TPTP Problem File: SLH0150^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Risk_Free_Lending/0000_Risk_Free_Lending/prob_01557_049554__6016798_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1335 ( 508 unt; 63 typ; 0 def)
% Number of atoms : 3826 (1086 equ; 0 cnn)
% Maximal formula atoms : 12 ( 3 avg)
% Number of connectives : 11040 ( 338 ~; 119 |; 184 &;8625 @)
% ( 0 <=>;1774 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 7 avg)
% Number of types : 6 ( 5 usr)
% Number of type conns : 327 ( 327 >; 0 *; 0 +; 0 <<)
% Number of symbols : 61 ( 58 usr; 12 con; 0-3 aty)
% Number of variables : 3494 ( 170 ^;3202 !; 122 ?;3494 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 15:58:04.136
%------------------------------------------------------------------------------
% Could-be-implicit typings (5)
thf(ty_n_t__Risk____Free____Lending__Oaccount,type,
risk_Free_account: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (58)
thf(sy_c_Groups_Oabs__class_Oabs_001t__Int__Oint,type,
abs_abs_int: int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Int__Oint,type,
minus_minus_int: int > int > int ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
minus_minus_nat: nat > nat > nat ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Real__Oreal,type,
minus_minus_real: real > real > real ).
thf(sy_c_Groups_Ominus__class_Ominus_001t__Risk____Free____Lending__Oaccount,type,
minus_4846202936726426316ccount: risk_Free_account > risk_Free_account > risk_Free_account ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Risk____Free____Lending__Oaccount,type,
plus_p1863581527469039996ccount: risk_Free_account > risk_Free_account > risk_Free_account ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Risk____Free____Lending__Oaccount,type,
uminus3377898441596595772ccount: risk_Free_account > risk_Free_account ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Risk____Free____Lending__Oaccount,type,
zero_z1425366712893667068ccount: risk_Free_account ).
thf(sy_c_If_001t__Int__Oint,type,
if_int: $o > int > int > int ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_NthRoot_Oroot,type,
root: nat > real > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Int__Oint,type,
neg_nu5851722552734809277nc_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl__inc_001t__Real__Oreal,type,
neg_nu8295874005876285629c_real: real > real ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Risk____Free____Lending__Oaccount,type,
ord_le2131251472502387783ccount: risk_Free_account > risk_Free_account > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Risk____Free____Lending__Oaccount,type,
ord_le4245800335709223507ccount: risk_Free_account > risk_Free_account > $o ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Int__Oint,type,
order_Greatest_int: ( int > $o ) > int ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
order_Greatest_nat: ( nat > $o ) > nat ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Real__Oreal,type,
order_Greatest_real: ( real > $o ) > real ).
thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Risk____Free____Lending__Oaccount,type,
order_4130363404468270554ccount: ( risk_Free_account > $o ) > risk_Free_account ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Risk__Free__Lending_Oaccount_ORep__account,type,
risk_F170160801229183585ccount: risk_Free_account > nat > real ).
thf(sy_c_Risk__Free__Lending_Ocash__reserve,type,
risk_F1914734008469130493eserve: risk_Free_account > real ).
thf(sy_c_Risk__Free__Lending_Onet__asset__value,type,
risk_F2906766666041932210_value: risk_Free_account > real ).
thf(sy_c_Risk__Free__Lending_Oreturn__loans,type,
risk_F2121631595377017831_loans: ( nat > real ) > risk_Free_account > risk_Free_account ).
thf(sy_c_Risk__Free__Lending_Ostrictly__solvent,type,
risk_F1636578016437888323olvent: risk_Free_account > $o ).
thf(sy_c_Risk__Free__Lending_Ovalid__transfer,type,
risk_F1023690899723030139ansfer: risk_Free_account > risk_Free_account > $o ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v__092_060alpha_062,type,
alpha: risk_Free_account ).
thf(sy_v__092_060beta_062,type,
beta: risk_Free_account ).
thf(sy_v__092_060rho_062,type,
rho: nat > real ).
thf(sy_v_i,type,
i: real ).
% Relevant facts (1266)
thf(fact_0__092_060open_062net__asset__value_A_092_060alpha_062_A_092_060le_062_Anet__asset__value_A_092_060beta_062_092_060close_062,axiom,
ord_less_eq_real @ ( risk_F2906766666041932210_value @ alpha ) @ ( risk_F2906766666041932210_value @ beta ) ).
% \<open>net_asset_value \<alpha> \<le> net_asset_value \<beta>\<close>
thf(fact_1_assms_I1_J,axiom,
ord_less_eq_real @ zero_zero_real @ i ).
% assms(1)
thf(fact_2_assms_I4_J,axiom,
ord_le4245800335709223507ccount @ alpha @ beta ).
% assms(4)
thf(fact_3_order__refl,axiom,
! [X: real] : ( ord_less_eq_real @ X @ X ) ).
% order_refl
thf(fact_4_order__refl,axiom,
! [X: risk_Free_account] : ( ord_le4245800335709223507ccount @ X @ X ) ).
% order_refl
thf(fact_5_order__refl,axiom,
! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).
% order_refl
thf(fact_6_order__refl,axiom,
! [X: int] : ( ord_less_eq_int @ X @ X ) ).
% order_refl
thf(fact_7_dual__order_Orefl,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% dual_order.refl
thf(fact_8_dual__order_Orefl,axiom,
! [A: risk_Free_account] : ( ord_le4245800335709223507ccount @ A @ A ) ).
% dual_order.refl
thf(fact_9_dual__order_Orefl,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% dual_order.refl
thf(fact_10_dual__order_Orefl,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% dual_order.refl
thf(fact_11_assms_I3_J,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_nat @ N @ M )
=> ( ord_less_eq_real @ ( rho @ N ) @ ( rho @ M ) ) ) ).
% assms(3)
thf(fact_12_complete__real,axiom,
! [S: set_real] :
( ? [X2: real] : ( member_real @ X2 @ S )
=> ( ? [Z: real] :
! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ord_less_eq_real @ X3 @ Z ) )
=> ? [Y: real] :
( ! [X2: real] :
( ( member_real @ X2 @ S )
=> ( ord_less_eq_real @ X2 @ Y ) )
& ! [Z: real] :
( ! [X3: real] :
( ( member_real @ X3 @ S )
=> ( ord_less_eq_real @ X3 @ Z ) )
=> ( ord_less_eq_real @ Y @ Z ) ) ) ) ) ).
% complete_real
thf(fact_13_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_14_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_15_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% ab_semigroup_mult_class.mult_ac(1)
thf(fact_16_mult_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( times_times_real @ A @ B ) @ C )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.assoc
thf(fact_17_mult_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.assoc
thf(fact_18_mult_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( times_times_int @ A @ B ) @ C )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.assoc
thf(fact_19_mult_Ocommute,axiom,
( times_times_real
= ( ^ [A2: real,B2: real] : ( times_times_real @ B2 @ A2 ) ) ) ).
% mult.commute
thf(fact_20_mult_Ocommute,axiom,
( times_times_nat
= ( ^ [A2: nat,B2: nat] : ( times_times_nat @ B2 @ A2 ) ) ) ).
% mult.commute
thf(fact_21_mult_Ocommute,axiom,
( times_times_int
= ( ^ [A2: int,B2: int] : ( times_times_int @ B2 @ A2 ) ) ) ).
% mult.commute
thf(fact_22_mult_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( times_times_real @ B @ ( times_times_real @ A @ C ) )
= ( times_times_real @ A @ ( times_times_real @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_23_mult_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
= ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_24_mult_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( times_times_int @ B @ ( times_times_int @ A @ C ) )
= ( times_times_int @ A @ ( times_times_int @ B @ C ) ) ) ).
% mult.left_commute
thf(fact_25_verit__comp__simplify1_I2_J,axiom,
! [A: real] : ( ord_less_eq_real @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_26_verit__comp__simplify1_I2_J,axiom,
! [A: risk_Free_account] : ( ord_le4245800335709223507ccount @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_27_verit__comp__simplify1_I2_J,axiom,
! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_28_verit__comp__simplify1_I2_J,axiom,
! [A: int] : ( ord_less_eq_int @ A @ A ) ).
% verit_comp_simplify1(2)
thf(fact_29_nle__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_eq_real @ A @ B ) )
= ( ( ord_less_eq_real @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_30_nle__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_eq_nat @ A @ B ) )
= ( ( ord_less_eq_nat @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_31_nle__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_eq_int @ A @ B ) )
= ( ( ord_less_eq_int @ B @ A )
& ( B != A ) ) ) ).
% nle_le
thf(fact_32_le__cases3,axiom,
! [X: real,Y2: real,Z2: real] :
( ( ( ord_less_eq_real @ X @ Y2 )
=> ~ ( ord_less_eq_real @ Y2 @ Z2 ) )
=> ( ( ( ord_less_eq_real @ Y2 @ X )
=> ~ ( ord_less_eq_real @ X @ Z2 ) )
=> ( ( ( ord_less_eq_real @ X @ Z2 )
=> ~ ( ord_less_eq_real @ Z2 @ Y2 ) )
=> ( ( ( ord_less_eq_real @ Z2 @ Y2 )
=> ~ ( ord_less_eq_real @ Y2 @ X ) )
=> ( ( ( ord_less_eq_real @ Y2 @ Z2 )
=> ~ ( ord_less_eq_real @ Z2 @ X ) )
=> ~ ( ( ord_less_eq_real @ Z2 @ X )
=> ~ ( ord_less_eq_real @ X @ Y2 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_33_le__cases3,axiom,
! [X: nat,Y2: nat,Z2: nat] :
( ( ( ord_less_eq_nat @ X @ Y2 )
=> ~ ( ord_less_eq_nat @ Y2 @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ Y2 @ X )
=> ~ ( ord_less_eq_nat @ X @ Z2 ) )
=> ( ( ( ord_less_eq_nat @ X @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ Y2 ) )
=> ( ( ( ord_less_eq_nat @ Z2 @ Y2 )
=> ~ ( ord_less_eq_nat @ Y2 @ X ) )
=> ( ( ( ord_less_eq_nat @ Y2 @ Z2 )
=> ~ ( ord_less_eq_nat @ Z2 @ X ) )
=> ~ ( ( ord_less_eq_nat @ Z2 @ X )
=> ~ ( ord_less_eq_nat @ X @ Y2 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_34_le__cases3,axiom,
! [X: int,Y2: int,Z2: int] :
( ( ( ord_less_eq_int @ X @ Y2 )
=> ~ ( ord_less_eq_int @ Y2 @ Z2 ) )
=> ( ( ( ord_less_eq_int @ Y2 @ X )
=> ~ ( ord_less_eq_int @ X @ Z2 ) )
=> ( ( ( ord_less_eq_int @ X @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ Y2 ) )
=> ( ( ( ord_less_eq_int @ Z2 @ Y2 )
=> ~ ( ord_less_eq_int @ Y2 @ X ) )
=> ( ( ( ord_less_eq_int @ Y2 @ Z2 )
=> ~ ( ord_less_eq_int @ Z2 @ X ) )
=> ~ ( ( ord_less_eq_int @ Z2 @ X )
=> ~ ( ord_less_eq_int @ X @ Y2 ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_35_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: real,Z3: real] : ( Y3 = Z3 ) )
= ( ^ [X4: real,Y4: real] :
( ( ord_less_eq_real @ X4 @ Y4 )
& ( ord_less_eq_real @ Y4 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_36_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: risk_Free_account,Z3: risk_Free_account] : ( Y3 = Z3 ) )
= ( ^ [X4: risk_Free_account,Y4: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X4 @ Y4 )
& ( ord_le4245800335709223507ccount @ Y4 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_37_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: nat,Z3: nat] : ( Y3 = Z3 ) )
= ( ^ [X4: nat,Y4: nat] :
( ( ord_less_eq_nat @ X4 @ Y4 )
& ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_38_order__class_Oorder__eq__iff,axiom,
( ( ^ [Y3: int,Z3: int] : ( Y3 = Z3 ) )
= ( ^ [X4: int,Y4: int] :
( ( ord_less_eq_int @ X4 @ Y4 )
& ( ord_less_eq_int @ Y4 @ X4 ) ) ) ) ).
% order_class.order_eq_iff
thf(fact_39_le__zero__eq,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
= ( N2 = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_40_zero__reorient,axiom,
! [X: real] :
( ( zero_zero_real = X )
= ( X = zero_zero_real ) ) ).
% zero_reorient
thf(fact_41_zero__reorient,axiom,
! [X: risk_Free_account] :
( ( zero_z1425366712893667068ccount = X )
= ( X = zero_z1425366712893667068ccount ) ) ).
% zero_reorient
thf(fact_42_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_43_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_44_zero__le,axiom,
! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).
% zero_le
thf(fact_45_net__asset__value__mono,axiom,
! [Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
=> ( ord_less_eq_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).
% net_asset_value_mono
thf(fact_46_order__antisym__conv,axiom,
! [Y2: real,X: real] :
( ( ord_less_eq_real @ Y2 @ X )
=> ( ( ord_less_eq_real @ X @ Y2 )
= ( X = Y2 ) ) ) ).
% order_antisym_conv
thf(fact_47_order__antisym__conv,axiom,
! [Y2: risk_Free_account,X: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ Y2 @ X )
=> ( ( ord_le4245800335709223507ccount @ X @ Y2 )
= ( X = Y2 ) ) ) ).
% order_antisym_conv
thf(fact_48_order__antisym__conv,axiom,
! [Y2: nat,X: nat] :
( ( ord_less_eq_nat @ Y2 @ X )
=> ( ( ord_less_eq_nat @ X @ Y2 )
= ( X = Y2 ) ) ) ).
% order_antisym_conv
thf(fact_49_order__antisym__conv,axiom,
! [Y2: int,X: int] :
( ( ord_less_eq_int @ Y2 @ X )
=> ( ( ord_less_eq_int @ X @ Y2 )
= ( X = Y2 ) ) ) ).
% order_antisym_conv
thf(fact_50_linorder__le__cases,axiom,
! [X: real,Y2: real] :
( ~ ( ord_less_eq_real @ X @ Y2 )
=> ( ord_less_eq_real @ Y2 @ X ) ) ).
% linorder_le_cases
thf(fact_51_linorder__le__cases,axiom,
! [X: nat,Y2: nat] :
( ~ ( ord_less_eq_nat @ X @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ X ) ) ).
% linorder_le_cases
thf(fact_52_linorder__le__cases,axiom,
! [X: int,Y2: int] :
( ~ ( ord_less_eq_int @ X @ Y2 )
=> ( ord_less_eq_int @ Y2 @ X ) ) ).
% linorder_le_cases
thf(fact_53_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_54_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_55_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_56_ord__le__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_57_ord__le__eq__subst,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_58_ord__le__eq__subst,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_59_ord__le__eq__subst,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_60_ord__le__eq__subst,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > int,C: int] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_61_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_62_ord__le__eq__subst,axiom,
! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).
% ord_le_eq_subst
thf(fact_63_ord__eq__le__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_64_ord__eq__le__subst,axiom,
! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_65_ord__eq__le__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_66_ord__eq__le__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_67_ord__eq__le__subst,axiom,
! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
( ( A
= ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_68_ord__eq__le__subst,axiom,
! [A: risk_Free_account,F: risk_Free_account > risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( A
= ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_69_ord__eq__le__subst,axiom,
! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
( ( A
= ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_70_ord__eq__le__subst,axiom,
! [A: int,F: risk_Free_account > int,B: risk_Free_account,C: risk_Free_account] :
( ( A
= ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_71_ord__eq__le__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_72_ord__eq__le__subst,axiom,
! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_73_linorder__linear,axiom,
! [X: real,Y2: real] :
( ( ord_less_eq_real @ X @ Y2 )
| ( ord_less_eq_real @ Y2 @ X ) ) ).
% linorder_linear
thf(fact_74_linorder__linear,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_eq_nat @ X @ Y2 )
| ( ord_less_eq_nat @ Y2 @ X ) ) ).
% linorder_linear
thf(fact_75_linorder__linear,axiom,
! [X: int,Y2: int] :
( ( ord_less_eq_int @ X @ Y2 )
| ( ord_less_eq_int @ Y2 @ X ) ) ).
% linorder_linear
thf(fact_76_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_77_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_78_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_79_order__eq__refl,axiom,
! [X: real,Y2: real] :
( ( X = Y2 )
=> ( ord_less_eq_real @ X @ Y2 ) ) ).
% order_eq_refl
thf(fact_80_order__eq__refl,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( X = Y2 )
=> ( ord_le4245800335709223507ccount @ X @ Y2 ) ) ).
% order_eq_refl
thf(fact_81_order__eq__refl,axiom,
! [X: nat,Y2: nat] :
( ( X = Y2 )
=> ( ord_less_eq_nat @ X @ Y2 ) ) ).
% order_eq_refl
thf(fact_82_order__eq__refl,axiom,
! [X: int,Y2: int] :
( ( X = Y2 )
=> ( ord_less_eq_int @ X @ Y2 ) ) ).
% order_eq_refl
thf(fact_83_order__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_84_order__subst2,axiom,
! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_85_order__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_86_order__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_87_order__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_88_order__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_89_order__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_90_order__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > int,C: int] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_less_eq_int @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_int @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_91_order__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_92_order__subst2,axiom,
! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_subst2
thf(fact_93_order__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_94_order__subst1,axiom,
! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_95_order__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_96_order__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_real @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_97_order__subst1,axiom,
! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_98_order__subst1,axiom,
! [A: risk_Free_account,F: risk_Free_account > risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_99_order__subst1,axiom,
! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_100_order__subst1,axiom,
! [A: risk_Free_account,F: int > risk_Free_account,B: int,C: int] :
( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ! [X3: int,Y: int] :
( ( ord_less_eq_int @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le4245800335709223507ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_101_order__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_102_order__subst1,axiom,
! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_subst1
thf(fact_103_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: real,Z3: real] : ( Y3 = Z3 ) )
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ A2 @ B2 )
& ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_104_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: risk_Free_account,Z3: risk_Free_account] : ( Y3 = Z3 ) )
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A2 @ B2 )
& ( ord_le4245800335709223507ccount @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_105_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: nat,Z3: nat] : ( Y3 = Z3 ) )
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
& ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_106_Orderings_Oorder__eq__iff,axiom,
( ( ^ [Y3: int,Z3: int] : ( Y3 = Z3 ) )
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ A2 @ B2 )
& ( ord_less_eq_int @ B2 @ A2 ) ) ) ) ).
% Orderings.order_eq_iff
thf(fact_107_antisym,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_108_antisym,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_109_antisym,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_110_antisym,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ A )
=> ( A = B ) ) ) ).
% antisym
thf(fact_111_dual__order_Otrans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_112_dual__order_Otrans,axiom,
! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B @ A )
=> ( ( ord_le4245800335709223507ccount @ C @ B )
=> ( ord_le4245800335709223507ccount @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_113_dual__order_Otrans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_eq_nat @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_114_dual__order_Otrans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_eq_int @ C @ A ) ) ) ).
% dual_order.trans
thf(fact_115_dual__order_Oantisym,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_116_dual__order_Oantisym,axiom,
! [B: risk_Free_account,A: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B @ A )
=> ( ( ord_le4245800335709223507ccount @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_117_dual__order_Oantisym,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_118_dual__order_Oantisym,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ A @ B )
=> ( A = B ) ) ) ).
% dual_order.antisym
thf(fact_119_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: real,Z3: real] : ( Y3 = Z3 ) )
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ B2 @ A2 )
& ( ord_less_eq_real @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_120_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: risk_Free_account,Z3: risk_Free_account] : ( Y3 = Z3 ) )
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B2 @ A2 )
& ( ord_le4245800335709223507ccount @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_121_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: nat,Z3: nat] : ( Y3 = Z3 ) )
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
& ( ord_less_eq_nat @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_122_dual__order_Oeq__iff,axiom,
( ( ^ [Y3: int,Z3: int] : ( Y3 = Z3 ) )
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ B2 @ A2 )
& ( ord_less_eq_int @ A2 @ B2 ) ) ) ) ).
% dual_order.eq_iff
thf(fact_123_linorder__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A3: real,B3: real] :
( ( ord_less_eq_real @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: real,B3: real] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_124_linorder__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A3: nat,B3: nat] :
( ( ord_less_eq_nat @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: nat,B3: nat] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_125_linorder__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A3: int,B3: int] :
( ( ord_less_eq_int @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: int,B3: int] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ).
% linorder_wlog
thf(fact_126_order__trans,axiom,
! [X: real,Y2: real,Z2: real] :
( ( ord_less_eq_real @ X @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ Z2 )
=> ( ord_less_eq_real @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_127_order__trans,axiom,
! [X: risk_Free_account,Y2: risk_Free_account,Z2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X @ Y2 )
=> ( ( ord_le4245800335709223507ccount @ Y2 @ Z2 )
=> ( ord_le4245800335709223507ccount @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_128_order__trans,axiom,
! [X: nat,Y2: nat,Z2: nat] :
( ( ord_less_eq_nat @ X @ Y2 )
=> ( ( ord_less_eq_nat @ Y2 @ Z2 )
=> ( ord_less_eq_nat @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_129_order__trans,axiom,
! [X: int,Y2: int,Z2: int] :
( ( ord_less_eq_int @ X @ Y2 )
=> ( ( ord_less_eq_int @ Y2 @ Z2 )
=> ( ord_less_eq_int @ X @ Z2 ) ) ) ).
% order_trans
thf(fact_130_order_Otrans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% order.trans
thf(fact_131_order_Otrans,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ord_le4245800335709223507ccount @ A @ C ) ) ) ).
% order.trans
thf(fact_132_order_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% order.trans
thf(fact_133_order_Otrans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% order.trans
thf(fact_134_order__antisym,axiom,
! [X: real,Y2: real] :
( ( ord_less_eq_real @ X @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ X )
=> ( X = Y2 ) ) ) ).
% order_antisym
thf(fact_135_order__antisym,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X @ Y2 )
=> ( ( ord_le4245800335709223507ccount @ Y2 @ X )
=> ( X = Y2 ) ) ) ).
% order_antisym
thf(fact_136_order__antisym,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_eq_nat @ X @ Y2 )
=> ( ( ord_less_eq_nat @ Y2 @ X )
=> ( X = Y2 ) ) ) ).
% order_antisym
thf(fact_137_order__antisym,axiom,
! [X: int,Y2: int] :
( ( ord_less_eq_int @ X @ Y2 )
=> ( ( ord_less_eq_int @ Y2 @ X )
=> ( X = Y2 ) ) ) ).
% order_antisym
thf(fact_138_ord__le__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_139_ord__le__eq__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( B = C )
=> ( ord_le4245800335709223507ccount @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_140_ord__le__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_141_ord__le__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_le_eq_trans
thf(fact_142_ord__eq__le__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_143_ord__eq__le__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( A = B )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ord_le4245800335709223507ccount @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_144_ord__eq__le__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_eq_nat @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_145_ord__eq__le__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_eq_int @ A @ C ) ) ) ).
% ord_eq_le_trans
thf(fact_146_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_147_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_148_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_149_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_150_Collect__mem__eq,axiom,
! [A4: set_real] :
( ( collect_real
@ ^ [X4: real] : ( member_real @ X4 @ A4 ) )
= A4 ) ).
% Collect_mem_eq
thf(fact_151_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_152_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_153_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_154_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_155_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_156_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_157_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_158_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_159_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_160_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_161_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_162_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_163_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_164_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_165_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_166_zero__le__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) ) ) ).
% zero_le_mult_iff
thf(fact_167_zero__le__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) ) ) ).
% zero_le_mult_iff
thf(fact_168_mult__nonneg__nonpos2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_169_mult__nonneg__nonpos2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_170_mult__nonneg__nonpos2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos2
thf(fact_171_mult__nonpos__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_nonpos_nonneg
thf(fact_172_mult__nonpos__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonpos_nonneg
thf(fact_173_mult__nonpos__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonpos_nonneg
thf(fact_174_mult__nonneg__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_nonneg_nonpos
thf(fact_175_mult__nonneg__nonpos,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ B @ zero_zero_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_nonneg_nonpos
thf(fact_176_mult__nonneg__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_nonneg_nonpos
thf(fact_177_mult__nonneg__nonneg,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_178_mult__nonneg__nonneg,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_179_mult__nonneg__nonneg,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonneg_nonneg
thf(fact_180_split__mult__neg__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ).
