,A: set_real] : ( ord_less_eq_real @ zero_zero_real @ ( sigma_measure_real2 @ M @ A ) ) ).

% measure_nonneg
thf(fact_1213_measure__notin__sets,axiom,
    ! [A: set_a,M: sigma_measure_a] :
      ( ~ ( member_set_a @ A @ ( sigma_sets_a @ M ) )
     => ( ( sigma_measure_a2 @ M @ A )
        = zero_zero_real ) ) ).

% measure_notin_sets
thf(fact_1214_measure__notin__sets,axiom,
    ! [A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ~ ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( sigma_5736856438657861608nnreal @ M @ A )
        = zero_zero_real ) ) ).

% measure_notin_sets
thf(fact_1215_measure__notin__sets,axiom,
    ! [A: set_real,M: sigma_measure_real] :
      ( ~ ( member_set_real @ A @ ( sigma_sets_real @ M ) )
     => ( ( sigma_measure_real2 @ M @ A )
        = zero_zero_real ) ) ).

% measure_notin_sets
thf(fact_1216_measure__Diff__null__set,axiom,
    ! [A: set_a,M: sigma_measure_a,B2: set_a] :
      ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
     => ( ( member_set_a @ B2 @ ( measure_null_sets_a @ M ) )
       => ( ( sigma_measure_a2 @ M @ ( minus_minus_set_a @ A @ B2 ) )
          = ( sigma_measure_a2 @ M @ A ) ) ) ) ).

% measure_Diff_null_set
thf(fact_1217_measure__Diff__null__set,axiom,
    ! [A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,B2: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( member603777416030116741nnreal @ B2 @ ( measur1209175464439008069nnreal @ M ) )
       => ( ( sigma_5736856438657861608nnreal @ M @ ( minus_104578273773384135nnreal @ A @ B2 ) )
          = ( sigma_5736856438657861608nnreal @ M @ A ) ) ) ) ).

% measure_Diff_null_set
thf(fact_1218_measure__Diff__null__set,axiom,
    ! [A: set_real,M: sigma_measure_real,B2: set_real] :
      ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
     => ( ( member_set_real @ B2 @ ( measur3710062792471635001s_real @ M ) )
       => ( ( sigma_measure_real2 @ M @ ( minus_minus_set_real @ A @ B2 ) )
          = ( sigma_measure_real2 @ M @ A ) ) ) ) ).

% measure_Diff_null_set
thf(fact_1219_measure__restrict__space,axiom,
    ! [Omega: set_a,M: sigma_measure_a,A: set_a] :
      ( ( member_set_a @ ( inf_inf_set_a @ Omega @ ( sigma_space_a @ M ) ) @ ( sigma_sets_a @ M ) )
     => ( ( ord_less_eq_set_a @ A @ Omega )
       => ( ( sigma_measure_a2 @ ( sigma_8692839461743104066pace_a @ M @ Omega ) @ A )
          = ( sigma_measure_a2 @ M @ A ) ) ) ) ).

% measure_restrict_space
thf(fact_1220_measure__restrict__space,axiom,
    ! [Omega: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ ( inf_in3368558534146122112nnreal @ Omega @ ( sigma_3147302497200244656nnreal @ M ) ) @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( ord_le6787938422905777998nnreal @ A @ Omega )
       => ( ( sigma_5736856438657861608nnreal @ ( sigma_4884701650823297268nnreal @ M @ Omega ) @ A )
          = ( sigma_5736856438657861608nnreal @ M @ A ) ) ) ) ).

% measure_restrict_space
thf(fact_1221_measure__restrict__space,axiom,
    ! [Omega: set_real,M: sigma_measure_real,A: set_real] :
      ( ( member_set_real @ ( inf_inf_set_real @ Omega @ ( sigma_space_real @ M ) ) @ ( sigma_sets_real @ M ) )
     => ( ( ord_less_eq_set_real @ A @ Omega )
       => ( ( sigma_measure_real2 @ ( sigma_5414646170262037096e_real @ M @ Omega ) @ A )
          = ( sigma_measure_real2 @ M @ A ) ) ) ) ).

