TPTP Problem File: SLH0140^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Multiset_Ordering_NPC/0001_Multiset_Ordering_More/prob_00257_011605__13312372_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1387 ( 597 unt; 123 typ;   0 def)
%            Number of atoms       : 3452 (1330 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 9825 ( 303   ~;  65   |; 178   &;7710   @)
%                                         (   0 <=>;1569  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   18 (   6 avg)
%            Number of types       :   16 (  15 usr)
%            Number of type conns  :  474 ( 474   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  111 ( 108 usr;  14 con; 0-4 aty)
%            Number of variables   : 3394 ( 182   ^;3110   !; 102   ?;3394   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-18 16:28:53.370
%------------------------------------------------------------------------------
% Could-be-implicit typings (15)
thf(ty_n_t__List__Olist_It__List__Olist_It__Nat__Onat_J_J,type,
    list_list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_It__Nat__Onat_J_J,type,
    set_list_nat: $tType ).

thf(ty_n_t__List__Olist_It__List__Olist_Itf__a_J_J,type,
    list_list_a: $tType ).

thf(ty_n_t__Set__Oset_It__List__Olist_Itf__a_J_J,type,
    set_list_a: $tType ).

thf(ty_n_t__Multiset__Omultiset_It__Nat__Onat_J,type,
    multiset_nat: $tType ).

thf(ty_n_t__Option__Ooption_It__Nat__Onat_J,type,
    option_nat: $tType ).

thf(ty_n_t__Multiset__Omultiset_Itf__a_J,type,
    multiset_a: $tType ).

thf(ty_n_t__List__Olist_It__Nat__Onat_J,type,
    list_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Option__Ooption_Itf__a_J,type,
    option_a: $tType ).

thf(ty_n_t__List__Olist_Itf__a_J,type,
    list_a: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__String__Ochar,type,
    char: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (108)
thf(sy_c_Finite__Set_Ocard_001t__List__Olist_It__Nat__Onat_J,type,
    finite_card_list_nat: set_list_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__List__Olist_Itf__a_J,type,
    finite_card_list_a: set_list_a > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001tf__a,type,
    finite_card_a: set_a > nat ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Nat__Onat_J,type,
    finite8100373058378681591st_nat: set_list_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_Itf__a_J,type,
    finite_finite_list_a: set_list_a > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
    finite_finite_a: set_a > $o ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Multiset__Omultiset_It__Nat__Onat_J,type,
    plus_p6334493942879108393et_nat: multiset_nat > multiset_nat > multiset_nat ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Multiset__Omultiset_Itf__a_J,type,
    plus_plus_multiset_a: multiset_a > multiset_a > multiset_a ).

thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
    plus_plus_nat: nat > nat > nat ).

thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
    times_times_nat: nat > nat > nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Multiset__Omultiset_It__Nat__Onat_J,type,
    zero_z7348594199698428585et_nat: multiset_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Multiset__Omultiset_Itf__a_J,type,
    zero_zero_multiset_a: multiset_a ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_Groups__Big_Ocomm__monoid__add_Osum_001t__Multiset__Omultiset_Itf__a_J_001t__Nat__Onat,type,
    groups9157842243955967216_a_nat: ( multiset_a > multiset_a > multiset_a ) > multiset_a > ( nat > multiset_a ) > set_nat > multiset_a ).

thf(sy_c_If_001t__Nat__Onat,type,
    if_nat: $o > nat > nat > nat ).

thf(sy_c_Infinite__Set_Owellorder__class_Oenumerate_001t__Nat__Onat,type,
    infini8530281810654367211te_nat: set_nat > nat > nat ).

thf(sy_c_List_OListMem_001t__Nat__Onat,type,
    listMem_nat: nat > list_nat > $o ).

thf(sy_c_List_OListMem_001tf__a,type,
    listMem_a: a > list_a > $o ).

thf(sy_c_List_Oappend_001t__Nat__Onat,type,
    append_nat: list_nat > list_nat > list_nat ).

thf(sy_c_List_Oappend_001tf__a,type,
    append_a: list_a > list_a > list_a ).

thf(sy_c_List_Obind_001t__Nat__Onat_001t__Nat__Onat,type,
    bind_nat_nat: list_nat > ( nat > list_nat ) > list_nat ).

thf(sy_c_List_Obind_001t__Nat__Onat_001tf__a,type,
    bind_nat_a: list_nat > ( nat > list_a ) > list_a ).

thf(sy_c_List_Obind_001tf__a_001t__Nat__Onat,type,
    bind_a_nat: list_a > ( a > list_nat ) > list_nat ).

thf(sy_c_List_Obind_001tf__a_001tf__a,type,
    bind_a_a: list_a > ( a > list_a ) > list_a ).

thf(sy_c_List_Ocan__select_001t__Nat__Onat,type,
    can_select_nat: ( nat > $o ) > set_nat > $o ).

thf(sy_c_List_Ocan__select_001tf__a,type,
    can_select_a: ( a > $o ) > set_a > $o ).

thf(sy_c_List_Ocoset_001t__Nat__Onat,type,
    coset_nat: list_nat > set_nat ).

thf(sy_c_List_Ocoset_001tf__a,type,
    coset_a: list_a > set_a ).

thf(sy_c_List_Odrop_001t__Nat__Onat,type,
    drop_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Odrop_001tf__a,type,
    drop_a: nat > list_a > list_a ).

thf(sy_c_List_Ofind_001t__Nat__Onat,type,
    find_nat: ( nat > $o ) > list_nat > option_nat ).

thf(sy_c_List_Ofind_001tf__a,type,
    find_a: ( a > $o ) > list_a > option_a ).

thf(sy_c_List_Ogen__length_001t__Nat__Onat,type,
    gen_length_nat: nat > list_nat > nat ).

thf(sy_c_List_Ogen__length_001tf__a,type,
    gen_length_a: nat > list_a > nat ).

thf(sy_c_List_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Oinsert_001tf__a,type,
    insert_a: a > list_a > list_a ).

thf(sy_c_List_Olinorder__class_Osorted__list__of__set_001t__Nat__Onat,type,
    linord2614967742042102400et_nat: set_nat > list_nat ).

thf(sy_c_List_Olist_ONil_001t__Nat__Onat,type,
    nil_nat: list_nat ).

thf(sy_c_List_Olist_ONil_001tf__a,type,
    nil_a: list_a ).

thf(sy_c_List_Olist_Ohd_001t__Nat__Onat,type,
    hd_nat: list_nat > nat ).

thf(sy_c_List_Olist_Ohd_001tf__a,type,
    hd_a: list_a > a ).

thf(sy_c_List_Olist_Oset_001t__List__Olist_It__Nat__Onat_J,type,
    set_list_nat2: list_list_nat > set_list_nat ).

thf(sy_c_List_Olist_Oset_001t__List__Olist_Itf__a_J,type,
    set_list_a2: list_list_a > set_list_a ).

thf(sy_c_List_Olist_Oset_001t__Nat__Onat,type,
    set_nat2: list_nat > set_nat ).

thf(sy_c_List_Olist_Oset_001tf__a,type,
    set_a2: list_a > set_a ).

thf(sy_c_List_Olist__ex1_001t__Nat__Onat,type,
    list_ex1_nat: ( nat > $o ) > list_nat > $o ).

thf(sy_c_List_Olist__ex1_001tf__a,type,
    list_ex1_a: ( a > $o ) > list_a > $o ).

thf(sy_c_List_Omember_001t__Nat__Onat,type,
    member_nat: list_nat > nat > $o ).

thf(sy_c_List_Omember_001tf__a,type,
    member_a: list_a > a > $o ).

thf(sy_c_List_Onth_001t__Nat__Onat,type,
    nth_nat: list_nat > nat > nat ).

thf(sy_c_List_Onth_001tf__a,type,
    nth_a: list_a > nat > a ).

thf(sy_c_List_OremoveAll_001t__Nat__Onat,type,
    removeAll_nat: nat > list_nat > list_nat ).

thf(sy_c_List_OremoveAll_001tf__a,type,
    removeAll_a: a > list_a > list_a ).

thf(sy_c_List_Oreplicate_001t__Nat__Onat,type,
    replicate_nat: nat > nat > list_nat ).

thf(sy_c_List_Oreplicate_001tf__a,type,
    replicate_a: nat > a > list_a ).

thf(sy_c_List_Orev_001t__Nat__Onat,type,
    rev_nat: list_nat > list_nat ).

thf(sy_c_List_Orev_001tf__a,type,
    rev_a: list_a > list_a ).

thf(sy_c_List_Orotate1_001t__Nat__Onat,type,
    rotate1_nat: list_nat > list_nat ).

thf(sy_c_List_Orotate1_001tf__a,type,
    rotate1_a: list_a > list_a ).

thf(sy_c_List_Orotate_001t__Nat__Onat,type,
    rotate_nat: nat > list_nat > list_nat ).

thf(sy_c_List_Orotate_001tf__a,type,
    rotate_a: nat > list_a > list_a ).

thf(sy_c_List_Osorted__wrt_001t__Nat__Onat,type,
    sorted_wrt_nat: ( nat > nat > $o ) > list_nat > $o ).

thf(sy_c_List_Osorted__wrt_001tf__a,type,
    sorted_wrt_a: ( a > a > $o ) > list_a > $o ).

thf(sy_c_List_Osplice_001t__Nat__Onat,type,
    splice_nat: list_nat > list_nat > list_nat ).

thf(sy_c_List_Osplice_001tf__a,type,
    splice_a: list_a > list_a > list_a ).

thf(sy_c_Multiset_Ois__empty_001t__Nat__Onat,type,
    is_empty_nat: multiset_nat > $o ).

thf(sy_c_Multiset_Ois__empty_001tf__a,type,
    is_empty_a: multiset_a > $o ).

thf(sy_c_Multiset_Olinorder__class_Osorted__list__of__multiset_001t__Nat__Onat,type,
    linord3047872887403683810et_nat: multiset_nat > list_nat ).

thf(sy_c_Multiset_Omset_001t__Nat__Onat,type,
    mset_nat: list_nat > multiset_nat ).

thf(sy_c_Multiset_Omset_001tf__a,type,
    mset_a: list_a > multiset_a ).

thf(sy_c_Multiset_Osize__multiset_001t__Nat__Onat,type,
    size_multiset_nat: ( nat > nat ) > multiset_nat > nat ).

thf(sy_c_Multiset_Osize__multiset_001tf__a,type,
    size_multiset_a: ( a > nat ) > multiset_a > nat ).

thf(sy_c_Multiset_Owcount_001tf__a,type,
    wcount_a: ( a > nat ) > multiset_a > a > nat ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Nat__Onat_J,type,
    size_size_list_nat: list_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_Itf__a_J,type,
    size_size_list_a: list_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Multiset__Omultiset_It__Nat__Onat_J,type,
    size_s5917832649809541300et_nat: multiset_nat > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__Multiset__Omultiset_Itf__a_J,type,
    size_size_multiset_a: multiset_a > nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__String__Ochar,type,
    size_size_char: char > nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__a_J,type,
    ord_less_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Nat__Onat,type,
    order_Greatest_nat: ( nat > $o ) > nat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Set__Oset_It__Nat__Onat_J,type,
    order_5724808138429204845et_nat: ( set_nat > $o ) > set_nat ).

thf(sy_c_Orderings_Oorder__class_OGreatest_001t__Set__Oset_Itf__a_J,type,
    order_Greatest_set_a: ( set_a > $o ) > set_a ).

thf(sy_c_Rings_Odivide__class_Odivide_001t__Nat__Onat,type,
    divide_divide_nat: nat > nat > nat ).

thf(sy_c_Rings_Omodulo__class_Omodulo_001t__Nat__Onat,type,
    modulo_modulo_nat: nat > nat > nat ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_Oremove_001t__Nat__Onat,type,
    remove_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oremove_001tf__a,type,
    remove_a: a > set_a > set_a ).

thf(sy_c_String_Ochar_Osize__char,type,
    size_char: char > nat ).

thf(sy_c_member_001t__List__Olist_It__Nat__Onat_J,type,
    member_list_nat: list_nat > set_list_nat > $o ).

thf(sy_c_member_001t__List__Olist_Itf__a_J,type,
    member_list_a: list_a > set_list_a > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat2: nat > set_nat > $o ).

thf(sy_c_member_001tf__a,type,
    member_a2: a > set_a > $o ).

thf(sy_v_xs,type,
    xs: list_a ).

thf(sy_v_xs1____,type,
    xs1: list_a ).

thf(sy_v_xs2____,type,
    xs2: list_a ).

thf(sy_v_ys,type,
    ys: list_a ).

thf(sy_v_ys1____,type,
    ys1: list_a ).

thf(sy_v_ys2____,type,
    ys2: list_a ).

% Relevant facts (1260)
thf(fact_0__C_K_C_I3_J,axiom,
    ( ( size_size_list_a @ xs1 )
    = ( size_size_list_a @ ys1 ) ) ).

% "*"(3)
thf(fact_1__092_060open_062length_Axs2_A_092_060le_062_Alength_Ays2_092_060close_062,axiom,
    ord_less_eq_nat @ ( size_size_list_a @ xs2 ) @ ( size_size_list_a @ ys2 ) ).

% \<open>length xs2 \<le> length ys2\<close>
thf(fact_2_list_Oset__sel_I1_J,axiom,
    ! [A: list_nat] :
      ( ( A != nil_nat )
     => ( member_nat2 @ ( hd_nat @ A ) @ ( set_nat2 @ A ) ) ) ).

% list.set_sel(1)
thf(fact_3_list_Oset__sel_I1_J,axiom,
    ! [A: list_a] :
      ( ( A != nil_a )
     => ( member_a2 @ ( hd_a @ A ) @ ( set_a2 @ A ) ) ) ).

% list.set_sel(1)
thf(fact_4_hd__in__set,axiom,
    ! [Xs: list_nat] :
      ( ( Xs != nil_nat )
     => ( member_nat2 @ ( hd_nat @ Xs ) @ ( set_nat2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_5_hd__in__set,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( member_a2 @ ( hd_a @ Xs ) @ ( set_a2 @ Xs ) ) ) ).

% hd_in_set
thf(fact_6__C_K_C_I2_J,axiom,
    ( ( mset_a @ ys )
    = ( plus_plus_multiset_a @ ( mset_a @ ys1 ) @ ( mset_a @ ys2 ) ) ) ).

% "*"(2)
thf(fact_7_in__set__member,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat2 @ X @ ( set_nat2 @ Xs ) )
      = ( member_nat @ Xs @ X ) ) ).

% in_set_member
thf(fact_8_in__set__member,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a2 @ X @ ( set_a2 @ Xs ) )
      = ( member_a @ Xs @ X ) ) ).

% in_set_member
thf(fact_9_list__ex1__iff,axiom,
    ( list_ex1_nat
    = ( ^ [P: nat > $o,Xs2: list_nat] :
        ? [X2: nat] :
          ( ( member_nat2 @ X2 @ ( set_nat2 @ Xs2 ) )
          & ( P @ X2 )
          & ! [Y: nat] :
              ( ( ( member_nat2 @ Y @ ( set_nat2 @ Xs2 ) )
                & ( P @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% list_ex1_iff
thf(fact_10_list__ex1__iff,axiom,
    ( list_ex1_a
    = ( ^ [P: a > $o,Xs2: list_a] :
        ? [X2: a] :
          ( ( member_a2 @ X2 @ ( set_a2 @ Xs2 ) )
          & ( P @ X2 )
          & ! [Y: a] :
              ( ( ( member_a2 @ Y @ ( set_a2 @ Xs2 ) )
                & ( P @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% list_ex1_iff
thf(fact_11_in__set__insert,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat2 @ X @ ( set_nat2 @ Xs ) )
     => ( ( insert_nat @ X @ Xs )
        = Xs ) ) ).

% in_set_insert
thf(fact_12_in__set__insert,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a2 @ X @ ( set_a2 @ Xs ) )
     => ( ( insert_a @ X @ Xs )
        = Xs ) ) ).

% in_set_insert
thf(fact_13_list__bind__cong,axiom,
    ! [Xs: list_a,Ys: list_a,F: a > list_nat,G: a > list_nat] :
      ( ( Xs = Ys )
     => ( ! [X3: a] :
            ( ( member_a2 @ X3 @ ( set_a2 @ Xs ) )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( bind_a_nat @ Xs @ F )
          = ( bind_a_nat @ Ys @ G ) ) ) ) ).

% list_bind_cong
thf(fact_14_list__bind__cong,axiom,
    ! [Xs: list_a,Ys: list_a,F: a > list_a,G: a > list_a] :
      ( ( Xs = Ys )
     => ( ! [X3: a] :
            ( ( member_a2 @ X3 @ ( set_a2 @ Xs ) )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( bind_a_a @ Xs @ F )
          = ( bind_a_a @ Ys @ G ) ) ) ) ).

% list_bind_cong
thf(fact_15_list__bind__cong,axiom,
    ! [Xs: list_nat,Ys: list_nat,F: nat > list_nat,G: nat > list_nat] :
      ( ( Xs = Ys )
     => ( ! [X3: nat] :
            ( ( member_nat2 @ X3 @ ( set_nat2 @ Xs ) )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( bind_nat_nat @ Xs @ F )
          = ( bind_nat_nat @ Ys @ G ) ) ) ) ).

% list_bind_cong
thf(fact_16_list__bind__cong,axiom,
    ! [Xs: list_nat,Ys: list_nat,F: nat > list_a,G: nat > list_a] :
      ( ( Xs = Ys )
     => ( ! [X3: nat] :
            ( ( member_nat2 @ X3 @ ( set_nat2 @ Xs ) )
           => ( ( F @ X3 )
              = ( G @ X3 ) ) )
       => ( ( bind_nat_a @ Xs @ F )
          = ( bind_nat_a @ Ys @ G ) ) ) ) ).

% list_bind_cong
thf(fact_17_ListMem__iff,axiom,
    ( listMem_nat
    = ( ^ [X2: nat,Xs2: list_nat] : ( member_nat2 @ X2 @ ( set_nat2 @ Xs2 ) ) ) ) ).

% ListMem_iff
thf(fact_18_ListMem__iff,axiom,
    ( listMem_a
    = ( ^ [X2: a,Xs2: list_a] : ( member_a2 @ X2 @ ( set_a2 @ Xs2 ) ) ) ) ).

% ListMem_iff
thf(fact_19_set__rotate1,axiom,
    ! [Xs: list_a] :
      ( ( set_a2 @ ( rotate1_a @ Xs ) )
      = ( set_a2 @ Xs ) ) ).

% set_rotate1
thf(fact_20_set__rotate1,axiom,
    ! [Xs: list_nat] :
      ( ( set_nat2 @ ( rotate1_nat @ Xs ) )
      = ( set_nat2 @ Xs ) ) ).

% set_rotate1
thf(fact_21_removeAll__id,axiom,
    ! [X: a,Xs: list_a] :
      ( ~ ( member_a2 @ X @ ( set_a2 @ Xs ) )
     => ( ( removeAll_a @ X @ Xs )
        = Xs ) ) ).

% removeAll_id
thf(fact_22_removeAll__id,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ~ ( member_nat2 @ X @ ( set_nat2 @ Xs ) )
     => ( ( removeAll_nat @ X @ Xs )
        = Xs ) ) ).

% removeAll_id
thf(fact_23_set__rotate,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( set_a2 @ ( rotate_a @ N @ Xs ) )
      = ( set_a2 @ Xs ) ) ).

% set_rotate
thf(fact_24_set__rotate,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( set_nat2 @ ( rotate_nat @ N @ Xs ) )
      = ( set_nat2 @ Xs ) ) ).

% set_rotate
thf(fact_25_find__cong,axiom,
    ! [Xs: list_a,Ys: list_a,P2: a > $o,Q: a > $o] :
      ( ( Xs = Ys )
     => ( ! [X3: a] :
            ( ( member_a2 @ X3 @ ( set_a2 @ Ys ) )
           => ( ( P2 @ X3 )
              = ( Q @ X3 ) ) )
       => ( ( find_a @ P2 @ Xs )
          = ( find_a @ Q @ Ys ) ) ) ) ).

% find_cong
thf(fact_26_find__cong,axiom,
    ! [Xs: list_nat,Ys: list_nat,P2: nat > $o,Q: nat > $o] :
      ( ( Xs = Ys )
     => ( ! [X3: nat] :
            ( ( member_nat2 @ X3 @ ( set_nat2 @ Ys ) )
           => ( ( P2 @ X3 )
              = ( Q @ X3 ) ) )
       => ( ( find_nat @ P2 @ Xs )
          = ( find_nat @ Q @ Ys ) ) ) ) ).

% find_cong
thf(fact_27__C_K_C_I4_J,axiom,
    xs2 != nil_a ).

% "*"(4)
thf(fact_28_assms_I2_J,axiom,
    ord_less_eq_nat @ ( size_size_list_a @ xs ) @ ( size_size_list_a @ ys ) ).

% assms(2)
thf(fact_29_rotate__is__Nil__conv,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( ( rotate_a @ N @ Xs )
        = nil_a )
      = ( Xs = nil_a ) ) ).

% rotate_is_Nil_conv
thf(fact_30_rotate__is__Nil__conv,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( ( rotate_nat @ N @ Xs )
        = nil_nat )
      = ( Xs = nil_nat ) ) ).

% rotate_is_Nil_conv
thf(fact_31_length__rotate,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( size_size_list_a @ ( rotate_a @ N @ Xs ) )
      = ( size_size_list_a @ Xs ) ) ).

% length_rotate
thf(fact_32_length__rotate,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( size_size_list_nat @ ( rotate_nat @ N @ Xs ) )
      = ( size_size_list_nat @ Xs ) ) ).

% length_rotate
thf(fact_33_rotate1__is__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( rotate1_a @ Xs )
        = nil_a )
      = ( Xs = nil_a ) ) ).

% rotate1_is_Nil_conv
thf(fact_34_rotate1__is__Nil__conv,axiom,
    ! [Xs: list_nat] :
      ( ( ( rotate1_nat @ Xs )
        = nil_nat )
      = ( Xs = nil_nat ) ) ).

% rotate1_is_Nil_conv
thf(fact_35_length__rotate1,axiom,
    ! [Xs: list_a] :
      ( ( size_size_list_a @ ( rotate1_a @ Xs ) )
      = ( size_size_list_a @ Xs ) ) ).

% length_rotate1
thf(fact_36_length__rotate1,axiom,
    ! [Xs: list_nat] :
      ( ( size_size_list_nat @ ( rotate1_nat @ Xs ) )
      = ( size_size_list_nat @ Xs ) ) ).

% length_rotate1
thf(fact_37_bind__simps_I1_J,axiom,
    ! [F: a > list_a] :
      ( ( bind_a_a @ nil_a @ F )
      = nil_a ) ).

% bind_simps(1)
thf(fact_38_bind__simps_I1_J,axiom,
    ! [F: a > list_nat] :
      ( ( bind_a_nat @ nil_a @ F )
      = nil_nat ) ).

% bind_simps(1)
thf(fact_39_bind__simps_I1_J,axiom,
    ! [F: nat > list_a] :
      ( ( bind_nat_a @ nil_nat @ F )
      = nil_a ) ).

% bind_simps(1)
thf(fact_40_bind__simps_I1_J,axiom,
    ! [F: nat > list_nat] :
      ( ( bind_nat_nat @ nil_nat @ F )
      = nil_nat ) ).

% bind_simps(1)
thf(fact_41_list__ex1__simps_I1_J,axiom,
    ! [P2: a > $o] :
      ~ ( list_ex1_a @ P2 @ nil_a ) ).

% list_ex1_simps(1)
thf(fact_42_list__ex1__simps_I1_J,axiom,
    ! [P2: nat > $o] :
      ~ ( list_ex1_nat @ P2 @ nil_nat ) ).

% list_ex1_simps(1)
thf(fact_43__C_K_C_I1_J,axiom,
    ( ( mset_a @ xs )
    = ( plus_plus_multiset_a @ ( mset_a @ xs1 ) @ ( mset_a @ xs2 ) ) ) ).

% "*"(1)
thf(fact_44_member__rec_I2_J,axiom,
    ! [Y2: a] :
      ~ ( member_a @ nil_a @ Y2 ) ).

% member_rec(2)
thf(fact_45_member__rec_I2_J,axiom,
    ! [Y2: nat] :
      ~ ( member_nat @ nil_nat @ Y2 ) ).

% member_rec(2)
thf(fact_46_rotate1_Osimps_I1_J,axiom,
    ( ( rotate1_a @ nil_a )
    = nil_a ) ).

% rotate1.simps(1)
thf(fact_47_rotate1_Osimps_I1_J,axiom,
    ( ( rotate1_nat @ nil_nat )
    = nil_nat ) ).

% rotate1.simps(1)
thf(fact_48_removeAll_Osimps_I1_J,axiom,
    ! [X: a] :
      ( ( removeAll_a @ X @ nil_a )
      = nil_a ) ).

% removeAll.simps(1)
thf(fact_49_removeAll_Osimps_I1_J,axiom,
    ! [X: nat] :
      ( ( removeAll_nat @ X @ nil_nat )
      = nil_nat ) ).

% removeAll.simps(1)
thf(fact_50_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_a] :
      ( ( size_size_list_a @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_51_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs3: list_nat] :
      ( ( size_size_list_nat @ Xs3 )
      = N ) ).

% Ex_list_of_length
thf(fact_52_neq__if__length__neq,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( size_size_list_a @ Xs )
       != ( size_size_list_a @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_53_neq__if__length__neq,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs )
       != ( size_size_list_nat @ Ys ) )
     => ( Xs != Ys ) ) ).

% neq_if_length_neq
thf(fact_54_rotate1__rotate__swap,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( rotate1_nat @ ( rotate_nat @ N @ Xs ) )
      = ( rotate_nat @ N @ ( rotate1_nat @ Xs ) ) ) ).

% rotate1_rotate_swap
thf(fact_55_rotate1__rotate__swap,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( rotate1_a @ ( rotate_a @ N @ Xs ) )
      = ( rotate_a @ N @ ( rotate1_a @ Xs ) ) ) ).

% rotate1_rotate_swap
thf(fact_56_length__removeAll__less__eq,axiom,
    ! [X: a,Xs: list_a] : ( ord_less_eq_nat @ ( size_size_list_a @ ( removeAll_a @ X @ Xs ) ) @ ( size_size_list_a @ Xs ) ) ).

% length_removeAll_less_eq
thf(fact_57_length__removeAll__less__eq,axiom,
    ! [X: nat,Xs: list_nat] : ( ord_less_eq_nat @ ( size_size_list_nat @ ( removeAll_nat @ X @ Xs ) ) @ ( size_size_list_nat @ Xs ) ) ).

% length_removeAll_less_eq
thf(fact_58_add__le__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_left
thf(fact_59_add__le__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_cancel_right
thf(fact_60_can__select__set__list__ex1,axiom,
    ! [P2: a > $o,A2: list_a] :
      ( ( can_select_a @ P2 @ ( set_a2 @ A2 ) )
      = ( list_ex1_a @ P2 @ A2 ) ) ).

% can_select_set_list_ex1
thf(fact_61_can__select__set__list__ex1,axiom,
    ! [P2: nat > $o,A2: list_nat] :
      ( ( can_select_nat @ P2 @ ( set_nat2 @ A2 ) )
      = ( list_ex1_nat @ P2 @ A2 ) ) ).

% can_select_set_list_ex1
thf(fact_62_add__left__cancel,axiom,
    ! [A: multiset_a,B: multiset_a,C: multiset_a] :
      ( ( ( plus_plus_multiset_a @ A @ B )
        = ( plus_plus_multiset_a @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_63_add__left__cancel,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
      = ( B = C ) ) ).

% add_left_cancel
thf(fact_64_add__right__cancel,axiom,
    ! [B: multiset_a,A: multiset_a,C: multiset_a] :
      ( ( ( plus_plus_multiset_a @ B @ A )
        = ( plus_plus_multiset_a @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_65_add__right__cancel,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
      = ( B = C ) ) ).

% add_right_cancel
thf(fact_66_order__refl,axiom,
    ! [X: set_nat] : ( ord_less_eq_set_nat @ X @ X ) ).

% order_refl
thf(fact_67_order__refl,axiom,
    ! [X: set_a] : ( ord_less_eq_set_a @ X @ X ) ).

% order_refl
thf(fact_68_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_69_dual__order_Orefl,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% dual_order.refl
thf(fact_70_dual__order_Orefl,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% dual_order.refl
thf(fact_71_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_72_mset__eq__length,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( mset_a @ Xs )
        = ( mset_a @ Ys ) )
     => ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) ) ) ).

% mset_eq_length
thf(fact_73_mset__eq__length,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( mset_nat @ Xs )
        = ( mset_nat @ Ys ) )
     => ( ( size_size_list_nat @ Xs )
        = ( size_size_list_nat @ Ys ) ) ) ).

% mset_eq_length
thf(fact_74_mset__eq__setD,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( mset_nat @ Xs )
        = ( mset_nat @ Ys ) )
     => ( ( set_nat2 @ Xs )
        = ( set_nat2 @ Ys ) ) ) ).

% mset_eq_setD
thf(fact_75_mset__eq__setD,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( mset_a @ Xs )
        = ( mset_a @ Ys ) )
     => ( ( set_a2 @ Xs )
        = ( set_a2 @ Ys ) ) ) ).

% mset_eq_setD
thf(fact_76_add__mono__thms__linordered__semiring_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(3)
thf(fact_77_add__mono__thms__linordered__semiring_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(2)
thf(fact_78_add__mono__thms__linordered__semiring_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(1)
thf(fact_79_can__select__def,axiom,
    ( can_select_a
    = ( ^ [P: a > $o,A3: set_a] :
        ? [X2: a] :
          ( ( member_a2 @ X2 @ A3 )
          & ( P @ X2 )
          & ! [Y: a] :
              ( ( ( member_a2 @ Y @ A3 )
                & ( P @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% can_select_def
thf(fact_80_can__select__def,axiom,
    ( can_select_nat
    = ( ^ [P: nat > $o,A3: set_nat] :
        ? [X2: nat] :
          ( ( member_nat2 @ X2 @ A3 )
          & ( P @ X2 )
          & ! [Y: nat] :
              ( ( ( member_nat2 @ Y @ A3 )
                & ( P @ Y ) )
             => ( Y = X2 ) ) ) ) ) ).

% can_select_def
thf(fact_81_subset__code_I1_J,axiom,
    ! [Xs: list_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ ( set_a2 @ Xs ) @ B2 )
      = ( ! [X2: a] :
            ( ( member_a2 @ X2 @ ( set_a2 @ Xs ) )
           => ( member_a2 @ X2 @ B2 ) ) ) ) ).

% subset_code(1)
thf(fact_82_subset__code_I1_J,axiom,
    ! [Xs: list_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( set_nat2 @ Xs ) @ B2 )
      = ( ! [X2: nat] :
            ( ( member_nat2 @ X2 @ ( set_nat2 @ Xs ) )
           => ( member_nat2 @ X2 @ B2 ) ) ) ) ).