% split_mult_neg_le
thf(fact_181_split__mult__neg__le,axiom,
! [A: nat,B: nat] :
( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
& ( ord_less_eq_nat @ B @ zero_zero_nat ) )
| ( ( ord_less_eq_nat @ A @ zero_zero_nat )
& ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).
% split_mult_neg_le
thf(fact_182_split__mult__neg__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ).
% split_mult_neg_le
thf(fact_183_net__asset__value__zero,axiom,
( ( risk_F2906766666041932210_value @ zero_z1425366712893667068ccount )
= zero_zero_real ) ).
% net_asset_value_zero
thf(fact_184_mult__not__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_185_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_186_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_187_divisors__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_188_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_189_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_190_no__zero__divisors,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_191_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_192_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_193_mult__left__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_194_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_195_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_196_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_197_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_198_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_199_mult__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_200_mult__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_201_mult__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono
thf(fact_202_mult__mono_H,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_203_mult__mono_H,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_204_mult__mono_H,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_mono'
thf(fact_205_zero__le__square,axiom,
! [A: real] : ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ A ) ) ).
% zero_le_square
thf(fact_206_zero__le__square,axiom,
! [A: int] : ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ A ) ) ).
% zero_le_square
thf(fact_207_split__mult__pos__le,axiom,
! [A: real,B: real] :
( ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ zero_zero_real @ B ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ B @ zero_zero_real ) ) )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_208_split__mult__pos__le,axiom,
! [A: int,B: int] :
( ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ zero_zero_int @ B ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ B @ zero_zero_int ) ) )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ).
% split_mult_pos_le
thf(fact_209_mult__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_210_mult__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono_neg
thf(fact_211_mult__nonpos__nonpos,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ zero_zero_real )
=> ( ( ord_less_eq_real @ B @ zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_212_mult__nonpos__nonpos,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ zero_zero_int )
=> ( ( ord_less_eq_int @ B @ zero_zero_int )
=> ( ord_less_eq_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_nonpos_nonpos
thf(fact_213_mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_214_mult__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_215_mult__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_left_mono
thf(fact_216_mult__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_217_mult__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono_neg
thf(fact_218_mult__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_219_mult__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_220_mult__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_right_mono
thf(fact_221_mult__le__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_eq_real @ zero_zero_real @ A )
& ( ord_less_eq_real @ B @ zero_zero_real ) )
| ( ( ord_less_eq_real @ A @ zero_zero_real )
& ( ord_less_eq_real @ zero_zero_real @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_222_mult__le__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_eq_int @ zero_zero_int @ A )
& ( ord_less_eq_int @ B @ zero_zero_int ) )
| ( ( ord_less_eq_int @ A @ zero_zero_int )
& ( ord_less_eq_int @ zero_zero_int @ B ) ) ) ) ).
% mult_le_0_iff
thf(fact_223_le0,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).
% le0
thf(fact_224_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_225_le__numeral__extra_I3_J,axiom,
ord_less_eq_real @ zero_zero_real @ zero_zero_real ).
% le_numeral_extra(3)
thf(fact_226_le__numeral__extra_I3_J,axiom,
ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).
% le_numeral_extra(3)
thf(fact_227_le__numeral__extra_I3_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% le_numeral_extra(3)
thf(fact_228_strictly__solvent__net__asset__value,axiom,
! [Alpha: risk_Free_account] :
( ( risk_F1636578016437888323olvent @ Alpha )
=> ( ord_less_eq_real @ zero_zero_real @ ( risk_F2906766666041932210_value @ Alpha ) ) ) ).
% strictly_solvent_net_asset_value
thf(fact_229_assms_I2_J,axiom,
! [N: nat] : ( ord_less_real @ ( rho @ N ) @ one_one_real ) ).
% assms(2)
thf(fact_230_GreatestI2__order,axiom,
! [P: real > $o,X: real,Q: real > $o] :
( ( P @ X )
=> ( ! [Y: real] :
( ( P @ Y )
=> ( ord_less_eq_real @ Y @ X ) )
=> ( ! [X3: real] :
( ( P @ X3 )
=> ( ! [Y5: real] :
( ( P @ Y5 )
=> ( ord_less_eq_real @ Y5 @ X3 ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( order_Greatest_real @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_231_GreatestI2__order,axiom,
! [P: risk_Free_account > $o,X: risk_Free_account,Q: risk_Free_account > $o] :
( ( P @ X )
=> ( ! [Y: risk_Free_account] :
( ( P @ Y )
=> ( ord_le4245800335709223507ccount @ Y @ X ) )
=> ( ! [X3: risk_Free_account] :
( ( P @ X3 )
=> ( ! [Y5: risk_Free_account] :
( ( P @ Y5 )
=> ( ord_le4245800335709223507ccount @ Y5 @ X3 ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( order_4130363404468270554ccount @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_232_GreatestI2__order,axiom,
! [P: int > $o,X: int,Q: int > $o] :
( ( P @ X )
=> ( ! [Y: int] :
( ( P @ Y )
=> ( ord_less_eq_int @ Y @ X ) )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( ! [Y5: int] :
( ( P @ Y5 )
=> ( ord_less_eq_int @ Y5 @ X3 ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( order_Greatest_int @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_233_GreatestI2__order,axiom,
! [P: nat > $o,X: nat,Q: nat > $o] :
( ( P @ X )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ X ) )
=> ( ! [X3: nat] :
( ( P @ X3 )
=> ( ! [Y5: nat] :
( ( P @ Y5 )
=> ( ord_less_eq_nat @ Y5 @ X3 ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( order_Greatest_nat @ P ) ) ) ) ) ).
% GreatestI2_order
thf(fact_234_Greatest__equality,axiom,
! [P: real > $o,X: real] :
( ( P @ X )
=> ( ! [Y: real] :
( ( P @ Y )
=> ( ord_less_eq_real @ Y @ X ) )
=> ( ( order_Greatest_real @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_235_Greatest__equality,axiom,
! [P: risk_Free_account > $o,X: risk_Free_account] :
( ( P @ X )
=> ( ! [Y: risk_Free_account] :
( ( P @ Y )
=> ( ord_le4245800335709223507ccount @ Y @ X ) )
=> ( ( order_4130363404468270554ccount @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_236_Greatest__equality,axiom,
! [P: int > $o,X: int] :
( ( P @ X )
=> ( ! [Y: int] :
( ( P @ Y )
=> ( ord_less_eq_int @ Y @ X ) )
=> ( ( order_Greatest_int @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_237_Greatest__equality,axiom,
! [P: nat > $o,X: nat] :
( ( P @ X )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ X ) )
=> ( ( order_Greatest_nat @ P )
= X ) ) ) ).
% Greatest_equality
thf(fact_238_valid__transfer__alt__def,axiom,
( risk_F1023690899723030139ansfer
= ( ^ [Alpha2: risk_Free_account,Tau: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount @ Tau )
& ( ord_le4245800335709223507ccount @ Tau @ Alpha2 ) ) ) ) ).
% valid_transfer_alt_def
thf(fact_239_le__0__eq,axiom,
! [N2: nat] :
( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
= ( N2 = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_240_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_241_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_242_mult__is__0,axiom,
! [M2: nat,N2: nat] :
( ( ( times_times_nat @ M2 @ N2 )
= zero_zero_nat )
= ( ( M2 = zero_zero_nat )
| ( N2 = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_243_mult__0__right,axiom,
! [M2: nat] :
( ( times_times_nat @ M2 @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_244_mult__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ( times_times_nat @ K @ M2 )
= ( times_times_nat @ K @ N2 ) )
= ( ( M2 = N2 )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_245_mult__cancel2,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ( times_times_nat @ M2 @ K )
= ( times_times_nat @ N2 @ K ) )
= ( ( M2 = N2 )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_246_not__gr__zero,axiom,
! [N2: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
= ( N2 = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_247_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_248_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_249_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_250_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_251_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_252_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_253_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_254_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_255_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_256_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_257_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_258_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_259_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_260_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_261_less__numeral__extra_I1_J,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% less_numeral_extra(1)
thf(fact_262_less__numeral__extra_I1_J,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% less_numeral_extra(1)
thf(fact_263_less__numeral__extra_I1_J,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% less_numeral_extra(1)
thf(fact_264_mult__0,axiom,
! [N2: nat] :
( ( times_times_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ).
% mult_0
thf(fact_265_linorder__neqE__linordered__idom,axiom,
! [X: real,Y2: real] :
( ( X != Y2 )
=> ( ~ ( ord_less_real @ X @ Y2 )
=> ( ord_less_real @ Y2 @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_266_linorder__neqE__linordered__idom,axiom,
! [X: int,Y2: int] :
( ( X != Y2 )
=> ( ~ ( ord_less_int @ X @ Y2 )
=> ( ord_less_int @ Y2 @ X ) ) ) ).
% linorder_neqE_linordered_idom
thf(fact_267_less__numeral__extra_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ one_one_real ) ).
% less_numeral_extra(4)
thf(fact_268_less__numeral__extra_I4_J,axiom,
~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).
% less_numeral_extra(4)
thf(fact_269_less__numeral__extra_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ one_one_int ) ).
% less_numeral_extra(4)
thf(fact_270_only__strictly__solvent__accounts__can__transfer,axiom,
! [Alpha: risk_Free_account,Tau2: risk_Free_account] :
( ( risk_F1023690899723030139ansfer @ Alpha @ Tau2 )
=> ( risk_F1636578016437888323olvent @ Alpha ) ) ).
% only_strictly_solvent_accounts_can_transfer
thf(fact_271_order__less__imp__not__less,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ X @ Y2 )
=> ~ ( ord_less_real @ Y2 @ X ) ) ).
% order_less_imp_not_less
thf(fact_272_order__less__imp__not__less,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_nat @ X @ Y2 )
=> ~ ( ord_less_nat @ Y2 @ X ) ) ).
% order_less_imp_not_less
thf(fact_273_order__less__imp__not__less,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ~ ( ord_le2131251472502387783ccount @ Y2 @ X ) ) ).
% order_less_imp_not_less
thf(fact_274_order__less__imp__not__less,axiom,
! [X: int,Y2: int] :
( ( ord_less_int @ X @ Y2 )
=> ~ ( ord_less_int @ Y2 @ X ) ) ).
% order_less_imp_not_less
thf(fact_275_order__less__imp__not__eq2,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ X @ Y2 )
=> ( Y2 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_276_order__less__imp__not__eq2,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_nat @ X @ Y2 )
=> ( Y2 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_277_order__less__imp__not__eq2,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ( Y2 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_278_order__less__imp__not__eq2,axiom,
! [X: int,Y2: int] :
( ( ord_less_int @ X @ Y2 )
=> ( Y2 != X ) ) ).
% order_less_imp_not_eq2
thf(fact_279_order__less__imp__not__eq,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ X @ Y2 )
=> ( X != Y2 ) ) ).
% order_less_imp_not_eq
thf(fact_280_order__less__imp__not__eq,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_nat @ X @ Y2 )
=> ( X != Y2 ) ) ).
% order_less_imp_not_eq
thf(fact_281_order__less__imp__not__eq,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ( X != Y2 ) ) ).
% order_less_imp_not_eq
thf(fact_282_order__less__imp__not__eq,axiom,
! [X: int,Y2: int] :
( ( ord_less_int @ X @ Y2 )
=> ( X != Y2 ) ) ).
% order_less_imp_not_eq
thf(fact_283_linorder__less__linear,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ X @ Y2 )
| ( X = Y2 )
| ( ord_less_real @ Y2 @ X ) ) ).
% linorder_less_linear
thf(fact_284_linorder__less__linear,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_nat @ X @ Y2 )
| ( X = Y2 )
| ( ord_less_nat @ Y2 @ X ) ) ).
% linorder_less_linear
thf(fact_285_linorder__less__linear,axiom,
! [X: int,Y2: int] :
( ( ord_less_int @ X @ Y2 )
| ( X = Y2 )
| ( ord_less_int @ Y2 @ X ) ) ).
% linorder_less_linear
thf(fact_286_order__less__imp__triv,axiom,
! [X: real,Y2: real,P: $o] :
( ( ord_less_real @ X @ Y2 )
=> ( ( ord_less_real @ Y2 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_287_order__less__imp__triv,axiom,
! [X: nat,Y2: nat,P: $o] :
( ( ord_less_nat @ X @ Y2 )
=> ( ( ord_less_nat @ Y2 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_288_order__less__imp__triv,axiom,
! [X: risk_Free_account,Y2: risk_Free_account,P: $o] :
( ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ( ( ord_le2131251472502387783ccount @ Y2 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_289_order__less__imp__triv,axiom,
! [X: int,Y2: int,P: $o] :
( ( ord_less_int @ X @ Y2 )
=> ( ( ord_less_int @ Y2 @ X )
=> P ) ) ).
% order_less_imp_triv
thf(fact_290_order__less__not__sym,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ X @ Y2 )
=> ~ ( ord_less_real @ Y2 @ X ) ) ).
% order_less_not_sym
thf(fact_291_order__less__not__sym,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_nat @ X @ Y2 )
=> ~ ( ord_less_nat @ Y2 @ X ) ) ).
% order_less_not_sym
thf(fact_292_order__less__not__sym,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ~ ( ord_le2131251472502387783ccount @ Y2 @ X ) ) ).
% order_less_not_sym
thf(fact_293_order__less__not__sym,axiom,
! [X: int,Y2: int] :
( ( ord_less_int @ X @ Y2 )
=> ~ ( ord_less_int @ Y2 @ X ) ) ).
% order_less_not_sym
thf(fact_294_order__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_295_order__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_296_order__less__subst2,axiom,
! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
( ( ord_less_real @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_297_order__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_298_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_299_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_300_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_301_order__less__subst2,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_302_order__less__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_303_order__less__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_subst2
thf(fact_304_order__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_305_order__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_306_order__less__subst1,axiom,
! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_le2131251472502387783ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_307_order__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_308_order__less__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_309_order__less__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_310_order__less__subst1,axiom,
! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_le2131251472502387783ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_311_order__less__subst1,axiom,
! [A: nat,F: int > nat,B: int,C: int] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_312_order__less__subst1,axiom,
! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_313_order__less__subst1,axiom,
! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_less_subst1
thf(fact_314_order__less__irrefl,axiom,
! [X: real] :
~ ( ord_less_real @ X @ X ) ).
% order_less_irrefl
thf(fact_315_order__less__irrefl,axiom,
! [X: nat] :
~ ( ord_less_nat @ X @ X ) ).
% order_less_irrefl
thf(fact_316_order__less__irrefl,axiom,
! [X: risk_Free_account] :
~ ( ord_le2131251472502387783ccount @ X @ X ) ).
% order_less_irrefl
thf(fact_317_order__less__irrefl,axiom,
! [X: int] :
~ ( ord_less_int @ X @ X ) ).
% order_less_irrefl
thf(fact_318_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_319_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_320_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_321_ord__less__eq__subst,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_real @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_322_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_323_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_324_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_325_ord__less__eq__subst,axiom,
! [A: nat,B: nat,F: nat > int,C: int] :
( ( ord_less_nat @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_326_ord__less__eq__subst,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_327_ord__less__eq__subst,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( ( F @ B )
= C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% ord_less_eq_subst
thf(fact_328_ord__eq__less__subst,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_329_ord__eq__less__subst,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_330_ord__eq__less__subst,axiom,
! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_331_ord__eq__less__subst,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_332_ord__eq__less__subst,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_333_ord__eq__less__subst,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_334_ord__eq__less__subst,axiom,
! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_335_ord__eq__less__subst,axiom,
! [A: int,F: nat > int,B: nat,C: nat] :
( ( A
= ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_336_ord__eq__less__subst,axiom,
! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
( ( A
= ( F @ B ) )
=> ( ( ord_le2131251472502387783ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_337_ord__eq__less__subst,axiom,
! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
( ( A
= ( F @ B ) )
=> ( ( ord_le2131251472502387783ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% ord_eq_less_subst
thf(fact_338_order__less__trans,axiom,
! [X: real,Y2: real,Z2: real] :
( ( ord_less_real @ X @ Y2 )
=> ( ( ord_less_real @ Y2 @ Z2 )
=> ( ord_less_real @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_339_order__less__trans,axiom,
! [X: nat,Y2: nat,Z2: nat] :
( ( ord_less_nat @ X @ Y2 )
=> ( ( ord_less_nat @ Y2 @ Z2 )
=> ( ord_less_nat @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_340_order__less__trans,axiom,
! [X: risk_Free_account,Y2: risk_Free_account,Z2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ( ( ord_le2131251472502387783ccount @ Y2 @ Z2 )
=> ( ord_le2131251472502387783ccount @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_341_order__less__trans,axiom,
! [X: int,Y2: int,Z2: int] :
( ( ord_less_int @ X @ Y2 )
=> ( ( ord_less_int @ Y2 @ Z2 )
=> ( ord_less_int @ X @ Z2 ) ) ) ).
% order_less_trans
thf(fact_342_order__less__asym_H,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order_less_asym'
thf(fact_343_order__less__asym_H,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order_less_asym'
thf(fact_344_order__less__asym_H,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ~ ( ord_le2131251472502387783ccount @ B @ A ) ) ).
% order_less_asym'
thf(fact_345_order__less__asym_H,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order_less_asym'
thf(fact_346_linorder__neq__iff,axiom,
! [X: real,Y2: real] :
( ( X != Y2 )
= ( ( ord_less_real @ X @ Y2 )
| ( ord_less_real @ Y2 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_347_linorder__neq__iff,axiom,
! [X: nat,Y2: nat] :
( ( X != Y2 )
= ( ( ord_less_nat @ X @ Y2 )
| ( ord_less_nat @ Y2 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_348_linorder__neq__iff,axiom,
! [X: int,Y2: int] :
( ( X != Y2 )
= ( ( ord_less_int @ X @ Y2 )
| ( ord_less_int @ Y2 @ X ) ) ) ).
% linorder_neq_iff
thf(fact_349_order__less__asym,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ X @ Y2 )
=> ~ ( ord_less_real @ Y2 @ X ) ) ).
% order_less_asym
thf(fact_350_order__less__asym,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_nat @ X @ Y2 )
=> ~ ( ord_less_nat @ Y2 @ X ) ) ).
% order_less_asym
thf(fact_351_order__less__asym,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ~ ( ord_le2131251472502387783ccount @ Y2 @ X ) ) ).
% order_less_asym
thf(fact_352_order__less__asym,axiom,
! [X: int,Y2: int] :
( ( ord_less_int @ X @ Y2 )
=> ~ ( ord_less_int @ Y2 @ X ) ) ).
% order_less_asym
thf(fact_353_linorder__neqE,axiom,
! [X: real,Y2: real] :
( ( X != Y2 )
=> ( ~ ( ord_less_real @ X @ Y2 )
=> ( ord_less_real @ Y2 @ X ) ) ) ).
% linorder_neqE
thf(fact_354_linorder__neqE,axiom,
! [X: nat,Y2: nat] :
( ( X != Y2 )
=> ( ~ ( ord_less_nat @ X @ Y2 )
=> ( ord_less_nat @ Y2 @ X ) ) ) ).
% linorder_neqE
thf(fact_355_linorder__neqE,axiom,
! [X: int,Y2: int] :
( ( X != Y2 )
=> ( ~ ( ord_less_int @ X @ Y2 )
=> ( ord_less_int @ Y2 @ X ) ) ) ).
% linorder_neqE
thf(fact_356_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_357_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_358_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_359_dual__order_Ostrict__implies__not__eq,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_360_dual__order_Ostrict__implies__not__eq,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_361_dual__order_Ostrict__implies__not__eq,axiom,
! [B: risk_Free_account,A: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_362_dual__order_Ostrict__implies__not__eq,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( A != B ) ) ).
% dual_order.strict_implies_not_eq
thf(fact_363_order_Ostrict__implies__not__eq,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_364_order_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_365_order_Ostrict__implies__not__eq,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_366_order_Ostrict__implies__not__eq,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( A != B ) ) ).
% order.strict_implies_not_eq
thf(fact_367_dual__order_Ostrict__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_368_dual__order_Ostrict__trans,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_369_dual__order_Ostrict__trans,axiom,
! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ B @ A )
=> ( ( ord_le2131251472502387783ccount @ C @ B )
=> ( ord_le2131251472502387783ccount @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_370_dual__order_Ostrict__trans,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans
thf(fact_371_not__less__iff__gr__or__eq,axiom,
! [X: real,Y2: real] :
( ( ~ ( ord_less_real @ X @ Y2 ) )
= ( ( ord_less_real @ Y2 @ X )
| ( X = Y2 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_372_not__less__iff__gr__or__eq,axiom,
! [X: nat,Y2: nat] :
( ( ~ ( ord_less_nat @ X @ Y2 ) )
= ( ( ord_less_nat @ Y2 @ X )
| ( X = Y2 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_373_not__less__iff__gr__or__eq,axiom,
! [X: int,Y2: int] :
( ( ~ ( ord_less_int @ X @ Y2 ) )
= ( ( ord_less_int @ Y2 @ X )
| ( X = Y2 ) ) ) ).
% not_less_iff_gr_or_eq
thf(fact_374_order_Ostrict__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_375_order_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_376_order_Ostrict__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ B @ C )
=> ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_377_order_Ostrict__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans
thf(fact_378_linorder__less__wlog,axiom,
! [P: real > real > $o,A: real,B: real] :
( ! [A3: real,B3: real] :
( ( ord_less_real @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: real] : ( P @ A3 @ A3 )
=> ( ! [A3: real,B3: real] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_379_linorder__less__wlog,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A3: nat,B3: nat] :
( ( ord_less_nat @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: nat] : ( P @ A3 @ A3 )
=> ( ! [A3: nat,B3: nat] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_380_linorder__less__wlog,axiom,
! [P: int > int > $o,A: int,B: int] :
( ! [A3: int,B3: int] :
( ( ord_less_int @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: int] : ( P @ A3 @ A3 )
=> ( ! [A3: int,B3: int] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A @ B ) ) ) ) ).
% linorder_less_wlog
thf(fact_381_exists__least__iff,axiom,
( ( ^ [P2: nat > $o] :
? [X5: nat] : ( P2 @ X5 ) )
= ( ^ [P3: nat > $o] :
? [N3: nat] :
( ( P3 @ N3 )
& ! [M3: nat] :
( ( ord_less_nat @ M3 @ N3 )
=> ~ ( P3 @ M3 ) ) ) ) ) ).
% exists_least_iff
thf(fact_382_dual__order_Oirrefl,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% dual_order.irrefl
thf(fact_383_dual__order_Oirrefl,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% dual_order.irrefl
thf(fact_384_dual__order_Oirrefl,axiom,
! [A: risk_Free_account] :
~ ( ord_le2131251472502387783ccount @ A @ A ) ).
% dual_order.irrefl
thf(fact_385_dual__order_Oirrefl,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% dual_order.irrefl
thf(fact_386_dual__order_Oasym,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ~ ( ord_less_real @ A @ B ) ) ).
% dual_order.asym
thf(fact_387_dual__order_Oasym,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ~ ( ord_less_nat @ A @ B ) ) ).
% dual_order.asym
thf(fact_388_dual__order_Oasym,axiom,
! [B: risk_Free_account,A: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ B @ A )
=> ~ ( ord_le2131251472502387783ccount @ A @ B ) ) ).
% dual_order.asym
thf(fact_389_dual__order_Oasym,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ~ ( ord_less_int @ A @ B ) ) ).
% dual_order.asym
thf(fact_390_linorder__cases,axiom,
! [X: real,Y2: real] :
( ~ ( ord_less_real @ X @ Y2 )
=> ( ( X != Y2 )
=> ( ord_less_real @ Y2 @ X ) ) ) ).
% linorder_cases
thf(fact_391_linorder__cases,axiom,
! [X: nat,Y2: nat] :
( ~ ( ord_less_nat @ X @ Y2 )
=> ( ( X != Y2 )
=> ( ord_less_nat @ Y2 @ X ) ) ) ).
% linorder_cases
thf(fact_392_linorder__cases,axiom,
! [X: int,Y2: int] :
( ~ ( ord_less_int @ X @ Y2 )
=> ( ( X != Y2 )
=> ( ord_less_int @ Y2 @ X ) ) ) ).
% linorder_cases
thf(fact_393_antisym__conv3,axiom,
! [Y2: real,X: real] :
( ~ ( ord_less_real @ Y2 @ X )
=> ( ( ~ ( ord_less_real @ X @ Y2 ) )
= ( X = Y2 ) ) ) ).
