TPTP Problem File: SLH0123^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain   : Archive of Formal Proofs
% Problem  :
% Version  : Especial.
% English  :

% Refs     : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source   : [Des23]
% Names    : Pluennecke_Ruzsa_Inequality/0003_Pluennecke_Ruzsa_Inequality/prob_00331_011428__12185002_1 [Des23]

% Status   : Theorem
% Rating   : ? v8.2.0
% Syntax   : Number of formulae    : 1353 ( 501 unt;  86 typ;   0 def)
%            Number of atoms       : 3575 (1082 equ;   0 cnn)
%            Maximal formula atoms :   12 (   2 avg)
%            Number of connectives : 12359 ( 402   ~;  57   |; 250   &;9886   @)
%                                         (   0 <=>;1764  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   19 (   7 avg)
%            Number of types       :    7 (   6 usr)
%            Number of type conns  :  768 ( 768   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   81 (  80 usr;  13 con; 0-5 aty)
%            Number of variables   : 3626 ( 153   ^;3370   !; 103   ?;3626   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2023-01-18 16:20:37.782
%------------------------------------------------------------------------------
% Could-be-implicit typings (6)
thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    set_set_a: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Set__Oset_Itf__a_J,type,
    set_a: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (80)
thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001tf__a,type,
    finite_card_a: set_a > nat ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_Itf__a_J,type,
    finite_finite_set_a: set_set_a > $o ).

thf(sy_c_Finite__Set_Ofinite_001tf__a,type,
    finite_finite_a: set_a > $o ).

thf(sy_c_Group__Theory_Oabelian__group_001tf__a,type,
    group_201663378560352916roup_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Ocommutative__monoid_001t__Nat__Onat,type,
    group_6791354081887936081id_nat: set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Group__Theory_Ocommutative__monoid_001tf__a,type,
    group_4866109990395492029noid_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Ogroup_001t__Nat__Onat,type,
    group_group_nat: set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Group__Theory_Ogroup_001tf__a,type,
    group_group_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Omonoid_001t__Nat__Onat,type,
    group_monoid_nat: set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Group__Theory_Omonoid_001tf__a,type,
    group_monoid_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Group__Theory_Omonoid_OUnits_001t__Nat__Onat,type,
    group_Units_nat: set_nat > ( nat > nat > nat ) > nat > set_nat ).

thf(sy_c_Group__Theory_Omonoid_OUnits_001tf__a,type,
    group_Units_a: set_a > ( a > a > a ) > a > set_a ).

thf(sy_c_Group__Theory_Omonoid_Oinverse_001t__Nat__Onat,type,
    group_inverse_nat: set_nat > ( nat > nat > nat ) > nat > nat > nat ).

thf(sy_c_Group__Theory_Omonoid_Oinverse_001tf__a,type,
    group_inverse_a: set_a > ( a > a > a ) > a > a > a ).

thf(sy_c_Group__Theory_Omonoid_Oinvertible_001t__Nat__Onat,type,
    group_invertible_nat: set_nat > ( nat > nat > nat ) > nat > nat > $o ).

thf(sy_c_Group__Theory_Omonoid_Oinvertible_001tf__a,type,
    group_invertible_a: set_a > ( a > a > a ) > a > a > $o ).

thf(sy_c_Group__Theory_Osubgroup_001t__Nat__Onat,type,
    group_subgroup_nat: set_nat > set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Group__Theory_Osubgroup_001tf__a,type,
    group_subgroup_a: set_a > set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Nat__Onat,type,
    minus_minus_nat: nat > nat > nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_It__Nat__Onat_J,type,
    minus_minus_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Groups_Ominus__class_Ominus_001t__Set__Oset_Itf__a_J,type,
    minus_minus_set_a: set_a > set_a > set_a ).

thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
    one_one_nat: nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_HOL_ONO__MATCH_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    nO_MATCH_set_a_set_a: set_a > set_a > $o ).

thf(sy_c_HOL_Oundefined_001tf__a,type,
    undefined_a: a ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Nat__Onat,type,
    inf_inf_nat: nat > nat > nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_It__Nat__Onat_J,type,
    inf_inf_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Oinf__class_Oinf_001t__Set__Oset_Itf__a_J,type,
    inf_inf_set_a: set_a > set_a > set_a ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Nat__Onat,type,
    sup_sup_nat: nat > nat > nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_It__Nat__Onat_J,type,
    sup_sup_set_nat: set_nat > set_nat > set_nat ).

thf(sy_c_Lattices_Osup__class_Osup_001t__Set__Oset_Itf__a_J,type,
    sup_sup_set_a: set_a > set_a > set_a ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Orderings_Obot__class_Obot_001_062_Itf__a_M_Eo_J,type,
    bot_bot_a_o: a > $o ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Nat__Onat,type,
    bot_bot_nat: nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Nat__Onat_J,type,
    bot_bot_set_nat: set_nat ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_It__Set__Oset_Itf__a_J_J,type,
    bot_bot_set_set_a: set_set_a ).

thf(sy_c_Orderings_Obot__class_Obot_001t__Set__Oset_Itf__a_J,type,
    bot_bot_set_a: set_a ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_Itf__a_J,type,
    ord_less_set_a: set_a > set_a > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_Itf__a_J,type,
    ord_less_eq_set_a: set_a > set_a > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001t__Nat__Onat,type,
    pluenn2073725187428264546up_nat: set_nat > ( nat > nat > nat ) > nat > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_001tf__a,type,
    pluenn1164192988769422572roup_a: set_a > ( a > a > a ) > a > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Ominusset_001t__Nat__Onat,type,
    pluenn7323955030898006884et_nat: set_nat > ( nat > nat > nat ) > nat > set_nat > set_nat ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Ominusset_001tf__a,type,
    pluenn2534204936789923946sset_a: set_a > ( a > a > a ) > a > set_a > set_a ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Ominussetp_001t__Nat__Onat,type,
    pluenn8372939692575285934tp_nat: set_nat > ( nat > nat > nat ) > nat > ( nat > $o ) > nat > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Ominussetp_001tf__a,type,
    pluenn1126946703085653920setp_a: set_a > ( a > a > a ) > a > ( a > $o ) > a > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001t__Nat__Onat,type,
    pluenn3669378163024332905et_nat: set_nat > ( nat > nat > nat ) > set_nat > set_nat > set_nat ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset_001tf__a,type,
    pluenn3038260743871226533mset_a: set_a > ( a > a > a ) > set_a > set_a > set_a ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset__iterated_001t__Nat__Onat,type,
    pluenn7055013279391836755ed_nat: set_nat > ( nat > nat > nat ) > nat > set_nat > nat > set_nat ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumset__iterated_001tf__a,type,
    pluenn1960970773371692859ated_a: set_a > ( a > a > a ) > a > set_a > nat > set_a ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumsetp_001t__Nat__Onat,type,
    pluenn5670965976768739049tp_nat: set_nat > ( nat > nat > nat ) > ( nat > $o ) > ( nat > $o ) > nat > $o ).

thf(sy_c_Pluennecke__Ruzsa__Inequality_Oadditive__abelian__group_Osumsetp_001tf__a,type,
    pluenn895083305082786853setp_a: set_a > ( a > a > a ) > ( a > $o ) > ( a > $o ) > a > $o ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001tf__a,type,
    collect_a: ( a > $o ) > set_a ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001t__Nat__Onat,type,
    image_nat_nat: ( nat > nat ) > set_nat > set_nat ).

thf(sy_c_Set_Oimage_001t__Nat__Onat_001tf__a,type,
    image_nat_a: ( nat > a ) > set_nat > set_a ).

thf(sy_c_Set_Oimage_001t__Set__Oset_It__Nat__Onat_J_001t__Set__Oset_It__Nat__Onat_J,type,
    image_7916887816326733075et_nat: ( set_nat > set_nat ) > set_set_nat > set_set_nat ).

thf(sy_c_Set_Oimage_001t__Set__Oset_Itf__a_J_001t__Set__Oset_Itf__a_J,type,
    image_set_a_set_a: ( set_a > set_a ) > set_set_a > set_set_a ).

thf(sy_c_Set_Oimage_001tf__a_001t__Nat__Onat,type,
    image_a_nat: ( a > nat ) > set_a > set_nat ).

thf(sy_c_Set_Oimage_001tf__a_001tf__a,type,
    image_a_a: ( a > a ) > set_a > set_a ).

thf(sy_c_Set_Oinsert_001t__Nat__Onat,type,
    insert_nat: nat > set_nat > set_nat ).

thf(sy_c_Set_Oinsert_001tf__a,type,
    insert_a: a > set_a > set_a ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_Itf__a_J,type,
    member_set_a: set_a > set_set_a > $o ).

thf(sy_c_member_001tf__a,type,
    member_a: a > set_a > $o ).

thf(sy_v_G,type,
    g: set_a ).

thf(sy_v_U,type,
    u: set_a ).

thf(sy_v_V,type,
    v: set_a ).

thf(sy_v_W,type,
    w: set_a ).

thf(sy_v_addition,type,
    addition: a > a > a ).

thf(sy_v_v____,type,
    v2: a > a ).

thf(sy_v_w____,type,
    w2: a > a ).

thf(sy_v_x____,type,
    x: a ).

thf(sy_v_zero,type,
    zero: a ).

% Relevant facts (1266)
thf(fact_0_assms_I2_J,axiom,
    ord_less_eq_set_a @ u @ g ).

% assms(2)
thf(fact_1_assms_I6_J,axiom,
    ord_less_eq_set_a @ w @ g ).

% assms(6)
thf(fact_2_assms_I4_J,axiom,
    ord_less_eq_set_a @ v @ g ).

% assms(4)
thf(fact_3_commutative,axiom,
    ! [X: a,Y: a] :
      ( ( member_a @ X @ g )
     => ( ( member_a @ Y @ g )
       => ( ( addition @ X @ Y )
          = ( addition @ Y @ X ) ) ) ) ).

% commutative
thf(fact_4_unit__closed,axiom,
    member_a @ zero @ g ).

% unit_closed
thf(fact_5_associative,axiom,
    ! [A: a,B: a,C: a] :
      ( ( member_a @ A @ g )
     => ( ( member_a @ B @ g )
       => ( ( member_a @ C @ g )
         => ( ( addition @ ( addition @ A @ B ) @ C )
            = ( addition @ A @ ( addition @ B @ C ) ) ) ) ) ) ).

% associative
thf(fact_6_composition__closed,axiom,
    ! [A: a,B: a] :
      ( ( member_a @ A @ g )
     => ( ( member_a @ B @ g )
       => ( member_a @ ( addition @ A @ B ) @ g ) ) ) ).

% composition_closed
thf(fact_7_sumsetp_Ocases,axiom,
    ! [A2: a > $o,B2: a > $o,A: a] :
      ( ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B2 @ A )
     => ~ ! [A3: a,B3: a] :
            ( ( A
              = ( addition @ A3 @ B3 ) )
           => ( ( A2 @ A3 )
             => ( ( member_a @ A3 @ g )
               => ( ( B2 @ B3 )
                 => ~ ( member_a @ B3 @ g ) ) ) ) ) ) ).

% sumsetp.cases
thf(fact_8_sumsetp_Osimps,axiom,
    ! [A2: a > $o,B2: a > $o,A: a] :
      ( ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B2 @ A )
      = ( ? [A4: a,B4: a] :
            ( ( A
              = ( addition @ A4 @ B4 ) )
            & ( A2 @ A4 )
            & ( member_a @ A4 @ g )
            & ( B2 @ B4 )
            & ( member_a @ B4 @ g ) ) ) ) ).

% sumsetp.simps
thf(fact_9_sumsetp_OsumsetI,axiom,
    ! [A2: a > $o,A: a,B2: a > $o,B: a] :
      ( ( A2 @ A )
     => ( ( member_a @ A @ g )
       => ( ( B2 @ B )
         => ( ( member_a @ B @ g )
           => ( pluenn895083305082786853setp_a @ g @ addition @ A2 @ B2 @ ( addition @ A @ B ) ) ) ) ) ) ).

% sumsetp.sumsetI
thf(fact_10_that,axiom,
    member_a @ x @ ( pluenn3038260743871226533mset_a @ g @ addition @ v @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ w ) ) ).

% that
thf(fact_11_sumset__commute,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ B2 @ A2 ) ) ).

% sumset_commute
thf(fact_12_sumset__assoc,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ C2 )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn3038260743871226533mset_a @ g @ addition @ B2 @ C2 ) ) ) ).

% sumset_assoc
thf(fact_13_sumset_OsumsetI,axiom,
    ! [A: a,A2: set_a,B: a,B2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( member_a @ A @ g )
       => ( ( member_a @ B @ B2 )
         => ( ( member_a @ B @ g )
           => ( member_a @ ( addition @ A @ B ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ) ) ).

% sumset.sumsetI
thf(fact_14_sumset_Osimps,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) )
      = ( ? [A4: a,B4: a] :
            ( ( A
              = ( addition @ A4 @ B4 ) )
            & ( member_a @ A4 @ A2 )
            & ( member_a @ A4 @ g )
            & ( member_a @ B4 @ B2 )
            & ( member_a @ B4 @ g ) ) ) ) ).

% sumset.simps
thf(fact_15_sumset_Ocases,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) )
     => ~ ! [A3: a,B3: a] :
            ( ( A
              = ( addition @ A3 @ B3 ) )
           => ( ( member_a @ A3 @ A2 )
             => ( ( member_a @ A3 @ g )
               => ( ( member_a @ B3 @ B2 )
                 => ~ ( member_a @ B3 @ g ) ) ) ) ) ) ).

% sumset.cases
thf(fact_16_local_Oinverse__unique,axiom,
    ! [U: a,V: a,V2: a] :
      ( ( ( addition @ U @ V )
        = zero )
     => ( ( ( addition @ V2 @ U )
          = zero )
       => ( ( member_a @ U @ g )
         => ( ( member_a @ V2 @ g )
           => ( ( member_a @ V @ g )
             => ( V2 = V ) ) ) ) ) ) ).

% local.inverse_unique
thf(fact_17_sumset__subset__carrier,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ g ) ).

% sumset_subset_carrier
thf(fact_18_sumset__mono,axiom,
    ! [A5: set_a,A2: set_a,B5: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A5 @ A2 )
     => ( ( ord_less_eq_set_a @ B5 @ B2 )
       => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ B5 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ).

% sumset_mono
thf(fact_19_minusset__distrib__sum,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ B2 ) ) ) ).

% minusset_distrib_sum
thf(fact_20_minusset__subset__carrier,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) @ g ) ).

% minusset_subset_carrier
thf(fact_21_assms_I5_J,axiom,
    finite_finite_a @ w ).

% assms(5)
thf(fact_22_assms_I3_J,axiom,
    finite_finite_a @ v ).

% assms(3)
thf(fact_23_assms_I1_J,axiom,
    finite_finite_a @ u ).

% assms(1)
thf(fact_24_vinV,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( pluenn3038260743871226533mset_a @ g @ addition @ v @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ w ) ) )
     => ( member_a @ ( v2 @ X ) @ v ) ) ).

% vinV
thf(fact_25_right__unit,axiom,
    ! [A: a] :
      ( ( member_a @ A @ g )
     => ( ( addition @ A @ zero )
        = A ) ) ).

% right_unit
thf(fact_26_left__unit,axiom,
    ! [A: a] :
      ( ( member_a @ A @ g )
     => ( ( addition @ zero @ A )
        = A ) ) ).

% left_unit
thf(fact_27_differenceset__commute,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ ( pluenn3038260743871226533mset_a @ g @ addition @ B2 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) ) )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ B2 ) ) ) ).

% differenceset_commute
thf(fact_28_winW,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( pluenn3038260743871226533mset_a @ g @ addition @ v @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ w ) ) )
     => ( member_a @ ( w2 @ X ) @ w ) ) ).

% winW
thf(fact_29_additive__abelian__group__axioms,axiom,
    pluenn1164192988769422572roup_a @ g @ addition @ zero ).

% additive_abelian_group_axioms
thf(fact_30_commutative__monoid__axioms,axiom,
    group_4866109990395492029noid_a @ g @ addition @ zero ).

% commutative_monoid_axioms
thf(fact_31_additive__abelian__group_Osumset_Ocong,axiom,
    pluenn3038260743871226533mset_a = pluenn3038260743871226533mset_a ).

% additive_abelian_group.sumset.cong
thf(fact_32_additive__abelian__group_Ominusset_Ocong,axiom,
    pluenn2534204936789923946sset_a = pluenn2534204936789923946sset_a ).

% additive_abelian_group.minusset.cong
thf(fact_33_additive__abelian__group_Osumsetp_Ocong,axiom,
    pluenn895083305082786853setp_a = pluenn895083305082786853setp_a ).

% additive_abelian_group.sumsetp.cong
thf(fact_34_abelian__group__axioms,axiom,
    group_201663378560352916roup_a @ g @ addition @ zero ).

% abelian_group_axioms
thf(fact_35_fin_I2_J,axiom,
    finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ u @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ w ) ) ).

% fin(2)
thf(fact_36_fin_I1_J,axiom,
    finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ u @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ v ) ) ).

% fin(1)
thf(fact_37_sumset__iterated__subset__carrier,axiom,
    ! [A2: set_a,K: nat] : ( ord_less_eq_set_a @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ K ) @ g ) ).

% sumset_iterated_subset_carrier
thf(fact_38_minusset__iterated__minusset,axiom,
    ! [A2: set_a,K: nat] :
      ( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) @ K )
      = ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ K ) ) ) ).

% minusset_iterated_minusset
thf(fact_39__092_060open_062_092_060And_062x_O_Ax_A_092_060in_062_Adifferenceset_AV_AW_A_092_060Longrightarrow_062_A_092_060exists_062v_Aw_O_Av_A_092_060in_062_AV_A_092_060and_062_Aw_A_092_060in_062_AW_A_092_060and_062_Ax_A_061_Av_A_092_060ominus_062_Aw_092_060close_062,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( pluenn3038260743871226533mset_a @ g @ addition @ v @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ w ) ) )
     => ? [V3: a,W: a] :
          ( ( member_a @ V3 @ v )
          & ( member_a @ W @ w )
          & ( X
            = ( addition @ V3 @ ( group_inverse_a @ g @ addition @ zero @ W ) ) ) ) ) ).

% \<open>\<And>x. x \<in> differenceset V W \<Longrightarrow> \<exists>v w. v \<in> V \<and> w \<in> W \<and> x = v \<ominus> w\<close>
thf(fact_40__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062v_Aw_O_A_092_060lbrakk_062_092_060And_062x_O_Ax_A_092_060in_062_Adifferenceset_AV_AW_A_092_060Longrightarrow_062_Av_Ax_A_092_060in_062_AV_059_A_092_060And_062x_O_Ax_A_092_060in_062_Adifferenceset_AV_AW_A_092_060Longrightarrow_062_Aw_Ax_A_092_060in_062_AW_059_A_092_060And_062x_O_Ax_A_092_060in_062_Adifferenceset_AV_AW_A_092_060Longrightarrow_062_Av_Ax_A_092_060ominus_062_Aw_Ax_A_061_Ax_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [V3: a > a] :
        ( ! [X2: a] :
            ( ( member_a @ X2 @ ( pluenn3038260743871226533mset_a @ g @ addition @ v @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ w ) ) )
           => ( member_a @ ( V3 @ X2 ) @ v ) )
       => ! [W: a > a] :
            ( ! [X2: a] :
                ( ( member_a @ X2 @ ( pluenn3038260743871226533mset_a @ g @ addition @ v @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ w ) ) )
               => ( member_a @ ( W @ X2 ) @ w ) )
           => ~ ! [X2: a] :
                  ( ( member_a @ X2 @ ( pluenn3038260743871226533mset_a @ g @ addition @ v @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ w ) ) )
                 => ( ( addition @ ( V3 @ X2 ) @ ( group_inverse_a @ g @ addition @ zero @ ( W @ X2 ) ) )
                    = X2 ) ) ) ) ).

% \<open>\<And>thesis. (\<And>v w. \<lbrakk>\<And>x. x \<in> differenceset V W \<Longrightarrow> v x \<in> V; \<And>x. x \<in> differenceset V W \<Longrightarrow> w x \<in> W; \<And>x. x \<in> differenceset V W \<Longrightarrow> v x \<ominus> w x = x\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_41_finite__differenceset,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ B2 ) ) ) ) ) ).

% finite_differenceset
thf(fact_42_card__minusset_H,axiom,
    ! [A2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ g )
     => ( ( finite_card_a @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) )
        = ( finite_card_a @ A2 ) ) ) ).

% card_minusset'
thf(fact_43_mem__Collect__eq,axiom,
    ! [A: a,P: a > $o] :
      ( ( member_a @ A @ ( collect_a @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_44_mem__Collect__eq,axiom,
    ! [A: nat,P: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P ) )
      = ( P @ A ) ) ).

% mem_Collect_eq
thf(fact_45_Collect__mem__eq,axiom,
    ! [A2: set_a] :
      ( ( collect_a
        @ ^ [X3: a] : ( member_a @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_46_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X3: nat] : ( member_nat @ X3 @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_47_card__differenceset__commute,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ B2 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) ) )
      = ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ B2 ) ) ) ) ).

% card_differenceset_commute
thf(fact_48_group__axioms,axiom,
    group_group_a @ g @ addition @ zero ).

% group_axioms
thf(fact_49_finite__minusset,axiom,
    ! [A2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_a @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) ) ) ).

% finite_minusset
thf(fact_50_finite__sumset,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ).

% finite_sumset
thf(fact_51_inverse__equality,axiom,
    ! [U: a,V2: a] :
      ( ( ( addition @ U @ V2 )
        = zero )
     => ( ( ( addition @ V2 @ U )
          = zero )
       => ( ( member_a @ U @ g )
         => ( ( member_a @ V2 @ g )
           => ( ( group_inverse_a @ g @ addition @ zero @ U )
              = V2 ) ) ) ) ) ).

% inverse_equality
thf(fact_52_inverse__closed,axiom,
    ! [X: a] :
      ( ( member_a @ X @ g )
     => ( member_a @ ( group_inverse_a @ g @ addition @ zero @ X ) @ g ) ) ).

% inverse_closed
thf(fact_53_minusset_Osimps,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) )
      = ( ? [A4: a] :
            ( ( A
              = ( group_inverse_a @ g @ addition @ zero @ A4 ) )
            & ( member_a @ A4 @ A2 )
            & ( member_a @ A4 @ g ) ) ) ) ).

% minusset.simps
thf(fact_54_minusset_OminussetI,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( member_a @ A @ g )
       => ( member_a @ ( group_inverse_a @ g @ addition @ zero @ A ) @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) ) ) ) ).

% minusset.minussetI
thf(fact_55_minusset_Ocases,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) )
     => ~ ! [A3: a] :
            ( ( A
              = ( group_inverse_a @ g @ addition @ zero @ A3 ) )
           => ( ( member_a @ A3 @ A2 )
             => ~ ( member_a @ A3 @ g ) ) ) ) ).

% minusset.cases
thf(fact_56_finite__sumset__iterated,axiom,
    ! [A2: set_a,R: nat] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_a @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ R ) ) ) ).

% finite_sumset_iterated
thf(fact_57_card__sumset__iterated__minusset,axiom,
    ! [A2: set_a,K: nat] :
      ( ( finite_card_a @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) @ K ) )
      = ( finite_card_a @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ K ) ) ) ).

% card_sumset_iterated_minusset
thf(fact_58_vw__eq,axiom,
    ! [X: a] :
      ( ( member_a @ X @ ( pluenn3038260743871226533mset_a @ g @ addition @ v @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ w ) ) )
     => ( ( addition @ ( v2 @ X ) @ ( group_inverse_a @ g @ addition @ zero @ ( w2 @ X ) ) )
        = X ) ) ).

% vw_eq
thf(fact_59_inverse__unit,axiom,
    ( ( group_inverse_a @ g @ addition @ zero @ zero )
    = zero ) ).

% inverse_unit
thf(fact_60_additive__abelian__group_Ocard__sumset__iterated__minusset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,K: nat] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_card_a @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) @ K ) )
        = ( finite_card_a @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ K ) ) ) ) ).

% additive_abelian_group.card_sumset_iterated_minusset
thf(fact_61_additive__abelian__group__def,axiom,
    pluenn1164192988769422572roup_a = group_201663378560352916roup_a ).

% additive_abelian_group_def
thf(fact_62_additive__abelian__group_Ofinite__sumset__iterated,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,R: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( finite_finite_nat @ ( pluenn7055013279391836755ed_nat @ G @ Addition @ Zero @ A2 @ R ) ) ) ) ).

% additive_abelian_group.finite_sumset_iterated
thf(fact_63_additive__abelian__group_Ofinite__sumset__iterated,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,R: nat] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( finite_finite_a @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ R ) ) ) ) ).

% additive_abelian_group.finite_sumset_iterated
thf(fact_64_additive__abelian__group_Osumset__iterated_Ocong,axiom,
    pluenn1960970773371692859ated_a = pluenn1960970773371692859ated_a ).

% additive_abelian_group.sumset_iterated.cong
thf(fact_65_additive__abelian__group_Oinverse__closed,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,X: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ X @ G )
       => ( member_nat @ ( group_inverse_nat @ G @ Addition @ Zero @ X ) @ G ) ) ) ).

% additive_abelian_group.inverse_closed
thf(fact_66_additive__abelian__group_Oinverse__closed,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ X @ G )
       => ( member_a @ ( group_inverse_a @ G @ Addition @ Zero @ X ) @ G ) ) ) ).

% additive_abelian_group.inverse_closed
thf(fact_67_additive__abelian__group_Oaxioms,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( group_201663378560352916roup_a @ G @ Addition @ Zero ) ) ).

% additive_abelian_group.axioms
thf(fact_68_additive__abelian__group_Ointro,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a] :
      ( ( group_201663378560352916roup_a @ G @ Addition @ Zero )
     => ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero ) ) ).

% additive_abelian_group.intro
thf(fact_69_additive__abelian__group_Ofinite__sumset,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ( finite_finite_nat @ B2 )
         => ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.finite_sumset
thf(fact_70_additive__abelian__group_Ofinite__sumset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ( finite_finite_a @ B2 )
         => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.finite_sumset
thf(fact_71_additive__abelian__group_Ominusset_OminussetI,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ A2 )
       => ( ( member_nat @ A @ G )
         => ( member_nat @ ( group_inverse_nat @ G @ Addition @ Zero @ A ) @ ( pluenn7323955030898006884et_nat @ G @ Addition @ Zero @ A2 ) ) ) ) ) ).

% additive_abelian_group.minusset.minussetI
thf(fact_72_additive__abelian__group_Ominusset_OminussetI,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ A2 )
       => ( ( member_a @ A @ G )
         => ( member_a @ ( group_inverse_a @ G @ Addition @ Zero @ A ) @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) ) ) ) ) ).

% additive_abelian_group.minusset.minussetI
thf(fact_73_additive__abelian__group_Ominusset_Osimps,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ ( pluenn7323955030898006884et_nat @ G @ Addition @ Zero @ A2 ) )
        = ( ? [A4: nat] :
              ( ( A
                = ( group_inverse_nat @ G @ Addition @ Zero @ A4 ) )
              & ( member_nat @ A4 @ A2 )
              & ( member_nat @ A4 @ G ) ) ) ) ) ).

% additive_abelian_group.minusset.simps
thf(fact_74_additive__abelian__group_Ominusset_Osimps,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) )
        = ( ? [A4: a] :
              ( ( A
                = ( group_inverse_a @ G @ Addition @ Zero @ A4 ) )
              & ( member_a @ A4 @ A2 )
              & ( member_a @ A4 @ G ) ) ) ) ) ).

% additive_abelian_group.minusset.simps
thf(fact_75_additive__abelian__group_Ominusset_Ocases,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ ( pluenn7323955030898006884et_nat @ G @ Addition @ Zero @ A2 ) )
       => ~ ! [A3: nat] :
              ( ( A
                = ( group_inverse_nat @ G @ Addition @ Zero @ A3 ) )
             => ( ( member_nat @ A3 @ A2 )
               => ~ ( member_nat @ A3 @ G ) ) ) ) ) ).

% additive_abelian_group.minusset.cases
thf(fact_76_additive__abelian__group_Ominusset_Ocases,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) )
       => ~ ! [A3: a] :
              ( ( A
                = ( group_inverse_a @ G @ Addition @ Zero @ A3 ) )
             => ( ( member_a @ A3 @ A2 )
               => ~ ( member_a @ A3 @ G ) ) ) ) ) ).

% additive_abelian_group.minusset.cases
thf(fact_77_additive__abelian__group_Ofinite__minusset,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( finite_finite_nat @ ( pluenn7323955030898006884et_nat @ G @ Addition @ Zero @ A2 ) ) ) ) ).

% additive_abelian_group.finite_minusset
thf(fact_78_additive__abelian__group_Ofinite__minusset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( finite_finite_a @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) ) ) ) ).

% additive_abelian_group.finite_minusset
thf(fact_79_additive__abelian__group_Osumset__iterated__subset__carrier,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,K: nat] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ K ) @ G ) ) ).

% additive_abelian_group.sumset_iterated_subset_carrier
thf(fact_80_additive__abelian__group_Ominusset__iterated__minusset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,K: nat] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) @ K )
        = ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ K ) ) ) ) ).

% additive_abelian_group.minusset_iterated_minusset
thf(fact_81_additive__abelian__group_Ocard__minusset_H,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ord_less_eq_set_a @ A2 @ G )
       => ( ( finite_card_a @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) )
          = ( finite_card_a @ A2 ) ) ) ) ).

% additive_abelian_group.card_minusset'
thf(fact_82_additive__abelian__group_Ocard__differenceset__commute,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,B2: set_a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B2 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) ) )
        = ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ B2 ) ) ) ) ) ).

% additive_abelian_group.card_differenceset_commute
thf(fact_83_additive__abelian__group_Ofinite__differenceset,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ( finite_finite_nat @ B2 )
         => ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( pluenn7323955030898006884et_nat @ G @ Addition @ Zero @ B2 ) ) ) ) ) ) ).

% additive_abelian_group.finite_differenceset
thf(fact_84_additive__abelian__group_Ofinite__differenceset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ( finite_finite_a @ B2 )
         => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ B2 ) ) ) ) ) ) ).

% additive_abelian_group.finite_differenceset
thf(fact_85_additive__abelian__group_Osumset__commute,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ B2 @ A2 ) ) ) ).

% additive_abelian_group.sumset_commute
thf(fact_86_additive__abelian__group_Osumset_OsumsetI,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat,B: nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ A2 )
       => ( ( member_nat @ A @ G )
         => ( ( member_nat @ B @ B2 )
           => ( ( member_nat @ B @ G )
             => ( member_nat @ ( Addition @ A @ B ) @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.sumsetI
thf(fact_87_additive__abelian__group_Osumset_OsumsetI,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B: a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ A2 )
       => ( ( member_a @ A @ G )
         => ( ( member_a @ B @ B2 )
           => ( ( member_a @ B @ G )
             => ( member_a @ ( Addition @ A @ B ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.sumsetI
thf(fact_88_additive__abelian__group_Osumset__assoc,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,C2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ C2 )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B2 @ C2 ) ) ) ) ).

% additive_abelian_group.sumset_assoc
thf(fact_89_additive__abelian__group_Osumset_Osimps,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) )
        = ( ? [A4: nat,B4: nat] :
              ( ( A
                = ( Addition @ A4 @ B4 ) )
              & ( member_nat @ A4 @ A2 )
              & ( member_nat @ A4 @ G )
              & ( member_nat @ B4 @ B2 )
              & ( member_nat @ B4 @ G ) ) ) ) ) ).