% subset_code(1)
thf(fact_83_mem__Collect__eq,axiom,
    ! [A: a,P2: a > $o] :
      ( ( member_a2 @ A @ ( collect_a @ P2 ) )
      = ( P2 @ A ) ) ).

% mem_Collect_eq
thf(fact_84_mem__Collect__eq,axiom,
    ! [A: nat,P2: nat > $o] :
      ( ( member_nat2 @ A @ ( collect_nat @ P2 ) )
      = ( P2 @ A ) ) ).

% mem_Collect_eq
thf(fact_85_Collect__mem__eq,axiom,
    ! [A2: set_a] :
      ( ( collect_a
        @ ^ [X2: a] : ( member_a2 @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_86_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X2: nat] : ( member_nat2 @ X2 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_87_Collect__cong,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P2 @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_nat @ P2 )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_88_Collect__cong,axiom,
    ! [P2: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P2 @ X3 )
          = ( Q @ X3 ) )
     => ( ( collect_a @ P2 )
        = ( collect_a @ Q ) ) ) ).

% Collect_cong
thf(fact_89_rotate__rotate,axiom,
    ! [M: nat,N: nat,Xs: list_nat] :
      ( ( rotate_nat @ M @ ( rotate_nat @ N @ Xs ) )
      = ( rotate_nat @ ( plus_plus_nat @ M @ N ) @ Xs ) ) ).

% rotate_rotate
thf(fact_90_rotate__rotate,axiom,
    ! [M: nat,N: nat,Xs: list_a] :
      ( ( rotate_a @ M @ ( rotate_a @ N @ Xs ) )
      = ( rotate_a @ ( plus_plus_nat @ M @ N ) @ Xs ) ) ).

% rotate_rotate
thf(fact_91_order__antisym__conv,axiom,
    ! [Y2: set_nat,X: set_nat] :
      ( ( ord_less_eq_set_nat @ Y2 @ X )
     => ( ( ord_less_eq_set_nat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_92_order__antisym__conv,axiom,
    ! [Y2: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y2 @ X )
     => ( ( ord_less_eq_set_a @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_93_order__antisym__conv,axiom,
    ! [Y2: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X )
     => ( ( ord_less_eq_nat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% order_antisym_conv
thf(fact_94_linorder__le__cases,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_le_cases
thf(fact_95_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_96_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_97_ord__le__eq__subst,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_98_ord__le__eq__subst,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_99_ord__le__eq__subst,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_a,C: set_a] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_100_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_101_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_nat,C: set_nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_102_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_103_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_104_ord__eq__le__subst,axiom,
    ! [A: set_nat,F: nat > set_nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_105_ord__eq__le__subst,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_106_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_nat > nat,B: set_nat,C: set_nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_107_ord__eq__le__subst,axiom,
    ! [A: set_nat,F: set_nat > set_nat,B: set_nat,C: set_nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_108_ord__eq__le__subst,axiom,
    ! [A: set_a,F: set_nat > set_a,B: set_nat,C: set_nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_109_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_110_ord__eq__le__subst,axiom,
    ! [A: set_nat,F: set_a > set_nat,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_111_ord__eq__le__subst,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_112_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_113_linorder__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
      | ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_linear
thf(fact_114_order__eq__refl,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( X = Y2 )
     => ( ord_less_eq_set_nat @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_115_order__eq__refl,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( X = Y2 )
     => ( ord_less_eq_set_a @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_116_order__eq__refl,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X = Y2 )
     => ( ord_less_eq_nat @ X @ Y2 ) ) ).

% order_eq_refl
thf(fact_117_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_118_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_119_order__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_120_order__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_121_order__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_a,C: set_a] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_122_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_123_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_nat,C: set_nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_124_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_125_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_126_order__subst1,axiom,
    ! [A: nat,F: set_nat > nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_127_order__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_128_order__subst1,axiom,
    ! [A: set_nat,F: nat > set_nat,B: nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_129_order__subst1,axiom,
    ! [A: set_nat,F: set_nat > set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_130_order__subst1,axiom,
    ! [A: set_nat,F: set_a > set_nat,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_131_order__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_132_order__subst1,axiom,
    ! [A: set_a,F: set_nat > set_a,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_133_order__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_134_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_135_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_nat,Z: set_nat] : ( Y4 = Z ) )
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ A4 @ B3 )
          & ( ord_less_eq_set_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_136_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_a,Z: set_a] : ( Y4 = Z ) )
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B3 )
          & ( ord_less_eq_set_a @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_137_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_138_antisym,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_139_antisym,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_140_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_141_dual__order_Otrans,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ C @ B )
       => ( ord_less_eq_set_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_142_dual__order_Otrans,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_eq_set_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_143_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_144_dual__order_Oantisym,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_145_dual__order_Oantisym,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_146_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_147_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: set_nat,Z: set_nat] : ( Y4 = Z ) )
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ B3 @ A4 )
          & ( ord_less_eq_set_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_148_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: set_a,Z: set_a] : ( Y4 = Z ) )
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A4 )
          & ( ord_less_eq_set_a @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_149_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_150_linorder__wlog,axiom,
    ! [P2: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A5 @ B4 )
         => ( P2 @ A5 @ B4 ) )
     => ( ! [A5: nat,B4: nat] :
            ( ( P2 @ B4 @ A5 )
           => ( P2 @ A5 @ B4 ) )
       => ( P2 @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_151_order__trans,axiom,
    ! [X: set_nat,Y2: set_nat,Z2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y2 )
     => ( ( ord_less_eq_set_nat @ Y2 @ Z2 )
       => ( ord_less_eq_set_nat @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_152_order__trans,axiom,
    ! [X: set_a,Y2: set_a,Z2: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y2 )
     => ( ( ord_less_eq_set_a @ Y2 @ Z2 )
       => ( ord_less_eq_set_a @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_153_order__trans,axiom,
    ! [X: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z2 )
       => ( ord_less_eq_nat @ X @ Z2 ) ) ) ).

% order_trans
thf(fact_154_order_Otrans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ord_less_eq_set_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_155_order_Otrans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% order.trans
thf(fact_156_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_157_order__antisym,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y2 )
     => ( ( ord_less_eq_set_nat @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_158_order__antisym,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y2 )
     => ( ( ord_less_eq_set_a @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_159_order__antisym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ X )
       => ( X = Y2 ) ) ) ).

% order_antisym
thf(fact_160_ord__le__eq__trans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_161_ord__le__eq__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_162_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_163_ord__eq__le__trans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( A = B )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ord_less_eq_set_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_164_ord__eq__le__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( A = B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_165_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_166_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_nat,Z: set_nat] : ( Y4 = Z ) )
    = ( ^ [X2: set_nat,Y: set_nat] :
          ( ( ord_less_eq_set_nat @ X2 @ Y )
          & ( ord_less_eq_set_nat @ Y @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_167_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_a,Z: set_a] : ( Y4 = Z ) )
    = ( ^ [X2: set_a,Y: set_a] :
          ( ( ord_less_eq_set_a @ X2 @ Y )
          & ( ord_less_eq_set_a @ Y @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_168_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z: nat] : ( Y4 = Z ) )
    = ( ^ [X2: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y )
          & ( ord_less_eq_nat @ Y @ X2 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_169_le__cases3,axiom,
    ! [X: nat,Y2: nat,Z2: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y2 )
       => ~ ( ord_less_eq_nat @ Y2 @ Z2 ) )
     => ( ( ( ord_less_eq_nat @ Y2 @ X )
         => ~ ( ord_less_eq_nat @ X @ Z2 ) )
       => ( ( ( ord_less_eq_nat @ X @ Z2 )
           => ~ ( ord_less_eq_nat @ Z2 @ Y2 ) )
         => ( ( ( ord_less_eq_nat @ Z2 @ Y2 )
             => ~ ( ord_less_eq_nat @ Y2 @ X ) )
           => ( ( ( ord_less_eq_nat @ Y2 @ Z2 )
               => ~ ( ord_less_eq_nat @ Z2 @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z2 @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y2 ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_170_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_171_add__right__imp__eq,axiom,
    ! [B: multiset_a,A: multiset_a,C: multiset_a] :
      ( ( ( plus_plus_multiset_a @ B @ A )
        = ( plus_plus_multiset_a @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_172_add__right__imp__eq,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = ( plus_plus_nat @ C @ A ) )
     => ( B = C ) ) ).

% add_right_imp_eq
thf(fact_173_add__left__imp__eq,axiom,
    ! [A: multiset_a,B: multiset_a,C: multiset_a] :
      ( ( ( plus_plus_multiset_a @ A @ B )
        = ( plus_plus_multiset_a @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_174_add__left__imp__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = ( plus_plus_nat @ A @ C ) )
     => ( B = C ) ) ).

% add_left_imp_eq
thf(fact_175_add_Oleft__commute,axiom,
    ! [B: multiset_a,A: multiset_a,C: multiset_a] :
      ( ( plus_plus_multiset_a @ B @ ( plus_plus_multiset_a @ A @ C ) )
      = ( plus_plus_multiset_a @ A @ ( plus_plus_multiset_a @ B @ C ) ) ) ).

% add.left_commute
thf(fact_176_add_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.left_commute
thf(fact_177_add_Ocommute,axiom,
    ( plus_plus_multiset_a
    = ( ^ [A4: multiset_a,B3: multiset_a] : ( plus_plus_multiset_a @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_178_add_Ocommute,axiom,
    ( plus_plus_nat
    = ( ^ [A4: nat,B3: nat] : ( plus_plus_nat @ B3 @ A4 ) ) ) ).

% add.commute
thf(fact_179_add_Oassoc,axiom,
    ! [A: multiset_a,B: multiset_a,C: multiset_a] :
      ( ( plus_plus_multiset_a @ ( plus_plus_multiset_a @ A @ B ) @ C )
      = ( plus_plus_multiset_a @ A @ ( plus_plus_multiset_a @ B @ C ) ) ) ).

% add.assoc
thf(fact_180_add_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% add.assoc
thf(fact_181_group__cancel_Oadd2,axiom,
    ! [B2: multiset_a,K: multiset_a,B: multiset_a,A: multiset_a] :
      ( ( B2
        = ( plus_plus_multiset_a @ K @ B ) )
     => ( ( plus_plus_multiset_a @ A @ B2 )
        = ( plus_plus_multiset_a @ K @ ( plus_plus_multiset_a @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_182_group__cancel_Oadd2,axiom,
    ! [B2: nat,K: nat,B: nat,A: nat] :
      ( ( B2
        = ( plus_plus_nat @ K @ B ) )
     => ( ( plus_plus_nat @ A @ B2 )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add2
thf(fact_183_group__cancel_Oadd1,axiom,
    ! [A2: multiset_a,K: multiset_a,A: multiset_a,B: multiset_a] :
      ( ( A2
        = ( plus_plus_multiset_a @ K @ A ) )
     => ( ( plus_plus_multiset_a @ A2 @ B )
        = ( plus_plus_multiset_a @ K @ ( plus_plus_multiset_a @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_184_group__cancel_Oadd1,axiom,
    ! [A2: nat,K: nat,A: nat,B: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( plus_plus_nat @ A2 @ B )
        = ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% group_cancel.add1
thf(fact_185_add__mono__thms__linordered__semiring_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( K = L ) )
     => ( ( plus_plus_nat @ I @ K )
        = ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_semiring(4)
thf(fact_186_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: multiset_a,B: multiset_a,C: multiset_a] :
      ( ( plus_plus_multiset_a @ ( plus_plus_multiset_a @ A @ B ) @ C )
      = ( plus_plus_multiset_a @ A @ ( plus_plus_multiset_a @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_187_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).

% ab_semigroup_add_class.add_ac(1)
thf(fact_188_multi__union__self__other__eq,axiom,
    ! [A2: multiset_a,X4: multiset_a,Y5: multiset_a] :
      ( ( ( plus_plus_multiset_a @ A2 @ X4 )
        = ( plus_plus_multiset_a @ A2 @ Y5 ) )
     => ( X4 = Y5 ) ) ).

% multi_union_self_other_eq
thf(fact_189_union__right__cancel,axiom,
    ! [M2: multiset_a,K2: multiset_a,N2: multiset_a] :
      ( ( ( plus_plus_multiset_a @ M2 @ K2 )
        = ( plus_plus_multiset_a @ N2 @ K2 ) )
      = ( M2 = N2 ) ) ).

% union_right_cancel
thf(fact_190_union__left__cancel,axiom,
    ! [K2: multiset_a,M2: multiset_a,N2: multiset_a] :
      ( ( ( plus_plus_multiset_a @ K2 @ M2 )
        = ( plus_plus_multiset_a @ K2 @ N2 ) )
      = ( M2 = N2 ) ) ).

% union_left_cancel
thf(fact_191_union__commute,axiom,
    ( plus_plus_multiset_a
    = ( ^ [M3: multiset_a,N3: multiset_a] : ( plus_plus_multiset_a @ N3 @ M3 ) ) ) ).

% union_commute
thf(fact_192_union__lcomm,axiom,
    ! [M2: multiset_a,N2: multiset_a,K2: multiset_a] :
      ( ( plus_plus_multiset_a @ M2 @ ( plus_plus_multiset_a @ N2 @ K2 ) )
      = ( plus_plus_multiset_a @ N2 @ ( plus_plus_multiset_a @ M2 @ K2 ) ) ) ).

% union_lcomm
thf(fact_193_union__assoc,axiom,
    ! [M2: multiset_a,N2: multiset_a,K2: multiset_a] :
      ( ( plus_plus_multiset_a @ ( plus_plus_multiset_a @ M2 @ N2 ) @ K2 )
      = ( plus_plus_multiset_a @ M2 @ ( plus_plus_multiset_a @ N2 @ K2 ) ) ) ).

% union_assoc
thf(fact_194_ex__mset,axiom,
    ! [X4: multiset_nat] :
    ? [Xs3: list_nat] :
      ( ( mset_nat @ Xs3 )
      = X4 ) ).

% ex_mset
thf(fact_195_ex__mset,axiom,
    ! [X4: multiset_a] :
    ? [Xs3: list_a] :
      ( ( mset_a @ Xs3 )
      = X4 ) ).

% ex_mset
thf(fact_196_add__le__imp__le__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_right
thf(fact_197_add__le__imp__le__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% add_le_imp_le_left
thf(fact_198_le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
        ? [C2: nat] :
          ( B3
          = ( plus_plus_nat @ A4 @ C2 ) ) ) ) ).

% le_iff_add
thf(fact_199_add__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_right_mono
thf(fact_200_less__eqE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( B
           != ( plus_plus_nat @ A @ C3 ) ) ) ).

% less_eqE
thf(fact_201_add__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_left_mono
thf(fact_202_add__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_mono
thf(fact_203_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_204_remove__code_I1_J,axiom,
    ! [X: a,Xs: list_a] :
      ( ( remove_a @ X @ ( set_a2 @ Xs ) )
      = ( set_a2 @ ( removeAll_a @ X @ Xs ) ) ) ).

% remove_code(1)
thf(fact_205_remove__code_I1_J,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( remove_nat @ X @ ( set_nat2 @ Xs ) )
      = ( set_nat2 @ ( removeAll_nat @ X @ Xs ) ) ) ).

% remove_code(1)
thf(fact_206_rotate1__length01,axiom,
    ! [Xs: list_a] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ one_one_nat )
     => ( ( rotate1_a @ Xs )
        = Xs ) ) ).

% rotate1_length01
thf(fact_207_rotate1__length01,axiom,
    ! [Xs: list_nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ one_one_nat )
     => ( ( rotate1_nat @ Xs )
        = Xs ) ) ).

% rotate1_length01
thf(fact_208_rotate__length01,axiom,
    ! [Xs: list_a,N: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ one_one_nat )
     => ( ( rotate_a @ N @ Xs )
        = Xs ) ) ).

% rotate_length01
thf(fact_209_rotate__length01,axiom,
    ! [Xs: list_nat,N: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ one_one_nat )
     => ( ( rotate_nat @ N @ Xs )
        = Xs ) ) ).

% rotate_length01
thf(fact_210_drop__eq__Nil2,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( nil_a
        = ( drop_a @ N @ Xs ) )
      = ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N ) ) ).

% drop_eq_Nil2
thf(fact_211_drop__eq__Nil2,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( nil_nat
        = ( drop_nat @ N @ Xs ) )
      = ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N ) ) ).

% drop_eq_Nil2
thf(fact_212_drop__eq__Nil,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( ( drop_a @ N @ Xs )
        = nil_a )
      = ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N ) ) ).

% drop_eq_Nil
thf(fact_213_drop__eq__Nil,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( ( drop_nat @ N @ Xs )
        = nil_nat )
      = ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N ) ) ).

% drop_eq_Nil
thf(fact_214_drop__all,axiom,
    ! [Xs: list_a,N: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ N )
     => ( ( drop_a @ N @ Xs )
        = nil_a ) ) ).

% drop_all
thf(fact_215_drop__all,axiom,
    ! [Xs: list_nat,N: nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ N )
     => ( ( drop_nat @ N @ Xs )
        = nil_nat ) ) ).

% drop_all
thf(fact_216_Greatest__equality,axiom,
    ! [P2: set_nat > $o,X: set_nat] :
      ( ( P2 @ X )
     => ( ! [Y3: set_nat] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_set_nat @ Y3 @ X ) )
       => ( ( order_5724808138429204845et_nat @ P2 )
          = X ) ) ) ).

% Greatest_equality
thf(fact_217_Greatest__equality,axiom,
    ! [P2: set_a > $o,X: set_a] :
      ( ( P2 @ X )
     => ( ! [Y3: set_a] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_set_a @ Y3 @ X ) )
       => ( ( order_Greatest_set_a @ P2 )
          = X ) ) ) ).

% Greatest_equality
thf(fact_218_Greatest__equality,axiom,
    ! [P2: nat > $o,X: nat] :
      ( ( P2 @ X )
     => ( ! [Y3: nat] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ X ) )
       => ( ( order_Greatest_nat @ P2 )
          = X ) ) ) ).

% Greatest_equality
thf(fact_219_GreatestI2__order,axiom,
    ! [P2: set_nat > $o,X: set_nat,Q: set_nat > $o] :
      ( ( P2 @ X )
     => ( ! [Y3: set_nat] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_set_nat @ Y3 @ X ) )
       => ( ! [X3: set_nat] :
              ( ( P2 @ X3 )
             => ( ! [Y6: set_nat] :
                    ( ( P2 @ Y6 )
                   => ( ord_less_eq_set_nat @ Y6 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_5724808138429204845et_nat @ P2 ) ) ) ) ) ).

% GreatestI2_order
thf(fact_220_GreatestI2__order,axiom,
    ! [P2: set_a > $o,X: set_a,Q: set_a > $o] :
      ( ( P2 @ X )
     => ( ! [Y3: set_a] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_set_a @ Y3 @ X ) )
       => ( ! [X3: set_a] :
              ( ( P2 @ X3 )
             => ( ! [Y6: set_a] :
                    ( ( P2 @ Y6 )
                   => ( ord_less_eq_set_a @ Y6 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_Greatest_set_a @ P2 ) ) ) ) ) ).

% GreatestI2_order
thf(fact_221_GreatestI2__order,axiom,
    ! [P2: nat > $o,X: nat,Q: nat > $o] :
      ( ( P2 @ X )
     => ( ! [Y3: nat] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ X ) )
       => ( ! [X3: nat] :
              ( ( P2 @ X3 )
             => ( ! [Y6: nat] :
                    ( ( P2 @ Y6 )
                   => ( ord_less_eq_nat @ Y6 @ X3 ) )
               => ( Q @ X3 ) ) )
         => ( Q @ ( order_Greatest_nat @ P2 ) ) ) ) ) ).

% GreatestI2_order
thf(fact_222_subset__code_I3_J,axiom,
    ~ ( ord_less_eq_set_a @ ( coset_a @ nil_a ) @ ( set_a2 @ nil_a ) ) ).

% subset_code(3)
thf(fact_223_subset__code_I3_J,axiom,
    ~ ( ord_less_eq_set_nat @ ( coset_nat @ nil_nat ) @ ( set_nat2 @ nil_nat ) ) ).

% subset_code(3)
thf(fact_224_drop__drop,axiom,
    ! [N: nat,M: nat,Xs: list_nat] :
      ( ( drop_nat @ N @ ( drop_nat @ M @ Xs ) )
      = ( drop_nat @ ( plus_plus_nat @ N @ M ) @ Xs ) ) ).

% drop_drop
thf(fact_225_drop__drop,axiom,
    ! [N: nat,M: nat,Xs: list_a] :
      ( ( drop_a @ N @ ( drop_a @ M @ Xs ) )
      = ( drop_a @ ( plus_plus_nat @ N @ M ) @ Xs ) ) ).

% drop_drop
thf(fact_226_one__reorient,axiom,
    ! [X: nat] :
      ( ( one_one_nat = X )
      = ( X = one_one_nat ) ) ).

% one_reorient
thf(fact_227_GreatestI__nat,axiom,
    ! [P2: nat > $o,K: nat,B: nat] :
      ( ( P2 @ K )
     => ( ! [Y3: nat] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ( P2 @ ( order_Greatest_nat @ P2 ) ) ) ) ).

% GreatestI_nat
thf(fact_228_Greatest__le__nat,axiom,
    ! [P2: nat > $o,K: nat,B: nat] :
      ( ( P2 @ K )
     => ( ! [Y3: nat] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ( ord_less_eq_nat @ K @ ( order_Greatest_nat @ P2 ) ) ) ) ).

% Greatest_le_nat
thf(fact_229_GreatestI__ex__nat,axiom,
    ! [P2: nat > $o,B: nat] :
      ( ? [X_1: nat] : ( P2 @ X_1 )
     => ( ! [Y3: nat] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ( P2 @ ( order_Greatest_nat @ P2 ) ) ) ) ).

% GreatestI_ex_nat
thf(fact_230_drop__Nil,axiom,
    ! [N: nat] :
      ( ( drop_a @ N @ nil_a )
      = nil_a ) ).

% drop_Nil
thf(fact_231_drop__Nil,axiom,
    ! [N: nat] :
      ( ( drop_nat @ N @ nil_nat )
      = nil_nat ) ).

% drop_Nil
thf(fact_232_in__set__dropD,axiom,
    ! [X: a,N: nat,Xs: list_a] :
      ( ( member_a2 @ X @ ( set_a2 @ ( drop_a @ N @ Xs ) ) )
     => ( member_a2 @ X @ ( set_a2 @ Xs ) ) ) ).

% in_set_dropD
thf(fact_233_in__set__dropD,axiom,
    ! [X: nat,N: nat,Xs: list_nat] :
      ( ( member_nat2 @ X @ ( set_nat2 @ ( drop_nat @ N @ Xs ) ) )
     => ( member_nat2 @ X @ ( set_nat2 @ Xs ) ) ) ).

% in_set_dropD
thf(fact_234_set__drop__subset,axiom,
    ! [N: nat,Xs: list_a] : ( ord_less_eq_set_a @ ( set_a2 @ ( drop_a @ N @ Xs ) ) @ ( set_a2 @ Xs ) ) ).

% set_drop_subset
thf(fact_235_set__drop__subset,axiom,
    ! [N: nat,Xs: list_nat] : ( ord_less_eq_set_nat @ ( set_nat2 @ ( drop_nat @ N @ Xs ) ) @ ( set_nat2 @ Xs ) ) ).

% set_drop_subset
thf(fact_236_remove__code_I2_J,axiom,
    ! [X: a,Xs: list_a] :
      ( ( remove_a @ X @ ( coset_a @ Xs ) )
      = ( coset_a @ ( insert_a @ X @ Xs ) ) ) ).

% remove_code(2)
thf(fact_237_remove__code_I2_J,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( remove_nat @ X @ ( coset_nat @ Xs ) )
      = ( coset_nat @ ( insert_nat @ X @ Xs ) ) ) ).

% remove_code(2)
thf(fact_238_subset__code_I2_J,axiom,
    ! [A2: set_a,Ys: list_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( coset_a @ Ys ) )
      = ( ! [X2: a] :
            ( ( member_a2 @ X2 @ ( set_a2 @ Ys ) )
           => ~ ( member_a2 @ X2 @ A2 ) ) ) ) ).

% subset_code(2)
thf(fact_239_subset__code_I2_J,axiom,
    ! [A2: set_nat,Ys: list_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( coset_nat @ Ys ) )
      = ( ! [X2: nat] :
            ( ( member_nat2 @ X2 @ ( set_nat2 @ Ys ) )
           => ~ ( member_nat2 @ X2 @ A2 ) ) ) ) ).

% subset_code(2)
thf(fact_240_set__drop__subset__set__drop,axiom,
    ! [N: nat,M: nat,Xs: list_a] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ord_less_eq_set_a @ ( set_a2 @ ( drop_a @ M @ Xs ) ) @ ( set_a2 @ ( drop_a @ N @ Xs ) ) ) ) ).

% set_drop_subset_set_drop
thf(fact_241_set__drop__subset__set__drop,axiom,
    ! [N: nat,M: nat,Xs: list_nat] :
      ( ( ord_less_eq_nat @ N @ M )
     => ( ord_less_eq_set_nat @ ( set_nat2 @ ( drop_nat @ M @ Xs ) ) @ ( set_nat2 @ ( drop_nat @ N @ Xs ) ) ) ) ).

% set_drop_subset_set_drop
thf(fact_242_size__neq__size__imp__neq,axiom,
    ! [X: multiset_a,Y2: multiset_a] :
      ( ( ( size_size_multiset_a @ X )
       != ( size_size_multiset_a @ Y2 ) )
     => ( X != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_243_size__neq__size__imp__neq,axiom,
    ! [X: multiset_nat,Y2: multiset_nat] :
      ( ( ( size_s5917832649809541300et_nat @ X )
       != ( size_s5917832649809541300et_nat @ Y2 ) )
     => ( X != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_244_size__neq__size__imp__neq,axiom,
    ! [X: list_a,Y2: list_a] :
      ( ( ( size_size_list_a @ X )
       != ( size_size_list_a @ Y2 ) )
     => ( X != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_245_size__neq__size__imp__neq,axiom,
    ! [X: list_nat,Y2: list_nat] :
      ( ( ( size_size_list_nat @ X )
       != ( size_size_list_nat @ Y2 ) )
     => ( X != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_246_size__neq__size__imp__neq,axiom,
    ! [X: char,Y2: char] :
      ( ( ( size_size_char @ X )
       != ( size_size_char @ Y2 ) )
     => ( X != Y2 ) ) ).

% size_neq_size_imp_neq
thf(fact_247_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_248_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_249_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_250_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_251_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_252_Nat_Oex__has__greatest__nat,axiom,
    ! [P2: nat > $o,K: nat,B: nat] :
      ( ( P2 @ K )
     => ( ! [Y3: nat] :
            ( ( P2 @ Y3 )
           => ( ord_less_eq_nat @ Y3 @ B ) )
       => ? [X3: nat] :
            ( ( P2 @ X3 )
            & ! [Y6: nat] :
                ( ( P2 @ Y6 )
               => ( ord_less_eq_nat @ Y6 @ X3 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_253_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq_nat @ M @ N )
         => ~ ( ord_less_eq_nat @ K @ N ) ) ) ).

% add_leE
thf(fact_254_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).

% le_add1
thf(fact_255_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).

% le_add2
thf(fact_256_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% add_leD1
thf(fact_257_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
     => ( ord_less_eq_nat @ K @ N ) ) ).

% add_leD2
thf(fact_258_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq_nat @ K @ L )
     => ? [N4: nat] :
          ( L
          = ( plus_plus_nat @ K @ N4 ) ) ) ).

% le_Suc_ex
thf(fact_259_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_260_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_261_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_262_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_263_nat__le__iff__add,axiom,
    ( ord_less_eq_nat
    = ( ^ [M4: nat,N5: nat] :
        ? [K3: nat] :
          ( N5
          = ( plus_plus_nat @ M4 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_264_member__remove,axiom,
    ! [X: a,Y2: a,A2: set_a] :
      ( ( member_a2 @ X @ ( remove_a @ Y2 @ A2 ) )
      = ( ( member_a2 @ X @ A2 )
        & ( X != Y2 ) ) ) ).

% member_remove
thf(fact_265_member__remove,axiom,
    ! [X: nat,Y2: nat,A2: set_nat] :
      ( ( member_nat2 @ X @ ( remove_nat @ Y2 @ A2 ) )
      = ( ( member_nat2 @ X @ A2 )
        & ( X != Y2 ) ) ) ).

% member_remove
thf(fact_266_subsetI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ! [X3: a] :
          ( ( member_a2 @ X3 @ A2 )
         => ( member_a2 @ X3 @ B2 ) )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% subsetI
thf(fact_267_subsetI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ! [X3: nat] :
          ( ( member_nat2 @ X3 @ A2 )
         => ( member_nat2 @ X3 @ B2 ) )
     => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% subsetI
thf(fact_268_subset__antisym,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% subset_antisym
thf(fact_269_subset__antisym,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% subset_antisym
thf(fact_270_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_271_gen__length__def,axiom,
    ( gen_length_a
    = ( ^ [N5: nat,Xs2: list_a] : ( plus_plus_nat @ N5 @ ( size_size_list_a @ Xs2 ) ) ) ) ).

% gen_length_def
thf(fact_272_gen__length__def,axiom,
    ( gen_length_nat
    = ( ^ [N5: nat,Xs2: list_nat] : ( plus_plus_nat @ N5 @ ( size_size_list_nat @ Xs2 ) ) ) ) ).

% gen_length_def
thf(fact_273_nth__drop,axiom,
    ! [N: nat,Xs: list_a,I: nat] :
      ( ( ord_less_eq_nat @ N @ ( size_size_list_a @ Xs ) )
     => ( ( nth_a @ ( drop_a @ N @ Xs ) @ I )
        = ( nth_a @ Xs @ ( plus_plus_nat @ N @ I ) ) ) ) ).

% nth_drop
thf(fact_274_nth__drop,axiom,
    ! [N: nat,Xs: list_nat,I: nat] :
      ( ( ord_less_eq_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ( nth_nat @ ( drop_nat @ N @ Xs ) @ I )
        = ( nth_nat @ Xs @ ( plus_plus_nat @ N @ I ) ) ) ) ).

% nth_drop
thf(fact_275_size__multiset__union,axiom,
    ! [F: a > nat,M2: multiset_a,N2: multiset_a] :
      ( ( size_multiset_a @ F @ ( plus_plus_multiset_a @ M2 @ N2 ) )
      = ( plus_plus_nat @ ( size_multiset_a @ F @ M2 ) @ ( size_multiset_a @ F @ N2 ) ) ) ).

% size_multiset_union
thf(fact_276_length__splice,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( size_size_list_a @ ( splice_a @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) ) ) ).