% antisym_conv3
thf(fact_394_antisym__conv3,axiom,
! [Y2: nat,X: nat] :
( ~ ( ord_less_nat @ Y2 @ X )
=> ( ( ~ ( ord_less_nat @ X @ Y2 ) )
= ( X = Y2 ) ) ) ).
% antisym_conv3
thf(fact_395_antisym__conv3,axiom,
! [Y2: int,X: int] :
( ~ ( ord_less_int @ Y2 @ X )
=> ( ( ~ ( ord_less_int @ X @ Y2 ) )
= ( X = Y2 ) ) ) ).
% antisym_conv3
thf(fact_396_less__induct,axiom,
! [P: nat > $o,A: nat] :
( ! [X3: nat] :
( ! [Y5: nat] :
( ( ord_less_nat @ Y5 @ X3 )
=> ( P @ Y5 ) )
=> ( P @ X3 ) )
=> ( P @ A ) ) ).
% less_induct
thf(fact_397_ord__less__eq__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( B = C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_398_ord__less__eq__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( B = C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_399_ord__less__eq__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( B = C )
=> ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_400_ord__less__eq__trans,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( B = C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_less_eq_trans
thf(fact_401_ord__eq__less__trans,axiom,
! [A: real,B: real,C: real] :
( ( A = B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_402_ord__eq__less__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( A = B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_403_ord__eq__less__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( A = B )
=> ( ( ord_le2131251472502387783ccount @ B @ C )
=> ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_404_ord__eq__less__trans,axiom,
! [A: int,B: int,C: int] :
( ( A = B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% ord_eq_less_trans
thf(fact_405_order_Oasym,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ~ ( ord_less_real @ B @ A ) ) ).
% order.asym
thf(fact_406_order_Oasym,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ~ ( ord_less_nat @ B @ A ) ) ).
% order.asym
thf(fact_407_order_Oasym,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ~ ( ord_le2131251472502387783ccount @ B @ A ) ) ).
% order.asym
thf(fact_408_order_Oasym,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ~ ( ord_less_int @ B @ A ) ) ).
% order.asym
thf(fact_409_less__imp__neq,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ X @ Y2 )
=> ( X != Y2 ) ) ).
% less_imp_neq
thf(fact_410_less__imp__neq,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_nat @ X @ Y2 )
=> ( X != Y2 ) ) ).
% less_imp_neq
thf(fact_411_less__imp__neq,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ( X != Y2 ) ) ).
% less_imp_neq
thf(fact_412_less__imp__neq,axiom,
! [X: int,Y2: int] :
( ( ord_less_int @ X @ Y2 )
=> ( X != Y2 ) ) ).
% less_imp_neq
thf(fact_413_dense,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ X @ Y2 )
=> ? [Z4: real] :
( ( ord_less_real @ X @ Z4 )
& ( ord_less_real @ Z4 @ Y2 ) ) ) ).
% dense
thf(fact_414_gt__ex,axiom,
! [X: real] :
? [X_1: real] : ( ord_less_real @ X @ X_1 ) ).
% gt_ex
thf(fact_415_gt__ex,axiom,
! [X: nat] :
? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).
% gt_ex
thf(fact_416_gt__ex,axiom,
! [X: int] :
? [X_1: int] : ( ord_less_int @ X @ X_1 ) ).
% gt_ex
thf(fact_417_lt__ex,axiom,
! [X: real] :
? [Y: real] : ( ord_less_real @ Y @ X ) ).
% lt_ex
thf(fact_418_lt__ex,axiom,
! [X: int] :
? [Y: int] : ( ord_less_int @ Y @ X ) ).
% lt_ex
thf(fact_419_verit__comp__simplify1_I1_J,axiom,
! [A: real] :
~ ( ord_less_real @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_420_verit__comp__simplify1_I1_J,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_421_verit__comp__simplify1_I1_J,axiom,
! [A: risk_Free_account] :
~ ( ord_le2131251472502387783ccount @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_422_verit__comp__simplify1_I1_J,axiom,
! [A: int] :
~ ( ord_less_int @ A @ A ) ).
% verit_comp_simplify1(1)
thf(fact_423_not__one__less__zero,axiom,
~ ( ord_less_real @ one_one_real @ zero_zero_real ) ).
% not_one_less_zero
thf(fact_424_not__one__less__zero,axiom,
~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_less_zero
thf(fact_425_not__one__less__zero,axiom,
~ ( ord_less_int @ one_one_int @ zero_zero_int ) ).
% not_one_less_zero
thf(fact_426_zero__less__one,axiom,
ord_less_real @ zero_zero_real @ one_one_real ).
% zero_less_one
thf(fact_427_zero__less__one,axiom,
ord_less_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one
thf(fact_428_zero__less__one,axiom,
ord_less_int @ zero_zero_int @ one_one_int ).
% zero_less_one
thf(fact_429_less__1__mult,axiom,
! [M2: real,N2: real] :
( ( ord_less_real @ one_one_real @ M2 )
=> ( ( ord_less_real @ one_one_real @ N2 )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M2 @ N2 ) ) ) ) ).
% less_1_mult
thf(fact_430_less__1__mult,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ M2 )
=> ( ( ord_less_nat @ one_one_nat @ N2 )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M2 @ N2 ) ) ) ) ).
% less_1_mult
thf(fact_431_less__1__mult,axiom,
! [M2: int,N2: int] :
( ( ord_less_int @ one_one_int @ M2 )
=> ( ( ord_less_int @ one_one_int @ N2 )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M2 @ N2 ) ) ) ) ).
% less_1_mult
thf(fact_432_less__numeral__extra_I3_J,axiom,
~ ( ord_less_real @ zero_zero_real @ zero_zero_real ) ).
% less_numeral_extra(3)
thf(fact_433_less__numeral__extra_I3_J,axiom,
~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).
% less_numeral_extra(3)
thf(fact_434_less__numeral__extra_I3_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_numeral_extra(3)
thf(fact_435_le__numeral__extra_I4_J,axiom,
ord_less_eq_real @ one_one_real @ one_one_real ).
% le_numeral_extra(4)
thf(fact_436_le__numeral__extra_I4_J,axiom,
ord_less_eq_nat @ one_one_nat @ one_one_nat ).
% le_numeral_extra(4)
thf(fact_437_le__numeral__extra_I4_J,axiom,
ord_less_eq_int @ one_one_int @ one_one_int ).
% le_numeral_extra(4)
thf(fact_438_GreatestI__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_nat
thf(fact_439_Greatest__le__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P ) ) ) ) ).
% Greatest_le_nat
thf(fact_440_GreatestI__ex__nat,axiom,
! [P: nat > $o,B: nat] :
( ? [X_12: nat] : ( P @ X_12 )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ( P @ ( order_Greatest_nat @ P ) ) ) ) ).
% GreatestI_ex_nat
thf(fact_441_order__le__imp__less__or__eq,axiom,
! [X: real,Y2: real] :
( ( ord_less_eq_real @ X @ Y2 )
=> ( ( ord_less_real @ X @ Y2 )
| ( X = Y2 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_442_order__le__imp__less__or__eq,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X @ Y2 )
=> ( ( ord_le2131251472502387783ccount @ X @ Y2 )
| ( X = Y2 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_443_order__le__imp__less__or__eq,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_eq_nat @ X @ Y2 )
=> ( ( ord_less_nat @ X @ Y2 )
| ( X = Y2 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_444_order__le__imp__less__or__eq,axiom,
! [X: int,Y2: int] :
( ( ord_less_eq_int @ X @ Y2 )
=> ( ( ord_less_int @ X @ Y2 )
| ( X = Y2 ) ) ) ).
% order_le_imp_less_or_eq
thf(fact_445_linorder__le__less__linear,axiom,
! [X: real,Y2: real] :
( ( ord_less_eq_real @ X @ Y2 )
| ( ord_less_real @ Y2 @ X ) ) ).
% linorder_le_less_linear
thf(fact_446_linorder__le__less__linear,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_eq_nat @ X @ Y2 )
| ( ord_less_nat @ Y2 @ X ) ) ).
% linorder_le_less_linear
thf(fact_447_linorder__le__less__linear,axiom,
! [X: int,Y2: int] :
( ( ord_less_eq_int @ X @ Y2 )
| ( ord_less_int @ Y2 @ X ) ) ).
% linorder_le_less_linear
thf(fact_448_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_449_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_450_order__less__le__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_451_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > real,C: real] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_real @ ( F @ B ) @ C )
=> ( ! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_452_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
( ( ord_less_real @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_453_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_454_order__less__le__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_455_order__less__le__subst2,axiom,
! [A: int,B: int,F: int > risk_Free_account,C: risk_Free_account] :
( ( ord_less_int @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ ( F @ B ) @ C )
=> ( ! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_456_order__less__le__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_457_order__less__le__subst2,axiom,
! [A: nat,B: nat,F: nat > nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_less_le_subst2
thf(fact_458_order__less__le__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_459_order__less__le__subst1,axiom,
! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_460_order__less__le__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_461_order__less__le__subst1,axiom,
! [A: int,F: real > int,B: real,C: real] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_462_order__less__le__subst1,axiom,
! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_463_order__less__le__subst1,axiom,
! [A: risk_Free_account,F: risk_Free_account > risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_464_order__less__le__subst1,axiom,
! [A: nat,F: risk_Free_account > nat,B: risk_Free_account,C: risk_Free_account] :
( ( ord_less_nat @ A @ ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_465_order__less__le__subst1,axiom,
! [A: int,F: risk_Free_account > int,B: risk_Free_account,C: risk_Free_account] :
( ( ord_less_int @ A @ ( F @ B ) )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_466_order__less__le__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_real @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_467_order__less__le__subst1,axiom,
! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
( ( ord_le2131251472502387783ccount @ A @ ( F @ B ) )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_less_le_subst1
thf(fact_468_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_469_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_470_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > nat,C: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_471_order__le__less__subst2,axiom,
! [A: real,B: real,F: real > int,C: int] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_eq_real @ X3 @ Y )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_472_order__le__less__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > real,C: real] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_473_order__le__less__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_474_order__le__less__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > nat,C: nat] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_less_nat @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_475_order__le__less__subst2,axiom,
! [A: risk_Free_account,B: risk_Free_account,F: risk_Free_account > int,C: int] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_less_int @ ( F @ B ) @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X3 @ Y )
=> ( ord_less_eq_int @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_int @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_476_order__le__less__subst2,axiom,
! [A: nat,B: nat,F: nat > real,C: real] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_real @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_less_eq_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_477_order__le__less__subst2,axiom,
! [A: nat,B: nat,F: nat > risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ ( F @ B ) @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_eq_nat @ X3 @ Y )
=> ( ord_le4245800335709223507ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ ( F @ A ) @ C ) ) ) ) ).
% order_le_less_subst2
thf(fact_478_order__le__less__subst1,axiom,
! [A: real,F: real > real,B: real,C: real] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_479_order__le__less__subst1,axiom,
! [A: real,F: nat > real,B: nat,C: nat] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_480_order__le__less__subst1,axiom,
! [A: real,F: risk_Free_account > real,B: risk_Free_account,C: risk_Free_account] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_le2131251472502387783ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_481_order__le__less__subst1,axiom,
! [A: real,F: int > real,B: int,C: int] :
( ( ord_less_eq_real @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ( ord_less_real @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_real @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_482_order__le__less__subst1,axiom,
! [A: risk_Free_account,F: real > risk_Free_account,B: real,C: real] :
( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_483_order__le__less__subst1,axiom,
! [A: risk_Free_account,F: nat > risk_Free_account,B: nat,C: nat] :
( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_484_order__le__less__subst1,axiom,
! [A: risk_Free_account,F: risk_Free_account > risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
=> ( ( ord_le2131251472502387783ccount @ B @ C )
=> ( ! [X3: risk_Free_account,Y: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_485_order__le__less__subst1,axiom,
! [A: risk_Free_account,F: int > risk_Free_account,B: int,C: int] :
( ( ord_le4245800335709223507ccount @ A @ ( F @ B ) )
=> ( ( ord_less_int @ B @ C )
=> ( ! [X3: int,Y: int] :
( ( ord_less_int @ X3 @ Y )
=> ( ord_le2131251472502387783ccount @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_le2131251472502387783ccount @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_486_order__le__less__subst1,axiom,
! [A: nat,F: real > nat,B: real,C: real] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_real @ B @ C )
=> ( ! [X3: real,Y: real] :
( ( ord_less_real @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_487_order__le__less__subst1,axiom,
! [A: nat,F: nat > nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ ( F @ B ) )
=> ( ( ord_less_nat @ B @ C )
=> ( ! [X3: nat,Y: nat] :
( ( ord_less_nat @ X3 @ Y )
=> ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y ) ) )
=> ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).
% order_le_less_subst1
thf(fact_488_order__less__le__trans,axiom,
! [X: real,Y2: real,Z2: real] :
( ( ord_less_real @ X @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ Z2 )
=> ( ord_less_real @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_489_order__less__le__trans,axiom,
! [X: risk_Free_account,Y2: risk_Free_account,Z2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ( ( ord_le4245800335709223507ccount @ Y2 @ Z2 )
=> ( ord_le2131251472502387783ccount @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_490_order__less__le__trans,axiom,
! [X: nat,Y2: nat,Z2: nat] :
( ( ord_less_nat @ X @ Y2 )
=> ( ( ord_less_eq_nat @ Y2 @ Z2 )
=> ( ord_less_nat @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_491_order__less__le__trans,axiom,
! [X: int,Y2: int,Z2: int] :
( ( ord_less_int @ X @ Y2 )
=> ( ( ord_less_eq_int @ Y2 @ Z2 )
=> ( ord_less_int @ X @ Z2 ) ) ) ).
% order_less_le_trans
thf(fact_492_order__le__less__trans,axiom,
! [X: real,Y2: real,Z2: real] :
( ( ord_less_eq_real @ X @ Y2 )
=> ( ( ord_less_real @ Y2 @ Z2 )
=> ( ord_less_real @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_493_order__le__less__trans,axiom,
! [X: risk_Free_account,Y2: risk_Free_account,Z2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X @ Y2 )
=> ( ( ord_le2131251472502387783ccount @ Y2 @ Z2 )
=> ( ord_le2131251472502387783ccount @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_494_order__le__less__trans,axiom,
! [X: nat,Y2: nat,Z2: nat] :
( ( ord_less_eq_nat @ X @ Y2 )
=> ( ( ord_less_nat @ Y2 @ Z2 )
=> ( ord_less_nat @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_495_order__le__less__trans,axiom,
! [X: int,Y2: int,Z2: int] :
( ( ord_less_eq_int @ X @ Y2 )
=> ( ( ord_less_int @ Y2 @ Z2 )
=> ( ord_less_int @ X @ Z2 ) ) ) ).
% order_le_less_trans
thf(fact_496_order__neq__le__trans,axiom,
! [A: real,B: real] :
( ( A != B )
=> ( ( ord_less_eq_real @ A @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_497_order__neq__le__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( A != B )
=> ( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ord_le2131251472502387783ccount @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_498_order__neq__le__trans,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( ord_less_eq_nat @ A @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_499_order__neq__le__trans,axiom,
! [A: int,B: int] :
( ( A != B )
=> ( ( ord_less_eq_int @ A @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_neq_le_trans
thf(fact_500_order__le__neq__trans,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( A != B )
=> ( ord_less_real @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_501_order__le__neq__trans,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( A != B )
=> ( ord_le2131251472502387783ccount @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_502_order__le__neq__trans,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( A != B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_503_order__le__neq__trans,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( A != B )
=> ( ord_less_int @ A @ B ) ) ) ).
% order_le_neq_trans
thf(fact_504_order__less__imp__le,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ X @ Y2 )
=> ( ord_less_eq_real @ X @ Y2 ) ) ).
% order_less_imp_le
thf(fact_505_order__less__imp__le,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ( ord_le4245800335709223507ccount @ X @ Y2 ) ) ).
% order_less_imp_le
thf(fact_506_order__less__imp__le,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_nat @ X @ Y2 )
=> ( ord_less_eq_nat @ X @ Y2 ) ) ).
% order_less_imp_le
thf(fact_507_order__less__imp__le,axiom,
! [X: int,Y2: int] :
( ( ord_less_int @ X @ Y2 )
=> ( ord_less_eq_int @ X @ Y2 ) ) ).
% order_less_imp_le
thf(fact_508_linorder__not__less,axiom,
! [X: real,Y2: real] :
( ( ~ ( ord_less_real @ X @ Y2 ) )
= ( ord_less_eq_real @ Y2 @ X ) ) ).
% linorder_not_less
thf(fact_509_linorder__not__less,axiom,
! [X: nat,Y2: nat] :
( ( ~ ( ord_less_nat @ X @ Y2 ) )
= ( ord_less_eq_nat @ Y2 @ X ) ) ).
% linorder_not_less
thf(fact_510_linorder__not__less,axiom,
! [X: int,Y2: int] :
( ( ~ ( ord_less_int @ X @ Y2 ) )
= ( ord_less_eq_int @ Y2 @ X ) ) ).
% linorder_not_less
thf(fact_511_linorder__not__le,axiom,
! [X: real,Y2: real] :
( ( ~ ( ord_less_eq_real @ X @ Y2 ) )
= ( ord_less_real @ Y2 @ X ) ) ).
% linorder_not_le
thf(fact_512_linorder__not__le,axiom,
! [X: nat,Y2: nat] :
( ( ~ ( ord_less_eq_nat @ X @ Y2 ) )
= ( ord_less_nat @ Y2 @ X ) ) ).
% linorder_not_le
thf(fact_513_linorder__not__le,axiom,
! [X: int,Y2: int] :
( ( ~ ( ord_less_eq_int @ X @ Y2 ) )
= ( ord_less_int @ Y2 @ X ) ) ).
% linorder_not_le
thf(fact_514_order__less__le,axiom,
( ord_less_real
= ( ^ [X4: real,Y4: real] :
( ( ord_less_eq_real @ X4 @ Y4 )
& ( X4 != Y4 ) ) ) ) ).
% order_less_le
thf(fact_515_order__less__le,axiom,
( ord_le2131251472502387783ccount
= ( ^ [X4: risk_Free_account,Y4: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X4 @ Y4 )
& ( X4 != Y4 ) ) ) ) ).
% order_less_le
thf(fact_516_order__less__le,axiom,
( ord_less_nat
= ( ^ [X4: nat,Y4: nat] :
( ( ord_less_eq_nat @ X4 @ Y4 )
& ( X4 != Y4 ) ) ) ) ).
% order_less_le
thf(fact_517_order__less__le,axiom,
( ord_less_int
= ( ^ [X4: int,Y4: int] :
( ( ord_less_eq_int @ X4 @ Y4 )
& ( X4 != Y4 ) ) ) ) ).
% order_less_le
thf(fact_518_order__le__less,axiom,
( ord_less_eq_real
= ( ^ [X4: real,Y4: real] :
( ( ord_less_real @ X4 @ Y4 )
| ( X4 = Y4 ) ) ) ) ).
% order_le_less
thf(fact_519_order__le__less,axiom,
( ord_le4245800335709223507ccount
= ( ^ [X4: risk_Free_account,Y4: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ X4 @ Y4 )
| ( X4 = Y4 ) ) ) ) ).
% order_le_less
thf(fact_520_order__le__less,axiom,
( ord_less_eq_nat
= ( ^ [X4: nat,Y4: nat] :
( ( ord_less_nat @ X4 @ Y4 )
| ( X4 = Y4 ) ) ) ) ).
% order_le_less
thf(fact_521_order__le__less,axiom,
( ord_less_eq_int
= ( ^ [X4: int,Y4: int] :
( ( ord_less_int @ X4 @ Y4 )
| ( X4 = Y4 ) ) ) ) ).
% order_le_less
thf(fact_522_dual__order_Ostrict__implies__order,axiom,
! [B: real,A: real] :
( ( ord_less_real @ B @ A )
=> ( ord_less_eq_real @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_523_dual__order_Ostrict__implies__order,axiom,
! [B: risk_Free_account,A: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ B @ A )
=> ( ord_le4245800335709223507ccount @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_524_dual__order_Ostrict__implies__order,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ B @ A )
=> ( ord_less_eq_nat @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_525_dual__order_Ostrict__implies__order,axiom,
! [B: int,A: int] :
( ( ord_less_int @ B @ A )
=> ( ord_less_eq_int @ B @ A ) ) ).
% dual_order.strict_implies_order
thf(fact_526_order_Ostrict__implies__order,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_eq_real @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_527_order_Ostrict__implies__order,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ord_le4245800335709223507ccount @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_528_order_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ B )
=> ( ord_less_eq_nat @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_529_order_Ostrict__implies__order,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ B )
=> ( ord_less_eq_int @ A @ B ) ) ).
% order.strict_implies_order
thf(fact_530_dual__order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [B2: real,A2: real] :
( ( ord_less_eq_real @ B2 @ A2 )
& ~ ( ord_less_eq_real @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_531_dual__order_Ostrict__iff__not,axiom,
( ord_le2131251472502387783ccount
= ( ^ [B2: risk_Free_account,A2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B2 @ A2 )
& ~ ( ord_le4245800335709223507ccount @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_532_dual__order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
& ~ ( ord_less_eq_nat @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_533_dual__order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [B2: int,A2: int] :
( ( ord_less_eq_int @ B2 @ A2 )
& ~ ( ord_less_eq_int @ A2 @ B2 ) ) ) ) ).
% dual_order.strict_iff_not
thf(fact_534_dual__order_Ostrict__trans2,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_535_dual__order_Ostrict__trans2,axiom,
! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ B @ A )
=> ( ( ord_le4245800335709223507ccount @ C @ B )
=> ( ord_le2131251472502387783ccount @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_536_dual__order_Ostrict__trans2,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_nat @ B @ A )
=> ( ( ord_less_eq_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_537_dual__order_Ostrict__trans2,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_eq_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans2
thf(fact_538_dual__order_Ostrict__trans1,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_real @ C @ B )
=> ( ord_less_real @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_539_dual__order_Ostrict__trans1,axiom,
! [B: risk_Free_account,A: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B @ A )
=> ( ( ord_le2131251472502387783ccount @ C @ B )
=> ( ord_le2131251472502387783ccount @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_540_dual__order_Ostrict__trans1,axiom,
! [B: nat,A: nat,C: nat] :
( ( ord_less_eq_nat @ B @ A )
=> ( ( ord_less_nat @ C @ B )
=> ( ord_less_nat @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_541_dual__order_Ostrict__trans1,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_eq_int @ B @ A )
=> ( ( ord_less_int @ C @ B )
=> ( ord_less_int @ C @ A ) ) ) ).
% dual_order.strict_trans1
thf(fact_542_dual__order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [B2: real,A2: real] :
( ( ord_less_eq_real @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_543_dual__order_Ostrict__iff__order,axiom,
( ord_le2131251472502387783ccount
= ( ^ [B2: risk_Free_account,A2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_544_dual__order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [B2: nat,A2: nat] :
( ( ord_less_eq_nat @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_545_dual__order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [B2: int,A2: int] :
( ( ord_less_eq_int @ B2 @ A2 )
& ( A2 != B2 ) ) ) ) ).
% dual_order.strict_iff_order
thf(fact_546_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [B2: real,A2: real] :
( ( ord_less_real @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_547_dual__order_Oorder__iff__strict,axiom,
( ord_le4245800335709223507ccount
= ( ^ [B2: risk_Free_account,A2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_548_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [B2: nat,A2: nat] :
( ( ord_less_nat @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_549_dual__order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [B2: int,A2: int] :
( ( ord_less_int @ B2 @ A2 )
| ( A2 = B2 ) ) ) ) ).
% dual_order.order_iff_strict
thf(fact_550_dense__le__bounded,axiom,
! [X: real,Y2: real,Z2: real] :
( ( ord_less_real @ X @ Y2 )
=> ( ! [W: real] :
( ( ord_less_real @ X @ W )
=> ( ( ord_less_real @ W @ Y2 )
=> ( ord_less_eq_real @ W @ Z2 ) ) )
=> ( ord_less_eq_real @ Y2 @ Z2 ) ) ) ).
% dense_le_bounded
thf(fact_551_dense__ge__bounded,axiom,
! [Z2: real,X: real,Y2: real] :
( ( ord_less_real @ Z2 @ X )
=> ( ! [W: real] :
( ( ord_less_real @ Z2 @ W )
=> ( ( ord_less_real @ W @ X )
=> ( ord_less_eq_real @ Y2 @ W ) ) )
=> ( ord_less_eq_real @ Y2 @ Z2 ) ) ) ).