% additive_abelian_group.sumset.simps
thf(fact_90_additive__abelian__group_Osumset_Osimps,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) )
        = ( ? [A4: a,B4: a] :
              ( ( A
                = ( Addition @ A4 @ B4 ) )
              & ( member_a @ A4 @ A2 )
              & ( member_a @ A4 @ G )
              & ( member_a @ B4 @ B2 )
              & ( member_a @ B4 @ G ) ) ) ) ) ).

% additive_abelian_group.sumset.simps
thf(fact_91_additive__abelian__group_Osumset_Ocases,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( member_nat @ A @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) )
       => ~ ! [A3: nat,B3: nat] :
              ( ( A
                = ( Addition @ A3 @ B3 ) )
             => ( ( member_nat @ A3 @ A2 )
               => ( ( member_nat @ A3 @ G )
                 => ( ( member_nat @ B3 @ B2 )
                   => ~ ( member_nat @ B3 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.cases
thf(fact_92_additive__abelian__group_Osumset_Ocases,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( member_a @ A @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) )
       => ~ ! [A3: a,B3: a] :
              ( ( A
                = ( Addition @ A3 @ B3 ) )
             => ( ( member_a @ A3 @ A2 )
               => ( ( member_a @ A3 @ G )
                 => ( ( member_a @ B3 @ B2 )
                   => ~ ( member_a @ B3 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumset.cases
thf(fact_93_additive__abelian__group_Osumsetp_OsumsetI,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,A: nat,B2: nat > $o,B: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( A2 @ A )
       => ( ( member_nat @ A @ G )
         => ( ( B2 @ B )
           => ( ( member_nat @ B @ G )
             => ( pluenn5670965976768739049tp_nat @ G @ Addition @ A2 @ B2 @ ( Addition @ A @ B ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.sumsetI
thf(fact_94_additive__abelian__group_Osumsetp_OsumsetI,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,A: a,B2: a > $o,B: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( A2 @ A )
       => ( ( member_a @ A @ G )
         => ( ( B2 @ B )
           => ( ( member_a @ B @ G )
             => ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B2 @ ( Addition @ A @ B ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.sumsetI
thf(fact_95_additive__abelian__group_Osumsetp_Osimps,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,B2: nat > $o,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn5670965976768739049tp_nat @ G @ Addition @ A2 @ B2 @ A )
        = ( ? [A4: nat,B4: nat] :
              ( ( A
                = ( Addition @ A4 @ B4 ) )
              & ( A2 @ A4 )
              & ( member_nat @ A4 @ G )
              & ( B2 @ B4 )
              & ( member_nat @ B4 @ G ) ) ) ) ) ).

% additive_abelian_group.sumsetp.simps
thf(fact_96_additive__abelian__group_Osumsetp_Osimps,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,B2: a > $o,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B2 @ A )
        = ( ? [A4: a,B4: a] :
              ( ( A
                = ( Addition @ A4 @ B4 ) )
              & ( A2 @ A4 )
              & ( member_a @ A4 @ G )
              & ( B2 @ B4 )
              & ( member_a @ B4 @ G ) ) ) ) ) ).

% additive_abelian_group.sumsetp.simps
thf(fact_97_additive__abelian__group_Osumsetp_Ocases,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,B2: nat > $o,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn5670965976768739049tp_nat @ G @ Addition @ A2 @ B2 @ A )
       => ~ ! [A3: nat,B3: nat] :
              ( ( A
                = ( Addition @ A3 @ B3 ) )
             => ( ( A2 @ A3 )
               => ( ( member_nat @ A3 @ G )
                 => ( ( B2 @ B3 )
                   => ~ ( member_nat @ B3 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.cases
thf(fact_98_additive__abelian__group_Osumsetp_Ocases,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,B2: a > $o,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn895083305082786853setp_a @ G @ Addition @ A2 @ B2 @ A )
       => ~ ! [A3: a,B3: a] :
              ( ( A
                = ( Addition @ A3 @ B3 ) )
             => ( ( A2 @ A3 )
               => ( ( member_a @ A3 @ G )
                 => ( ( B2 @ B3 )
                   => ~ ( member_a @ B3 @ G ) ) ) ) ) ) ) ).

% additive_abelian_group.sumsetp.cases
thf(fact_99_additive__abelian__group_Osumset__subset__carrier,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ G ) ) ).

% additive_abelian_group.sumset_subset_carrier
thf(fact_100_additive__abelian__group_Osumset__mono,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A5: set_a,A2: set_a,B5: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ord_less_eq_set_a @ A5 @ A2 )
       => ( ( ord_less_eq_set_a @ B5 @ B2 )
         => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A5 @ B5 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.sumset_mono
thf(fact_101_additive__abelian__group_Ominusset__subset__carrier,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) @ G ) ) ).

% additive_abelian_group.minusset_subset_carrier
thf(fact_102_additive__abelian__group_Odifferenceset__commute,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,B2: set_a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B2 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) ) )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ B2 ) ) ) ) ).

% additive_abelian_group.differenceset_commute
thf(fact_103_additive__abelian__group_Ominusset__distrib__sum,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ B2 ) ) ) ) ).

% additive_abelian_group.minusset_distrib_sum
thf(fact_104_additive__abelian__group_Odiff__minus__set,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ B2 ) )
        = ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ).

% additive_abelian_group.diff_minus_set
thf(fact_105_minussetp_Osimps,axiom,
    ! [A2: a > $o,A: a] :
      ( ( pluenn1126946703085653920setp_a @ g @ addition @ zero @ A2 @ A )
      = ( ? [A4: a] :
            ( ( A
              = ( group_inverse_a @ g @ addition @ zero @ A4 ) )
            & ( A2 @ A4 )
            & ( member_a @ A4 @ g ) ) ) ) ).

% minussetp.simps
thf(fact_106_minussetp_OminussetI,axiom,
    ! [A2: a > $o,A: a] :
      ( ( A2 @ A )
     => ( ( member_a @ A @ g )
       => ( pluenn1126946703085653920setp_a @ g @ addition @ zero @ A2 @ ( group_inverse_a @ g @ addition @ zero @ A ) ) ) ) ).

% minussetp.minussetI
thf(fact_107_minussetp_Ocases,axiom,
    ! [A2: a > $o,A: a] :
      ( ( pluenn1126946703085653920setp_a @ g @ addition @ zero @ A2 @ A )
     => ~ ! [A3: a] :
            ( ( A
              = ( group_inverse_a @ g @ addition @ zero @ A3 ) )
           => ( ( A2 @ A3 )
             => ~ ( member_a @ A3 @ g ) ) ) ) ).

% minussetp.cases
thf(fact_108_card__le__sumset,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ A @ A2 )
       => ( ( member_a @ A @ g )
         => ( ( finite_finite_a @ B2 )
           => ( ( ord_less_eq_set_a @ B2 @ g )
             => ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ) ) ) ) ).

% card_le_sumset
thf(fact_109_card__sumset__0__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ g )
     => ( ( ord_less_eq_set_a @ B2 @ g )
       => ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) )
            = zero_zero_nat )
          = ( ( ( finite_card_a @ A2 )
              = zero_zero_nat )
            | ( ( finite_card_a @ B2 )
              = zero_zero_nat ) ) ) ) ) ).

% card_sumset_0_iff
thf(fact_110_group__of__Units,axiom,
    group_group_a @ ( group_Units_a @ g @ addition @ zero ) @ addition @ zero ).

% group_of_Units
thf(fact_111_sumset__subset__insert_I1_J,axiom,
    ! [A2: set_a,B2: set_a,X: a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ B2 ) ) ) ).

% sumset_subset_insert(1)
thf(fact_112_sumset__subset__insert_I2_J,axiom,
    ! [A2: set_a,B2: set_a,X: a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ A2 ) @ B2 ) ) ).

% sumset_subset_insert(2)
thf(fact_113_finite__sumset_H,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
     => ( ( finite_finite_a @ ( inf_inf_set_a @ B2 @ g ) )
       => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ).

% finite_sumset'
thf(fact_114_invertible__right__inverse2,axiom,
    ! [U: a,V2: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( member_a @ V2 @ g )
         => ( ( addition @ U @ ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ V2 ) )
            = V2 ) ) ) ) ).

% invertible_right_inverse2
thf(fact_115_invertibleE,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ! [V3: a] :
            ( ( ( ( addition @ U @ V3 )
                = zero )
              & ( ( addition @ V3 @ U )
                = zero ) )
           => ~ ( member_a @ V3 @ g ) )
       => ~ ( member_a @ U @ g ) ) ) ).

% invertibleE
thf(fact_116_invertible__def,axiom,
    ! [U: a] :
      ( ( member_a @ U @ g )
     => ( ( group_invertible_a @ g @ addition @ zero @ U )
        = ( ? [X3: a] :
              ( ( member_a @ X3 @ g )
              & ( ( addition @ U @ X3 )
                = zero )
              & ( ( addition @ X3 @ U )
                = zero ) ) ) ) ) ).

% invertible_def
thf(fact_117_unit__invertible,axiom,
    group_invertible_a @ g @ addition @ zero @ zero ).

% unit_invertible
thf(fact_118_inverse__composition__commute,axiom,
    ! [X: a,Y: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( group_invertible_a @ g @ addition @ zero @ Y )
       => ( ( member_a @ X @ g )
         => ( ( member_a @ Y @ g )
           => ( ( group_inverse_a @ g @ addition @ zero @ ( addition @ X @ Y ) )
              = ( addition @ ( group_inverse_a @ g @ addition @ zero @ Y ) @ ( group_inverse_a @ g @ addition @ zero @ X ) ) ) ) ) ) ) ).

% inverse_composition_commute
thf(fact_119_invertible__left__inverse2,axiom,
    ! [U: a,V2: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( member_a @ V2 @ g )
         => ( ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ ( addition @ U @ V2 ) )
            = V2 ) ) ) ) ).

% invertible_left_inverse2
thf(fact_120_mem__UnitsD,axiom,
    ! [U: a] :
      ( ( member_a @ U @ ( group_Units_a @ g @ addition @ zero ) )
     => ( ( group_invertible_a @ g @ addition @ zero @ U )
        & ( member_a @ U @ g ) ) ) ).

% mem_UnitsD
thf(fact_121_mem__UnitsI,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( member_a @ U @ ( group_Units_a @ g @ addition @ zero ) ) ) ) ).

% mem_UnitsI
thf(fact_122_card__sumset__0__iff_H,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) )
        = zero_zero_nat )
      = ( ( ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) )
          = zero_zero_nat )
        | ( ( finite_card_a @ ( inf_inf_set_a @ B2 @ g ) )
          = zero_zero_nat ) ) ) ).

% card_sumset_0_iff'
thf(fact_123_sumset__Int__carrier__eq_I2_J,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( inf_inf_set_a @ A2 @ g ) @ B2 )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ).

% sumset_Int_carrier_eq(2)
thf(fact_124_sumset__Int__carrier__eq_I1_J,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( inf_inf_set_a @ B2 @ g ) )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ).

% sumset_Int_carrier_eq(1)
thf(fact_125_sumset__Int__carrier,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ g )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ).

% sumset_Int_carrier
thf(fact_126_composition__invertible,axiom,
    ! [X: a,Y: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( group_invertible_a @ g @ addition @ zero @ Y )
       => ( ( member_a @ X @ g )
         => ( ( member_a @ Y @ g )
           => ( group_invertible_a @ g @ addition @ zero @ ( addition @ X @ Y ) ) ) ) ) ) ).

% composition_invertible
thf(fact_127_invertible,axiom,
    ! [U: a] :
      ( ( member_a @ U @ g )
     => ( group_invertible_a @ g @ addition @ zero @ U ) ) ).

% invertible
thf(fact_128_invertibleI,axiom,
    ! [U: a,V2: a] :
      ( ( ( addition @ U @ V2 )
        = zero )
     => ( ( ( addition @ V2 @ U )
          = zero )
       => ( ( member_a @ U @ g )
         => ( ( member_a @ V2 @ g )
           => ( group_invertible_a @ g @ addition @ zero @ U ) ) ) ) ) ).

% invertibleI
thf(fact_129_invertible__left__cancel,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( member_a @ X @ g )
       => ( ( member_a @ Y @ g )
         => ( ( member_a @ Z @ g )
           => ( ( ( addition @ X @ Y )
                = ( addition @ X @ Z ) )
              = ( Y = Z ) ) ) ) ) ) ).

% invertible_left_cancel
thf(fact_130_invertible__right__cancel,axiom,
    ! [X: a,Y: a,Z: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ X )
     => ( ( member_a @ X @ g )
       => ( ( member_a @ Y @ g )
         => ( ( member_a @ Z @ g )
           => ( ( ( addition @ Y @ X )
                = ( addition @ Z @ X ) )
              = ( Y = Z ) ) ) ) ) ) ).

% invertible_right_cancel
thf(fact_131_minus__minusset,axiom,
    ! [A2: set_a] :
      ( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) )
      = ( inf_inf_set_a @ A2 @ g ) ) ).

% minus_minusset
thf(fact_132_invertible__inverse__closed,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( member_a @ ( group_inverse_a @ g @ addition @ zero @ U ) @ g ) ) ) ).

% invertible_inverse_closed
thf(fact_133_invertible__inverse__inverse,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( group_inverse_a @ g @ addition @ zero @ ( group_inverse_a @ g @ addition @ zero @ U ) )
          = U ) ) ) ).

% invertible_inverse_inverse
thf(fact_134_invertible__inverse__invertible,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( group_invertible_a @ g @ addition @ zero @ ( group_inverse_a @ g @ addition @ zero @ U ) ) ) ) ).

% invertible_inverse_invertible
thf(fact_135_invertible__left__inverse,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( addition @ ( group_inverse_a @ g @ addition @ zero @ U ) @ U )
          = zero ) ) ) ).

% invertible_left_inverse
thf(fact_136_invertible__right__inverse,axiom,
    ! [U: a] :
      ( ( group_invertible_a @ g @ addition @ zero @ U )
     => ( ( member_a @ U @ g )
       => ( ( addition @ U @ ( group_inverse_a @ g @ addition @ zero @ U ) )
          = zero ) ) ) ).

% invertible_right_inverse
thf(fact_137_card__minusset,axiom,
    ! [A2: set_a] :
      ( ( finite_card_a @ ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 ) )
      = ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) ) ) ).

% card_minusset
thf(fact_138_additive__abelian__group_Ominussetp_Ocong,axiom,
    pluenn1126946703085653920setp_a = pluenn1126946703085653920setp_a ).

% additive_abelian_group.minussetp.cong
thf(fact_139_additive__abelian__group_Ocard__sumset__0__iff_H,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) )
          = zero_zero_nat )
        = ( ( ( finite_card_a @ ( inf_inf_set_a @ A2 @ G ) )
            = zero_zero_nat )
          | ( ( finite_card_a @ ( inf_inf_set_a @ B2 @ G ) )
            = zero_zero_nat ) ) ) ) ).

% additive_abelian_group.card_sumset_0_iff'
thf(fact_140_additive__abelian__group_Osumset__Int__carrier__eq_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( inf_inf_set_a @ A2 @ G ) @ B2 )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ).

% additive_abelian_group.sumset_Int_carrier_eq(2)
thf(fact_141_additive__abelian__group_Osumset__Int__carrier__eq_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( inf_inf_set_a @ B2 @ G ) )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ).

% additive_abelian_group.sumset_Int_carrier_eq(1)
thf(fact_142_additive__abelian__group_Osumset__Int__carrier,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( inf_inf_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ G )
        = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ).

% additive_abelian_group.sumset_Int_carrier
thf(fact_143_additive__abelian__group_Ominus__minusset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) )
        = ( inf_inf_set_a @ A2 @ G ) ) ) ).

% additive_abelian_group.minus_minusset
thf(fact_144_additive__abelian__group_Ofinite__sumset_H,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ G ) )
       => ( ( finite_finite_nat @ ( inf_inf_set_nat @ B2 @ G ) )
         => ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.finite_sumset'
thf(fact_145_additive__abelian__group_Ofinite__sumset_H,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
       => ( ( finite_finite_a @ ( inf_inf_set_a @ B2 @ G ) )
         => ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.finite_sumset'
thf(fact_146_additive__abelian__group_Osumset__subset__insert_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ A2 ) @ B2 ) ) ) ).

% additive_abelian_group.sumset_subset_insert(2)
thf(fact_147_additive__abelian__group_Osumset__subset__insert_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ B2 ) ) ) ) ).

% additive_abelian_group.sumset_subset_insert(1)
thf(fact_148_additive__abelian__group_Ocard__minusset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_card_a @ ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 ) )
        = ( finite_card_a @ ( inf_inf_set_a @ A2 @ G ) ) ) ) ).

% additive_abelian_group.card_minusset
thf(fact_149_additive__abelian__group_Ominussetp_Ocases,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn8372939692575285934tp_nat @ G @ Addition @ Zero @ A2 @ A )
       => ~ ! [A3: nat] :
              ( ( A
                = ( group_inverse_nat @ G @ Addition @ Zero @ A3 ) )
             => ( ( A2 @ A3 )
               => ~ ( member_nat @ A3 @ G ) ) ) ) ) ).

% additive_abelian_group.minussetp.cases
thf(fact_150_additive__abelian__group_Ominussetp_Ocases,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn1126946703085653920setp_a @ G @ Addition @ Zero @ A2 @ A )
       => ~ ! [A3: a] :
              ( ( A
                = ( group_inverse_a @ G @ Addition @ Zero @ A3 ) )
             => ( ( A2 @ A3 )
               => ~ ( member_a @ A3 @ G ) ) ) ) ) ).

% additive_abelian_group.minussetp.cases
thf(fact_151_additive__abelian__group_Ominussetp_Osimps,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn8372939692575285934tp_nat @ G @ Addition @ Zero @ A2 @ A )
        = ( ? [A4: nat] :
              ( ( A
                = ( group_inverse_nat @ G @ Addition @ Zero @ A4 ) )
              & ( A2 @ A4 )
              & ( member_nat @ A4 @ G ) ) ) ) ) ).

% additive_abelian_group.minussetp.simps
thf(fact_152_additive__abelian__group_Ominussetp_Osimps,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn1126946703085653920setp_a @ G @ Addition @ Zero @ A2 @ A )
        = ( ? [A4: a] :
              ( ( A
                = ( group_inverse_a @ G @ Addition @ Zero @ A4 ) )
              & ( A2 @ A4 )
              & ( member_a @ A4 @ G ) ) ) ) ) ).

% additive_abelian_group.minussetp.simps
thf(fact_153_additive__abelian__group_Ominussetp_OminussetI,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: nat > $o,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( A2 @ A )
       => ( ( member_nat @ A @ G )
         => ( pluenn8372939692575285934tp_nat @ G @ Addition @ Zero @ A2 @ ( group_inverse_nat @ G @ Addition @ Zero @ A ) ) ) ) ) ).

% additive_abelian_group.minussetp.minussetI
thf(fact_154_additive__abelian__group_Ominussetp_OminussetI,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: a > $o,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( A2 @ A )
       => ( ( member_a @ A @ G )
         => ( pluenn1126946703085653920setp_a @ G @ Addition @ Zero @ A2 @ ( group_inverse_a @ G @ Addition @ Zero @ A ) ) ) ) ) ).

% additive_abelian_group.minussetp.minussetI
thf(fact_155_additive__abelian__group_Ocard__sumset__0__iff,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ord_less_eq_set_a @ A2 @ G )
       => ( ( ord_less_eq_set_a @ B2 @ G )
         => ( ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) )
              = zero_zero_nat )
            = ( ( ( finite_card_a @ A2 )
                = zero_zero_nat )
              | ( ( finite_card_a @ B2 )
                = zero_zero_nat ) ) ) ) ) ) ).

% additive_abelian_group.card_sumset_0_iff
thf(fact_156_additive__abelian__group_Ocard__le__sumset,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ( member_nat @ A @ A2 )
         => ( ( member_nat @ A @ G )
           => ( ( finite_finite_nat @ B2 )
             => ( ( ord_less_eq_set_nat @ B2 @ G )
               => ( ord_less_eq_nat @ ( finite_card_nat @ B2 ) @ ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) ) ) ) ) ) ) ) ).

% additive_abelian_group.card_le_sumset
thf(fact_157_additive__abelian__group_Ocard__le__sumset,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ( member_a @ A @ A2 )
         => ( ( member_a @ A @ G )
           => ( ( finite_finite_a @ B2 )
             => ( ( ord_less_eq_set_a @ B2 @ G )
               => ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ) ) ) ) ).

% additive_abelian_group.card_le_sumset
thf(fact_158_subgroupI,axiom,
    ! [G: set_a] :
      ( ( ord_less_eq_set_a @ G @ g )
     => ( ( member_a @ zero @ G )
       => ( ! [G2: a,H: a] :
              ( ( member_a @ G2 @ G )
             => ( ( member_a @ H @ G )
               => ( member_a @ ( addition @ G2 @ H ) @ G ) ) )
         => ( ! [G2: a] :
                ( ( member_a @ G2 @ G )
               => ( group_invertible_a @ g @ addition @ zero @ G2 ) )
           => ( ! [G2: a] :
                  ( ( member_a @ G2 @ G )
                 => ( member_a @ ( group_inverse_a @ g @ addition @ zero @ G2 ) @ G ) )
             => ( group_subgroup_a @ G @ g @ addition @ zero ) ) ) ) ) ) ).

% subgroupI
thf(fact_159_card__sumset__singleton__eq,axiom,
    ! [A2: set_a,A: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( member_a @ A @ g )
         => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
            = ( finite_card_a @ ( inf_inf_set_a @ A2 @ g ) ) ) )
        & ( ~ ( member_a @ A @ g )
         => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
            = zero_zero_nat ) ) ) ) ).

% card_sumset_singleton_eq
thf(fact_160_card__sumset__le,axiom,
    ! [A2: set_a,A: a] :
      ( ( finite_finite_a @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ).

% card_sumset_le
thf(fact_161_card_Oinfinite,axiom,
    ! [A2: set_a] :
      ( ~ ( finite_finite_a @ A2 )
     => ( ( finite_card_a @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_162_card_Oinfinite,axiom,
    ! [A2: set_nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_card_nat @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_163_infinite__sumset__aux,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
     => ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) )
        = ( ( inf_inf_set_a @ B2 @ g )
         != bot_bot_set_a ) ) ) ).

% infinite_sumset_aux
thf(fact_164_infinite__sumset__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) )
      = ( ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ g ) )
          & ( ( inf_inf_set_a @ B2 @ g )
           != bot_bot_set_a ) )
        | ( ( ( inf_inf_set_a @ A2 @ g )
           != bot_bot_set_a )
          & ~ ( finite_finite_a @ ( inf_inf_set_a @ B2 @ g ) ) ) ) ) ).

% infinite_sumset_iff
thf(fact_165_minusset__eq,axiom,
    ! [A2: set_a] :
      ( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 )
      = ( image_a_a @ ( group_inverse_a @ g @ addition @ zero ) @ ( inf_inf_set_a @ A2 @ g ) ) ) ).

% minusset_eq
thf(fact_166_Int__insert__left__if0,axiom,
    ! [A: nat,C2: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ A @ C2 )
     => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B2 ) @ C2 )
        = ( inf_inf_set_nat @ B2 @ C2 ) ) ) ).

% Int_insert_left_if0
thf(fact_167_Int__insert__left__if0,axiom,
    ! [A: a,C2: set_a,B2: set_a] :
      ( ~ ( member_a @ A @ C2 )
     => ( ( inf_inf_set_a @ ( insert_a @ A @ B2 ) @ C2 )
        = ( inf_inf_set_a @ B2 @ C2 ) ) ) ).

% Int_insert_left_if0
thf(fact_168_Int__insert__left__if1,axiom,
    ! [A: nat,C2: set_nat,B2: set_nat] :
      ( ( member_nat @ A @ C2 )
     => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B2 ) @ C2 )
        = ( insert_nat @ A @ ( inf_inf_set_nat @ B2 @ C2 ) ) ) ) ).

% Int_insert_left_if1
thf(fact_169_Int__insert__left__if1,axiom,
    ! [A: a,C2: set_a,B2: set_a] :
      ( ( member_a @ A @ C2 )
     => ( ( inf_inf_set_a @ ( insert_a @ A @ B2 ) @ C2 )
        = ( insert_a @ A @ ( inf_inf_set_a @ B2 @ C2 ) ) ) ) ).

% Int_insert_left_if1
thf(fact_170_insert__inter__insert,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ ( insert_a @ A @ B2 ) )
      = ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ).

% insert_inter_insert
thf(fact_171_image__eqI,axiom,
    ! [B: a,F: a > a,X: a,A2: set_a] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_a @ X @ A2 )
       => ( member_a @ B @ ( image_a_a @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_172_image__eqI,axiom,
    ! [B: nat,F: a > nat,X: a,A2: set_a] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_a @ X @ A2 )
       => ( member_nat @ B @ ( image_a_nat @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_173_image__eqI,axiom,
    ! [B: a,F: nat > a,X: nat,A2: set_nat] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_nat @ X @ A2 )
       => ( member_a @ B @ ( image_nat_a @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_174_image__eqI,axiom,
    ! [B: nat,F: nat > nat,X: nat,A2: set_nat] :
      ( ( B
        = ( F @ X ) )
     => ( ( member_nat @ X @ A2 )
       => ( member_nat @ B @ ( image_nat_nat @ F @ A2 ) ) ) ) ).

% image_eqI
thf(fact_175_empty__Collect__eq,axiom,
    ! [P: a > $o] :
      ( ( bot_bot_set_a
        = ( collect_a @ P ) )
      = ( ! [X3: a] :
            ~ ( P @ X3 ) ) ) ).

% empty_Collect_eq
thf(fact_176_Collect__empty__eq,axiom,
    ! [P: a > $o] :
      ( ( ( collect_a @ P )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ~ ( P @ X3 ) ) ) ).

% Collect_empty_eq
thf(fact_177_all__not__in__conv,axiom,
    ! [A2: set_nat] :
      ( ( ! [X3: nat] :
            ~ ( member_nat @ X3 @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% all_not_in_conv
thf(fact_178_all__not__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ! [X3: a] :
            ~ ( member_a @ X3 @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% all_not_in_conv
thf(fact_179_empty__iff,axiom,
    ! [C: nat] :
      ~ ( member_nat @ C @ bot_bot_set_nat ) ).

% empty_iff
thf(fact_180_empty__iff,axiom,
    ! [C: a] :
      ~ ( member_a @ C @ bot_bot_set_a ) ).

% empty_iff
thf(fact_181_subset__antisym,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% subset_antisym
thf(fact_182_subsetI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( member_nat @ X4 @ B2 ) )
     => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% subsetI
thf(fact_183_subsetI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ! [X4: a] :
          ( ( member_a @ X4 @ A2 )
         => ( member_a @ X4 @ B2 ) )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% subsetI
thf(fact_184_insert__absorb2,axiom,
    ! [X: a,A2: set_a] :
      ( ( insert_a @ X @ ( insert_a @ X @ A2 ) )
      = ( insert_a @ X @ A2 ) ) ).

% insert_absorb2
thf(fact_185_insert__iff,axiom,
    ! [A: a,B: a,A2: set_a] :
      ( ( member_a @ A @ ( insert_a @ B @ A2 ) )
      = ( ( A = B )
        | ( member_a @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_186_insert__iff,axiom,
    ! [A: nat,B: nat,A2: set_nat] :
      ( ( member_nat @ A @ ( insert_nat @ B @ A2 ) )
      = ( ( A = B )
        | ( member_nat @ A @ A2 ) ) ) ).

% insert_iff
thf(fact_187_insertCI,axiom,
    ! [A: a,B2: set_a,B: a] :
      ( ( ~ ( member_a @ A @ B2 )
       => ( A = B ) )
     => ( member_a @ A @ ( insert_a @ B @ B2 ) ) ) ).

% insertCI
thf(fact_188_insertCI,axiom,
    ! [A: nat,B2: set_nat,B: nat] :
      ( ( ~ ( member_nat @ A @ B2 )
       => ( A = B ) )
     => ( member_nat @ A @ ( insert_nat @ B @ B2 ) ) ) ).

% insertCI
thf(fact_189_Int__iff,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( inf_inf_set_nat @ A2 @ B2 ) )
      = ( ( member_nat @ C @ A2 )
        & ( member_nat @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_190_Int__iff,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A2 @ B2 ) )
      = ( ( member_a @ C @ A2 )
        & ( member_a @ C @ B2 ) ) ) ).

% Int_iff
thf(fact_191_IntI,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( ( member_nat @ C @ B2 )
       => ( member_nat @ C @ ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ).

% IntI
thf(fact_192_IntI,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ A2 )
     => ( ( member_a @ C @ B2 )
       => ( member_a @ C @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% IntI
thf(fact_193_sumset__empty_H_I1_J,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ g )
        = bot_bot_set_a )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ B2 @ A2 )
        = bot_bot_set_a ) ) ).

% sumset_empty'(1)
thf(fact_194_sumset__empty_H_I2_J,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ g )
        = bot_bot_set_a )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 )
        = bot_bot_set_a ) ) ).

% sumset_empty'(2)
thf(fact_195_image__is__empty,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( ( image_nat_nat @ F @ A2 )
        = bot_bot_set_nat )
      = ( A2 = bot_bot_set_nat ) ) ).

% image_is_empty
thf(fact_196_image__is__empty,axiom,
    ! [F: a > a,A2: set_a] :
      ( ( ( image_a_a @ F @ A2 )
        = bot_bot_set_a )
      = ( A2 = bot_bot_set_a ) ) ).

% image_is_empty
thf(fact_197_empty__is__image,axiom,
    ! [F: nat > nat,A2: set_nat] :
      ( ( bot_bot_set_nat
        = ( image_nat_nat @ F @ A2 ) )
      = ( A2 = bot_bot_set_nat ) ) ).

% empty_is_image
thf(fact_198_empty__is__image,axiom,
    ! [F: a > a,A2: set_a] :
      ( ( bot_bot_set_a
        = ( image_a_a @ F @ A2 ) )
      = ( A2 = bot_bot_set_a ) ) ).

% empty_is_image
thf(fact_199_image__empty,axiom,
    ! [F: nat > nat] :
      ( ( image_nat_nat @ F @ bot_bot_set_nat )
      = bot_bot_set_nat ) ).

% image_empty
thf(fact_200_image__empty,axiom,
    ! [F: a > a] :
      ( ( image_a_a @ F @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% image_empty
thf(fact_201_finite__imageI,axiom,
    ! [F2: set_a,H2: a > a] :
      ( ( finite_finite_a @ F2 )
     => ( finite_finite_a @ ( image_a_a @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_202_finite__imageI,axiom,
    ! [F2: set_a,H2: a > nat] :
      ( ( finite_finite_a @ F2 )
     => ( finite_finite_nat @ ( image_a_nat @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_203_finite__imageI,axiom,
    ! [F2: set_nat,H2: nat > a] :
      ( ( finite_finite_nat @ F2 )
     => ( finite_finite_a @ ( image_nat_a @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_204_finite__imageI,axiom,
    ! [F2: set_nat,H2: nat > nat] :
      ( ( finite_finite_nat @ F2 )
     => ( finite_finite_nat @ ( image_nat_nat @ H2 @ F2 ) ) ) ).

% finite_imageI
thf(fact_205_empty__subsetI,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A2 ) ).

% empty_subsetI
thf(fact_206_subset__empty,axiom,
    ! [A2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ bot_bot_set_a )
      = ( A2 = bot_bot_set_a ) ) ).

% subset_empty
thf(fact_207_insert__image,axiom,
    ! [X: a,A2: set_a,F: a > a] :
      ( ( member_a @ X @ A2 )
     => ( ( insert_a @ ( F @ X ) @ ( image_a_a @ F @ A2 ) )
        = ( image_a_a @ F @ A2 ) ) ) ).

% insert_image
thf(fact_208_insert__image,axiom,
    ! [X: nat,A2: set_nat,F: nat > nat] :
      ( ( member_nat @ X @ A2 )
     => ( ( insert_nat @ ( F @ X ) @ ( image_nat_nat @ F @ A2 ) )
        = ( image_nat_nat @ F @ A2 ) ) ) ).