% length_splice
thf(fact_277_length__splice,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( size_size_list_nat @ ( splice_nat @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_size_list_nat @ Xs ) @ ( size_size_list_nat @ Ys ) ) ) ).

% length_splice
thf(fact_278_rotate1__fixpoint__card,axiom,
    ! [Xs: list_a] :
      ( ( ( rotate1_a @ Xs )
        = Xs )
     => ( ( Xs = nil_a )
        | ( ( finite_card_a @ ( set_a2 @ Xs ) )
          = one_one_nat ) ) ) ).

% rotate1_fixpoint_card
thf(fact_279_rotate1__fixpoint__card,axiom,
    ! [Xs: list_nat] :
      ( ( ( rotate1_nat @ Xs )
        = Xs )
     => ( ( Xs = nil_nat )
        | ( ( finite_card_nat @ ( set_nat2 @ Xs ) )
          = one_one_nat ) ) ) ).

% rotate1_fixpoint_card
thf(fact_280_size__union,axiom,
    ! [M2: multiset_nat,N2: multiset_nat] :
      ( ( size_s5917832649809541300et_nat @ ( plus_p6334493942879108393et_nat @ M2 @ N2 ) )
      = ( plus_plus_nat @ ( size_s5917832649809541300et_nat @ M2 ) @ ( size_s5917832649809541300et_nat @ N2 ) ) ) ).

% size_union
thf(fact_281_size__union,axiom,
    ! [M2: multiset_a,N2: multiset_a] :
      ( ( size_size_multiset_a @ ( plus_plus_multiset_a @ M2 @ N2 ) )
      = ( plus_plus_nat @ ( size_size_multiset_a @ M2 ) @ ( size_size_multiset_a @ N2 ) ) ) ).

% size_union
thf(fact_282_size__mset,axiom,
    ! [Xs: list_a] :
      ( ( size_size_multiset_a @ ( mset_a @ Xs ) )
      = ( size_size_list_a @ Xs ) ) ).

% size_mset
thf(fact_283_size__mset,axiom,
    ! [Xs: list_nat] :
      ( ( size_s5917832649809541300et_nat @ ( mset_nat @ Xs ) )
      = ( size_size_list_nat @ Xs ) ) ).

% size_mset
thf(fact_284_split__Nil__iff,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( splice_a @ Xs @ Ys )
        = nil_a )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% split_Nil_iff
thf(fact_285_split__Nil__iff,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( splice_nat @ Xs @ Ys )
        = nil_nat )
      = ( ( Xs = nil_nat )
        & ( Ys = nil_nat ) ) ) ).

% split_Nil_iff
thf(fact_286_splice__Nil2,axiom,
    ! [Xs: list_a] :
      ( ( splice_a @ Xs @ nil_a )
      = Xs ) ).

% splice_Nil2
thf(fact_287_splice__Nil2,axiom,
    ! [Xs: list_nat] :
      ( ( splice_nat @ Xs @ nil_nat )
      = Xs ) ).

% splice_Nil2
thf(fact_288_splice_Osimps_I1_J,axiom,
    ! [Ys: list_a] :
      ( ( splice_a @ nil_a @ Ys )
      = Ys ) ).

% splice.simps(1)
thf(fact_289_splice_Osimps_I1_J,axiom,
    ! [Ys: list_nat] :
      ( ( splice_nat @ nil_nat @ Ys )
      = Ys ) ).

% splice.simps(1)
thf(fact_290_gen__length__code_I1_J,axiom,
    ! [N: nat] :
      ( ( gen_length_a @ N @ nil_a )
      = N ) ).

% gen_length_code(1)
thf(fact_291_gen__length__code_I1_J,axiom,
    ! [N: nat] :
      ( ( gen_length_nat @ N @ nil_nat )
      = N ) ).

% gen_length_code(1)
thf(fact_292_card__length,axiom,
    ! [Xs: list_a] : ( ord_less_eq_nat @ ( finite_card_a @ ( set_a2 @ Xs ) ) @ ( size_size_list_a @ Xs ) ) ).

% card_length
thf(fact_293_card__length,axiom,
    ! [Xs: list_nat] : ( ord_less_eq_nat @ ( finite_card_nat @ ( set_nat2 @ Xs ) ) @ ( size_size_list_nat @ Xs ) ) ).

% card_length
thf(fact_294_Collect__mono__iff,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P2 ) @ ( collect_nat @ Q ) )
      = ( ! [X2: nat] :
            ( ( P2 @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_295_Collect__mono__iff,axiom,
    ! [P2: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P2 ) @ ( collect_a @ Q ) )
      = ( ! [X2: a] :
            ( ( P2 @ X2 )
           => ( Q @ X2 ) ) ) ) ).

% Collect_mono_iff
thf(fact_296_set__eq__subset,axiom,
    ( ( ^ [Y4: set_nat,Z: set_nat] : ( Y4 = Z ) )
    = ( ^ [A3: set_nat,B5: set_nat] :
          ( ( ord_less_eq_set_nat @ A3 @ B5 )
          & ( ord_less_eq_set_nat @ B5 @ A3 ) ) ) ) ).

% set_eq_subset
thf(fact_297_set__eq__subset,axiom,
    ( ( ^ [Y4: set_a,Z: set_a] : ( Y4 = Z ) )
    = ( ^ [A3: set_a,B5: set_a] :
          ( ( ord_less_eq_set_a @ A3 @ B5 )
          & ( ord_less_eq_set_a @ B5 @ A3 ) ) ) ) ).

% set_eq_subset
thf(fact_298_subset__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C4: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C4 )
       => ( ord_less_eq_set_nat @ A2 @ C4 ) ) ) ).

% subset_trans
thf(fact_299_subset__trans,axiom,
    ! [A2: set_a,B2: set_a,C4: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C4 )
       => ( ord_less_eq_set_a @ A2 @ C4 ) ) ) ).

% subset_trans
thf(fact_300_Collect__mono,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ! [X3: nat] :
          ( ( P2 @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_nat @ ( collect_nat @ P2 ) @ ( collect_nat @ Q ) ) ) ).

% Collect_mono
thf(fact_301_Collect__mono,axiom,
    ! [P2: a > $o,Q: a > $o] :
      ( ! [X3: a] :
          ( ( P2 @ X3 )
         => ( Q @ X3 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P2 ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_302_subset__refl,axiom,
    ! [A2: set_nat] : ( ord_less_eq_set_nat @ A2 @ A2 ) ).

% subset_refl
thf(fact_303_subset__refl,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).

% subset_refl
thf(fact_304_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A3: set_a,B5: set_a] :
        ! [T: a] :
          ( ( member_a2 @ T @ A3 )
         => ( member_a2 @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_305_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A3: set_nat,B5: set_nat] :
        ! [T: nat] :
          ( ( member_nat2 @ T @ A3 )
         => ( member_nat2 @ T @ B5 ) ) ) ) ).

% subset_iff
thf(fact_306_equalityD2,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_nat @ B2 @ A2 ) ) ).

% equalityD2
thf(fact_307_equalityD2,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_a @ B2 @ A2 ) ) ).

% equalityD2
thf(fact_308_equalityD1,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% equalityD1
thf(fact_309_equalityD1,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% equalityD1
thf(fact_310_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A3: set_a,B5: set_a] :
        ! [X2: a] :
          ( ( member_a2 @ X2 @ A3 )
         => ( member_a2 @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_311_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A3: set_nat,B5: set_nat] :
        ! [X2: nat] :
          ( ( member_nat2 @ X2 @ A3 )
         => ( member_nat2 @ X2 @ B5 ) ) ) ) ).

% subset_eq
thf(fact_312_equalityE,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( A2 = B2 )
     => ~ ( ( ord_less_eq_set_nat @ A2 @ B2 )
         => ~ ( ord_less_eq_set_nat @ B2 @ A2 ) ) ) ).

% equalityE
thf(fact_313_equalityE,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ~ ( ( ord_less_eq_set_a @ A2 @ B2 )
         => ~ ( ord_less_eq_set_a @ B2 @ A2 ) ) ) ).

% equalityE
thf(fact_314_subsetD,axiom,
    ! [A2: set_a,B2: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( member_a2 @ C @ A2 )
       => ( member_a2 @ C @ B2 ) ) ) ).

% subsetD
thf(fact_315_subsetD,axiom,
    ! [A2: set_nat,B2: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( member_nat2 @ C @ A2 )
       => ( member_nat2 @ C @ B2 ) ) ) ).

% subsetD
thf(fact_316_in__mono,axiom,
    ! [A2: set_a,B2: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( member_a2 @ X @ A2 )
       => ( member_a2 @ X @ B2 ) ) ) ).

% in_mono
thf(fact_317_in__mono,axiom,
    ! [A2: set_nat,B2: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( member_nat2 @ X @ A2 )
       => ( member_nat2 @ X @ B2 ) ) ) ).

% in_mono
thf(fact_318_hd__rotate__conv__nth,axiom,
    ! [Xs: list_a,N: nat] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ ( rotate_a @ N @ Xs ) )
        = ( nth_a @ Xs @ ( modulo_modulo_nat @ N @ ( size_size_list_a @ Xs ) ) ) ) ) ).

% hd_rotate_conv_nth
thf(fact_319_hd__rotate__conv__nth,axiom,
    ! [Xs: list_nat,N: nat] :
      ( ( Xs != nil_nat )
     => ( ( hd_nat @ ( rotate_nat @ N @ Xs ) )
        = ( nth_nat @ Xs @ ( modulo_modulo_nat @ N @ ( size_size_list_nat @ Xs ) ) ) ) ) ).

% hd_rotate_conv_nth
thf(fact_320_hd__drop__conv__nth,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( ord_less_nat @ N @ ( size_size_list_a @ Xs ) )
     => ( ( hd_a @ ( drop_a @ N @ Xs ) )
        = ( nth_a @ Xs @ N ) ) ) ).

% hd_drop_conv_nth
thf(fact_321_hd__drop__conv__nth,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ( hd_nat @ ( drop_nat @ N @ Xs ) )
        = ( nth_nat @ Xs @ N ) ) ) ).

% hd_drop_conv_nth
thf(fact_322_wcount__union,axiom,
    ! [F: a > nat,M2: multiset_a,N2: multiset_a,A: a] :
      ( ( wcount_a @ F @ ( plus_plus_multiset_a @ M2 @ N2 ) @ A )
      = ( plus_plus_nat @ ( wcount_a @ F @ M2 @ A ) @ ( wcount_a @ F @ N2 @ A ) ) ) ).

% wcount_union
thf(fact_323_nth__append__length__plus,axiom,
    ! [Xs: list_a,Ys: list_a,N: nat] :
      ( ( nth_a @ ( append_a @ Xs @ Ys ) @ ( plus_plus_nat @ ( size_size_list_a @ Xs ) @ N ) )
      = ( nth_a @ Ys @ N ) ) ).

% nth_append_length_plus
thf(fact_324_nth__append__length__plus,axiom,
    ! [Xs: list_nat,Ys: list_nat,N: nat] :
      ( ( nth_nat @ ( append_nat @ Xs @ Ys ) @ ( plus_plus_nat @ ( size_size_list_nat @ Xs ) @ N ) )
      = ( nth_nat @ Ys @ N ) ) ).

% nth_append_length_plus
thf(fact_325_sorted__list__of__set_Olength__sorted__key__list__of__set,axiom,
    ! [A2: set_nat] :
      ( ( size_size_list_nat @ ( linord2614967742042102400et_nat @ A2 ) )
      = ( finite_card_nat @ A2 ) ) ).

% sorted_list_of_set.length_sorted_key_list_of_set
thf(fact_326_sorted01,axiom,
    ! [Xs: list_nat] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ one_one_nat )
     => ( sorted_wrt_nat @ ord_less_eq_nat @ Xs ) ) ).

% sorted01
thf(fact_327_hd__conv__nth,axiom,
    ! [Xs: list_a] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ Xs )
        = ( nth_a @ Xs @ zero_zero_nat ) ) ) ).

% hd_conv_nth
thf(fact_328_hd__conv__nth,axiom,
    ! [Xs: list_nat] :
      ( ( Xs != nil_nat )
     => ( ( hd_nat @ Xs )
        = ( nth_nat @ Xs @ zero_zero_nat ) ) ) ).

% hd_conv_nth
thf(fact_329_one__natural_Orsp,axiom,
    one_one_nat = one_one_nat ).

% one_natural.rsp
thf(fact_330_same__append__eq,axiom,
    ! [Xs: list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = ( append_nat @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_331_same__append__eq,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Xs @ Zs ) )
      = ( Ys = Zs ) ) ).

% same_append_eq
thf(fact_332_append__same__eq,axiom,
    ! [Ys: list_nat,Xs: list_nat,Zs: list_nat] :
      ( ( ( append_nat @ Ys @ Xs )
        = ( append_nat @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_333_append__same__eq,axiom,
    ! [Ys: list_a,Xs: list_a,Zs: list_a] :
      ( ( ( append_a @ Ys @ Xs )
        = ( append_a @ Zs @ Xs ) )
      = ( Ys = Zs ) ) ).

% append_same_eq
thf(fact_334_append__assoc,axiom,
    ! [Xs: list_nat,Ys: list_nat,Zs: list_nat] :
      ( ( append_nat @ ( append_nat @ Xs @ Ys ) @ Zs )
      = ( append_nat @ Xs @ ( append_nat @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_335_append__assoc,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a] :
      ( ( append_a @ ( append_a @ Xs @ Ys ) @ Zs )
      = ( append_a @ Xs @ ( append_a @ Ys @ Zs ) ) ) ).

% append_assoc
thf(fact_336_append_Oassoc,axiom,
    ! [A: list_nat,B: list_nat,C: list_nat] :
      ( ( append_nat @ ( append_nat @ A @ B ) @ C )
      = ( append_nat @ A @ ( append_nat @ B @ C ) ) ) ).

% append.assoc
thf(fact_337_append_Oassoc,axiom,
    ! [A: list_a,B: list_a,C: list_a] :
      ( ( append_a @ ( append_a @ A @ B ) @ C )
      = ( append_a @ A @ ( append_a @ B @ C ) ) ) ).

% append.assoc
thf(fact_338_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_339_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_340_add_Oright__neutral,axiom,
    ! [A: multiset_nat] :
      ( ( plus_p6334493942879108393et_nat @ A @ zero_z7348594199698428585et_nat )
      = A ) ).

% add.right_neutral
thf(fact_341_add_Oright__neutral,axiom,
    ! [A: multiset_a] :
      ( ( plus_plus_multiset_a @ A @ zero_zero_multiset_a )
      = A ) ).

% add.right_neutral
thf(fact_342_add_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.right_neutral
thf(fact_343_add__cancel__left__left,axiom,
    ! [B: multiset_nat,A: multiset_nat] :
      ( ( ( plus_p6334493942879108393et_nat @ B @ A )
        = A )
      = ( B = zero_z7348594199698428585et_nat ) ) ).

% add_cancel_left_left
thf(fact_344_add__cancel__left__left,axiom,
    ! [B: multiset_a,A: multiset_a] :
      ( ( ( plus_plus_multiset_a @ B @ A )
        = A )
      = ( B = zero_zero_multiset_a ) ) ).

% add_cancel_left_left
thf(fact_345_add__cancel__left__left,axiom,
    ! [B: nat,A: nat] :
      ( ( ( plus_plus_nat @ B @ A )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_left
thf(fact_346_add__cancel__left__right,axiom,
    ! [A: multiset_nat,B: multiset_nat] :
      ( ( ( plus_p6334493942879108393et_nat @ A @ B )
        = A )
      = ( B = zero_z7348594199698428585et_nat ) ) ).

% add_cancel_left_right
thf(fact_347_add__cancel__left__right,axiom,
    ! [A: multiset_a,B: multiset_a] :
      ( ( ( plus_plus_multiset_a @ A @ B )
        = A )
      = ( B = zero_zero_multiset_a ) ) ).

% add_cancel_left_right
thf(fact_348_add__cancel__left__right,axiom,
    ! [A: nat,B: nat] :
      ( ( ( plus_plus_nat @ A @ B )
        = A )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_left_right
thf(fact_349_add__cancel__right__left,axiom,
    ! [A: multiset_nat,B: multiset_nat] :
      ( ( A
        = ( plus_p6334493942879108393et_nat @ B @ A ) )
      = ( B = zero_z7348594199698428585et_nat ) ) ).

% add_cancel_right_left
thf(fact_350_add__cancel__right__left,axiom,
    ! [A: multiset_a,B: multiset_a] :
      ( ( A
        = ( plus_plus_multiset_a @ B @ A ) )
      = ( B = zero_zero_multiset_a ) ) ).

% add_cancel_right_left
thf(fact_351_add__cancel__right__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ B @ A ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_left
thf(fact_352_add__cancel__right__right,axiom,
    ! [A: multiset_nat,B: multiset_nat] :
      ( ( A
        = ( plus_p6334493942879108393et_nat @ A @ B ) )
      = ( B = zero_z7348594199698428585et_nat ) ) ).

% add_cancel_right_right
thf(fact_353_add__cancel__right__right,axiom,
    ! [A: multiset_a,B: multiset_a] :
      ( ( A
        = ( plus_plus_multiset_a @ A @ B ) )
      = ( B = zero_zero_multiset_a ) ) ).

% add_cancel_right_right
thf(fact_354_add__cancel__right__right,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( plus_plus_nat @ A @ B ) )
      = ( B = zero_zero_nat ) ) ).

% add_cancel_right_right
thf(fact_355_add__eq__0__iff__both__eq__0,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ( plus_plus_nat @ X @ Y2 )
        = zero_zero_nat )
      = ( ( X = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% add_eq_0_iff_both_eq_0
thf(fact_356_zero__eq__add__iff__both__eq__0,axiom,
    ! [X: nat,Y2: nat] :
      ( ( zero_zero_nat
        = ( plus_plus_nat @ X @ Y2 ) )
      = ( ( X = zero_zero_nat )
        & ( Y2 = zero_zero_nat ) ) ) ).

% zero_eq_add_iff_both_eq_0
thf(fact_357_add__0,axiom,
    ! [A: multiset_nat] :
      ( ( plus_p6334493942879108393et_nat @ zero_z7348594199698428585et_nat @ A )
      = A ) ).

% add_0
thf(fact_358_add__0,axiom,
    ! [A: multiset_a] :
      ( ( plus_plus_multiset_a @ zero_zero_multiset_a @ A )
      = A ) ).

% add_0
thf(fact_359_add__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% add_0
thf(fact_360_add__less__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_left
thf(fact_361_add__less__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
      = ( ord_less_nat @ A @ B ) ) ).

% add_less_cancel_right
thf(fact_362_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_363_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_364_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_365_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_366_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_367_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        & ( N = zero_zero_nat ) ) ) ).

% add_is_0
thf(fact_368_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus_nat @ M @ zero_zero_nat )
      = M ) ).

% Nat.add_0_right
thf(fact_369_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_370_append_Oright__neutral,axiom,
    ! [A: list_a] :
      ( ( append_a @ A @ nil_a )
      = A ) ).

% append.right_neutral
thf(fact_371_append_Oright__neutral,axiom,
    ! [A: list_nat] :
      ( ( append_nat @ A @ nil_nat )
      = A ) ).

% append.right_neutral
thf(fact_372_append__Nil2,axiom,
    ! [Xs: list_a] :
      ( ( append_a @ Xs @ nil_a )
      = Xs ) ).

% append_Nil2
thf(fact_373_append__Nil2,axiom,
    ! [Xs: list_nat] :
      ( ( append_nat @ Xs @ nil_nat )
      = Xs ) ).

% append_Nil2
thf(fact_374_append__self__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_a ) ) ).

% append_self_conv
thf(fact_375_append__self__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = Xs )
      = ( Ys = nil_nat ) ) ).

% append_self_conv
thf(fact_376_self__append__conv,axiom,
    ! [Y2: list_a,Ys: list_a] :
      ( ( Y2
        = ( append_a @ Y2 @ Ys ) )
      = ( Ys = nil_a ) ) ).

% self_append_conv
thf(fact_377_self__append__conv,axiom,
    ! [Y2: list_nat,Ys: list_nat] :
      ( ( Y2
        = ( append_nat @ Y2 @ Ys ) )
      = ( Ys = nil_nat ) ) ).

% self_append_conv
thf(fact_378_append__self__conv2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_a ) ) ).

% append_self_conv2
thf(fact_379_append__self__conv2,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = Ys )
      = ( Xs = nil_nat ) ) ).

% append_self_conv2
thf(fact_380_self__append__conv2,axiom,
    ! [Y2: list_a,Xs: list_a] :
      ( ( Y2
        = ( append_a @ Xs @ Y2 ) )
      = ( Xs = nil_a ) ) ).

% self_append_conv2
thf(fact_381_self__append__conv2,axiom,
    ! [Y2: list_nat,Xs: list_nat] :
      ( ( Y2
        = ( append_nat @ Xs @ Y2 ) )
      = ( Xs = nil_nat ) ) ).

% self_append_conv2
thf(fact_382_Nil__is__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( nil_a
        = ( append_a @ Xs @ Ys ) )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% Nil_is_append_conv
thf(fact_383_Nil__is__append__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( nil_nat
        = ( append_nat @ Xs @ Ys ) )
      = ( ( Xs = nil_nat )
        & ( Ys = nil_nat ) ) ) ).

% Nil_is_append_conv
thf(fact_384_append__is__Nil__conv,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = nil_a )
      = ( ( Xs = nil_a )
        & ( Ys = nil_a ) ) ) ).

% append_is_Nil_conv
thf(fact_385_append__is__Nil__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = nil_nat )
      = ( ( Xs = nil_nat )
        & ( Ys = nil_nat ) ) ) ).

% append_is_Nil_conv
thf(fact_386_append__eq__append__conv,axiom,
    ! [Xs: list_a,Ys: list_a,Us: list_a,Vs: list_a] :
      ( ( ( ( size_size_list_a @ Xs )
          = ( size_size_list_a @ Ys ) )
        | ( ( size_size_list_a @ Us )
          = ( size_size_list_a @ Vs ) ) )
     => ( ( ( append_a @ Xs @ Us )
          = ( append_a @ Ys @ Vs ) )
        = ( ( Xs = Ys )
          & ( Us = Vs ) ) ) ) ).

% append_eq_append_conv
thf(fact_387_append__eq__append__conv,axiom,
    ! [Xs: list_nat,Ys: list_nat,Us: list_nat,Vs: list_nat] :
      ( ( ( ( size_size_list_nat @ Xs )
          = ( size_size_list_nat @ Ys ) )
        | ( ( size_size_list_nat @ Us )
          = ( size_size_list_nat @ Vs ) ) )
     => ( ( ( append_nat @ Xs @ Us )
          = ( append_nat @ Ys @ Vs ) )
        = ( ( Xs = Ys )
          & ( Us = Vs ) ) ) ) ).

% append_eq_append_conv
thf(fact_388_drop0,axiom,
    ( ( drop_nat @ zero_zero_nat )
    = ( ^ [X2: list_nat] : X2 ) ) ).

% drop0
thf(fact_389_drop0,axiom,
    ( ( drop_a @ zero_zero_nat )
    = ( ^ [X2: list_a] : X2 ) ) ).

% drop0
thf(fact_390_removeAll__append,axiom,
    ! [X: nat,Xs: list_nat,Ys: list_nat] :
      ( ( removeAll_nat @ X @ ( append_nat @ Xs @ Ys ) )
      = ( append_nat @ ( removeAll_nat @ X @ Xs ) @ ( removeAll_nat @ X @ Ys ) ) ) ).

% removeAll_append
thf(fact_391_removeAll__append,axiom,
    ! [X: a,Xs: list_a,Ys: list_a] :
      ( ( removeAll_a @ X @ ( append_a @ Xs @ Ys ) )
      = ( append_a @ ( removeAll_a @ X @ Xs ) @ ( removeAll_a @ X @ Ys ) ) ) ).

% removeAll_append
thf(fact_392_add__le__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel1
thf(fact_393_add__le__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).

% add_le_same_cancel2
thf(fact_394_le__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel1
thf(fact_395_le__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).

% le_add_same_cancel2
thf(fact_396_add__less__same__cancel1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel1
thf(fact_397_add__less__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( ord_less_nat @ A @ zero_zero_nat ) ) ).

% add_less_same_cancel2
thf(fact_398_less__add__same__cancel1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel1
thf(fact_399_less__add__same__cancel2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
      = ( ord_less_nat @ zero_zero_nat @ B ) ) ).

% less_add_same_cancel2
thf(fact_400_length__0__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( size_size_list_a @ Xs )
        = zero_zero_nat )
      = ( Xs = nil_a ) ) ).

% length_0_conv
thf(fact_401_length__0__conv,axiom,
    ! [Xs: list_nat] :
      ( ( ( size_size_list_nat @ Xs )
        = zero_zero_nat )
      = ( Xs = nil_nat ) ) ).

% length_0_conv
thf(fact_402_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        | ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% add_gr_0
thf(fact_403_less__one,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ one_one_nat )
      = ( N = zero_zero_nat ) ) ).

% less_one
thf(fact_404_length__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( size_size_list_a @ ( append_a @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_size_list_a @ Xs ) @ ( size_size_list_a @ Ys ) ) ) ).

% length_append
thf(fact_405_length__append,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( size_size_list_nat @ ( append_nat @ Xs @ Ys ) )
      = ( plus_plus_nat @ ( size_size_list_nat @ Xs ) @ ( size_size_list_nat @ Ys ) ) ) ).

% length_append
thf(fact_406_mset__append,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( mset_nat @ ( append_nat @ Xs @ Ys ) )
      = ( plus_p6334493942879108393et_nat @ ( mset_nat @ Xs ) @ ( mset_nat @ Ys ) ) ) ).

% mset_append
thf(fact_407_mset__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( mset_a @ ( append_a @ Xs @ Ys ) )
      = ( plus_plus_multiset_a @ ( mset_a @ Xs ) @ ( mset_a @ Ys ) ) ) ).

% mset_append
thf(fact_408_hd__append2,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs != nil_a )
     => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
        = ( hd_a @ Xs ) ) ) ).

% hd_append2
thf(fact_409_hd__append2,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( Xs != nil_nat )
     => ( ( hd_nat @ ( append_nat @ Xs @ Ys ) )
        = ( hd_nat @ Xs ) ) ) ).

% hd_append2
thf(fact_410_length__greater__0__conv,axiom,
    ! [Xs: list_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_a @ Xs ) )
      = ( Xs != nil_a ) ) ).

% length_greater_0_conv
thf(fact_411_length__greater__0__conv,axiom,
    ! [Xs: list_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs ) )
      = ( Xs != nil_nat ) ) ).

% length_greater_0_conv
thf(fact_412_rotate__id,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( ( modulo_modulo_nat @ N @ ( size_size_list_a @ Xs ) )
        = zero_zero_nat )
     => ( ( rotate_a @ N @ Xs )
        = Xs ) ) ).

% rotate_id
thf(fact_413_rotate__id,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( ( modulo_modulo_nat @ N @ ( size_size_list_nat @ Xs ) )
        = zero_zero_nat )
     => ( ( rotate_nat @ N @ Xs )
        = Xs ) ) ).

% rotate_id
thf(fact_414_sorted__wrt__less__idx,axiom,
    ! [Ns: list_nat,I: nat] :
      ( ( sorted_wrt_nat @ ord_less_nat @ Ns )
     => ( ( ord_less_nat @ I @ ( size_size_list_nat @ Ns ) )
       => ( ord_less_eq_nat @ I @ ( nth_nat @ Ns @ I ) ) ) ) ).

% sorted_wrt_less_idx
thf(fact_415_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_416_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_417_order__less__imp__not__less,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_set_nat @ X @ Y2 )
     => ~ ( ord_less_set_nat @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_418_order__less__imp__not__less,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( ord_less_set_a @ X @ Y2 )
     => ~ ( ord_less_set_a @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_419_order__less__imp__not__less,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_imp_not_less
thf(fact_420_order__less__imp__not__eq2,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_set_nat @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_421_order__less__imp__not__eq2,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( ord_less_set_a @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_422_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( Y2 != X ) ) ).

% order_less_imp_not_eq2
thf(fact_423_order__less__imp__not__eq,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_set_nat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_424_order__less__imp__not__eq,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( ord_less_set_a @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_425_order__less__imp__not__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% order_less_imp_not_eq
thf(fact_426_linorder__less__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
      | ( X = Y2 )
      | ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_less_linear
thf(fact_427_order__less__imp__triv,axiom,
    ! [X: set_nat,Y2: set_nat,P2: $o] :
      ( ( ord_less_set_nat @ X @ Y2 )
     => ( ( ord_less_set_nat @ Y2 @ X )
       => P2 ) ) ).

% order_less_imp_triv
thf(fact_428_order__less__imp__triv,axiom,
    ! [X: set_a,Y2: set_a,P2: $o] :
      ( ( ord_less_set_a @ X @ Y2 )
     => ( ( ord_less_set_a @ Y2 @ X )
       => P2 ) ) ).

% order_less_imp_triv
thf(fact_429_order__less__imp__triv,axiom,
    ! [X: nat,Y2: nat,P2: $o] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ X )
       => P2 ) ) ).

% order_less_imp_triv
thf(fact_430_order__less__not__sym,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_set_nat @ X @ Y2 )
     => ~ ( ord_less_set_nat @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_431_order__less__not__sym,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( ord_less_set_a @ X @ Y2 )
     => ~ ( ord_less_set_a @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_432_order__less__not__sym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_not_sym
thf(fact_433_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_434_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_435_order__less__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > nat,C: nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_436_order__less__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ord_less_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_437_order__less__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_a,C: set_a] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_438_order__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_439_order__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_nat,C: set_nat] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_440_order__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_441_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_442_order__less__subst1,axiom,
    ! [A: nat,F: set_nat > nat,B: set_nat,C: set_nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_443_order__less__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_444_order__less__subst1,axiom,
    ! [A: set_nat,F: nat > set_nat,B: nat,C: nat] :
      ( ( ord_less_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_445_order__less__subst1,axiom,
    ! [A: set_nat,F: set_nat > set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_446_order__less__subst1,axiom,
    ! [A: set_nat,F: set_a > set_nat,B: set_a,C: set_a] :
      ( ( ord_less_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_447_order__less__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_448_order__less__subst1,axiom,
    ! [A: set_a,F: set_nat > set_a,B: set_nat,C: set_nat] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_449_order__less__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_450_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_451_order__less__irrefl,axiom,
    ! [X: set_nat] :
      ~ ( ord_less_set_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_452_order__less__irrefl,axiom,
    ! [X: set_a] :
      ~ ( ord_less_set_a @ X @ X ) ).