% dense_ge_bounded
thf(fact_552_order_Ostrict__iff__not,axiom,
( ord_less_real
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ A2 @ B2 )
& ~ ( ord_less_eq_real @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_553_order_Ostrict__iff__not,axiom,
( ord_le2131251472502387783ccount
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A2 @ B2 )
& ~ ( ord_le4245800335709223507ccount @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_554_order_Ostrict__iff__not,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
& ~ ( ord_less_eq_nat @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_555_order_Ostrict__iff__not,axiom,
( ord_less_int
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ A2 @ B2 )
& ~ ( ord_less_eq_int @ B2 @ A2 ) ) ) ) ).
% order.strict_iff_not
thf(fact_556_order_Ostrict__trans2,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_557_order_Ostrict__trans2,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A @ B )
=> ( ( ord_le4245800335709223507ccount @ B @ C )
=> ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_558_order_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_559_order_Ostrict__trans2,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans2
thf(fact_560_order_Ostrict__trans1,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ B @ C )
=> ( ord_less_real @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_561_order_Ostrict__trans1,axiom,
! [A: risk_Free_account,B: risk_Free_account,C: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A @ B )
=> ( ( ord_le2131251472502387783ccount @ B @ C )
=> ( ord_le2131251472502387783ccount @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_562_order_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ B @ C )
=> ( ord_less_nat @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_563_order_Ostrict__trans1,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ B @ C )
=> ( ord_less_int @ A @ C ) ) ) ).
% order.strict_trans1
thf(fact_564_order_Ostrict__iff__order,axiom,
( ord_less_real
= ( ^ [A2: real,B2: real] :
( ( ord_less_eq_real @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_565_order_Ostrict__iff__order,axiom,
( ord_le2131251472502387783ccount
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_566_order_Ostrict__iff__order,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_eq_nat @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_567_order_Ostrict__iff__order,axiom,
( ord_less_int
= ( ^ [A2: int,B2: int] :
( ( ord_less_eq_int @ A2 @ B2 )
& ( A2 != B2 ) ) ) ) ).
% order.strict_iff_order
thf(fact_568_order_Oorder__iff__strict,axiom,
( ord_less_eq_real
= ( ^ [A2: real,B2: real] :
( ( ord_less_real @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_569_order_Oorder__iff__strict,axiom,
( ord_le4245800335709223507ccount
= ( ^ [A2: risk_Free_account,B2: risk_Free_account] :
( ( ord_le2131251472502387783ccount @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_570_order_Oorder__iff__strict,axiom,
( ord_less_eq_nat
= ( ^ [A2: nat,B2: nat] :
( ( ord_less_nat @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_571_order_Oorder__iff__strict,axiom,
( ord_less_eq_int
= ( ^ [A2: int,B2: int] :
( ( ord_less_int @ A2 @ B2 )
| ( A2 = B2 ) ) ) ) ).
% order.order_iff_strict
thf(fact_572_not__le__imp__less,axiom,
! [Y2: real,X: real] :
( ~ ( ord_less_eq_real @ Y2 @ X )
=> ( ord_less_real @ X @ Y2 ) ) ).
% not_le_imp_less
thf(fact_573_not__le__imp__less,axiom,
! [Y2: nat,X: nat] :
( ~ ( ord_less_eq_nat @ Y2 @ X )
=> ( ord_less_nat @ X @ Y2 ) ) ).
% not_le_imp_less
thf(fact_574_not__le__imp__less,axiom,
! [Y2: int,X: int] :
( ~ ( ord_less_eq_int @ Y2 @ X )
=> ( ord_less_int @ X @ Y2 ) ) ).
% not_le_imp_less
thf(fact_575_less__le__not__le,axiom,
( ord_less_real
= ( ^ [X4: real,Y4: real] :
( ( ord_less_eq_real @ X4 @ Y4 )
& ~ ( ord_less_eq_real @ Y4 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_576_less__le__not__le,axiom,
( ord_le2131251472502387783ccount
= ( ^ [X4: risk_Free_account,Y4: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X4 @ Y4 )
& ~ ( ord_le4245800335709223507ccount @ Y4 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_577_less__le__not__le,axiom,
( ord_less_nat
= ( ^ [X4: nat,Y4: nat] :
( ( ord_less_eq_nat @ X4 @ Y4 )
& ~ ( ord_less_eq_nat @ Y4 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_578_less__le__not__le,axiom,
( ord_less_int
= ( ^ [X4: int,Y4: int] :
( ( ord_less_eq_int @ X4 @ Y4 )
& ~ ( ord_less_eq_int @ Y4 @ X4 ) ) ) ) ).
% less_le_not_le
thf(fact_579_dense__le,axiom,
! [Y2: real,Z2: real] :
( ! [X3: real] :
( ( ord_less_real @ X3 @ Y2 )
=> ( ord_less_eq_real @ X3 @ Z2 ) )
=> ( ord_less_eq_real @ Y2 @ Z2 ) ) ).
% dense_le
thf(fact_580_dense__ge,axiom,
! [Z2: real,Y2: real] :
( ! [X3: real] :
( ( ord_less_real @ Z2 @ X3 )
=> ( ord_less_eq_real @ Y2 @ X3 ) )
=> ( ord_less_eq_real @ Y2 @ Z2 ) ) ).
% dense_ge
thf(fact_581_antisym__conv2,axiom,
! [X: real,Y2: real] :
( ( ord_less_eq_real @ X @ Y2 )
=> ( ( ~ ( ord_less_real @ X @ Y2 ) )
= ( X = Y2 ) ) ) ).
% antisym_conv2
thf(fact_582_antisym__conv2,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ X @ Y2 )
=> ( ( ~ ( ord_le2131251472502387783ccount @ X @ Y2 ) )
= ( X = Y2 ) ) ) ).
% antisym_conv2
thf(fact_583_antisym__conv2,axiom,
! [X: nat,Y2: nat] :
( ( ord_less_eq_nat @ X @ Y2 )
=> ( ( ~ ( ord_less_nat @ X @ Y2 ) )
= ( X = Y2 ) ) ) ).
% antisym_conv2
thf(fact_584_antisym__conv2,axiom,
! [X: int,Y2: int] :
( ( ord_less_eq_int @ X @ Y2 )
=> ( ( ~ ( ord_less_int @ X @ Y2 ) )
= ( X = Y2 ) ) ) ).
% antisym_conv2
thf(fact_585_antisym__conv1,axiom,
! [X: real,Y2: real] :
( ~ ( ord_less_real @ X @ Y2 )
=> ( ( ord_less_eq_real @ X @ Y2 )
= ( X = Y2 ) ) ) ).
% antisym_conv1
thf(fact_586_antisym__conv1,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ~ ( ord_le2131251472502387783ccount @ X @ Y2 )
=> ( ( ord_le4245800335709223507ccount @ X @ Y2 )
= ( X = Y2 ) ) ) ).
% antisym_conv1
thf(fact_587_antisym__conv1,axiom,
! [X: nat,Y2: nat] :
( ~ ( ord_less_nat @ X @ Y2 )
=> ( ( ord_less_eq_nat @ X @ Y2 )
= ( X = Y2 ) ) ) ).
% antisym_conv1
thf(fact_588_antisym__conv1,axiom,
! [X: int,Y2: int] :
( ~ ( ord_less_int @ X @ Y2 )
=> ( ( ord_less_eq_int @ X @ Y2 )
= ( X = Y2 ) ) ) ).
% antisym_conv1
thf(fact_589_nless__le,axiom,
! [A: real,B: real] :
( ( ~ ( ord_less_real @ A @ B ) )
= ( ~ ( ord_less_eq_real @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_590_nless__le,axiom,
! [A: risk_Free_account,B: risk_Free_account] :
( ( ~ ( ord_le2131251472502387783ccount @ A @ B ) )
= ( ~ ( ord_le4245800335709223507ccount @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_591_nless__le,axiom,
! [A: nat,B: nat] :
( ( ~ ( ord_less_nat @ A @ B ) )
= ( ~ ( ord_less_eq_nat @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_592_nless__le,axiom,
! [A: int,B: int] :
( ( ~ ( ord_less_int @ A @ B ) )
= ( ~ ( ord_less_eq_int @ A @ B )
| ( A = B ) ) ) ).
% nless_le
thf(fact_593_leI,axiom,
! [X: real,Y2: real] :
( ~ ( ord_less_real @ X @ Y2 )
=> ( ord_less_eq_real @ Y2 @ X ) ) ).
% leI
thf(fact_594_leI,axiom,
! [X: nat,Y2: nat] :
( ~ ( ord_less_nat @ X @ Y2 )
=> ( ord_less_eq_nat @ Y2 @ X ) ) ).
% leI
thf(fact_595_leI,axiom,
! [X: int,Y2: int] :
( ~ ( ord_less_int @ X @ Y2 )
=> ( ord_less_eq_int @ Y2 @ X ) ) ).
% leI
thf(fact_596_leD,axiom,
! [Y2: real,X: real] :
( ( ord_less_eq_real @ Y2 @ X )
=> ~ ( ord_less_real @ X @ Y2 ) ) ).
% leD
thf(fact_597_leD,axiom,
! [Y2: risk_Free_account,X: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ Y2 @ X )
=> ~ ( ord_le2131251472502387783ccount @ X @ Y2 ) ) ).
% leD
thf(fact_598_leD,axiom,
! [Y2: nat,X: nat] :
( ( ord_less_eq_nat @ Y2 @ X )
=> ~ ( ord_less_nat @ X @ Y2 ) ) ).
% leD
thf(fact_599_leD,axiom,
! [Y2: int,X: int] :
( ( ord_less_eq_int @ Y2 @ X )
=> ~ ( ord_less_int @ X @ Y2 ) ) ).
% leD
thf(fact_600_verit__comp__simplify1_I3_J,axiom,
! [B4: real,A5: real] :
( ( ~ ( ord_less_eq_real @ B4 @ A5 ) )
= ( ord_less_real @ A5 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_601_verit__comp__simplify1_I3_J,axiom,
! [B4: nat,A5: nat] :
( ( ~ ( ord_less_eq_nat @ B4 @ A5 ) )
= ( ord_less_nat @ A5 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_602_verit__comp__simplify1_I3_J,axiom,
! [B4: int,A5: int] :
( ( ~ ( ord_less_eq_int @ B4 @ A5 ) )
= ( ord_less_int @ A5 @ B4 ) ) ).
% verit_comp_simplify1(3)
thf(fact_603_gr__zeroI,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% gr_zeroI
thf(fact_604_not__less__zero,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% not_less_zero
thf(fact_605_gr__implies__not__zero,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( N2 != zero_zero_nat ) ) ).
% gr_implies_not_zero
thf(fact_606_zero__less__iff__neq__zero,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
= ( N2 != zero_zero_nat ) ) ).
% zero_less_iff_neq_zero
thf(fact_607_field__lbound__gt__zero,axiom,
! [D1: real,D2: real] :
( ( ord_less_real @ zero_zero_real @ D1 )
=> ( ( ord_less_real @ zero_zero_real @ D2 )
=> ? [E: real] :
( ( ord_less_real @ zero_zero_real @ E )
& ( ord_less_real @ E @ D1 )
& ( ord_less_real @ E @ D2 ) ) ) ) ).
% field_lbound_gt_zero
thf(fact_608_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_609_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_610_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_611_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X4: real,Y4: real] :
( ( ord_less_real @ X4 @ Y4 )
| ( X4 = Y4 ) ) ) ) ).
% less_eq_real_def
thf(fact_612_mult_Ocomm__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.comm_neutral
thf(fact_613_mult_Ocomm__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.comm_neutral
thf(fact_614_mult_Ocomm__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.comm_neutral
thf(fact_615_comm__monoid__mult__class_Omult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_616_comm__monoid__mult__class_Omult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_617_comm__monoid__mult__class_Omult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% comm_monoid_mult_class.mult_1
thf(fact_618_mult__less__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_619_mult__less__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_620_mult__less__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_621_mult__less__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_622_mult__less__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_623_mult__less__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_624_mult__less__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_625_mult__less__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_626_mult__le__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_627_mult__le__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_628_mult__le__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_629_mult__le__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_630_mult__le__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_631_mult__le__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_632_mult__le__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_633_mult__le__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_634_mult__neg__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_635_mult__neg__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_neg_neg
thf(fact_636_not__square__less__zero,axiom,
! [A: real] :
~ ( ord_less_real @ ( times_times_real @ A @ A ) @ zero_zero_real ) ).
% not_square_less_zero
thf(fact_637_not__square__less__zero,axiom,
! [A: int] :
~ ( ord_less_int @ ( times_times_int @ A @ A ) @ zero_zero_int ) ).
% not_square_less_zero
thf(fact_638_mult__less__0__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ B @ zero_zero_real ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ zero_zero_real @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_639_mult__less__0__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ B @ zero_zero_int ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ zero_zero_int @ B ) ) ) ) ).
% mult_less_0_iff
thf(fact_640_mult__neg__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ zero_zero_real )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_neg_pos
thf(fact_641_mult__neg__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ zero_zero_nat )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_neg_pos
thf(fact_642_mult__neg__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ zero_zero_int )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_neg_pos
thf(fact_643_mult__pos__neg,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ B ) @ zero_zero_real ) ) ) ).
% mult_pos_neg
thf(fact_644_mult__pos__neg,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg
thf(fact_645_mult__pos__neg,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ B ) @ zero_zero_int ) ) ) ).
% mult_pos_neg
thf(fact_646_mult__pos__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_647_mult__pos__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_648_mult__pos__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) ) ) ) ).
% mult_pos_pos
thf(fact_649_mult__pos__neg2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ B @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ B @ A ) @ zero_zero_real ) ) ) ).
% mult_pos_neg2
thf(fact_650_mult__pos__neg2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ B @ zero_zero_nat )
=> ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).
% mult_pos_neg2
thf(fact_651_mult__pos__neg2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ B @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ B @ A ) @ zero_zero_int ) ) ) ).
% mult_pos_neg2
thf(fact_652_zero__less__mult__iff,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ A )
& ( ord_less_real @ zero_zero_real @ B ) )
| ( ( ord_less_real @ A @ zero_zero_real )
& ( ord_less_real @ B @ zero_zero_real ) ) ) ) ).
% zero_less_mult_iff
thf(fact_653_zero__less__mult__iff,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ A )
& ( ord_less_int @ zero_zero_int @ B ) )
| ( ( ord_less_int @ A @ zero_zero_int )
& ( ord_less_int @ B @ zero_zero_int ) ) ) ) ).
% zero_less_mult_iff
thf(fact_654_zero__less__mult__pos,axiom,
! [A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ A @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_655_zero__less__mult__pos,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_656_zero__less__mult__pos,axiom,
! [A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ A @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos
thf(fact_657_zero__less__mult__pos2,axiom,
! [B: real,A: real] :
( ( ord_less_real @ zero_zero_real @ ( times_times_real @ B @ A ) )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_658_zero__less__mult__pos2,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_659_zero__less__mult__pos2,axiom,
! [B: int,A: int] :
( ( ord_less_int @ zero_zero_int @ ( times_times_int @ B @ A ) )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ B ) ) ) ).
% zero_less_mult_pos2
thf(fact_660_mult__less__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_661_mult__less__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ B @ A ) ) ) ).
% mult_less_cancel_left_neg
thf(fact_662_mult__less__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_663_mult__less__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ) ).
% mult_less_cancel_left_pos
thf(fact_664_mult__strict__left__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_665_mult__strict__left__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono_neg
thf(fact_666_mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_667_mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_668_mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% mult_strict_left_mono
thf(fact_669_mult__less__cancel__left__disj,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_670_mult__less__cancel__left__disj,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left_disj
thf(fact_671_mult__strict__right__mono__neg,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_real @ B @ A )
=> ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_672_mult__strict__right__mono__neg,axiom,
! [B: int,A: int,C: int] :
( ( ord_less_int @ B @ A )
=> ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono_neg
thf(fact_673_mult__strict__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_674_mult__strict__right__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_675_mult__strict__right__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ) ).
% mult_strict_right_mono
thf(fact_676_mult__less__cancel__right__disj,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
& ( ord_less_real @ A @ B ) )
| ( ( ord_less_real @ C @ zero_zero_real )
& ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_677_mult__less__cancel__right__disj,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
& ( ord_less_int @ A @ B ) )
| ( ( ord_less_int @ C @ zero_zero_int )
& ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right_disj
thf(fact_678_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_679_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_680_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
! [A: int,B: int,C: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) ) ) ) ).
% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_681_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% zero_less_one_class.zero_le_one
thf(fact_682_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% zero_less_one_class.zero_le_one
thf(fact_683_zero__less__one__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% zero_less_one_class.zero_le_one
thf(fact_684_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_real @ zero_zero_real @ one_one_real ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_685_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_686_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
ord_less_eq_int @ zero_zero_int @ one_one_int ).
% linordered_nonzero_semiring_class.zero_le_one
thf(fact_687_not__one__le__zero,axiom,
~ ( ord_less_eq_real @ one_one_real @ zero_zero_real ) ).
% not_one_le_zero
thf(fact_688_not__one__le__zero,axiom,
~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).
% not_one_le_zero
thf(fact_689_not__one__le__zero,axiom,
~ ( ord_less_eq_int @ one_one_int @ zero_zero_int ) ).
% not_one_le_zero
thf(fact_690_strictly__solvent__alt__def,axiom,
( risk_F1636578016437888323olvent
= ( ord_le4245800335709223507ccount @ zero_z1425366712893667068ccount ) ) ).
% strictly_solvent_alt_def
thf(fact_691_mult__less__le__imp__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_eq_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_692_mult__less__le__imp__less,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_693_mult__less__le__imp__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_eq_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_less_le_imp_less
thf(fact_694_mult__le__less__imp__less,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_695_mult__le__less__imp__less,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_696_mult__le__less__imp__less,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_le_less_imp_less
thf(fact_697_mult__right__le__imp__le,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_698_mult__right__le__imp__le,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_699_mult__right__le__imp__le,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_right_le_imp_le
thf(fact_700_mult__left__le__imp__le,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
=> ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_701_mult__left__le__imp__le,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
=> ( ( ord_less_nat @ zero_zero_nat @ C )
=> ( ord_less_eq_nat @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_702_mult__left__le__imp__le,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_left_le_imp_le
thf(fact_703_mult__le__cancel__left__pos,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ zero_zero_real @ C )
=> ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_704_mult__le__cancel__left__pos,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ zero_zero_int @ C )
=> ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ) ).
% mult_le_cancel_left_pos
thf(fact_705_mult__le__cancel__left__neg,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ C @ zero_zero_real )
=> ( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ord_less_eq_real @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_706_mult__le__cancel__left__neg,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ C @ zero_zero_int )
=> ( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ord_less_eq_int @ B @ A ) ) ) ).
% mult_le_cancel_left_neg
thf(fact_707_mult__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_708_mult__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_right
thf(fact_709_mult__strict__mono_H,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_710_mult__strict__mono_H,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_711_mult__strict__mono_H,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono'
thf(fact_712_mult__right__less__imp__less,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_713_mult__right__less__imp__less,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_714_mult__right__less__imp__less,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_right_less_imp_less
thf(fact_715_mult__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_716_mult__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ A ) ) ) ) ).
% mult_less_cancel_left
thf(fact_717_mult__strict__mono,axiom,
! [A: real,B: real,C: real,D: real] :
( ( ord_less_real @ A @ B )
=> ( ( ord_less_real @ C @ D )
=> ( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_718_mult__strict__mono,axiom,
! [A: nat,B: nat,C: nat,D: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_nat @ C @ D )
=> ( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_719_mult__strict__mono,axiom,
! [A: int,B: int,C: int,D: int] :
( ( ord_less_int @ A @ B )
=> ( ( ord_less_int @ C @ D )
=> ( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D ) ) ) ) ) ) ).
% mult_strict_mono
thf(fact_720_mult__left__less__imp__less,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_721_mult__left__less__imp__less,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ C )
=> ( ord_less_nat @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_722_mult__left__less__imp__less,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ B ) ) ) ).
% mult_left_less_imp_less
thf(fact_723_mult__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_724_mult__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_right
thf(fact_725_mult__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_726_mult__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ A ) ) ) ) ).
% mult_le_cancel_left
thf(fact_727_mult__left__le,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ C @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_728_mult__left__le,axiom,
! [C: nat,A: nat] :
( ( ord_less_eq_nat @ C @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_729_mult__left__le,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ C @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ A ) ) ) ).
% mult_left_le
thf(fact_730_mult__le__one,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ one_one_real )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_eq_real @ B @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ A @ B ) @ one_one_real ) ) ) ) ).
% mult_le_one
thf(fact_731_mult__le__one,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_eq_nat @ B @ one_one_nat )
=> ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).
% mult_le_one
thf(fact_732_mult__le__one,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ one_one_int )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_eq_int @ B @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ A @ B ) @ one_one_int ) ) ) ) ).
% mult_le_one
thf(fact_733_mult__right__le__one__le,axiom,
! [X: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ X @ Y2 ) @ X ) ) ) ) ).
% mult_right_le_one_le
thf(fact_734_mult__right__le__one__le,axiom,
! [X: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_eq_int @ Y2 @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ X @ Y2 ) @ X ) ) ) ) ).
% mult_right_le_one_le
thf(fact_735_mult__left__le__one__le,axiom,
! [X: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_eq_real @ Y2 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Y2 @ X ) @ X ) ) ) ) ).
% mult_left_le_one_le
thf(fact_736_mult__left__le__one__le,axiom,
! [X: int,Y2: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y2 )
=> ( ( ord_less_eq_int @ Y2 @ one_one_int )
=> ( ord_less_eq_int @ ( times_times_int @ Y2 @ X ) @ X ) ) ) ) ).
% mult_left_le_one_le
thf(fact_737_le__cube,axiom,
! [M2: nat] : ( ord_less_eq_nat @ M2 @ ( times_times_nat @ M2 @ ( times_times_nat @ M2 @ M2 ) ) ) ).
% le_cube
thf(fact_738_le__refl,axiom,
! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).
% le_refl
thf(fact_739_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_740_eq__imp__le,axiom,
! [M2: nat,N2: nat] :
( ( M2 = N2 )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% eq_imp_le
thf(fact_741_le__square,axiom,
! [M2: nat] : ( ord_less_eq_nat @ M2 @ ( times_times_nat @ M2 @ M2 ) ) ).
% le_square
thf(fact_742_le__antisym,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ M2 )
=> ( M2 = N2 ) ) ) ).
% le_antisym
thf(fact_743_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_744_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_745_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_746_nat__le__linear,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
| ( ord_less_eq_nat @ N2 @ M2 ) ) ).
% nat_le_linear
thf(fact_747_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y: nat] :
( ( P @ Y )
=> ( ord_less_eq_nat @ Y @ B ) )
=> ? [X3: nat] :
( ( P @ X3 )
& ! [Y5: nat] :
( ( P @ Y5 )
=> ( ord_less_eq_nat @ Y5 @ X3 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_748_less__eq__nat_Osimps_I1_J,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).
% less_eq_nat.simps(1)
thf(fact_749_not__real__square__gt__zero,axiom,
! [X: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
= ( X = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_750_field__le__mult__one__interval,axiom,
! [X: real,Y2: real] :
( ! [Z4: real] :
( ( ord_less_real @ zero_zero_real @ Z4 )
=> ( ( ord_less_real @ Z4 @ one_one_real )
=> ( ord_less_eq_real @ ( times_times_real @ Z4 @ X ) @ Y2 ) ) )
=> ( ord_less_eq_real @ X @ Y2 ) ) ).
% field_le_mult_one_interval
thf(fact_751_mult__le__cancel__iff2,axiom,
! [Z2: real,X: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_eq_real @ ( times_times_real @ Z2 @ X ) @ ( times_times_real @ Z2 @ Y2 ) )
= ( ord_less_eq_real @ X @ Y2 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_752_mult__le__cancel__iff2,axiom,
! [Z2: int,X: int,Y2: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_eq_int @ ( times_times_int @ Z2 @ X ) @ ( times_times_int @ Z2 @ Y2 ) )
= ( ord_less_eq_int @ X @ Y2 ) ) ) ).