% measure_restrict_space
thf(fact_1222_content__singleton,axiom,
    ! [A2: real] :
      ( ( sigma_measure_real2 @ lebesgue_lborel_real @ ( insert_real @ A2 @ bot_bot_set_real ) )
      = zero_zero_real ) ).

% content_singleton
thf(fact_1223_content__pos__le,axiom,
    ! [X5: set_real] : ( ord_less_eq_real @ zero_zero_real @ ( sigma_measure_real2 @ lebesgue_lborel_real @ X5 ) ) ).

% content_pos_le
thf(fact_1224_content__empty,axiom,
    ( ( sigma_measure_real2 @ lebesgue_lborel_real @ bot_bot_set_real )
    = zero_zero_real ) ).

% content_empty
thf(fact_1225_measure__eq__0__null__sets,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( measure_null_sets_a @ M ) )
     => ( ( sigma_measure_a2 @ M @ S3 )
        = zero_zero_real ) ) ).

% measure_eq_0_null_sets
thf(fact_1226_measure__eq__0__null__sets,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( sigma_5736856438657861608nnreal @ M @ S3 )
        = zero_zero_real ) ) ).

% measure_eq_0_null_sets
thf(fact_1227_measure__eq__0__null__sets,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( measur3710062792471635001s_real @ M ) )
     => ( ( sigma_measure_real2 @ M @ S3 )
        = zero_zero_real ) ) ).

% measure_eq_0_null_sets
thf(fact_1228_space__Sup__measure_H,axiom,
    ! [M: set_Sigma_measure_a,A: sigma_measure_a] :
      ( ! [M5: sigma_measure_a] :
          ( ( member3534519376729797778sure_a @ M5 @ M )
         => ( ( sigma_sets_a @ M5 )
            = ( sigma_sets_a @ A ) ) )
     => ( ( M != bot_bo5171090233048072389sure_a )
       => ( ( sigma_space_a @ ( measur7752348538237249968sure_a @ M ) )
          = ( sigma_space_a @ A ) ) ) ) ).

% space_Sup_measure'
thf(fact_1229_space__Sup__measure_H,axiom,
    ! [M: set_Si97717610131227249nnreal,A: sigma_7234349610311085201nnreal] :
      ( ! [M5: sigma_7234349610311085201nnreal] :
          ( ( member6261374078160781754nnreal @ M5 @ M )
         => ( ( sigma_5465916536984168985nnreal @ M5 )
            = ( sigma_5465916536984168985nnreal @ A ) ) )
     => ( ( M != bot_bo8227844048696536285nnreal )
       => ( ( sigma_3147302497200244656nnreal @ ( measur1651139276328235014nnreal @ M ) )
          = ( sigma_3147302497200244656nnreal @ A ) ) ) ) ).

% space_Sup_measure'
thf(fact_1230_space__Sup__measure_H,axiom,
    ! [M: set_Si6059263944882162789e_real,A: sigma_measure_real] :
      ( ! [M5: sigma_measure_real] :
          ( ( member4553183543495551918e_real @ M5 @ M )
         => ( ( sigma_sets_real @ M5 )
            = ( sigma_sets_real @ A ) ) )
     => ( ( M != bot_bo5686449298802467025e_real )
       => ( ( sigma_space_real @ ( measur8657758558638653562e_real @ M ) )
          = ( sigma_space_real @ A ) ) ) ) ).

% space_Sup_measure'
thf(fact_1231_emeasure__distr,axiom,
    ! [F: real > a,M: sigma_measure_real,N: sigma_measure_a,A: set_a] :
      ( ( member_real_a @ F @ ( sigma_523072396149930112real_a @ M @ N ) )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ N ) )
       => ( ( sigma_emeasure_a @ ( measure_distr_real_a @ M @ N @ F ) @ A )
          = ( sigma_emeasure_real @ M @ ( inf_inf_set_real @ ( vimage_real_a @ F @ A ) @ ( sigma_space_real @ M ) ) ) ) ) ) ).