% order_less_irrefl
thf(fact_453_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_454_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_455_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_456_ord__less__eq__subst,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > nat,C: nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_457_ord__less__eq__subst,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_458_ord__less__eq__subst,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_a,C: set_a] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_459_ord__less__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_460_ord__less__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_nat,C: set_nat] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_461_ord__less__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_462_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_463_ord__eq__less__subst,axiom,
    ! [A: set_nat,F: nat > set_nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_464_ord__eq__less__subst,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_465_ord__eq__less__subst,axiom,
    ! [A: nat,F: set_nat > nat,B: set_nat,C: set_nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_466_ord__eq__less__subst,axiom,
    ! [A: set_nat,F: set_nat > set_nat,B: set_nat,C: set_nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_467_ord__eq__less__subst,axiom,
    ! [A: set_a,F: set_nat > set_a,B: set_nat,C: set_nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_468_ord__eq__less__subst,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_469_ord__eq__less__subst,axiom,
    ! [A: set_nat,F: set_a > set_nat,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_470_ord__eq__less__subst,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_471_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_472_order__less__trans,axiom,
    ! [X: set_nat,Y2: set_nat,Z2: set_nat] :
      ( ( ord_less_set_nat @ X @ Y2 )
     => ( ( ord_less_set_nat @ Y2 @ Z2 )
       => ( ord_less_set_nat @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_473_order__less__trans,axiom,
    ! [X: set_a,Y2: set_a,Z2: set_a] :
      ( ( ord_less_set_a @ X @ Y2 )
     => ( ( ord_less_set_a @ Y2 @ Z2 )
       => ( ord_less_set_a @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_474_order__less__trans,axiom,
    ! [X: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_less_trans
thf(fact_475_order__less__asym_H,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ~ ( ord_less_set_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_476_order__less__asym_H,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ~ ( ord_less_set_a @ B @ A ) ) ).

% order_less_asym'
thf(fact_477_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_478_linorder__neq__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
      = ( ( ord_less_nat @ X @ Y2 )
        | ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neq_iff
thf(fact_479_order__less__asym,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_set_nat @ X @ Y2 )
     => ~ ( ord_less_set_nat @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_480_order__less__asym,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( ord_less_set_a @ X @ Y2 )
     => ~ ( ord_less_set_a @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_481_order__less__asym,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ~ ( ord_less_nat @ Y2 @ X ) ) ).

% order_less_asym
thf(fact_482_linorder__neqE,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_nat @ X @ Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neqE
thf(fact_483_zero__reorient,axiom,
    ! [X: multiset_a] :
      ( ( zero_zero_multiset_a = X )
      = ( X = zero_zero_multiset_a ) ) ).

% zero_reorient
thf(fact_484_zero__reorient,axiom,
    ! [X: multiset_nat] :
      ( ( zero_z7348594199698428585et_nat = X )
      = ( X = zero_z7348594199698428585et_nat ) ) ).

% zero_reorient
thf(fact_485_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_486_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_487_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_488_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_489_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( ord_less_set_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_490_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_491_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_492_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_493_order_Ostrict__implies__not__eq,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_494_order_Ostrict__implies__not__eq,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_495_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_496_dual__order_Ostrict__trans,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ B @ A )
     => ( ( ord_less_set_nat @ C @ B )
       => ( ord_less_set_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_497_dual__order_Ostrict__trans,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ( ord_less_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_498_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_499_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y2 ) )
      = ( ( ord_less_nat @ Y2 @ X )
        | ( X = Y2 ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_500_order_Ostrict__trans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ord_less_set_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_501_order_Ostrict__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_502_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_503_linorder__less__wlog,axiom,
    ! [P2: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( ord_less_nat @ A5 @ B4 )
         => ( P2 @ A5 @ B4 ) )
     => ( ! [A5: nat] : ( P2 @ A5 @ A5 )
       => ( ! [A5: nat,B4: nat] :
              ( ( P2 @ B4 @ A5 )
             => ( P2 @ A5 @ B4 ) )
         => ( P2 @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_504_exists__least__iff,axiom,
    ( ( ^ [P3: nat > $o] :
        ? [X5: nat] : ( P3 @ X5 ) )
    = ( ^ [P: nat > $o] :
        ? [N5: nat] :
          ( ( P @ N5 )
          & ! [M4: nat] :
              ( ( ord_less_nat @ M4 @ N5 )
             => ~ ( P @ M4 ) ) ) ) ) ).

% exists_least_iff
thf(fact_505_dual__order_Oirrefl,axiom,
    ! [A: set_nat] :
      ~ ( ord_less_set_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_506_dual__order_Oirrefl,axiom,
    ! [A: set_a] :
      ~ ( ord_less_set_a @ A @ A ) ).

% dual_order.irrefl
thf(fact_507_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_508_dual__order_Oasym,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( ord_less_set_nat @ B @ A )
     => ~ ( ord_less_set_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_509_dual__order_Oasym,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ~ ( ord_less_set_a @ A @ B ) ) ).

% dual_order.asym
thf(fact_510_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_511_linorder__cases,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X @ Y2 )
     => ( ( X != Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_cases
thf(fact_512_antisym__conv3,axiom,
    ! [Y2: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y2 @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv3
thf(fact_513_less__induct,axiom,
    ! [P2: nat > $o,A: nat] :
      ( ! [X3: nat] :
          ( ! [Y6: nat] :
              ( ( ord_less_nat @ Y6 @ X3 )
             => ( P2 @ Y6 ) )
         => ( P2 @ X3 ) )
     => ( P2 @ A ) ) ).

% less_induct
thf(fact_514_ord__less__eq__trans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_set_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_515_ord__less__eq__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_516_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_517_ord__eq__less__trans,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( A = B )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ord_less_set_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_518_ord__eq__less__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( A = B )
     => ( ( ord_less_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_519_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_520_order_Oasym,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ~ ( ord_less_set_nat @ B @ A ) ) ).

% order.asym
thf(fact_521_order_Oasym,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ~ ( ord_less_set_a @ B @ A ) ) ).

% order.asym
thf(fact_522_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_523_less__imp__neq,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_set_nat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_524_less__imp__neq,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( ord_less_set_a @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_525_less__imp__neq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( X != Y2 ) ) ).

% less_imp_neq
thf(fact_526_gt__ex,axiom,
    ! [X: nat] :
    ? [X_12: nat] : ( ord_less_nat @ X @ X_12 ) ).

% gt_ex
thf(fact_527_sorted__wrt__append,axiom,
    ! [P2: a > a > $o,Xs: list_a,Ys: list_a] :
      ( ( sorted_wrt_a @ P2 @ ( append_a @ Xs @ Ys ) )
      = ( ( sorted_wrt_a @ P2 @ Xs )
        & ( sorted_wrt_a @ P2 @ Ys )
        & ! [X2: a] :
            ( ( member_a2 @ X2 @ ( set_a2 @ Xs ) )
           => ! [Y: a] :
                ( ( member_a2 @ Y @ ( set_a2 @ Ys ) )
               => ( P2 @ X2 @ Y ) ) ) ) ) ).

% sorted_wrt_append
thf(fact_528_sorted__wrt__append,axiom,
    ! [P2: nat > nat > $o,Xs: list_nat,Ys: list_nat] :
      ( ( sorted_wrt_nat @ P2 @ ( append_nat @ Xs @ Ys ) )
      = ( ( sorted_wrt_nat @ P2 @ Xs )
        & ( sorted_wrt_nat @ P2 @ Ys )
        & ! [X2: nat] :
            ( ( member_nat2 @ X2 @ ( set_nat2 @ Xs ) )
           => ! [Y: nat] :
                ( ( member_nat2 @ Y @ ( set_nat2 @ Ys ) )
               => ( P2 @ X2 @ Y ) ) ) ) ) ).

% sorted_wrt_append
thf(fact_529_zero__natural_Orsp,axiom,
    zero_zero_nat = zero_zero_nat ).

% zero_natural.rsp
thf(fact_530_append__eq__append__conv2,axiom,
    ! [Xs: list_nat,Ys: list_nat,Zs: list_nat,Ts: list_nat] :
      ( ( ( append_nat @ Xs @ Ys )
        = ( append_nat @ Zs @ Ts ) )
      = ( ? [Us2: list_nat] :
            ( ( ( Xs
                = ( append_nat @ Zs @ Us2 ) )
              & ( ( append_nat @ Us2 @ Ys )
                = Ts ) )
            | ( ( ( append_nat @ Xs @ Us2 )
                = Zs )
              & ( Ys
                = ( append_nat @ Us2 @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_531_append__eq__append__conv2,axiom,
    ! [Xs: list_a,Ys: list_a,Zs: list_a,Ts: list_a] :
      ( ( ( append_a @ Xs @ Ys )
        = ( append_a @ Zs @ Ts ) )
      = ( ? [Us2: list_a] :
            ( ( ( Xs
                = ( append_a @ Zs @ Us2 ) )
              & ( ( append_a @ Us2 @ Ys )
                = Ts ) )
            | ( ( ( append_a @ Xs @ Us2 )
                = Zs )
              & ( Ys
                = ( append_a @ Us2 @ Ts ) ) ) ) ) ) ).

% append_eq_append_conv2
thf(fact_532_append__eq__appendI,axiom,
    ! [Xs: list_nat,Xs1: list_nat,Zs: list_nat,Ys: list_nat,Us: list_nat] :
      ( ( ( append_nat @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_nat @ Xs1 @ Us ) )
       => ( ( append_nat @ Xs @ Ys )
          = ( append_nat @ Zs @ Us ) ) ) ) ).

% append_eq_appendI
thf(fact_533_append__eq__appendI,axiom,
    ! [Xs: list_a,Xs1: list_a,Zs: list_a,Ys: list_a,Us: list_a] :
      ( ( ( append_a @ Xs @ Xs1 )
        = Zs )
     => ( ( Ys
          = ( append_a @ Xs1 @ Us ) )
       => ( ( append_a @ Xs @ Ys )
          = ( append_a @ Zs @ Us ) ) ) ) ).

% append_eq_appendI
thf(fact_534_sorted__list__of__set_Ostrict__sorted__key__list__of__set,axiom,
    ! [A2: set_nat] : ( sorted_wrt_nat @ ord_less_nat @ ( linord2614967742042102400et_nat @ A2 ) ) ).

% sorted_list_of_set.strict_sorted_key_list_of_set
thf(fact_535_add__neg__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_neg
thf(fact_536_add__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_pos
thf(fact_537_canonically__ordered__monoid__add__class_OlessE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ! [C3: nat] :
            ( ( B
              = ( plus_plus_nat @ A @ C3 ) )
           => ( C3 = zero_zero_nat ) ) ) ).

% canonically_ordered_monoid_add_class.lessE
thf(fact_538_pos__add__strict,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% pos_add_strict
thf(fact_539_sorted__list__of__set_Osorted__sorted__key__list__of__set,axiom,
    ! [A2: set_nat] : ( sorted_wrt_nat @ ord_less_eq_nat @ ( linord2614967742042102400et_nat @ A2 ) ) ).

% sorted_list_of_set.sorted_sorted_key_list_of_set
thf(fact_540_strict__sorted__equal,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_nat @ Xs )
     => ( ( sorted_wrt_nat @ ord_less_nat @ Ys )
       => ( ( ( set_nat2 @ Ys )
            = ( set_nat2 @ Xs ) )
         => ( Ys = Xs ) ) ) ) ).

% strict_sorted_equal
thf(fact_541_strict__sorted__simps_I1_J,axiom,
    sorted_wrt_nat @ ord_less_nat @ nil_nat ).

% strict_sorted_simps(1)
thf(fact_542_linorder__neqE__nat,axiom,
    ! [X: nat,Y2: nat] :
      ( ( X != Y2 )
     => ( ~ ( ord_less_nat @ X @ Y2 )
       => ( ord_less_nat @ Y2 @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_543_infinite__descent0,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ zero_zero_nat )
     => ( ! [N4: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N4 )
           => ( ~ ( P2 @ N4 )
             => ? [M5: nat] :
                  ( ( ord_less_nat @ M5 @ N4 )
                  & ~ ( P2 @ M5 ) ) ) )
       => ( P2 @ N ) ) ) ).

% infinite_descent0
thf(fact_544_infinite__descent,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N4: nat] :
          ( ~ ( P2 @ N4 )
         => ? [M5: nat] :
              ( ( ord_less_nat @ M5 @ N4 )
              & ~ ( P2 @ M5 ) ) )
     => ( P2 @ N ) ) ).

% infinite_descent
thf(fact_545_nat__less__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N4: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_nat @ M5 @ N4 )
             => ( P2 @ M5 ) )
         => ( P2 @ N4 ) )
     => ( P2 @ N ) ) ).

% nat_less_induct
thf(fact_546_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_547_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_548_less__not__refl3,axiom,
    ! [S: nat,T2: nat] :
      ( ( ord_less_nat @ S @ T2 )
     => ( S != T2 ) ) ).

% less_not_refl3
thf(fact_549_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_550_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_551_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_552_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_553_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_554_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_555_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_556_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_557_strict__sorted__imp__sorted,axiom,
    ! [Xs: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_nat @ Xs )
     => ( sorted_wrt_nat @ ord_less_eq_nat @ Xs ) ) ).

% strict_sorted_imp_sorted
thf(fact_558_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less_nat @ I @ J )
     => ? [K4: nat] :
          ( ( ord_less_nat @ zero_zero_nat @ K4 )
          & ( ( plus_plus_nat @ I @ K4 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_559_ex__least__nat__le,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ N )
     => ( ~ ( P2 @ zero_zero_nat )
       => ? [K4: nat] :
            ( ( ord_less_eq_nat @ K4 @ N )
            & ! [I2: nat] :
                ( ( ord_less_nat @ I2 @ K4 )
               => ~ ( P2 @ I2 ) )
            & ( P2 @ K4 ) ) ) ) ).

% ex_least_nat_le
thf(fact_560_sorted__append,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ ( append_nat @ Xs @ Ys ) )
      = ( ( sorted_wrt_nat @ ord_less_eq_nat @ Xs )
        & ( sorted_wrt_nat @ ord_less_eq_nat @ Ys )
        & ! [X2: nat] :
            ( ( member_nat2 @ X2 @ ( set_nat2 @ Xs ) )
           => ! [Y: nat] :
                ( ( member_nat2 @ Y @ ( set_nat2 @ Ys ) )
               => ( ord_less_eq_nat @ X2 @ Y ) ) ) ) ) ).

% sorted_append
thf(fact_561_sorted__wrt__nth__less,axiom,
    ! [P2: a > a > $o,Xs: list_a,I: nat,J: nat] :
      ( ( sorted_wrt_a @ P2 @ Xs )
     => ( ( ord_less_nat @ I @ J )
       => ( ( ord_less_nat @ J @ ( size_size_list_a @ Xs ) )
         => ( P2 @ ( nth_a @ Xs @ I ) @ ( nth_a @ Xs @ J ) ) ) ) ) ).

% sorted_wrt_nth_less
thf(fact_562_sorted__wrt__nth__less,axiom,
    ! [P2: nat > nat > $o,Xs: list_nat,I: nat,J: nat] :
      ( ( sorted_wrt_nat @ P2 @ Xs )
     => ( ( ord_less_nat @ I @ J )
       => ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs ) )
         => ( P2 @ ( nth_nat @ Xs @ I ) @ ( nth_nat @ Xs @ J ) ) ) ) ) ).

% sorted_wrt_nth_less
thf(fact_563_sorted__wrt__iff__nth__less,axiom,
    ( sorted_wrt_a
    = ( ^ [P: a > a > $o,Xs2: list_a] :
        ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ( ord_less_nat @ J2 @ ( size_size_list_a @ Xs2 ) )
           => ( P @ ( nth_a @ Xs2 @ I3 ) @ ( nth_a @ Xs2 @ J2 ) ) ) ) ) ) ).

% sorted_wrt_iff_nth_less
thf(fact_564_sorted__wrt__iff__nth__less,axiom,
    ( sorted_wrt_nat
    = ( ^ [P: nat > nat > $o,Xs2: list_nat] :
        ! [I3: nat,J2: nat] :
          ( ( ord_less_nat @ I3 @ J2 )
         => ( ( ord_less_nat @ J2 @ ( size_size_list_nat @ Xs2 ) )
           => ( P @ ( nth_nat @ Xs2 @ I3 ) @ ( nth_nat @ Xs2 @ J2 ) ) ) ) ) ) ).

% sorted_wrt_iff_nth_less
thf(fact_565_add__neg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_neg_nonpos
thf(fact_566_add__nonneg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_pos
thf(fact_567_add__nonpos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_neg
thf(fact_568_add__pos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_pos_nonneg
thf(fact_569_add__strict__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing
thf(fact_570_add__strict__increasing2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_strict_increasing2
thf(fact_571_sorted__wrt_Osimps_I1_J,axiom,
    ! [P2: a > a > $o] : ( sorted_wrt_a @ P2 @ nil_a ) ).

% sorted_wrt.simps(1)
thf(fact_572_sorted__wrt_Osimps_I1_J,axiom,
    ! [P2: nat > nat > $o] : ( sorted_wrt_nat @ P2 @ nil_nat ) ).

% sorted_wrt.simps(1)
thf(fact_573_sorted__wrt__mono__rel,axiom,
    ! [Xs: list_a,P2: a > a > $o,Q: a > a > $o] :
      ( ! [X3: a,Y3: a] :
          ( ( member_a2 @ X3 @ ( set_a2 @ Xs ) )
         => ( ( member_a2 @ Y3 @ ( set_a2 @ Xs ) )
           => ( ( P2 @ X3 @ Y3 )
             => ( Q @ X3 @ Y3 ) ) ) )
     => ( ( sorted_wrt_a @ P2 @ Xs )
       => ( sorted_wrt_a @ Q @ Xs ) ) ) ).

% sorted_wrt_mono_rel
thf(fact_574_sorted__wrt__mono__rel,axiom,
    ! [Xs: list_nat,P2: nat > nat > $o,Q: nat > nat > $o] :
      ( ! [X3: nat,Y3: nat] :
          ( ( member_nat2 @ X3 @ ( set_nat2 @ Xs ) )
         => ( ( member_nat2 @ Y3 @ ( set_nat2 @ Xs ) )
           => ( ( P2 @ X3 @ Y3 )
             => ( Q @ X3 @ Y3 ) ) ) )
     => ( ( sorted_wrt_nat @ P2 @ Xs )
       => ( sorted_wrt_nat @ Q @ Xs ) ) ) ).

% sorted_wrt_mono_rel
thf(fact_575_length__pos__if__in__set,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a2 @ X @ ( set_a2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_a @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_576_length__pos__if__in__set,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat2 @ X @ ( set_nat2 @ Xs ) )
     => ( ord_less_nat @ zero_zero_nat @ ( size_size_list_nat @ Xs ) ) ) ).

% length_pos_if_in_set
thf(fact_577_sorted__wrt__drop,axiom,
    ! [F: a > a > $o,Xs: list_a,N: nat] :
      ( ( sorted_wrt_a @ F @ Xs )
     => ( sorted_wrt_a @ F @ ( drop_a @ N @ Xs ) ) ) ).

% sorted_wrt_drop
thf(fact_578_sorted__wrt__drop,axiom,
    ! [F: nat > nat > $o,Xs: list_nat,N: nat] :
      ( ( sorted_wrt_nat @ F @ Xs )
     => ( sorted_wrt_nat @ F @ ( drop_nat @ N @ Xs ) ) ) ).

% sorted_wrt_drop
thf(fact_579_append__Nil,axiom,
    ! [Ys: list_a] :
      ( ( append_a @ nil_a @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_580_append__Nil,axiom,
    ! [Ys: list_nat] :
      ( ( append_nat @ nil_nat @ Ys )
      = Ys ) ).

% append_Nil
thf(fact_581_append_Oleft__neutral,axiom,
    ! [A: list_a] :
      ( ( append_a @ nil_a @ A )
      = A ) ).

% append.left_neutral
thf(fact_582_append_Oleft__neutral,axiom,
    ! [A: list_nat] :
      ( ( append_nat @ nil_nat @ A )
      = A ) ).

% append.left_neutral
thf(fact_583_eq__Nil__appendI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_a @ nil_a @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_584_eq__Nil__appendI,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( Xs = Ys )
     => ( Xs
        = ( append_nat @ nil_nat @ Ys ) ) ) ).

% eq_Nil_appendI
thf(fact_585_leD,axiom,
    ! [Y2: set_nat,X: set_nat] :
      ( ( ord_less_eq_set_nat @ Y2 @ X )
     => ~ ( ord_less_set_nat @ X @ Y2 ) ) ).

% leD
thf(fact_586_leD,axiom,
    ! [Y2: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y2 @ X )
     => ~ ( ord_less_set_a @ X @ Y2 ) ) ).

% leD
thf(fact_587_leD,axiom,
    ! [Y2: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y2 @ X )
     => ~ ( ord_less_nat @ X @ Y2 ) ) ).

% leD
thf(fact_588_leI,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X @ Y2 )
     => ( ord_less_eq_nat @ Y2 @ X ) ) ).

% leI
thf(fact_589_nless__le,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ~ ( ord_less_set_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_set_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_590_nless__le,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ~ ( ord_less_set_a @ A @ B ) )
      = ( ~ ( ord_less_eq_set_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_591_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_592_antisym__conv1,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ~ ( ord_less_set_nat @ X @ Y2 )
     => ( ( ord_less_eq_set_nat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_593_antisym__conv1,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ~ ( ord_less_set_a @ X @ Y2 )
     => ( ( ord_less_eq_set_a @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_594_antisym__conv1,axiom,
    ! [X: nat,Y2: nat] :
      ( ~ ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ X @ Y2 )
        = ( X = Y2 ) ) ) ).

% antisym_conv1
thf(fact_595_antisym__conv2,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y2 )
     => ( ( ~ ( ord_less_set_nat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_596_antisym__conv2,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y2 )
     => ( ( ~ ( ord_less_set_a @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_597_antisym__conv2,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ~ ( ord_less_nat @ X @ Y2 ) )
        = ( X = Y2 ) ) ) ).

% antisym_conv2
thf(fact_598_less__le__not__le,axiom,
    ( ord_less_set_nat
    = ( ^ [X2: set_nat,Y: set_nat] :
          ( ( ord_less_eq_set_nat @ X2 @ Y )
          & ~ ( ord_less_eq_set_nat @ Y @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_599_less__le__not__le,axiom,
    ( ord_less_set_a
    = ( ^ [X2: set_a,Y: set_a] :
          ( ( ord_less_eq_set_a @ X2 @ Y )
          & ~ ( ord_less_eq_set_a @ Y @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_600_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y )
          & ~ ( ord_less_eq_nat @ Y @ X2 ) ) ) ) ).

% less_le_not_le
thf(fact_601_not__le__imp__less,axiom,
    ! [Y2: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y2 @ X )
     => ( ord_less_nat @ X @ Y2 ) ) ).

% not_le_imp_less
thf(fact_602_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_set_nat @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_603_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_set_a @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_604_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_nat @ A4 @ B3 )
          | ( A4 = B3 ) ) ) ) ).

% order.order_iff_strict
thf(fact_605_order_Ostrict__iff__order,axiom,
    ( ord_less_set_nat
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_606_order_Ostrict__iff__order,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_607_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ( A4 != B3 ) ) ) ) ).

% order.strict_iff_order
thf(fact_608_order_Ostrict__trans1,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ord_less_set_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_609_order_Ostrict__trans1,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_610_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_611_order_Ostrict__trans2,axiom,
    ! [A: set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ord_less_set_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_612_order_Ostrict__trans2,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_613_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_614_order_Ostrict__iff__not,axiom,
    ( ord_less_set_nat
    = ( ^ [A4: set_nat,B3: set_nat] :
          ( ( ord_less_eq_set_nat @ A4 @ B3 )
          & ~ ( ord_less_eq_set_nat @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_615_order_Ostrict__iff__not,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B3: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B3 )
          & ~ ( ord_less_eq_set_a @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_616_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A4 @ B3 )
          & ~ ( ord_less_eq_nat @ B3 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_617_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [B3: set_nat,A4: set_nat] :
          ( ( ord_less_set_nat @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_618_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B3: set_a,A4: set_a] :
          ( ( ord_less_set_a @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_619_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_nat @ B3 @ A4 )
          | ( A4 = B3 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_620_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_nat
    = ( ^ [B3: set_nat,A4: set_nat] :
          ( ( ord_less_eq_set_nat @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_621_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_a
    = ( ^ [B3: set_a,A4: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_622_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ( A4 != B3 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_623_dual__order_Ostrict__trans1,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ B @ A )
     => ( ( ord_less_set_nat @ C @ B )
       => ( ord_less_set_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_624_dual__order_Ostrict__trans1,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_625_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_626_dual__order_Ostrict__trans2,axiom,
    ! [B: set_nat,A: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ B @ A )
     => ( ( ord_less_eq_set_nat @ C @ B )
       => ( ord_less_set_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_627_dual__order_Ostrict__trans2,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_628_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_629_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_nat
    = ( ^ [B3: set_nat,A4: set_nat] :
          ( ( ord_less_eq_set_nat @ B3 @ A4 )
          & ~ ( ord_less_eq_set_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_630_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_a
    = ( ^ [B3: set_a,A4: set_a] :
          ( ( ord_less_eq_set_a @ B3 @ A4 )
          & ~ ( ord_less_eq_set_a @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_631_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B3: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B3 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B3 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_632_order_Ostrict__implies__order,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ord_less_eq_set_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_633_order_Ostrict__implies__order,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ord_less_eq_set_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_634_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_635_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_nat,A: set_nat] :
      ( ( ord_less_set_nat @ B @ A )
     => ( ord_less_eq_set_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_636_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ord_less_eq_set_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_637_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_638_order__le__less,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [X2: set_nat,Y: set_nat] :
          ( ( ord_less_set_nat @ X2 @ Y )
          | ( X2 = Y ) ) ) ) ).

% order_le_less
thf(fact_639_order__le__less,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X2: set_a,Y: set_a] :
          ( ( ord_less_set_a @ X2 @ Y )
          | ( X2 = Y ) ) ) ) ).

% order_le_less
thf(fact_640_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X2: nat,Y: nat] :
          ( ( ord_less_nat @ X2 @ Y )
          | ( X2 = Y ) ) ) ) ).

% order_le_less
thf(fact_641_order__less__le,axiom,
    ( ord_less_set_nat
    = ( ^ [X2: set_nat,Y: set_nat] :
          ( ( ord_less_eq_set_nat @ X2 @ Y )
          & ( X2 != Y ) ) ) ) ).

% order_less_le
thf(fact_642_order__less__le,axiom,
    ( ord_less_set_a
    = ( ^ [X2: set_a,Y: set_a] :
          ( ( ord_less_eq_set_a @ X2 @ Y )
          & ( X2 != Y ) ) ) ) ).

% order_less_le
thf(fact_643_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X2: nat,Y: nat] :
          ( ( ord_less_eq_nat @ X2 @ Y )
          & ( X2 != Y ) ) ) ) ).

% order_less_le
thf(fact_644_linorder__not__le,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y2 ) )
      = ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_not_le
thf(fact_645_linorder__not__less,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y2 ) )
      = ( ord_less_eq_nat @ Y2 @ X ) ) ).

% linorder_not_less
thf(fact_646_order__less__imp__le,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_set_nat @ X @ Y2 )
     => ( ord_less_eq_set_nat @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_647_order__less__imp__le,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( ord_less_set_a @ X @ Y2 )
     => ( ord_less_eq_set_a @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_648_order__less__imp__le,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ord_less_eq_nat @ X @ Y2 ) ) ).

% order_less_imp_le
thf(fact_649_order__le__neq__trans,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_650_order__le__neq__trans,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_651_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_652_order__neq__le__trans,axiom,
    ! [A: set_nat,B: set_nat] :
      ( ( A != B )
     => ( ( ord_less_eq_set_nat @ A @ B )
       => ( ord_less_set_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_653_order__neq__le__trans,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A != B )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( ord_less_set_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_654_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_655_order__le__less__trans,axiom,
    ! [X: set_nat,Y2: set_nat,Z2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y2 )
     => ( ( ord_less_set_nat @ Y2 @ Z2 )
       => ( ord_less_set_nat @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_656_order__le__less__trans,axiom,
    ! [X: set_a,Y2: set_a,Z2: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y2 )
     => ( ( ord_less_set_a @ Y2 @ Z2 )
       => ( ord_less_set_a @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_657_order__le__less__trans,axiom,
    ! [X: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_le_less_trans
thf(fact_658_order__less__le__trans,axiom,
    ! [X: set_nat,Y2: set_nat,Z2: set_nat] :
      ( ( ord_less_set_nat @ X @ Y2 )
     => ( ( ord_less_eq_set_nat @ Y2 @ Z2 )
       => ( ord_less_set_nat @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_659_order__less__le__trans,axiom,
    ! [X: set_a,Y2: set_a,Z2: set_a] :
      ( ( ord_less_set_a @ X @ Y2 )
     => ( ( ord_less_eq_set_a @ Y2 @ Z2 )
       => ( ord_less_set_a @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_660_order__less__le__trans,axiom,
    ! [X: nat,Y2: nat,Z2: nat] :
      ( ( ord_less_nat @ X @ Y2 )
     => ( ( ord_less_eq_nat @ Y2 @ Z2 )
       => ( ord_less_nat @ X @ Z2 ) ) ) ).

% order_less_le_trans
thf(fact_661_order__le__less__subst1,axiom,
    ! [A: nat,F: set_nat > nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_662_order__le__less__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_663_order__le__less__subst1,axiom,
    ! [A: set_nat,F: nat > set_nat,B: nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_664_order__le__less__subst1,axiom,
    ! [A: set_nat,F: set_nat > set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_665_order__le__less__subst1,axiom,
    ! [A: set_nat,F: set_a > set_nat,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_666_order__le__less__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_667_order__le__less__subst1,axiom,
    ! [A: set_a,F: set_nat > set_a,B: set_nat,C: set_nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_668_order__le__less__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_669_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_670_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_671_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_672_order__le__less__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_673_order__le__less__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_nat,C: set_nat] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_674_order__le__less__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_a,C: set_a] :
      ( ( ord_less_eq_set_nat @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_675_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_676_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_nat,C: set_nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_677_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_678_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_679_order__less__le__subst1,axiom,
    ! [A: set_nat,F: nat > set_nat,B: nat,C: nat] :
      ( ( ord_less_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_680_order__less__le__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_681_order__less__le__subst1,axiom,
    ! [A: nat,F: set_nat > nat,B: set_nat,C: set_nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_682_order__less__le__subst1,axiom,
    ! [A: set_nat,F: set_nat > set_nat,B: set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_683_order__less__le__subst1,axiom,
    ! [A: set_a,F: set_nat > set_a,B: set_nat,C: set_nat] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_nat @ B @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_eq_set_nat @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_684_order__less__le__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_685_order__less__le__subst1,axiom,
    ! [A: set_nat,F: set_a > set_nat,B: set_a,C: set_a] :
      ( ( ord_less_set_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_686_order__less__le__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_eq_set_a @ X3 @ Y3 )
             => ( ord_less_eq_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_687_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_eq_nat @ X3 @ Y3 )
             => ( ord_less_eq_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_688_order__less__le__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > nat,C: nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_689_order__less__le__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_690_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_nat,C: set_nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_691_order__less__le__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_nat,C: set_nat] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ord_less_eq_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_692_order__less__le__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_nat,C: set_nat] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_eq_set_nat @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_693_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_694_order__less__le__subst2,axiom,
    ! [A: set_nat,B: set_nat,F: set_nat > set_a,C: set_a] :
      ( ( ord_less_set_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_nat,Y3: set_nat] :
              ( ( ord_less_set_nat @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_695_order__less__le__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X3: set_a,Y3: set_a] :
              ( ( ord_less_set_a @ X3 @ Y3 )
             => ( ord_less_set_a @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_696_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X3: nat,Y3: nat] :
              ( ( ord_less_nat @ X3 @ Y3 )
             => ( ord_less_nat @ ( F @ X3 ) @ ( F @ Y3 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_697_linorder__le__less__linear,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
      | ( ord_less_nat @ Y2 @ X ) ) ).