% insert_image
thf(fact_209_insert__image,axiom,
    ! [X: nat,A2: set_nat,F: nat > a] :
      ( ( member_nat @ X @ A2 )
     => ( ( insert_a @ ( F @ X ) @ ( image_nat_a @ F @ A2 ) )
        = ( image_nat_a @ F @ A2 ) ) ) ).

% insert_image
thf(fact_210_image__insert,axiom,
    ! [F: nat > nat,A: nat,B2: set_nat] :
      ( ( image_nat_nat @ F @ ( insert_nat @ A @ B2 ) )
      = ( insert_nat @ ( F @ A ) @ ( image_nat_nat @ F @ B2 ) ) ) ).

% image_insert
thf(fact_211_image__insert,axiom,
    ! [F: a > a,A: a,B2: set_a] :
      ( ( image_a_a @ F @ ( insert_a @ A @ B2 ) )
      = ( insert_a @ ( F @ A ) @ ( image_a_a @ F @ B2 ) ) ) ).

% image_insert
thf(fact_212_singletonI,axiom,
    ! [A: nat] : ( member_nat @ A @ ( insert_nat @ A @ bot_bot_set_nat ) ) ).

% singletonI
thf(fact_213_singletonI,axiom,
    ! [A: a] : ( member_a @ A @ ( insert_a @ A @ bot_bot_set_a ) ) ).

% singletonI
thf(fact_214_finite__insert,axiom,
    ! [A: a,A2: set_a] :
      ( ( finite_finite_a @ ( insert_a @ A @ A2 ) )
      = ( finite_finite_a @ A2 ) ) ).

% finite_insert
thf(fact_215_finite__insert,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( finite_finite_nat @ ( insert_nat @ A @ A2 ) )
      = ( finite_finite_nat @ A2 ) ) ).

% finite_insert
thf(fact_216_insert__subset,axiom,
    ! [X: nat,A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( insert_nat @ X @ A2 ) @ B2 )
      = ( ( member_nat @ X @ B2 )
        & ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ).

% insert_subset
thf(fact_217_insert__subset,axiom,
    ! [X: a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ ( insert_a @ X @ A2 ) @ B2 )
      = ( ( member_a @ X @ B2 )
        & ( ord_less_eq_set_a @ A2 @ B2 ) ) ) ).

% insert_subset
thf(fact_218_finite__Int,axiom,
    ! [F2: set_nat,G: set_nat] :
      ( ( ( finite_finite_nat @ F2 )
        | ( finite_finite_nat @ G ) )
     => ( finite_finite_nat @ ( inf_inf_set_nat @ F2 @ G ) ) ) ).

% finite_Int
thf(fact_219_finite__Int,axiom,
    ! [F2: set_a,G: set_a] :
      ( ( ( finite_finite_a @ F2 )
        | ( finite_finite_a @ G ) )
     => ( finite_finite_a @ ( inf_inf_set_a @ F2 @ G ) ) ) ).

% finite_Int
thf(fact_220_Int__subset__iff,axiom,
    ! [C2: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ ( inf_inf_set_a @ A2 @ B2 ) )
      = ( ( ord_less_eq_set_a @ C2 @ A2 )
        & ( ord_less_eq_set_a @ C2 @ B2 ) ) ) ).

% Int_subset_iff
thf(fact_221_Int__insert__right__if1,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B2 ) )
        = ( insert_nat @ A @ ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_222_Int__insert__right__if1,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B2 ) )
        = ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% Int_insert_right_if1
thf(fact_223_Int__insert__right__if0,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ A @ A2 )
     => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B2 ) )
        = ( inf_inf_set_nat @ A2 @ B2 ) ) ) ).

% Int_insert_right_if0
thf(fact_224_Int__insert__right__if0,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ~ ( member_a @ A @ A2 )
     => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B2 ) )
        = ( inf_inf_set_a @ A2 @ B2 ) ) ) ).

% Int_insert_right_if0
thf(fact_225_inverse__subgroupI,axiom,
    ! [H3: set_a] :
      ( ( group_subgroup_a @ H3 @ g @ addition @ zero )
     => ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ g @ addition @ zero ) @ H3 ) @ g @ addition @ zero ) ) ).

% inverse_subgroupI
thf(fact_226_singleton__insert__inj__eq,axiom,
    ! [B: a,A: a,A2: set_a] :
      ( ( ( insert_a @ B @ bot_bot_set_a )
        = ( insert_a @ A @ A2 ) )
      = ( ( A = B )
        & ( ord_less_eq_set_a @ A2 @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq
thf(fact_227_singleton__insert__inj__eq_H,axiom,
    ! [A: a,A2: set_a,B: a] :
      ( ( ( insert_a @ A @ A2 )
        = ( insert_a @ B @ bot_bot_set_a ) )
      = ( ( A = B )
        & ( ord_less_eq_set_a @ A2 @ ( insert_a @ B @ bot_bot_set_a ) ) ) ) ).

% singleton_insert_inj_eq'
thf(fact_228_insert__disjoint_I1_J,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ( ( inf_inf_set_nat @ ( insert_nat @ A @ A2 ) @ B2 )
        = bot_bot_set_nat )
      = ( ~ ( member_nat @ A @ B2 )
        & ( ( inf_inf_set_nat @ A2 @ B2 )
          = bot_bot_set_nat ) ) ) ).

% insert_disjoint(1)
thf(fact_229_insert__disjoint_I1_J,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ B2 )
        = bot_bot_set_a )
      = ( ~ ( member_a @ A @ B2 )
        & ( ( inf_inf_set_a @ A2 @ B2 )
          = bot_bot_set_a ) ) ) ).

% insert_disjoint(1)
thf(fact_230_insert__disjoint_I2_J,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ( bot_bot_set_nat
        = ( inf_inf_set_nat @ ( insert_nat @ A @ A2 ) @ B2 ) )
      = ( ~ ( member_nat @ A @ B2 )
        & ( bot_bot_set_nat
          = ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_231_insert__disjoint_I2_J,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( bot_bot_set_a
        = ( inf_inf_set_a @ ( insert_a @ A @ A2 ) @ B2 ) )
      = ( ~ ( member_a @ A @ B2 )
        & ( bot_bot_set_a
          = ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% insert_disjoint(2)
thf(fact_232_disjoint__insert_I1_J,axiom,
    ! [B2: set_nat,A: nat,A2: set_nat] :
      ( ( ( inf_inf_set_nat @ B2 @ ( insert_nat @ A @ A2 ) )
        = bot_bot_set_nat )
      = ( ~ ( member_nat @ A @ B2 )
        & ( ( inf_inf_set_nat @ B2 @ A2 )
          = bot_bot_set_nat ) ) ) ).

% disjoint_insert(1)
thf(fact_233_disjoint__insert_I1_J,axiom,
    ! [B2: set_a,A: a,A2: set_a] :
      ( ( ( inf_inf_set_a @ B2 @ ( insert_a @ A @ A2 ) )
        = bot_bot_set_a )
      = ( ~ ( member_a @ A @ B2 )
        & ( ( inf_inf_set_a @ B2 @ A2 )
          = bot_bot_set_a ) ) ) ).

% disjoint_insert(1)
thf(fact_234_disjoint__insert_I2_J,axiom,
    ! [A2: set_nat,B: nat,B2: set_nat] :
      ( ( bot_bot_set_nat
        = ( inf_inf_set_nat @ A2 @ ( insert_nat @ B @ B2 ) ) )
      = ( ~ ( member_nat @ B @ A2 )
        & ( bot_bot_set_nat
          = ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_235_disjoint__insert_I2_J,axiom,
    ! [A2: set_a,B: a,B2: set_a] :
      ( ( bot_bot_set_a
        = ( inf_inf_set_a @ A2 @ ( insert_a @ B @ B2 ) ) )
      = ( ~ ( member_a @ B @ A2 )
        & ( bot_bot_set_a
          = ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% disjoint_insert(2)
thf(fact_236_card_Oempty,axiom,
    ( ( finite_card_a @ bot_bot_set_a )
    = zero_zero_nat ) ).

% card.empty
thf(fact_237_inverse__subgroupD,axiom,
    ! [H3: set_a] :
      ( ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ g @ addition @ zero ) @ H3 ) @ g @ addition @ zero )
     => ( ( ord_less_eq_set_a @ H3 @ ( group_Units_a @ g @ addition @ zero ) )
       => ( group_subgroup_a @ H3 @ g @ addition @ zero ) ) ) ).

% inverse_subgroupD
thf(fact_238_card__0__eq,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ( finite_card_nat @ A2 )
          = zero_zero_nat )
        = ( A2 = bot_bot_set_nat ) ) ) ).

% card_0_eq
thf(fact_239_card__0__eq,axiom,
    ! [A2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ( finite_card_a @ A2 )
          = zero_zero_nat )
        = ( A2 = bot_bot_set_a ) ) ) ).

% card_0_eq
thf(fact_240_sumset__empty_I1_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% sumset_empty(1)
thf(fact_241_sumset__empty_I2_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ bot_bot_set_a @ A2 )
      = bot_bot_set_a ) ).

% sumset_empty(2)
thf(fact_242_sumset__is__empty__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ( ( inf_inf_set_a @ A2 @ g )
          = bot_bot_set_a )
        | ( ( inf_inf_set_a @ B2 @ g )
          = bot_bot_set_a ) ) ) ).

% sumset_is_empty_iff
thf(fact_243_minusset__is__empty__iff,axiom,
    ! [A2: set_a] :
      ( ( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ A2 )
        = bot_bot_set_a )
      = ( ( inf_inf_set_a @ A2 @ g )
        = bot_bot_set_a ) ) ).

% minusset_is_empty_iff
thf(fact_244_minusset__triv,axiom,
    ( ( pluenn2534204936789923946sset_a @ g @ addition @ zero @ ( insert_a @ zero @ bot_bot_set_a ) )
    = ( insert_a @ zero @ bot_bot_set_a ) ) ).

% minusset_triv
thf(fact_245_sumset__iterated__0,axiom,
    ! [A2: set_a] :
      ( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ zero_zero_nat )
      = ( insert_a @ zero @ bot_bot_set_a ) ) ).

% sumset_iterated_0
thf(fact_246_sumset__D_I1_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ zero @ bot_bot_set_a ) )
      = ( inf_inf_set_a @ A2 @ g ) ) ).

% sumset_D(1)
thf(fact_247_sumset__D_I2_J,axiom,
    ! [A2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ zero @ bot_bot_set_a ) @ A2 )
      = ( inf_inf_set_a @ A2 @ g ) ) ).

% sumset_D(2)
thf(fact_248_rev__image__eqI,axiom,
    ! [X: a,A2: set_a,B: a,F: a > a] :
      ( ( member_a @ X @ A2 )
     => ( ( B
          = ( F @ X ) )
       => ( member_a @ B @ ( image_a_a @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_249_rev__image__eqI,axiom,
    ! [X: a,A2: set_a,B: nat,F: a > nat] :
      ( ( member_a @ X @ A2 )
     => ( ( B
          = ( F @ X ) )
       => ( member_nat @ B @ ( image_a_nat @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_250_rev__image__eqI,axiom,
    ! [X: nat,A2: set_nat,B: a,F: nat > a] :
      ( ( member_nat @ X @ A2 )
     => ( ( B
          = ( F @ X ) )
       => ( member_a @ B @ ( image_nat_a @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_251_rev__image__eqI,axiom,
    ! [X: nat,A2: set_nat,B: nat,F: nat > nat] :
      ( ( member_nat @ X @ A2 )
     => ( ( B
          = ( F @ X ) )
       => ( member_nat @ B @ ( image_nat_nat @ F @ A2 ) ) ) ) ).

% rev_image_eqI
thf(fact_252_ball__imageD,axiom,
    ! [F: a > a,A2: set_a,P: a > $o] :
      ( ! [X4: a] :
          ( ( member_a @ X4 @ ( image_a_a @ F @ A2 ) )
         => ( P @ X4 ) )
     => ! [X2: a] :
          ( ( member_a @ X2 @ A2 )
         => ( P @ ( F @ X2 ) ) ) ) ).

% ball_imageD
thf(fact_253_ball__imageD,axiom,
    ! [F: nat > nat,A2: set_nat,P: nat > $o] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ ( image_nat_nat @ F @ A2 ) )
         => ( P @ X4 ) )
     => ! [X2: nat] :
          ( ( member_nat @ X2 @ A2 )
         => ( P @ ( F @ X2 ) ) ) ) ).

% ball_imageD
thf(fact_254_image__cong,axiom,
    ! [M: set_a,N: set_a,F: a > a,G3: a > a] :
      ( ( M = N )
     => ( ! [X4: a] :
            ( ( member_a @ X4 @ N )
           => ( ( F @ X4 )
              = ( G3 @ X4 ) ) )
       => ( ( image_a_a @ F @ M )
          = ( image_a_a @ G3 @ N ) ) ) ) ).

% image_cong
thf(fact_255_image__cong,axiom,
    ! [M: set_nat,N: set_nat,F: nat > nat,G3: nat > nat] :
      ( ( M = N )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ N )
           => ( ( F @ X4 )
              = ( G3 @ X4 ) ) )
       => ( ( image_nat_nat @ F @ M )
          = ( image_nat_nat @ G3 @ N ) ) ) ) ).

% image_cong
thf(fact_256_ex__in__conv,axiom,
    ! [A2: set_nat] :
      ( ( ? [X3: nat] : ( member_nat @ X3 @ A2 ) )
      = ( A2 != bot_bot_set_nat ) ) ).

% ex_in_conv
thf(fact_257_ex__in__conv,axiom,
    ! [A2: set_a] :
      ( ( ? [X3: a] : ( member_a @ X3 @ A2 ) )
      = ( A2 != bot_bot_set_a ) ) ).

% ex_in_conv
thf(fact_258_bex__imageD,axiom,
    ! [F: a > a,A2: set_a,P: a > $o] :
      ( ? [X2: a] :
          ( ( member_a @ X2 @ ( image_a_a @ F @ A2 ) )
          & ( P @ X2 ) )
     => ? [X4: a] :
          ( ( member_a @ X4 @ A2 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_259_bex__imageD,axiom,
    ! [F: nat > nat,A2: set_nat,P: nat > $o] :
      ( ? [X2: nat] :
          ( ( member_nat @ X2 @ ( image_nat_nat @ F @ A2 ) )
          & ( P @ X2 ) )
     => ? [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
          & ( P @ ( F @ X4 ) ) ) ) ).

% bex_imageD
thf(fact_260_image__iff,axiom,
    ! [Z: a,F: a > a,A2: set_a] :
      ( ( member_a @ Z @ ( image_a_a @ F @ A2 ) )
      = ( ? [X3: a] :
            ( ( member_a @ X3 @ A2 )
            & ( Z
              = ( F @ X3 ) ) ) ) ) ).

% image_iff
thf(fact_261_image__iff,axiom,
    ! [Z: nat,F: nat > nat,A2: set_nat] :
      ( ( member_nat @ Z @ ( image_nat_nat @ F @ A2 ) )
      = ( ? [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
            & ( Z
              = ( F @ X3 ) ) ) ) ) ).

% image_iff
thf(fact_262_equals0I,axiom,
    ! [A2: set_nat] :
      ( ! [Y2: nat] :
          ~ ( member_nat @ Y2 @ A2 )
     => ( A2 = bot_bot_set_nat ) ) ).

% equals0I
thf(fact_263_equals0I,axiom,
    ! [A2: set_a] :
      ( ! [Y2: a] :
          ~ ( member_a @ Y2 @ A2 )
     => ( A2 = bot_bot_set_a ) ) ).

% equals0I
thf(fact_264_equals0D,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( A2 = bot_bot_set_nat )
     => ~ ( member_nat @ A @ A2 ) ) ).

% equals0D
thf(fact_265_equals0D,axiom,
    ! [A2: set_a,A: a] :
      ( ( A2 = bot_bot_set_a )
     => ~ ( member_a @ A @ A2 ) ) ).

% equals0D
thf(fact_266_imageI,axiom,
    ! [X: a,A2: set_a,F: a > a] :
      ( ( member_a @ X @ A2 )
     => ( member_a @ ( F @ X ) @ ( image_a_a @ F @ A2 ) ) ) ).

% imageI
thf(fact_267_imageI,axiom,
    ! [X: a,A2: set_a,F: a > nat] :
      ( ( member_a @ X @ A2 )
     => ( member_nat @ ( F @ X ) @ ( image_a_nat @ F @ A2 ) ) ) ).

% imageI
thf(fact_268_imageI,axiom,
    ! [X: nat,A2: set_nat,F: nat > a] :
      ( ( member_nat @ X @ A2 )
     => ( member_a @ ( F @ X ) @ ( image_nat_a @ F @ A2 ) ) ) ).

% imageI
thf(fact_269_imageI,axiom,
    ! [X: nat,A2: set_nat,F: nat > nat] :
      ( ( member_nat @ X @ A2 )
     => ( member_nat @ ( F @ X ) @ ( image_nat_nat @ F @ A2 ) ) ) ).

% imageI
thf(fact_270_emptyE,axiom,
    ! [A: nat] :
      ~ ( member_nat @ A @ bot_bot_set_nat ) ).

% emptyE
thf(fact_271_emptyE,axiom,
    ! [A: a] :
      ~ ( member_a @ A @ bot_bot_set_a ) ).

% emptyE
thf(fact_272_all__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ! [B6: set_nat] :
            ( ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_nat] :
            ( ( ord_less_eq_set_nat @ B6 @ A2 )
           => ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).

% all_subset_image
thf(fact_273_all__subset__image,axiom,
    ! [F: a > a,A2: set_a,P: set_a > $o] :
      ( ( ! [B6: set_a] :
            ( ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ord_less_eq_set_a @ B6 @ A2 )
           => ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).

% all_subset_image
thf(fact_274_subset__image__iff,axiom,
    ! [B2: set_nat,F: nat > nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F @ A2 ) )
      = ( ? [AA: set_nat] :
            ( ( ord_less_eq_set_nat @ AA @ A2 )
            & ( B2
              = ( image_nat_nat @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_275_subset__image__iff,axiom,
    ! [B2: set_a,F: a > a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ ( image_a_a @ F @ A2 ) )
      = ( ? [AA: set_a] :
            ( ( ord_less_eq_set_a @ AA @ A2 )
            & ( B2
              = ( image_a_a @ F @ AA ) ) ) ) ) ).

% subset_image_iff
thf(fact_276_image__subset__iff,axiom,
    ! [F: nat > nat,A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B2 )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ( member_nat @ ( F @ X3 ) @ B2 ) ) ) ) ).

% image_subset_iff
thf(fact_277_image__subset__iff,axiom,
    ! [F: a > a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ B2 )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ A2 )
           => ( member_a @ ( F @ X3 ) @ B2 ) ) ) ) ).

% image_subset_iff
thf(fact_278_subset__imageE,axiom,
    ! [B2: set_nat,F: nat > nat,A2: set_nat] :
      ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F @ A2 ) )
     => ~ ! [C3: set_nat] :
            ( ( ord_less_eq_set_nat @ C3 @ A2 )
           => ( B2
             != ( image_nat_nat @ F @ C3 ) ) ) ) ).

% subset_imageE
thf(fact_279_subset__imageE,axiom,
    ! [B2: set_a,F: a > a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ ( image_a_a @ F @ A2 ) )
     => ~ ! [C3: set_a] :
            ( ( ord_less_eq_set_a @ C3 @ A2 )
           => ( B2
             != ( image_a_a @ F @ C3 ) ) ) ) ).

% subset_imageE
thf(fact_280_image__subsetI,axiom,
    ! [A2: set_a,F: a > nat,B2: set_nat] :
      ( ! [X4: a] :
          ( ( member_a @ X4 @ A2 )
         => ( member_nat @ ( F @ X4 ) @ B2 ) )
     => ( ord_less_eq_set_nat @ ( image_a_nat @ F @ A2 ) @ B2 ) ) ).

% image_subsetI
thf(fact_281_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > nat,B2: set_nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( member_nat @ ( F @ X4 ) @ B2 ) )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ B2 ) ) ).

% image_subsetI
thf(fact_282_image__subsetI,axiom,
    ! [A2: set_a,F: a > a,B2: set_a] :
      ( ! [X4: a] :
          ( ( member_a @ X4 @ A2 )
         => ( member_a @ ( F @ X4 ) @ B2 ) )
     => ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ B2 ) ) ).

% image_subsetI
thf(fact_283_image__subsetI,axiom,
    ! [A2: set_nat,F: nat > a,B2: set_a] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ( member_a @ ( F @ X4 ) @ B2 ) )
     => ( ord_less_eq_set_a @ ( image_nat_a @ F @ A2 ) @ B2 ) ) ).

% image_subsetI
thf(fact_284_image__mono,axiom,
    ! [A2: set_nat,B2: set_nat,F: nat > nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B2 ) ) ) ).

% image_mono
thf(fact_285_image__mono,axiom,
    ! [A2: set_a,B2: set_a,F: a > a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ord_less_eq_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B2 ) ) ) ).

% image_mono
thf(fact_286_infinite__imp__nonempty,axiom,
    ! [S: set_nat] :
      ( ~ ( finite_finite_nat @ S )
     => ( S != bot_bot_set_nat ) ) ).

% infinite_imp_nonempty
thf(fact_287_infinite__imp__nonempty,axiom,
    ! [S: set_a] :
      ( ~ ( finite_finite_a @ S )
     => ( S != bot_bot_set_a ) ) ).

% infinite_imp_nonempty
thf(fact_288_finite_OemptyI,axiom,
    finite_finite_nat @ bot_bot_set_nat ).

% finite.emptyI
thf(fact_289_finite_OemptyI,axiom,
    finite_finite_a @ bot_bot_set_a ).

% finite.emptyI
thf(fact_290_singleton__inject,axiom,
    ! [A: a,B: a] :
      ( ( ( insert_a @ A @ bot_bot_set_a )
        = ( insert_a @ B @ bot_bot_set_a ) )
     => ( A = B ) ) ).

% singleton_inject
thf(fact_291_insert__not__empty,axiom,
    ! [A: a,A2: set_a] :
      ( ( insert_a @ A @ A2 )
     != bot_bot_set_a ) ).

% insert_not_empty
thf(fact_292_doubleton__eq__iff,axiom,
    ! [A: a,B: a,C: a,D: a] :
      ( ( ( insert_a @ A @ ( insert_a @ B @ bot_bot_set_a ) )
        = ( insert_a @ C @ ( insert_a @ D @ bot_bot_set_a ) ) )
      = ( ( ( A = C )
          & ( B = D ) )
        | ( ( A = D )
          & ( B = C ) ) ) ) ).

% doubleton_eq_iff
thf(fact_293_singleton__iff,axiom,
    ! [B: nat,A: nat] :
      ( ( member_nat @ B @ ( insert_nat @ A @ bot_bot_set_nat ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_294_singleton__iff,axiom,
    ! [B: a,A: a] :
      ( ( member_a @ B @ ( insert_a @ A @ bot_bot_set_a ) )
      = ( B = A ) ) ).

% singleton_iff
thf(fact_295_singletonD,axiom,
    ! [B: nat,A: nat] :
      ( ( member_nat @ B @ ( insert_nat @ A @ bot_bot_set_nat ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_296_singletonD,axiom,
    ! [B: a,A: a] :
      ( ( member_a @ B @ ( insert_a @ A @ bot_bot_set_a ) )
     => ( B = A ) ) ).

% singletonD
thf(fact_297_disjoint__iff__not__equal,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ A2 )
           => ! [Y3: a] :
                ( ( member_a @ Y3 @ B2 )
               => ( X3 != Y3 ) ) ) ) ) ).

% disjoint_iff_not_equal
thf(fact_298_Int__empty__right,axiom,
    ! [A2: set_a] :
      ( ( inf_inf_set_a @ A2 @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% Int_empty_right
thf(fact_299_Int__empty__left,axiom,
    ! [B2: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ B2 )
      = bot_bot_set_a ) ).

% Int_empty_left
thf(fact_300_disjoint__iff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ( inf_inf_set_nat @ A2 @ B2 )
        = bot_bot_set_nat )
      = ( ! [X3: nat] :
            ( ( member_nat @ X3 @ A2 )
           => ~ ( member_nat @ X3 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_301_disjoint__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ A2 )
           => ~ ( member_a @ X3 @ B2 ) ) ) ) ).

% disjoint_iff
thf(fact_302_Int__emptyI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ A2 )
         => ~ ( member_nat @ X4 @ B2 ) )
     => ( ( inf_inf_set_nat @ A2 @ B2 )
        = bot_bot_set_nat ) ) ).

% Int_emptyI
thf(fact_303_Int__emptyI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ! [X4: a] :
          ( ( member_a @ X4 @ A2 )
         => ~ ( member_a @ X4 @ B2 ) )
     => ( ( inf_inf_set_a @ A2 @ B2 )
        = bot_bot_set_a ) ) ).

% Int_emptyI
thf(fact_304_finite__surj,axiom,
    ! [A2: set_a,B2: set_nat,F: a > nat] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_a_nat @ F @ A2 ) )
       => ( finite_finite_nat @ B2 ) ) ) ).

% finite_surj
thf(fact_305_finite__surj,axiom,
    ! [A2: set_nat,B2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F @ A2 ) )
       => ( finite_finite_nat @ B2 ) ) ) ).

% finite_surj
thf(fact_306_finite__surj,axiom,
    ! [A2: set_a,B2: set_a,F: a > a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_a_a @ F @ A2 ) )
       => ( finite_finite_a @ B2 ) ) ) ).

% finite_surj
thf(fact_307_finite__surj,axiom,
    ! [A2: set_nat,B2: set_a,F: nat > a] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_nat_a @ F @ A2 ) )
       => ( finite_finite_a @ B2 ) ) ) ).

% finite_surj
thf(fact_308_finite__subset__image,axiom,
    ! [B2: set_nat,F: nat > nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F @ A2 ) )
       => ? [C3: set_nat] :
            ( ( ord_less_eq_set_nat @ C3 @ A2 )
            & ( finite_finite_nat @ C3 )
            & ( B2
              = ( image_nat_nat @ F @ C3 ) ) ) ) ) ).

% finite_subset_image
thf(fact_309_finite__subset__image,axiom,
    ! [B2: set_nat,F: a > nat,A2: set_a] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_a_nat @ F @ A2 ) )
       => ? [C3: set_a] :
            ( ( ord_less_eq_set_a @ C3 @ A2 )
            & ( finite_finite_a @ C3 )
            & ( B2
              = ( image_a_nat @ F @ C3 ) ) ) ) ) ).

% finite_subset_image
thf(fact_310_finite__subset__image,axiom,
    ! [B2: set_a,F: nat > a,A2: set_nat] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_nat_a @ F @ A2 ) )
       => ? [C3: set_nat] :
            ( ( ord_less_eq_set_nat @ C3 @ A2 )
            & ( finite_finite_nat @ C3 )
            & ( B2
              = ( image_nat_a @ F @ C3 ) ) ) ) ) ).

% finite_subset_image
thf(fact_311_finite__subset__image,axiom,
    ! [B2: set_a,F: a > a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_a_a @ F @ A2 ) )
       => ? [C3: set_a] :
            ( ( ord_less_eq_set_a @ C3 @ A2 )
            & ( finite_finite_a @ C3 )
            & ( B2
              = ( image_a_a @ F @ C3 ) ) ) ) ) ).

% finite_subset_image
thf(fact_312_ex__finite__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ A2 )
            & ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_313_ex__finite__subset__image,axiom,
    ! [F: a > nat,A2: set_a,P: set_nat > $o] :
      ( ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ ( image_a_nat @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ A2 )
            & ( P @ ( image_a_nat @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_314_ex__finite__subset__image,axiom,
    ! [F: nat > a,A2: set_nat,P: set_a > $o] :
      ( ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ ( image_nat_a @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_nat] :
            ( ( finite_finite_nat @ B6 )
            & ( ord_less_eq_set_nat @ B6 @ A2 )
            & ( P @ ( image_nat_a @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_315_ex__finite__subset__image,axiom,
    ! [F: a > a,A2: set_a,P: set_a > $o] :
      ( ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) )
            & ( P @ B6 ) ) )
      = ( ? [B6: set_a] :
            ( ( finite_finite_a @ B6 )
            & ( ord_less_eq_set_a @ B6 @ A2 )
            & ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).

% ex_finite_subset_image
thf(fact_316_all__finite__subset__image,axiom,
    ! [F: nat > nat,A2: set_nat,P: set_nat > $o] :
      ( ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ ( image_nat_nat @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ A2 ) )
           => ( P @ ( image_nat_nat @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_317_all__finite__subset__image,axiom,
    ! [F: a > nat,A2: set_a,P: set_nat > $o] :
      ( ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ ( image_a_nat @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ A2 ) )
           => ( P @ ( image_a_nat @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_318_all__finite__subset__image,axiom,
    ! [F: nat > a,A2: set_nat,P: set_a > $o] :
      ( ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ ( image_nat_a @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_nat] :
            ( ( ( finite_finite_nat @ B6 )
              & ( ord_less_eq_set_nat @ B6 @ A2 ) )
           => ( P @ ( image_nat_a @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_319_all__finite__subset__image,axiom,
    ! [F: a > a,A2: set_a,P: set_a > $o] :
      ( ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ ( image_a_a @ F @ A2 ) ) )
           => ( P @ B6 ) ) )
      = ( ! [B6: set_a] :
            ( ( ( finite_finite_a @ B6 )
              & ( ord_less_eq_set_a @ B6 @ A2 ) )
           => ( P @ ( image_a_a @ F @ B6 ) ) ) ) ) ).

% all_finite_subset_image
thf(fact_320_image__Int__subset,axiom,
    ! [F: nat > nat,A2: set_nat,B2: set_nat] : ( ord_less_eq_set_nat @ ( image_nat_nat @ F @ ( inf_inf_set_nat @ A2 @ B2 ) ) @ ( inf_inf_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B2 ) ) ) ).

% image_Int_subset
thf(fact_321_image__Int__subset,axiom,
    ! [F: a > a,A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( image_a_a @ F @ ( inf_inf_set_a @ A2 @ B2 ) ) @ ( inf_inf_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B2 ) ) ) ).

% image_Int_subset
thf(fact_322_finite__has__maximal,axiom,
    ! [A2: set_set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( A2 != bot_bot_set_set_a )
       => ? [X4: set_a] :
            ( ( member_set_a @ X4 @ A2 )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_323_finite__has__maximal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal
thf(fact_324_finite__has__minimal,axiom,
    ! [A2: set_set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( A2 != bot_bot_set_set_a )
       => ? [X4: set_a] :
            ( ( member_set_a @ X4 @ A2 )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_325_finite__has__minimal,axiom,
    ! [A2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( A2 != bot_bot_set_nat )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal
thf(fact_326_finite_Ocases,axiom,
    ! [A: set_nat] :
      ( ( finite_finite_nat @ A )
     => ( ( A != bot_bot_set_nat )
       => ~ ! [A6: set_nat] :
              ( ? [A3: nat] :
                  ( A
                  = ( insert_nat @ A3 @ A6 ) )
             => ~ ( finite_finite_nat @ A6 ) ) ) ) ).

% finite.cases
thf(fact_327_finite_Ocases,axiom,
    ! [A: set_a] :
      ( ( finite_finite_a @ A )
     => ( ( A != bot_bot_set_a )
       => ~ ! [A6: set_a] :
              ( ? [A3: a] :
                  ( A
                  = ( insert_a @ A3 @ A6 ) )
             => ~ ( finite_finite_a @ A6 ) ) ) ) ).