% emeasure_distr
thf(fact_1232_emeasure__distr,axiom,
    ! [F: real > real,M: sigma_measure_real,N: sigma_measure_real,A: set_real] :
      ( ( member_real_real @ F @ ( sigma_5267869275261027754l_real @ M @ N ) )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ N ) )
       => ( ( sigma_emeasure_real @ ( measur2993149975067245138l_real @ M @ N @ F ) @ A )
          = ( sigma_emeasure_real @ M @ ( inf_inf_set_real @ ( vimage_real_real @ F @ A ) @ ( sigma_space_real @ M ) ) ) ) ) ) ).

% emeasure_distr
thf(fact_1233_emeasure__distr,axiom,
    ! [F: real > extend8495563244428889912nnreal,M: sigma_measure_real,N: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( member2919562650594848410nnreal @ F @ ( sigma_9017504469962657078nnreal @ M @ N ) )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ N ) )
       => ( ( sigma_6589832970846575905nnreal @ ( measur8829990298702910942nnreal @ M @ N @ F ) @ A )
          = ( sigma_emeasure_real @ M @ ( inf_inf_set_real @ ( vimage6366802093293386401nnreal @ F @ A ) @ ( sigma_space_real @ M ) ) ) ) ) ) ).

% emeasure_distr
thf(fact_1234_emeasure__empty,axiom,
    ! [M: sigma_measure_real] :
      ( ( sigma_emeasure_real @ M @ bot_bot_set_real )
      = zero_z7100319975126383169nnreal ) ).

% emeasure_empty
thf(fact_1235_emeasure__bot,axiom,
    ! [X5: set_real] :
      ( ( sigma_emeasure_real @ bot_bo5982154664989874033e_real @ X5 )
      = zero_z7100319975126383169nnreal ) ).

% emeasure_bot
thf(fact_1236_null__setsI,axiom,
    ! [M: sigma_measure_a,A: set_a] :
      ( ( ( sigma_emeasure_a @ M @ A )
        = zero_z7100319975126383169nnreal )
     => ( ( member_set_a @ A @ ( sigma_sets_a @ M ) )
       => ( member_set_a @ A @ ( measure_null_sets_a @ M ) ) ) ) ).

% null_setsI
thf(fact_1237_null__setsI,axiom,
    ! [M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( ( sigma_6589832970846575905nnreal @ M @ A )
        = zero_z7100319975126383169nnreal )
     => ( ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ M ) ) ) ) ).

% null_setsI
thf(fact_1238_null__setsI,axiom,
    ! [M: sigma_measure_real,A: set_real] :
      ( ( ( sigma_emeasure_real @ M @ A )
        = zero_z7100319975126383169nnreal )
     => ( ( member_set_real @ A @ ( sigma_sets_real @ M ) )
       => ( member_set_real @ A @ ( measur3710062792471635001s_real @ M ) ) ) ) ).

% null_setsI
thf(fact_1239_null__part__sets_I2_J,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( sigma_sets_a @ M ) )
     => ( ( sigma_emeasure_a @ M @ ( complete_null_part_a @ M @ S3 ) )
        = zero_z7100319975126383169nnreal ) ) ).

% null_part_sets(2)
thf(fact_1240_null__part__sets_I2_J,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( sigma_6589832970846575905nnreal @ M @ ( comple6358047150840085292nnreal @ M @ S3 ) )
        = zero_z7100319975126383169nnreal ) ) ).

% null_part_sets(2)
thf(fact_1241_null__part__sets_I2_J,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ M ) )
     => ( ( sigma_emeasure_real @ M @ ( comple4917500974405109920t_real @ M @ S3 ) )
        = zero_z7100319975126383169nnreal ) ) ).

% null_part_sets(2)
thf(fact_1242_emeasure__lborel__singleton,axiom,
    ! [X2: real] :
      ( ( sigma_emeasure_real @ lebesgue_lborel_real @ ( insert_real @ X2 @ bot_bot_set_real ) )
      = zero_z7100319975126383169nnreal ) ).