% mult_le_cancel_iff2
thf(fact_753_mult__le__cancel__iff1,axiom,
! [Z2: real,X: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_eq_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y2 @ Z2 ) )
= ( ord_less_eq_real @ X @ Y2 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_754_mult__le__cancel__iff1,axiom,
! [Z2: int,X: int,Y2: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_eq_int @ ( times_times_int @ X @ Z2 ) @ ( times_times_int @ Y2 @ Z2 ) )
= ( ord_less_eq_int @ X @ Y2 ) ) ) ).
% mult_le_cancel_iff1
thf(fact_755_strictly__solvent__non__negative__cash,axiom,
! [Alpha: risk_Free_account] :
( ( risk_F1636578016437888323olvent @ Alpha )
=> ( ord_less_eq_real @ zero_zero_real @ ( risk_F1914734008469130493eserve @ Alpha ) ) ) ).
% strictly_solvent_non_negative_cash
thf(fact_756_mult__less__iff1,axiom,
! [Z2: real,X: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ Z2 )
=> ( ( ord_less_real @ ( times_times_real @ X @ Z2 ) @ ( times_times_real @ Y2 @ Z2 ) )
= ( ord_less_real @ X @ Y2 ) ) ) ).
% mult_less_iff1
thf(fact_757_mult__less__iff1,axiom,
! [Z2: int,X: int,Y2: int] :
( ( ord_less_int @ zero_zero_int @ Z2 )
=> ( ( ord_less_int @ ( times_times_int @ X @ Z2 ) @ ( times_times_int @ Y2 @ Z2 ) )
= ( ord_less_int @ X @ Y2 ) ) ) ).
% mult_less_iff1
thf(fact_758_return__loans__mono,axiom,
! [Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ! [N4: nat] : ( ord_less_real @ ( Rho @ N4 ) @ one_one_real )
=> ( ! [N4: nat,M4: nat] :
( ( ord_less_eq_nat @ N4 @ M4 )
=> ( ord_less_eq_real @ ( Rho @ N4 ) @ ( Rho @ M4 ) ) )
=> ( ( ord_le4245800335709223507ccount @ Alpha @ Beta )
=> ( ord_le4245800335709223507ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) @ ( risk_F2121631595377017831_loans @ Rho @ Beta ) ) ) ) ) ).
% return_loans_mono
thf(fact_759_complete__interval,axiom,
! [A: real,B: real,P: real > $o] :
( ( ord_less_real @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C2: real] :
( ( ord_less_eq_real @ A @ C2 )
& ( ord_less_eq_real @ C2 @ B )
& ! [X2: real] :
( ( ( ord_less_eq_real @ A @ X2 )
& ( ord_less_real @ X2 @ C2 ) )
=> ( P @ X2 ) )
& ! [D3: real] :
( ! [X3: real] :
( ( ( ord_less_eq_real @ A @ X3 )
& ( ord_less_real @ X3 @ D3 ) )
=> ( P @ X3 ) )
=> ( ord_less_eq_real @ D3 @ C2 ) ) ) ) ) ) ).
% complete_interval
thf(fact_760_complete__interval,axiom,
! [A: nat,B: nat,P: nat > $o] :
( ( ord_less_nat @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C2: nat] :
( ( ord_less_eq_nat @ A @ C2 )
& ( ord_less_eq_nat @ C2 @ B )
& ! [X2: nat] :
( ( ( ord_less_eq_nat @ A @ X2 )
& ( ord_less_nat @ X2 @ C2 ) )
=> ( P @ X2 ) )
& ! [D3: nat] :
( ! [X3: nat] :
( ( ( ord_less_eq_nat @ A @ X3 )
& ( ord_less_nat @ X3 @ D3 ) )
=> ( P @ X3 ) )
=> ( ord_less_eq_nat @ D3 @ C2 ) ) ) ) ) ) ).
% complete_interval
thf(fact_761_complete__interval,axiom,
! [A: int,B: int,P: int > $o] :
( ( ord_less_int @ A @ B )
=> ( ( P @ A )
=> ( ~ ( P @ B )
=> ? [C2: int] :
( ( ord_less_eq_int @ A @ C2 )
& ( ord_less_eq_int @ C2 @ B )
& ! [X2: int] :
( ( ( ord_less_eq_int @ A @ X2 )
& ( ord_less_int @ X2 @ C2 ) )
=> ( P @ X2 ) )
& ! [D3: int] :
( ! [X3: int] :
( ( ( ord_less_eq_int @ A @ X3 )
& ( ord_less_int @ X3 @ D3 ) )
=> ( P @ X3 ) )
=> ( ord_less_eq_int @ D3 @ C2 ) ) ) ) ) ) ).
% complete_interval
thf(fact_762_pinf_I6_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ~ ( ord_less_eq_real @ X2 @ T ) ) ).
% pinf(6)
thf(fact_763_pinf_I6_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ~ ( ord_less_eq_nat @ X2 @ T ) ) ).
% pinf(6)
thf(fact_764_pinf_I6_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ~ ( ord_less_eq_int @ X2 @ T ) ) ).
% pinf(6)
thf(fact_765_pinf_I8_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ( ord_less_eq_real @ T @ X2 ) ) ).
% pinf(8)
thf(fact_766_pinf_I8_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ( ord_less_eq_nat @ T @ X2 ) ) ).
% pinf(8)
thf(fact_767_pinf_I8_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( ord_less_eq_int @ T @ X2 ) ) ).
% pinf(8)
thf(fact_768_less__one,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ one_one_nat )
= ( N2 = zero_zero_nat ) ) ).
% less_one
thf(fact_769_less__nat__zero__code,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_770_neq0__conv,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% neq0_conv
thf(fact_771_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_772_nat__mult__eq__1__iff,axiom,
! [M2: nat,N2: nat] :
( ( ( times_times_nat @ M2 @ N2 )
= one_one_nat )
= ( ( M2 = one_one_nat )
& ( N2 = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_773_nat__1__eq__mult__iff,axiom,
! [M2: nat,N2: nat] :
( ( one_one_nat
= ( times_times_nat @ M2 @ N2 ) )
= ( ( M2 = one_one_nat )
& ( N2 = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_774_nat__0__less__mult__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M2 @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ M2 )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% nat_0_less_mult_iff
thf(fact_775_mult__less__cancel2,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N2 @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M2 @ N2 ) ) ) ).
% mult_less_cancel2
thf(fact_776_return__loans__zero,axiom,
! [Rho: nat > real] :
( ( risk_F2121631595377017831_loans @ Rho @ zero_z1425366712893667068ccount )
= zero_z1425366712893667068ccount ) ).
% return_loans_zero
thf(fact_777_mult__le__cancel2,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N2 @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ) ).
% mult_le_cancel2
thf(fact_778_nat__mult__1__right,axiom,
! [N2: nat] :
( ( times_times_nat @ N2 @ one_one_nat )
= N2 ) ).
% nat_mult_1_right
thf(fact_779_nat__mult__1,axiom,
! [N2: nat] :
( ( times_times_nat @ one_one_nat @ N2 )
= N2 ) ).
% nat_mult_1
thf(fact_780_infinite__descent0,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N4: nat] :
( ( ord_less_nat @ zero_zero_nat @ N4 )
=> ( ~ ( P @ N4 )
=> ? [M: nat] :
( ( ord_less_nat @ M @ N4 )
& ~ ( P @ M ) ) ) )
=> ( P @ N2 ) ) ) ).
% infinite_descent0
thf(fact_781_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_782_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_783_gr__implies__not0,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( N2 != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_784_less__zeroE,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% less_zeroE
thf(fact_785_not__less0,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).
% not_less0
thf(fact_786_not__gr0,axiom,
! [N2: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
= ( N2 = zero_zero_nat ) ) ).
% not_gr0
thf(fact_787_gr0I,axiom,
! [N2: nat] :
( ( N2 != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% gr0I
thf(fact_788_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_789_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I2: nat,J2: nat] :
( ( ord_less_nat @ I2 @ J2 )
=> ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_790_le__neq__implies__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( M2 != N2 )
=> ( ord_less_nat @ M2 @ N2 ) ) ) ).
% le_neq_implies_less
thf(fact_791_less__or__eq__imp__le,axiom,
! [M2: nat,N2: nat] :
( ( ( ord_less_nat @ M2 @ N2 )
| ( M2 = N2 ) )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% less_or_eq_imp_le
thf(fact_792_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M3: nat,N3: nat] :
( ( ord_less_nat @ M3 @ N3 )
| ( M3 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_793_less__imp__le__nat,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% less_imp_le_nat
thf(fact_794_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M3: nat,N3: nat] :
( ( ord_less_eq_nat @ M3 @ N3 )
& ( M3 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_795_mult__eq__self__implies__10,axiom,
! [M2: nat,N2: nat] :
( ( M2
= ( times_times_nat @ M2 @ N2 ) )
=> ( ( N2 = one_one_nat )
| ( M2 = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_796_less__account__def,axiom,
( ord_le2131251472502387783ccount
= ( ^ [Alpha_1: risk_Free_account,Alpha_2: risk_Free_account] :
( ( ord_le4245800335709223507ccount @ Alpha_1 @ Alpha_2 )
& ~ ( ord_le4245800335709223507ccount @ Alpha_2 @ Alpha_1 ) ) ) ) ).
% less_account_def
thf(fact_797_ex__least__nat__le,axiom,
! [P: nat > $o,N2: nat] :
( ( P @ N2 )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N2 )
& ! [I3: nat] :
( ( ord_less_nat @ I3 @ K2 )
=> ~ ( P @ I3 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_798_ex__gt__or__lt,axiom,
! [A: real] :
? [B3: real] :
( ( ord_less_real @ A @ B3 )
| ( ord_less_real @ B3 @ A ) ) ).
% ex_gt_or_lt
thf(fact_799_linordered__field__no__ub,axiom,
! [X2: real] :
? [X_1: real] : ( ord_less_real @ X2 @ X_1 ) ).
% linordered_field_no_ub
thf(fact_800_linordered__field__no__lb,axiom,
! [X2: real] :
? [Y: real] : ( ord_less_real @ Y @ X2 ) ).
% linordered_field_no_lb
thf(fact_801_pinf_I1_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
( ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ( ( ( P @ X2 )
& ( Q @ X2 ) )
= ( ( P4 @ X2 )
& ( Q2 @ X2 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_802_pinf_I1_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
( ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ( ( ( P @ X2 )
& ( Q @ X2 ) )
= ( ( P4 @ X2 )
& ( Q2 @ X2 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_803_pinf_I1_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
( ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( ( ( P @ X2 )
& ( Q @ X2 ) )
= ( ( P4 @ X2 )
& ( Q2 @ X2 ) ) ) ) ) ) ).
% pinf(1)
thf(fact_804_pinf_I2_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
( ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ Z @ X3 )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ( ( ( P @ X2 )
| ( Q @ X2 ) )
= ( ( P4 @ X2 )
| ( Q2 @ X2 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_805_pinf_I2_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
( ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ Z @ X3 )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ( ( ( P @ X2 )
| ( Q @ X2 ) )
= ( ( P4 @ X2 )
| ( Q2 @ X2 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_806_pinf_I2_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
( ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( ( ( P @ X2 )
| ( Q @ X2 ) )
= ( ( P4 @ X2 )
| ( Q2 @ X2 ) ) ) ) ) ) ).
% pinf(2)
thf(fact_807_pinf_I3_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ( X2 != T ) ) ).
% pinf(3)
thf(fact_808_pinf_I3_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ( X2 != T ) ) ).
% pinf(3)
thf(fact_809_pinf_I3_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( X2 != T ) ) ).
% pinf(3)
thf(fact_810_pinf_I4_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ( X2 != T ) ) ).
% pinf(4)
thf(fact_811_pinf_I4_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ( X2 != T ) ) ).
% pinf(4)
thf(fact_812_pinf_I4_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( X2 != T ) ) ).
% pinf(4)
thf(fact_813_pinf_I5_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ~ ( ord_less_real @ X2 @ T ) ) ).
% pinf(5)
thf(fact_814_pinf_I5_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ~ ( ord_less_nat @ X2 @ T ) ) ).
% pinf(5)
thf(fact_815_pinf_I5_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ~ ( ord_less_int @ X2 @ T ) ) ).
% pinf(5)
thf(fact_816_pinf_I7_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ Z4 @ X2 )
=> ( ord_less_real @ T @ X2 ) ) ).
% pinf(7)
thf(fact_817_pinf_I7_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ Z4 @ X2 )
=> ( ord_less_nat @ T @ X2 ) ) ).
% pinf(7)
thf(fact_818_pinf_I7_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ Z4 @ X2 )
=> ( ord_less_int @ T @ X2 ) ) ).
% pinf(7)
thf(fact_819_minf_I1_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
( ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ( ( ( P @ X2 )
& ( Q @ X2 ) )
= ( ( P4 @ X2 )
& ( Q2 @ X2 ) ) ) ) ) ) ).
% minf(1)
thf(fact_820_minf_I1_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
( ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ( ( ( P @ X2 )
& ( Q @ X2 ) )
= ( ( P4 @ X2 )
& ( Q2 @ X2 ) ) ) ) ) ) ).
% minf(1)
thf(fact_821_minf_I1_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
( ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( ( ( P @ X2 )
& ( Q @ X2 ) )
= ( ( P4 @ X2 )
& ( Q2 @ X2 ) ) ) ) ) ) ).
% minf(1)
thf(fact_822_minf_I2_J,axiom,
! [P: real > $o,P4: real > $o,Q: real > $o,Q2: real > $o] :
( ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: real] :
! [X3: real] :
( ( ord_less_real @ X3 @ Z )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ( ( ( P @ X2 )
| ( Q @ X2 ) )
= ( ( P4 @ X2 )
| ( Q2 @ X2 ) ) ) ) ) ) ).
% minf(2)
thf(fact_823_minf_I2_J,axiom,
! [P: nat > $o,P4: nat > $o,Q: nat > $o,Q2: nat > $o] :
( ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: nat] :
! [X3: nat] :
( ( ord_less_nat @ X3 @ Z )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ( ( ( P @ X2 )
| ( Q @ X2 ) )
= ( ( P4 @ X2 )
| ( Q2 @ X2 ) ) ) ) ) ) ).
% minf(2)
thf(fact_824_minf_I2_J,axiom,
! [P: int > $o,P4: int > $o,Q: int > $o,Q2: int > $o] :
( ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( ( Q @ X3 )
= ( Q2 @ X3 ) ) )
=> ? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( ( ( P @ X2 )
| ( Q @ X2 ) )
= ( ( P4 @ X2 )
| ( Q2 @ X2 ) ) ) ) ) ) ).
% minf(2)
thf(fact_825_minf_I3_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ( X2 != T ) ) ).
% minf(3)
thf(fact_826_minf_I3_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ( X2 != T ) ) ).
% minf(3)
thf(fact_827_minf_I3_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( X2 != T ) ) ).
% minf(3)
thf(fact_828_minf_I4_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ( X2 != T ) ) ).
% minf(4)
thf(fact_829_minf_I4_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ( X2 != T ) ) ).
% minf(4)
thf(fact_830_minf_I4_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( X2 != T ) ) ).
% minf(4)
thf(fact_831_minf_I5_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ( ord_less_real @ X2 @ T ) ) ).
% minf(5)
thf(fact_832_minf_I5_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ( ord_less_nat @ X2 @ T ) ) ).
% minf(5)
thf(fact_833_minf_I5_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( ord_less_int @ X2 @ T ) ) ).
% minf(5)
thf(fact_834_minf_I7_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ~ ( ord_less_real @ T @ X2 ) ) ).
% minf(7)
thf(fact_835_minf_I7_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ~ ( ord_less_nat @ T @ X2 ) ) ).
% minf(7)
thf(fact_836_minf_I7_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ~ ( ord_less_int @ T @ X2 ) ) ).
% minf(7)
thf(fact_837_minf_I8_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ~ ( ord_less_eq_real @ T @ X2 ) ) ).
% minf(8)
thf(fact_838_minf_I8_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ~ ( ord_less_eq_nat @ T @ X2 ) ) ).
% minf(8)
thf(fact_839_minf_I8_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ~ ( ord_less_eq_int @ T @ X2 ) ) ).
% minf(8)
thf(fact_840_minf_I6_J,axiom,
! [T: real] :
? [Z4: real] :
! [X2: real] :
( ( ord_less_real @ X2 @ Z4 )
=> ( ord_less_eq_real @ X2 @ T ) ) ).
% minf(6)
thf(fact_841_minf_I6_J,axiom,
! [T: nat] :
? [Z4: nat] :
! [X2: nat] :
( ( ord_less_nat @ X2 @ Z4 )
=> ( ord_less_eq_nat @ X2 @ T ) ) ).
% minf(6)
thf(fact_842_minf_I6_J,axiom,
! [T: int] :
? [Z4: int] :
! [X2: int] :
( ( ord_less_int @ X2 @ Z4 )
=> ( ord_less_eq_int @ X2 @ T ) ) ).
% minf(6)
thf(fact_843_nat__mult__le__cancel__disj,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_844_nat__mult__less__cancel__disj,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M2 @ N2 ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_845_nat__mult__le__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ) ).
% nat_mult_le_cancel1
thf(fact_846_nat__mult__less__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ) ).
% nat_mult_less_cancel1
thf(fact_847_nat__mult__eq__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M2 )
= ( times_times_nat @ K @ N2 ) )
= ( M2 = N2 ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_848_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ( times_times_nat @ K @ M2 )
= ( times_times_nat @ K @ N2 ) )
= ( ( K = zero_zero_nat )
| ( M2 = N2 ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_849_dbl__inc__simps_I2_J,axiom,
( ( neg_nu8295874005876285629c_real @ zero_zero_real )
= one_one_real ) ).
% dbl_inc_simps(2)
thf(fact_850_dbl__inc__simps_I2_J,axiom,
( ( neg_nu5851722552734809277nc_int @ zero_zero_int )
= one_one_int ) ).
% dbl_inc_simps(2)
thf(fact_851_nat__neq__iff,axiom,
! [M2: nat,N2: nat] :
( ( M2 != N2 )
= ( ( ord_less_nat @ M2 @ N2 )
| ( ord_less_nat @ N2 @ M2 ) ) ) ).
% nat_neq_iff
thf(fact_852_less__not__refl,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ N2 ) ).
% less_not_refl
thf(fact_853_less__not__refl2,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ N2 @ M2 )
=> ( M2 != N2 ) ) ).
% less_not_refl2
thf(fact_854_less__not__refl3,axiom,
! [S2: nat,T: nat] :
( ( ord_less_nat @ S2 @ T )
=> ( S2 != T ) ) ).
% less_not_refl3
thf(fact_855_less__irrefl__nat,axiom,
! [N2: nat] :
~ ( ord_less_nat @ N2 @ N2 ) ).
% less_irrefl_nat
thf(fact_856_nat__less__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N4: nat] :
( ! [M: nat] :
( ( ord_less_nat @ M @ N4 )
=> ( P @ M ) )
=> ( P @ N4 ) )
=> ( P @ N2 ) ) ).
% nat_less_induct
thf(fact_857_infinite__descent,axiom,
! [P: nat > $o,N2: nat] :
( ! [N4: nat] :
( ~ ( P @ N4 )
=> ? [M: nat] :
( ( ord_less_nat @ M @ N4 )
& ~ ( P @ M ) ) )
=> ( P @ N2 ) ) ).
% infinite_descent
thf(fact_858_linorder__neqE__nat,axiom,
! [X: nat,Y2: nat] :
( ( X != Y2 )
=> ( ~ ( ord_less_nat @ X @ Y2 )
=> ( ord_less_nat @ Y2 @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_859_nat__descend__induct,axiom,
! [N2: nat,P: nat > $o,M2: nat] :
( ! [K2: nat] :
( ( ord_less_nat @ N2 @ K2 )
=> ( P @ K2 ) )
=> ( ! [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N2 )
=> ( ! [I3: nat] :
( ( ord_less_nat @ K2 @ I3 )
=> ( P @ I3 ) )
=> ( P @ K2 ) ) )
=> ( P @ M2 ) ) ) ).
% nat_descend_induct
thf(fact_860_real__root__increasing,axiom,
! [N2: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ X @ one_one_real )
=> ( ord_less_eq_real @ ( root @ N2 @ X ) @ ( root @ N5 @ X ) ) ) ) ) ) ).
% real_root_increasing
thf(fact_861_real__archimedian__rdiv__eq__0,axiom,
! [X: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ! [M4: nat] :
( ( ord_less_nat @ zero_zero_nat @ M4 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M4 ) @ X ) @ C ) )
=> ( X = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_862_of__nat__eq__iff,axiom,
! [M2: nat,N2: nat] :
( ( ( semiri5074537144036343181t_real @ M2 )
= ( semiri5074537144036343181t_real @ N2 ) )
= ( M2 = N2 ) ) ).
% of_nat_eq_iff
thf(fact_863_of__nat__eq__iff,axiom,
! [M2: nat,N2: nat] :
( ( ( semiri1314217659103216013at_int @ M2 )
= ( semiri1314217659103216013at_int @ N2 ) )
= ( M2 = N2 ) ) ).
% of_nat_eq_iff
thf(fact_864_real__root__zero,axiom,
! [N2: nat] :
( ( root @ N2 @ zero_zero_real )
= zero_zero_real ) ).
% real_root_zero
thf(fact_865_of__nat__eq__0__iff,axiom,
! [M2: nat] :
( ( ( semiri1316708129612266289at_nat @ M2 )
= zero_zero_nat )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_866_of__nat__eq__0__iff,axiom,
! [M2: nat] :
( ( ( semiri5074537144036343181t_real @ M2 )
= zero_zero_real )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_867_of__nat__eq__0__iff,axiom,
! [M2: nat] :
( ( ( semiri1314217659103216013at_int @ M2 )
= zero_zero_int )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_868_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_869_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_870_of__nat__0__eq__iff,axiom,
! [N2: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N2 ) )
= ( zero_zero_nat = N2 ) ) ).
% of_nat_0_eq_iff
thf(fact_871_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_872_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_873_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_874_of__nat__le__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% of_nat_le_iff
thf(fact_875_of__nat__le__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% of_nat_le_iff
thf(fact_876_of__nat__le__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% of_nat_le_iff
thf(fact_877_of__nat__less__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% of_nat_less_iff
thf(fact_878_of__nat__less__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% of_nat_less_iff
thf(fact_879_of__nat__less__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% of_nat_less_iff
thf(fact_880_of__nat__mult,axiom,
! [M2: nat,N2: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M2 @ N2 ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% of_nat_mult
thf(fact_881_of__nat__mult,axiom,
! [M2: nat,N2: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M2 @ N2 ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).
% of_nat_mult
thf(fact_882_of__nat__mult,axiom,
! [M2: nat,N2: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M2 @ N2 ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% of_nat_mult
thf(fact_883_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri1316708129612266289at_nat @ N2 )
= one_one_nat )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_884_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri5074537144036343181t_real @ N2 )
= one_one_real )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_885_of__nat__eq__1__iff,axiom,
! [N2: nat] :
( ( ( semiri1314217659103216013at_int @ N2 )
= one_one_int )
= ( N2 = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_886_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_887_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_888_of__nat__1__eq__iff,axiom,
! [N2: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N2 ) )
= ( N2 = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_889_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_890_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_891_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_892_root__0,axiom,
! [X: real] :
( ( root @ zero_zero_nat @ X )
= zero_zero_real ) ).
% root_0
thf(fact_893_real__root__eq__iff,axiom,
! [N2: nat,X: real,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( root @ N2 @ X )
= ( root @ N2 @ Y2 ) )
= ( X = Y2 ) ) ) ).
% real_root_eq_iff
thf(fact_894_of__nat__le__0__iff,axiom,
! [M2: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M2 ) @ zero_zero_real )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_895_of__nat__le__0__iff,axiom,
! [M2: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ zero_zero_nat )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_896_of__nat__le__0__iff,axiom,
! [M2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ zero_zero_int )
= ( M2 = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_897_real__root__eq__0__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( root @ N2 @ X )
= zero_zero_real )
= ( X = zero_zero_real ) ) ) ).
% real_root_eq_0_iff
thf(fact_898_real__root__less__iff,axiom,
! [N2: nat,X: real,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y2 ) )
= ( ord_less_real @ X @ Y2 ) ) ) ).
% real_root_less_iff
thf(fact_899_real__root__le__iff,axiom,
! [N2: nat,X: real,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y2 ) )
= ( ord_less_eq_real @ X @ Y2 ) ) ) ).
% real_root_le_iff
thf(fact_900_real__root__eq__1__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ( root @ N2 @ X )
= one_one_real )
= ( X = one_one_real ) ) ) ).