% finite.cases
thf(fact_328_finite_Osimps,axiom,
    ( finite_finite_nat
    = ( ^ [A4: set_nat] :
          ( ( A4 = bot_bot_set_nat )
          | ? [A7: set_nat,B4: nat] :
              ( ( A4
                = ( insert_nat @ B4 @ A7 ) )
              & ( finite_finite_nat @ A7 ) ) ) ) ) ).

% finite.simps
thf(fact_329_finite_Osimps,axiom,
    ( finite_finite_a
    = ( ^ [A4: set_a] :
          ( ( A4 = bot_bot_set_a )
          | ? [A7: set_a,B4: a] :
              ( ( A4
                = ( insert_a @ B4 @ A7 ) )
              & ( finite_finite_a @ A7 ) ) ) ) ) ).

% finite.simps
thf(fact_330_finite__induct,axiom,
    ! [F2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X4: nat,F3: set_nat] :
              ( ( finite_finite_nat @ F3 )
             => ( ~ ( member_nat @ X4 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_nat @ X4 @ F3 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_331_finite__induct,axiom,
    ! [F2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X4: a,F3: set_a] :
              ( ( finite_finite_a @ F3 )
             => ( ~ ( member_a @ X4 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_a @ X4 @ F3 ) ) ) ) )
         => ( P @ F2 ) ) ) ) ).

% finite_induct
thf(fact_332_finite__ne__induct,axiom,
    ! [F2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( F2 != bot_bot_set_nat )
       => ( ! [X4: nat] : ( P @ ( insert_nat @ X4 @ bot_bot_set_nat ) )
         => ( ! [X4: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( F3 != bot_bot_set_nat )
                 => ( ~ ( member_nat @ X4 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_nat @ X4 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_333_finite__ne__induct,axiom,
    ! [F2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( F2 != bot_bot_set_a )
       => ( ! [X4: a] : ( P @ ( insert_a @ X4 @ bot_bot_set_a ) )
         => ( ! [X4: a,F3: set_a] :
                ( ( finite_finite_a @ F3 )
               => ( ( F3 != bot_bot_set_a )
                 => ( ~ ( member_a @ X4 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_a @ X4 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_ne_induct
thf(fact_334_infinite__finite__induct,axiom,
    ! [P: set_nat > $o,A2: set_nat] :
      ( ! [A6: set_nat] :
          ( ~ ( finite_finite_nat @ A6 )
         => ( P @ A6 ) )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X4: nat,F3: set_nat] :
              ( ( finite_finite_nat @ F3 )
             => ( ~ ( member_nat @ X4 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_nat @ X4 @ F3 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_335_infinite__finite__induct,axiom,
    ! [P: set_a > $o,A2: set_a] :
      ( ! [A6: set_a] :
          ( ~ ( finite_finite_a @ A6 )
         => ( P @ A6 ) )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X4: a,F3: set_a] :
              ( ( finite_finite_a @ F3 )
             => ( ~ ( member_a @ X4 @ F3 )
               => ( ( P @ F3 )
                 => ( P @ ( insert_a @ X4 @ F3 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% infinite_finite_induct
thf(fact_336_subset__singletonD,axiom,
    ! [A2: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) )
     => ( ( A2 = bot_bot_set_a )
        | ( A2
          = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).

% subset_singletonD
thf(fact_337_subset__singleton__iff,axiom,
    ! [X5: set_a,A: a] :
      ( ( ord_less_eq_set_a @ X5 @ ( insert_a @ A @ bot_bot_set_a ) )
      = ( ( X5 = bot_bot_set_a )
        | ( X5
          = ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).

% subset_singleton_iff
thf(fact_338_card__image__le,axiom,
    ! [A2: set_a,F: a > a] :
      ( ( finite_finite_a @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_a @ ( image_a_a @ F @ A2 ) ) @ ( finite_card_a @ A2 ) ) ) ).

% card_image_le
thf(fact_339_card__image__le,axiom,
    ! [A2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_nat @ ( image_nat_nat @ F @ A2 ) ) @ ( finite_card_nat @ A2 ) ) ) ).

% card_image_le
thf(fact_340_card__image__le,axiom,
    ! [A2: set_nat,F: nat > a] :
      ( ( finite_finite_nat @ A2 )
     => ( ord_less_eq_nat @ ( finite_card_a @ ( image_nat_a @ F @ A2 ) ) @ ( finite_card_nat @ A2 ) ) ) ).

% card_image_le
thf(fact_341_finite__subset__induct,axiom,
    ! [F2: set_nat,A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ord_less_eq_set_nat @ F2 @ A2 )
       => ( ( P @ bot_bot_set_nat )
         => ( ! [A3: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( member_nat @ A3 @ A2 )
                 => ( ~ ( member_nat @ A3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_nat @ A3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_342_finite__subset__induct,axiom,
    ! [F2: set_a,A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( ord_less_eq_set_a @ F2 @ A2 )
       => ( ( P @ bot_bot_set_a )
         => ( ! [A3: a,F3: set_a] :
                ( ( finite_finite_a @ F3 )
               => ( ( member_a @ A3 @ A2 )
                 => ( ~ ( member_a @ A3 @ F3 )
                   => ( ( P @ F3 )
                     => ( P @ ( insert_a @ A3 @ F3 ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct
thf(fact_343_finite__subset__induct_H,axiom,
    ! [F2: set_nat,A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ F2 )
     => ( ( ord_less_eq_set_nat @ F2 @ A2 )
       => ( ( P @ bot_bot_set_nat )
         => ( ! [A3: nat,F3: set_nat] :
                ( ( finite_finite_nat @ F3 )
               => ( ( member_nat @ A3 @ A2 )
                 => ( ( ord_less_eq_set_nat @ F3 @ A2 )
                   => ( ~ ( member_nat @ A3 @ F3 )
                     => ( ( P @ F3 )
                       => ( P @ ( insert_nat @ A3 @ F3 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_344_finite__subset__induct_H,axiom,
    ! [F2: set_a,A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ F2 )
     => ( ( ord_less_eq_set_a @ F2 @ A2 )
       => ( ( P @ bot_bot_set_a )
         => ( ! [A3: a,F3: set_a] :
                ( ( finite_finite_a @ F3 )
               => ( ( member_a @ A3 @ A2 )
                 => ( ( ord_less_eq_set_a @ F3 @ A2 )
                   => ( ~ ( member_a @ A3 @ F3 )
                     => ( ( P @ F3 )
                       => ( P @ ( insert_a @ A3 @ F3 ) ) ) ) ) ) )
           => ( P @ F2 ) ) ) ) ) ).

% finite_subset_induct'
thf(fact_345_card__eq__0__iff,axiom,
    ! [A2: set_nat] :
      ( ( ( finite_card_nat @ A2 )
        = zero_zero_nat )
      = ( ( A2 = bot_bot_set_nat )
        | ~ ( finite_finite_nat @ A2 ) ) ) ).

% card_eq_0_iff
thf(fact_346_card__eq__0__iff,axiom,
    ! [A2: set_a] :
      ( ( ( finite_card_a @ A2 )
        = zero_zero_nat )
      = ( ( A2 = bot_bot_set_a )
        | ~ ( finite_finite_a @ A2 ) ) ) ).

% card_eq_0_iff
thf(fact_347_additive__abelian__group_Osumset__empty_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ bot_bot_set_a )
        = bot_bot_set_a ) ) ).

% additive_abelian_group.sumset_empty(1)
thf(fact_348_additive__abelian__group_Osumset__empty_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ bot_bot_set_a @ A2 )
        = bot_bot_set_a ) ) ).

% additive_abelian_group.sumset_empty(2)
thf(fact_349_surj__card__le,axiom,
    ! [A2: set_nat,B2: set_nat,F: nat > nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_nat @ B2 @ ( image_nat_nat @ F @ A2 ) )
       => ( ord_less_eq_nat @ ( finite_card_nat @ B2 ) @ ( finite_card_nat @ A2 ) ) ) ) ).

% surj_card_le
thf(fact_350_surj__card__le,axiom,
    ! [A2: set_a,B2: set_a,F: a > a] :
      ( ( finite_finite_a @ A2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_a_a @ F @ A2 ) )
       => ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite_card_a @ A2 ) ) ) ) ).

% surj_card_le
thf(fact_351_surj__card__le,axiom,
    ! [A2: set_nat,B2: set_a,F: nat > a] :
      ( ( finite_finite_nat @ A2 )
     => ( ( ord_less_eq_set_a @ B2 @ ( image_nat_a @ F @ A2 ) )
       => ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite_card_nat @ A2 ) ) ) ) ).

% surj_card_le
thf(fact_352_Collect__mono__iff,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) )
      = ( ! [X3: a] :
            ( ( P @ X3 )
           => ( Q @ X3 ) ) ) ) ).

% Collect_mono_iff
thf(fact_353_set__eq__subset,axiom,
    ( ( ^ [Y4: set_a,Z2: set_a] : ( Y4 = Z2 ) )
    = ( ^ [A7: set_a,B6: set_a] :
          ( ( ord_less_eq_set_a @ A7 @ B6 )
          & ( ord_less_eq_set_a @ B6 @ A7 ) ) ) ) ).

% set_eq_subset
thf(fact_354_subset__trans,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ord_less_eq_set_a @ A2 @ C2 ) ) ) ).

% subset_trans
thf(fact_355_Collect__mono,axiom,
    ! [P: a > $o,Q: a > $o] :
      ( ! [X4: a] :
          ( ( P @ X4 )
         => ( Q @ X4 ) )
     => ( ord_less_eq_set_a @ ( collect_a @ P ) @ ( collect_a @ Q ) ) ) ).

% Collect_mono
thf(fact_356_subset__refl,axiom,
    ! [A2: set_a] : ( ord_less_eq_set_a @ A2 @ A2 ) ).

% subset_refl
thf(fact_357_subset__iff,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A7: set_nat,B6: set_nat] :
        ! [T: nat] :
          ( ( member_nat @ T @ A7 )
         => ( member_nat @ T @ B6 ) ) ) ) ).

% subset_iff
thf(fact_358_subset__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A7: set_a,B6: set_a] :
        ! [T: a] :
          ( ( member_a @ T @ A7 )
         => ( member_a @ T @ B6 ) ) ) ) ).

% subset_iff
thf(fact_359_equalityD2,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_a @ B2 @ A2 ) ) ).

% equalityD2
thf(fact_360_equalityD1,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% equalityD1
thf(fact_361_subset__eq,axiom,
    ( ord_less_eq_set_nat
    = ( ^ [A7: set_nat,B6: set_nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ A7 )
         => ( member_nat @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_362_subset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A7: set_a,B6: set_a] :
        ! [X3: a] :
          ( ( member_a @ X3 @ A7 )
         => ( member_a @ X3 @ B6 ) ) ) ) ).

% subset_eq
thf(fact_363_equalityE,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( A2 = B2 )
     => ~ ( ( ord_less_eq_set_a @ A2 @ B2 )
         => ~ ( ord_less_eq_set_a @ B2 @ A2 ) ) ) ).

% equalityE
thf(fact_364_subsetD,axiom,
    ! [A2: set_nat,B2: set_nat,C: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B2 ) ) ) ).

% subsetD
thf(fact_365_subsetD,axiom,
    ! [A2: set_a,B2: set_a,C: a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( member_a @ C @ A2 )
       => ( member_a @ C @ B2 ) ) ) ).

% subsetD
thf(fact_366_in__mono,axiom,
    ! [A2: set_nat,B2: set_nat,X: nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( member_nat @ X @ A2 )
       => ( member_nat @ X @ B2 ) ) ) ).

% in_mono
thf(fact_367_in__mono,axiom,
    ! [A2: set_a,B2: set_a,X: a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( member_a @ X @ A2 )
       => ( member_a @ X @ B2 ) ) ) ).

% in_mono
thf(fact_368_mk__disjoint__insert,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ? [B7: set_a] :
          ( ( A2
            = ( insert_a @ A @ B7 ) )
          & ~ ( member_a @ A @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_369_mk__disjoint__insert,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ? [B7: set_nat] :
          ( ( A2
            = ( insert_nat @ A @ B7 ) )
          & ~ ( member_nat @ A @ B7 ) ) ) ).

% mk_disjoint_insert
thf(fact_370_insert__commute,axiom,
    ! [X: a,Y: a,A2: set_a] :
      ( ( insert_a @ X @ ( insert_a @ Y @ A2 ) )
      = ( insert_a @ Y @ ( insert_a @ X @ A2 ) ) ) ).

% insert_commute
thf(fact_371_insert__eq__iff,axiom,
    ! [A: a,A2: set_a,B: a,B2: set_a] :
      ( ~ ( member_a @ A @ A2 )
     => ( ~ ( member_a @ B @ B2 )
       => ( ( ( insert_a @ A @ A2 )
            = ( insert_a @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A2 = B2 ) )
            & ( ( A != B )
             => ? [C4: set_a] :
                  ( ( A2
                    = ( insert_a @ B @ C4 ) )
                  & ~ ( member_a @ B @ C4 )
                  & ( B2
                    = ( insert_a @ A @ C4 ) )
                  & ~ ( member_a @ A @ C4 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_372_insert__eq__iff,axiom,
    ! [A: nat,A2: set_nat,B: nat,B2: set_nat] :
      ( ~ ( member_nat @ A @ A2 )
     => ( ~ ( member_nat @ B @ B2 )
       => ( ( ( insert_nat @ A @ A2 )
            = ( insert_nat @ B @ B2 ) )
          = ( ( ( A = B )
             => ( A2 = B2 ) )
            & ( ( A != B )
             => ? [C4: set_nat] :
                  ( ( A2
                    = ( insert_nat @ B @ C4 ) )
                  & ~ ( member_nat @ B @ C4 )
                  & ( B2
                    = ( insert_nat @ A @ C4 ) )
                  & ~ ( member_nat @ A @ C4 ) ) ) ) ) ) ) ).

% insert_eq_iff
thf(fact_373_insert__absorb,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( insert_a @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_374_insert__absorb,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( insert_nat @ A @ A2 )
        = A2 ) ) ).

% insert_absorb
thf(fact_375_insert__ident,axiom,
    ! [X: a,A2: set_a,B2: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ~ ( member_a @ X @ B2 )
       => ( ( ( insert_a @ X @ A2 )
            = ( insert_a @ X @ B2 ) )
          = ( A2 = B2 ) ) ) ) ).

% insert_ident
thf(fact_376_insert__ident,axiom,
    ! [X: nat,A2: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ~ ( member_nat @ X @ B2 )
       => ( ( ( insert_nat @ X @ A2 )
            = ( insert_nat @ X @ B2 ) )
          = ( A2 = B2 ) ) ) ) ).

% insert_ident
thf(fact_377_Set_Oset__insert,axiom,
    ! [X: a,A2: set_a] :
      ( ( member_a @ X @ A2 )
     => ~ ! [B7: set_a] :
            ( ( A2
              = ( insert_a @ X @ B7 ) )
           => ( member_a @ X @ B7 ) ) ) ).

% Set.set_insert
thf(fact_378_Set_Oset__insert,axiom,
    ! [X: nat,A2: set_nat] :
      ( ( member_nat @ X @ A2 )
     => ~ ! [B7: set_nat] :
            ( ( A2
              = ( insert_nat @ X @ B7 ) )
           => ( member_nat @ X @ B7 ) ) ) ).

% Set.set_insert
thf(fact_379_insertI2,axiom,
    ! [A: a,B2: set_a,B: a] :
      ( ( member_a @ A @ B2 )
     => ( member_a @ A @ ( insert_a @ B @ B2 ) ) ) ).

% insertI2
thf(fact_380_insertI2,axiom,
    ! [A: nat,B2: set_nat,B: nat] :
      ( ( member_nat @ A @ B2 )
     => ( member_nat @ A @ ( insert_nat @ B @ B2 ) ) ) ).

% insertI2
thf(fact_381_insertI1,axiom,
    ! [A: a,B2: set_a] : ( member_a @ A @ ( insert_a @ A @ B2 ) ) ).

% insertI1
thf(fact_382_insertI1,axiom,
    ! [A: nat,B2: set_nat] : ( member_nat @ A @ ( insert_nat @ A @ B2 ) ) ).

% insertI1
thf(fact_383_insertE,axiom,
    ! [A: a,B: a,A2: set_a] :
      ( ( member_a @ A @ ( insert_a @ B @ A2 ) )
     => ( ( A != B )
       => ( member_a @ A @ A2 ) ) ) ).

% insertE
thf(fact_384_insertE,axiom,
    ! [A: nat,B: nat,A2: set_nat] :
      ( ( member_nat @ A @ ( insert_nat @ B @ A2 ) )
     => ( ( A != B )
       => ( member_nat @ A @ A2 ) ) ) ).

% insertE
thf(fact_385_Int__left__commute,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C2 ) )
      = ( inf_inf_set_a @ B2 @ ( inf_inf_set_a @ A2 @ C2 ) ) ) ).

% Int_left_commute
thf(fact_386_Int__left__absorb,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ A2 @ B2 ) )
      = ( inf_inf_set_a @ A2 @ B2 ) ) ).

% Int_left_absorb
thf(fact_387_Int__commute,axiom,
    ( inf_inf_set_a
    = ( ^ [A7: set_a,B6: set_a] : ( inf_inf_set_a @ B6 @ A7 ) ) ) ).

% Int_commute
thf(fact_388_Int__absorb,axiom,
    ! [A2: set_a] :
      ( ( inf_inf_set_a @ A2 @ A2 )
      = A2 ) ).

% Int_absorb
thf(fact_389_Int__assoc,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C2 )
      = ( inf_inf_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C2 ) ) ) ).

% Int_assoc
thf(fact_390_IntD2,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( inf_inf_set_nat @ A2 @ B2 ) )
     => ( member_nat @ C @ B2 ) ) ).

% IntD2
thf(fact_391_IntD2,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A2 @ B2 ) )
     => ( member_a @ C @ B2 ) ) ).

% IntD2
thf(fact_392_IntD1,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( inf_inf_set_nat @ A2 @ B2 ) )
     => ( member_nat @ C @ A2 ) ) ).

% IntD1
thf(fact_393_IntD1,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A2 @ B2 ) )
     => ( member_a @ C @ A2 ) ) ).

% IntD1
thf(fact_394_IntE,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( inf_inf_set_nat @ A2 @ B2 ) )
     => ~ ( ( member_nat @ C @ A2 )
         => ~ ( member_nat @ C @ B2 ) ) ) ).

% IntE
thf(fact_395_IntE,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( inf_inf_set_a @ A2 @ B2 ) )
     => ~ ( ( member_a @ C @ A2 )
         => ~ ( member_a @ C @ B2 ) ) ) ).

% IntE
thf(fact_396_additive__abelian__group_Osumset__empty_H_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( inf_inf_set_a @ A2 @ G )
          = bot_bot_set_a )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 )
          = bot_bot_set_a ) ) ) ).

% additive_abelian_group.sumset_empty'(2)
thf(fact_397_additive__abelian__group_Osumset__empty_H_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( inf_inf_set_a @ A2 @ G )
          = bot_bot_set_a )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ B2 @ A2 )
          = bot_bot_set_a ) ) ) ).

% additive_abelian_group.sumset_empty'(1)
thf(fact_398_additive__abelian__group_Osumset__is__empty__iff,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 )
          = bot_bot_set_a )
        = ( ( ( inf_inf_set_a @ A2 @ G )
            = bot_bot_set_a )
          | ( ( inf_inf_set_a @ B2 @ G )
            = bot_bot_set_a ) ) ) ) ).

% additive_abelian_group.sumset_is_empty_iff
thf(fact_399_additive__abelian__group_Ominusset__triv,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ ( insert_a @ Zero @ bot_bot_set_a ) )
        = ( insert_a @ Zero @ bot_bot_set_a ) ) ) ).

% additive_abelian_group.minusset_triv
thf(fact_400_additive__abelian__group_Ominusset__is__empty__iff,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 )
          = bot_bot_set_a )
        = ( ( inf_inf_set_a @ A2 @ G )
          = bot_bot_set_a ) ) ) ).

% additive_abelian_group.minusset_is_empty_iff
thf(fact_401_additive__abelian__group_Ominusset__eq,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( pluenn7323955030898006884et_nat @ G @ Addition @ Zero @ A2 )
        = ( image_nat_nat @ ( group_inverse_nat @ G @ Addition @ Zero ) @ ( inf_inf_set_nat @ A2 @ G ) ) ) ) ).

% additive_abelian_group.minusset_eq
thf(fact_402_additive__abelian__group_Ominusset__eq,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn2534204936789923946sset_a @ G @ Addition @ Zero @ A2 )
        = ( image_a_a @ ( group_inverse_a @ G @ Addition @ Zero ) @ ( inf_inf_set_a @ A2 @ G ) ) ) ) ).

% additive_abelian_group.minusset_eq
thf(fact_403_additive__abelian__group_Oinfinite__sumset__aux,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ~ ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ G ) )
       => ( ( ~ ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) )
          = ( ( inf_inf_set_nat @ B2 @ G )
           != bot_bot_set_nat ) ) ) ) ).

% additive_abelian_group.infinite_sumset_aux
thf(fact_404_additive__abelian__group_Oinfinite__sumset__aux,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
       => ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) )
          = ( ( inf_inf_set_a @ B2 @ G )
           != bot_bot_set_a ) ) ) ) ).

% additive_abelian_group.infinite_sumset_aux
thf(fact_405_additive__abelian__group_Oinfinite__sumset__iff,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,B2: set_nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( ~ ( finite_finite_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ B2 ) ) )
        = ( ( ~ ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ G ) )
            & ( ( inf_inf_set_nat @ B2 @ G )
             != bot_bot_set_nat ) )
          | ( ( ( inf_inf_set_nat @ A2 @ G )
             != bot_bot_set_nat )
            & ~ ( finite_finite_nat @ ( inf_inf_set_nat @ B2 @ G ) ) ) ) ) ) ).

% additive_abelian_group.infinite_sumset_iff
thf(fact_406_additive__abelian__group_Oinfinite__sumset__iff,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ~ ( finite_finite_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) )
        = ( ( ~ ( finite_finite_a @ ( inf_inf_set_a @ A2 @ G ) )
            & ( ( inf_inf_set_a @ B2 @ G )
             != bot_bot_set_a ) )
          | ( ( ( inf_inf_set_a @ A2 @ G )
             != bot_bot_set_a )
            & ~ ( finite_finite_a @ ( inf_inf_set_a @ B2 @ G ) ) ) ) ) ) ).

% additive_abelian_group.infinite_sumset_iff
thf(fact_407_additive__abelian__group_Osumset__D_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ Zero @ bot_bot_set_a ) @ A2 )
        = ( inf_inf_set_a @ A2 @ G ) ) ) ).

% additive_abelian_group.sumset_D(2)
thf(fact_408_additive__abelian__group_Osumset__D_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ Zero @ bot_bot_set_a ) )
        = ( inf_inf_set_a @ A2 @ G ) ) ) ).

% additive_abelian_group.sumset_D(1)
thf(fact_409_additive__abelian__group_Osumset__iterated__0,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ zero_zero_nat )
        = ( insert_a @ Zero @ bot_bot_set_a ) ) ) ).

% additive_abelian_group.sumset_iterated_0
thf(fact_410_finite__has__minimal2,axiom,
    ! [A2: set_set_a,A: set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( member_set_a @ A @ A2 )
       => ? [X4: set_a] :
            ( ( member_set_a @ X4 @ A2 )
            & ( ord_less_eq_set_a @ X4 @ A )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_411_finite__has__minimal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ( ord_less_eq_nat @ X4 @ A )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X4 )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_412_finite__has__maximal2,axiom,
    ! [A2: set_set_a,A: set_a] :
      ( ( finite_finite_set_a @ A2 )
     => ( ( member_set_a @ A @ A2 )
       => ? [X4: set_a] :
            ( ( member_set_a @ X4 @ A2 )
            & ( ord_less_eq_set_a @ A @ X4 )
            & ! [Xa: set_a] :
                ( ( member_set_a @ Xa @ A2 )
               => ( ( ord_less_eq_set_a @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_413_finite__has__maximal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
            & ( ord_less_eq_nat @ A @ X4 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X4 @ Xa )
                 => ( X4 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_414_additive__abelian__group_Ocard__sumset__le,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ord_less_eq_nat @ ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ) ) ).

% additive_abelian_group.card_sumset_le
thf(fact_415_additive__abelian__group_Ocard__sumset__le,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ord_less_eq_nat @ ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ).

% additive_abelian_group.card_sumset_le
thf(fact_416_rev__finite__subset,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_417_rev__finite__subset,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ A2 @ B2 )
       => ( finite_finite_a @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_418_infinite__super,axiom,
    ! [S: set_nat,T2: set_nat] :
      ( ( ord_less_eq_set_nat @ S @ T2 )
     => ( ~ ( finite_finite_nat @ S )
       => ~ ( finite_finite_nat @ T2 ) ) ) ).

% infinite_super
thf(fact_419_infinite__super,axiom,
    ! [S: set_a,T2: set_a] :
      ( ( ord_less_eq_set_a @ S @ T2 )
     => ( ~ ( finite_finite_a @ S )
       => ~ ( finite_finite_a @ T2 ) ) ) ).

% infinite_super
thf(fact_420_finite__subset,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( finite_finite_nat @ B2 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_421_finite__subset,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( finite_finite_a @ B2 )
       => ( finite_finite_a @ A2 ) ) ) ).

% finite_subset
thf(fact_422_finite_OinsertI,axiom,
    ! [A2: set_a,A: a] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_a @ ( insert_a @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_423_finite_OinsertI,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite_finite_nat @ ( insert_nat @ A @ A2 ) ) ) ).

% finite.insertI
thf(fact_424_subset__insertI2,axiom,
    ! [A2: set_a,B2: set_a,B: a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ord_less_eq_set_a @ A2 @ ( insert_a @ B @ B2 ) ) ) ).

% subset_insertI2
thf(fact_425_subset__insertI,axiom,
    ! [B2: set_a,A: a] : ( ord_less_eq_set_a @ B2 @ ( insert_a @ A @ B2 ) ) ).

% subset_insertI
thf(fact_426_subset__insert,axiom,
    ! [X: nat,A2: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X @ B2 ) )
        = ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ).

% subset_insert
thf(fact_427_subset__insert,axiom,
    ! [X: a,A2: set_a,B2: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B2 ) )
        = ( ord_less_eq_set_a @ A2 @ B2 ) ) ) ).

% subset_insert
thf(fact_428_insert__mono,axiom,
    ! [C2: set_a,D2: set_a,A: a] :
      ( ( ord_less_eq_set_a @ C2 @ D2 )
     => ( ord_less_eq_set_a @ ( insert_a @ A @ C2 ) @ ( insert_a @ A @ D2 ) ) ) ).

% insert_mono
thf(fact_429_Int__Collect__mono,axiom,
    ! [A2: set_nat,B2: set_nat,P: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ A2 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_less_eq_set_nat @ ( inf_inf_set_nat @ A2 @ ( collect_nat @ P ) ) @ ( inf_inf_set_nat @ B2 @ ( collect_nat @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_430_Int__Collect__mono,axiom,
    ! [A2: set_a,B2: set_a,P: a > $o,Q: a > $o] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ! [X4: a] :
            ( ( member_a @ X4 @ A2 )
           => ( ( P @ X4 )
             => ( Q @ X4 ) ) )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ ( collect_a @ P ) ) @ ( inf_inf_set_a @ B2 @ ( collect_a @ Q ) ) ) ) ) ).

% Int_Collect_mono
thf(fact_431_Int__greatest,axiom,
    ! [C2: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ A2 )
     => ( ( ord_less_eq_set_a @ C2 @ B2 )
       => ( ord_less_eq_set_a @ C2 @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% Int_greatest
thf(fact_432_Int__absorb2,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( inf_inf_set_a @ A2 @ B2 )
        = A2 ) ) ).

% Int_absorb2
thf(fact_433_Int__absorb1,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( ( inf_inf_set_a @ A2 @ B2 )
        = B2 ) ) ).

% Int_absorb1
thf(fact_434_Int__lower2,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ B2 ) ).

% Int_lower2
thf(fact_435_Int__lower1,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ A2 ) ).

% Int_lower1
thf(fact_436_Int__mono,axiom,
    ! [A2: set_a,C2: set_a,B2: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C2 )
     => ( ( ord_less_eq_set_a @ B2 @ D2 )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( inf_inf_set_a @ C2 @ D2 ) ) ) ) ).

% Int_mono
thf(fact_437_Int__insert__right,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ( ( member_nat @ A @ A2 )
       => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B2 ) )
          = ( insert_nat @ A @ ( inf_inf_set_nat @ A2 @ B2 ) ) ) )
      & ( ~ ( member_nat @ A @ A2 )
       => ( ( inf_inf_set_nat @ A2 @ ( insert_nat @ A @ B2 ) )
          = ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ).

% Int_insert_right
thf(fact_438_Int__insert__right,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( ( member_a @ A @ A2 )
       => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B2 ) )
          = ( insert_a @ A @ ( inf_inf_set_a @ A2 @ B2 ) ) ) )
      & ( ~ ( member_a @ A @ A2 )
       => ( ( inf_inf_set_a @ A2 @ ( insert_a @ A @ B2 ) )
          = ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ).

% Int_insert_right
thf(fact_439_Int__insert__left,axiom,
    ! [A: nat,C2: set_nat,B2: set_nat] :
      ( ( ( member_nat @ A @ C2 )
       => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B2 ) @ C2 )
          = ( insert_nat @ A @ ( inf_inf_set_nat @ B2 @ C2 ) ) ) )
      & ( ~ ( member_nat @ A @ C2 )
       => ( ( inf_inf_set_nat @ ( insert_nat @ A @ B2 ) @ C2 )
          = ( inf_inf_set_nat @ B2 @ C2 ) ) ) ) ).

% Int_insert_left
thf(fact_440_Int__insert__left,axiom,
    ! [A: a,C2: set_a,B2: set_a] :
      ( ( ( member_a @ A @ C2 )
       => ( ( inf_inf_set_a @ ( insert_a @ A @ B2 ) @ C2 )
          = ( insert_a @ A @ ( inf_inf_set_a @ B2 @ C2 ) ) ) )
      & ( ~ ( member_a @ A @ C2 )
       => ( ( inf_inf_set_a @ ( insert_a @ A @ B2 ) @ C2 )
          = ( inf_inf_set_a @ B2 @ C2 ) ) ) ) ).

% Int_insert_left
thf(fact_441_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
    ! [G: set_nat,Addition: nat > nat > nat,Zero: nat,A2: set_nat,A: nat] :
      ( ( pluenn2073725187428264546up_nat @ G @ Addition @ Zero )
     => ( ( finite_finite_nat @ A2 )
       => ( ( ( member_nat @ A @ G )
           => ( ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
              = ( finite_card_nat @ ( inf_inf_set_nat @ A2 @ G ) ) ) )
          & ( ~ ( member_nat @ A @ G )
           => ( ( finite_card_nat @ ( pluenn3669378163024332905et_nat @ G @ Addition @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
              = zero_zero_nat ) ) ) ) ) ).

% additive_abelian_group.card_sumset_singleton_eq
thf(fact_442_additive__abelian__group_Ocard__sumset__singleton__eq,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( finite_finite_a @ A2 )
       => ( ( ( member_a @ A @ G )
           => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
              = ( finite_card_a @ ( inf_inf_set_a @ A2 @ G ) ) ) )
          & ( ~ ( member_a @ A @ G )
           => ( ( finite_card_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
              = zero_zero_nat ) ) ) ) ) ).

% additive_abelian_group.card_sumset_singleton_eq
thf(fact_443_card__subset__eq,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ( finite_card_nat @ A2 )
            = ( finite_card_nat @ B2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_subset_eq
thf(fact_444_card__subset__eq,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ A2 @ B2 )
       => ( ( ( finite_card_a @ A2 )
            = ( finite_card_a @ B2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_subset_eq
thf(fact_445_infinite__arbitrarily__large,axiom,
    ! [A2: set_nat,N2: nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ? [B7: set_nat] :
          ( ( finite_finite_nat @ B7 )
          & ( ( finite_card_nat @ B7 )
            = N2 )
          & ( ord_less_eq_set_nat @ B7 @ A2 ) ) ) ).