% emeasure_lborel_singleton
thf(fact_1243_emeasure__completion,axiom,
    ! [S3: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ S3 @ ( sigma_sets_a @ ( comple3428971583294703880tion_a @ M ) ) )
     => ( ( sigma_emeasure_a @ ( comple3428971583294703880tion_a @ M ) @ S3 )
        = ( sigma_emeasure_a @ M @ ( complete_main_part_a @ M @ S3 ) ) ) ) ).

% emeasure_completion
thf(fact_1244_emeasure__completion,axiom,
    ! [S3: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ S3 @ ( sigma_5465916536984168985nnreal @ ( comple6668017395272084142nnreal @ M ) ) )
     => ( ( sigma_6589832970846575905nnreal @ ( comple6668017395272084142nnreal @ M ) @ S3 )
        = ( sigma_6589832970846575905nnreal @ M @ ( comple2904675884154540190nnreal @ M @ S3 ) ) ) ) ).

% emeasure_completion
thf(fact_1245_emeasure__completion,axiom,
    ! [S3: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ S3 @ ( sigma_sets_real @ ( comple3506806835435775778n_real @ M ) ) )
     => ( ( sigma_emeasure_real @ ( comple3506806835435775778n_real @ M ) @ S3 )
        = ( sigma_emeasure_real @ M @ ( comple5203310272383980818t_real @ M @ S3 ) ) ) ) ).

% emeasure_completion
thf(fact_1246_emeasure__space,axiom,
    ! [M: sigma_measure_real,A: set_real] : ( ord_le3935885782089961368nnreal @ ( sigma_emeasure_real @ M @ A ) @ ( sigma_emeasure_real @ M @ ( sigma_space_real @ M ) ) ) ).

% emeasure_space
thf(fact_1247_measure__eqI,axiom,
    ! [M: sigma_measure_a,N: sigma_measure_a] :
      ( ( ( sigma_sets_a @ M )
        = ( sigma_sets_a @ N ) )
     => ( ! [A9: set_a] :
            ( ( member_set_a @ A9 @ ( sigma_sets_a @ M ) )
           => ( ( sigma_emeasure_a @ M @ A9 )
              = ( sigma_emeasure_a @ N @ A9 ) ) )
       => ( M = N ) ) ) ).

% measure_eqI
thf(fact_1248_measure__eqI,axiom,
    ! [M: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( ( sigma_5465916536984168985nnreal @ M )
        = ( sigma_5465916536984168985nnreal @ N ) )
     => ( ! [A9: set_Ex3793607809372303086nnreal] :
            ( ( member603777416030116741nnreal @ A9 @ ( sigma_5465916536984168985nnreal @ M ) )
           => ( ( sigma_6589832970846575905nnreal @ M @ A9 )
              = ( sigma_6589832970846575905nnreal @ N @ A9 ) ) )
       => ( M = N ) ) ) ).

% measure_eqI
thf(fact_1249_measure__eqI,axiom,
    ! [M: sigma_measure_real,N: sigma_measure_real] :
      ( ( ( sigma_sets_real @ M )
        = ( sigma_sets_real @ N ) )
     => ( ! [A9: set_real] :
            ( ( member_set_real @ A9 @ ( sigma_sets_real @ M ) )
           => ( ( sigma_emeasure_real @ M @ A9 )
              = ( sigma_emeasure_real @ N @ A9 ) ) )
       => ( M = N ) ) ) ).

% measure_eqI
thf(fact_1250_null__setsD1,axiom,
    ! [A: set_a,M: sigma_measure_a] :
      ( ( member_set_a @ A @ ( measure_null_sets_a @ M ) )
     => ( ( sigma_emeasure_a @ M @ A )
        = zero_z7100319975126383169nnreal ) ) ).

% null_setsD1
thf(fact_1251_null__setsD1,axiom,
    ! [A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( member603777416030116741nnreal @ A @ ( measur1209175464439008069nnreal @ M ) )
     => ( ( sigma_6589832970846575905nnreal @ M @ A )
        = zero_z7100319975126383169nnreal ) ) ).