% linorder_le_less_linear
thf(fact_698_order__le__imp__less__or__eq,axiom,
    ! [X: set_nat,Y2: set_nat] :
      ( ( ord_less_eq_set_nat @ X @ Y2 )
     => ( ( ord_less_set_nat @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_699_order__le__imp__less__or__eq,axiom,
    ! [X: set_a,Y2: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y2 )
     => ( ( ord_less_set_a @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_700_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ Y2 )
     => ( ( ord_less_nat @ X @ Y2 )
        | ( X = Y2 ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_701_add__mono__thms__linordered__field_I5_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(5)
thf(fact_702_add__mono__thms__linordered__field_I2_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( I = J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(2)
thf(fact_703_add__mono__thms__linordered__field_I1_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( K = L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(1)
thf(fact_704_add__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_strict_mono
thf(fact_705_add__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) ) ) ).

% add_strict_left_mono
thf(fact_706_add__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) ) ) ).

% add_strict_right_mono
thf(fact_707_add__less__imp__less__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_left
thf(fact_708_add__less__imp__less__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
     => ( ord_less_nat @ A @ B ) ) ).

% add_less_imp_less_right
thf(fact_709_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_710_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_711_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_712_length__induct,axiom,
    ! [P2: list_a > $o,Xs: list_a] :
      ( ! [Xs3: list_a] :
          ( ! [Ys2: list_a] :
              ( ( ord_less_nat @ ( size_size_list_a @ Ys2 ) @ ( size_size_list_a @ Xs3 ) )
             => ( P2 @ Ys2 ) )
         => ( P2 @ Xs3 ) )
     => ( P2 @ Xs ) ) ).

% length_induct
thf(fact_713_length__induct,axiom,
    ! [P2: list_nat > $o,Xs: list_nat] :
      ( ! [Xs3: list_nat] :
          ( ! [Ys2: list_nat] :
              ( ( ord_less_nat @ ( size_size_list_nat @ Ys2 ) @ ( size_size_list_nat @ Xs3 ) )
             => ( P2 @ Ys2 ) )
         => ( P2 @ Xs3 ) )
     => ( P2 @ Xs ) ) ).

% length_induct
thf(fact_714_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M4: nat,N5: nat] :
          ( ( ord_less_eq_nat @ M4 @ N5 )
          & ( M4 != N5 ) ) ) ) ).

% nat_less_le
thf(fact_715_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_716_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M4: nat,N5: nat] :
          ( ( ord_less_nat @ M4 @ N5 )
          | ( M4 = N5 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_717_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_718_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_719_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I4: nat,J3: nat] :
          ( ( ord_less_nat @ I4 @ J3 )
         => ( ord_less_nat @ ( F @ I4 ) @ ( F @ J3 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_720_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
     => ( ord_less_nat @ I @ K ) ) ).

% add_lessD1
thf(fact_721_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ K @ L )
       => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_722_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_723_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_724_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_725_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_726_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_727_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ K @ L )
     => ( ( ( plus_plus_nat @ M @ L )
          = ( plus_plus_nat @ K @ N ) )
       => ( ord_less_nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_728_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: multiset_nat] :
      ( ( plus_p6334493942879108393et_nat @ zero_z7348594199698428585et_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_729_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: multiset_a] :
      ( ( plus_plus_multiset_a @ zero_zero_multiset_a @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_730_comm__monoid__add__class_Oadd__0,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ A )
      = A ) ).

% comm_monoid_add_class.add_0
thf(fact_731_add_Ocomm__neutral,axiom,
    ! [A: multiset_nat] :
      ( ( plus_p6334493942879108393et_nat @ A @ zero_z7348594199698428585et_nat )
      = A ) ).

% add.comm_neutral
thf(fact_732_add_Ocomm__neutral,axiom,
    ! [A: multiset_a] :
      ( ( plus_plus_multiset_a @ A @ zero_zero_multiset_a )
      = A ) ).

% add.comm_neutral
thf(fact_733_add_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% add.comm_neutral
thf(fact_734_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_735_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_736_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_737_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_738_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus_nat @ zero_zero_nat @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_739_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = M )
     => ( N = zero_zero_nat ) ) ).

% add_eq_self_zero
thf(fact_740_sorted__iff__nth__mono__less,axiom,
    ! [Xs: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ Xs )
      = ( ! [I3: nat,J2: nat] :
            ( ( ord_less_nat @ I3 @ J2 )
           => ( ( ord_less_nat @ J2 @ ( size_size_list_nat @ Xs ) )
             => ( ord_less_eq_nat @ ( nth_nat @ Xs @ I3 ) @ ( nth_nat @ Xs @ J2 ) ) ) ) ) ) ).

% sorted_iff_nth_mono_less
thf(fact_741_drop__0,axiom,
    ! [Xs: list_nat] :
      ( ( drop_nat @ zero_zero_nat @ Xs )
      = Xs ) ).

% drop_0
thf(fact_742_drop__0,axiom,
    ! [Xs: list_a] :
      ( ( drop_a @ zero_zero_nat @ Xs )
      = Xs ) ).

% drop_0
thf(fact_743_sorted0,axiom,
    sorted_wrt_nat @ ord_less_eq_nat @ nil_nat ).

% sorted0
thf(fact_744_sorted__nth__mono,axiom,
    ! [Xs: list_nat,I: nat,J: nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ Xs )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs ) )
         => ( ord_less_eq_nat @ ( nth_nat @ Xs @ I ) @ ( nth_nat @ Xs @ J ) ) ) ) ) ).

% sorted_nth_mono
thf(fact_745_sorted__iff__nth__mono,axiom,
    ! [Xs: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ Xs )
      = ( ! [I3: nat,J2: nat] :
            ( ( ord_less_eq_nat @ I3 @ J2 )
           => ( ( ord_less_nat @ J2 @ ( size_size_list_nat @ Xs ) )
             => ( ord_less_eq_nat @ ( nth_nat @ Xs @ I3 ) @ ( nth_nat @ Xs @ J2 ) ) ) ) ) ) ).

% sorted_iff_nth_mono
thf(fact_746_sorted__drop,axiom,
    ! [Xs: list_nat,N: nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ Xs )
     => ( sorted_wrt_nat @ ord_less_eq_nat @ ( drop_nat @ N @ Xs ) ) ) ).

% sorted_drop
thf(fact_747_nth__rotate,axiom,
    ! [N: nat,Xs: list_a,M: nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_a @ Xs ) )
     => ( ( nth_a @ ( rotate_a @ M @ Xs ) @ N )
        = ( nth_a @ Xs @ ( modulo_modulo_nat @ ( plus_plus_nat @ M @ N ) @ ( size_size_list_a @ Xs ) ) ) ) ) ).

% nth_rotate
thf(fact_748_nth__rotate,axiom,
    ! [N: nat,Xs: list_nat,M: nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ( nth_nat @ ( rotate_nat @ M @ Xs ) @ N )
        = ( nth_nat @ Xs @ ( modulo_modulo_nat @ ( plus_plus_nat @ M @ N ) @ ( size_size_list_nat @ Xs ) ) ) ) ) ).

% nth_rotate
thf(fact_749_add__mono__thms__linordered__field_I4_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_eq_nat @ I @ J )
        & ( ord_less_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(4)
thf(fact_750_add__mono__thms__linordered__field_I3_J,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ( ord_less_nat @ I @ J )
        & ( ord_less_eq_nat @ K @ L ) )
     => ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ).

% add_mono_thms_linordered_field(3)
thf(fact_751_add__le__less__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_le_less_mono
thf(fact_752_add__less__le__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ D ) ) ) ) ).

% add_less_le_mono
thf(fact_753_longest__common__prefix,axiom,
    ! [Xs: list_a,Ys: list_a] :
    ? [Ps: list_a,Xs4: list_a,Ys3: list_a] :
      ( ( Xs
        = ( append_a @ Ps @ Xs4 ) )
      & ( Ys
        = ( append_a @ Ps @ Ys3 ) )
      & ( ( Xs4 = nil_a )
        | ( Ys3 = nil_a )
        | ( ( hd_a @ Xs4 )
         != ( hd_a @ Ys3 ) ) ) ) ).

% longest_common_prefix
thf(fact_754_longest__common__prefix,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
    ? [Ps: list_nat,Xs4: list_nat,Ys3: list_nat] :
      ( ( Xs
        = ( append_nat @ Ps @ Xs4 ) )
      & ( Ys
        = ( append_nat @ Ps @ Ys3 ) )
      & ( ( Xs4 = nil_nat )
        | ( Ys3 = nil_nat )
        | ( ( hd_nat @ Xs4 )
         != ( hd_nat @ Ys3 ) ) ) ) ).

% longest_common_prefix
thf(fact_755_hd__append,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( Xs = nil_a )
       => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
          = ( hd_a @ Ys ) ) )
      & ( ( Xs != nil_a )
       => ( ( hd_a @ ( append_a @ Xs @ Ys ) )
          = ( hd_a @ Xs ) ) ) ) ).

% hd_append
thf(fact_756_hd__append,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( Xs = nil_nat )
       => ( ( hd_nat @ ( append_nat @ Xs @ Ys ) )
          = ( hd_nat @ Ys ) ) )
      & ( ( Xs != nil_nat )
       => ( ( hd_nat @ ( append_nat @ Xs @ Ys ) )
          = ( hd_nat @ Xs ) ) ) ) ).

% hd_append
thf(fact_757_add__decreasing,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing
thf(fact_758_add__increasing,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing
thf(fact_759_add__decreasing2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ B ) ) ) ).

% add_decreasing2
thf(fact_760_add__increasing2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ C )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( ord_less_eq_nat @ B @ ( plus_plus_nat @ A @ C ) ) ) ) ).

% add_increasing2
thf(fact_761_add__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( plus_plus_nat @ A @ B ) ) ) ) ).

% add_nonneg_nonneg
thf(fact_762_add__nonpos__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% add_nonpos_nonpos
thf(fact_763_add__nonneg__eq__0__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ X )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ Y2 )
       => ( ( ( plus_plus_nat @ X @ Y2 )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonneg_eq_0_iff
thf(fact_764_add__nonpos__eq__0__iff,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ord_less_eq_nat @ X @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ Y2 @ zero_zero_nat )
       => ( ( ( plus_plus_nat @ X @ Y2 )
            = zero_zero_nat )
          = ( ( X = zero_zero_nat )
            & ( Y2 = zero_zero_nat ) ) ) ) ) ).

% add_nonpos_eq_0_iff
thf(fact_765_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M6: nat,N4: nat] :
          ( ( ord_less_nat @ M6 @ N4 )
         => ( ord_less_nat @ ( F @ M6 ) @ ( F @ N4 ) ) )
     => ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_766_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y4: list_a,Z: list_a] : ( Y4 = Z ) )
    = ( ^ [Xs2: list_a,Ys4: list_a] :
          ( ( ( size_size_list_a @ Xs2 )
            = ( size_size_list_a @ Ys4 ) )
          & ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ ( size_size_list_a @ Xs2 ) )
             => ( ( nth_a @ Xs2 @ I3 )
                = ( nth_a @ Ys4 @ I3 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_767_list__eq__iff__nth__eq,axiom,
    ( ( ^ [Y4: list_nat,Z: list_nat] : ( Y4 = Z ) )
    = ( ^ [Xs2: list_nat,Ys4: list_nat] :
          ( ( ( size_size_list_nat @ Xs2 )
            = ( size_size_list_nat @ Ys4 ) )
          & ! [I3: nat] :
              ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs2 ) )
             => ( ( nth_nat @ Xs2 @ I3 )
                = ( nth_nat @ Ys4 @ I3 ) ) ) ) ) ) ).

% list_eq_iff_nth_eq
thf(fact_768_Skolem__list__nth,axiom,
    ! [K: nat,P2: nat > a > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ K )
           => ? [X6: a] : ( P2 @ I3 @ X6 ) ) )
      = ( ? [Xs2: list_a] :
            ( ( ( size_size_list_a @ Xs2 )
              = K )
            & ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ K )
               => ( P2 @ I3 @ ( nth_a @ Xs2 @ I3 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_769_Skolem__list__nth,axiom,
    ! [K: nat,P2: nat > nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ K )
           => ? [X6: nat] : ( P2 @ I3 @ X6 ) ) )
      = ( ? [Xs2: list_nat] :
            ( ( ( size_size_list_nat @ Xs2 )
              = K )
            & ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ K )
               => ( P2 @ I3 @ ( nth_nat @ Xs2 @ I3 ) ) ) ) ) ) ).

% Skolem_list_nth
thf(fact_770_nth__equalityI,axiom,
    ! [Xs: list_a,Ys: list_a] :
      ( ( ( size_size_list_a @ Xs )
        = ( size_size_list_a @ Ys ) )
     => ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_a @ Xs ) )
           => ( ( nth_a @ Xs @ I4 )
              = ( nth_a @ Ys @ I4 ) ) )
       => ( Xs = Ys ) ) ) ).

% nth_equalityI
thf(fact_771_nth__equalityI,axiom,
    ! [Xs: list_nat,Ys: list_nat] :
      ( ( ( size_size_list_nat @ Xs )
        = ( size_size_list_nat @ Ys ) )
     => ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs ) )
           => ( ( nth_nat @ Xs @ I4 )
              = ( nth_nat @ Ys @ I4 ) ) )
       => ( Xs = Ys ) ) ) ).

% nth_equalityI
thf(fact_772_rotate__append,axiom,
    ! [L: list_a,Q2: list_a] :
      ( ( rotate_a @ ( size_size_list_a @ L ) @ ( append_a @ L @ Q2 ) )
      = ( append_a @ Q2 @ L ) ) ).

% rotate_append
thf(fact_773_rotate__append,axiom,
    ! [L: list_nat,Q2: list_nat] :
      ( ( rotate_nat @ ( size_size_list_nat @ L ) @ ( append_nat @ L @ Q2 ) )
      = ( append_nat @ Q2 @ L ) ) ).

% rotate_append
thf(fact_774_rotate__conv__mod,axiom,
    ( rotate_a
    = ( ^ [N5: nat,Xs2: list_a] : ( rotate_a @ ( modulo_modulo_nat @ N5 @ ( size_size_list_a @ Xs2 ) ) @ Xs2 ) ) ) ).

% rotate_conv_mod
thf(fact_775_rotate__conv__mod,axiom,
    ( rotate_nat
    = ( ^ [N5: nat,Xs2: list_nat] : ( rotate_nat @ ( modulo_modulo_nat @ N5 @ ( size_size_list_nat @ Xs2 ) ) @ Xs2 ) ) ) ).

% rotate_conv_mod
thf(fact_776_list_Osize_I3_J,axiom,
    ( ( size_size_list_a @ nil_a )
    = zero_zero_nat ) ).

% list.size(3)
thf(fact_777_list_Osize_I3_J,axiom,
    ( ( size_size_list_nat @ nil_nat )
    = zero_zero_nat ) ).

% list.size(3)
thf(fact_778_sorted__wrt01,axiom,
    ! [Xs: list_a,P2: a > a > $o] :
      ( ( ord_less_eq_nat @ ( size_size_list_a @ Xs ) @ one_one_nat )
     => ( sorted_wrt_a @ P2 @ Xs ) ) ).

% sorted_wrt01
thf(fact_779_sorted__wrt01,axiom,
    ! [Xs: list_nat,P2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ ( size_size_list_nat @ Xs ) @ one_one_nat )
     => ( sorted_wrt_nat @ P2 @ Xs ) ) ).

% sorted_wrt01
thf(fact_780_length__code,axiom,
    ( size_size_list_a
    = ( gen_length_a @ zero_zero_nat ) ) ).

% length_code
thf(fact_781_length__code,axiom,
    ( size_size_list_nat
    = ( gen_length_nat @ zero_zero_nat ) ) ).

% length_code
thf(fact_782_nth__mem,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( ord_less_nat @ N @ ( size_size_list_a @ Xs ) )
     => ( member_a2 @ ( nth_a @ Xs @ N ) @ ( set_a2 @ Xs ) ) ) ).

% nth_mem
thf(fact_783_nth__mem,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( member_nat2 @ ( nth_nat @ Xs @ N ) @ ( set_nat2 @ Xs ) ) ) ).

% nth_mem
thf(fact_784_list__ball__nth,axiom,
    ! [N: nat,Xs: list_a,P2: a > $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_a @ Xs ) )
     => ( ! [X3: a] :
            ( ( member_a2 @ X3 @ ( set_a2 @ Xs ) )
           => ( P2 @ X3 ) )
       => ( P2 @ ( nth_a @ Xs @ N ) ) ) ) ).

% list_ball_nth
thf(fact_785_list__ball__nth,axiom,
    ! [N: nat,Xs: list_nat,P2: nat > $o] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ! [X3: nat] :
            ( ( member_nat2 @ X3 @ ( set_nat2 @ Xs ) )
           => ( P2 @ X3 ) )
       => ( P2 @ ( nth_nat @ Xs @ N ) ) ) ) ).

% list_ball_nth
thf(fact_786_in__set__conv__nth,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a2 @ X @ ( set_a2 @ Xs ) )
      = ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_a @ Xs ) )
            & ( ( nth_a @ Xs @ I3 )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_787_in__set__conv__nth,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat2 @ X @ ( set_nat2 @ Xs ) )
      = ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
            & ( ( nth_nat @ Xs @ I3 )
              = X ) ) ) ) ).

% in_set_conv_nth
thf(fact_788_all__nth__imp__all__set,axiom,
    ! [Xs: list_a,P2: a > $o,X: a] :
      ( ! [I4: nat] :
          ( ( ord_less_nat @ I4 @ ( size_size_list_a @ Xs ) )
         => ( P2 @ ( nth_a @ Xs @ I4 ) ) )
     => ( ( member_a2 @ X @ ( set_a2 @ Xs ) )
       => ( P2 @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_789_all__nth__imp__all__set,axiom,
    ! [Xs: list_nat,P2: nat > $o,X: nat] :
      ( ! [I4: nat] :
          ( ( ord_less_nat @ I4 @ ( size_size_list_nat @ Xs ) )
         => ( P2 @ ( nth_nat @ Xs @ I4 ) ) )
     => ( ( member_nat2 @ X @ ( set_nat2 @ Xs ) )
       => ( P2 @ X ) ) ) ).

% all_nth_imp_all_set
thf(fact_790_all__set__conv__all__nth,axiom,
    ! [Xs: list_a,P2: a > $o] :
      ( ( ! [X2: a] :
            ( ( member_a2 @ X2 @ ( set_a2 @ Xs ) )
           => ( P2 @ X2 ) ) )
      = ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_a @ Xs ) )
           => ( P2 @ ( nth_a @ Xs @ I3 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_791_all__set__conv__all__nth,axiom,
    ! [Xs: list_nat,P2: nat > $o] :
      ( ( ! [X2: nat] :
            ( ( member_nat2 @ X2 @ ( set_nat2 @ Xs ) )
           => ( P2 @ X2 ) ) )
      = ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( size_size_list_nat @ Xs ) )
           => ( P2 @ ( nth_nat @ Xs @ I3 ) ) ) ) ) ).

% all_set_conv_all_nth
thf(fact_792_length__removeAll__less,axiom,
    ! [X: a,Xs: list_a] :
      ( ( member_a2 @ X @ ( set_a2 @ Xs ) )
     => ( ord_less_nat @ ( size_size_list_a @ ( removeAll_a @ X @ Xs ) ) @ ( size_size_list_a @ Xs ) ) ) ).

% length_removeAll_less
thf(fact_793_length__removeAll__less,axiom,
    ! [X: nat,Xs: list_nat] :
      ( ( member_nat2 @ X @ ( set_nat2 @ Xs ) )
     => ( ord_less_nat @ ( size_size_list_nat @ ( removeAll_nat @ X @ Xs ) ) @ ( size_size_list_nat @ Xs ) ) ) ).

% length_removeAll_less
thf(fact_794_mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% mod_by_1
thf(fact_795_bits__mod__by__1,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ one_one_nat )
      = zero_zero_nat ) ).

% bits_mod_by_1
thf(fact_796_mod__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( modulo_modulo_nat @ M @ N )
        = M ) ) ).

% mod_less
thf(fact_797_mod__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ B @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self1
thf(fact_798_mod__add__self2,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_add_self2
thf(fact_799_mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mod_0
thf(fact_800_mod__by__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ zero_zero_nat )
      = A ) ).

% mod_by_0
thf(fact_801_mod__self,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ A @ A )
      = zero_zero_nat ) ).

% mod_self
thf(fact_802_psubsetI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_set_nat @ A2 @ B2 ) ) ) ).

% psubsetI
thf(fact_803_psubsetI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_set_a @ A2 @ B2 ) ) ) ).

% psubsetI
thf(fact_804_mod__mod__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mod_trivial
thf(fact_805_union__eq__empty,axiom,
    ! [M2: multiset_nat,N2: multiset_nat] :
      ( ( ( plus_p6334493942879108393et_nat @ M2 @ N2 )
        = zero_z7348594199698428585et_nat )
      = ( ( M2 = zero_z7348594199698428585et_nat )
        & ( N2 = zero_z7348594199698428585et_nat ) ) ) ).

% union_eq_empty
thf(fact_806_union__eq__empty,axiom,
    ! [M2: multiset_a,N2: multiset_a] :
      ( ( ( plus_plus_multiset_a @ M2 @ N2 )
        = zero_zero_multiset_a )
      = ( ( M2 = zero_zero_multiset_a )
        & ( N2 = zero_zero_multiset_a ) ) ) ).

% union_eq_empty
thf(fact_807_empty__eq__union,axiom,
    ! [M2: multiset_nat,N2: multiset_nat] :
      ( ( zero_z7348594199698428585et_nat
        = ( plus_p6334493942879108393et_nat @ M2 @ N2 ) )
      = ( ( M2 = zero_z7348594199698428585et_nat )
        & ( N2 = zero_z7348594199698428585et_nat ) ) ) ).

% empty_eq_union
thf(fact_808_empty__eq__union,axiom,
    ! [M2: multiset_a,N2: multiset_a] :
      ( ( zero_zero_multiset_a
        = ( plus_plus_multiset_a @ M2 @ N2 ) )
      = ( ( M2 = zero_zero_multiset_a )
        & ( N2 = zero_zero_multiset_a ) ) ) ).

% empty_eq_union
thf(fact_809_subset__mset_Ozero__eq__add__iff__both__eq__0,axiom,
    ! [X: multiset_nat,Y2: multiset_nat] :
      ( ( zero_z7348594199698428585et_nat
        = ( plus_p6334493942879108393et_nat @ X @ Y2 ) )
      = ( ( X = zero_z7348594199698428585et_nat )
        & ( Y2 = zero_z7348594199698428585et_nat ) ) ) ).

% subset_mset.zero_eq_add_iff_both_eq_0
thf(fact_810_subset__mset_Ozero__eq__add__iff__both__eq__0,axiom,
    ! [X: multiset_a,Y2: multiset_a] :
      ( ( zero_zero_multiset_a
        = ( plus_plus_multiset_a @ X @ Y2 ) )
      = ( ( X = zero_zero_multiset_a )
        & ( Y2 = zero_zero_multiset_a ) ) ) ).

% subset_mset.zero_eq_add_iff_both_eq_0
thf(fact_811_subset__mset_Oadd__eq__0__iff__both__eq__0,axiom,
    ! [X: multiset_nat,Y2: multiset_nat] :
      ( ( ( plus_p6334493942879108393et_nat @ X @ Y2 )
        = zero_z7348594199698428585et_nat )
      = ( ( X = zero_z7348594199698428585et_nat )
        & ( Y2 = zero_z7348594199698428585et_nat ) ) ) ).

% subset_mset.add_eq_0_iff_both_eq_0
thf(fact_812_subset__mset_Oadd__eq__0__iff__both__eq__0,axiom,
    ! [X: multiset_a,Y2: multiset_a] :
      ( ( ( plus_plus_multiset_a @ X @ Y2 )
        = zero_zero_multiset_a )
      = ( ( X = zero_zero_multiset_a )
        & ( Y2 = zero_zero_multiset_a ) ) ) ).

% subset_mset.add_eq_0_iff_both_eq_0
thf(fact_813_bits__mod__0,axiom,
    ! [A: nat] :
      ( ( modulo_modulo_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_mod_0
thf(fact_814_mset__zero__iff__right,axiom,
    ! [X: list_nat] :
      ( ( zero_z7348594199698428585et_nat
        = ( mset_nat @ X ) )
      = ( X = nil_nat ) ) ).

% mset_zero_iff_right
thf(fact_815_mset__zero__iff__right,axiom,
    ! [X: list_a] :
      ( ( zero_zero_multiset_a
        = ( mset_a @ X ) )
      = ( X = nil_a ) ) ).

% mset_zero_iff_right
thf(fact_816_mset__zero__iff,axiom,
    ! [X: list_nat] :
      ( ( ( mset_nat @ X )
        = zero_z7348594199698428585et_nat )
      = ( X = nil_nat ) ) ).

% mset_zero_iff
thf(fact_817_mset__zero__iff,axiom,
    ! [X: list_a] :
      ( ( ( mset_a @ X )
        = zero_zero_multiset_a )
      = ( X = nil_a ) ) ).

% mset_zero_iff
thf(fact_818_size__empty,axiom,
    ( ( size_size_multiset_a @ zero_zero_multiset_a )
    = zero_zero_nat ) ).

% size_empty
thf(fact_819_size__empty,axiom,
    ( ( size_s5917832649809541300et_nat @ zero_z7348594199698428585et_nat )
    = zero_zero_nat ) ).

% size_empty
thf(fact_820_size__eq__0__iff__empty,axiom,
    ! [M2: multiset_a] :
      ( ( ( size_size_multiset_a @ M2 )
        = zero_zero_nat )
      = ( M2 = zero_zero_multiset_a ) ) ).

% size_eq_0_iff_empty
thf(fact_821_size__eq__0__iff__empty,axiom,
    ! [M2: multiset_nat] :
      ( ( ( size_s5917832649809541300et_nat @ M2 )
        = zero_zero_nat )
      = ( M2 = zero_z7348594199698428585et_nat ) ) ).

% size_eq_0_iff_empty
thf(fact_822_size__multiset__empty,axiom,
    ! [F: nat > nat] :
      ( ( size_multiset_nat @ F @ zero_z7348594199698428585et_nat )
      = zero_zero_nat ) ).

% size_multiset_empty
thf(fact_823_size__multiset__empty,axiom,
    ! [F: a > nat] :
      ( ( size_multiset_a @ F @ zero_zero_multiset_a )
      = zero_zero_nat ) ).

% size_multiset_empty
thf(fact_824_size__multiset__eq__0__iff__empty,axiom,
    ! [F: nat > nat,M2: multiset_nat] :
      ( ( ( size_multiset_nat @ F @ M2 )
        = zero_zero_nat )
      = ( M2 = zero_z7348594199698428585et_nat ) ) ).

% size_multiset_eq_0_iff_empty
thf(fact_825_size__multiset__eq__0__iff__empty,axiom,
    ! [F: a > nat,M2: multiset_a] :
      ( ( ( size_multiset_a @ F @ M2 )
        = zero_zero_nat )
      = ( M2 = zero_zero_multiset_a ) ) ).

% size_multiset_eq_0_iff_empty
thf(fact_826_subset__iff__psubset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A3: set_nat,B5: set_nat] :
          ( ( ord_less_set_nat @ A3 @ B5 )
          | ( A3 = B5 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_827_subset__iff__psubset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A3: set_a,B5: set_a] :
          ( ( ord_less_set_a @ A3 @ B5 )
          | ( A3 = B5 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_828_subset__psubset__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C4: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_set_nat @ B2 @ C4 )
       => ( ord_less_set_nat @ A2 @ C4 ) ) ) ).

% subset_psubset_trans
thf(fact_829_subset__psubset__trans,axiom,
    ! [A2: set_a,B2: set_a,C4: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_set_a @ B2 @ C4 )
       => ( ord_less_set_a @ A2 @ C4 ) ) ) ).

% subset_psubset_trans
thf(fact_830_subset__not__subset__eq,axiom,
    ( ord_less_set_nat
    = ( ^ [A3: set_nat,B5: set_nat] :
          ( ( ord_less_eq_set_nat @ A3 @ B5 )
          & ~ ( ord_less_eq_set_nat @ B5 @ A3 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_831_subset__not__subset__eq,axiom,
    ( ord_less_set_a
    = ( ^ [A3: set_a,B5: set_a] :
          ( ( ord_less_eq_set_a @ A3 @ B5 )
          & ~ ( ord_less_eq_set_a @ B5 @ A3 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_832_psubset__subset__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C4: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C4 )
       => ( ord_less_set_nat @ A2 @ C4 ) ) ) ).

% psubset_subset_trans
thf(fact_833_psubset__subset__trans,axiom,
    ! [A2: set_a,B2: set_a,C4: set_a] :
      ( ( ord_less_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C4 )
       => ( ord_less_set_a @ A2 @ C4 ) ) ) ).

% psubset_subset_trans
thf(fact_834_psubset__imp__subset,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% psubset_imp_subset
thf(fact_835_psubset__imp__subset,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_set_a @ A2 @ B2 )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% psubset_imp_subset
thf(fact_836_psubset__eq,axiom,
    ( ord_less_set_nat
    = ( ^ [A3: set_nat,B5: set_nat] :
          ( ( ord_less_eq_set_nat @ A3 @ B5 )
          & ( A3 != B5 ) ) ) ) ).

% psubset_eq
thf(fact_837_psubset__eq,axiom,
    ( ord_less_set_a
    = ( ^ [A3: set_a,B5: set_a] :
          ( ( ord_less_eq_set_a @ A3 @ B5 )
          & ( A3 != B5 ) ) ) ) ).

% psubset_eq
thf(fact_838_psubsetE,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ~ ( ( ord_less_eq_set_nat @ A2 @ B2 )
         => ( ord_less_eq_set_nat @ B2 @ A2 ) ) ) ).