% infinite_arbitrarily_large
thf(fact_446_infinite__arbitrarily__large,axiom,
    ! [A2: set_a,N2: nat] :
      ( ~ ( finite_finite_a @ A2 )
     => ? [B7: set_a] :
          ( ( finite_finite_a @ B7 )
          & ( ( finite_card_a @ B7 )
            = N2 )
          & ( ord_less_eq_set_a @ B7 @ A2 ) ) ) ).

% infinite_arbitrarily_large
thf(fact_447_card__insert__le,axiom,
    ! [A2: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ ( insert_a @ X @ A2 ) ) ) ).

% card_insert_le
thf(fact_448_card__mono,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ).

% card_mono
thf(fact_449_card__mono,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ).

% card_mono
thf(fact_450_card__seteq,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ord_less_eq_nat @ ( finite_card_nat @ B2 ) @ ( finite_card_nat @ A2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_seteq
thf(fact_451_card__seteq,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ A2 @ B2 )
       => ( ( ord_less_eq_nat @ ( finite_card_a @ B2 ) @ ( finite_card_a @ A2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_seteq
thf(fact_452_exists__subset__between,axiom,
    ! [A2: set_nat,N2: nat,C2: set_nat] :
      ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ ( finite_card_nat @ C2 ) )
       => ( ( ord_less_eq_set_nat @ A2 @ C2 )
         => ( ( finite_finite_nat @ C2 )
           => ? [B7: set_nat] :
                ( ( ord_less_eq_set_nat @ A2 @ B7 )
                & ( ord_less_eq_set_nat @ B7 @ C2 )
                & ( ( finite_card_nat @ B7 )
                  = N2 ) ) ) ) ) ) ).

% exists_subset_between
thf(fact_453_exists__subset__between,axiom,
    ! [A2: set_a,N2: nat,C2: set_a] :
      ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ ( finite_card_a @ C2 ) )
       => ( ( ord_less_eq_set_a @ A2 @ C2 )
         => ( ( finite_finite_a @ C2 )
           => ? [B7: set_a] :
                ( ( ord_less_eq_set_a @ A2 @ B7 )
                & ( ord_less_eq_set_a @ B7 @ C2 )
                & ( ( finite_card_a @ B7 )
                  = N2 ) ) ) ) ) ) ).

% exists_subset_between
thf(fact_454_obtain__subset__with__card__n,axiom,
    ! [N2: nat,S: set_nat] :
      ( ( ord_less_eq_nat @ N2 @ ( finite_card_nat @ S ) )
     => ~ ! [T3: set_nat] :
            ( ( ord_less_eq_set_nat @ T3 @ S )
           => ( ( ( finite_card_nat @ T3 )
                = N2 )
             => ~ ( finite_finite_nat @ T3 ) ) ) ) ).

% obtain_subset_with_card_n
thf(fact_455_obtain__subset__with__card__n,axiom,
    ! [N2: nat,S: set_a] :
      ( ( ord_less_eq_nat @ N2 @ ( finite_card_a @ S ) )
     => ~ ! [T3: set_a] :
            ( ( ord_less_eq_set_a @ T3 @ S )
           => ( ( ( finite_card_a @ T3 )
                = N2 )
             => ~ ( finite_finite_a @ T3 ) ) ) ) ).

% obtain_subset_with_card_n
thf(fact_456_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_nat,C2: nat] :
      ( ! [G4: set_nat] :
          ( ( ord_less_eq_set_nat @ G4 @ F2 )
         => ( ( finite_finite_nat @ G4 )
           => ( ord_less_eq_nat @ ( finite_card_nat @ G4 ) @ C2 ) ) )
     => ( ( finite_finite_nat @ F2 )
        & ( ord_less_eq_nat @ ( finite_card_nat @ F2 ) @ C2 ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_457_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_a,C2: nat] :
      ( ! [G4: set_a] :
          ( ( ord_less_eq_set_a @ G4 @ F2 )
         => ( ( finite_finite_a @ G4 )
           => ( ord_less_eq_nat @ ( finite_card_a @ G4 ) @ C2 ) ) )
     => ( ( finite_finite_a @ F2 )
        & ( ord_less_eq_nat @ ( finite_card_a @ F2 ) @ C2 ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_458_group_Oinverse__subgroupD,axiom,
    ! [G: set_nat,Composition: nat > nat > nat,Unit: nat,H3: set_nat] :
      ( ( group_group_nat @ G @ Composition @ Unit )
     => ( ( group_subgroup_nat @ ( image_nat_nat @ ( group_inverse_nat @ G @ Composition @ Unit ) @ H3 ) @ G @ Composition @ Unit )
       => ( ( ord_less_eq_set_nat @ H3 @ ( group_Units_nat @ G @ Composition @ Unit ) )
         => ( group_subgroup_nat @ H3 @ G @ Composition @ Unit ) ) ) ) ).

% group.inverse_subgroupD
thf(fact_459_group_Oinverse__subgroupD,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a,H3: set_a] :
      ( ( group_group_a @ G @ Composition @ Unit )
     => ( ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ G @ Composition @ Unit ) @ H3 ) @ G @ Composition @ Unit )
       => ( ( ord_less_eq_set_a @ H3 @ ( group_Units_a @ G @ Composition @ Unit ) )
         => ( group_subgroup_a @ H3 @ G @ Composition @ Unit ) ) ) ) ).

% group.inverse_subgroupD
thf(fact_460_sumset__iterated__empty,axiom,
    ! [R: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ R )
     => ( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ bot_bot_set_a @ R )
        = bot_bot_set_a ) ) ).

% sumset_iterated_empty
thf(fact_461_sumsetdiff__sing,axiom,
    ! [A2: set_a,B2: set_a,X: a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( minus_minus_set_a @ A2 @ B2 ) @ ( insert_a @ X @ bot_bot_set_a ) )
      = ( minus_minus_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ B2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ).

% sumsetdiff_sing
thf(fact_462_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_463_le0,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% le0
thf(fact_464_boolean__algebra_Oconj__zero__right,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_zero_right
thf(fact_465_boolean__algebra_Oconj__zero__left,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ X )
      = bot_bot_set_a ) ).

% boolean_algebra.conj_zero_left
thf(fact_466_inf__bot__right,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ bot_bot_set_a )
      = bot_bot_set_a ) ).

% inf_bot_right
thf(fact_467_inf__bot__left,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ bot_bot_set_a @ X )
      = bot_bot_set_a ) ).

% inf_bot_left
thf(fact_468_inf_Oidem,axiom,
    ! [A: set_a] :
      ( ( inf_inf_set_a @ A @ A )
      = A ) ).

% inf.idem
thf(fact_469_inf__idem,axiom,
    ! [X: set_a] :
      ( ( inf_inf_set_a @ X @ X )
      = X ) ).

% inf_idem
thf(fact_470_inf_Oleft__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( inf_inf_set_a @ A @ ( inf_inf_set_a @ A @ B ) )
      = ( inf_inf_set_a @ A @ B ) ) ).

% inf.left_idem
thf(fact_471_inf__left__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% inf_left_idem
thf(fact_472_inf_Oright__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B ) @ B )
      = ( inf_inf_set_a @ A @ B ) ) ).

% inf.right_idem
thf(fact_473_inf__right__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% inf_right_idem
thf(fact_474_Diff__idemp,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ B2 )
      = ( minus_minus_set_a @ A2 @ B2 ) ) ).

% Diff_idemp
thf(fact_475_Diff__iff,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
      = ( ( member_nat @ C @ A2 )
        & ~ ( member_nat @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_476_Diff__iff,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
      = ( ( member_a @ C @ A2 )
        & ~ ( member_a @ C @ B2 ) ) ) ).

% Diff_iff
thf(fact_477_DiffI,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( ~ ( member_nat @ C @ B2 )
       => ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_478_DiffI,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ A2 )
     => ( ~ ( member_a @ C @ B2 )
       => ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ) ).

% DiffI
thf(fact_479_le__inf__iff,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( ( ord_less_eq_set_a @ X @ Y )
        & ( ord_less_eq_set_a @ X @ Z ) ) ) ).

% le_inf_iff
thf(fact_480_le__inf__iff,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) )
      = ( ( ord_less_eq_nat @ X @ Y )
        & ( ord_less_eq_nat @ X @ Z ) ) ) ).

% le_inf_iff
thf(fact_481_inf_Obounded__iff,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
      = ( ( ord_less_eq_set_a @ A @ B )
        & ( ord_less_eq_set_a @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_482_inf_Obounded__iff,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
      = ( ( ord_less_eq_nat @ A @ B )
        & ( ord_less_eq_nat @ A @ C ) ) ) ).

% inf.bounded_iff
thf(fact_483_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_484_neq0__conv,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% neq0_conv
thf(fact_485_less__nat__zero__code,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_486_Diff__empty,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Diff_empty
thf(fact_487_empty__Diff,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ bot_bot_set_a @ A2 )
      = bot_bot_set_a ) ).

% empty_Diff
thf(fact_488_Diff__cancel,axiom,
    ! [A2: set_a] :
      ( ( minus_minus_set_a @ A2 @ A2 )
      = bot_bot_set_a ) ).

% Diff_cancel
thf(fact_489_finite__Diff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% finite_Diff
thf(fact_490_finite__Diff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% finite_Diff
thf(fact_491_finite__Diff2,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) )
        = ( finite_finite_nat @ A2 ) ) ) ).

% finite_Diff2
thf(fact_492_finite__Diff2,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B2 ) )
        = ( finite_finite_a @ A2 ) ) ) ).

% finite_Diff2
thf(fact_493_Diff__insert0,axiom,
    ! [X: nat,A2: set_nat,B2: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ B2 ) )
        = ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% Diff_insert0
thf(fact_494_Diff__insert0,axiom,
    ! [X: a,A2: set_a,B2: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( minus_minus_set_a @ A2 @ ( insert_a @ X @ B2 ) )
        = ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% Diff_insert0
thf(fact_495_insert__Diff1,axiom,
    ! [X: nat,B2: set_nat,A2: set_nat] :
      ( ( member_nat @ X @ B2 )
     => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ B2 )
        = ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% insert_Diff1
thf(fact_496_insert__Diff1,axiom,
    ! [X: a,B2: set_a,A2: set_a] :
      ( ( member_a @ X @ B2 )
     => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B2 )
        = ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% insert_Diff1
thf(fact_497_Diff__eq__empty__iff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( minus_minus_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% Diff_eq_empty_iff
thf(fact_498_insert__Diff__single,axiom,
    ! [A: a,A2: set_a] :
      ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
      = ( insert_a @ A @ A2 ) ) ).

% insert_Diff_single
thf(fact_499_finite__Diff__insert,axiom,
    ! [A2: set_nat,A: nat,B2: set_nat] :
      ( ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B2 ) ) )
      = ( finite_finite_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% finite_Diff_insert
thf(fact_500_finite__Diff__insert,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( finite_finite_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) ) )
      = ( finite_finite_a @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% finite_Diff_insert
thf(fact_501_Diff__disjoint,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B2 @ A2 ) )
      = bot_bot_set_a ) ).

% Diff_disjoint
thf(fact_502_bot__nat__def,axiom,
    bot_bot_nat = zero_zero_nat ).

% bot_nat_def
thf(fact_503_DiffD2,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
     => ~ ( member_nat @ C @ B2 ) ) ).

% DiffD2
thf(fact_504_DiffD2,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ~ ( member_a @ C @ B2 ) ) ).

% DiffD2
thf(fact_505_DiffD1,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
     => ( member_nat @ C @ A2 ) ) ).

% DiffD1
thf(fact_506_DiffD1,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ( member_a @ C @ A2 ) ) ).

% DiffD1
thf(fact_507_DiffE,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( minus_minus_set_nat @ A2 @ B2 ) )
     => ~ ( ( member_nat @ C @ A2 )
         => ( member_nat @ C @ B2 ) ) ) ).

% DiffE
thf(fact_508_DiffE,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( minus_minus_set_a @ A2 @ B2 ) )
     => ~ ( ( member_a @ C @ A2 )
         => ( member_a @ C @ B2 ) ) ) ).

% DiffE
thf(fact_509_inf_Ostrict__coboundedI2,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ C )
     => ( ord_less_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.strict_coboundedI2
thf(fact_510_inf_Ostrict__coboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ B @ C )
     => ( ord_less_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.strict_coboundedI2
thf(fact_511_inf_Ostrict__coboundedI1,axiom,
    ! [A: set_a,C: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ C )
     => ( ord_less_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.strict_coboundedI1
thf(fact_512_inf_Ostrict__coboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_nat @ A @ C )
     => ( ord_less_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.strict_coboundedI1
thf(fact_513_inf_Ostrict__order__iff,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( A4
            = ( inf_inf_set_a @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% inf.strict_order_iff
thf(fact_514_inf_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( A4
            = ( inf_inf_nat @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% inf.strict_order_iff
thf(fact_515_inf_Ostrict__boundedE,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
     => ~ ( ( ord_less_set_a @ A @ B )
         => ~ ( ord_less_set_a @ A @ C ) ) ) ).

% inf.strict_boundedE
thf(fact_516_inf_Ostrict__boundedE,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( inf_inf_nat @ B @ C ) )
     => ~ ( ( ord_less_nat @ A @ B )
         => ~ ( ord_less_nat @ A @ C ) ) ) ).

% inf.strict_boundedE
thf(fact_517_inf_Oabsorb4,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ( inf_inf_set_a @ A @ B )
        = B ) ) ).

% inf.absorb4
thf(fact_518_inf_Oabsorb4,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( inf_inf_nat @ A @ B )
        = B ) ) ).

% inf.absorb4
thf(fact_519_inf_Oabsorb3,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( inf_inf_set_a @ A @ B )
        = A ) ) ).

% inf.absorb3
thf(fact_520_inf_Oabsorb3,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( inf_inf_nat @ A @ B )
        = A ) ) ).

% inf.absorb3
thf(fact_521_less__infI2,axiom,
    ! [B: set_a,X: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ X )
     => ( ord_less_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).

% less_infI2
thf(fact_522_less__infI2,axiom,
    ! [B: nat,X: nat,A: nat] :
      ( ( ord_less_nat @ B @ X )
     => ( ord_less_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).

% less_infI2
thf(fact_523_less__infI1,axiom,
    ! [A: set_a,X: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ X )
     => ( ord_less_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).

% less_infI1
thf(fact_524_less__infI1,axiom,
    ! [A: nat,X: nat,B: nat] :
      ( ( ord_less_nat @ A @ X )
     => ( ord_less_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).

% less_infI1
thf(fact_525_infinite__descent0,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P @ N3 )
             => ? [M2: nat] :
                  ( ( ord_less_nat @ M2 @ N3 )
                  & ~ ( P @ M2 ) ) ) )
       => ( P @ N2 ) ) ) ).

% infinite_descent0
thf(fact_526_gr__implies__not0,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_527_less__zeroE,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% less_zeroE
thf(fact_528_not__less0,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less0
thf(fact_529_not__gr0,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr0
thf(fact_530_gr0I,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr0I
thf(fact_531_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_532_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M4: nat,N4: nat] :
          ( ( ord_less_eq_nat @ M4 @ N4 )
          & ( M4 != N4 ) ) ) ) ).

% nat_less_le
thf(fact_533_less__imp__le__nat,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% less_imp_le_nat
thf(fact_534_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M4: nat,N4: nat] :
          ( ( ord_less_nat @ M4 @ N4 )
          | ( M4 = N4 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_535_less__or__eq__imp__le,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ( ord_less_nat @ M3 @ N2 )
        | ( M3 = N2 ) )
     => ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% less_or_eq_imp_le
thf(fact_536_le__neq__implies__less,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ( M3 != N2 )
       => ( ord_less_nat @ M3 @ N2 ) ) ) ).

% le_neq_implies_less
thf(fact_537_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_538_nat__neq__iff,axiom,
    ! [M3: nat,N2: nat] :
      ( ( M3 != N2 )
      = ( ( ord_less_nat @ M3 @ N2 )
        | ( ord_less_nat @ N2 @ M3 ) ) ) ).

% nat_neq_iff
thf(fact_539_less__not__refl,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_not_refl
thf(fact_540_less__not__refl2,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ N2 @ M3 )
     => ( M3 != N2 ) ) ).

% less_not_refl2
thf(fact_541_less__not__refl3,axiom,
    ! [S2: nat,T4: nat] :
      ( ( ord_less_nat @ S2 @ T4 )
     => ( S2 != T4 ) ) ).

% less_not_refl3
thf(fact_542_less__irrefl__nat,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ N2 ) ).

% less_irrefl_nat
thf(fact_543_nat__less__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N2 ) ) ).

% nat_less_induct
thf(fact_544_infinite__descent,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ~ ( P @ N3 )
         => ? [M2: nat] :
              ( ( ord_less_nat @ M2 @ N3 )
              & ~ ( P @ M2 ) ) )
     => ( P @ N2 ) ) ).

% infinite_descent
thf(fact_545_linorder__neqE__nat,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE_nat
thf(fact_546_in__image__insert__iff,axiom,
    ! [B2: set_set_nat,X: nat,A2: set_nat] :
      ( ! [C3: set_nat] :
          ( ( member_set_nat @ C3 @ B2 )
         => ~ ( member_nat @ X @ C3 ) )
     => ( ( member_set_nat @ A2 @ ( image_7916887816326733075et_nat @ ( insert_nat @ X ) @ B2 ) )
        = ( ( member_nat @ X @ A2 )
          & ( member_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ B2 ) ) ) ) ).

% in_image_insert_iff
thf(fact_547_in__image__insert__iff,axiom,
    ! [B2: set_set_a,X: a,A2: set_a] :
      ( ! [C3: set_a] :
          ( ( member_set_a @ C3 @ B2 )
         => ~ ( member_a @ X @ C3 ) )
     => ( ( member_set_a @ A2 @ ( image_set_a_set_a @ ( insert_a @ X ) @ B2 ) )
        = ( ( member_a @ X @ A2 )
          & ( member_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B2 ) ) ) ) ).

% in_image_insert_iff
thf(fact_548_card__less__sym__Diff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) )
         => ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ B2 @ A2 ) ) ) ) ) ) ).

% card_less_sym_Diff
thf(fact_549_card__less__sym__Diff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( ( ord_less_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) )
         => ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) ) @ ( finite_card_a @ ( minus_minus_set_a @ B2 @ A2 ) ) ) ) ) ) ).

% card_less_sym_Diff
thf(fact_550_bot__set__def,axiom,
    ( bot_bot_set_a
    = ( collect_a @ bot_bot_a_o ) ) ).

% bot_set_def
thf(fact_551_Diff__infinite__finite,axiom,
    ! [T2: set_nat,S: set_nat] :
      ( ( finite_finite_nat @ T2 )
     => ( ~ ( finite_finite_nat @ S )
       => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ T2 ) ) ) ) ).

% Diff_infinite_finite
thf(fact_552_Diff__infinite__finite,axiom,
    ! [T2: set_a,S: set_a] :
      ( ( finite_finite_a @ T2 )
     => ( ~ ( finite_finite_a @ S )
       => ~ ( finite_finite_a @ ( minus_minus_set_a @ S @ T2 ) ) ) ) ).

% Diff_infinite_finite
thf(fact_553_Diff__mono,axiom,
    ! [A2: set_a,C2: set_a,D2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C2 )
     => ( ( ord_less_eq_set_a @ D2 @ B2 )
       => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ C2 @ D2 ) ) ) ) ).

% Diff_mono
thf(fact_554_Diff__subset,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ A2 ) ).

% Diff_subset
thf(fact_555_double__diff,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ( minus_minus_set_a @ B2 @ ( minus_minus_set_a @ C2 @ A2 ) )
          = A2 ) ) ) ).

% double_diff
thf(fact_556_insert__Diff__if,axiom,
    ! [X: nat,B2: set_nat,A2: set_nat] :
      ( ( ( member_nat @ X @ B2 )
       => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ B2 )
          = ( minus_minus_set_nat @ A2 @ B2 ) ) )
      & ( ~ ( member_nat @ X @ B2 )
       => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ B2 )
          = ( insert_nat @ X @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_557_insert__Diff__if,axiom,
    ! [X: a,B2: set_a,A2: set_a] :
      ( ( ( member_a @ X @ B2 )
       => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B2 )
          = ( minus_minus_set_a @ A2 @ B2 ) ) )
      & ( ~ ( member_a @ X @ B2 )
       => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ B2 )
          = ( insert_a @ X @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ) ) ).

% insert_Diff_if
thf(fact_558_Int__Diff,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C2 )
      = ( inf_inf_set_a @ A2 @ ( minus_minus_set_a @ B2 @ C2 ) ) ) ).

% Int_Diff
thf(fact_559_Diff__Int2,axiom,
    ! [A2: set_a,C2: set_a,B2: set_a] :
      ( ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C2 ) @ ( inf_inf_set_a @ B2 @ C2 ) )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C2 ) @ B2 ) ) ).

% Diff_Int2
thf(fact_560_Diff__Diff__Int,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( minus_minus_set_a @ A2 @ B2 ) )
      = ( inf_inf_set_a @ A2 @ B2 ) ) ).

% Diff_Diff_Int
thf(fact_561_Diff__Int__distrib,axiom,
    ! [C2: set_a,A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ C2 @ ( minus_minus_set_a @ A2 @ B2 ) )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ C2 @ A2 ) @ ( inf_inf_set_a @ C2 @ B2 ) ) ) ).

% Diff_Int_distrib
thf(fact_562_Diff__Int__distrib2,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ C2 )
      = ( minus_minus_set_a @ ( inf_inf_set_a @ A2 @ C2 ) @ ( inf_inf_set_a @ B2 @ C2 ) ) ) ).

% Diff_Int_distrib2
thf(fact_563_diff__shunt__var,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ( minus_minus_set_a @ X @ Y )
        = bot_bot_set_a )
      = ( ord_less_eq_set_a @ X @ Y ) ) ).

% diff_shunt_var
thf(fact_564_ex__least__nat__le,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N2 )
            & ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ K2 )
               => ~ ( P @ I3 ) )
            & ( P @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_565_card__Diff1__less__iff,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) )
      = ( ( finite_finite_nat @ A2 )
        & ( member_nat @ X @ A2 ) ) ) ).

% card_Diff1_less_iff
thf(fact_566_card__Diff1__less__iff,axiom,
    ! [A2: set_a,X: a] :
      ( ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) )
      = ( ( finite_finite_a @ A2 )
        & ( member_a @ X @ A2 ) ) ) ).

% card_Diff1_less_iff
thf(fact_567_card__Diff2__less,axiom,
    ! [A2: set_nat,X: nat,Y: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X @ A2 )
       => ( ( member_nat @ Y @ A2 )
         => ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ ( insert_nat @ Y @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ) ) ) ).

% card_Diff2_less
thf(fact_568_card__Diff2__less,axiom,
    ! [A2: set_a,X: a,Y: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ X @ A2 )
       => ( ( member_a @ Y @ A2 )
         => ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( insert_a @ Y @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ) ).

% card_Diff2_less
thf(fact_569_card__Diff1__less,axiom,
    ! [A2: set_nat,X: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ X @ A2 )
       => ( ord_less_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) ) @ ( finite_card_nat @ A2 ) ) ) ) ).

% card_Diff1_less
thf(fact_570_card__Diff1__less,axiom,
    ! [A2: set_a,X: a] :
      ( ( finite_finite_a @ A2 )
     => ( ( member_a @ X @ A2 )
       => ( ord_less_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ) ) ).

% card_Diff1_less
thf(fact_571_image__diff__subset,axiom,
    ! [F: nat > nat,A2: set_nat,B2: set_nat] : ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B2 ) ) @ ( image_nat_nat @ F @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ).

% image_diff_subset
thf(fact_572_image__diff__subset,axiom,
    ! [F: a > a,A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ ( minus_minus_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B2 ) ) @ ( image_a_a @ F @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ).

% image_diff_subset
thf(fact_573_Diff__insert__absorb,axiom,
    ! [X: nat,A2: set_nat] :
      ( ~ ( member_nat @ X @ A2 )
     => ( ( minus_minus_set_nat @ ( insert_nat @ X @ A2 ) @ ( insert_nat @ X @ bot_bot_set_nat ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_574_Diff__insert__absorb,axiom,
    ! [X: a,A2: set_a] :
      ( ~ ( member_a @ X @ A2 )
     => ( ( minus_minus_set_a @ ( insert_a @ X @ A2 ) @ ( insert_a @ X @ bot_bot_set_a ) )
        = A2 ) ) ).

% Diff_insert_absorb
thf(fact_575_Diff__insert2,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) )
      = ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) @ B2 ) ) ).

% Diff_insert2
thf(fact_576_insert__Diff,axiom,
    ! [A: nat,A2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ( insert_nat @ A @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ bot_bot_set_nat ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_577_insert__Diff,axiom,
    ! [A: a,A2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ( insert_a @ A @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ bot_bot_set_a ) ) )
        = A2 ) ) ).

% insert_Diff
thf(fact_578_Diff__insert,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) )
      = ( minus_minus_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( insert_a @ A @ bot_bot_set_a ) ) ) ).

% Diff_insert
thf(fact_579_subset__Diff__insert,axiom,
    ! [A2: set_nat,B2: set_nat,X: nat,C2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( minus_minus_set_nat @ B2 @ ( insert_nat @ X @ C2 ) ) )
      = ( ( ord_less_eq_set_nat @ A2 @ ( minus_minus_set_nat @ B2 @ C2 ) )
        & ~ ( member_nat @ X @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_580_subset__Diff__insert,axiom,
    ! [A2: set_a,B2: set_a,X: a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B2 @ ( insert_a @ X @ C2 ) ) )
      = ( ( ord_less_eq_set_a @ A2 @ ( minus_minus_set_a @ B2 @ C2 ) )
        & ~ ( member_a @ X @ A2 ) ) ) ).

% subset_Diff_insert
thf(fact_581_Int__Diff__disjoint,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ A2 @ B2 ) )
      = bot_bot_set_a ) ).

% Int_Diff_disjoint
thf(fact_582_Diff__triv,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( inf_inf_set_a @ A2 @ B2 )
        = bot_bot_set_a )
     => ( ( minus_minus_set_a @ A2 @ B2 )
        = A2 ) ) ).

% Diff_triv
thf(fact_583_finite__empty__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( P @ A2 )
       => ( ! [A3: nat,A6: set_nat] :
              ( ( finite_finite_nat @ A6 )
             => ( ( member_nat @ A3 @ A6 )
               => ( ( P @ A6 )
                 => ( P @ ( minus_minus_set_nat @ A6 @ ( insert_nat @ A3 @ bot_bot_set_nat ) ) ) ) ) )
         => ( P @ bot_bot_set_nat ) ) ) ) ).

% finite_empty_induct
thf(fact_584_finite__empty__induct,axiom,
    ! [A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ( P @ A2 )
       => ( ! [A3: a,A6: set_a] :
              ( ( finite_finite_a @ A6 )
             => ( ( member_a @ A3 @ A6 )
               => ( ( P @ A6 )
                 => ( P @ ( minus_minus_set_a @ A6 @ ( insert_a @ A3 @ bot_bot_set_a ) ) ) ) ) )
         => ( P @ bot_bot_set_a ) ) ) ) ).

% finite_empty_induct
thf(fact_585_infinite__coinduct,axiom,
    ! [X5: set_nat > $o,A2: set_nat] :
      ( ( X5 @ A2 )
     => ( ! [A6: set_nat] :
            ( ( X5 @ A6 )
           => ? [X2: nat] :
                ( ( member_nat @ X2 @ A6 )
                & ( ( X5 @ ( minus_minus_set_nat @ A6 @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) )
                  | ~ ( finite_finite_nat @ ( minus_minus_set_nat @ A6 @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) ) ) )
       => ~ ( finite_finite_nat @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_586_infinite__coinduct,axiom,
    ! [X5: set_a > $o,A2: set_a] :
      ( ( X5 @ A2 )
     => ( ! [A6: set_a] :
            ( ( X5 @ A6 )
           => ? [X2: a] :
                ( ( member_a @ X2 @ A6 )
                & ( ( X5 @ ( minus_minus_set_a @ A6 @ ( insert_a @ X2 @ bot_bot_set_a ) ) )
                  | ~ ( finite_finite_a @ ( minus_minus_set_a @ A6 @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) ) ) )
       => ~ ( finite_finite_a @ A2 ) ) ) ).

% infinite_coinduct
thf(fact_587_infinite__remove,axiom,
    ! [S: set_nat,A: nat] :
      ( ~ ( finite_finite_nat @ S )
     => ~ ( finite_finite_nat @ ( minus_minus_set_nat @ S @ ( insert_nat @ A @ bot_bot_set_nat ) ) ) ) ).

% infinite_remove
thf(fact_588_infinite__remove,axiom,
    ! [S: set_a,A: a] :
      ( ~ ( finite_finite_a @ S )
     => ~ ( finite_finite_a @ ( minus_minus_set_a @ S @ ( insert_a @ A @ bot_bot_set_a ) ) ) ) ).

% infinite_remove
thf(fact_589_Diff__single__insert,axiom,
    ! [A2: set_a,X: a,B2: set_a] :
      ( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B2 )
     => ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B2 ) ) ) ).

% Diff_single_insert
thf(fact_590_subset__insert__iff,axiom,
    ! [A2: set_nat,X: nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ ( insert_nat @ X @ B2 ) )
      = ( ( ( member_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ B2 ) )
        & ( ~ ( member_nat @ X @ A2 )
         => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_591_subset__insert__iff,axiom,
    ! [A2: set_a,X: a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ ( insert_a @ X @ B2 ) )
      = ( ( ( member_a @ X @ A2 )
         => ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B2 ) )
        & ( ~ ( member_a @ X @ A2 )
         => ( ord_less_eq_set_a @ A2 @ B2 ) ) ) ) ).

% subset_insert_iff
thf(fact_592_card__le__sym__Diff,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( finite_finite_nat @ B2 )
       => ( ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ B2 @ A2 ) ) ) ) ) ) ).

% card_le_sym_Diff
thf(fact_593_card__le__sym__Diff,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ A2 )
     => ( ( finite_finite_a @ B2 )
       => ( ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) ) @ ( finite_card_a @ ( minus_minus_set_a @ B2 @ A2 ) ) ) ) ) ) ).

% card_le_sym_Diff
thf(fact_594_card__ge__0__finite,axiom,
    ! [A2: set_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ A2 ) )
     => ( finite_finite_a @ A2 ) ) ).

% card_ge_0_finite
thf(fact_595_card__ge__0__finite,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A2 ) )
     => ( finite_finite_nat @ A2 ) ) ).

% card_ge_0_finite
thf(fact_596_inf__sup__aci_I4_J,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
      = ( inf_inf_set_a @ X @ Y ) ) ).

% inf_sup_aci(4)
thf(fact_597_inf__sup__aci_I3_J,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z ) ) ) ).

% inf_sup_aci(3)
thf(fact_598_inf__sup__aci_I2_J,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z )
      = ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ).

% inf_sup_aci(2)
thf(fact_599_inf__sup__aci_I1_J,axiom,
    ( inf_inf_set_a
    = ( ^ [X3: set_a,Y3: set_a] : ( inf_inf_set_a @ Y3 @ X3 ) ) ) ).

% inf_sup_aci(1)
thf(fact_600_inf_Oassoc,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ A @ B ) @ C )
      = ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ).

% inf.assoc
thf(fact_601_inf__assoc,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ ( inf_inf_set_a @ X @ Y ) @ Z )
      = ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ).