% null_setsD1
thf(fact_1252_null__setsD1,axiom,
    ! [A: set_real,M: sigma_measure_real] :
      ( ( member_set_real @ A @ ( measur3710062792471635001s_real @ M ) )
     => ( ( sigma_emeasure_real @ M @ A )
        = zero_z7100319975126383169nnreal ) ) ).

% null_setsD1
thf(fact_1253_emeasure__neq__0__sets,axiom,
    ! [M: sigma_measure_a,A: set_a] :
      ( ( ( sigma_emeasure_a @ M @ A )
       != zero_z7100319975126383169nnreal )
     => ( member_set_a @ A @ ( sigma_sets_a @ M ) ) ) ).

% emeasure_neq_0_sets
thf(fact_1254_emeasure__neq__0__sets,axiom,
    ! [M: sigma_7234349610311085201nnreal,A: set_Ex3793607809372303086nnreal] :
      ( ( ( sigma_6589832970846575905nnreal @ M @ A )
       != zero_z7100319975126383169nnreal )
     => ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) ) ) ).

% emeasure_neq_0_sets
thf(fact_1255_emeasure__neq__0__sets,axiom,
    ! [M: sigma_measure_real,A: set_real] :
      ( ( ( sigma_emeasure_real @ M @ A )
       != zero_z7100319975126383169nnreal )
     => ( member_set_real @ A @ ( sigma_sets_real @ M ) ) ) ).

% emeasure_neq_0_sets
thf(fact_1256_emeasure__notin__sets,axiom,
    ! [A: set_a,M: sigma_measure_a] :
      ( ~ ( member_set_a @ A @ ( sigma_sets_a @ M ) )
     => ( ( sigma_emeasure_a @ M @ A )
        = zero_z7100319975126383169nnreal ) ) ).

% emeasure_notin_sets
thf(fact_1257_emeasure__notin__sets,axiom,
    ! [A: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ~ ( member603777416030116741nnreal @ A @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( sigma_6589832970846575905nnreal @ M @ A )
        = zero_z7100319975126383169nnreal ) ) ).

% emeasure_notin_sets
thf(fact_1258_emeasure__notin__sets,axiom,
    ! [A: set_real,M: sigma_measure_real] :
      ( ~ ( member_set_real @ A @ ( sigma_sets_real @ M ) )
     => ( ( sigma_emeasure_real @ M @ A )
        = zero_z7100319975126383169nnreal ) ) ).

% emeasure_notin_sets
thf(fact_1259_emeasure__eq__0,axiom,
    ! [N: set_a,M: sigma_measure_a,K2: set_a] :
      ( ( member_set_a @ N @ ( sigma_sets_a @ M ) )
     => ( ( ( sigma_emeasure_a @ M @ N )
          = zero_z7100319975126383169nnreal )
       => ( ( ord_less_eq_set_a @ K2 @ N )
         => ( ( sigma_emeasure_a @ M @ K2 )
            = zero_z7100319975126383169nnreal ) ) ) ) ).

% emeasure_eq_0
thf(fact_1260_emeasure__eq__0,axiom,
    ! [N: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal,K2: set_Ex3793607809372303086nnreal] :
      ( ( member603777416030116741nnreal @ N @ ( sigma_5465916536984168985nnreal @ M ) )
     => ( ( ( sigma_6589832970846575905nnreal @ M @ N )
          = zero_z7100319975126383169nnreal )
       => ( ( ord_le6787938422905777998nnreal @ K2 @ N )
         => ( ( sigma_6589832970846575905nnreal @ M @ K2 )
            = zero_z7100319975126383169nnreal ) ) ) ) ).

% emeasure_eq_0
thf(fact_1261_emeasure__eq__0,axiom,
    ! [N: set_real,M: sigma_measure_real,K2: set_real] :
      ( ( member_set_real @ N @ ( sigma_sets_real @ M ) )
     => ( ( ( sigma_emeasure_real @ M @ N )
          = zero_z7100319975126383169nnreal )
       => ( ( ord_less_eq_set_real @ K2 @ N )
         => ( ( sigma_emeasure_real @ M @ K2 )
            = zero_z7100319975126383169nnreal ) ) ) ) ).