% psubsetE
thf(fact_839_psubsetE,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_set_a @ A2 @ B2 )
     => ~ ( ( ord_less_eq_set_a @ A2 @ B2 )
         => ( ord_less_eq_set_a @ B2 @ A2 ) ) ) ).

% psubsetE
thf(fact_840_empty__neutral_I1_J,axiom,
    ! [X: multiset_nat] :
      ( ( plus_p6334493942879108393et_nat @ zero_z7348594199698428585et_nat @ X )
      = X ) ).

% empty_neutral(1)
thf(fact_841_empty__neutral_I1_J,axiom,
    ! [X: multiset_a] :
      ( ( plus_plus_multiset_a @ zero_zero_multiset_a @ X )
      = X ) ).

% empty_neutral(1)
thf(fact_842_empty__neutral_I2_J,axiom,
    ! [X: multiset_nat] :
      ( ( plus_p6334493942879108393et_nat @ X @ zero_z7348594199698428585et_nat )
      = X ) ).

% empty_neutral(2)
thf(fact_843_empty__neutral_I2_J,axiom,
    ! [X: multiset_a] :
      ( ( plus_plus_multiset_a @ X @ zero_zero_multiset_a )
      = X ) ).

% empty_neutral(2)
thf(fact_844_mset_Osimps_I1_J,axiom,
    ( ( mset_nat @ nil_nat )
    = zero_z7348594199698428585et_nat ) ).

% mset.simps(1)
thf(fact_845_mset_Osimps_I1_J,axiom,
    ( ( mset_a @ nil_a )
    = zero_zero_multiset_a ) ).

% mset.simps(1)
thf(fact_846_nonempty__has__size,axiom,
    ! [S2: multiset_a] :
      ( ( S2 != zero_zero_multiset_a )
      = ( ord_less_nat @ zero_zero_nat @ ( size_size_multiset_a @ S2 ) ) ) ).

% nonempty_has_size
thf(fact_847_nonempty__has__size,axiom,
    ! [S2: multiset_nat] :
      ( ( S2 != zero_z7348594199698428585et_nat )
      = ( ord_less_nat @ zero_zero_nat @ ( size_s5917832649809541300et_nat @ S2 ) ) ) ).

% nonempty_has_size
thf(fact_848_zero__neq__one,axiom,
    zero_zero_nat != one_one_nat ).

% zero_neq_one
thf(fact_849_mod__add__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_eq
thf(fact_850_mod__add__cong,axiom,
    ! [A: nat,C: nat,A6: nat,B: nat,B6: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A6 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B6 @ C ) )
       => ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( plus_plus_nat @ A6 @ B6 ) @ C ) ) ) ) ).

% mod_add_cong
thf(fact_851_mod__add__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_left_eq
thf(fact_852_mod__add__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( plus_plus_nat @ A @ B ) @ C ) ) ).

% mod_add_right_eq
thf(fact_853_mod__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ M ) ).

% mod_less_eq_dividend
thf(fact_854_not__one__le__zero,axiom,
    ~ ( ord_less_eq_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_le_zero
thf(fact_855_linordered__nonzero__semiring__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% linordered_nonzero_semiring_class.zero_le_one
thf(fact_856_zero__less__one__class_Ozero__le__one,axiom,
    ord_less_eq_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one_class.zero_le_one
thf(fact_857_not__one__less__zero,axiom,
    ~ ( ord_less_nat @ one_one_nat @ zero_zero_nat ) ).

% not_one_less_zero
thf(fact_858_zero__less__one,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% zero_less_one
thf(fact_859_add__mono1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_nat @ ( plus_plus_nat @ A @ one_one_nat ) @ ( plus_plus_nat @ B @ one_one_nat ) ) ) ).

% add_mono1
thf(fact_860_less__add__one,axiom,
    ! [A: nat] : ( ord_less_nat @ A @ ( plus_plus_nat @ A @ one_one_nat ) ) ).

% less_add_one
thf(fact_861_mod__less__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_less_divisor
thf(fact_862_zero__less__two,axiom,
    ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ one_one_nat @ one_one_nat ) ).

% zero_less_two
thf(fact_863_mod__le__divisor,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ N ) @ N ) ) ).

% mod_le_divisor
thf(fact_864_gcd__nat__induct,axiom,
    ! [P2: nat > nat > $o,M: nat,N: nat] :
      ( ! [M6: nat] : ( P2 @ M6 @ zero_zero_nat )
     => ( ! [M6: nat,N4: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N4 )
           => ( ( P2 @ N4 @ ( modulo_modulo_nat @ M6 @ N4 ) )
             => ( P2 @ M6 @ N4 ) ) )
       => ( P2 @ M @ N ) ) ) ).

% gcd_nat_induct
thf(fact_865_psubset__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C4: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ( ( ord_less_set_nat @ B2 @ C4 )
       => ( ord_less_set_nat @ A2 @ C4 ) ) ) ).

% psubset_trans
thf(fact_866_psubset__trans,axiom,
    ! [A2: set_a,B2: set_a,C4: set_a] :
      ( ( ord_less_set_a @ A2 @ B2 )
     => ( ( ord_less_set_a @ B2 @ C4 )
       => ( ord_less_set_a @ A2 @ C4 ) ) ) ).

% psubset_trans
thf(fact_867_psubsetD,axiom,
    ! [A2: set_a,B2: set_a,C: a] :
      ( ( ord_less_set_a @ A2 @ B2 )
     => ( ( member_a2 @ C @ A2 )
       => ( member_a2 @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_868_psubsetD,axiom,
    ! [A2: set_nat,B2: set_nat,C: nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ( ( member_nat2 @ C @ A2 )
       => ( member_nat2 @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_869_bounded__Max__nat,axiom,
    ! [P2: nat > $o,X: nat,M2: nat] :
      ( ( P2 @ X )
     => ( ! [X3: nat] :
            ( ( P2 @ X3 )
           => ( ord_less_eq_nat @ X3 @ M2 ) )
       => ~ ! [M6: nat] :
              ( ( P2 @ M6 )
             => ~ ! [X7: nat] :
                    ( ( P2 @ X7 )
                   => ( ord_less_eq_nat @ X7 @ M6 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_870_Euclid__induct,axiom,
    ! [P2: nat > nat > $o,A: nat,B: nat] :
      ( ! [A5: nat,B4: nat] :
          ( ( P2 @ A5 @ B4 )
          = ( P2 @ B4 @ A5 ) )
     => ( ! [A5: nat] : ( P2 @ A5 @ zero_zero_nat )
       => ( ! [A5: nat,B4: nat] :
              ( ( P2 @ A5 @ B4 )
             => ( P2 @ A5 @ ( plus_plus_nat @ A5 @ B4 ) ) )
         => ( P2 @ A @ B ) ) ) ) ).

% Euclid_induct
thf(fact_871_size__char__eq__0,axiom,
    ( size_size_char
    = ( ^ [C2: char] : zero_zero_nat ) ) ).

% size_char_eq_0
thf(fact_872_Multiset_Ois__empty__def,axiom,
    ( is_empty_a
    = ( ^ [A3: multiset_a] : ( A3 = zero_zero_multiset_a ) ) ) ).

% Multiset.is_empty_def
thf(fact_873_Multiset_Ois__empty__def,axiom,
    ( is_empty_nat
    = ( ^ [A3: multiset_nat] : ( A3 = zero_z7348594199698428585et_nat ) ) ) ).

% Multiset.is_empty_def
thf(fact_874_nat__descend__induct,axiom,
    ! [N: nat,P2: nat > $o,M: nat] :
      ( ! [K4: nat] :
          ( ( ord_less_nat @ N @ K4 )
         => ( P2 @ K4 ) )
     => ( ! [K4: nat] :
            ( ( ord_less_eq_nat @ K4 @ N )
           => ( ! [I2: nat] :
                  ( ( ord_less_nat @ K4 @ I2 )
                 => ( P2 @ I2 ) )
             => ( P2 @ K4 ) ) )
       => ( P2 @ M ) ) ) ).

% nat_descend_induct
thf(fact_875_size_H__char__eq__0,axiom,
    ( size_char
    = ( ^ [C2: char] : zero_zero_nat ) ) ).

% size'_char_eq_0
thf(fact_876_add__0__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( B
        = ( plus_plus_nat @ B @ A ) )
      = ( A = zero_zero_nat ) ) ).

% add_0_iff
thf(fact_877_verit__sum__simplify,axiom,
    ! [A: multiset_nat] :
      ( ( plus_p6334493942879108393et_nat @ A @ zero_z7348594199698428585et_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_878_verit__sum__simplify,axiom,
    ! [A: multiset_a] :
      ( ( plus_plus_multiset_a @ A @ zero_zero_multiset_a )
      = A ) ).

% verit_sum_simplify
thf(fact_879_verit__sum__simplify,axiom,
    ! [A: nat] :
      ( ( plus_plus_nat @ A @ zero_zero_nat )
      = A ) ).

% verit_sum_simplify
thf(fact_880_minf_I8_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ X7 @ Z3 )
     => ~ ( ord_less_eq_nat @ T2 @ X7 ) ) ).

% minf(8)
thf(fact_881_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_nat] : ( ord_less_eq_set_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_882_verit__comp__simplify1_I2_J,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_883_verit__comp__simplify1_I2_J,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% verit_comp_simplify1(2)
thf(fact_884_verit__la__disequality,axiom,
    ! [A: nat,B: nat] :
      ( ( A = B )
      | ~ ( ord_less_eq_nat @ A @ B )
      | ~ ( ord_less_eq_nat @ B @ A ) ) ).

% verit_la_disequality
thf(fact_885_minf_I7_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ X7 @ Z3 )
     => ~ ( ord_less_nat @ T2 @ X7 ) ) ).

% minf(7)
thf(fact_886_minf_I5_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ X7 @ Z3 )
     => ( ord_less_nat @ X7 @ T2 ) ) ).

% minf(5)
thf(fact_887_minf_I4_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ X7 @ Z3 )
     => ( X7 != T2 ) ) ).

% minf(4)
thf(fact_888_minf_I3_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ X7 @ Z3 )
     => ( X7 != T2 ) ) ).

% minf(3)
thf(fact_889_minf_I2_J,axiom,
    ! [P2: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z4 )
         => ( ( P2 @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z3: nat] :
          ! [X7: nat] :
            ( ( ord_less_nat @ X7 @ Z3 )
           => ( ( ( P2 @ X7 )
                | ( Q @ X7 ) )
              = ( ( P4 @ X7 )
                | ( Q3 @ X7 ) ) ) ) ) ) ).

% minf(2)
thf(fact_890_minf_I1_J,axiom,
    ! [P2: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ X3 @ Z4 )
         => ( ( P2 @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ X3 @ Z4 )
           => ( ( Q @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z3: nat] :
          ! [X7: nat] :
            ( ( ord_less_nat @ X7 @ Z3 )
           => ( ( ( P2 @ X7 )
                & ( Q @ X7 ) )
              = ( ( P4 @ X7 )
                & ( Q3 @ X7 ) ) ) ) ) ) ).

% minf(1)
thf(fact_891_pinf_I7_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ Z3 @ X7 )
     => ( ord_less_nat @ T2 @ X7 ) ) ).

% pinf(7)
thf(fact_892_pinf_I5_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ Z3 @ X7 )
     => ~ ( ord_less_nat @ X7 @ T2 ) ) ).

% pinf(5)
thf(fact_893_pinf_I4_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ Z3 @ X7 )
     => ( X7 != T2 ) ) ).

% pinf(4)
thf(fact_894_pinf_I3_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ Z3 @ X7 )
     => ( X7 != T2 ) ) ).

% pinf(3)
thf(fact_895_pinf_I2_J,axiom,
    ! [P2: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z4 @ X3 )
         => ( ( P2 @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z3: nat] :
          ! [X7: nat] :
            ( ( ord_less_nat @ Z3 @ X7 )
           => ( ( ( P2 @ X7 )
                | ( Q @ X7 ) )
              = ( ( P4 @ X7 )
                | ( Q3 @ X7 ) ) ) ) ) ) ).

% pinf(2)
thf(fact_896_pinf_I1_J,axiom,
    ! [P2: nat > $o,P4: nat > $o,Q: nat > $o,Q3: nat > $o] :
      ( ? [Z4: nat] :
        ! [X3: nat] :
          ( ( ord_less_nat @ Z4 @ X3 )
         => ( ( P2 @ X3 )
            = ( P4 @ X3 ) ) )
     => ( ? [Z4: nat] :
          ! [X3: nat] :
            ( ( ord_less_nat @ Z4 @ X3 )
           => ( ( Q @ X3 )
              = ( Q3 @ X3 ) ) )
       => ? [Z3: nat] :
          ! [X7: nat] :
            ( ( ord_less_nat @ Z3 @ X7 )
           => ( ( ( P2 @ X7 )
                & ( Q @ X7 ) )
              = ( ( P4 @ X7 )
                & ( Q3 @ X7 ) ) ) ) ) ) ).

% pinf(1)
thf(fact_897_verit__comp__simplify1_I1_J,axiom,
    ! [A: set_nat] :
      ~ ( ord_less_set_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_898_verit__comp__simplify1_I1_J,axiom,
    ! [A: set_a] :
      ~ ( ord_less_set_a @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_899_verit__comp__simplify1_I1_J,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% verit_comp_simplify1(1)
thf(fact_900_verit__comp__simplify1_I3_J,axiom,
    ! [B6: nat,A6: nat] :
      ( ( ~ ( ord_less_eq_nat @ B6 @ A6 ) )
      = ( ord_less_nat @ A6 @ B6 ) ) ).

% verit_comp_simplify1(3)
thf(fact_901_pinf_I6_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ Z3 @ X7 )
     => ~ ( ord_less_eq_nat @ X7 @ T2 ) ) ).

% pinf(6)
thf(fact_902_pinf_I8_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ Z3 @ X7 )
     => ( ord_less_eq_nat @ T2 @ X7 ) ) ).

% pinf(8)
thf(fact_903_minf_I6_J,axiom,
    ! [T2: nat] :
    ? [Z3: nat] :
    ! [X7: nat] :
      ( ( ord_less_nat @ X7 @ Z3 )
     => ( ord_less_eq_nat @ X7 @ T2 ) ) ).

% minf(6)
thf(fact_904_complete__interval,axiom,
    ! [A: nat,B: nat,P2: nat > $o] :
      ( ( ord_less_nat @ A @ B )
     => ( ( P2 @ A )
       => ( ~ ( P2 @ B )
         => ? [C3: nat] :
              ( ( ord_less_eq_nat @ A @ C3 )
              & ( ord_less_eq_nat @ C3 @ B )
              & ! [X7: nat] :
                  ( ( ( ord_less_eq_nat @ A @ X7 )
                    & ( ord_less_nat @ X7 @ C3 ) )
                 => ( P2 @ X7 ) )
              & ! [D2: nat] :
                  ( ! [X3: nat] :
                      ( ( ( ord_less_eq_nat @ A @ X3 )
                        & ( ord_less_nat @ X3 @ D2 ) )
                     => ( P2 @ X3 ) )
                 => ( ord_less_eq_nat @ D2 @ C3 ) ) ) ) ) ) ).

% complete_interval
thf(fact_905_sorted__list__of__set_Osorted__key__list__of__set__unique,axiom,
    ! [A2: set_nat,L: list_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( sorted_wrt_nat @ ord_less_nat @ L )
          & ( ( set_nat2 @ L )
            = A2 )
          & ( ( size_size_list_nat @ L )
            = ( finite_card_nat @ A2 ) ) )
        = ( ( linord2614967742042102400et_nat @ A2 )
          = L ) ) ) ).

% sorted_list_of_set.sorted_key_list_of_set_unique
thf(fact_906_verit__le__mono__div,axiom,
    ! [A2: nat,B2: nat,N: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ord_less_eq_nat
          @ ( plus_plus_nat @ ( divide_divide_nat @ A2 @ N )
            @ ( if_nat
              @ ( ( modulo_modulo_nat @ B2 @ N )
                = zero_zero_nat )
              @ one_one_nat
              @ zero_zero_nat ) )
          @ ( divide_divide_nat @ B2 @ N ) ) ) ) ).

% verit_le_mono_div
thf(fact_907_sorted__list__of__multiset__empty,axiom,
    ( ( linord3047872887403683810et_nat @ zero_z7348594199698428585et_nat )
    = nil_nat ) ).

% sorted_list_of_multiset_empty
thf(fact_908_bits__div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% bits_div_by_0
thf(fact_909_bits__div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% bits_div_0
thf(fact_910_div__by__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% div_by_0
thf(fact_911_div__0,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% div_0
thf(fact_912_bits__div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% bits_div_by_1
thf(fact_913_div__by__1,axiom,
    ! [A: nat] :
      ( ( divide_divide_nat @ A @ one_one_nat )
      = A ) ).

% div_by_1
thf(fact_914_List_Ofinite__set,axiom,
    ! [Xs: list_list_nat] : ( finite8100373058378681591st_nat @ ( set_list_nat2 @ Xs ) ) ).

% List.finite_set
thf(fact_915_List_Ofinite__set,axiom,
    ! [Xs: list_list_a] : ( finite_finite_list_a @ ( set_list_a2 @ Xs ) ) ).

% List.finite_set
thf(fact_916_List_Ofinite__set,axiom,
    ! [Xs: list_a] : ( finite_finite_a @ ( set_a2 @ Xs ) ) ).

% List.finite_set
thf(fact_917_List_Ofinite__set,axiom,
    ! [Xs: list_nat] : ( finite_finite_nat @ ( set_nat2 @ Xs ) ) ).

% List.finite_set
thf(fact_918_mset__sorted__list__of__multiset,axiom,
    ! [M2: multiset_nat] :
      ( ( mset_nat @ ( linord3047872887403683810et_nat @ M2 ) )
      = M2 ) ).

% mset_sorted_list_of_multiset
thf(fact_919_div__self,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ A @ A )
        = one_one_nat ) ) ).

% div_self
thf(fact_920_mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_div_trivial
thf(fact_921_bits__mod__div__trivial,axiom,
    ! [A: nat,B: nat] :
      ( ( divide_divide_nat @ ( modulo_modulo_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% bits_mod_div_trivial
thf(fact_922_div__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat ) ) ).

% div_less
thf(fact_923_sorted__list__of__set_Ofold__insort__key_Oinfinite,axiom,
    ! [A2: set_nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( linord2614967742042102400et_nat @ A2 )
        = nil_nat ) ) ).

% sorted_list_of_set.fold_insort_key.infinite
thf(fact_924_sorted__list__of__set_Oset__sorted__key__list__of__set,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( set_nat2 @ ( linord2614967742042102400et_nat @ A2 ) )
        = A2 ) ) ).

% sorted_list_of_set.set_sorted_key_list_of_set
thf(fact_925_bounded__nat__set__is__finite,axiom,
    ! [N2: set_nat,N: nat] :
      ( ! [X3: nat] :
          ( ( member_nat2 @ X3 @ N2 )
         => ( ord_less_nat @ X3 @ N ) )
     => ( finite_finite_nat @ N2 ) ) ).

% bounded_nat_set_is_finite
thf(fact_926_finite__nat__set__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [N3: set_nat] :
        ? [M4: nat] :
        ! [X2: nat] :
          ( ( member_nat2 @ X2 @ N3 )
         => ( ord_less_nat @ X2 @ M4 ) ) ) ) ).

% finite_nat_set_iff_bounded
thf(fact_927_sorted__list__of__set_Osorted__key__list__of__set__inject,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ( linord2614967742042102400et_nat @ A2 )
        = ( linord2614967742042102400et_nat @ B2 ) )
     => ( ( finite_finite_nat @ A2 )
       => ( ( finite_finite_nat @ B2 )
         => ( A2 = B2 ) ) ) ) ).

% sorted_list_of_set.sorted_key_list_of_set_inject
thf(fact_928_finite__list,axiom,
    ! [A2: set_list_nat] :
      ( ( finite8100373058378681591st_nat @ A2 )
     => ? [Xs3: list_list_nat] :
          ( ( set_list_nat2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_929_finite__list,axiom,
    ! [A2: set_list_a] :
      ( ( finite_finite_list_a @ A2 )
     => ? [Xs3: list_list_a] :
          ( ( set_list_a2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_930_finite__list,axiom,
    ! [A2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ? [Xs3: list_a] :
          ( ( set_a2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_931_finite__list,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ? [Xs3: list_nat] :
          ( ( set_nat2 @ Xs3 )
          = A2 ) ) ).

% finite_list
thf(fact_932_div__le__mono,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ ( divide_divide_nat @ M @ K ) @ ( divide_divide_nat @ N @ K ) ) ) ).

% div_le_mono
thf(fact_933_div__le__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ M ) ).

% div_le_dividend
thf(fact_934_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N3: set_nat] :
        ? [M4: nat] :
        ! [X2: nat] :
          ( ( member_nat2 @ X2 @ N3 )
         => ( ord_less_eq_nat @ X2 @ M4 ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_935_mod__eq__self__iff__div__eq__0,axiom,
    ! [A: nat,B: nat] :
      ( ( ( modulo_modulo_nat @ A @ B )
        = A )
      = ( ( divide_divide_nat @ A @ B )
        = zero_zero_nat ) ) ).

% mod_eq_self_iff_div_eq_0
thf(fact_936_div__add1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( plus_plus_nat @ ( divide_divide_nat @ A @ C ) @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( plus_plus_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_add1_eq
thf(fact_937_Euclidean__Division_Odiv__eq__0__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( divide_divide_nat @ M @ N )
        = zero_zero_nat )
      = ( ( ord_less_nat @ M @ N )
        | ( N = zero_zero_nat ) ) ) ).

% Euclidean_Division.div_eq_0_iff
thf(fact_938_finite__maxlen,axiom,
    ! [M2: set_list_a] :
      ( ( finite_finite_list_a @ M2 )
     => ? [N4: nat] :
        ! [X7: list_a] :
          ( ( member_list_a @ X7 @ M2 )
         => ( ord_less_nat @ ( size_size_list_a @ X7 ) @ N4 ) ) ) ).

% finite_maxlen
thf(fact_939_finite__maxlen,axiom,
    ! [M2: set_list_nat] :
      ( ( finite8100373058378681591st_nat @ M2 )
     => ? [N4: nat] :
        ! [X7: list_nat] :
          ( ( member_list_nat @ X7 @ M2 )
         => ( ord_less_nat @ ( size_size_list_nat @ X7 ) @ N4 ) ) ) ).

% finite_maxlen
thf(fact_940_card__le__if__inj__on__rel,axiom,
    ! [B2: set_list_nat,A2: set_nat,R: nat > list_nat > $o] :
      ( ( finite8100373058378681591st_nat @ B2 )
     => ( ! [A5: nat] :
            ( ( member_nat2 @ A5 @ A2 )
           => ? [B7: list_nat] :
                ( ( member_list_nat @ B7 @ B2 )
                & ( R @ A5 @ B7 ) ) )
       => ( ! [A1: nat,A22: nat,B4: list_nat] :
              ( ( member_nat2 @ A1 @ A2 )
             => ( ( member_nat2 @ A22 @ A2 )
               => ( ( member_list_nat @ B4 @ B2 )
                 => ( ( R @ A1 @ B4 )
                   => ( ( R @ A22 @ B4 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_list_nat @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_941_card__le__if__inj__on__rel,axiom,
    ! [B2: set_list_nat,A2: set_a,R: a > list_nat > $o] :
      ( ( finite8100373058378681591st_nat @ B2 )
     => ( ! [A5: a] :
            ( ( member_a2 @ A5 @ A2 )
           => ? [B7: list_nat] :
                ( ( member_list_nat @ B7 @ B2 )
                & ( R @ A5 @ B7 ) ) )
       => ( ! [A1: a,A22: a,B4: list_nat] :
              ( ( member_a2 @ A1 @ A2 )
             => ( ( member_a2 @ A22 @ A2 )
               => ( ( member_list_nat @ B4 @ B2 )
                 => ( ( R @ A1 @ B4 )
                   => ( ( R @ A22 @ B4 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_list_nat @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_942_card__le__if__inj__on__rel,axiom,
    ! [B2: set_list_a,A2: set_nat,R: nat > list_a > $o] :
      ( ( finite_finite_list_a @ B2 )
     => ( ! [A5: nat] :
            ( ( member_nat2 @ A5 @ A2 )
           => ? [B7: list_a] :
                ( ( member_list_a @ B7 @ B2 )
                & ( R @ A5 @ B7 ) ) )
       => ( ! [A1: nat,A22: nat,B4: list_a] :
              ( ( member_nat2 @ A1 @ A2 )
             => ( ( member_nat2 @ A22 @ A2 )
               => ( ( member_list_a @ B4 @ B2 )
                 => ( ( R @ A1 @ B4 )
                   => ( ( R @ A22 @ B4 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_list_a @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_943_card__le__if__inj__on__rel,axiom,
    ! [B2: set_list_a,A2: set_a,R: a > list_a > $o] :
      ( ( finite_finite_list_a @ B2 )
     => ( ! [A5: a] :
            ( ( member_a2 @ A5 @ A2 )
           => ? [B7: list_a] :
                ( ( member_list_a @ B7 @ B2 )
                & ( R @ A5 @ B7 ) ) )
       => ( ! [A1: a,A22: a,B4: list_a] :
              ( ( member_a2 @ A1 @ A2 )
             => ( ( member_a2 @ A22 @ A2 )
               => ( ( member_list_a @ B4 @ B2 )
                 => ( ( R @ A1 @ B4 )
                   => ( ( R @ A22 @ B4 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_list_a @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_944_card__le__if__inj__on__rel,axiom,
    ! [B2: set_a,A2: set_a,R: a > a > $o] :
      ( ( finite_finite_a @ B2 )
     => ( ! [A5: a] :
            ( ( member_a2 @ A5 @ A2 )
           => ? [B7: a] :
                ( ( member_a2 @ B7 @ B2 )
                & ( R @ A5 @ B7 ) ) )
       => ( ! [A1: a,A22: a,B4: a] :
              ( ( member_a2 @ A1 @ A2 )
             => ( ( member_a2 @ A22 @ A2 )
               => ( ( member_a2 @ B4 @ B2 )
                 => ( ( R @ A1 @ B4 )
                   => ( ( R @ A22 @ B4 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_945_card__le__if__inj__on__rel,axiom,
    ! [B2: set_a,A2: set_nat,R: nat > a > $o] :
      ( ( finite_finite_a @ B2 )
     => ( ! [A5: nat] :
            ( ( member_nat2 @ A5 @ A2 )
           => ? [B7: a] :
                ( ( member_a2 @ B7 @ B2 )
                & ( R @ A5 @ B7 ) ) )
       => ( ! [A1: nat,A22: nat,B4: a] :
              ( ( member_nat2 @ A1 @ A2 )
             => ( ( member_nat2 @ A22 @ A2 )
               => ( ( member_a2 @ B4 @ B2 )
                 => ( ( R @ A1 @ B4 )
                   => ( ( R @ A22 @ B4 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_946_card__le__if__inj__on__rel,axiom,
    ! [B2: set_nat,A2: set_a,R: a > nat > $o] :
      ( ( finite_finite_nat @ B2 )
     => ( ! [A5: a] :
            ( ( member_a2 @ A5 @ A2 )
           => ? [B7: nat] :
                ( ( member_nat2 @ B7 @ B2 )
                & ( R @ A5 @ B7 ) ) )
       => ( ! [A1: a,A22: a,B4: nat] :
              ( ( member_a2 @ A1 @ A2 )
             => ( ( member_a2 @ A22 @ A2 )
               => ( ( member_nat2 @ B4 @ B2 )
                 => ( ( R @ A1 @ B4 )
                   => ( ( R @ A22 @ B4 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_947_card__le__if__inj__on__rel,axiom,
    ! [B2: set_nat,A2: set_nat,R: nat > nat > $o] :
      ( ( finite_finite_nat @ B2 )
     => ( ! [A5: nat] :
            ( ( member_nat2 @ A5 @ A2 )
           => ? [B7: nat] :
                ( ( member_nat2 @ B7 @ B2 )
                & ( R @ A5 @ B7 ) ) )
       => ( ! [A1: nat,A22: nat,B4: nat] :
              ( ( member_nat2 @ A1 @ A2 )
             => ( ( member_nat2 @ A22 @ A2 )
               => ( ( member_nat2 @ B4 @ B2 )
                 => ( ( R @ A1 @ B4 )
                   => ( ( R @ A22 @ B4 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_948_div__add__self2,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ B ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self2
thf(fact_949_div__add__self1,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ B @ A ) @ B )
        = ( plus_plus_nat @ ( divide_divide_nat @ A @ B ) @ one_one_nat ) ) ) ).

% div_add_self1
thf(fact_950_div__le__mono2,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ord_less_eq_nat @ M @ N )
       => ( ord_less_eq_nat @ ( divide_divide_nat @ K @ N ) @ ( divide_divide_nat @ K @ M ) ) ) ) ).

% div_le_mono2
thf(fact_951_div__greater__zero__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( divide_divide_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ N @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% div_greater_zero_iff
thf(fact_952_div__eq__dividend__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ M )
     => ( ( ( divide_divide_nat @ M @ N )
          = M )
        = ( N = one_one_nat ) ) ) ).

% div_eq_dividend_iff
thf(fact_953_div__less__dividend,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ one_one_nat @ N )
     => ( ( ord_less_nat @ zero_zero_nat @ M )
       => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ M ) ) ) ).

% div_less_dividend
thf(fact_954_div__less__mono,axiom,
    ! [A2: nat,B2: nat,N: nat] :
      ( ( ord_less_nat @ A2 @ B2 )
     => ( ( ord_less_nat @ zero_zero_nat @ N )
       => ( ( ( modulo_modulo_nat @ A2 @ N )
            = zero_zero_nat )
         => ( ( ( modulo_modulo_nat @ B2 @ N )
              = zero_zero_nat )
           => ( ord_less_nat @ ( divide_divide_nat @ A2 @ N ) @ ( divide_divide_nat @ B2 @ N ) ) ) ) ) ) ).

% div_less_mono
thf(fact_955_sorted__list__of__set_Ofinite__set__strict__sorted,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ~ ! [L2: list_nat] :
            ( ( sorted_wrt_nat @ ord_less_nat @ L2 )
           => ( ( ( set_nat2 @ L2 )
                = A2 )
             => ( ( size_size_list_nat @ L2 )
               != ( finite_card_nat @ A2 ) ) ) ) ) ).

% sorted_list_of_set.finite_set_strict_sorted
thf(fact_956_card_Oinfinite,axiom,
    ! [A2: set_list_a] :
      ( ~ ( finite_finite_list_a @ A2 )
     => ( ( finite_card_list_a @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_957_card_Oinfinite,axiom,
    ! [A2: set_nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_card_nat @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_958_card__psubset,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) )
         => ( ord_less_set_nat @ A2 @ B2 ) ) ) ) ).

% card_psubset
thf(fact_959_psubset__card__mono,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_set_nat @ A2 @ B2 )
       => ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ).