% inf_assoc
thf(fact_602_inf_Ocommute,axiom,
    ( inf_inf_set_a
    = ( ^ [A4: set_a,B4: set_a] : ( inf_inf_set_a @ B4 @ A4 ) ) ) ).

% inf.commute
thf(fact_603_inf__commute,axiom,
    ( inf_inf_set_a
    = ( ^ [X3: set_a,Y3: set_a] : ( inf_inf_set_a @ Y3 @ X3 ) ) ) ).

% inf_commute
thf(fact_604_boolean__algebra__cancel_Oinf1,axiom,
    ! [A2: set_a,K: set_a,A: set_a,B: set_a] :
      ( ( A2
        = ( inf_inf_set_a @ K @ A ) )
     => ( ( inf_inf_set_a @ A2 @ B )
        = ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.inf1
thf(fact_605_boolean__algebra__cancel_Oinf2,axiom,
    ! [B2: set_a,K: set_a,B: set_a,A: set_a] :
      ( ( B2
        = ( inf_inf_set_a @ K @ B ) )
     => ( ( inf_inf_set_a @ A @ B2 )
        = ( inf_inf_set_a @ K @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.inf2
thf(fact_606_inf_Oleft__commute,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( inf_inf_set_a @ B @ ( inf_inf_set_a @ A @ C ) )
      = ( inf_inf_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ).

% inf.left_commute
thf(fact_607_inf__left__commute,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( inf_inf_set_a @ Y @ ( inf_inf_set_a @ X @ Z ) ) ) ).

% inf_left_commute
thf(fact_608_Nat_Oex__has__greatest__nat,axiom,
    ! [P: nat > $o,K: nat,B: nat] :
      ( ( P @ K )
     => ( ! [Y2: nat] :
            ( ( P @ Y2 )
           => ( ord_less_eq_nat @ Y2 @ B ) )
       => ? [X4: nat] :
            ( ( P @ X4 )
            & ! [Y5: nat] :
                ( ( P @ Y5 )
               => ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_609_nat__le__linear,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
      | ( ord_less_eq_nat @ N2 @ M3 ) ) ).

% nat_le_linear
thf(fact_610_le__antisym,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ( ord_less_eq_nat @ N2 @ M3 )
       => ( M3 = N2 ) ) ) ).

% le_antisym
thf(fact_611_eq__imp__le,axiom,
    ! [M3: nat,N2: nat] :
      ( ( M3 = N2 )
     => ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% eq_imp_le
thf(fact_612_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_613_le__refl,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ N2 @ N2 ) ).

% le_refl
thf(fact_614_monoid_Oinverse_Ocong,axiom,
    group_inverse_a = group_inverse_a ).

% monoid.inverse.cong
thf(fact_615_monoid_Oinvertible_Ocong,axiom,
    group_invertible_a = group_invertible_a ).

% monoid.invertible.cong
thf(fact_616_subgroup__transitive,axiom,
    ! [K3: set_a,H3: set_a,Composition: a > a > a,Unit: a,G: set_a] :
      ( ( group_subgroup_a @ K3 @ H3 @ Composition @ Unit )
     => ( ( group_subgroup_a @ H3 @ G @ Composition @ Unit )
       => ( group_subgroup_a @ K3 @ G @ Composition @ Unit ) ) ) ).

% subgroup_transitive
thf(fact_617_remove__induct,axiom,
    ! [P: set_nat > $o,B2: set_nat] :
      ( ( P @ bot_bot_set_nat )
     => ( ( ~ ( finite_finite_nat @ B2 )
         => ( P @ B2 ) )
       => ( ! [A6: set_nat] :
              ( ( finite_finite_nat @ A6 )
             => ( ( A6 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A6 @ B2 )
                 => ( ! [X2: nat] :
                        ( ( member_nat @ X2 @ A6 )
                       => ( P @ ( minus_minus_set_nat @ A6 @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) )
                   => ( P @ A6 ) ) ) ) )
         => ( P @ B2 ) ) ) ) ).

% remove_induct
thf(fact_618_remove__induct,axiom,
    ! [P: set_a > $o,B2: set_a] :
      ( ( P @ bot_bot_set_a )
     => ( ( ~ ( finite_finite_a @ B2 )
         => ( P @ B2 ) )
       => ( ! [A6: set_a] :
              ( ( finite_finite_a @ A6 )
             => ( ( A6 != bot_bot_set_a )
               => ( ( ord_less_eq_set_a @ A6 @ B2 )
                 => ( ! [X2: a] :
                        ( ( member_a @ X2 @ A6 )
                       => ( P @ ( minus_minus_set_a @ A6 @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) )
                   => ( P @ A6 ) ) ) ) )
         => ( P @ B2 ) ) ) ) ).

% remove_induct
thf(fact_619_finite__remove__induct,axiom,
    ! [B2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ B2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [A6: set_nat] :
              ( ( finite_finite_nat @ A6 )
             => ( ( A6 != bot_bot_set_nat )
               => ( ( ord_less_eq_set_nat @ A6 @ B2 )
                 => ( ! [X2: nat] :
                        ( ( member_nat @ X2 @ A6 )
                       => ( P @ ( minus_minus_set_nat @ A6 @ ( insert_nat @ X2 @ bot_bot_set_nat ) ) ) )
                   => ( P @ A6 ) ) ) ) )
         => ( P @ B2 ) ) ) ) ).

% finite_remove_induct
thf(fact_620_finite__remove__induct,axiom,
    ! [B2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ B2 )
     => ( ( P @ bot_bot_set_a )
       => ( ! [A6: set_a] :
              ( ( finite_finite_a @ A6 )
             => ( ( A6 != bot_bot_set_a )
               => ( ( ord_less_eq_set_a @ A6 @ B2 )
                 => ( ! [X2: a] :
                        ( ( member_a @ X2 @ A6 )
                       => ( P @ ( minus_minus_set_a @ A6 @ ( insert_a @ X2 @ bot_bot_set_a ) ) ) )
                   => ( P @ A6 ) ) ) ) )
         => ( P @ B2 ) ) ) ) ).

% finite_remove_induct
thf(fact_621_card__Diff1__le,axiom,
    ! [A2: set_a,X: a] : ( ord_less_eq_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) @ ( finite_card_a @ A2 ) ) ).

% card_Diff1_le
thf(fact_622_card__gt__0__iff,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A2 ) )
      = ( ( A2 != bot_bot_set_nat )
        & ( finite_finite_nat @ A2 ) ) ) ).

% card_gt_0_iff
thf(fact_623_card__gt__0__iff,axiom,
    ! [A2: set_a] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_a @ A2 ) )
      = ( ( A2 != bot_bot_set_a )
        & ( finite_finite_a @ A2 ) ) ) ).

% card_gt_0_iff
thf(fact_624_additive__abelian__group_Osumsetdiff__sing,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( minus_minus_set_a @ A2 @ B2 ) @ ( insert_a @ X @ bot_bot_set_a ) )
        = ( minus_minus_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ B2 @ ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% additive_abelian_group.sumsetdiff_sing
thf(fact_625_monoid_OUnits_Ocong,axiom,
    group_Units_a = group_Units_a ).

% monoid.Units.cong
thf(fact_626_additive__abelian__group_Osumset__iterated__empty,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,R: nat] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ord_less_nat @ zero_zero_nat @ R )
       => ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ bot_bot_set_a @ R )
          = bot_bot_set_a ) ) ) ).

% additive_abelian_group.sumset_iterated_empty
thf(fact_627_commutative__monoid_Ocommutative,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat,Y: nat] :
      ( ( group_6791354081887936081id_nat @ M @ Composition @ Unit )
     => ( ( member_nat @ X @ M )
       => ( ( member_nat @ Y @ M )
         => ( ( Composition @ X @ Y )
            = ( Composition @ Y @ X ) ) ) ) ) ).

% commutative_monoid.commutative
thf(fact_628_commutative__monoid_Ocommutative,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,X: a,Y: a] :
      ( ( group_4866109990395492029noid_a @ M @ Composition @ Unit )
     => ( ( member_a @ X @ M )
       => ( ( member_a @ Y @ M )
         => ( ( Composition @ X @ Y )
            = ( Composition @ Y @ X ) ) ) ) ) ).

% commutative_monoid.commutative
thf(fact_629_inf__sup__ord_I2_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_630_inf__sup__ord_I2_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).

% inf_sup_ord(2)
thf(fact_631_inf__sup__ord_I1_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_632_inf__sup__ord_I1_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).

% inf_sup_ord(1)
thf(fact_633_inf__le1,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_634_inf__le1,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ X ) ).

% inf_le1
thf(fact_635_inf__le2,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_636_inf__le2,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ X @ Y ) @ Y ) ).

% inf_le2
thf(fact_637_le__infE,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B ) )
     => ~ ( ( ord_less_eq_set_a @ X @ A )
         => ~ ( ord_less_eq_set_a @ X @ B ) ) ) ).

% le_infE
thf(fact_638_le__infE,axiom,
    ! [X: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B ) )
     => ~ ( ( ord_less_eq_nat @ X @ A )
         => ~ ( ord_less_eq_nat @ X @ B ) ) ) ).

% le_infE
thf(fact_639_le__infI,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ X @ A )
     => ( ( ord_less_eq_set_a @ X @ B )
       => ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ A @ B ) ) ) ) ).

% le_infI
thf(fact_640_le__infI,axiom,
    ! [X: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X @ A )
     => ( ( ord_less_eq_nat @ X @ B )
       => ( ord_less_eq_nat @ X @ ( inf_inf_nat @ A @ B ) ) ) ) ).

% le_infI
thf(fact_641_inf__mono,axiom,
    ! [A: set_a,C: set_a,B: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A @ C )
     => ( ( ord_less_eq_set_a @ B @ D )
       => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ ( inf_inf_set_a @ C @ D ) ) ) ) ).

% inf_mono
thf(fact_642_inf__mono,axiom,
    ! [A: nat,C: nat,B: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ D )
       => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ ( inf_inf_nat @ C @ D ) ) ) ) ).

% inf_mono
thf(fact_643_le__infI1,axiom,
    ! [A: set_a,X: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ X )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).

% le_infI1
thf(fact_644_le__infI1,axiom,
    ! [A: nat,X: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ X )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).

% le_infI1
thf(fact_645_le__infI2,axiom,
    ! [B: set_a,X: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ X )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ X ) ) ).

% le_infI2
thf(fact_646_le__infI2,axiom,
    ! [B: nat,X: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ X )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ X ) ) ).

% le_infI2
thf(fact_647_inf_OorderE,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( A
        = ( inf_inf_set_a @ A @ B ) ) ) ).

% inf.orderE
thf(fact_648_inf_OorderE,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( A
        = ( inf_inf_nat @ A @ B ) ) ) ).

% inf.orderE
thf(fact_649_inf_OorderI,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A
        = ( inf_inf_set_a @ A @ B ) )
     => ( ord_less_eq_set_a @ A @ B ) ) ).

% inf.orderI
thf(fact_650_inf_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( inf_inf_nat @ A @ B ) )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% inf.orderI
thf(fact_651_inf__unique,axiom,
    ! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
      ( ! [X4: set_a,Y2: set_a] : ( ord_less_eq_set_a @ ( F @ X4 @ Y2 ) @ X4 )
     => ( ! [X4: set_a,Y2: set_a] : ( ord_less_eq_set_a @ ( F @ X4 @ Y2 ) @ Y2 )
       => ( ! [X4: set_a,Y2: set_a,Z3: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ( ord_less_eq_set_a @ X4 @ Z3 )
               => ( ord_less_eq_set_a @ X4 @ ( F @ Y2 @ Z3 ) ) ) )
         => ( ( inf_inf_set_a @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_652_inf__unique,axiom,
    ! [F: nat > nat > nat,X: nat,Y: nat] :
      ( ! [X4: nat,Y2: nat] : ( ord_less_eq_nat @ ( F @ X4 @ Y2 ) @ X4 )
     => ( ! [X4: nat,Y2: nat] : ( ord_less_eq_nat @ ( F @ X4 @ Y2 ) @ Y2 )
       => ( ! [X4: nat,Y2: nat,Z3: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ( ord_less_eq_nat @ X4 @ Z3 )
               => ( ord_less_eq_nat @ X4 @ ( F @ Y2 @ Z3 ) ) ) )
         => ( ( inf_inf_nat @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% inf_unique
thf(fact_653_le__iff__inf,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( inf_inf_set_a @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_654_le__iff__inf,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( inf_inf_nat @ X3 @ Y3 )
          = X3 ) ) ) ).

% le_iff_inf
thf(fact_655_inf_Oabsorb1,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( inf_inf_set_a @ A @ B )
        = A ) ) ).

% inf.absorb1
thf(fact_656_inf_Oabsorb1,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( inf_inf_nat @ A @ B )
        = A ) ) ).

% inf.absorb1
thf(fact_657_inf_Oabsorb2,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( inf_inf_set_a @ A @ B )
        = B ) ) ).

% inf.absorb2
thf(fact_658_inf_Oabsorb2,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( inf_inf_nat @ A @ B )
        = B ) ) ).

% inf.absorb2
thf(fact_659_inf__absorb1,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( inf_inf_set_a @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_660_inf__absorb1,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( inf_inf_nat @ X @ Y )
        = X ) ) ).

% inf_absorb1
thf(fact_661_inf__absorb2,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( inf_inf_set_a @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_662_inf__absorb2,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( inf_inf_nat @ X @ Y )
        = Y ) ) ).

% inf_absorb2
thf(fact_663_inf_OboundedE,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) )
     => ~ ( ( ord_less_eq_set_a @ A @ B )
         => ~ ( ord_less_eq_set_a @ A @ C ) ) ) ).

% inf.boundedE
thf(fact_664_inf_OboundedE,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) )
     => ~ ( ( ord_less_eq_nat @ A @ B )
         => ~ ( ord_less_eq_nat @ A @ C ) ) ) ).

% inf.boundedE
thf(fact_665_inf_OboundedI,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ A @ C )
       => ( ord_less_eq_set_a @ A @ ( inf_inf_set_a @ B @ C ) ) ) ) ).

% inf.boundedI
thf(fact_666_inf_OboundedI,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ A @ C )
       => ( ord_less_eq_nat @ A @ ( inf_inf_nat @ B @ C ) ) ) ) ).

% inf.boundedI
thf(fact_667_inf__greatest,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ X @ Z )
       => ( ord_less_eq_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) ) ) ).

% inf_greatest
thf(fact_668_inf__greatest,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Z )
       => ( ord_less_eq_nat @ X @ ( inf_inf_nat @ Y @ Z ) ) ) ) ).

% inf_greatest
thf(fact_669_inf_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( A4
          = ( inf_inf_set_a @ A4 @ B4 ) ) ) ) ).

% inf.order_iff
thf(fact_670_inf_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( A4
          = ( inf_inf_nat @ A4 @ B4 ) ) ) ) ).

% inf.order_iff
thf(fact_671_inf_Ocobounded1,axiom,
    ! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ A ) ).

% inf.cobounded1
thf(fact_672_inf_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ A ) ).

% inf.cobounded1
thf(fact_673_inf_Ocobounded2,axiom,
    ! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ B ) ).

% inf.cobounded2
thf(fact_674_inf_Ocobounded2,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ B ) ).

% inf.cobounded2
thf(fact_675_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( inf_inf_set_a @ A4 @ B4 )
          = A4 ) ) ) ).

% inf.absorb_iff1
thf(fact_676_inf_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( inf_inf_nat @ A4 @ B4 )
          = A4 ) ) ) ).

% inf.absorb_iff1
thf(fact_677_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( inf_inf_set_a @ A4 @ B4 )
          = B4 ) ) ) ).

% inf.absorb_iff2
thf(fact_678_inf_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( inf_inf_nat @ A4 @ B4 )
          = B4 ) ) ) ).

% inf.absorb_iff2
thf(fact_679_inf_OcoboundedI1,axiom,
    ! [A: set_a,C: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ C )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_680_inf_OcoboundedI1,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI1
thf(fact_681_inf_OcoboundedI2,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ C )
     => ( ord_less_eq_set_a @ ( inf_inf_set_a @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_682_inf_OcoboundedI2,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ C )
     => ( ord_less_eq_nat @ ( inf_inf_nat @ A @ B ) @ C ) ) ).

% inf.coboundedI2
thf(fact_683_le__0__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_684_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_685_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_686_less__eq__nat_Osimps_I1_J,axiom,
    ! [N2: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N2 ) ).

% less_eq_nat.simps(1)
thf(fact_687_subgroup_Osubgroup__inverse__equality,axiom,
    ! [G: set_nat,M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_subgroup_nat @ G @ M @ Composition @ Unit )
     => ( ( member_nat @ U @ G )
       => ( ( group_inverse_nat @ M @ Composition @ Unit @ U )
          = ( group_inverse_nat @ G @ Composition @ Unit @ U ) ) ) ) ).

% subgroup.subgroup_inverse_equality
thf(fact_688_subgroup_Osubgroup__inverse__equality,axiom,
    ! [G: set_a,M: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_subgroup_a @ G @ M @ Composition @ Unit )
     => ( ( member_a @ U @ G )
       => ( ( group_inverse_a @ M @ Composition @ Unit @ U )
          = ( group_inverse_a @ G @ Composition @ Unit @ U ) ) ) ) ).

% subgroup.subgroup_inverse_equality
thf(fact_689_group_Oinvertible,axiom,
    ! [G: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_group_nat @ G @ Composition @ Unit )
     => ( ( member_nat @ U @ G )
       => ( group_invertible_nat @ G @ Composition @ Unit @ U ) ) ) ).

% group.invertible
thf(fact_690_group_Oinvertible,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_group_a @ G @ Composition @ Unit )
     => ( ( member_a @ U @ G )
       => ( group_invertible_a @ G @ Composition @ Unit @ U ) ) ) ).

% group.invertible
thf(fact_691_subgroup_Oaxioms_I2_J,axiom,
    ! [G: set_a,M: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_subgroup_a @ G @ M @ Composition @ Unit )
     => ( group_group_a @ G @ Composition @ Unit ) ) ).

% subgroup.axioms(2)
thf(fact_692_abelian__group_Oaxioms_I1_J,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_201663378560352916roup_a @ G @ Composition @ Unit )
     => ( group_group_a @ G @ Composition @ Unit ) ) ).

% abelian_group.axioms(1)
thf(fact_693_abelian__group_Oaxioms_I2_J,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_201663378560352916roup_a @ G @ Composition @ Unit )
     => ( group_4866109990395492029noid_a @ G @ Composition @ Unit ) ) ).

% abelian_group.axioms(2)
thf(fact_694_subgroup_Oimage__of__inverse,axiom,
    ! [G: set_nat,M: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat] :
      ( ( group_subgroup_nat @ G @ M @ Composition @ Unit )
     => ( ( member_nat @ X @ G )
       => ( member_nat @ X @ ( image_nat_nat @ ( group_inverse_nat @ M @ Composition @ Unit ) @ G ) ) ) ) ).

% subgroup.image_of_inverse
thf(fact_695_subgroup_Oimage__of__inverse,axiom,
    ! [G: set_a,M: set_a,Composition: a > a > a,Unit: a,X: a] :
      ( ( group_subgroup_a @ G @ M @ Composition @ Unit )
     => ( ( member_a @ X @ G )
       => ( member_a @ X @ ( image_a_a @ ( group_inverse_a @ M @ Composition @ Unit ) @ G ) ) ) ) ).

% subgroup.image_of_inverse
thf(fact_696_subgroup_Osubgroup__inverse__iff,axiom,
    ! [G: set_nat,M: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat] :
      ( ( group_subgroup_nat @ G @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ X )
       => ( ( member_nat @ X @ M )
         => ( ( member_nat @ ( group_inverse_nat @ M @ Composition @ Unit @ X ) @ G )
            = ( member_nat @ X @ G ) ) ) ) ) ).

% subgroup.subgroup_inverse_iff
thf(fact_697_subgroup_Osubgroup__inverse__iff,axiom,
    ! [G: set_a,M: set_a,Composition: a > a > a,Unit: a,X: a] :
      ( ( group_subgroup_a @ G @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ X )
       => ( ( member_a @ X @ M )
         => ( ( member_a @ ( group_inverse_a @ M @ Composition @ Unit @ X ) @ G )
            = ( member_a @ X @ G ) ) ) ) ) ).

% subgroup.subgroup_inverse_iff
thf(fact_698_abelian__group_Ointro,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_group_a @ G @ Composition @ Unit )
     => ( ( group_4866109990395492029noid_a @ G @ Composition @ Unit )
       => ( group_201663378560352916roup_a @ G @ Composition @ Unit ) ) ) ).

% abelian_group.intro
thf(fact_699_abelian__group__def,axiom,
    ( group_201663378560352916roup_a
    = ( ^ [G5: set_a,Composition2: a > a > a,Unit2: a] :
          ( ( group_group_a @ G5 @ Composition2 @ Unit2 )
          & ( group_4866109990395492029noid_a @ G5 @ Composition2 @ Unit2 ) ) ) ) ).

% abelian_group_def
thf(fact_700_group_Oinverse__subgroupI,axiom,
    ! [G: set_nat,Composition: nat > nat > nat,Unit: nat,H3: set_nat] :
      ( ( group_group_nat @ G @ Composition @ Unit )
     => ( ( group_subgroup_nat @ H3 @ G @ Composition @ Unit )
       => ( group_subgroup_nat @ ( image_nat_nat @ ( group_inverse_nat @ G @ Composition @ Unit ) @ H3 ) @ G @ Composition @ Unit ) ) ) ).

% group.inverse_subgroupI
thf(fact_701_group_Oinverse__subgroupI,axiom,
    ! [G: set_a,Composition: a > a > a,Unit: a,H3: set_a] :
      ( ( group_group_a @ G @ Composition @ Unit )
     => ( ( group_subgroup_a @ H3 @ G @ Composition @ Unit )
       => ( group_subgroup_a @ ( image_a_a @ ( group_inverse_a @ G @ Composition @ Unit ) @ H3 ) @ G @ Composition @ Unit ) ) ) ).

% group.inverse_subgroupI
thf(fact_702_zero__diff,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ A )
      = zero_zero_nat ) ).

% zero_diff
thf(fact_703_diff__zero,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ zero_zero_nat )
      = A ) ).

% diff_zero
thf(fact_704_psubsetI,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_set_a @ A2 @ B2 ) ) ) ).

% psubsetI
thf(fact_705_diff__self__eq__0,axiom,
    ! [M3: nat] :
      ( ( minus_minus_nat @ M3 @ M3 )
      = zero_zero_nat ) ).

% diff_self_eq_0
thf(fact_706_diff__0__eq__0,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ zero_zero_nat @ N2 )
      = zero_zero_nat ) ).

% diff_0_eq_0
thf(fact_707_diff__diff__cancel,axiom,
    ! [I: nat,N2: nat] :
      ( ( ord_less_eq_nat @ I @ N2 )
     => ( ( minus_minus_nat @ N2 @ ( minus_minus_nat @ N2 @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_708_le__zero__eq,axiom,
    ! [N2: nat] :
      ( ( ord_less_eq_nat @ N2 @ zero_zero_nat )
      = ( N2 = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_709_not__gr__zero,axiom,
    ! [N2: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
      = ( N2 = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_710_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: nat] :
      ( ( minus_minus_nat @ A @ A )
      = zero_zero_nat ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_711_zero__less__diff,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( minus_minus_nat @ N2 @ M3 ) )
      = ( ord_less_nat @ M3 @ N2 ) ) ).

% zero_less_diff
thf(fact_712_diff__is__0__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M3 @ N2 )
        = zero_zero_nat )
      = ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% diff_is_0_eq
thf(fact_713_diff__is__0__eq_H,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ( minus_minus_nat @ M3 @ N2 )
        = zero_zero_nat ) ) ).

% diff_is_0_eq'
thf(fact_714_minus__nat_Odiff__0,axiom,
    ! [M3: nat] :
      ( ( minus_minus_nat @ M3 @ zero_zero_nat )
      = M3 ) ).

% minus_nat.diff_0
thf(fact_715_diffs0__imp__equal,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ( minus_minus_nat @ M3 @ N2 )
        = zero_zero_nat )
     => ( ( ( minus_minus_nat @ N2 @ M3 )
          = zero_zero_nat )
       => ( M3 = N2 ) ) ) ).

% diffs0_imp_equal
thf(fact_716_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N2: nat] :
      ( ( ord_less_nat @ J @ K )
     => ( ord_less_nat @ ( minus_minus_nat @ J @ N2 ) @ K ) ) ).

% less_imp_diff_less
thf(fact_717_diff__less__mono2,axiom,
    ! [M3: nat,N2: nat,L: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ( ord_less_nat @ M3 @ L )
       => ( ord_less_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M3 ) ) ) ) ).

% diff_less_mono2
thf(fact_718_not__psubset__empty,axiom,
    ! [A2: set_a] :
      ~ ( ord_less_set_a @ A2 @ bot_bot_set_a ) ).

% not_psubset_empty
thf(fact_719_diff__le__mono2,axiom,
    ! [M3: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ L @ N2 ) @ ( minus_minus_nat @ L @ M3 ) ) ) ).

% diff_le_mono2
thf(fact_720_le__diff__iff_H,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ C @ A ) @ ( minus_minus_nat @ C @ B ) )
          = ( ord_less_eq_nat @ B @ A ) ) ) ) ).

% le_diff_iff'
thf(fact_721_diff__le__self,axiom,
    ! [M3: nat,N2: nat] : ( ord_less_eq_nat @ ( minus_minus_nat @ M3 @ N2 ) @ M3 ) ).

% diff_le_self
thf(fact_722_diff__le__mono,axiom,
    ! [M3: nat,N2: nat,L: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ M3 @ L ) @ ( minus_minus_nat @ N2 @ L ) ) ) ).

% diff_le_mono
thf(fact_723_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M3 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( minus_minus_nat @ ( minus_minus_nat @ M3 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( minus_minus_nat @ M3 @ N2 ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_724_le__diff__iff,axiom,
    ! [K: nat,M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M3 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_eq_nat @ ( minus_minus_nat @ M3 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_eq_nat @ M3 @ N2 ) ) ) ) ).

% le_diff_iff
thf(fact_725_eq__diff__iff,axiom,
    ! [K: nat,M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M3 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ( minus_minus_nat @ M3 @ K )
            = ( minus_minus_nat @ N2 @ K ) )
          = ( M3 = N2 ) ) ) ) ).

% eq_diff_iff
thf(fact_726_finite__psubset__induct,axiom,
    ! [A2: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ A2 )
     => ( ! [A6: set_a] :
            ( ( finite_finite_a @ A6 )
           => ( ! [B8: set_a] :
                  ( ( ord_less_set_a @ B8 @ A6 )
                 => ( P @ B8 ) )
             => ( P @ A6 ) ) )
       => ( P @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_727_finite__psubset__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [A6: set_nat] :
            ( ( finite_finite_nat @ A6 )
           => ( ! [B8: set_nat] :
                  ( ( ord_less_set_nat @ B8 @ A6 )
                 => ( P @ B8 ) )
             => ( P @ A6 ) ) )
       => ( P @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_728_subset__iff__psubset__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A7: set_a,B6: set_a] :
          ( ( ord_less_set_a @ A7 @ B6 )
          | ( A7 = B6 ) ) ) ) ).

% subset_iff_psubset_eq
thf(fact_729_subset__psubset__trans,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( ord_less_set_a @ B2 @ C2 )
       => ( ord_less_set_a @ A2 @ C2 ) ) ) ).

% subset_psubset_trans
thf(fact_730_subset__not__subset__eq,axiom,
    ( ord_less_set_a
    = ( ^ [A7: set_a,B6: set_a] :
          ( ( ord_less_eq_set_a @ A7 @ B6 )
          & ~ ( ord_less_eq_set_a @ B6 @ A7 ) ) ) ) ).

% subset_not_subset_eq
thf(fact_731_psubset__subset__trans,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_set_a @ A2 @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ord_less_set_a @ A2 @ C2 ) ) ) ).

% psubset_subset_trans
thf(fact_732_psubset__imp__subset,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_set_a @ A2 @ B2 )
     => ( ord_less_eq_set_a @ A2 @ B2 ) ) ).

% psubset_imp_subset
thf(fact_733_psubset__eq,axiom,
    ( ord_less_set_a
    = ( ^ [A7: set_a,B6: set_a] :
          ( ( ord_less_eq_set_a @ A7 @ B6 )
          & ( A7 != B6 ) ) ) ) ).

% psubset_eq
thf(fact_734_psubsetE,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_set_a @ A2 @ B2 )
     => ~ ( ( ord_less_eq_set_a @ A2 @ B2 )
         => ( ord_less_eq_set_a @ B2 @ A2 ) ) ) ).

% psubsetE
thf(fact_735_psubset__imp__ex__mem,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ? [B3: nat] : ( member_nat @ B3 @ ( minus_minus_set_nat @ B2 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_736_psubset__imp__ex__mem,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_set_a @ A2 @ B2 )
     => ? [B3: a] : ( member_a @ B3 @ ( minus_minus_set_a @ B2 @ A2 ) ) ) ).

% psubset_imp_ex_mem
thf(fact_737_diff__less,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_nat @ zero_zero_nat @ M3 )
       => ( ord_less_nat @ ( minus_minus_nat @ M3 @ N2 ) @ M3 ) ) ) ).

% diff_less
thf(fact_738_diff__less__mono,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_nat @ ( minus_minus_nat @ A @ C ) @ ( minus_minus_nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_739_less__diff__iff,axiom,
    ! [K: nat,M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ K @ M3 )
     => ( ( ord_less_eq_nat @ K @ N2 )
       => ( ( ord_less_nat @ ( minus_minus_nat @ M3 @ K ) @ ( minus_minus_nat @ N2 @ K ) )
          = ( ord_less_nat @ M3 @ N2 ) ) ) ) ).

% less_diff_iff
thf(fact_740_zero__reorient,axiom,
    ! [X: nat] :
      ( ( zero_zero_nat = X )
      = ( X = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_741_psubset__card__mono,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_set_a @ A2 @ B2 )
       => ( ord_less_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ).

% psubset_card_mono
thf(fact_742_psubset__card__mono,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_set_nat @ A2 @ B2 )
       => ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ).

% psubset_card_mono
thf(fact_743_diff__right__commute,axiom,
    ! [A: nat,C: nat,B: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ A @ C ) @ B )
      = ( minus_minus_nat @ ( minus_minus_nat @ A @ B ) @ C ) ) ).

% diff_right_commute
thf(fact_744_card__Diff__subset,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) )
          = ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ) ).

% card_Diff_subset
thf(fact_745_card__Diff__subset,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ B2 @ A2 )
       => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) )
          = ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ) ).

% card_Diff_subset
thf(fact_746_diff__card__le__card__Diff,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) ) ) ).

% diff_card_le_card_Diff
thf(fact_747_diff__card__le__card__Diff,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ord_less_eq_nat @ ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) ) @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) ) ) ) ).