% emeasure_eq_0
thf(fact_1262_emeasure__mono,axiom,
    ! [A2: set_a,B: set_a,M: sigma_measure_a] :
      ( ( ord_less_eq_set_a @ A2 @ B )
     => ( ( member_set_a @ B @ ( sigma_sets_a @ M ) )
       => ( ord_le3935885782089961368nnreal @ ( sigma_emeasure_a @ M @ A2 ) @ ( sigma_emeasure_a @ M @ B ) ) ) ) ).

% emeasure_mono
thf(fact_1263_emeasure__mono,axiom,
    ! [A2: set_Ex3793607809372303086nnreal,B: set_Ex3793607809372303086nnreal,M: sigma_7234349610311085201nnreal] :
      ( ( ord_le6787938422905777998nnreal @ A2 @ B )
     => ( ( member603777416030116741nnreal @ B @ ( sigma_5465916536984168985nnreal @ M ) )
       => ( ord_le3935885782089961368nnreal @ ( sigma_6589832970846575905nnreal @ M @ A2 ) @ ( sigma_6589832970846575905nnreal @ M @ B ) ) ) ) ).

% emeasure_mono
thf(fact_1264_emeasure__mono,axiom,
    ! [A2: set_real,B: set_real,M: sigma_measure_real] :
      ( ( ord_less_eq_set_real @ A2 @ B )
     => ( ( member_set_real @ B @ ( sigma_sets_real @ M ) )
       => ( ord_le3935885782089961368nnreal @ ( sigma_emeasure_real @ M @ A2 ) @ ( sigma_emeasure_real @ M @ B ) ) ) ) ).

% emeasure_mono
thf(fact_1265_measure__zero__top,axiom,
    ! [M: sigma_measure_real,A: set_real] :
      ( ( ( sigma_emeasure_real @ M @ A )
        = top_to1496364449551166952nnreal )
     => ( ( sigma_measure_real2 @ M @ A )
        = zero_zero_real ) ) ).

% measure_zero_top
thf(fact_1266_emeasure__lborel__countable,axiom,
    ! [A: set_real] :
      ( ( counta7319604579010473777e_real @ A )
     => ( ( sigma_emeasure_real @ lebesgue_lborel_real @ A )
        = zero_z7100319975126383169nnreal ) ) ).

% emeasure_lborel_countable
thf(fact_1267_le__measure,axiom,
    ! [M: sigma_measure_a,N: sigma_measure_a] :
      ( ( ( sigma_sets_a @ M )
        = ( sigma_sets_a @ N ) )
     => ( ( ord_le254669795585780187sure_a @ M @ N )
        = ( ! [X3: set_a] :
              ( ( member_set_a @ X3 @ ( sigma_sets_a @ M ) )
             => ( ord_le3935885782089961368nnreal @ ( sigma_emeasure_a @ M @ X3 ) @ ( sigma_emeasure_a @ N @ X3 ) ) ) ) ) ) ).

% le_measure
thf(fact_1268_le__measure,axiom,
    ! [M: sigma_7234349610311085201nnreal,N: sigma_7234349610311085201nnreal] :
      ( ( ( sigma_5465916536984168985nnreal @ M )
        = ( sigma_5465916536984168985nnreal @ N ) )
     => ( ( ord_le1854472233513649201nnreal @ M @ N )
        = ( ! [X3: set_Ex3793607809372303086nnreal] :
              ( ( member603777416030116741nnreal @ X3 @ ( sigma_5465916536984168985nnreal @ M ) )
             => ( ord_le3935885782089961368nnreal @ ( sigma_6589832970846575905nnreal @ M @ X3 ) @ ( sigma_6589832970846575905nnreal @ N @ X3 ) ) ) ) ) ) ).