% psubset_card_mono
thf(fact_960_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_nat,C4: nat] :
      ( ! [G2: set_nat] :
          ( ( ord_less_eq_set_nat @ G2 @ F2 )
         => ( ( finite_finite_nat @ G2 )
           => ( ord_less_eq_nat @ ( finite_card_nat @ G2 ) @ C4 ) ) )
     => ( ( finite_finite_nat @ F2 )
        & ( ord_less_eq_nat @ ( finite_card_nat @ F2 ) @ C4 ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_961_finite__has__maximal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat2 @ A @ A2 )
       => ? [X3: nat] :
            ( ( member_nat2 @ X3 @ A2 )
            & ( ord_less_eq_nat @ A @ X3 )
            & ! [Xa: nat] :
                ( ( member_nat2 @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X3 @ Xa )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_962_finite__has__minimal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat2 @ A @ A2 )
       => ? [X3: nat] :
            ( ( member_nat2 @ X3 @ A2 )
            & ( ord_less_eq_nat @ X3 @ A )
            & ! [Xa: nat] :
                ( ( member_nat2 @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X3 )
                 => ( X3 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_963_finite__subset,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( finite_finite_nat @ B2 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_964_infinite__super,axiom,
    ! [S2: set_nat,T3: set_nat] :
      ( ( ord_less_eq_set_nat @ S2 @ T3 )
     => ( ~ ( finite_finite_nat @ S2 )
       => ~ ( finite_finite_nat @ T3 ) ) ) ).

% infinite_super
thf(fact_965_rev__finite__subset,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_966_finite__psubset__induct,axiom,
    ! [A2: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [A7: set_nat] :
            ( ( finite_finite_nat @ A7 )
           => ( ! [B8: set_nat] :
                  ( ( ord_less_set_nat @ B8 @ A7 )
                 => ( P2 @ B8 ) )
             => ( P2 @ A7 ) ) )
       => ( P2 @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_967_infinite__arbitrarily__large,axiom,
    ! [A2: set_nat,N: nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ? [B9: set_nat] :
          ( ( finite_finite_nat @ B9 )
          & ( ( finite_card_nat @ B9 )
            = N )
          & ( ord_less_eq_set_nat @ B9 @ A2 ) ) ) ).

% infinite_arbitrarily_large
thf(fact_968_card__subset__eq,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ( finite_card_nat @ A2 )
            = ( finite_card_nat @ B2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_subset_eq
thf(fact_969_card__ge__0__finite,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A2 ) )
     => ( finite_finite_nat @ A2 ) ) ).

% card_ge_0_finite
thf(fact_970_card__mono,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ).

% card_mono
thf(fact_971_card__seteq,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ord_less_eq_nat @ ( finite_card_nat @ B2 ) @ ( finite_card_nat @ A2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_seteq
thf(fact_972_exists__subset__between,axiom,
    ! [A2: set_nat,N: nat,C4: set_nat] :
      ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ N )
     => ( ( ord_less_eq_nat @ N @ ( finite_card_nat @ C4 ) )
       => ( ( ord_less_eq_set_nat @ A2 @ C4 )
         => ( ( finite_finite_nat @ C4 )
           => ? [B9: set_nat] :
                ( ( ord_less_eq_set_nat @ A2 @ B9 )
                & ( ord_less_eq_set_nat @ B9 @ C4 )
                & ( ( finite_card_nat @ B9 )
                  = N ) ) ) ) ) ) ).

% exists_subset_between
thf(fact_973_obtain__subset__with__card__n,axiom,
    ! [N: nat,S2: set_nat] :
      ( ( ord_less_eq_nat @ N @ ( finite_card_nat @ S2 ) )
     => ~ ! [T4: set_nat] :
            ( ( ord_less_eq_set_nat @ T4 @ S2 )
           => ( ( ( finite_card_nat @ T4 )
                = N )
             => ~ ( finite_finite_nat @ T4 ) ) ) ) ).

% obtain_subset_with_card_n
thf(fact_974_infinite__nat__iff__unbounded__le,axiom,
    ! [S2: set_nat] :
      ( ( ~ ( finite_finite_nat @ S2 ) )
      = ( ! [M4: nat] :
          ? [N5: nat] :
            ( ( ord_less_eq_nat @ M4 @ N5 )
            & ( member_nat2 @ N5 @ S2 ) ) ) ) ).

% infinite_nat_iff_unbounded_le
thf(fact_975_infinite__nat__iff__unbounded,axiom,
    ! [S2: set_nat] :
      ( ( ~ ( finite_finite_nat @ S2 ) )
      = ( ! [M4: nat] :
          ? [N5: nat] :
            ( ( ord_less_nat @ M4 @ N5 )
            & ( member_nat2 @ N5 @ S2 ) ) ) ) ).

% infinite_nat_iff_unbounded
thf(fact_976_unbounded__k__infinite,axiom,
    ! [K: nat,S2: set_nat] :
      ( ! [M6: nat] :
          ( ( ord_less_nat @ K @ M6 )
         => ? [N6: nat] :
              ( ( ord_less_nat @ M6 @ N6 )
              & ( member_nat2 @ N6 @ S2 ) ) )
     => ~ ( finite_finite_nat @ S2 ) ) ).

% unbounded_k_infinite
thf(fact_977_finite__enumerate__mono__iff,axiom,
    ! [S2: set_nat,M: nat,N: nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( ord_less_nat @ M @ ( finite_card_nat @ S2 ) )
       => ( ( ord_less_nat @ N @ ( finite_card_nat @ S2 ) )
         => ( ( ord_less_nat @ ( infini8530281810654367211te_nat @ S2 @ M ) @ ( infini8530281810654367211te_nat @ S2 @ N ) )
            = ( ord_less_nat @ M @ N ) ) ) ) ) ).

% finite_enumerate_mono_iff
thf(fact_978_finite__enum__subset,axiom,
    ! [X4: set_nat,Y5: set_nat] :
      ( ! [I4: nat] :
          ( ( ord_less_nat @ I4 @ ( finite_card_nat @ X4 ) )
         => ( ( infini8530281810654367211te_nat @ X4 @ I4 )
            = ( infini8530281810654367211te_nat @ Y5 @ I4 ) ) )
     => ( ( finite_finite_nat @ X4 )
       => ( ( finite_finite_nat @ Y5 )
         => ( ( ord_less_eq_nat @ ( finite_card_nat @ X4 ) @ ( finite_card_nat @ Y5 ) )
           => ( ord_less_eq_set_nat @ X4 @ Y5 ) ) ) ) ) ).

% finite_enum_subset
thf(fact_979_sorted__rev__iff__nth__mono,axiom,
    ! [Xs: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ ( rev_nat @ Xs ) )
      = ( ! [I3: nat,J2: nat] :
            ( ( ord_less_eq_nat @ I3 @ J2 )
           => ( ( ord_less_nat @ J2 @ ( size_size_list_nat @ Xs ) )
             => ( ord_less_eq_nat @ ( nth_nat @ Xs @ J2 ) @ ( nth_nat @ Xs @ I3 ) ) ) ) ) ) ).

% sorted_rev_iff_nth_mono
thf(fact_980_rev__is__Nil__conv,axiom,
    ! [Xs: list_a] :
      ( ( ( rev_a @ Xs )
        = nil_a )
      = ( Xs = nil_a ) ) ).

% rev_is_Nil_conv
thf(fact_981_rev__is__Nil__conv,axiom,
    ! [Xs: list_nat] :
      ( ( ( rev_nat @ Xs )
        = nil_nat )
      = ( Xs = nil_nat ) ) ).

% rev_is_Nil_conv
thf(fact_982_Nil__is__rev__conv,axiom,
    ! [Xs: list_a] :
      ( ( nil_a
        = ( rev_a @ Xs ) )
      = ( Xs = nil_a ) ) ).

% Nil_is_rev_conv
thf(fact_983_Nil__is__rev__conv,axiom,
    ! [Xs: list_nat] :
      ( ( nil_nat
        = ( rev_nat @ Xs ) )
      = ( Xs = nil_nat ) ) ).

% Nil_is_rev_conv
thf(fact_984_set__rev,axiom,
    ! [Xs: list_a] :
      ( ( set_a2 @ ( rev_a @ Xs ) )
      = ( set_a2 @ Xs ) ) ).

% set_rev
thf(fact_985_set__rev,axiom,
    ! [Xs: list_nat] :
      ( ( set_nat2 @ ( rev_nat @ Xs ) )
      = ( set_nat2 @ Xs ) ) ).

% set_rev
thf(fact_986_length__rev,axiom,
    ! [Xs: list_a] :
      ( ( size_size_list_a @ ( rev_a @ Xs ) )
      = ( size_size_list_a @ Xs ) ) ).

% length_rev
thf(fact_987_length__rev,axiom,
    ! [Xs: list_nat] :
      ( ( size_size_list_nat @ ( rev_nat @ Xs ) )
      = ( size_size_list_nat @ Xs ) ) ).

% length_rev
thf(fact_988_mset__rev,axiom,
    ! [Xs: list_a] :
      ( ( mset_a @ ( rev_a @ Xs ) )
      = ( mset_a @ Xs ) ) ).

% mset_rev
thf(fact_989_enumerate__mono__iff,axiom,
    ! [S2: set_nat,M: nat,N: nat] :
      ( ~ ( finite_finite_nat @ S2 )
     => ( ( ord_less_nat @ ( infini8530281810654367211te_nat @ S2 @ M ) @ ( infini8530281810654367211te_nat @ S2 @ N ) )
        = ( ord_less_nat @ M @ N ) ) ) ).

% enumerate_mono_iff
thf(fact_990_enumerate__mono__le__iff,axiom,
    ! [S2: set_nat,M: nat,N: nat] :
      ( ~ ( finite_finite_nat @ S2 )
     => ( ( ord_less_eq_nat @ ( infini8530281810654367211te_nat @ S2 @ M ) @ ( infini8530281810654367211te_nat @ S2 @ N ) )
        = ( ord_less_eq_nat @ M @ N ) ) ) ).

% enumerate_mono_le_iff
thf(fact_991_rev_Osimps_I1_J,axiom,
    ( ( rev_a @ nil_a )
    = nil_a ) ).

% rev.simps(1)
thf(fact_992_rev_Osimps_I1_J,axiom,
    ( ( rev_nat @ nil_nat )
    = nil_nat ) ).

% rev.simps(1)
thf(fact_993_le__enumerate,axiom,
    ! [S2: set_nat,N: nat] :
      ( ~ ( finite_finite_nat @ S2 )
     => ( ord_less_eq_nat @ N @ ( infini8530281810654367211te_nat @ S2 @ N ) ) ) ).

% le_enumerate
thf(fact_994_enumerate__mono,axiom,
    ! [M: nat,N: nat,S2: set_nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ~ ( finite_finite_nat @ S2 )
       => ( ord_less_nat @ ( infini8530281810654367211te_nat @ S2 @ M ) @ ( infini8530281810654367211te_nat @ S2 @ N ) ) ) ) ).

% enumerate_mono
thf(fact_995_finite__enumerate__in__set,axiom,
    ! [S2: set_nat,N: nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( ord_less_nat @ N @ ( finite_card_nat @ S2 ) )
       => ( member_nat2 @ ( infini8530281810654367211te_nat @ S2 @ N ) @ S2 ) ) ) ).

% finite_enumerate_in_set
thf(fact_996_finite__enumerate__Ex,axiom,
    ! [S2: set_nat,S: nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( member_nat2 @ S @ S2 )
       => ? [N4: nat] :
            ( ( ord_less_nat @ N4 @ ( finite_card_nat @ S2 ) )
            & ( ( infini8530281810654367211te_nat @ S2 @ N4 )
              = S ) ) ) ) ).

% finite_enumerate_Ex
thf(fact_997_finite__enum__ext,axiom,
    ! [X4: set_nat,Y5: set_nat] :
      ( ! [I4: nat] :
          ( ( ord_less_nat @ I4 @ ( finite_card_nat @ X4 ) )
         => ( ( infini8530281810654367211te_nat @ X4 @ I4 )
            = ( infini8530281810654367211te_nat @ Y5 @ I4 ) ) )
     => ( ( finite_finite_nat @ X4 )
       => ( ( finite_finite_nat @ Y5 )
         => ( ( ( finite_card_nat @ X4 )
              = ( finite_card_nat @ Y5 ) )
           => ( X4 = Y5 ) ) ) ) ) ).

% finite_enum_ext
thf(fact_998_finite__le__enumerate,axiom,
    ! [S2: set_nat,N: nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( ord_less_nat @ N @ ( finite_card_nat @ S2 ) )
       => ( ord_less_eq_nat @ N @ ( infini8530281810654367211te_nat @ S2 @ N ) ) ) ) ).

% finite_le_enumerate
thf(fact_999_finite__enumerate__mono,axiom,
    ! [M: nat,N: nat,S2: set_nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( finite_finite_nat @ S2 )
       => ( ( ord_less_nat @ N @ ( finite_card_nat @ S2 ) )
         => ( ord_less_nat @ ( infini8530281810654367211te_nat @ S2 @ M ) @ ( infini8530281810654367211te_nat @ S2 @ N ) ) ) ) ) ).

% finite_enumerate_mono
thf(fact_1000_sorted__rev__nth__mono,axiom,
    ! [Xs: list_nat,I: nat,J: nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ ( rev_nat @ Xs ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ( ord_less_nat @ J @ ( size_size_list_nat @ Xs ) )
         => ( ord_less_eq_nat @ ( nth_nat @ Xs @ J ) @ ( nth_nat @ Xs @ I ) ) ) ) ) ).

% sorted_rev_nth_mono
thf(fact_1001_sorted__rev__iff__nth__Suc,axiom,
    ! [Xs: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ ( rev_nat @ Xs ) )
      = ( ! [I3: nat] :
            ( ( ord_less_nat @ ( suc @ I3 ) @ ( size_size_list_nat @ Xs ) )
           => ( ord_less_eq_nat @ ( nth_nat @ Xs @ ( suc @ I3 ) ) @ ( nth_nat @ Xs @ I3 ) ) ) ) ) ).

% sorted_rev_iff_nth_Suc
thf(fact_1002_subset__mset_Osum__eq__0__iff,axiom,
    ! [F2: set_nat,F: nat > multiset_a] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ( groups9157842243955967216_a_nat @ plus_plus_multiset_a @ zero_zero_multiset_a @ F @ F2 )
          = zero_zero_multiset_a )
        = ( ! [X2: nat] :
              ( ( member_nat2 @ X2 @ F2 )
             => ( ( F @ X2 )
                = zero_zero_multiset_a ) ) ) ) ) ).

% subset_mset.sum_eq_0_iff
thf(fact_1003_nth__rotate1,axiom,
    ! [N: nat,Xs: list_a] :
      ( ( ord_less_nat @ N @ ( size_size_list_a @ Xs ) )
     => ( ( nth_a @ ( rotate1_a @ Xs ) @ N )
        = ( nth_a @ Xs @ ( modulo_modulo_nat @ ( suc @ N ) @ ( size_size_list_a @ Xs ) ) ) ) ) ).

% nth_rotate1
thf(fact_1004_nth__rotate1,axiom,
    ! [N: nat,Xs: list_nat] :
      ( ( ord_less_nat @ N @ ( size_size_list_nat @ Xs ) )
     => ( ( nth_nat @ ( rotate1_nat @ Xs ) @ N )
        = ( nth_nat @ Xs @ ( modulo_modulo_nat @ ( suc @ N ) @ ( size_size_list_nat @ Xs ) ) ) ) ) ).

% nth_rotate1
thf(fact_1005_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_1006_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_1007_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_1008_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_1009_lessI,axiom,
    ! [N: nat] : ( ord_less_nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_1010_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq_nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_1011_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_1012_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ N @ ( suc @ zero_zero_nat ) )
      = ( N = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_1013_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_1014_mod__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( modulo_modulo_nat @ M @ ( suc @ zero_zero_nat ) )
      = zero_zero_nat ) ).

% mod_by_Suc_0
thf(fact_1015_div__by__Suc__0,axiom,
    ! [M: nat] :
      ( ( divide_divide_nat @ M @ ( suc @ zero_zero_nat ) )
      = M ) ).

% div_by_Suc_0
thf(fact_1016_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_1017_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_1018_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_1019_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_1020_old_Onat_Oexhaust,axiom,
    ! [Y2: nat] :
      ( ( Y2 != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y2
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_1021_nat__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ zero_zero_nat )
     => ( ! [N4: nat] :
            ( ( P2 @ N4 )
           => ( P2 @ ( suc @ N4 ) ) )
       => ( P2 @ N ) ) ) ).

% nat_induct
thf(fact_1022_diff__induct,axiom,
    ! [P2: nat > nat > $o,M: nat,N: nat] :
      ( ! [X3: nat] : ( P2 @ X3 @ zero_zero_nat )
     => ( ! [Y3: nat] : ( P2 @ zero_zero_nat @ ( suc @ Y3 ) )
       => ( ! [X3: nat,Y3: nat] :
              ( ( P2 @ X3 @ Y3 )
             => ( P2 @ ( suc @ X3 ) @ ( suc @ Y3 ) ) )
         => ( P2 @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_1023_zero__induct,axiom,
    ! [P2: nat > $o,K: nat] :
      ( ( P2 @ K )
     => ( ! [N4: nat] :
            ( ( P2 @ ( suc @ N4 ) )
           => ( P2 @ N4 ) )
       => ( P2 @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_1024_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_1025_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_1026_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( zero_zero_nat
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_1027_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ? [M6: nat] :
          ( N
          = ( suc @ M6 ) ) ) ).

% not0_implies_Suc
thf(fact_1028_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J3: nat] :
              ( ( ord_less_nat @ I @ J3 )
             => ( K
               != ( suc @ J3 ) ) ) ) ) ).

% Nat.lessE
thf(fact_1029_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_1030_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J3: nat] :
            ( ( ord_less_nat @ I @ J3 )
           => ( K
             != ( suc @ J3 ) ) ) ) ).

% Suc_lessE
thf(fact_1031_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less_nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_1032_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_1033_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_1034_Ex__less__Suc,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
            & ( P2 @ I3 ) ) )
      = ( ( P2 @ N )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
            & ( P2 @ I3 ) ) ) ) ).

% Ex_less_Suc
thf(fact_1035_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_1036_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_nat @ M @ N ) )
      = ( ord_less_nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_1037_All__less__Suc,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
           => ( P2 @ I3 ) ) )
      = ( ( P2 @ N )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
           => ( P2 @ I3 ) ) ) ) ).

% All_less_Suc
thf(fact_1038_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ N ) @ M )
      = ( ? [M7: nat] :
            ( ( M
              = ( suc @ M7 ) )
            & ( ord_less_nat @ N @ M7 ) ) ) ) ).

% Suc_less_eq2
thf(fact_1039_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_1040_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_1041_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_1042_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P2: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I4: nat] : ( P2 @ I4 @ ( suc @ I4 ) )
       => ( ! [I4: nat,J3: nat,K4: nat] :
              ( ( ord_less_nat @ I4 @ J3 )
             => ( ( ord_less_nat @ J3 @ K4 )
               => ( ( P2 @ I4 @ J3 )
                 => ( ( P2 @ J3 @ K4 )
                   => ( P2 @ I4 @ K4 ) ) ) ) )
         => ( P2 @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_1043_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I4: nat] :
            ( ( J
              = ( suc @ I4 ) )
           => ( P2 @ I4 ) )
       => ( ! [I4: nat] :
              ( ( ord_less_nat @ I4 @ J )
             => ( ( P2 @ ( suc @ I4 ) )
               => ( P2 @ I4 ) ) )
         => ( P2 @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_1044_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less_nat @ N @ M )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_1045_Suc__inject,axiom,
    ! [X: nat,Y2: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y2 ) )
     => ( X = Y2 ) ) ).

% Suc_inject
thf(fact_1046_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_1047_nat__arith_Osuc1,axiom,
    ! [A2: nat,K: nat,A: nat] :
      ( ( A2
        = ( plus_plus_nat @ K @ A ) )
     => ( ( suc @ A2 )
        = ( plus_plus_nat @ K @ ( suc @ A ) ) ) ) ).

% nat_arith.suc1
thf(fact_1048_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus_nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_1049_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_1050_mod__Suc__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ ( suc @ M ) ) @ N ) ) ).

% mod_Suc_Suc_eq
thf(fact_1051_mod__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( modulo_modulo_nat @ M @ N ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% mod_Suc_eq
thf(fact_1052_transitive__stepwise__le,axiom,
    ! [M: nat,N: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ! [X3: nat] : ( R2 @ X3 @ X3 )
       => ( ! [X3: nat,Y3: nat,Z3: nat] :
              ( ( R2 @ X3 @ Y3 )
             => ( ( R2 @ Y3 @ Z3 )
               => ( R2 @ X3 @ Z3 ) ) )
         => ( ! [N4: nat] : ( R2 @ N4 @ ( suc @ N4 ) )
           => ( R2 @ M @ N ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1053_nat__induct__at__least,axiom,
    ! [M: nat,N: nat,P2: nat > $o] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( P2 @ M )
       => ( ! [N4: nat] :
              ( ( ord_less_eq_nat @ M @ N4 )
             => ( ( P2 @ N4 )
               => ( P2 @ ( suc @ N4 ) ) ) )
         => ( P2 @ N ) ) ) ) ).

% nat_induct_at_least
thf(fact_1054_full__nat__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N4: nat] :
          ( ! [M5: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M5 ) @ N4 )
             => ( P2 @ M5 ) )
         => ( P2 @ N4 ) )
     => ( P2 @ N ) ) ).

% full_nat_induct
thf(fact_1055_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq_nat @ M @ N ) )
      = ( ord_less_eq_nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_1056_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_1057_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq_nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_1058_Suc__le__D,axiom,
    ! [N: nat,M8: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N ) @ M8 )
     => ? [M6: nat] :
          ( M8
          = ( suc @ M6 ) ) ) ).

% Suc_le_D
thf(fact_1059_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_1060_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq_nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_1061_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_leD
thf(fact_1062_lift__Suc__mono__less,axiom,
    ! [F: nat > nat,N: nat,N7: nat] :
      ( ! [N4: nat] : ( ord_less_nat @ ( F @ N4 ) @ ( F @ ( suc @ N4 ) ) )
     => ( ( ord_less_nat @ N @ N7 )
       => ( ord_less_nat @ ( F @ N ) @ ( F @ N7 ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_1063_lift__Suc__mono__less__iff,axiom,
    ! [F: nat > nat,N: nat,M: nat] :
      ( ! [N4: nat] : ( ord_less_nat @ ( F @ N4 ) @ ( F @ ( suc @ N4 ) ) )
     => ( ( ord_less_nat @ ( F @ N ) @ ( F @ M ) )
        = ( ord_less_nat @ N @ M ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_1064_lift__Suc__antimono__le,axiom,
    ! [F: nat > nat,N: nat,N7: nat] :
      ( ! [N4: nat] : ( ord_less_eq_nat @ ( F @ ( suc @ N4 ) ) @ ( F @ N4 ) )
     => ( ( ord_less_eq_nat @ N @ N7 )
       => ( ord_less_eq_nat @ ( F @ N7 ) @ ( F @ N ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_1065_lift__Suc__mono__le,axiom,
    ! [F: nat > nat,N: nat,N7: nat] :
      ( ! [N4: nat] : ( ord_less_eq_nat @ ( F @ N4 ) @ ( F @ ( suc @ N4 ) ) )
     => ( ( ord_less_eq_nat @ N @ N7 )
       => ( ord_less_eq_nat @ ( F @ N ) @ ( F @ N7 ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_1066_Ex__less__Suc2,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
            & ( P2 @ I3 ) ) )
      = ( ( P2 @ zero_zero_nat )
        | ? [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
            & ( P2 @ ( suc @ I3 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_1067_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( ? [M4: nat] :
            ( N
            = ( suc @ M4 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_1068_All__less__Suc2,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ ( suc @ N ) )
           => ( P2 @ I3 ) ) )
      = ( ( P2 @ zero_zero_nat )
        & ! [I3: nat] :
            ( ( ord_less_nat @ I3 @ N )
           => ( P2 @ ( suc @ I3 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_1069_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ? [M6: nat] :
          ( N
          = ( suc @ M6 ) ) ) ).

% gr0_implies_Suc
thf(fact_1070_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ( M = zero_zero_nat )
        | ? [J2: nat] :
            ( ( M
              = ( suc @ J2 ) )
            & ( ord_less_nat @ J2 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_1071_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% add_is_1
thf(fact_1072_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( plus_plus_nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ zero_zero_nat ) )
          & ( N = zero_zero_nat ) )
        | ( ( M = zero_zero_nat )
          & ( N
            = ( suc @ zero_zero_nat ) ) ) ) ) ).

% one_is_add
thf(fact_1073_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_1074_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_1075_dec__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P2 @ I )
       => ( ! [N4: nat] :
              ( ( ord_less_eq_nat @ I @ N4 )
             => ( ( ord_less_nat @ N4 @ J )
               => ( ( P2 @ N4 )
                 => ( P2 @ ( suc @ N4 ) ) ) ) )
         => ( P2 @ J ) ) ) ) ).

% dec_induct
thf(fact_1076_inc__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P2 @ J )
       => ( ! [N4: nat] :
              ( ( ord_less_eq_nat @ I @ N4 )
             => ( ( ord_less_nat @ N4 @ J )
               => ( ( P2 @ ( suc @ N4 ) )
                 => ( P2 @ N4 ) ) ) )
         => ( P2 @ I ) ) ) ) ).

% inc_induct
thf(fact_1077_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M ) @ N )
     => ( ord_less_nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_1078_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_1079_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( suc @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_1080_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N5: nat] : ( ord_less_eq_nat @ ( suc @ N5 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1081_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ord_less_nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_1082_less__natE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ~ ! [Q4: nat] :
            ( N
           != ( suc @ ( plus_plus_nat @ M @ Q4 ) ) ) ) ).

% less_natE
thf(fact_1083_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_1084_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less_nat @ I @ ( suc @ ( plus_plus_nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_1085_less__iff__Suc__add,axiom,
    ( ord_less_nat
    = ( ^ [M4: nat,N5: nat] :
        ? [K3: nat] :
          ( N5
          = ( suc @ ( plus_plus_nat @ M4 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_1086_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ? [K4: nat] :
          ( N
          = ( suc @ ( plus_plus_nat @ M @ K4 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_1087_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1088_Suc__eq__plus1__left,axiom,
    ( suc
    = ( plus_plus_nat @ one_one_nat ) ) ).

% Suc_eq_plus1_left
thf(fact_1089_plus__1__eq__Suc,axiom,
    ( ( plus_plus_nat @ one_one_nat )
    = suc ) ).

% plus_1_eq_Suc
thf(fact_1090_Suc__eq__plus1,axiom,
    ( suc
    = ( ^ [N5: nat] : ( plus_plus_nat @ N5 @ one_one_nat ) ) ) ).

% Suc_eq_plus1
thf(fact_1091_mod__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
          = N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = zero_zero_nat ) )
      & ( ( ( suc @ ( modulo_modulo_nat @ M @ N ) )
         != N )
       => ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = ( suc @ ( modulo_modulo_nat @ M @ N ) ) ) ) ) ).

% mod_Suc
thf(fact_1092_mod__induct,axiom,
    ! [P2: nat > $o,N: nat,P5: nat,M: nat] :
      ( ( P2 @ N )
     => ( ( ord_less_nat @ N @ P5 )
       => ( ( ord_less_nat @ M @ P5 )
         => ( ! [N4: nat] :
                ( ( ord_less_nat @ N4 @ P5 )
               => ( ( P2 @ N4 )
                 => ( P2 @ ( modulo_modulo_nat @ ( suc @ N4 ) @ P5 ) ) ) )
           => ( P2 @ M ) ) ) ) ) ).

% mod_induct
thf(fact_1093_mod__Suc__le__divisor,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( modulo_modulo_nat @ M @ ( suc @ N ) ) @ N ) ).

% mod_Suc_le_divisor
thf(fact_1094_Suc__div__le__mono,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( divide_divide_nat @ M @ N ) @ ( divide_divide_nat @ ( suc @ M ) @ N ) ) ).

% Suc_div_le_mono
thf(fact_1095_ex__least__nat__less,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ N )
     => ( ~ ( P2 @ zero_zero_nat )
       => ? [K4: nat] :
            ( ( ord_less_nat @ K4 @ N )
            & ! [I2: nat] :
                ( ( ord_less_eq_nat @ I2 @ K4 )
               => ~ ( P2 @ I2 ) )
            & ( P2 @ ( suc @ K4 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1096_nat__induct__non__zero,axiom,
    ! [N: nat,P2: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( P2 @ one_one_nat )
       => ( ! [N4: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N4 )
             => ( ( P2 @ N4 )
               => ( P2 @ ( suc @ N4 ) ) ) )
         => ( P2 @ N ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1097_enumerate__step,axiom,
    ! [S2: set_nat,N: nat] :
      ( ~ ( finite_finite_nat @ S2 )
     => ( ord_less_nat @ ( infini8530281810654367211te_nat @ S2 @ N ) @ ( infini8530281810654367211te_nat @ S2 @ ( suc @ N ) ) ) ) ).

% enumerate_step
thf(fact_1098_div__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
          = zero_zero_nat )
       => ( ( divide_divide_nat @ ( suc @ M ) @ N )
          = ( suc @ ( divide_divide_nat @ M @ N ) ) ) )
      & ( ( ( modulo_modulo_nat @ ( suc @ M ) @ N )
         != zero_zero_nat )
       => ( ( divide_divide_nat @ ( suc @ M ) @ N )
          = ( divide_divide_nat @ M @ N ) ) ) ) ).

% div_Suc
thf(fact_1099_card__le__Suc0__iff__eq,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( suc @ zero_zero_nat ) )
        = ( ! [X2: nat] :
              ( ( member_nat2 @ X2 @ A2 )
             => ! [Y: nat] :
                  ( ( member_nat2 @ Y @ A2 )
                 => ( X2 = Y ) ) ) ) ) ) ).

% card_le_Suc0_iff_eq
thf(fact_1100_sorted__iff__nth__Suc,axiom,
    ! [Xs: list_nat] :
      ( ( sorted_wrt_nat @ ord_less_eq_nat @ Xs )
      = ( ! [I3: nat] :
            ( ( ord_less_nat @ ( suc @ I3 ) @ ( size_size_list_nat @ Xs ) )
           => ( ord_less_eq_nat @ ( nth_nat @ Xs @ I3 ) @ ( nth_nat @ Xs @ ( suc @ I3 ) ) ) ) ) ) ).

% sorted_iff_nth_Suc
thf(fact_1101_finite__enumerate__step,axiom,
    ! [S2: set_nat,N: nat] :
      ( ( finite_finite_nat @ S2 )
     => ( ( ord_less_nat @ ( suc @ N ) @ ( finite_card_nat @ S2 ) )
       => ( ord_less_nat @ ( infini8530281810654367211te_nat @ S2 @ N ) @ ( infini8530281810654367211te_nat @ S2 @ ( suc @ N ) ) ) ) ) ).