% real_root_eq_1_iff
thf(fact_901_real__root__one,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( root @ N2 @ one_one_real )
= one_one_real ) ) ).
% real_root_one
thf(fact_902_of__nat__0__less__iff,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% of_nat_0_less_iff
thf(fact_903_of__nat__0__less__iff,axiom,
! [N2: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% of_nat_0_less_iff
thf(fact_904_of__nat__0__less__iff,axiom,
! [N2: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).
% of_nat_0_less_iff
thf(fact_905_real__root__lt__0__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ ( root @ N2 @ X ) @ zero_zero_real )
= ( ord_less_real @ X @ zero_zero_real ) ) ) ).
% real_root_lt_0_iff
thf(fact_906_real__root__gt__0__iff,axiom,
! [N2: nat,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ ( root @ N2 @ Y2 ) )
= ( ord_less_real @ zero_zero_real @ Y2 ) ) ) ).
% real_root_gt_0_iff
thf(fact_907_real__root__le__0__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ ( root @ N2 @ X ) @ zero_zero_real )
= ( ord_less_eq_real @ X @ zero_zero_real ) ) ) ).
% real_root_le_0_iff
thf(fact_908_real__root__ge__0__iff,axiom,
! [N2: nat,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ Y2 ) )
= ( ord_less_eq_real @ zero_zero_real @ Y2 ) ) ) ).
% real_root_ge_0_iff
thf(fact_909_real__root__lt__1__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ ( root @ N2 @ X ) @ one_one_real )
= ( ord_less_real @ X @ one_one_real ) ) ) ).
% real_root_lt_1_iff
thf(fact_910_real__root__gt__1__iff,axiom,
! [N2: nat,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ one_one_real @ ( root @ N2 @ Y2 ) )
= ( ord_less_real @ one_one_real @ Y2 ) ) ) ).
% real_root_gt_1_iff
thf(fact_911_real__root__le__1__iff,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ ( root @ N2 @ X ) @ one_one_real )
= ( ord_less_eq_real @ X @ one_one_real ) ) ) ).
% real_root_le_1_iff
thf(fact_912_real__root__ge__1__iff,axiom,
! [N2: nat,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ one_one_real @ ( root @ N2 @ Y2 ) )
= ( ord_less_eq_real @ one_one_real @ Y2 ) ) ) ).
% real_root_ge_1_iff
thf(fact_913_real__root__commute,axiom,
! [M2: nat,N2: nat,X: real] :
( ( root @ M2 @ ( root @ N2 @ X ) )
= ( root @ N2 @ ( root @ M2 @ X ) ) ) ).
% real_root_commute
thf(fact_914_real__root__mult,axiom,
! [N2: nat,X: real,Y2: real] :
( ( root @ N2 @ ( times_times_real @ X @ Y2 ) )
= ( times_times_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y2 ) ) ) ).
% real_root_mult
thf(fact_915_real__root__mult__exp,axiom,
! [M2: nat,N2: nat,X: real] :
( ( root @ ( times_times_nat @ M2 @ N2 ) @ X )
= ( root @ M2 @ ( root @ N2 @ X ) ) ) ).
% real_root_mult_exp
thf(fact_916_mult__of__nat__commute,axiom,
! [X: nat,Y2: nat] :
( ( times_times_nat @ ( semiri1316708129612266289at_nat @ X ) @ Y2 )
= ( times_times_nat @ Y2 @ ( semiri1316708129612266289at_nat @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_917_mult__of__nat__commute,axiom,
! [X: nat,Y2: real] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ X ) @ Y2 )
= ( times_times_real @ Y2 @ ( semiri5074537144036343181t_real @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_918_mult__of__nat__commute,axiom,
! [X: nat,Y2: int] :
( ( times_times_int @ ( semiri1314217659103216013at_int @ X ) @ Y2 )
= ( times_times_int @ Y2 @ ( semiri1314217659103216013at_int @ X ) ) ) ).
% mult_of_nat_commute
thf(fact_919_real__root__pos__pos__le,axiom,
! [X: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ X ) ) ) ).
% real_root_pos_pos_le
thf(fact_920_of__nat__0__le__iff,axiom,
! [N2: nat] : ( ord_less_eq_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N2 ) ) ).
% of_nat_0_le_iff
thf(fact_921_of__nat__0__le__iff,axiom,
! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N2 ) ) ).
% of_nat_0_le_iff
thf(fact_922_of__nat__0__le__iff,axiom,
! [N2: nat] : ( ord_less_eq_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N2 ) ) ).
% of_nat_0_le_iff
thf(fact_923_of__nat__less__0__iff,axiom,
! [M2: nat] :
~ ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ zero_zero_nat ) ).
% of_nat_less_0_iff
thf(fact_924_of__nat__less__0__iff,axiom,
! [M2: nat] :
~ ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ zero_zero_real ) ).
% of_nat_less_0_iff
thf(fact_925_of__nat__less__0__iff,axiom,
! [M2: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ zero_zero_int ) ).
% of_nat_less_0_iff
thf(fact_926_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ I ) @ ( semiri5074537144036343181t_real @ J ) ) ) ).
% of_nat_mono
thf(fact_927_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ I ) @ ( semiri1316708129612266289at_nat @ J ) ) ) ).
% of_nat_mono
thf(fact_928_of__nat__mono,axiom,
! [I: nat,J: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ I ) @ ( semiri1314217659103216013at_int @ J ) ) ) ).
% of_nat_mono
thf(fact_929_of__nat__less__imp__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ).
% of_nat_less_imp_less
thf(fact_930_of__nat__less__imp__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ).
% of_nat_less_imp_less
thf(fact_931_of__nat__less__imp__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ).
% of_nat_less_imp_less
thf(fact_932_less__imp__of__nat__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M2 ) @ ( semiri1316708129612266289at_nat @ N2 ) ) ) ).
% less_imp_of_nat_less
thf(fact_933_less__imp__of__nat__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_real @ ( semiri5074537144036343181t_real @ M2 ) @ ( semiri5074537144036343181t_real @ N2 ) ) ) ).
% less_imp_of_nat_less
thf(fact_934_less__imp__of__nat__less,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% less_imp_of_nat_less
thf(fact_935_real__root__less__mono,axiom,
! [N2: nat,X: real,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ X @ Y2 )
=> ( ord_less_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y2 ) ) ) ) ).
% real_root_less_mono
thf(fact_936_real__root__le__mono,axiom,
! [N2: nat,X: real,Y2: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ X @ Y2 )
=> ( ord_less_eq_real @ ( root @ N2 @ X ) @ ( root @ N2 @ Y2 ) ) ) ) ).
% real_root_le_mono
thf(fact_937_reals__Archimedean3,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ! [Y5: real] :
? [N4: nat] : ( ord_less_real @ Y5 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N4 ) @ X ) ) ) ).
% reals_Archimedean3
thf(fact_938_real__root__gt__zero,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_real @ zero_zero_real @ ( root @ N2 @ X ) ) ) ) ).
% real_root_gt_zero
thf(fact_939_real__root__strict__decreasing,axiom,
! [N2: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_real @ one_one_real @ X )
=> ( ord_less_real @ ( root @ N5 @ X ) @ ( root @ N2 @ X ) ) ) ) ) ).
% real_root_strict_decreasing
thf(fact_940_real__root__pos__pos,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ zero_zero_real @ ( root @ N2 @ X ) ) ) ) ).
% real_root_pos_pos
thf(fact_941_real__root__strict__increasing,axiom,
! [N2: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ N2 @ N5 )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( ord_less_real @ X @ one_one_real )
=> ( ord_less_real @ ( root @ N2 @ X ) @ ( root @ N5 @ X ) ) ) ) ) ) ).
% real_root_strict_increasing
thf(fact_942_real__root__decreasing,axiom,
! [N2: nat,N5: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ N2 @ N5 )
=> ( ( ord_less_eq_real @ one_one_real @ X )
=> ( ord_less_eq_real @ ( root @ N5 @ X ) @ ( root @ N2 @ X ) ) ) ) ) ).
% real_root_decreasing
thf(fact_943_ex__less__of__nat__mult,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ? [N4: nat] : ( ord_less_real @ Y2 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N4 ) @ X ) ) ) ).
% ex_less_of_nat_mult
thf(fact_944_reals__Archimedean2,axiom,
! [X: real] :
? [N4: nat] : ( ord_less_real @ X @ ( semiri5074537144036343181t_real @ N4 ) ) ).
% reals_Archimedean2
thf(fact_945_real__arch__simple,axiom,
! [X: real] :
? [N4: nat] : ( ord_less_eq_real @ X @ ( semiri5074537144036343181t_real @ N4 ) ) ).
% real_arch_simple
thf(fact_946_real__root__pow__pos2,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( root @ N2 @ X ) @ N2 )
= X ) ) ) ).
% real_root_pow_pos2
thf(fact_947_real__root__power__cancel,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( root @ N2 @ ( power_power_real @ X @ N2 ) )
= X ) ) ) ).
% real_root_power_cancel
thf(fact_948_real__root__pos__unique,axiom,
! [N2: nat,Y2: real,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y2 )
=> ( ( ( power_power_real @ Y2 @ N2 )
= X )
=> ( ( root @ N2 @ X )
= Y2 ) ) ) ) ).
% real_root_pos_unique
thf(fact_949_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_950_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_951_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A2: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_952_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_953_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_954_real__arch__pow,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ one_one_real @ X )
=> ? [N4: nat] : ( ord_less_real @ Y2 @ ( power_power_real @ X @ N4 ) ) ) ).
% real_arch_pow
thf(fact_955_real__arch__pow__inv,axiom,
! [Y2: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y2 )
=> ( ( ord_less_real @ X @ one_one_real )
=> ? [N4: nat] : ( ord_less_real @ ( power_power_real @ X @ N4 ) @ Y2 ) ) ) ).
% real_arch_pow_inv
thf(fact_956_real__root__power,axiom,
! [N2: nat,X: real,K: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( root @ N2 @ ( power_power_real @ X @ K ) )
= ( power_power_real @ ( root @ N2 @ X ) @ K ) ) ) ).
% real_root_power
thf(fact_957_realpow__pos__nth,axiom,
! [N2: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R: real] :
( ( ord_less_real @ zero_zero_real @ R )
& ( ( power_power_real @ R @ N2 )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_958_realpow__pos__nth__unique,axiom,
! [N2: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X3: real] :
( ( ord_less_real @ zero_zero_real @ X3 )
& ( ( power_power_real @ X3 @ N2 )
= A )
& ! [Y5: real] :
( ( ( ord_less_real @ zero_zero_real @ Y5 )
& ( ( power_power_real @ Y5 @ N2 )
= A ) )
=> ( Y5 = X3 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_959_real__root__pow__pos,axiom,
! [N2: nat,X: real] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_real @ zero_zero_real @ X )
=> ( ( power_power_real @ ( root @ N2 @ X ) @ N2 )
= X ) ) ) ).
% real_root_pow_pos
thf(fact_960_of__nat__zero__less__power__iff,axiom,
! [X: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N2 = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_961_of__nat__zero__less__power__iff,axiom,
! [X: nat,N2: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N2 = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_962_of__nat__zero__less__power__iff,axiom,
! [X: nat,N2: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N2 = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_963_power__decreasing__iff,axiom,
! [B: real,M2: nat,N2: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M2 ) @ ( power_power_real @ B @ N2 ) )
= ( ord_less_eq_nat @ N2 @ M2 ) ) ) ) ).
% power_decreasing_iff
thf(fact_964_power__decreasing__iff,axiom,
! [B: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M2 ) @ ( power_power_nat @ B @ N2 ) )
= ( ord_less_eq_nat @ N2 @ M2 ) ) ) ) ).
% power_decreasing_iff
thf(fact_965_power__decreasing__iff,axiom,
! [B: int,M2: nat,N2: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M2 ) @ ( power_power_int @ B @ N2 ) )
= ( ord_less_eq_nat @ N2 @ M2 ) ) ) ) ).
% power_decreasing_iff
thf(fact_966_power__mono__iff,axiom,
! [A: real,B: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_967_power__mono__iff,axiom,
! [A: nat,B: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_968_power__mono__iff,axiom,
! [A: int,B: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_969_power__increasing__iff,axiom,
! [B: real,X: nat,Y2: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y2 ) )
= ( ord_less_eq_nat @ X @ Y2 ) ) ) ).
% power_increasing_iff
thf(fact_970_power__increasing__iff,axiom,
! [B: nat,X: nat,Y2: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y2 ) )
= ( ord_less_eq_nat @ X @ Y2 ) ) ) ).
% power_increasing_iff
thf(fact_971_power__increasing__iff,axiom,
! [B: int,X: nat,Y2: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y2 ) )
= ( ord_less_eq_nat @ X @ Y2 ) ) ) ).
% power_increasing_iff
thf(fact_972_power__strict__decreasing__iff,axiom,
! [B: real,M2: nat,N2: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M2 ) @ ( power_power_real @ B @ N2 ) )
= ( ord_less_nat @ N2 @ M2 ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_973_power__strict__decreasing__iff,axiom,
! [B: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M2 ) @ ( power_power_nat @ B @ N2 ) )
= ( ord_less_nat @ N2 @ M2 ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_974_power__strict__decreasing__iff,axiom,
! [B: int,M2: nat,N2: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M2 ) @ ( power_power_int @ B @ N2 ) )
= ( ord_less_nat @ N2 @ M2 ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_975_power__one,axiom,
! [N2: nat] :
( ( power_power_int @ one_one_int @ N2 )
= one_one_int ) ).
% power_one
thf(fact_976_power__one,axiom,
! [N2: nat] :
( ( power_power_real @ one_one_real @ N2 )
= one_one_real ) ).
% power_one
thf(fact_977_power__one,axiom,
! [N2: nat] :
( ( power_power_nat @ one_one_nat @ N2 )
= one_one_nat ) ).
% power_one
thf(fact_978_nat__zero__less__power__iff,axiom,
! [X: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N2 = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_979_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_980_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_981_power__inject__exp,axiom,
! [A: real,M2: nat,N2: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M2 )
= ( power_power_real @ A @ N2 ) )
= ( M2 = N2 ) ) ) ).
% power_inject_exp
thf(fact_982_power__inject__exp,axiom,
! [A: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M2 )
= ( power_power_nat @ A @ N2 ) )
= ( M2 = N2 ) ) ) ).
% power_inject_exp
thf(fact_983_power__inject__exp,axiom,
! [A: int,M2: nat,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M2 )
= ( power_power_int @ A @ N2 ) )
= ( M2 = N2 ) ) ) ).
% power_inject_exp
thf(fact_984_power__strict__increasing__iff,axiom,
! [B: real,X: nat,Y2: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y2 ) )
= ( ord_less_nat @ X @ Y2 ) ) ) ).
% power_strict_increasing_iff
thf(fact_985_power__strict__increasing__iff,axiom,
! [B: nat,X: nat,Y2: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y2 ) )
= ( ord_less_nat @ X @ Y2 ) ) ) ).
% power_strict_increasing_iff
thf(fact_986_power__strict__increasing__iff,axiom,
! [B: int,X: nat,Y2: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y2 ) )
= ( ord_less_nat @ X @ Y2 ) ) ) ).
% power_strict_increasing_iff
thf(fact_987_power__eq__0__iff,axiom,
! [A: int,N2: nat] :
( ( ( power_power_int @ A @ N2 )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% power_eq_0_iff
thf(fact_988_power__eq__0__iff,axiom,
! [A: real,N2: nat] :
( ( ( power_power_real @ A @ N2 )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% power_eq_0_iff
thf(fact_989_power__eq__0__iff,axiom,
! [A: nat,N2: nat] :
( ( ( power_power_nat @ A @ N2 )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% power_eq_0_iff
thf(fact_990_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_991_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_992_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_993_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_994_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_995_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_996_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_997_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_998_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W2: nat,X: nat] :
( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W2 ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_999_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W2 ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_1000_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W2 ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_1001_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W2: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W2 ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W2 ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_1002_nat__int__comparison_I1_J,axiom,
( ( ^ [Y3: nat,Z3: nat] : ( Y3 = Z3 ) )
= ( ^ [A2: nat,B2: nat] :
( ( semiri1314217659103216013at_int @ A2 )
= ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_1003_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_1004_nat__power__less__imp__less,axiom,
! [I: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M2 ) @ ( power_power_nat @ I @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ) ).
% nat_power_less_imp_less
thf(fact_1005_power__not__zero,axiom,
! [A: int,N2: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N2 )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_1006_power__not__zero,axiom,
! [A: real,N2: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N2 )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_1007_power__not__zero,axiom,
! [A: nat,N2: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N2 )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_1008_power__commuting__commutes,axiom,
! [X: real,Y2: real,N2: nat] :
( ( ( times_times_real @ X @ Y2 )
= ( times_times_real @ Y2 @ X ) )
=> ( ( times_times_real @ ( power_power_real @ X @ N2 ) @ Y2 )
= ( times_times_real @ Y2 @ ( power_power_real @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_1009_power__commuting__commutes,axiom,
! [X: nat,Y2: nat,N2: nat] :
( ( ( times_times_nat @ X @ Y2 )
= ( times_times_nat @ Y2 @ X ) )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N2 ) @ Y2 )
= ( times_times_nat @ Y2 @ ( power_power_nat @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_1010_power__commuting__commutes,axiom,
! [X: int,Y2: int,N2: nat] :
( ( ( times_times_int @ X @ Y2 )
= ( times_times_int @ Y2 @ X ) )
=> ( ( times_times_int @ ( power_power_int @ X @ N2 ) @ Y2 )
= ( times_times_int @ Y2 @ ( power_power_int @ X @ N2 ) ) ) ) ).
% power_commuting_commutes
thf(fact_1011_power__mult__distrib,axiom,
! [A: real,B: real,N2: nat] :
( ( power_power_real @ ( times_times_real @ A @ B ) @ N2 )
= ( times_times_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_1012_power__mult__distrib,axiom,
! [A: nat,B: nat,N2: nat] :
( ( power_power_nat @ ( times_times_nat @ A @ B ) @ N2 )
= ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_1013_power__mult__distrib,axiom,
! [A: int,B: int,N2: nat] :
( ( power_power_int @ ( times_times_int @ A @ B ) @ N2 )
= ( times_times_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ).
% power_mult_distrib
thf(fact_1014_power__commutes,axiom,
! [A: real,N2: nat] :
( ( times_times_real @ ( power_power_real @ A @ N2 ) @ A )
= ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_1015_power__commutes,axiom,
! [A: nat,N2: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ N2 ) @ A )
= ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_1016_power__commutes,axiom,
! [A: int,N2: nat] :
( ( times_times_int @ ( power_power_int @ A @ N2 ) @ A )
= ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ).
% power_commutes
thf(fact_1017_power__mult,axiom,
! [A: real,M2: nat,N2: nat] :
( ( power_power_real @ A @ ( times_times_nat @ M2 @ N2 ) )
= ( power_power_real @ ( power_power_real @ A @ M2 ) @ N2 ) ) ).
% power_mult
thf(fact_1018_power__mult,axiom,
! [A: nat,M2: nat,N2: nat] :
( ( power_power_nat @ A @ ( times_times_nat @ M2 @ N2 ) )
= ( power_power_nat @ ( power_power_nat @ A @ M2 ) @ N2 ) ) ).
% power_mult
thf(fact_1019_zero__le__power,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).
% zero_le_power
thf(fact_1020_zero__le__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ zero_zero_nat @ ( power_power_nat @ A @ N2 ) ) ) ).
% zero_le_power
thf(fact_1021_zero__le__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).
% zero_le_power
thf(fact_1022_power__mono,axiom,
! [A: real,B: real,N2: nat] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) ) ) ) ).
% power_mono
thf(fact_1023_power__mono,axiom,
! [A: nat,B: nat,N2: nat] :
( ( ord_less_eq_nat @ A @ B )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) ) ) ) ).
% power_mono
thf(fact_1024_power__mono,axiom,
! [A: int,B: int,N2: nat] :
( ( ord_less_eq_int @ A @ B )
=> ( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) ) ) ) ).
% power_mono
thf(fact_1025_zero__less__power,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ zero_zero_real @ A )
=> ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ N2 ) ) ) ).
% zero_less_power
thf(fact_1026_zero__less__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ A )
=> ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ A @ N2 ) ) ) ).
% zero_less_power
thf(fact_1027_zero__less__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ zero_zero_int @ A )
=> ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ N2 ) ) ) ).
% zero_less_power
thf(fact_1028_one__le__power,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ one_one_real @ A )
=> ( ord_less_eq_real @ one_one_real @ ( power_power_real @ A @ N2 ) ) ) ).
% one_le_power
thf(fact_1029_one__le__power,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ one_one_nat @ A )
=> ( ord_less_eq_nat @ one_one_nat @ ( power_power_nat @ A @ N2 ) ) ) ).
% one_le_power
thf(fact_1030_one__le__power,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ one_one_int @ A )
=> ( ord_less_eq_int @ one_one_int @ ( power_power_int @ A @ N2 ) ) ) ).
% one_le_power
thf(fact_1031_left__right__inverse__power,axiom,
! [X: real,Y2: real,N2: nat] :
( ( ( times_times_real @ X @ Y2 )
= one_one_real )
=> ( ( times_times_real @ ( power_power_real @ X @ N2 ) @ ( power_power_real @ Y2 @ N2 ) )
= one_one_real ) ) ).
% left_right_inverse_power
thf(fact_1032_left__right__inverse__power,axiom,
! [X: nat,Y2: nat,N2: nat] :
( ( ( times_times_nat @ X @ Y2 )
= one_one_nat )
=> ( ( times_times_nat @ ( power_power_nat @ X @ N2 ) @ ( power_power_nat @ Y2 @ N2 ) )
= one_one_nat ) ) ).
% left_right_inverse_power
thf(fact_1033_left__right__inverse__power,axiom,
! [X: int,Y2: int,N2: nat] :
( ( ( times_times_int @ X @ Y2 )
= one_one_int )
=> ( ( times_times_int @ ( power_power_int @ X @ N2 ) @ ( power_power_int @ Y2 @ N2 ) )
= one_one_int ) ) ).
% left_right_inverse_power
thf(fact_1034_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_1035_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_1036_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_1037_power__less__imp__less__base,axiom,
! [A: real,N2: nat,B: real] :
( ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( power_power_real @ B @ N2 ) )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ord_less_real @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_1038_power__less__imp__less__base,axiom,
! [A: nat,N2: nat,B: nat] :
( ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( power_power_nat @ B @ N2 ) )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ord_less_nat @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_1039_power__less__imp__less__base,axiom,
! [A: int,N2: nat,B: int] :
( ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( power_power_int @ B @ N2 ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ord_less_int @ A @ B ) ) ) ).
% power_less_imp_less_base
thf(fact_1040_power__le__one,axiom,
! [A: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ A @ one_one_real )
=> ( ord_less_eq_real @ ( power_power_real @ A @ N2 ) @ one_one_real ) ) ) ).
% power_le_one
thf(fact_1041_power__le__one,axiom,
! [A: nat,N2: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ A @ one_one_nat )
=> ( ord_less_eq_nat @ ( power_power_nat @ A @ N2 ) @ one_one_nat ) ) ) ).
% power_le_one
thf(fact_1042_power__le__one,axiom,
! [A: int,N2: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ A @ one_one_int )
=> ( ord_less_eq_int @ ( power_power_int @ A @ N2 ) @ one_one_int ) ) ) ).
% power_le_one
thf(fact_1043_power__gt1__lemma,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).
% power_gt1_lemma
thf(fact_1044_power__gt1__lemma,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% power_gt1_lemma
thf(fact_1045_power__gt1__lemma,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).
% power_gt1_lemma
thf(fact_1046_power__less__power__Suc,axiom,
! [A: real,N2: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ord_less_real @ ( power_power_real @ A @ N2 ) @ ( times_times_real @ A @ ( power_power_real @ A @ N2 ) ) ) ) ).
% power_less_power_Suc
thf(fact_1047_power__less__power__Suc,axiom,
! [A: nat,N2: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ord_less_nat @ ( power_power_nat @ A @ N2 ) @ ( times_times_nat @ A @ ( power_power_nat @ A @ N2 ) ) ) ) ).
% power_less_power_Suc
thf(fact_1048_power__less__power__Suc,axiom,
! [A: int,N2: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ord_less_int @ ( power_power_int @ A @ N2 ) @ ( times_times_int @ A @ ( power_power_int @ A @ N2 ) ) ) ) ).