% diff_card_le_card_Diff
thf(fact_748_finite__induct__select,axiom,
    ! [S: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ S )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [T3: set_nat] :
              ( ( ord_less_set_nat @ T3 @ S )
             => ( ( P @ T3 )
               => ? [X2: nat] :
                    ( ( member_nat @ X2 @ ( minus_minus_set_nat @ S @ T3 ) )
                    & ( P @ ( insert_nat @ X2 @ T3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_induct_select
thf(fact_749_finite__induct__select,axiom,
    ! [S: set_a,P: set_a > $o] :
      ( ( finite_finite_a @ S )
     => ( ( P @ bot_bot_set_a )
       => ( ! [T3: set_a] :
              ( ( ord_less_set_a @ T3 @ S )
             => ( ( P @ T3 )
               => ? [X2: a] :
                    ( ( member_a @ X2 @ ( minus_minus_set_a @ S @ T3 ) )
                    & ( P @ ( insert_a @ X2 @ T3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_induct_select
thf(fact_750_psubset__insert__iff,axiom,
    ! [A2: set_nat,X: nat,B2: set_nat] :
      ( ( ord_less_set_nat @ A2 @ ( insert_nat @ X @ B2 ) )
      = ( ( ( member_nat @ X @ B2 )
         => ( ord_less_set_nat @ A2 @ B2 ) )
        & ( ~ ( member_nat @ X @ B2 )
         => ( ( ( member_nat @ X @ A2 )
             => ( ord_less_set_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) @ B2 ) )
            & ( ~ ( member_nat @ X @ A2 )
             => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_751_psubset__insert__iff,axiom,
    ! [A2: set_a,X: a,B2: set_a] :
      ( ( ord_less_set_a @ A2 @ ( insert_a @ X @ B2 ) )
      = ( ( ( member_a @ X @ B2 )
         => ( ord_less_set_a @ A2 @ B2 ) )
        & ( ~ ( member_a @ X @ B2 )
         => ( ( ( member_a @ X @ A2 )
             => ( ord_less_set_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ B2 ) )
            & ( ~ ( member_a @ X @ A2 )
             => ( ord_less_eq_set_a @ A2 @ B2 ) ) ) ) ) ) ).

% psubset_insert_iff
thf(fact_752_card__psubset,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) )
         => ( ord_less_set_nat @ A2 @ B2 ) ) ) ) ).

% card_psubset
thf(fact_753_card__psubset,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( finite_finite_a @ B2 )
     => ( ( ord_less_eq_set_a @ A2 @ B2 )
       => ( ( ord_less_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) )
         => ( ord_less_set_a @ A2 @ B2 ) ) ) ) ).

% card_psubset
thf(fact_754_card__Diff__subset__Int,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( finite_finite_nat @ ( inf_inf_set_nat @ A2 @ B2 ) )
     => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) )
        = ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ ( inf_inf_set_nat @ A2 @ B2 ) ) ) ) ) ).

% card_Diff_subset_Int
thf(fact_755_card__Diff__subset__Int,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( finite_finite_a @ ( inf_inf_set_a @ A2 @ B2 ) )
     => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) )
        = ( minus_minus_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ ( inf_inf_set_a @ A2 @ B2 ) ) ) ) ) ).

% card_Diff_subset_Int
thf(fact_756_zero__le,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X ) ).

% zero_le
thf(fact_757_gr__zeroI,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N2 ) ) ).

% gr_zeroI
thf(fact_758_not__less__zero,axiom,
    ! [N2: nat] :
      ~ ( ord_less_nat @ N2 @ zero_zero_nat ) ).

% not_less_zero
thf(fact_759_gr__implies__not__zero,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( N2 != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_760_zero__less__iff__neq__zero,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( N2 != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_761_sumset__iterated__r,axiom,
    ! [R: nat,A2: set_a] :
      ( ( ord_less_nat @ zero_zero_nat @ R )
     => ( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ R )
        = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ ( minus_minus_nat @ R @ one_one_nat ) ) ) ) ) ).

% sumset_iterated_r
thf(fact_762_sumset__subset__Un_I1_J,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% sumset_subset_Un(1)
thf(fact_763_sumset__subset__Un_I2_J,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] : ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( sup_sup_set_a @ A2 @ C2 ) @ B2 ) ) ).

% sumset_subset_Un(2)
thf(fact_764_order__refl,axiom,
    ! [X: set_a] : ( ord_less_eq_set_a @ X @ X ) ).

% order_refl
thf(fact_765_order__refl,axiom,
    ! [X: nat] : ( ord_less_eq_nat @ X @ X ) ).

% order_refl
thf(fact_766_dual__order_Orefl,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ A @ A ) ).

% dual_order.refl
thf(fact_767_dual__order_Orefl,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ A @ A ) ).

% dual_order.refl
thf(fact_768_sup_Oright__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B ) @ B )
      = ( sup_sup_set_a @ A @ B ) ) ).

% sup.right_idem
thf(fact_769_sup__left__idem,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = ( sup_sup_set_a @ X @ Y ) ) ).

% sup_left_idem
thf(fact_770_sup_Oleft__idem,axiom,
    ! [A: set_a,B: set_a] :
      ( ( sup_sup_set_a @ A @ ( sup_sup_set_a @ A @ B ) )
      = ( sup_sup_set_a @ A @ B ) ) ).

% sup.left_idem
thf(fact_771_sup__idem,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ X )
      = X ) ).

% sup_idem
thf(fact_772_sup_Oidem,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ A @ A )
      = A ) ).

% sup.idem
thf(fact_773_Un__iff,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) )
      = ( ( member_nat @ C @ A2 )
        | ( member_nat @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_774_Un__iff,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) )
      = ( ( member_a @ C @ A2 )
        | ( member_a @ C @ B2 ) ) ) ).

% Un_iff
thf(fact_775_UnCI,axiom,
    ! [C: nat,B2: set_nat,A2: set_nat] :
      ( ( ~ ( member_nat @ C @ B2 )
       => ( member_nat @ C @ A2 ) )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_776_UnCI,axiom,
    ! [C: a,B2: set_a,A2: set_a] :
      ( ( ~ ( member_a @ C @ B2 )
       => ( member_a @ C @ A2 ) )
     => ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% UnCI
thf(fact_777_sumset__subset__Un2,axiom,
    ! [A2: set_a,B2: set_a,B5: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( sup_sup_set_a @ B2 @ B5 ) )
      = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B5 ) ) ) ).

% sumset_subset_Un2
thf(fact_778_sumset__subset__Un1,axiom,
    ! [A2: set_a,A5: set_a,B2: set_a] :
      ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( sup_sup_set_a @ A2 @ A5 ) @ B2 )
      = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A5 @ B2 ) ) ) ).

% sumset_subset_Un1
thf(fact_779_le__sup__iff,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
      = ( ( ord_less_eq_set_a @ X @ Z )
        & ( ord_less_eq_set_a @ Y @ Z ) ) ) ).

% le_sup_iff
thf(fact_780_le__sup__iff,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ X @ Y ) @ Z )
      = ( ( ord_less_eq_nat @ X @ Z )
        & ( ord_less_eq_nat @ Y @ Z ) ) ) ).

% le_sup_iff
thf(fact_781_sup_Obounded__iff,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B @ C ) @ A )
      = ( ( ord_less_eq_set_a @ B @ A )
        & ( ord_less_eq_set_a @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_782_sup_Obounded__iff,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( ord_less_eq_nat @ C @ A ) ) ) ).

% sup.bounded_iff
thf(fact_783_sup__bot_Oright__neutral,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ A @ bot_bot_set_a )
      = A ) ).

% sup_bot.right_neutral
thf(fact_784_sup__bot_Oneutr__eq__iff,axiom,
    ! [A: set_a,B: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ A @ B ) )
      = ( ( A = bot_bot_set_a )
        & ( B = bot_bot_set_a ) ) ) ).

% sup_bot.neutr_eq_iff
thf(fact_785_sup__bot_Oleft__neutral,axiom,
    ! [A: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ A )
      = A ) ).

% sup_bot.left_neutral
thf(fact_786_sup__bot_Oeq__neutr__iff,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ( sup_sup_set_a @ A @ B )
        = bot_bot_set_a )
      = ( ( A = bot_bot_set_a )
        & ( B = bot_bot_set_a ) ) ) ).

% sup_bot.eq_neutr_iff
thf(fact_787_sup__eq__bot__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ( sup_sup_set_a @ X @ Y )
        = bot_bot_set_a )
      = ( ( X = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% sup_eq_bot_iff
thf(fact_788_bot__eq__sup__iff,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( bot_bot_set_a
        = ( sup_sup_set_a @ X @ Y ) )
      = ( ( X = bot_bot_set_a )
        & ( Y = bot_bot_set_a ) ) ) ).

% bot_eq_sup_iff
thf(fact_789_sup__bot__right,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ bot_bot_set_a )
      = X ) ).

% sup_bot_right
thf(fact_790_sup__bot__left,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ X )
      = X ) ).

% sup_bot_left
thf(fact_791_sup__inf__absorb,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ X @ Y ) )
      = X ) ).

% sup_inf_absorb
thf(fact_792_inf__sup__absorb,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = X ) ).

% inf_sup_absorb
thf(fact_793_Un__empty,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ( sup_sup_set_a @ A2 @ B2 )
        = bot_bot_set_a )
      = ( ( A2 = bot_bot_set_a )
        & ( B2 = bot_bot_set_a ) ) ) ).

% Un_empty
thf(fact_794_finite__Un,axiom,
    ! [F2: set_nat,G: set_nat] :
      ( ( finite_finite_nat @ ( sup_sup_set_nat @ F2 @ G ) )
      = ( ( finite_finite_nat @ F2 )
        & ( finite_finite_nat @ G ) ) ) ).

% finite_Un
thf(fact_795_finite__Un,axiom,
    ! [F2: set_a,G: set_a] :
      ( ( finite_finite_a @ ( sup_sup_set_a @ F2 @ G ) )
      = ( ( finite_finite_a @ F2 )
        & ( finite_finite_a @ G ) ) ) ).

% finite_Un
thf(fact_796_Un__subset__iff,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C2 )
      = ( ( ord_less_eq_set_a @ A2 @ C2 )
        & ( ord_less_eq_set_a @ B2 @ C2 ) ) ) ).

% Un_subset_iff
thf(fact_797_Un__insert__right,axiom,
    ! [A2: set_a,A: a,B2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( insert_a @ A @ B2 ) )
      = ( insert_a @ A @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% Un_insert_right
thf(fact_798_Un__insert__left,axiom,
    ! [A: a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( insert_a @ A @ B2 ) @ C2 )
      = ( insert_a @ A @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% Un_insert_left
thf(fact_799_Un__Int__eq_I1_J,axiom,
    ! [S: set_a,T2: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T2 ) @ S )
      = S ) ).

% Un_Int_eq(1)
thf(fact_800_Un__Int__eq_I2_J,axiom,
    ! [S: set_a,T2: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ S @ T2 ) @ T2 )
      = T2 ) ).

% Un_Int_eq(2)
thf(fact_801_Un__Int__eq_I3_J,axiom,
    ! [S: set_a,T2: set_a] :
      ( ( inf_inf_set_a @ S @ ( sup_sup_set_a @ S @ T2 ) )
      = S ) ).

% Un_Int_eq(3)
thf(fact_802_Un__Int__eq_I4_J,axiom,
    ! [T2: set_a,S: set_a] :
      ( ( inf_inf_set_a @ T2 @ ( sup_sup_set_a @ S @ T2 ) )
      = T2 ) ).

% Un_Int_eq(4)
thf(fact_803_Int__Un__eq_I1_J,axiom,
    ! [S: set_a,T2: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T2 ) @ S )
      = S ) ).

% Int_Un_eq(1)
thf(fact_804_Int__Un__eq_I2_J,axiom,
    ! [S: set_a,T2: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ S @ T2 ) @ T2 )
      = T2 ) ).

% Int_Un_eq(2)
thf(fact_805_Int__Un__eq_I3_J,axiom,
    ! [S: set_a,T2: set_a] :
      ( ( sup_sup_set_a @ S @ ( inf_inf_set_a @ S @ T2 ) )
      = S ) ).

% Int_Un_eq(3)
thf(fact_806_Int__Un__eq_I4_J,axiom,
    ! [T2: set_a,S: set_a] :
      ( ( sup_sup_set_a @ T2 @ ( inf_inf_set_a @ S @ T2 ) )
      = T2 ) ).

% Int_Un_eq(4)
thf(fact_807_Un__Diff__cancel,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( minus_minus_set_a @ B2 @ A2 ) )
      = ( sup_sup_set_a @ A2 @ B2 ) ) ).

% Un_Diff_cancel
thf(fact_808_Un__Diff__cancel2,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( sup_sup_set_a @ ( minus_minus_set_a @ B2 @ A2 ) @ A2 )
      = ( sup_sup_set_a @ B2 @ A2 ) ) ).

% Un_Diff_cancel2
thf(fact_809_less__one,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ one_one_nat )
      = ( N2 = zero_zero_nat ) ) ).

% less_one
thf(fact_810_card__Diff__insert,axiom,
    ! [A: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ A @ A2 )
     => ( ~ ( member_nat @ A @ B2 )
       => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ A @ B2 ) ) )
          = ( minus_minus_nat @ ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ B2 ) ) @ one_one_nat ) ) ) ) ).

% card_Diff_insert
thf(fact_811_card__Diff__insert,axiom,
    ! [A: a,A2: set_a,B2: set_a] :
      ( ( member_a @ A @ A2 )
     => ( ~ ( member_a @ A @ B2 )
       => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ A @ B2 ) ) )
          = ( minus_minus_nat @ ( finite_card_a @ ( minus_minus_set_a @ A2 @ B2 ) ) @ one_one_nat ) ) ) ) ).

% card_Diff_insert
thf(fact_812_psubsetD,axiom,
    ! [A2: set_a,B2: set_a,C: a] :
      ( ( ord_less_set_a @ A2 @ B2 )
     => ( ( member_a @ C @ A2 )
       => ( member_a @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_813_psubsetD,axiom,
    ! [A2: set_nat,B2: set_nat,C: nat] :
      ( ( ord_less_set_nat @ A2 @ B2 )
     => ( ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B2 ) ) ) ).

% psubsetD
thf(fact_814_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ I @ J ) @ K )
      = ( minus_minus_nat @ ( minus_minus_nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_815_inf__sup__ord_I4_J,axiom,
    ! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_816_inf__sup__ord_I4_J,axiom,
    ! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).

% inf_sup_ord(4)
thf(fact_817_inf__sup__ord_I3_J,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_818_inf__sup__ord_I3_J,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).

% inf_sup_ord(3)
thf(fact_819_le__supE,axiom,
    ! [A: set_a,B: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B ) @ X )
     => ~ ( ( ord_less_eq_set_a @ A @ X )
         => ~ ( ord_less_eq_set_a @ B @ X ) ) ) ).

% le_supE
thf(fact_820_le__supE,axiom,
    ! [A: nat,B: nat,X: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B ) @ X )
     => ~ ( ( ord_less_eq_nat @ A @ X )
         => ~ ( ord_less_eq_nat @ B @ X ) ) ) ).

% le_supE
thf(fact_821_le__supI,axiom,
    ! [A: set_a,X: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ X )
     => ( ( ord_less_eq_set_a @ B @ X )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B ) @ X ) ) ) ).

% le_supI
thf(fact_822_le__supI,axiom,
    ! [A: nat,X: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ X )
     => ( ( ord_less_eq_nat @ B @ X )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B ) @ X ) ) ) ).

% le_supI
thf(fact_823_sup__ge1,axiom,
    ! [X: set_a,Y: set_a] : ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ X @ Y ) ) ).

% sup_ge1
thf(fact_824_sup__ge1,axiom,
    ! [X: nat,Y: nat] : ( ord_less_eq_nat @ X @ ( sup_sup_nat @ X @ Y ) ) ).

% sup_ge1
thf(fact_825_sup__ge2,axiom,
    ! [Y: set_a,X: set_a] : ( ord_less_eq_set_a @ Y @ ( sup_sup_set_a @ X @ Y ) ) ).

% sup_ge2
thf(fact_826_sup__ge2,axiom,
    ! [Y: nat,X: nat] : ( ord_less_eq_nat @ Y @ ( sup_sup_nat @ X @ Y ) ) ).

% sup_ge2
thf(fact_827_le__supI1,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ X @ A )
     => ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A @ B ) ) ) ).

% le_supI1
thf(fact_828_le__supI1,axiom,
    ! [X: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ X @ A )
     => ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A @ B ) ) ) ).

% le_supI1
thf(fact_829_le__supI2,axiom,
    ! [X: set_a,B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ X @ B )
     => ( ord_less_eq_set_a @ X @ ( sup_sup_set_a @ A @ B ) ) ) ).

% le_supI2
thf(fact_830_le__supI2,axiom,
    ! [X: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ X @ B )
     => ( ord_less_eq_nat @ X @ ( sup_sup_nat @ A @ B ) ) ) ).

% le_supI2
thf(fact_831_sup_Omono,axiom,
    ! [C: set_a,A: set_a,D: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ C @ A )
     => ( ( ord_less_eq_set_a @ D @ B )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ C @ D ) @ ( sup_sup_set_a @ A @ B ) ) ) ) ).

% sup.mono
thf(fact_832_sup_Omono,axiom,
    ! [C: nat,A: nat,D: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ( ord_less_eq_nat @ D @ B )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ C @ D ) @ ( sup_sup_nat @ A @ B ) ) ) ) ).

% sup.mono
thf(fact_833_sup__mono,axiom,
    ! [A: set_a,C: set_a,B: set_a,D: set_a] :
      ( ( ord_less_eq_set_a @ A @ C )
     => ( ( ord_less_eq_set_a @ B @ D )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A @ B ) @ ( sup_sup_set_a @ C @ D ) ) ) ) ).

% sup_mono
thf(fact_834_sup__mono,axiom,
    ! [A: nat,C: nat,B: nat,D: nat] :
      ( ( ord_less_eq_nat @ A @ C )
     => ( ( ord_less_eq_nat @ B @ D )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ A @ B ) @ ( sup_sup_nat @ C @ D ) ) ) ) ).

% sup_mono
thf(fact_835_sup__least,axiom,
    ! [Y: set_a,X: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( ord_less_eq_set_a @ Z @ X )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X ) ) ) ).

% sup_least
thf(fact_836_sup__least,axiom,
    ! [Y: nat,X: nat,Z: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ Z @ X )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ Y @ Z ) @ X ) ) ) ).

% sup_least
thf(fact_837_le__iff__sup,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( sup_sup_set_a @ X3 @ Y3 )
          = Y3 ) ) ) ).

% le_iff_sup
thf(fact_838_le__iff__sup,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( sup_sup_nat @ X3 @ Y3 )
          = Y3 ) ) ) ).

% le_iff_sup
thf(fact_839_sup_OorderE,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( A
        = ( sup_sup_set_a @ A @ B ) ) ) ).

% sup.orderE
thf(fact_840_sup_OorderE,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( A
        = ( sup_sup_nat @ A @ B ) ) ) ).

% sup.orderE
thf(fact_841_sup_OorderI,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A
        = ( sup_sup_set_a @ A @ B ) )
     => ( ord_less_eq_set_a @ B @ A ) ) ).

% sup.orderI
thf(fact_842_sup_OorderI,axiom,
    ! [A: nat,B: nat] :
      ( ( A
        = ( sup_sup_nat @ A @ B ) )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% sup.orderI
thf(fact_843_sup__unique,axiom,
    ! [F: set_a > set_a > set_a,X: set_a,Y: set_a] :
      ( ! [X4: set_a,Y2: set_a] : ( ord_less_eq_set_a @ X4 @ ( F @ X4 @ Y2 ) )
     => ( ! [X4: set_a,Y2: set_a] : ( ord_less_eq_set_a @ Y2 @ ( F @ X4 @ Y2 ) )
       => ( ! [X4: set_a,Y2: set_a,Z3: set_a] :
              ( ( ord_less_eq_set_a @ Y2 @ X4 )
             => ( ( ord_less_eq_set_a @ Z3 @ X4 )
               => ( ord_less_eq_set_a @ ( F @ Y2 @ Z3 ) @ X4 ) ) )
         => ( ( sup_sup_set_a @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_844_sup__unique,axiom,
    ! [F: nat > nat > nat,X: nat,Y: nat] :
      ( ! [X4: nat,Y2: nat] : ( ord_less_eq_nat @ X4 @ ( F @ X4 @ Y2 ) )
     => ( ! [X4: nat,Y2: nat] : ( ord_less_eq_nat @ Y2 @ ( F @ X4 @ Y2 ) )
       => ( ! [X4: nat,Y2: nat,Z3: nat] :
              ( ( ord_less_eq_nat @ Y2 @ X4 )
             => ( ( ord_less_eq_nat @ Z3 @ X4 )
               => ( ord_less_eq_nat @ ( F @ Y2 @ Z3 ) @ X4 ) ) )
         => ( ( sup_sup_nat @ X @ Y )
            = ( F @ X @ Y ) ) ) ) ) ).

% sup_unique
thf(fact_845_sup_Oabsorb1,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( sup_sup_set_a @ A @ B )
        = A ) ) ).

% sup.absorb1
thf(fact_846_sup_Oabsorb1,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( sup_sup_nat @ A @ B )
        = A ) ) ).

% sup.absorb1
thf(fact_847_sup_Oabsorb2,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( sup_sup_set_a @ A @ B )
        = B ) ) ).

% sup.absorb2
thf(fact_848_sup_Oabsorb2,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( sup_sup_nat @ A @ B )
        = B ) ) ).

% sup.absorb2
thf(fact_849_sup__absorb1,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( sup_sup_set_a @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_850_sup__absorb1,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( sup_sup_nat @ X @ Y )
        = X ) ) ).

% sup_absorb1
thf(fact_851_sup__absorb2,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( sup_sup_set_a @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_852_sup__absorb2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( sup_sup_nat @ X @ Y )
        = Y ) ) ).

% sup_absorb2
thf(fact_853_sup_OboundedE,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ ( sup_sup_set_a @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_set_a @ B @ A )
         => ~ ( ord_less_eq_set_a @ C @ A ) ) ) ).

% sup.boundedE
thf(fact_854_sup_OboundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_eq_nat @ B @ A )
         => ~ ( ord_less_eq_nat @ C @ A ) ) ) ).

% sup.boundedE
thf(fact_855_sup_OboundedI,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ A )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ B @ C ) @ A ) ) ) ).

% sup.boundedI
thf(fact_856_sup_OboundedI,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ A )
       => ( ord_less_eq_nat @ ( sup_sup_nat @ B @ C ) @ A ) ) ) ).

% sup.boundedI
thf(fact_857_sup_Oorder__iff,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( A4
          = ( sup_sup_set_a @ A4 @ B4 ) ) ) ) ).

% sup.order_iff
thf(fact_858_sup_Oorder__iff,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( A4
          = ( sup_sup_nat @ A4 @ B4 ) ) ) ) ).

% sup.order_iff
thf(fact_859_sup_Ocobounded1,axiom,
    ! [A: set_a,B: set_a] : ( ord_less_eq_set_a @ A @ ( sup_sup_set_a @ A @ B ) ) ).

% sup.cobounded1
thf(fact_860_sup_Ocobounded1,axiom,
    ! [A: nat,B: nat] : ( ord_less_eq_nat @ A @ ( sup_sup_nat @ A @ B ) ) ).

% sup.cobounded1
thf(fact_861_sup_Ocobounded2,axiom,
    ! [B: set_a,A: set_a] : ( ord_less_eq_set_a @ B @ ( sup_sup_set_a @ A @ B ) ) ).

% sup.cobounded2
thf(fact_862_sup_Ocobounded2,axiom,
    ! [B: nat,A: nat] : ( ord_less_eq_nat @ B @ ( sup_sup_nat @ A @ B ) ) ).

% sup.cobounded2
thf(fact_863_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( sup_sup_set_a @ A4 @ B4 )
          = A4 ) ) ) ).

% sup.absorb_iff1
thf(fact_864_sup_Oabsorb__iff1,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( sup_sup_nat @ A4 @ B4 )
          = A4 ) ) ) ).

% sup.absorb_iff1
thf(fact_865_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( sup_sup_set_a @ A4 @ B4 )
          = B4 ) ) ) ).

% sup.absorb_iff2
thf(fact_866_sup_Oabsorb__iff2,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( sup_sup_nat @ A4 @ B4 )
          = B4 ) ) ) ).

% sup.absorb_iff2
thf(fact_867_sup_OcoboundedI1,axiom,
    ! [C: set_a,A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ C @ A )
     => ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).

% sup.coboundedI1
thf(fact_868_sup_OcoboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_eq_nat @ C @ A )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.coboundedI1
thf(fact_869_sup_OcoboundedI2,axiom,
    ! [C: set_a,B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ C @ B )
     => ( ord_less_eq_set_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).

% sup.coboundedI2
thf(fact_870_sup_OcoboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_eq_nat @ C @ B )
     => ( ord_less_eq_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.coboundedI2
thf(fact_871_sup_Ostrict__coboundedI2,axiom,
    ! [C: set_a,B: set_a,A: set_a] :
      ( ( ord_less_set_a @ C @ B )
     => ( ord_less_set_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).

% sup.strict_coboundedI2
thf(fact_872_sup_Ostrict__coboundedI2,axiom,
    ! [C: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ C @ B )
     => ( ord_less_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.strict_coboundedI2
thf(fact_873_sup_Ostrict__coboundedI1,axiom,
    ! [C: set_a,A: set_a,B: set_a] :
      ( ( ord_less_set_a @ C @ A )
     => ( ord_less_set_a @ C @ ( sup_sup_set_a @ A @ B ) ) ) ).

% sup.strict_coboundedI1
thf(fact_874_sup_Ostrict__coboundedI1,axiom,
    ! [C: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ C @ A )
     => ( ord_less_nat @ C @ ( sup_sup_nat @ A @ B ) ) ) ).

% sup.strict_coboundedI1
thf(fact_875_sup_Ostrict__order__iff,axiom,
    ( ord_less_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( A4
            = ( sup_sup_set_a @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% sup.strict_order_iff
thf(fact_876_sup_Ostrict__order__iff,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( A4
            = ( sup_sup_nat @ A4 @ B4 ) )
          & ( A4 != B4 ) ) ) ) ).

% sup.strict_order_iff
thf(fact_877_sup_Ostrict__boundedE,axiom,
    ! [B: set_a,C: set_a,A: set_a] :
      ( ( ord_less_set_a @ ( sup_sup_set_a @ B @ C ) @ A )
     => ~ ( ( ord_less_set_a @ B @ A )
         => ~ ( ord_less_set_a @ C @ A ) ) ) ).

% sup.strict_boundedE
thf(fact_878_sup_Ostrict__boundedE,axiom,
    ! [B: nat,C: nat,A: nat] :
      ( ( ord_less_nat @ ( sup_sup_nat @ B @ C ) @ A )
     => ~ ( ( ord_less_nat @ B @ A )
         => ~ ( ord_less_nat @ C @ A ) ) ) ).

% sup.strict_boundedE
thf(fact_879_sup_Oabsorb4,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( sup_sup_set_a @ A @ B )
        = B ) ) ).

% sup.absorb4
thf(fact_880_sup_Oabsorb4,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( sup_sup_nat @ A @ B )
        = B ) ) ).

% sup.absorb4
thf(fact_881_sup_Oabsorb3,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ( sup_sup_set_a @ A @ B )
        = A ) ) ).

% sup.absorb3
thf(fact_882_sup_Oabsorb3,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( sup_sup_nat @ A @ B )
        = A ) ) ).

% sup.absorb3
thf(fact_883_less__supI2,axiom,
    ! [X: set_a,B: set_a,A: set_a] :
      ( ( ord_less_set_a @ X @ B )
     => ( ord_less_set_a @ X @ ( sup_sup_set_a @ A @ B ) ) ) ).

% less_supI2
thf(fact_884_less__supI2,axiom,
    ! [X: nat,B: nat,A: nat] :
      ( ( ord_less_nat @ X @ B )
     => ( ord_less_nat @ X @ ( sup_sup_nat @ A @ B ) ) ) ).

% less_supI2
thf(fact_885_less__supI1,axiom,
    ! [X: set_a,A: set_a,B: set_a] :
      ( ( ord_less_set_a @ X @ A )
     => ( ord_less_set_a @ X @ ( sup_sup_set_a @ A @ B ) ) ) ).

% less_supI1
thf(fact_886_less__supI1,axiom,
    ! [X: nat,A: nat,B: nat] :
      ( ( ord_less_nat @ X @ A )
     => ( ord_less_nat @ X @ ( sup_sup_nat @ A @ B ) ) ) ).

% less_supI1
thf(fact_887_boolean__algebra_Odisj__zero__right,axiom,
    ! [X: set_a] :
      ( ( sup_sup_set_a @ X @ bot_bot_set_a )
      = X ) ).

% boolean_algebra.disj_zero_right
thf(fact_888_distrib__imp1,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ! [X4: set_a,Y2: set_a,Z3: set_a] :
          ( ( inf_inf_set_a @ X4 @ ( sup_sup_set_a @ Y2 @ Z3 ) )
          = ( sup_sup_set_a @ ( inf_inf_set_a @ X4 @ Y2 ) @ ( inf_inf_set_a @ X4 @ Z3 ) ) )
     => ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
        = ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ) ).

% distrib_imp1
thf(fact_889_distrib__imp2,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ! [X4: set_a,Y2: set_a,Z3: set_a] :
          ( ( sup_sup_set_a @ X4 @ ( inf_inf_set_a @ Y2 @ Z3 ) )
          = ( inf_inf_set_a @ ( sup_sup_set_a @ X4 @ Y2 ) @ ( sup_sup_set_a @ X4 @ Z3 ) ) )
     => ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
        = ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ) ).

% distrib_imp2
thf(fact_890_inf__sup__distrib1,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ).

% inf_sup_distrib1
thf(fact_891_inf__sup__distrib2,axiom,
    ! [Y: set_a,Z: set_a,X: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ X ) @ ( inf_inf_set_a @ Z @ X ) ) ) ).

% inf_sup_distrib2
thf(fact_892_sup__inf__distrib1,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% sup_inf_distrib1
thf(fact_893_sup__inf__distrib2,axiom,
    ! [Y: set_a,Z: set_a,X: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ Z ) @ X )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ X ) @ ( sup_sup_set_a @ Z @ X ) ) ) ).

% sup_inf_distrib2
thf(fact_894_boolean__algebra_Oconj__disj__distrib,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) ) ).

% boolean_algebra.conj_disj_distrib
thf(fact_895_boolean__algebra_Odisj__conj__distrib,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% boolean_algebra.disj_conj_distrib
thf(fact_896_boolean__algebra_Oconj__disj__distrib2,axiom,
    ! [Y: set_a,Z: set_a,X: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ Z ) @ X )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ X ) @ ( inf_inf_set_a @ Z @ X ) ) ) ).

% boolean_algebra.conj_disj_distrib2
thf(fact_897_boolean__algebra_Odisj__conj__distrib2,axiom,
    ! [Y: set_a,Z: set_a,X: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ Y @ Z ) @ X )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ Y @ X ) @ ( sup_sup_set_a @ Z @ X ) ) ) ).

% boolean_algebra.disj_conj_distrib2
thf(fact_898_image__Un,axiom,
    ! [F: nat > nat,A2: set_nat,B2: set_nat] :
      ( ( image_nat_nat @ F @ ( sup_sup_set_nat @ A2 @ B2 ) )
      = ( sup_sup_set_nat @ ( image_nat_nat @ F @ A2 ) @ ( image_nat_nat @ F @ B2 ) ) ) ).

% image_Un
thf(fact_899_image__Un,axiom,
    ! [F: a > a,A2: set_a,B2: set_a] :
      ( ( image_a_a @ F @ ( sup_sup_set_a @ A2 @ B2 ) )
      = ( sup_sup_set_a @ ( image_a_a @ F @ A2 ) @ ( image_a_a @ F @ B2 ) ) ) ).

% image_Un
thf(fact_900_Un__empty__right,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ bot_bot_set_a )
      = A2 ) ).

% Un_empty_right
thf(fact_901_Un__empty__left,axiom,
    ! [B2: set_a] :
      ( ( sup_sup_set_a @ bot_bot_set_a @ B2 )
      = B2 ) ).

% Un_empty_left
thf(fact_902_infinite__Un,axiom,
    ! [S: set_nat,T2: set_nat] :
      ( ( ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T2 ) ) )
      = ( ~ ( finite_finite_nat @ S )
        | ~ ( finite_finite_nat @ T2 ) ) ) ).

% infinite_Un
thf(fact_903_infinite__Un,axiom,
    ! [S: set_a,T2: set_a] :
      ( ( ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T2 ) ) )
      = ( ~ ( finite_finite_a @ S )
        | ~ ( finite_finite_a @ T2 ) ) ) ).