% finite_enumerate_step
thf(fact_1102_card__set__1__iff__replicate,axiom,
    ! [Xs: list_a] :
      ( ( ( finite_card_a @ ( set_a2 @ Xs ) )
        = ( suc @ zero_zero_nat ) )
      = ( ( Xs != nil_a )
        & ? [X2: a] :
            ( Xs
            = ( replicate_a @ ( size_size_list_a @ Xs ) @ X2 ) ) ) ) ).

% card_set_1_iff_replicate
thf(fact_1103_card__set__1__iff__replicate,axiom,
    ! [Xs: list_nat] :
      ( ( ( finite_card_nat @ ( set_nat2 @ Xs ) )
        = ( suc @ zero_zero_nat ) )
      = ( ( Xs != nil_nat )
        & ? [X2: nat] :
            ( Xs
            = ( replicate_nat @ ( size_size_list_nat @ Xs ) @ X2 ) ) ) ) ).

% card_set_1_iff_replicate
thf(fact_1104_Suc__times__mod__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
     => ( ( modulo_modulo_nat @ ( suc @ ( times_times_nat @ M @ N ) ) @ M )
        = one_one_nat ) ) ).

% Suc_times_mod_eq
thf(fact_1105_mult__zero__left,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% mult_zero_left
thf(fact_1106_mult__zero__right,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_zero_right
thf(fact_1107_mult__eq__0__iff,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
      = ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% mult_eq_0_iff
thf(fact_1108_mult__cancel__left,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( times_times_nat @ C @ A )
        = ( times_times_nat @ C @ B ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_left
thf(fact_1109_mult__cancel__right,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ( times_times_nat @ A @ C )
        = ( times_times_nat @ B @ C ) )
      = ( ( C = zero_zero_nat )
        | ( A = B ) ) ) ).

% mult_cancel_right
thf(fact_1110_mult_Oright__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.right_neutral
thf(fact_1111_mult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% mult_1
thf(fact_1112_mult__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = zero_zero_nat )
      = ( ( M = zero_zero_nat )
        | ( N = zero_zero_nat ) ) ) ).

% mult_is_0
thf(fact_1113_mult__0__right,axiom,
    ! [M: nat] :
      ( ( times_times_nat @ M @ zero_zero_nat )
      = zero_zero_nat ) ).

% mult_0_right
thf(fact_1114_mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ K @ M )
        = ( times_times_nat @ K @ N ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel1
thf(fact_1115_mult__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( times_times_nat @ M @ K )
        = ( times_times_nat @ N @ K ) )
      = ( ( M = N )
        | ( K = zero_zero_nat ) ) ) ).

% mult_cancel2
thf(fact_1116_nat__mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = one_one_nat )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_mult_eq_1_iff
thf(fact_1117_nat__1__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( one_one_nat
        = ( times_times_nat @ M @ N ) )
      = ( ( M = one_one_nat )
        & ( N = one_one_nat ) ) ) ).

% nat_1_eq_mult_iff
thf(fact_1118_length__replicate,axiom,
    ! [N: nat,X: a] :
      ( ( size_size_list_a @ ( replicate_a @ N @ X ) )
      = N ) ).

% length_replicate
thf(fact_1119_length__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( size_size_list_nat @ ( replicate_nat @ N @ X ) )
      = N ) ).

% length_replicate
thf(fact_1120_div__mult__mult1__if,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ( C = zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = zero_zero_nat ) )
      & ( ( C != zero_zero_nat )
       => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
          = ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_mult1_if
thf(fact_1121_div__mult__mult2,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult2
thf(fact_1122_div__mult__mult1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
        = ( divide_divide_nat @ A @ B ) ) ) ).

% div_mult_mult1
thf(fact_1123_nonzero__mult__div__cancel__right,axiom,
    ! [B: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ B )
        = A ) ) ).

% nonzero_mult_div_cancel_right
thf(fact_1124_nonzero__mult__div__cancel__left,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ A )
        = B ) ) ).

% nonzero_mult_div_cancel_left
thf(fact_1125_mod__mult__self1__is__0,axiom,
    ! [B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ B @ A ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self1_is_0
thf(fact_1126_mod__mult__self2__is__0,axiom,
    ! [A: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ B )
      = zero_zero_nat ) ).

% mod_mult_self2_is_0
thf(fact_1127_mod__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self4
thf(fact_1128_mod__mult__self3,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self3
thf(fact_1129_mod__mult__self2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self2
thf(fact_1130_mod__mult__self1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
      = ( modulo_modulo_nat @ A @ B ) ) ).

% mod_mult_self1
thf(fact_1131_mult__eq__1__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( times_times_nat @ M @ N )
        = ( suc @ zero_zero_nat ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% mult_eq_1_iff
thf(fact_1132_one__eq__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ zero_zero_nat )
        = ( times_times_nat @ M @ N ) )
      = ( ( M
          = ( suc @ zero_zero_nat ) )
        & ( N
          = ( suc @ zero_zero_nat ) ) ) ) ).

% one_eq_mult_iff
thf(fact_1133_nat__0__less__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_nat @ zero_zero_nat @ M )
        & ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).

% nat_0_less_mult_iff
thf(fact_1134_mult__less__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
        & ( ord_less_nat @ M @ N ) ) ) ).

% mult_less_cancel2
thf(fact_1135_mult__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ M @ ( suc @ N ) )
      = ( plus_plus_nat @ M @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc_right
thf(fact_1136_replicate__empty,axiom,
    ! [N: nat,X: a] :
      ( ( ( replicate_a @ N @ X )
        = nil_a )
      = ( N = zero_zero_nat ) ) ).

% replicate_empty
thf(fact_1137_replicate__empty,axiom,
    ! [N: nat,X: nat] :
      ( ( ( replicate_nat @ N @ X )
        = nil_nat )
      = ( N = zero_zero_nat ) ) ).

% replicate_empty
thf(fact_1138_empty__replicate,axiom,
    ! [N: nat,X: a] :
      ( ( nil_a
        = ( replicate_a @ N @ X ) )
      = ( N = zero_zero_nat ) ) ).

% empty_replicate
thf(fact_1139_empty__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( nil_nat
        = ( replicate_nat @ N @ X ) )
      = ( N = zero_zero_nat ) ) ).

% empty_replicate
thf(fact_1140_Ball__set__replicate,axiom,
    ! [N: nat,A: a,P2: a > $o] :
      ( ( ! [X2: a] :
            ( ( member_a2 @ X2 @ ( set_a2 @ ( replicate_a @ N @ A ) ) )
           => ( P2 @ X2 ) ) )
      = ( ( P2 @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_1141_Ball__set__replicate,axiom,
    ! [N: nat,A: nat,P2: nat > $o] :
      ( ( ! [X2: nat] :
            ( ( member_nat2 @ X2 @ ( set_nat2 @ ( replicate_nat @ N @ A ) ) )
           => ( P2 @ X2 ) ) )
      = ( ( P2 @ A )
        | ( N = zero_zero_nat ) ) ) ).

% Ball_set_replicate
thf(fact_1142_Bex__set__replicate,axiom,
    ! [N: nat,A: a,P2: a > $o] :
      ( ( ? [X2: a] :
            ( ( member_a2 @ X2 @ ( set_a2 @ ( replicate_a @ N @ A ) ) )
            & ( P2 @ X2 ) ) )
      = ( ( P2 @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_1143_Bex__set__replicate,axiom,
    ! [N: nat,A: nat,P2: nat > $o] :
      ( ( ? [X2: nat] :
            ( ( member_nat2 @ X2 @ ( set_nat2 @ ( replicate_nat @ N @ A ) ) )
            & ( P2 @ X2 ) ) )
      = ( ( P2 @ A )
        & ( N != zero_zero_nat ) ) ) ).

% Bex_set_replicate
thf(fact_1144_in__set__replicate,axiom,
    ! [X: a,N: nat,Y2: a] :
      ( ( member_a2 @ X @ ( set_a2 @ ( replicate_a @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_1145_in__set__replicate,axiom,
    ! [X: nat,N: nat,Y2: nat] :
      ( ( member_nat2 @ X @ ( set_nat2 @ ( replicate_nat @ N @ Y2 ) ) )
      = ( ( X = Y2 )
        & ( N != zero_zero_nat ) ) ) ).

% in_set_replicate
thf(fact_1146_nth__replicate,axiom,
    ! [I: nat,N: nat,X: nat] :
      ( ( ord_less_nat @ I @ N )
     => ( ( nth_nat @ ( replicate_nat @ N @ X ) @ I )
        = X ) ) ).

% nth_replicate
thf(fact_1147_hd__replicate,axiom,
    ! [N: nat,X: a] :
      ( ( N != zero_zero_nat )
     => ( ( hd_a @ ( replicate_a @ N @ X ) )
        = X ) ) ).

% hd_replicate
thf(fact_1148_hd__replicate,axiom,
    ! [N: nat,X: nat] :
      ( ( N != zero_zero_nat )
     => ( ( hd_nat @ ( replicate_nat @ N @ X ) )
        = X ) ) ).

% hd_replicate
thf(fact_1149_div__mult__self4,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ C ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self4
thf(fact_1150_div__mult__self3,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ ( times_times_nat @ C @ B ) @ A ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self3
thf(fact_1151_div__mult__self2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ B @ C ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self2
thf(fact_1152_div__mult__self1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( B != zero_zero_nat )
     => ( ( divide_divide_nat @ ( plus_plus_nat @ A @ ( times_times_nat @ C @ B ) ) @ B )
        = ( plus_plus_nat @ C @ ( divide_divide_nat @ A @ B ) ) ) ) ).

% div_mult_self1
thf(fact_1153_one__le__mult__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) )
      = ( ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ M )
        & ( ord_less_eq_nat @ ( suc @ zero_zero_nat ) @ N ) ) ) ).

% one_le_mult_iff
thf(fact_1154_mult__le__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
      = ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_eq_nat @ M @ N ) ) ) ).

% mult_le_cancel2
thf(fact_1155_div__mult__self__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ M @ N ) @ N )
        = M ) ) ).

% div_mult_self_is_m
thf(fact_1156_div__mult__self1__is__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( divide_divide_nat @ ( times_times_nat @ N @ M ) @ N )
        = M ) ) ).

% div_mult_self1_is_m
thf(fact_1157_Suc__mod__mult__self1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ K @ N ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self1
thf(fact_1158_Suc__mod__mult__self2,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ M @ ( times_times_nat @ N @ K ) ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self2
thf(fact_1159_Suc__mod__mult__self3,axiom,
    ! [K: nat,N: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ K @ N ) @ M ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self3
thf(fact_1160_Suc__mod__mult__self4,axiom,
    ! [N: nat,K: nat,M: nat] :
      ( ( modulo_modulo_nat @ ( suc @ ( plus_plus_nat @ ( times_times_nat @ N @ K ) @ M ) ) @ N )
      = ( modulo_modulo_nat @ ( suc @ M ) @ N ) ) ).

% Suc_mod_mult_self4
thf(fact_1161_Suc__mult__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( times_times_nat @ ( suc @ K ) @ M )
        = ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( M = N ) ) ).

% Suc_mult_cancel1
thf(fact_1162_le__cube,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).

% le_cube
thf(fact_1163_le__square,axiom,
    ! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).

% le_square
thf(fact_1164_mult__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ K @ L )
       => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).

% mult_le_mono
thf(fact_1165_mult__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).

% mult_le_mono1
thf(fact_1166_mult__le__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).

% mult_le_mono2
thf(fact_1167_mod__mult__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_eq
thf(fact_1168_mod__mult__cong,axiom,
    ! [A: nat,C: nat,A6: nat,B: nat,B6: nat] :
      ( ( ( modulo_modulo_nat @ A @ C )
        = ( modulo_modulo_nat @ A6 @ C ) )
     => ( ( ( modulo_modulo_nat @ B @ C )
          = ( modulo_modulo_nat @ B6 @ C ) )
       => ( ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C )
          = ( modulo_modulo_nat @ ( times_times_nat @ A6 @ B6 ) @ C ) ) ) ) ).

% mod_mult_cong
thf(fact_1169_mod__mult__mult2,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
      = ( times_times_nat @ ( modulo_modulo_nat @ A @ B ) @ C ) ) ).

% mod_mult_mult2
thf(fact_1170_mult__mod__right,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( times_times_nat @ C @ ( modulo_modulo_nat @ A @ B ) )
      = ( modulo_modulo_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ).

% mult_mod_right
thf(fact_1171_mod__mult__left__eq,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ ( modulo_modulo_nat @ A @ C ) @ B ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_left_eq
thf(fact_1172_mod__mult__right__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( modulo_modulo_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C )
      = ( modulo_modulo_nat @ ( times_times_nat @ A @ B ) @ C ) ) ).

% mod_mult_right_eq
thf(fact_1173_comm__semiring__class_Odistrib,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% comm_semiring_class.distrib
thf(fact_1174_distrib__left,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).

% distrib_left
thf(fact_1175_distrib__right,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).

% distrib_right
thf(fact_1176_combine__common__factor,axiom,
    ! [A: nat,E: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
      = ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).

% combine_common_factor
thf(fact_1177_comm__monoid__mult__class_Omult__1,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ one_one_nat @ A )
      = A ) ).

% comm_monoid_mult_class.mult_1
thf(fact_1178_mult_Ocomm__neutral,axiom,
    ! [A: nat] :
      ( ( times_times_nat @ A @ one_one_nat )
      = A ) ).

% mult.comm_neutral
thf(fact_1179_add__mult__distrib2,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
      = ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).

% add_mult_distrib2
thf(fact_1180_add__mult__distrib,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
      = ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).

% add_mult_distrib
thf(fact_1181_nat__mult__1__right,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ N @ one_one_nat )
      = N ) ).

% nat_mult_1_right
thf(fact_1182_nat__mult__1,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ one_one_nat @ N )
      = N ) ).

% nat_mult_1
thf(fact_1183_mult_Oleft__commute,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( times_times_nat @ B @ ( times_times_nat @ A @ C ) )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.left_commute
thf(fact_1184_mult_Ocommute,axiom,
    ( times_times_nat
    = ( ^ [A4: nat,B3: nat] : ( times_times_nat @ B3 @ A4 ) ) ) ).

% mult.commute
thf(fact_1185_mult_Oassoc,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% mult.assoc
thf(fact_1186_ab__semigroup__mult__class_Omult__ac_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( times_times_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( times_times_nat @ A @ ( times_times_nat @ B @ C ) ) ) ).

% ab_semigroup_mult_class.mult_ac(1)
thf(fact_1187_mult__0,axiom,
    ! [N: nat] :
      ( ( times_times_nat @ zero_zero_nat @ N )
      = zero_zero_nat ) ).

% mult_0
thf(fact_1188_mult__right__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ A @ C )
          = ( times_times_nat @ B @ C ) )
        = ( A = B ) ) ) ).

% mult_right_cancel
thf(fact_1189_mult__left__cancel,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( C != zero_zero_nat )
     => ( ( ( times_times_nat @ C @ A )
          = ( times_times_nat @ C @ B ) )
        = ( A = B ) ) ) ).

% mult_left_cancel
thf(fact_1190_no__zero__divisors,axiom,
    ! [A: nat,B: nat] :
      ( ( A != zero_zero_nat )
     => ( ( B != zero_zero_nat )
       => ( ( times_times_nat @ A @ B )
         != zero_zero_nat ) ) ) ).

% no_zero_divisors
thf(fact_1191_divisors__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
        = zero_zero_nat )
     => ( ( A = zero_zero_nat )
        | ( B = zero_zero_nat ) ) ) ).

% divisors_zero
thf(fact_1192_mult__not__zero,axiom,
    ! [A: nat,B: nat] :
      ( ( ( times_times_nat @ A @ B )
       != zero_zero_nat )
     => ( ( A != zero_zero_nat )
        & ( B != zero_zero_nat ) ) ) ).

% mult_not_zero
thf(fact_1193_crossproduct__eq,axiom,
    ! [W: nat,Y2: nat,X: nat,Z2: nat] :
      ( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y2 ) @ ( times_times_nat @ X @ Z2 ) )
        = ( plus_plus_nat @ ( times_times_nat @ W @ Z2 ) @ ( times_times_nat @ X @ Y2 ) ) )
      = ( ( W = X )
        | ( Y2 = Z2 ) ) ) ).

% crossproduct_eq
thf(fact_1194_crossproduct__noteq,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ( A != B )
        & ( C != D ) )
      = ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) )
       != ( plus_plus_nat @ ( times_times_nat @ A @ D ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% crossproduct_noteq
thf(fact_1195_nat__mod__eq__iff,axiom,
    ! [X: nat,N: nat,Y2: nat] :
      ( ( ( modulo_modulo_nat @ X @ N )
        = ( modulo_modulo_nat @ Y2 @ N ) )
      = ( ? [Q1: nat,Q22: nat] :
            ( ( plus_plus_nat @ X @ ( times_times_nat @ N @ Q1 ) )
            = ( plus_plus_nat @ Y2 @ ( times_times_nat @ N @ Q22 ) ) ) ) ) ).

% nat_mod_eq_iff
thf(fact_1196_div__times__less__eq__dividend,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq_nat @ ( times_times_nat @ ( divide_divide_nat @ M @ N ) @ N ) @ M ) ).

% div_times_less_eq_dividend
thf(fact_1197_times__div__less__eq__dividend,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq_nat @ ( times_times_nat @ N @ ( divide_divide_nat @ M @ N ) ) @ M ) ).

% times_div_less_eq_dividend
thf(fact_1198_less__mult__imp__div__less,axiom,
    ! [M: nat,I: nat,N: nat] :
      ( ( ord_less_nat @ M @ ( times_times_nat @ I @ N ) )
     => ( ord_less_nat @ ( divide_divide_nat @ M @ N ) @ I ) ) ).

% less_mult_imp_div_less
thf(fact_1199_mult__eq__self__implies__10,axiom,
    ! [M: nat,N: nat] :
      ( ( M
        = ( times_times_nat @ M @ N ) )
     => ( ( N = one_one_nat )
        | ( M = zero_zero_nat ) ) ) ).

% mult_eq_self_implies_10
thf(fact_1200_mult__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( times_times_nat @ ( suc @ M ) @ N )
      = ( plus_plus_nat @ N @ ( times_times_nat @ M @ N ) ) ) ).

% mult_Suc
thf(fact_1201_Suc__mult__le__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_eq_nat @ M @ N ) ) ).

% Suc_mult_le_cancel1
thf(fact_1202_Suc__mult__less__cancel1,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ ( suc @ K ) @ M ) @ ( times_times_nat @ ( suc @ K ) @ N ) )
      = ( ord_less_nat @ M @ N ) ) ).

% Suc_mult_less_cancel1
thf(fact_1203_mult__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).

% mult_less_mono1
thf(fact_1204_mult__less__mono2,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ zero_zero_nat @ K )
       => ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).

% mult_less_mono2
thf(fact_1205_less__1__mult,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ one_one_nat @ M )
     => ( ( ord_less_nat @ one_one_nat @ N )
       => ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).

% less_1_mult
thf(fact_1206_sorted__replicate,axiom,
    ! [N: nat,X: nat] : ( sorted_wrt_nat @ ord_less_eq_nat @ ( replicate_nat @ N @ X ) ) ).

% sorted_replicate
thf(fact_1207_add__scale__eq__noteq,axiom,
    ! [R: nat,A: nat,B: nat,C: nat,D: nat] :
      ( ( R != zero_zero_nat )
     => ( ( ( A = B )
          & ( C != D ) )
       => ( ( plus_plus_nat @ A @ ( times_times_nat @ R @ C ) )
         != ( plus_plus_nat @ B @ ( times_times_nat @ R @ D ) ) ) ) ) ).

% add_scale_eq_noteq
thf(fact_1208_linordered__comm__semiring__strict__class_Ocomm__mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% linordered_comm_semiring_strict_class.comm_mult_strict_left_mono
thf(fact_1209_mult__strict__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_strict_right_mono
thf(fact_1210_mult__strict__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_strict_left_mono
thf(fact_1211_zero__less__mult__pos2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ B @ A ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos2
thf(fact_1212_zero__less__mult__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ A )
       => ( ord_less_nat @ zero_zero_nat @ B ) ) ) ).

% zero_less_mult_pos
thf(fact_1213_mult__pos__neg2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg2
thf(fact_1214_mult__pos__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_pos_pos
thf(fact_1215_mult__pos__neg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ A )
     => ( ( ord_less_nat @ B @ zero_zero_nat )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_pos_neg
thf(fact_1216_mult__neg__pos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ zero_zero_nat )
     => ( ( ord_less_nat @ zero_zero_nat @ B )
       => ( ord_less_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_neg_pos
thf(fact_1217_replicate__eqI,axiom,
    ! [Xs: list_a,N: nat,X: a] :
      ( ( ( size_size_list_a @ Xs )
        = N )
     => ( ! [Y3: a] :
            ( ( member_a2 @ Y3 @ ( set_a2 @ Xs ) )
           => ( Y3 = X ) )
       => ( Xs
          = ( replicate_a @ N @ X ) ) ) ) ).

% replicate_eqI
thf(fact_1218_replicate__eqI,axiom,
    ! [Xs: list_nat,N: nat,X: nat] :
      ( ( ( size_size_list_nat @ Xs )
        = N )
     => ( ! [Y3: nat] :
            ( ( member_nat2 @ Y3 @ ( set_nat2 @ Xs ) )
           => ( Y3 = X ) )
       => ( Xs
          = ( replicate_nat @ N @ X ) ) ) ) ).

% replicate_eqI
thf(fact_1219_replicate__length__same,axiom,
    ! [Xs: list_a,X: a] :
      ( ! [X3: a] :
          ( ( member_a2 @ X3 @ ( set_a2 @ Xs ) )
         => ( X3 = X ) )
     => ( ( replicate_a @ ( size_size_list_a @ Xs ) @ X )
        = Xs ) ) ).

% replicate_length_same
thf(fact_1220_replicate__length__same,axiom,
    ! [Xs: list_nat,X: nat] :
      ( ! [X3: nat] :
          ( ( member_nat2 @ X3 @ ( set_nat2 @ Xs ) )
         => ( X3 = X ) )
     => ( ( replicate_nat @ ( size_size_list_nat @ Xs ) @ X )
        = Xs ) ) ).

% replicate_length_same
thf(fact_1221_mult__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono
thf(fact_1222_mult__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_mono'
thf(fact_1223_mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% mult_left_mono
thf(fact_1224_mult__right__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ) ).

% mult_right_mono
thf(fact_1225_split__mult__neg__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ( ( ord_less_eq_nat @ zero_zero_nat @ A )
          & ( ord_less_eq_nat @ B @ zero_zero_nat ) )
        | ( ( ord_less_eq_nat @ A @ zero_zero_nat )
          & ( ord_less_eq_nat @ zero_zero_nat @ B ) ) )
     => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ).

% split_mult_neg_le
thf(fact_1226_mult__nonneg__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ zero_zero_nat @ ( times_times_nat @ A @ B ) ) ) ) ).

% mult_nonneg_nonneg
thf(fact_1227_mult__nonneg__nonpos,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos
thf(fact_1228_mult__nonpos__nonneg,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ zero_zero_nat ) ) ) ).

% mult_nonpos_nonneg
thf(fact_1229_mult__nonneg__nonpos2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ zero_zero_nat @ A )
     => ( ( ord_less_eq_nat @ B @ zero_zero_nat )
       => ( ord_less_eq_nat @ ( times_times_nat @ B @ A ) @ zero_zero_nat ) ) ) ).

% mult_nonneg_nonpos2
thf(fact_1230_ordered__comm__semiring__class_Ocomm__mult__left__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) ) ) ) ).

% ordered_comm_semiring_class.comm_mult_left_mono
thf(fact_1231_replicate__0,axiom,
    ! [X: a] :
      ( ( replicate_a @ zero_zero_nat @ X )
      = nil_a ) ).

% replicate_0
thf(fact_1232_replicate__0,axiom,
    ! [X: nat] :
      ( ( replicate_nat @ zero_zero_nat @ X )
      = nil_nat ) ).

% replicate_0
thf(fact_1233_mult__less__le__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_less_le_imp_less
thf(fact_1234_mult__le__less__imp__less,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_le_less_imp_less
thf(fact_1235_mult__right__le__imp__le,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_right_le_imp_le
thf(fact_1236_mult__left__le__imp__le,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_nat @ zero_zero_nat @ C )
       => ( ord_less_eq_nat @ A @ B ) ) ) ).

% mult_left_le_imp_le
thf(fact_1237_mult__strict__mono_H,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono'
thf(fact_1238_mult__right__less__imp__less,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_right_less_imp_less
thf(fact_1239_mult__strict__mono,axiom,
    ! [A: nat,B: nat,C: nat,D: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ C @ D )
       => ( ( ord_less_nat @ zero_zero_nat @ B )
         => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
           => ( ord_less_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D ) ) ) ) ) ) ).

% mult_strict_mono
thf(fact_1240_mult__left__less__imp__less,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ ( times_times_nat @ C @ A ) @ ( times_times_nat @ C @ B ) )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ C )
       => ( ord_less_nat @ A @ B ) ) ) ).

% mult_left_less_imp_less
thf(fact_1241_mult__le__one,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ B )
       => ( ( ord_less_eq_nat @ B @ one_one_nat )
         => ( ord_less_eq_nat @ ( times_times_nat @ A @ B ) @ one_one_nat ) ) ) ) ).

% mult_le_one
thf(fact_1242_mult__left__le,axiom,
    ! [C: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ one_one_nat )
     => ( ( ord_less_eq_nat @ zero_zero_nat @ A )
       => ( ord_less_eq_nat @ ( times_times_nat @ A @ C ) @ A ) ) ) ).

% mult_left_le
thf(fact_1243_div__mult1__eq,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( divide_divide_nat @ ( times_times_nat @ A @ B ) @ C )
      = ( plus_plus_nat @ ( times_times_nat @ A @ ( divide_divide_nat @ B @ C ) ) @ ( divide_divide_nat @ ( times_times_nat @ A @ ( modulo_modulo_nat @ B @ C ) ) @ C ) ) ) ).

% div_mult1_eq
thf(fact_1244_mult__div__mod__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% mult_div_mod_eq
thf(fact_1245_mod__mult__div__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) )
      = A ) ).

% mod_mult_div_eq
thf(fact_1246_mod__div__mult__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( modulo_modulo_nat @ A @ B ) @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) )
      = A ) ).

% mod_div_mult_eq
thf(fact_1247_div__mult__mod__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) )
      = A ) ).

% div_mult_mod_eq
thf(fact_1248_mod__div__decomp,axiom,
    ! [A: nat,B: nat] :
      ( A
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) ) ).

% mod_div_decomp
thf(fact_1249_cancel__div__mod__rules_I1_J,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A @ B ) @ B ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(1)
thf(fact_1250_cancel__div__mod__rules_I2_J,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( plus_plus_nat @ ( plus_plus_nat @ ( times_times_nat @ B @ ( divide_divide_nat @ A @ B ) ) @ ( modulo_modulo_nat @ A @ B ) ) @ C )
      = ( plus_plus_nat @ A @ C ) ) ).

% cancel_div_mod_rules(2)
thf(fact_1251_n__less__n__mult__m,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ N @ M ) ) ) ) ).

% n_less_n_mult_m
thf(fact_1252_n__less__m__mult__n,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ N @ ( times_times_nat @ M @ N ) ) ) ) ).

% n_less_m_mult_n
thf(fact_1253_one__less__mult,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ N )
     => ( ( ord_less_nat @ ( suc @ zero_zero_nat ) @ M )
       => ( ord_less_nat @ ( suc @ zero_zero_nat ) @ ( times_times_nat @ M @ N ) ) ) ) ).

% one_less_mult
thf(fact_1254_div__less__iff__less__mult,axiom,
    ! [Q2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_nat @ ( divide_divide_nat @ M @ Q2 ) @ N )
        = ( ord_less_nat @ M @ ( times_times_nat @ N @ Q2 ) ) ) ) ).

% div_less_iff_less_mult
thf(fact_1255_mod__eq__nat1E,axiom,
    ! [M: nat,Q2: nat,N: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q2 )
        = ( modulo_modulo_nat @ N @ Q2 ) )
     => ( ( ord_less_eq_nat @ N @ M )
       => ~ ! [S3: nat] :
              ( M
             != ( plus_plus_nat @ N @ ( times_times_nat @ Q2 @ S3 ) ) ) ) ) ).

% mod_eq_nat1E
thf(fact_1256_mod__eq__nat2E,axiom,
    ! [M: nat,Q2: nat,N: nat] :
      ( ( ( modulo_modulo_nat @ M @ Q2 )
        = ( modulo_modulo_nat @ N @ Q2 ) )
     => ( ( ord_less_eq_nat @ M @ N )
       => ~ ! [S3: nat] :
              ( N
             != ( plus_plus_nat @ M @ ( times_times_nat @ Q2 @ S3 ) ) ) ) ) ).

% mod_eq_nat2E
thf(fact_1257_mod__mult2__eq,axiom,
    ! [M: nat,N: nat,Q2: nat] :
      ( ( modulo_modulo_nat @ M @ ( times_times_nat @ N @ Q2 ) )
      = ( plus_plus_nat @ ( times_times_nat @ N @ ( modulo_modulo_nat @ ( divide_divide_nat @ M @ N ) @ Q2 ) ) @ ( modulo_modulo_nat @ M @ N ) ) ) ).

% mod_mult2_eq
thf(fact_1258_div__mod__decomp,axiom,
    ! [A2: nat,N: nat] :
      ( A2
      = ( plus_plus_nat @ ( times_times_nat @ ( divide_divide_nat @ A2 @ N ) @ N ) @ ( modulo_modulo_nat @ A2 @ N ) ) ) ).

% div_mod_decomp
thf(fact_1259_less__eq__div__iff__mult__less__eq,axiom,
    ! [Q2: nat,M: nat,N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ Q2 )
     => ( ( ord_less_eq_nat @ M @ ( divide_divide_nat @ N @ Q2 ) )
        = ( ord_less_eq_nat @ ( times_times_nat @ M @ Q2 ) @ N ) ) ) ).

% less_eq_div_iff_mult_less_eq

% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
    ! [P2: $o] :
      ( ( P2 = $true )
      | ( P2 = $false ) ) ).

thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y2: nat] :
      ( ( if_nat @ $false @ X @ Y2 )
      = Y2 ) ).

thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
    ! [X: nat,Y2: nat] :
      ( ( if_nat @ $true @ X @ Y2 )
      = X ) ).

% Conjectures (1)
thf(conj_0,conjecture,
    member_a2 @ ( hd_a @ ys2 ) @ ( set_a2 @ ys2 ) ).

%------------------------------------------------------------------------------