% power_less_power_Suc
thf(fact_1049_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N2 )
= one_one_int ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N2 )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_1050_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N2 )
= one_one_real ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N2 )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_1051_power__0__left,axiom,
! [N2: nat] :
( ( ( N2 = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N2 )
= one_one_nat ) )
& ( ( N2 != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_1052_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_1053_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N4: nat] :
( ( ord_less_nat @ zero_zero_nat @ N4 )
& ( K
= ( semiri1314217659103216013at_int @ N4 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_1054_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N4: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N4 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N4 ) ) ) ).
% pos_int_cases
thf(fact_1055_pos__zmult__eq__1__iff,axiom,
! [M2: int,N2: int] :
( ( ord_less_int @ zero_zero_int @ M2 )
=> ( ( ( times_times_int @ M2 @ N2 )
= one_one_int )
= ( ( M2 = one_one_int )
& ( N2 = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1056_int__one__le__iff__zero__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ one_one_int @ Z2 )
= ( ord_less_int @ zero_zero_int @ Z2 ) ) ).
% int_one_le_iff_zero_less
thf(fact_1057_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_1058_zle__int,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M2 ) @ ( semiri1314217659103216013at_int @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% zle_int
thf(fact_1059_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_1060_neg__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ~ ! [N4: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N4 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N4 ) ) ) ).
% neg_int_cases
thf(fact_1061_diff__self__eq__0,axiom,
! [M2: nat] :
( ( minus_minus_nat @ M2 @ M2 )
= zero_zero_nat ) ).
% diff_self_eq_0
thf(fact_1062_diff__0__eq__0,axiom,
! [N2: nat] :
( ( minus_minus_nat @ zero_zero_nat @ N2 )
= zero_zero_nat ) ).
% diff_0_eq_0
thf(fact_1063_diff__diff__cancel,axiom,
! [I: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ N2 )
=> ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I ) )
= I ) ) ).
% diff_diff_cancel
thf(fact_1064_zero__less__diff,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% zero_less_diff
thf(fact_1065_diff__is__0__eq,axiom,
! [M2: nat,N2: nat] :
( ( ( minus_minus_nat @ M2 @ N2 )
= zero_zero_nat )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% diff_is_0_eq
thf(fact_1066_diff__is__0__eq_H,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( minus_minus_nat @ M2 @ N2 )
= zero_zero_nat ) ) ).
% diff_is_0_eq'
thf(fact_1067_negative__eq__positive,axiom,
! [N2: nat,M2: nat] :
( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) )
= ( semiri1314217659103216013at_int @ M2 ) )
= ( ( N2 = zero_zero_nat )
& ( M2 = zero_zero_nat ) ) ) ).
% negative_eq_positive
thf(fact_1068_diff__mult__distrib,axiom,
! [M2: nat,N2: nat,K: nat] :
( ( times_times_nat @ ( minus_minus_nat @ M2 @ N2 ) @ K )
= ( minus_minus_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).
% diff_mult_distrib
thf(fact_1069_diff__mult__distrib2,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( times_times_nat @ K @ ( minus_minus_nat @ M2 @ N2 ) )
= ( minus_minus_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) ) ) ).
% diff_mult_distrib2
thf(fact_1070_diff__commute,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).
% diff_commute
thf(fact_1071_eq__diff__iff,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ( minus_minus_nat @ M2 @ K )
= ( minus_minus_nat @ N2 @ K ) )
= ( M2 = N2 ) ) ) ) ).
% eq_diff_iff
thf(fact_1072_le__diff__iff,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ) ) ).
% le_diff_iff
thf(fact_1073_Nat_Odiff__diff__eq,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( minus_minus_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( minus_minus_nat @ M2 @ N2 ) ) ) ) ).
% Nat.diff_diff_eq
thf(fact_1074_diff__le__mono,axiom,
! [M2: nat,N2: nat,L: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ L ) @ ( minus_minus_nat @ N2 @ L ) ) ) ).
% diff_le_mono
thf(fact_1075_diff__le__self,axiom,
! [M2: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M2 @ N2 ) @ M2 ) ).
% diff_le_self
thf(fact_1076_le__diff__iff_H,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ A @ C )
=> ( ( ord_less_eq_nat @ B @ C )
=> ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
= ( ord_less_eq_nat @ B @ A ) ) ) ) ).
% le_diff_iff'
thf(fact_1077_diff__le__mono2,axiom,
! [M2: nat,N2: nat,L: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M2 ) ) ) ).
% diff_le_mono2
thf(fact_1078_diff__less__mono2,axiom,
! [M2: nat,N2: nat,L: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ( ord_less_nat @ M2 @ L )
=> ( ord_less_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M2 ) ) ) ) ).
% diff_less_mono2
thf(fact_1079_less__imp__diff__less,axiom,
! [J: nat,K: nat,N2: nat] :
( ( ord_less_nat @ J @ K )
=> ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).
% less_imp_diff_less
thf(fact_1080_minus__nat_Odiff__0,axiom,
! [M2: nat] :
( ( minus_minus_nat @ M2 @ zero_zero_nat )
= M2 ) ).
% minus_nat.diff_0
thf(fact_1081_diffs0__imp__equal,axiom,
! [M2: nat,N2: nat] :
( ( ( minus_minus_nat @ M2 @ N2 )
= zero_zero_nat )
=> ( ( ( minus_minus_nat @ N2 @ M2 )
= zero_zero_nat )
=> ( M2 = N2 ) ) ) ).
% diffs0_imp_equal
thf(fact_1082_diff__less,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( ord_less_nat @ zero_zero_nat @ M2 )
=> ( ord_less_nat @ ( minus_minus_nat @ M2 @ N2 ) @ M2 ) ) ) ).
% diff_less
thf(fact_1083_less__diff__iff,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ K @ M2 )
=> ( ( ord_less_eq_nat @ K @ N2 )
=> ( ( ord_less_nat @ ( minus_minus_nat @ M2 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
= ( ord_less_nat @ M2 @ N2 ) ) ) ) ).
% less_diff_iff
thf(fact_1084_diff__less__mono,axiom,
! [A: nat,B: nat,C: nat] :
( ( ord_less_nat @ A @ B )
=> ( ( ord_less_eq_nat @ C @ A )
=> ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).
% diff_less_mono
thf(fact_1085_pos__zmult__eq__1__iff__lemma,axiom,
! [M2: int,N2: int] :
( ( ( times_times_int @ M2 @ N2 )
= one_one_int )
=> ( ( M2 = one_one_int )
| ( M2
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_1086_zmult__eq__1__iff,axiom,
! [M2: int,N2: int] :
( ( ( times_times_int @ M2 @ N2 )
= one_one_int )
= ( ( ( M2 = one_one_int )
& ( N2 = one_one_int ) )
| ( ( M2
= ( uminus_uminus_int @ one_one_int ) )
& ( N2
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_1087_not__int__zless__negative,axiom,
! [N2: nat,M2: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M2 ) ) ) ).
% not_int_zless_negative
thf(fact_1088_int__cases4,axiom,
! [M2: int] :
( ! [N4: nat] :
( M2
!= ( semiri1314217659103216013at_int @ N4 ) )
=> ~ ! [N4: nat] :
( ( ord_less_nat @ zero_zero_nat @ N4 )
=> ( M2
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N4 ) ) ) ) ) ).
% int_cases4
thf(fact_1089_int__zle__neg,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M2 ) ) )
= ( ( N2 = zero_zero_nat )
& ( M2 = zero_zero_nat ) ) ) ).
% int_zle_neg
thf(fact_1090_int__cases3,axiom,
! [K: int] :
( ( K != zero_zero_int )
=> ( ! [N4: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N4 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N4 ) )
=> ~ ! [N4: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N4 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N4 ) ) ) ) ).
% int_cases3
thf(fact_1091_zle__diff1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ W2 @ ( minus_minus_int @ Z2 @ one_one_int ) )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% zle_diff1_eq
thf(fact_1092_real__root__minus,axiom,
! [N2: nat,X: real] :
( ( root @ N2 @ ( uminus_uminus_real @ X ) )
= ( uminus_uminus_real @ ( root @ N2 @ X ) ) ) ).
% real_root_minus
thf(fact_1093_net__asset__value__uminus,axiom,
! [Alpha: risk_Free_account] :
( ( risk_F2906766666041932210_value @ ( uminus3377898441596595772ccount @ Alpha ) )
= ( uminus_uminus_real @ ( risk_F2906766666041932210_value @ Alpha ) ) ) ).
% net_asset_value_uminus
thf(fact_1094_net__asset__value__minus,axiom,
! [Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F2906766666041932210_value @ ( minus_4846202936726426316ccount @ Alpha @ Beta ) )
= ( minus_minus_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).
% net_asset_value_minus
thf(fact_1095_return__loans__subtract,axiom,
! [Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F2121631595377017831_loans @ Rho @ ( minus_4846202936726426316ccount @ Alpha @ Beta ) )
= ( minus_4846202936726426316ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) @ ( risk_F2121631595377017831_loans @ Rho @ Beta ) ) ) ).
% return_loans_subtract
thf(fact_1096_return__loans__uminus,axiom,
! [Rho: nat > real,Alpha: risk_Free_account] :
( ( risk_F2121631595377017831_loans @ Rho @ ( uminus3377898441596595772ccount @ Alpha ) )
= ( uminus3377898441596595772ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) ) ) ).
% return_loans_uminus
thf(fact_1097_real__minus__mult__self__le,axiom,
! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X @ X ) ) ).
% real_minus_mult_self_le
thf(fact_1098_int__le__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_eq_int @ I @ K )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_le_induct
thf(fact_1099_int__less__induct,axiom,
! [I: int,K: int,P: int > $o] :
( ( ord_less_int @ I @ K )
=> ( ( P @ ( minus_minus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_less_induct
thf(fact_1100_valid__transfer__def,axiom,
( risk_F1023690899723030139ansfer
= ( ^ [Alpha2: risk_Free_account,Tau: risk_Free_account] :
( ( risk_F1636578016437888323olvent @ Tau )
& ( risk_F1636578016437888323olvent @ ( minus_4846202936726426316ccount @ Alpha2 @ Tau ) ) ) ) ) ).
% valid_transfer_def
thf(fact_1101_minusinfinity,axiom,
! [D: int,P1: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int,K2: int] :
( ( P1 @ X3 )
= ( P1 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D ) ) ) )
=> ( ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ X3 @ Z )
=> ( ( P @ X3 )
= ( P1 @ X3 ) ) )
=> ( ? [X_12: int] : ( P1 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% minusinfinity
thf(fact_1102_plusinfinity,axiom,
! [D: int,P4: int > $o,P: int > $o] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int,K2: int] :
( ( P4 @ X3 )
= ( P4 @ ( minus_minus_int @ X3 @ ( times_times_int @ K2 @ D ) ) ) )
=> ( ? [Z: int] :
! [X3: int] :
( ( ord_less_int @ Z @ X3 )
=> ( ( P @ X3 )
= ( P4 @ X3 ) ) )
=> ( ? [X_12: int] : ( P4 @ X_12 )
=> ? [X_1: int] : ( P @ X_1 ) ) ) ) ) ).
% plusinfinity
thf(fact_1103_int__ops_I6_J,axiom,
! [A: nat,B: nat] :
( ( ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= zero_zero_int ) )
& ( ~ ( ord_less_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) )
=> ( ( semiri1314217659103216013at_int @ ( minus_minus_nat @ A @ B ) )
= ( minus_minus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ) ) ).
% int_ops(6)
thf(fact_1104_decr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( minus_minus_int @ X3 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X2: int] :
( ( P @ X2 )
=> ( P @ ( minus_minus_int @ X2 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% decr_mult_lemma
thf(fact_1105_zdiff__int__split,axiom,
! [P: int > $o,X: nat,Y2: nat] :
( ( P @ ( semiri1314217659103216013at_int @ ( minus_minus_nat @ X @ Y2 ) ) )
= ( ( ( ord_less_eq_nat @ Y2 @ X )
=> ( P @ ( minus_minus_int @ ( semiri1314217659103216013at_int @ X ) @ ( semiri1314217659103216013at_int @ Y2 ) ) ) )
& ( ( ord_less_nat @ X @ Y2 )
=> ( P @ zero_zero_int ) ) ) ) ).
% zdiff_int_split
thf(fact_1106_Bolzano,axiom,
! [A: real,B: real,P: real > real > $o] :
( ( ord_less_eq_real @ A @ B )
=> ( ! [A3: real,B3: real,C2: real] :
( ( P @ A3 @ B3 )
=> ( ( P @ B3 @ C2 )
=> ( ( ord_less_eq_real @ A3 @ B3 )
=> ( ( ord_less_eq_real @ B3 @ C2 )
=> ( P @ A3 @ C2 ) ) ) ) )
=> ( ! [X3: real] :
( ( ord_less_eq_real @ A @ X3 )
=> ( ( ord_less_eq_real @ X3 @ B )
=> ? [D3: real] :
( ( ord_less_real @ zero_zero_real @ D3 )
& ! [A3: real,B3: real] :
( ( ( ord_less_eq_real @ A3 @ X3 )
& ( ord_less_eq_real @ X3 @ B3 )
& ( ord_less_real @ ( minus_minus_real @ B3 @ A3 ) @ D3 ) )
=> ( P @ A3 @ B3 ) ) ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Bolzano
thf(fact_1107_Bernoulli__inequality,axiom,
! [X: real,N2: nat] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N2 ) ) ) ).
% Bernoulli_inequality
thf(fact_1108_Rep__account__return__loans,axiom,
! [Rho: nat > real,Alpha: risk_Free_account] :
( ( risk_F170160801229183585ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) )
= ( ^ [N3: nat] : ( times_times_real @ ( minus_minus_real @ one_one_real @ ( Rho @ N3 ) ) @ ( risk_F170160801229183585ccount @ Alpha @ N3 ) ) ) ) ).
% Rep_account_return_loans
thf(fact_1109_linear__plus__1__le__power,axiom,
! [X: real,N2: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N2 ) ) ) ).
% linear_plus_1_le_power
thf(fact_1110_real__add__minus__iff,axiom,
! [X: real,A: real] :
( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
= zero_zero_real )
= ( X = A ) ) ).
% real_add_minus_iff
thf(fact_1111_Rep__account__zero,axiom,
( ( risk_F170160801229183585ccount @ zero_z1425366712893667068ccount )
= ( ^ [Uu: nat] : zero_zero_real ) ) ).
% Rep_account_zero
thf(fact_1112_Rep__account__uminus,axiom,
! [Alpha: risk_Free_account] :
( ( risk_F170160801229183585ccount @ ( uminus3377898441596595772ccount @ Alpha ) )
= ( ^ [N3: nat] : ( uminus_uminus_real @ ( risk_F170160801229183585ccount @ Alpha @ N3 ) ) ) ) ).
% Rep_account_uminus
thf(fact_1113_Rep__account__inject,axiom,
! [X: risk_Free_account,Y2: risk_Free_account] :
( ( ( risk_F170160801229183585ccount @ X )
= ( risk_F170160801229183585ccount @ Y2 ) )
= ( X = Y2 ) ) ).
% Rep_account_inject
thf(fact_1114_minus__real__def,axiom,
( minus_minus_real
= ( ^ [X4: real,Y4: real] : ( plus_plus_real @ X4 @ ( uminus_uminus_real @ Y4 ) ) ) ) ).
% minus_real_def
thf(fact_1115_real__add__less__0__iff,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ ( plus_plus_real @ X @ Y2 ) @ zero_zero_real )
= ( ord_less_real @ Y2 @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_less_0_iff
thf(fact_1116_real__0__less__add__iff,axiom,
! [X: real,Y2: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y2 ) )
= ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y2 ) ) ).
% real_0_less_add_iff
thf(fact_1117_real__add__le__0__iff,axiom,
! [X: real,Y2: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y2 ) @ zero_zero_real )
= ( ord_less_eq_real @ Y2 @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_le_0_iff
thf(fact_1118_real__0__le__add__iff,axiom,
! [X: real,Y2: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y2 ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y2 ) ) ).
% real_0_le_add_iff
thf(fact_1119_cash__reserve__def,axiom,
( risk_F1914734008469130493eserve
= ( ^ [Alpha2: risk_Free_account] : ( risk_F170160801229183585ccount @ Alpha2 @ zero_zero_nat ) ) ) ).
% cash_reserve_def
thf(fact_1120_nat__less__real__le,axiom,
( ord_less_nat
= ( ^ [N3: nat,M3: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M3 ) ) ) ) ).
% nat_less_real_le
thf(fact_1121_nat__le__real__less,axiom,
( ord_less_eq_nat
= ( ^ [N3: nat,M3: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M3 ) @ one_one_real ) ) ) ) ).
% nat_le_real_less
thf(fact_1122_Nat_Oadd__0__right,axiom,
! [M2: nat] :
( ( plus_plus_nat @ M2 @ zero_zero_nat )
= M2 ) ).
% Nat.add_0_right
thf(fact_1123_add__is__0,axiom,
! [M2: nat,N2: nat] :
( ( ( plus_plus_nat @ M2 @ N2 )
= zero_zero_nat )
= ( ( M2 = zero_zero_nat )
& ( N2 = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_1124_nat__add__left__cancel__less,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% nat_add_left_cancel_less
thf(fact_1125_nat__add__left__cancel__le,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N2 ) )
= ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% nat_add_left_cancel_le
thf(fact_1126_diff__diff__left,axiom,
! [I: nat,J: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
= ( minus_minus_nat @ I @ ( plus_plus_nat @ J @ K ) ) ) ).
% diff_diff_left
thf(fact_1127_Rep__account__plus,axiom,
! [Alpha_12: risk_Free_account,Alpha_22: risk_Free_account] :
( ( risk_F170160801229183585ccount @ ( plus_p1863581527469039996ccount @ Alpha_12 @ Alpha_22 ) )
= ( ^ [N3: nat] : ( plus_plus_real @ ( risk_F170160801229183585ccount @ Alpha_12 @ N3 ) @ ( risk_F170160801229183585ccount @ Alpha_22 @ N3 ) ) ) ) ).
% Rep_account_plus
thf(fact_1128_add__gr__0,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M2 @ N2 ) )
= ( ( ord_less_nat @ zero_zero_nat @ M2 )
| ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% add_gr_0
thf(fact_1129_Nat_Odiff__diff__right,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.diff_diff_right
thf(fact_1130_Nat_Oadd__diff__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K ) ) ) ).
% Nat.add_diff_assoc2
thf(fact_1131_Nat_Oadd__diff__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K ) ) ) ).
% Nat.add_diff_assoc
thf(fact_1132_zle__add1__eq__le,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ord_less_eq_int @ W2 @ Z2 ) ) ).
% zle_add1_eq_le
thf(fact_1133_Nat_Odiff__cancel,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ K @ M2 ) @ ( plus_plus_nat @ K @ N2 ) )
= ( minus_minus_nat @ M2 @ N2 ) ) ).
% Nat.diff_cancel
thf(fact_1134_diff__cancel2,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ K ) @ ( plus_plus_nat @ N2 @ K ) )
= ( minus_minus_nat @ M2 @ N2 ) ) ).
% diff_cancel2
thf(fact_1135_diff__add__inverse,axiom,
! [N2: nat,M2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ N2 @ M2 ) @ N2 )
= M2 ) ).
% diff_add_inverse
thf(fact_1136_diff__add__inverse2,axiom,
! [M2: nat,N2: nat] :
( ( minus_minus_nat @ ( plus_plus_nat @ M2 @ N2 ) @ N2 )
= M2 ) ).
% diff_add_inverse2
thf(fact_1137_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_1138_int__plus,axiom,
! [N2: nat,M2: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N2 @ M2 ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N2 ) @ ( semiri1314217659103216013at_int @ M2 ) ) ) ).
% int_plus
thf(fact_1139_add__eq__self__zero,axiom,
! [M2: nat,N2: nat] :
( ( ( plus_plus_nat @ M2 @ N2 )
= M2 )
=> ( N2 = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_1140_plus__nat_Oadd__0,axiom,
! [N2: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N2 )
= N2 ) ).
% plus_nat.add_0
thf(fact_1141_less__add__eq__less,axiom,
! [K: nat,L: nat,M2: nat,N2: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M2 @ L )
= ( plus_plus_nat @ K @ N2 ) )
=> ( ord_less_nat @ M2 @ N2 ) ) ) ).
% less_add_eq_less
thf(fact_1142_trans__less__add2,axiom,
! [I: nat,J: nat,M2: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).
% trans_less_add2
thf(fact_1143_trans__less__add1,axiom,
! [I: nat,J: nat,M2: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).
% trans_less_add1
thf(fact_1144_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1145_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_1146_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_1147_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1148_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_1149_add__mult__distrib2,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M2 @ N2 ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M2 ) @ ( times_times_nat @ K @ N2 ) ) ) ).
% add_mult_distrib2
thf(fact_1150_add__mult__distrib,axiom,
! [M2: nat,N2: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M2 @ N2 ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M2 @ K ) @ ( times_times_nat @ N2 @ K ) ) ) ).
% add_mult_distrib
thf(fact_1151_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_1152_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M3: nat,N3: nat] :
? [K3: nat] :
( N3
= ( plus_plus_nat @ M3 @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_1153_trans__le__add2,axiom,
! [I: nat,J: nat,M2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M2 @ J ) ) ) ).
% trans_le_add2
thf(fact_1154_trans__le__add1,axiom,
! [I: nat,J: nat,M2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M2 ) ) ) ).
% trans_le_add1
thf(fact_1155_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_1156_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_1157_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N4: nat] :
( L
= ( plus_plus_nat @ K @ N4 ) ) ) ).
% le_Suc_ex
thf(fact_1158_add__leD2,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N2 )
=> ( ord_less_eq_nat @ K @ N2 ) ) ).
% add_leD2
thf(fact_1159_add__leD1,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N2 )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% add_leD1
thf(fact_1160_le__add2,axiom,
! [N2: nat,M2: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ M2 @ N2 ) ) ).
% le_add2
thf(fact_1161_le__add1,axiom,
! [N2: nat,M2: nat] : ( ord_less_eq_nat @ N2 @ ( plus_plus_nat @ N2 @ M2 ) ) ).
% le_add1
thf(fact_1162_add__leE,axiom,
! [M2: nat,K: nat,N2: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M2 @ K ) @ N2 )
=> ~ ( ( ord_less_eq_nat @ M2 @ N2 )
=> ~ ( ord_less_eq_nat @ K @ N2 ) ) ) ).
% add_leE
thf(fact_1163_return__loans__plus,axiom,
! [Rho: nat > real,Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F2121631595377017831_loans @ Rho @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
= ( plus_p1863581527469039996ccount @ ( risk_F2121631595377017831_loans @ Rho @ Alpha ) @ ( risk_F2121631595377017831_loans @ Rho @ Beta ) ) ) ).
% return_loans_plus
thf(fact_1164_additive__strictly__solvent,axiom,
! [Alpha_12: risk_Free_account,Alpha_22: risk_Free_account] :
( ( risk_F1636578016437888323olvent @ Alpha_12 )
=> ( ( risk_F1636578016437888323olvent @ Alpha_22 )
=> ( risk_F1636578016437888323olvent @ ( plus_p1863581527469039996ccount @ Alpha_12 @ Alpha_22 ) ) ) ) ).
% additive_strictly_solvent
thf(fact_1165_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1166_mono__nat__linear__lb,axiom,
! [F: nat > nat,M2: nat,K: nat] :
( ! [M4: nat,N4: nat] :
( ( ord_less_nat @ M4 @ N4 )
=> ( ord_less_nat @ ( F @ M4 ) @ ( F @ N4 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M2 ) @ K ) @ ( F @ ( plus_plus_nat @ M2 @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1167_diff__add__0,axiom,
! [N2: nat,M2: nat] :
( ( minus_minus_nat @ N2 @ ( plus_plus_nat @ N2 @ M2 ) )
= zero_zero_nat ) ).
% diff_add_0
thf(fact_1168_add__diff__inverse__nat,axiom,
! [M2: nat,N2: nat] :
( ~ ( ord_less_nat @ M2 @ N2 )
=> ( ( plus_plus_nat @ N2 @ ( minus_minus_nat @ M2 @ N2 ) )
= M2 ) ) ).
% add_diff_inverse_nat
thf(fact_1169_less__diff__conv,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ).
% less_diff_conv
thf(fact_1170_Nat_Ole__imp__diff__is__add,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( minus_minus_nat @ J @ I )
= K )
= ( J
= ( plus_plus_nat @ K @ I ) ) ) ) ).