% le_measure
thf(fact_1269_le__measure,axiom,
    ! [M: sigma_measure_real,N: sigma_measure_real] :
      ( ( ( sigma_sets_real @ M )
        = ( sigma_sets_real @ N ) )
     => ( ( ord_le487379304121309861e_real @ M @ N )
        = ( ! [X3: set_real] :
              ( ( member_set_real @ X3 @ ( sigma_sets_real @ M ) )
             => ( ord_le3935885782089961368nnreal @ ( sigma_emeasure_real @ M @ X3 ) @ ( sigma_emeasure_real @ N @ X3 ) ) ) ) ) ) ).

% le_measure
thf(fact_1270_le__measureD3,axiom,
    ! [A: sigma_measure_a,B2: sigma_measure_a,X5: set_a] :
      ( ( ord_le254669795585780187sure_a @ A @ B2 )
     => ( ( ( sigma_sets_a @ A )
          = ( sigma_sets_a @ B2 ) )
       => ( ord_le3935885782089961368nnreal @ ( sigma_emeasure_a @ A @ X5 ) @ ( sigma_emeasure_a @ B2 @ X5 ) ) ) ) ).

% le_measureD3
thf(fact_1271_le__measureD3,axiom,
    ! [A: sigma_7234349610311085201nnreal,B2: sigma_7234349610311085201nnreal,X5: set_Ex3793607809372303086nnreal] :
      ( ( ord_le1854472233513649201nnreal @ A @ B2 )
     => ( ( ( sigma_5465916536984168985nnreal @ A )
          = ( sigma_5465916536984168985nnreal @ B2 ) )
       => ( ord_le3935885782089961368nnreal @ ( sigma_6589832970846575905nnreal @ A @ X5 ) @ ( sigma_6589832970846575905nnreal @ B2 @ X5 ) ) ) ) ).

% le_measureD3
thf(fact_1272_le__measureD3,axiom,
    ! [A: sigma_measure_real,B2: sigma_measure_real,X5: set_real] :
      ( ( ord_le487379304121309861e_real @ A @ B2 )
     => ( ( ( sigma_sets_real @ A )
          = ( sigma_sets_real @ B2 ) )
       => ( ord_le3935885782089961368nnreal @ ( sigma_emeasure_real @ A @ X5 ) @ ( sigma_emeasure_real @ B2 @ X5 ) ) ) ) ).

% le_measureD3
thf(fact_1273_emeasure__lborel__Ioo,axiom,
    ! [L: real,U: real] :
      ( ( ord_less_eq_real @ L @ U )
     => ( ( sigma_emeasure_real @ lebesgue_lborel_real @ ( set_or1633881224788618240n_real @ L @ U ) )
        = ( extend7643940197134561352nnreal @ ( minus_minus_real @ U @ L ) ) ) ) ).

% emeasure_lborel_Ioo
thf(fact_1274_emeasure__lborel__Ioc,axiom,
    ! [L: real,U: real] :
      ( ( ord_less_eq_real @ L @ U )
     => ( ( sigma_emeasure_real @ lebesgue_lborel_real @ ( set_or2392270231875598684t_real @ L @ U ) )
        = ( extend7643940197134561352nnreal @ ( minus_minus_real @ U @ L ) ) ) ) ).

% emeasure_lborel_Ioc
thf(fact_1275_measurable__ennreal,axiom,
    member2919562650594848410nnreal @ extend7643940197134561352nnreal @ ( sigma_9017504469962657078nnreal @ borel_5078946678739801102l_real @ borel_6524799422816628122nnreal ) ).

% measurable_ennreal
thf(fact_1276_lmeasurable__interval_I2_J,axiom,
    ! [A2: real,B: real] : ( member_set_real @ ( set_or1633881224788618240n_real @ A2 @ B ) @ ( measur3487404108341735616e_real @ ( comple3506806835435775778n_real @ lebesgue_lborel_real ) ) ) ).

% lmeasurable_interval(2)

% Conjectures (1)
thf(conj_0,conjecture,
    member_set_a @ i @ ( sigma_sets_a @ borel_5459123734250506524orel_a ) ).

%------------------------------------------------------------------------------