% Nat.le_imp_diff_is_add
thf(fact_1171_Nat_Odiff__add__assoc2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ J @ I ) @ K )
= ( plus_plus_nat @ ( minus_minus_nat @ J @ K ) @ I ) ) ) ).
% Nat.diff_add_assoc2
thf(fact_1172_Nat_Odiff__add__assoc,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ I @ J ) @ K )
= ( plus_plus_nat @ I @ ( minus_minus_nat @ J @ K ) ) ) ) ).
% Nat.diff_add_assoc
thf(fact_1173_Nat_Ole__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_eq_nat @ I @ ( minus_minus_nat @ J @ K ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ J ) ) ) ).
% Nat.le_diff_conv2
thf(fact_1174_le__diff__conv,axiom,
! [J: nat,K: nat,I: nat] :
( ( ord_less_eq_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_eq_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ).
% le_diff_conv
thf(fact_1175_odd__nonzero,axiom,
! [Z2: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_1176_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_1177_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I2: int] :
( ( ord_less_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_1178_zless__add1__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ ( plus_plus_int @ Z2 @ one_one_int ) )
= ( ( ord_less_int @ W2 @ Z2 )
| ( W2 = Z2 ) ) ) ).
% zless_add1_eq
thf(fact_1179_net__asset__value__plus,axiom,
! [Alpha: risk_Free_account,Beta: risk_Free_account] :
( ( risk_F2906766666041932210_value @ ( plus_p1863581527469039996ccount @ Alpha @ Beta ) )
= ( plus_plus_real @ ( risk_F2906766666041932210_value @ Alpha ) @ ( risk_F2906766666041932210_value @ Beta ) ) ) ).
% net_asset_value_plus
thf(fact_1180_minus__account__def,axiom,
( minus_4846202936726426316ccount
= ( ^ [Alpha_1: risk_Free_account,Alpha_2: risk_Free_account] : ( plus_p1863581527469039996ccount @ Alpha_1 @ ( uminus3377898441596595772ccount @ Alpha_2 ) ) ) ) ).
% minus_account_def
thf(fact_1181_nat__diff__split__asm,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ~ ( ( ( ord_less_nat @ A @ B )
& ~ ( P @ zero_zero_nat ) )
| ? [D4: nat] :
( ( A
= ( plus_plus_nat @ B @ D4 ) )
& ~ ( P @ D4 ) ) ) ) ) ).
% nat_diff_split_asm
thf(fact_1182_nat__diff__split,axiom,
! [P: nat > $o,A: nat,B: nat] :
( ( P @ ( minus_minus_nat @ A @ B ) )
= ( ( ( ord_less_nat @ A @ B )
=> ( P @ zero_zero_nat ) )
& ! [D4: nat] :
( ( A
= ( plus_plus_nat @ B @ D4 ) )
=> ( P @ D4 ) ) ) ) ).
% nat_diff_split
thf(fact_1183_less__diff__conv2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( ord_less_nat @ ( minus_minus_nat @ J @ K ) @ I )
= ( ord_less_nat @ J @ ( plus_plus_nat @ I @ K ) ) ) ) ).
% less_diff_conv2
thf(fact_1184_nat__eq__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M2 )
= N2 ) ) ) ).
% nat_eq_add_iff1
thf(fact_1185_nat__eq__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 )
= ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( M2
= ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_eq_add_iff2
thf(fact_1186_nat__le__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M2 ) @ N2 ) ) ) ).
% nat_le_add_iff1
thf(fact_1187_nat__le__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_eq_nat @ M2 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_le_add_iff2
thf(fact_1188_nat__diff__add__eq1,axiom,
! [J: nat,I: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M2 ) @ N2 ) ) ) ).
% nat_diff_add_eq1
thf(fact_1189_nat__diff__add__eq2,axiom,
! [I: nat,J: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( minus_minus_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( minus_minus_nat @ M2 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_diff_add_eq2
thf(fact_1190_odd__less__0__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z2 ) @ Z2 ) @ zero_zero_int )
= ( ord_less_int @ Z2 @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1191_add1__zle__eq,axiom,
! [W2: int,Z2: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 )
= ( ord_less_int @ W2 @ Z2 ) ) ).
% add1_zle_eq
thf(fact_1192_zless__imp__add1__zle,axiom,
! [W2: int,Z2: int] :
( ( ord_less_int @ W2 @ Z2 )
=> ( ord_less_eq_int @ ( plus_plus_int @ W2 @ one_one_int ) @ Z2 ) ) ).
% zless_imp_add1_zle
thf(fact_1193_int__induct,axiom,
! [P: int > $o,K: int,I: int] :
( ( P @ K )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ K @ I2 )
=> ( ( P @ I2 )
=> ( P @ ( plus_plus_int @ I2 @ one_one_int ) ) ) )
=> ( ! [I2: int] :
( ( ord_less_eq_int @ I2 @ K )
=> ( ( P @ I2 )
=> ( P @ ( minus_minus_int @ I2 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_induct
thf(fact_1194_nat__less__add__iff2,axiom,
! [I: nat,J: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_nat @ M2 @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ J @ I ) @ U ) @ N2 ) ) ) ) ).
% nat_less_add_iff2
thf(fact_1195_nat__less__add__iff1,axiom,
! [J: nat,I: nat,U: nat,M2: nat,N2: nat] :
( ( ord_less_eq_nat @ J @ I )
=> ( ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ M2 ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ N2 ) )
= ( ord_less_nat @ ( plus_plus_nat @ ( times_times_nat @ ( minus_minus_nat @ I @ J ) @ U ) @ M2 ) @ N2 ) ) ) ).
% nat_less_add_iff1
thf(fact_1196_le__imp__0__less,axiom,
! [Z2: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z2 )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z2 ) ) ) ).
% le_imp_0_less
thf(fact_1197_mult__eq__if,axiom,
( times_times_nat
= ( ^ [M3: nat,N3: nat] : ( if_nat @ ( M3 = zero_zero_nat ) @ zero_zero_nat @ ( plus_plus_nat @ N3 @ ( times_times_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N3 ) ) ) ) ) ).
% mult_eq_if
thf(fact_1198_incr__mult__lemma,axiom,
! [D: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ! [X3: int] :
( ( P @ X3 )
=> ( P @ ( plus_plus_int @ X3 @ D ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X2: int] :
( ( P @ X2 )
=> ( P @ ( plus_plus_int @ X2 @ ( times_times_int @ K @ D ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_1199_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M5: nat] :
( ( P @ X )
=> ( ! [X3: nat] :
( ( P @ X3 )
=> ( ord_less_eq_nat @ X3 @ M5 ) )
=> ~ ! [M4: nat] :
( ( P @ M4 )
=> ~ ! [X2: nat] :
( ( P @ X2 )
=> ( ord_less_eq_nat @ X2 @ M4 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_1200_nat0__intermed__int__val,axiom,
! [N2: nat,F: nat > int,K: int] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N2 )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( plus_plus_nat @ I2 @ one_one_nat ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
=> ? [I2: nat] :
( ( ord_less_eq_nat @ I2 @ N2 )
& ( ( F @ I2 )
= K ) ) ) ) ) ).
% nat0_intermed_int_val
thf(fact_1201_zabs__less__one__iff,axiom,
! [Z2: int] :
( ( ord_less_int @ ( abs_abs_int @ Z2 ) @ one_one_int )
= ( Z2 = zero_zero_int ) ) ).
% zabs_less_one_iff
thf(fact_1202_abs__zmult__eq__1,axiom,
! [M2: int,N2: int] :
( ( ( abs_abs_int @ ( times_times_int @ M2 @ N2 ) )
= one_one_int )
=> ( ( abs_abs_int @ M2 )
= one_one_int ) ) ).
% abs_zmult_eq_1
thf(fact_1203_zabs__def,axiom,
( abs_abs_int
= ( ^ [I4: int] : ( if_int @ ( ord_less_int @ I4 @ zero_zero_int ) @ ( uminus_uminus_int @ I4 ) @ I4 ) ) ) ).
% zabs_def
thf(fact_1204_incr__lemma,axiom,
! [D: int,Z2: int,X: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ord_less_int @ Z2 @ ( plus_plus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z2 ) ) @ one_one_int ) @ D ) ) ) ) ).
% incr_lemma
thf(fact_1205_decr__lemma,axiom,
! [D: int,X: int,Z2: int] :
( ( ord_less_int @ zero_zero_int @ D )
=> ( ord_less_int @ ( minus_minus_int @ X @ ( times_times_int @ ( plus_plus_int @ ( abs_abs_int @ ( minus_minus_int @ X @ Z2 ) ) @ one_one_int ) @ D ) ) @ Z2 ) ) ).
% decr_lemma
thf(fact_1206_nat__ivt__aux,axiom,
! [N2: nat,F: nat > int,K: int] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N2 )
=> ( ord_less_eq_int @ ( abs_abs_int @ ( minus_minus_int @ ( F @ ( suc @ I2 ) ) @ ( F @ I2 ) ) ) @ one_one_int ) )
=> ( ( ord_less_eq_int @ ( F @ zero_zero_nat ) @ K )
=> ( ( ord_less_eq_int @ K @ ( F @ N2 ) )
=> ? [I2: nat] :
( ( ord_less_eq_nat @ I2 @ N2 )
& ( ( F @ I2 )
= K ) ) ) ) ) ).
% nat_ivt_aux
thf(fact_1207_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A3: nat,B3: nat] :
( ( P @ A3 @ B3 )
= ( P @ B3 @ A3 ) )
=> ( ! [A3: nat] : ( P @ A3 @ zero_zero_nat )
=> ( ! [A3: nat,B3: nat] :
( ( P @ A3 @ B3 )
=> ( P @ A3 @ ( plus_plus_nat @ A3 @ B3 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_1208_nat_Oinject,axiom,
! [X22: nat,Y22: nat] :
( ( ( suc @ X22 )
= ( suc @ Y22 ) )
= ( X22 = Y22 ) ) ).
% nat.inject
thf(fact_1209_old_Onat_Oinject,axiom,
! [Nat: nat,Nat2: nat] :
( ( ( suc @ Nat )
= ( suc @ Nat2 ) )
= ( Nat = Nat2 ) ) ).
% old.nat.inject
thf(fact_1210_lessI,axiom,
! [N2: nat] : ( ord_less_nat @ N2 @ ( suc @ N2 ) ) ).
% lessI
thf(fact_1211_Suc__mono,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N2 ) ) ) ).
% Suc_mono
thf(fact_1212_Suc__less__eq,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M2 ) @ ( suc @ N2 ) )
= ( ord_less_nat @ M2 @ N2 ) ) ).
% Suc_less_eq
thf(fact_1213_Suc__le__mono,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( suc @ M2 ) )
= ( ord_less_eq_nat @ N2 @ M2 ) ) ).
% Suc_le_mono
thf(fact_1214_add__Suc__right,axiom,
! [M2: nat,N2: nat] :
( ( plus_plus_nat @ M2 @ ( suc @ N2 ) )
= ( suc @ ( plus_plus_nat @ M2 @ N2 ) ) ) ).
% add_Suc_right
thf(fact_1215_diff__Suc__Suc,axiom,
! [M2: nat,N2: nat] :
( ( minus_minus_nat @ ( suc @ M2 ) @ ( suc @ N2 ) )
= ( minus_minus_nat @ M2 @ N2 ) ) ).
% diff_Suc_Suc
thf(fact_1216_Suc__diff__diff,axiom,
! [M2: nat,N2: nat,K: nat] :
( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M2 ) @ N2 ) @ ( suc @ K ) )
= ( minus_minus_nat @ ( minus_minus_nat @ M2 @ N2 ) @ K ) ) ).
% Suc_diff_diff
thf(fact_1217_less__Suc0,axiom,
! [N2: nat] :
( ( ord_less_nat @ N2 @ ( suc @ zero_zero_nat ) )
= ( N2 = zero_zero_nat ) ) ).
% less_Suc0
thf(fact_1218_zero__less__Suc,axiom,
! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N2 ) ) ).
% zero_less_Suc
thf(fact_1219_mult__eq__1__iff,axiom,
! [M2: nat,N2: nat] :
( ( ( times_times_nat @ M2 @ N2 )
= ( suc @ zero_zero_nat ) )
= ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% mult_eq_1_iff
thf(fact_1220_one__eq__mult__iff,axiom,
! [M2: nat,N2: nat] :
( ( ( suc @ zero_zero_nat )
= ( times_times_nat @ M2 @ N2 ) )
= ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ).
% one_eq_mult_iff
thf(fact_1221_mult__Suc__right,axiom,
! [M2: nat,N2: nat] :
( ( times_times_nat @ M2 @ ( suc @ N2 ) )
= ( plus_plus_nat @ M2 @ ( times_times_nat @ M2 @ N2 ) ) ) ).
% mult_Suc_right
thf(fact_1222_diff__Suc__1,axiom,
! [N2: nat] :
( ( minus_minus_nat @ ( suc @ N2 ) @ one_one_nat )
= N2 ) ).
% diff_Suc_1
thf(fact_1223_real__root__Suc__0,axiom,
! [X: real] :
( ( root @ ( suc @ zero_zero_nat ) @ X )
= X ) ).
% real_root_Suc_0
thf(fact_1224_power__Suc__0,axiom,
! [N2: nat] :
( ( power_power_nat @ ( suc @ zero_zero_nat ) @ N2 )
= ( suc @ zero_zero_nat ) ) ).
% power_Suc_0
thf(fact_1225_nat__power__eq__Suc__0__iff,axiom,
! [X: nat,M2: nat] :
( ( ( power_power_nat @ X @ M2 )
= ( suc @ zero_zero_nat ) )
= ( ( M2 = zero_zero_nat )
| ( X
= ( suc @ zero_zero_nat ) ) ) ) ).
% nat_power_eq_Suc_0_iff
thf(fact_1226_Suc__pred,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
= N2 ) ) ).
% Suc_pred
thf(fact_1227_one__le__mult__iff,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M2 @ N2 ) )
= ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M2 )
& ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N2 ) ) ) ).
% one_le_mult_iff
thf(fact_1228_diff__Suc__diff__eq2,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ ( suc @ ( minus_minus_nat @ J @ K ) ) @ I )
= ( minus_minus_nat @ ( suc @ J ) @ ( plus_plus_nat @ K @ I ) ) ) ) ).
% diff_Suc_diff_eq2
thf(fact_1229_diff__Suc__diff__eq1,axiom,
! [K: nat,J: nat,I: nat] :
( ( ord_less_eq_nat @ K @ J )
=> ( ( minus_minus_nat @ I @ ( suc @ ( minus_minus_nat @ J @ K ) ) )
= ( minus_minus_nat @ ( plus_plus_nat @ I @ K ) @ ( suc @ J ) ) ) ) ).
% diff_Suc_diff_eq1
thf(fact_1230_negative__zless,axiom,
! [N2: nat,M2: nat] : ( ord_less_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ ( suc @ N2 ) ) ) @ ( semiri1314217659103216013at_int @ M2 ) ) ).
% negative_zless
thf(fact_1231_Suc__diff__1,axiom,
! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) )
= N2 ) ) ).
% Suc_diff_1
thf(fact_1232_less__natE,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ~ ! [Q3: nat] :
( N2
!= ( suc @ ( plus_plus_nat @ M2 @ Q3 ) ) ) ) ).
% less_natE
thf(fact_1233_Suc__eq__plus1,axiom,
( suc
= ( ^ [N3: nat] : ( plus_plus_nat @ N3 @ one_one_nat ) ) ) ).
% Suc_eq_plus1
thf(fact_1234_less__add__Suc1,axiom,
! [I: nat,M2: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M2 ) ) ) ).
% less_add_Suc1
thf(fact_1235_less__add__Suc2,axiom,
! [I: nat,M2: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M2 @ I ) ) ) ).
% less_add_Suc2
thf(fact_1236_plus__1__eq__Suc,axiom,
( ( plus_plus_nat @ one_one_nat )
= suc ) ).
% plus_1_eq_Suc
thf(fact_1237_less__iff__Suc__add,axiom,
( ord_less_nat
= ( ^ [M3: nat,N3: nat] :
? [K3: nat] :
( N3
= ( suc @ ( plus_plus_nat @ M3 @ K3 ) ) ) ) ) ).
% less_iff_Suc_add
thf(fact_1238_less__imp__Suc__add,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ? [K2: nat] :
( N2
= ( suc @ ( plus_plus_nat @ M2 @ K2 ) ) ) ) ).
% less_imp_Suc_add
thf(fact_1239_Suc__eq__plus1__left,axiom,
( suc
= ( plus_plus_nat @ one_one_nat ) ) ).
% Suc_eq_plus1_left
thf(fact_1240_add__is__1,axiom,
! [M2: nat,N2: nat] :
( ( ( plus_plus_nat @ M2 @ N2 )
= ( suc @ zero_zero_nat ) )
= ( ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N2 = zero_zero_nat ) )
| ( ( M2 = zero_zero_nat )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% add_is_1
thf(fact_1241_one__is__add,axiom,
! [M2: nat,N2: nat] :
( ( ( suc @ zero_zero_nat )
= ( plus_plus_nat @ M2 @ N2 ) )
= ( ( ( M2
= ( suc @ zero_zero_nat ) )
& ( N2 = zero_zero_nat ) )
| ( ( M2 = zero_zero_nat )
& ( N2
= ( suc @ zero_zero_nat ) ) ) ) ) ).
% one_is_add
thf(fact_1242_mult__Suc,axiom,
! [M2: nat,N2: nat] :
( ( times_times_nat @ ( suc @ M2 ) @ N2 )
= ( plus_plus_nat @ N2 @ ( times_times_nat @ M2 @ N2 ) ) ) ).
% mult_Suc
thf(fact_1243_add__Suc__shift,axiom,
! [M2: nat,N2: nat] :
( ( plus_plus_nat @ ( suc @ M2 ) @ N2 )
= ( plus_plus_nat @ M2 @ ( suc @ N2 ) ) ) ).
% add_Suc_shift
thf(fact_1244_add__Suc,axiom,
! [M2: nat,N2: nat] :
( ( plus_plus_nat @ ( suc @ M2 ) @ N2 )
= ( suc @ ( plus_plus_nat @ M2 @ N2 ) ) ) ).
% add_Suc
thf(fact_1245_nat__arith_Osuc1,axiom,
! [A4: nat,K: nat,A: nat] :
( ( A4
= ( plus_plus_nat @ K @ A ) )
=> ( ( suc @ A4 )
= ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).
% nat_arith.suc1
thf(fact_1246_Suc__mult__cancel1,axiom,
! [K: nat,M2: nat,N2: nat] :
( ( ( times_times_nat @ ( suc @ K ) @ M2 )
= ( times_times_nat @ ( suc @ K ) @ N2 ) )
= ( M2 = N2 ) ) ).
% Suc_mult_cancel1
thf(fact_1247_Suc__inject,axiom,
! [X: nat,Y2: nat] :
( ( ( suc @ X )
= ( suc @ Y2 ) )
=> ( X = Y2 ) ) ).
% Suc_inject
thf(fact_1248_n__not__Suc__n,axiom,
! [N2: nat] :
( N2
!= ( suc @ N2 ) ) ).
% n_not_Suc_n
thf(fact_1249_Suc__leD,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ ( suc @ M2 ) @ N2 )
=> ( ord_less_eq_nat @ M2 @ N2 ) ) ).
% Suc_leD
thf(fact_1250_le__SucE,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ ( suc @ N2 ) )
=> ( ~ ( ord_less_eq_nat @ M2 @ N2 )
=> ( M2
= ( suc @ N2 ) ) ) ) ).
% le_SucE
thf(fact_1251_le__SucI,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ord_less_eq_nat @ M2 @ ( suc @ N2 ) ) ) ).
% le_SucI
thf(fact_1252_Suc__le__D,axiom,
! [N2: nat,M6: nat] :
( ( ord_less_eq_nat @ ( suc @ N2 ) @ M6 )
=> ? [M4: nat] :
( M6
= ( suc @ M4 ) ) ) ).
% Suc_le_D
thf(fact_1253_le__Suc__eq,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq_nat @ M2 @ ( suc @ N2 ) )
= ( ( ord_less_eq_nat @ M2 @ N2 )
| ( M2
= ( suc @ N2 ) ) ) ) ).
% le_Suc_eq
thf(fact_1254_Suc__n__not__le__n,axiom,
! [N2: nat] :
~ ( ord_less_eq_nat @ ( suc @ N2 ) @ N2 ) ).
% Suc_n_not_le_n
thf(fact_1255_not__less__eq__eq,axiom,
! [M2: nat,N2: nat] :
( ( ~ ( ord_less_eq_nat @ M2 @ N2 ) )
= ( ord_less_eq_nat @ ( suc @ N2 ) @ M2 ) ) ).
% not_less_eq_eq
thf(fact_1256_full__nat__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N4: nat] :
( ! [M: nat] :
( ( ord_less_eq_nat @ ( suc @ M ) @ N4 )
=> ( P @ M ) )
=> ( P @ N4 ) )
=> ( P @ N2 ) ) ).
% full_nat_induct
thf(fact_1257_nat__induct__at__least,axiom,
! [M2: nat,N2: nat,P: nat > $o] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ( P @ M2 )
=> ( ! [N4: nat] :
( ( ord_less_eq_nat @ M2 @ N4 )
=> ( ( P @ N4 )
=> ( P @ ( suc @ N4 ) ) ) )
=> ( P @ N2 ) ) ) ) ).
% nat_induct_at_least
thf(fact_1258_transitive__stepwise__le,axiom,
! [M2: nat,N2: nat,R2: nat > nat > $o] :
( ( ord_less_eq_nat @ M2 @ N2 )
=> ( ! [X3: nat] : ( R2 @ X3 @ X3 )
=> ( ! [X3: nat,Y: nat,Z4: nat] :
( ( R2 @ X3 @ Y )
=> ( ( R2 @ Y @ Z4 )
=> ( R2 @ X3 @ Z4 ) ) )
=> ( ! [N4: nat] : ( R2 @ N4 @ ( suc @ N4 ) )
=> ( R2 @ M2 @ N2 ) ) ) ) ) ).
% transitive_stepwise_le
thf(fact_1259_Nat_OlessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ I @ K )
=> ( ( K
!= ( suc @ I ) )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ) ).
% Nat.lessE
thf(fact_1260_Suc__lessD,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ ( suc @ M2 ) @ N2 )
=> ( ord_less_nat @ M2 @ N2 ) ) ).
% Suc_lessD
thf(fact_1261_Suc__lessE,axiom,
! [I: nat,K: nat] :
( ( ord_less_nat @ ( suc @ I ) @ K )
=> ~ ! [J2: nat] :
( ( ord_less_nat @ I @ J2 )
=> ( K
!= ( suc @ J2 ) ) ) ) ).
% Suc_lessE
thf(fact_1262_Suc__lessI,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ( ( suc @ M2 )
!= N2 )
=> ( ord_less_nat @ ( suc @ M2 ) @ N2 ) ) ) ).
% Suc_lessI
thf(fact_1263_less__SucE,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ ( suc @ N2 ) )
=> ( ~ ( ord_less_nat @ M2 @ N2 )
=> ( M2 = N2 ) ) ) ).
% less_SucE
thf(fact_1264_less__SucI,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_nat @ M2 @ ( suc @ N2 ) ) ) ).
% less_SucI
thf(fact_1265_Ex__less__Suc,axiom,
! [N2: nat,P: nat > $o] :
( ( ? [I4: nat] :
( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
& ( P @ I4 ) ) )
= ( ( P @ N2 )
| ? [I4: nat] :
( ( ord_less_nat @ I4 @ N2 )
& ( P @ I4 ) ) ) ) ).
% Ex_less_Suc
% Helper facts (5)
thf(help_If_2_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y2: int] :
( ( if_int @ $false @ X @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Int__Oint_T,axiom,
! [X: int,Y2: int] :
( ( if_int @ $true @ X @ Y2 )
= X ) ).
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y2: nat] :
( ( if_nat @ $false @ X @ Y2 )
= Y2 ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y2: nat] :
( ( if_nat @ $true @ X @ Y2 )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
ord_less_eq_real @ ( times_times_real @ i @ ( risk_F2906766666041932210_value @ alpha ) ) @ ( times_times_real @ i @ ( risk_F2906766666041932210_value @ beta ) ) ).
%------------------------------------------------------------------------------