% infinite_Un
thf(fact_904_Un__infinite,axiom,
    ! [S: set_nat,T2: set_nat] :
      ( ~ ( finite_finite_nat @ S )
     => ~ ( finite_finite_nat @ ( sup_sup_set_nat @ S @ T2 ) ) ) ).

% Un_infinite
thf(fact_905_Un__infinite,axiom,
    ! [S: set_a,T2: set_a] :
      ( ~ ( finite_finite_a @ S )
     => ~ ( finite_finite_a @ ( sup_sup_set_a @ S @ T2 ) ) ) ).

% Un_infinite
thf(fact_906_finite__UnI,axiom,
    ! [F2: set_nat,G: set_nat] :
      ( ( finite_finite_nat @ F2 )
     => ( ( finite_finite_nat @ G )
       => ( finite_finite_nat @ ( sup_sup_set_nat @ F2 @ G ) ) ) ) ).

% finite_UnI
thf(fact_907_finite__UnI,axiom,
    ! [F2: set_a,G: set_a] :
      ( ( finite_finite_a @ F2 )
     => ( ( finite_finite_a @ G )
       => ( finite_finite_a @ ( sup_sup_set_a @ F2 @ G ) ) ) ) ).

% finite_UnI
thf(fact_908_subset__Un__eq,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A7: set_a,B6: set_a] :
          ( ( sup_sup_set_a @ A7 @ B6 )
          = B6 ) ) ) ).

% subset_Un_eq
thf(fact_909_subset__UnE,axiom,
    ! [C2: set_a,A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ C2 @ ( sup_sup_set_a @ A2 @ B2 ) )
     => ~ ! [A8: set_a] :
            ( ( ord_less_eq_set_a @ A8 @ A2 )
           => ! [B9: set_a] :
                ( ( ord_less_eq_set_a @ B9 @ B2 )
               => ( C2
                 != ( sup_sup_set_a @ A8 @ B9 ) ) ) ) ) ).

% subset_UnE
thf(fact_910_Un__absorb2,axiom,
    ! [B2: set_a,A2: set_a] :
      ( ( ord_less_eq_set_a @ B2 @ A2 )
     => ( ( sup_sup_set_a @ A2 @ B2 )
        = A2 ) ) ).

% Un_absorb2
thf(fact_911_Un__absorb1,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( sup_sup_set_a @ A2 @ B2 )
        = B2 ) ) ).

% Un_absorb1
thf(fact_912_Un__upper2,axiom,
    ! [B2: set_a,A2: set_a] : ( ord_less_eq_set_a @ B2 @ ( sup_sup_set_a @ A2 @ B2 ) ) ).

% Un_upper2
thf(fact_913_Un__upper1,axiom,
    ! [A2: set_a,B2: set_a] : ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B2 ) ) ).

% Un_upper1
thf(fact_914_Un__least,axiom,
    ! [A2: set_a,C2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C2 )
     => ( ( ord_less_eq_set_a @ B2 @ C2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C2 ) ) ) ).

% Un_least
thf(fact_915_Un__mono,axiom,
    ! [A2: set_a,C2: set_a,B2: set_a,D2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ C2 )
     => ( ( ord_less_eq_set_a @ B2 @ D2 )
       => ( ord_less_eq_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ ( sup_sup_set_a @ C2 @ D2 ) ) ) ) ).

% Un_mono
thf(fact_916_Un__Int__distrib2,axiom,
    ! [B2: set_a,C2: set_a,A2: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ B2 @ C2 ) @ A2 )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ B2 @ A2 ) @ ( sup_sup_set_a @ C2 @ A2 ) ) ) ).

% Un_Int_distrib2
thf(fact_917_Int__Un__distrib2,axiom,
    ! [B2: set_a,C2: set_a,A2: set_a] :
      ( ( inf_inf_set_a @ ( sup_sup_set_a @ B2 @ C2 ) @ A2 )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ B2 @ A2 ) @ ( inf_inf_set_a @ C2 @ A2 ) ) ) ).

% Int_Un_distrib2
thf(fact_918_Un__Int__distrib,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C2 ) )
      = ( inf_inf_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ ( sup_sup_set_a @ A2 @ C2 ) ) ) ).

% Un_Int_distrib
thf(fact_919_Int__Un__distrib,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( inf_inf_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) )
      = ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( inf_inf_set_a @ A2 @ C2 ) ) ) ).

% Int_Un_distrib
thf(fact_920_Un__Int__crazy,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( inf_inf_set_a @ B2 @ C2 ) ) @ ( inf_inf_set_a @ C2 @ A2 ) )
      = ( inf_inf_set_a @ ( inf_inf_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ ( sup_sup_set_a @ B2 @ C2 ) ) @ ( sup_sup_set_a @ C2 @ A2 ) ) ) ).

% Un_Int_crazy
thf(fact_921_Un__Diff,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( minus_minus_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C2 )
      = ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ C2 ) @ ( minus_minus_set_a @ B2 @ C2 ) ) ) ).

% Un_Diff
thf(fact_922_Un__left__commute,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) )
      = ( sup_sup_set_a @ B2 @ ( sup_sup_set_a @ A2 @ C2 ) ) ) ).

% Un_left_commute
thf(fact_923_Un__left__absorb,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ A2 @ B2 ) )
      = ( sup_sup_set_a @ A2 @ B2 ) ) ).

% Un_left_absorb
thf(fact_924_Un__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [A7: set_a,B6: set_a] : ( sup_sup_set_a @ B6 @ A7 ) ) ) ).

% Un_commute
thf(fact_925_Un__absorb,axiom,
    ! [A2: set_a] :
      ( ( sup_sup_set_a @ A2 @ A2 )
      = A2 ) ).

% Un_absorb
thf(fact_926_Un__assoc,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A2 @ B2 ) @ C2 )
      = ( sup_sup_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% Un_assoc
thf(fact_927_ball__Un,axiom,
    ! [A2: set_a,B2: set_a,P: a > $o] :
      ( ( ! [X3: a] :
            ( ( member_a @ X3 @ ( sup_sup_set_a @ A2 @ B2 ) )
           => ( P @ X3 ) ) )
      = ( ! [X3: a] :
            ( ( member_a @ X3 @ A2 )
           => ( P @ X3 ) )
        & ! [X3: a] :
            ( ( member_a @ X3 @ B2 )
           => ( P @ X3 ) ) ) ) ).

% ball_Un
thf(fact_928_bex__Un,axiom,
    ! [A2: set_a,B2: set_a,P: a > $o] :
      ( ( ? [X3: a] :
            ( ( member_a @ X3 @ ( sup_sup_set_a @ A2 @ B2 ) )
            & ( P @ X3 ) ) )
      = ( ? [X3: a] :
            ( ( member_a @ X3 @ A2 )
            & ( P @ X3 ) )
        | ? [X3: a] :
            ( ( member_a @ X3 @ B2 )
            & ( P @ X3 ) ) ) ) ).

% bex_Un
thf(fact_929_UnI2,axiom,
    ! [C: nat,B2: set_nat,A2: set_nat] :
      ( ( member_nat @ C @ B2 )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_930_UnI2,axiom,
    ! [C: a,B2: set_a,A2: set_a] :
      ( ( member_a @ C @ B2 )
     => ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% UnI2
thf(fact_931_UnI1,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ A2 )
     => ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_932_UnI1,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ A2 )
     => ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) ) ) ).

% UnI1
thf(fact_933_UnE,axiom,
    ! [C: nat,A2: set_nat,B2: set_nat] :
      ( ( member_nat @ C @ ( sup_sup_set_nat @ A2 @ B2 ) )
     => ( ~ ( member_nat @ C @ A2 )
       => ( member_nat @ C @ B2 ) ) ) ).

% UnE
thf(fact_934_UnE,axiom,
    ! [C: a,A2: set_a,B2: set_a] :
      ( ( member_a @ C @ ( sup_sup_set_a @ A2 @ B2 ) )
     => ( ~ ( member_a @ C @ A2 )
       => ( member_a @ C @ B2 ) ) ) ).

% UnE
thf(fact_935_sup__left__commute,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
      = ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% sup_left_commute
thf(fact_936_sup_Oleft__commute,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( sup_sup_set_a @ B @ ( sup_sup_set_a @ A @ C ) )
      = ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B @ C ) ) ) ).

% sup.left_commute
thf(fact_937_boolean__algebra__cancel_Osup2,axiom,
    ! [B2: set_a,K: set_a,B: set_a,A: set_a] :
      ( ( B2
        = ( sup_sup_set_a @ K @ B ) )
     => ( ( sup_sup_set_a @ A @ B2 )
        = ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.sup2
thf(fact_938_boolean__algebra__cancel_Osup1,axiom,
    ! [A2: set_a,K: set_a,A: set_a,B: set_a] :
      ( ( A2
        = ( sup_sup_set_a @ K @ A ) )
     => ( ( sup_sup_set_a @ A2 @ B )
        = ( sup_sup_set_a @ K @ ( sup_sup_set_a @ A @ B ) ) ) ) ).

% boolean_algebra_cancel.sup1
thf(fact_939_sup__commute,axiom,
    ( sup_sup_set_a
    = ( ^ [X3: set_a,Y3: set_a] : ( sup_sup_set_a @ Y3 @ X3 ) ) ) ).

% sup_commute
thf(fact_940_sup_Ocommute,axiom,
    ( sup_sup_set_a
    = ( ^ [A4: set_a,B4: set_a] : ( sup_sup_set_a @ B4 @ A4 ) ) ) ).

% sup.commute
thf(fact_941_sup__assoc,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
      = ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).

% sup_assoc
thf(fact_942_sup_Oassoc,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ A @ B ) @ C )
      = ( sup_sup_set_a @ A @ ( sup_sup_set_a @ B @ C ) ) ) ).

% sup.assoc
thf(fact_943_inf__sup__aci_I5_J,axiom,
    ( sup_sup_set_a
    = ( ^ [X3: set_a,Y3: set_a] : ( sup_sup_set_a @ Y3 @ X3 ) ) ) ).

% inf_sup_aci(5)
thf(fact_944_inf__sup__aci_I6_J,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ ( sup_sup_set_a @ X @ Y ) @ Z )
      = ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).

% inf_sup_aci(6)
thf(fact_945_inf__sup__aci_I7_J,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) )
      = ( sup_sup_set_a @ Y @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% inf_sup_aci(7)
thf(fact_946_inf__sup__aci_I8_J,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( sup_sup_set_a @ X @ ( sup_sup_set_a @ X @ Y ) )
      = ( sup_sup_set_a @ X @ Y ) ) ).

% inf_sup_aci(8)
thf(fact_947_distrib__sup__le,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ X @ ( inf_inf_set_a @ Y @ Z ) ) @ ( inf_inf_set_a @ ( sup_sup_set_a @ X @ Y ) @ ( sup_sup_set_a @ X @ Z ) ) ) ).

% distrib_sup_le
thf(fact_948_distrib__sup__le,axiom,
    ! [X: nat,Y: nat,Z: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ X @ ( inf_inf_nat @ Y @ Z ) ) @ ( inf_inf_nat @ ( sup_sup_nat @ X @ Y ) @ ( sup_sup_nat @ X @ Z ) ) ) ).

% distrib_sup_le
thf(fact_949_distrib__inf__le,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] : ( ord_less_eq_set_a @ ( sup_sup_set_a @ ( inf_inf_set_a @ X @ Y ) @ ( inf_inf_set_a @ X @ Z ) ) @ ( inf_inf_set_a @ X @ ( sup_sup_set_a @ Y @ Z ) ) ) ).

% distrib_inf_le
thf(fact_950_distrib__inf__le,axiom,
    ! [X: nat,Y: nat,Z: nat] : ( ord_less_eq_nat @ ( sup_sup_nat @ ( inf_inf_nat @ X @ Y ) @ ( inf_inf_nat @ X @ Z ) ) @ ( inf_inf_nat @ X @ ( sup_sup_nat @ Y @ Z ) ) ) ).

% distrib_inf_le
thf(fact_951_singleton__Un__iff,axiom,
    ! [X: a,A2: set_a,B2: set_a] :
      ( ( ( insert_a @ X @ bot_bot_set_a )
        = ( sup_sup_set_a @ A2 @ B2 ) )
      = ( ( ( A2 = bot_bot_set_a )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2 = bot_bot_set_a ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% singleton_Un_iff
thf(fact_952_Un__singleton__iff,axiom,
    ! [A2: set_a,B2: set_a,X: a] :
      ( ( ( sup_sup_set_a @ A2 @ B2 )
        = ( insert_a @ X @ bot_bot_set_a ) )
      = ( ( ( A2 = bot_bot_set_a )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2 = bot_bot_set_a ) )
        | ( ( A2
            = ( insert_a @ X @ bot_bot_set_a ) )
          & ( B2
            = ( insert_a @ X @ bot_bot_set_a ) ) ) ) ) ).

% Un_singleton_iff
thf(fact_953_insert__is__Un,axiom,
    ( insert_a
    = ( ^ [A4: a] : ( sup_sup_set_a @ ( insert_a @ A4 @ bot_bot_set_a ) ) ) ) ).

% insert_is_Un
thf(fact_954_Un__Int__assoc__eq,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ C2 )
        = ( inf_inf_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) )
      = ( ord_less_eq_set_a @ C2 @ A2 ) ) ).

% Un_Int_assoc_eq
thf(fact_955_Diff__subset__conv,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( ord_less_eq_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ C2 )
      = ( ord_less_eq_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ).

% Diff_subset_conv
thf(fact_956_Diff__partition,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( ord_less_eq_set_a @ A2 @ B2 )
     => ( ( sup_sup_set_a @ A2 @ ( minus_minus_set_a @ B2 @ A2 ) )
        = B2 ) ) ).

% Diff_partition
thf(fact_957_Diff__Un,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) )
      = ( inf_inf_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ A2 @ C2 ) ) ) ).

% Diff_Un
thf(fact_958_Diff__Int,axiom,
    ! [A2: set_a,B2: set_a,C2: set_a] :
      ( ( minus_minus_set_a @ A2 @ ( inf_inf_set_a @ B2 @ C2 ) )
      = ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ A2 @ C2 ) ) ) ).

% Diff_Int
thf(fact_959_Int__Diff__Un,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ ( inf_inf_set_a @ A2 @ B2 ) @ ( minus_minus_set_a @ A2 @ B2 ) )
      = A2 ) ).

% Int_Diff_Un
thf(fact_960_Un__Diff__Int,axiom,
    ! [A2: set_a,B2: set_a] :
      ( ( sup_sup_set_a @ ( minus_minus_set_a @ A2 @ B2 ) @ ( inf_inf_set_a @ A2 @ B2 ) )
      = A2 ) ).

% Un_Diff_Int
thf(fact_961_additive__abelian__group_Osumset__subset__Un1,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,A5: set_a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( sup_sup_set_a @ A2 @ A5 ) @ B2 )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A5 @ B2 ) ) ) ) ).

% additive_abelian_group.sumset_subset_Un1
thf(fact_962_additive__abelian__group_Osumset__subset__Un2,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,B5: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( sup_sup_set_a @ B2 @ B5 ) )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B5 ) ) ) ) ).

% additive_abelian_group.sumset_subset_Un2
thf(fact_963_nle__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_eq_nat @ A @ B ) )
      = ( ( ord_less_eq_nat @ B @ A )
        & ( B != A ) ) ) ).

% nle_le
thf(fact_964_le__cases3,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ( ord_less_eq_nat @ X @ Y )
       => ~ ( ord_less_eq_nat @ Y @ Z ) )
     => ( ( ( ord_less_eq_nat @ Y @ X )
         => ~ ( ord_less_eq_nat @ X @ Z ) )
       => ( ( ( ord_less_eq_nat @ X @ Z )
           => ~ ( ord_less_eq_nat @ Z @ Y ) )
         => ( ( ( ord_less_eq_nat @ Z @ Y )
             => ~ ( ord_less_eq_nat @ Y @ X ) )
           => ( ( ( ord_less_eq_nat @ Y @ Z )
               => ~ ( ord_less_eq_nat @ Z @ X ) )
             => ~ ( ( ord_less_eq_nat @ Z @ X )
                 => ~ ( ord_less_eq_nat @ X @ Y ) ) ) ) ) ) ) ).

% le_cases3
thf(fact_965_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_a,Z2: set_a] : ( Y4 = Z2 ) )
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( ord_less_eq_set_a @ X3 @ Y3 )
          & ( ord_less_eq_set_a @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_966_order__class_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% order_class.order_eq_iff
thf(fact_967_ord__eq__le__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( A = B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_968_ord__eq__le__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_eq_le_trans
thf(fact_969_ord__le__eq__trans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_970_ord__le__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% ord_le_eq_trans
thf(fact_971_order__antisym,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_972_order__antisym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ X )
       => ( X = Y ) ) ) ).

% order_antisym
thf(fact_973_order_Otrans,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_eq_set_a @ A @ C ) ) ) ).

% order.trans
thf(fact_974_order_Otrans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_eq_nat @ A @ C ) ) ) ).

% order.trans
thf(fact_975_order__trans,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ Y @ Z )
       => ( ord_less_eq_set_a @ X @ Z ) ) ) ).

% order_trans
thf(fact_976_order__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_eq_nat @ X @ Z ) ) ) ).

% order_trans
thf(fact_977_linorder__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( ord_less_eq_nat @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: nat,B3: nat] :
            ( ( P @ B3 @ A3 )
           => ( P @ A3 @ B3 ) )
       => ( P @ A @ B ) ) ) ).

% linorder_wlog
thf(fact_978_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: set_a,Z2: set_a] : ( Y4 = Z2 ) )
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ B4 @ A4 )
          & ( ord_less_eq_set_a @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_979_dual__order_Oeq__iff,axiom,
    ( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.eq_iff
thf(fact_980_dual__order_Oantisym,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_981_dual__order_Oantisym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( A = B ) ) ) ).

% dual_order.antisym
thf(fact_982_dual__order_Otrans,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_eq_set_a @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_983_dual__order_Otrans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_eq_nat @ C @ A ) ) ) ).

% dual_order.trans
thf(fact_984_antisym,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_985_antisym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ A )
       => ( A = B ) ) ) ).

% antisym
thf(fact_986_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: set_a,Z2: set_a] : ( Y4 = Z2 ) )
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ( ord_less_eq_set_a @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_987_Orderings_Oorder__eq__iff,axiom,
    ( ( ^ [Y4: nat,Z2: nat] : ( Y4 = Z2 ) )
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% Orderings.order_eq_iff
thf(fact_988_order__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_989_order__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_990_order__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_991_order__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_subst1
thf(fact_992_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_993_order__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_994_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_995_order__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_subst2
thf(fact_996_order__eq__refl,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( X = Y )
     => ( ord_less_eq_set_a @ X @ Y ) ) ).

% order_eq_refl
thf(fact_997_order__eq__refl,axiom,
    ! [X: nat,Y: nat] :
      ( ( X = Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_eq_refl
thf(fact_998_linorder__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_linear
thf(fact_999_ord__eq__le__subst,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1000_ord__eq__le__subst,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1001_ord__eq__le__subst,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1002_ord__eq__le__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_le_subst
thf(fact_1003_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1004_ord__le__eq__subst,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1005_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_set_a @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1006_ord__le__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_eq_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_le_eq_subst
thf(fact_1007_linorder__le__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_eq_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_le_cases
thf(fact_1008_order__antisym__conv,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ( ( ord_less_eq_set_a @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_1009_order__antisym__conv,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% order_antisym_conv
thf(fact_1010_gt__ex,axiom,
    ! [X: nat] :
    ? [X_1: nat] : ( ord_less_nat @ X @ X_1 ) ).

% gt_ex
thf(fact_1011_less__imp__neq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% less_imp_neq
thf(fact_1012_order_Oasym,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order.asym
thf(fact_1013_ord__eq__less__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( A = B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_eq_less_trans
thf(fact_1014_ord__less__eq__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( B = C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% ord_less_eq_trans
thf(fact_1015_less__induct,axiom,
    ! [P: nat > $o,A: nat] :
      ( ! [X4: nat] :
          ( ! [Y5: nat] :
              ( ( ord_less_nat @ Y5 @ X4 )
             => ( P @ Y5 ) )
         => ( P @ X4 ) )
     => ( P @ A ) ) ).

% less_induct
thf(fact_1016_antisym__conv3,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_nat @ Y @ X )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv3
thf(fact_1017_linorder__cases,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( X != Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_cases
thf(fact_1018_dual__order_Oasym,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ~ ( ord_less_nat @ A @ B ) ) ).

% dual_order.asym
thf(fact_1019_dual__order_Oirrefl,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ A ) ).

% dual_order.irrefl
thf(fact_1020_exists__least__iff,axiom,
    ( ( ^ [P2: nat > $o] :
        ? [X6: nat] : ( P2 @ X6 ) )
    = ( ^ [P3: nat > $o] :
        ? [N4: nat] :
          ( ( P3 @ N4 )
          & ! [M4: nat] :
              ( ( ord_less_nat @ M4 @ N4 )
             => ~ ( P3 @ M4 ) ) ) ) ) ).

% exists_least_iff
thf(fact_1021_linorder__less__wlog,axiom,
    ! [P: nat > nat > $o,A: nat,B: nat] :
      ( ! [A3: nat,B3: nat] :
          ( ( ord_less_nat @ A3 @ B3 )
         => ( P @ A3 @ B3 ) )
     => ( ! [A3: nat] : ( P @ A3 @ A3 )
       => ( ! [A3: nat,B3: nat] :
              ( ( P @ B3 @ A3 )
             => ( P @ A3 @ B3 ) )
         => ( P @ A @ B ) ) ) ) ).

% linorder_less_wlog
thf(fact_1022_order_Ostrict__trans,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans
thf(fact_1023_not__less__iff__gr__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ( ord_less_nat @ Y @ X )
        | ( X = Y ) ) ) ).

% not_less_iff_gr_or_eq
thf(fact_1024_dual__order_Ostrict__trans,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans
thf(fact_1025_order_Ostrict__implies__not__eq,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( A != B ) ) ).

% order.strict_implies_not_eq
thf(fact_1026_dual__order_Ostrict__implies__not__eq,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( A != B ) ) ).

% dual_order.strict_implies_not_eq
thf(fact_1027_linorder__neqE,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
     => ( ~ ( ord_less_nat @ X @ Y )
       => ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neqE
thf(fact_1028_order__less__asym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_asym
thf(fact_1029_linorder__neq__iff,axiom,
    ! [X: nat,Y: nat] :
      ( ( X != Y )
      = ( ( ord_less_nat @ X @ Y )
        | ( ord_less_nat @ Y @ X ) ) ) ).

% linorder_neq_iff
thf(fact_1030_order__less__asym_H,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ~ ( ord_less_nat @ B @ A ) ) ).

% order_less_asym'
thf(fact_1031_order__less__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_trans
thf(fact_1032_ord__eq__less__subst,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( A
        = ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_nat @ X4 @ Y2 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% ord_eq_less_subst
thf(fact_1033_ord__less__eq__subst,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ( F @ B )
          = C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_nat @ X4 @ Y2 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% ord_less_eq_subst
thf(fact_1034_order__less__irrefl,axiom,
    ! [X: nat] :
      ~ ( ord_less_nat @ X @ X ) ).

% order_less_irrefl
thf(fact_1035_order__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_nat @ X4 @ Y2 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_subst1
thf(fact_1036_order__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_nat @ X4 @ Y2 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_subst2
thf(fact_1037_order__less__not__sym,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_not_sym
thf(fact_1038_order__less__imp__triv,axiom,
    ! [X: nat,Y: nat,P: $o] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ X )
       => P ) ) ).

% order_less_imp_triv
thf(fact_1039_linorder__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
      | ( X = Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_less_linear
thf(fact_1040_order__less__imp__not__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( X != Y ) ) ).

% order_less_imp_not_eq
thf(fact_1041_order__less__imp__not__eq2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( Y != X ) ) ).

% order_less_imp_not_eq2
thf(fact_1042_order__less__imp__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ~ ( ord_less_nat @ Y @ X ) ) ).

% order_less_imp_not_less
thf(fact_1043_additive__abelian__group_Osumset__subset__Un_I2_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,C2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( sup_sup_set_a @ A2 @ C2 ) @ B2 ) ) ) ).

% additive_abelian_group.sumset_subset_Un(2)
thf(fact_1044_additive__abelian__group_Osumset__subset__Un_I1_J,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,B2: set_a,C2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ord_less_eq_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( sup_sup_set_a @ B2 @ C2 ) ) ) ) ).

% additive_abelian_group.sumset_subset_Un(1)
thf(fact_1045_card__1__singletonE,axiom,
    ! [A2: set_a] :
      ( ( ( finite_card_a @ A2 )
        = one_one_nat )
     => ~ ! [X4: a] :
            ( A2
           != ( insert_a @ X4 @ bot_bot_set_a ) ) ) ).

% card_1_singletonE
thf(fact_1046_card__Diff__singleton,axiom,
    ! [X: nat,A2: set_nat] :
      ( ( member_nat @ X @ A2 )
     => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) )
        = ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ one_one_nat ) ) ) ).

% card_Diff_singleton
thf(fact_1047_card__Diff__singleton,axiom,
    ! [X: a,A2: set_a] :
      ( ( member_a @ X @ A2 )
     => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) )
        = ( minus_minus_nat @ ( finite_card_a @ A2 ) @ one_one_nat ) ) ) ).

% card_Diff_singleton
thf(fact_1048_card__Diff__singleton__if,axiom,
    ! [X: nat,A2: set_nat] :
      ( ( ( member_nat @ X @ A2 )
       => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) )
          = ( minus_minus_nat @ ( finite_card_nat @ A2 ) @ one_one_nat ) ) )
      & ( ~ ( member_nat @ X @ A2 )
       => ( ( finite_card_nat @ ( minus_minus_set_nat @ A2 @ ( insert_nat @ X @ bot_bot_set_nat ) ) )
          = ( finite_card_nat @ A2 ) ) ) ) ).

% card_Diff_singleton_if
thf(fact_1049_card__Diff__singleton__if,axiom,
    ! [X: a,A2: set_a] :
      ( ( ( member_a @ X @ A2 )
       => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) )
          = ( minus_minus_nat @ ( finite_card_a @ A2 ) @ one_one_nat ) ) )
      & ( ~ ( member_a @ X @ A2 )
       => ( ( finite_card_a @ ( minus_minus_set_a @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) )
          = ( finite_card_a @ A2 ) ) ) ) ).

% card_Diff_singleton_if
thf(fact_1050_card__insert__le__m1,axiom,
    ! [N2: nat,Y: set_a,X: a] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( ord_less_eq_nat @ ( finite_card_a @ Y ) @ ( minus_minus_nat @ N2 @ one_one_nat ) )
       => ( ord_less_eq_nat @ ( finite_card_a @ ( insert_a @ X @ Y ) ) @ N2 ) ) ) ).

% card_insert_le_m1
thf(fact_1051_additive__abelian__group_Osumset__iterated__r,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,R: nat,A2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( ord_less_nat @ zero_zero_nat @ R )
       => ( ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ R )
          = ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( pluenn1960970773371692859ated_a @ G @ Addition @ Zero @ A2 @ ( minus_minus_nat @ R @ one_one_nat ) ) ) ) ) ) ).

% additive_abelian_group.sumset_iterated_r
thf(fact_1052_order__le__imp__less__or__eq,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_set_a @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1053_order__le__imp__less__or__eq,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ X @ Y )
        | ( X = Y ) ) ) ).

% order_le_imp_less_or_eq
thf(fact_1054_linorder__le__less__linear,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
      | ( ord_less_nat @ Y @ X ) ) ).

% linorder_le_less_linear
thf(fact_1055_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_set_a @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_nat @ X4 @ Y2 )
             => ( ord_less_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1056_order__less__le__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_nat @ X4 @ Y2 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_less_le_subst2
thf(fact_1057_order__less__le__subst1,axiom,
    ! [A: set_a,F: set_a > set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1058_order__less__le__subst1,axiom,
    ! [A: nat,F: set_a > nat,B: set_a,C: set_a] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1059_order__less__le__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1060_order__less__le__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ ( F @ B ) )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_less_le_subst1
thf(fact_1061_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1062_order__le__less__subst2,axiom,
    ! [A: set_a,B: set_a,F: set_a > nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: set_a,Y2: set_a] :
              ( ( ord_less_eq_set_a @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1063_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > set_a,C: set_a] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_set_a @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1064_order__le__less__subst2,axiom,
    ! [A: nat,B: nat,F: nat > nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ ( F @ B ) @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_eq_nat @ X4 @ Y2 )
             => ( ord_less_eq_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ ( F @ A ) @ C ) ) ) ) ).

% order_le_less_subst2
thf(fact_1065_order__le__less__subst1,axiom,
    ! [A: set_a,F: nat > set_a,B: nat,C: nat] :
      ( ( ord_less_eq_set_a @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_nat @ X4 @ Y2 )
             => ( ord_less_set_a @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_set_a @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1066_order__le__less__subst1,axiom,
    ! [A: nat,F: nat > nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ ( F @ B ) )
     => ( ( ord_less_nat @ B @ C )
       => ( ! [X4: nat,Y2: nat] :
              ( ( ord_less_nat @ X4 @ Y2 )
             => ( ord_less_nat @ ( F @ X4 ) @ ( F @ Y2 ) ) )
         => ( ord_less_nat @ A @ ( F @ C ) ) ) ) ) ).

% order_le_less_subst1
thf(fact_1067_order__less__le__trans,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ Y @ Z )
       => ( ord_less_set_a @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1068_order__less__le__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_less_le_trans
thf(fact_1069_order__le__less__trans,axiom,
    ! [X: set_a,Y: set_a,Z: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ord_less_set_a @ Y @ Z )
       => ( ord_less_set_a @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1070_order__le__less__trans,axiom,
    ! [X: nat,Y: nat,Z: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ord_less_nat @ Y @ Z )
       => ( ord_less_nat @ X @ Z ) ) ) ).

% order_le_less_trans
thf(fact_1071_order__neq__le__trans,axiom,
    ! [A: set_a,B: set_a] :
      ( ( A != B )
     => ( ( ord_less_eq_set_a @ A @ B )
       => ( ord_less_set_a @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1072_order__neq__le__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( A != B )
     => ( ( ord_less_eq_nat @ A @ B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_neq_le_trans
thf(fact_1073_order__le__neq__trans,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( A != B )
       => ( ord_less_set_a @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1074_order__le__neq__trans,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( A != B )
       => ( ord_less_nat @ A @ B ) ) ) ).

% order_le_neq_trans
thf(fact_1075_order__less__imp__le,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_set_a @ X @ Y )
     => ( ord_less_eq_set_a @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1076_order__less__imp__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ X @ Y ) ) ).

% order_less_imp_le
thf(fact_1077_linorder__not__less,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_nat @ X @ Y ) )
      = ( ord_less_eq_nat @ Y @ X ) ) ).

% linorder_not_less
thf(fact_1078_linorder__not__le,axiom,
    ! [X: nat,Y: nat] :
      ( ( ~ ( ord_less_eq_nat @ X @ Y ) )
      = ( ord_less_nat @ Y @ X ) ) ).

% linorder_not_le
thf(fact_1079_order__less__le,axiom,
    ( ord_less_set_a
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( ord_less_eq_set_a @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_1080_order__less__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ( X3 != Y3 ) ) ) ) ).

% order_less_le
thf(fact_1081_order__le__less,axiom,
    ( ord_less_eq_set_a
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( ord_less_set_a @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_1082_order__le__less,axiom,
    ( ord_less_eq_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_nat @ X3 @ Y3 )
          | ( X3 = Y3 ) ) ) ) ).

% order_le_less
thf(fact_1083_dual__order_Ostrict__implies__order,axiom,
    ! [B: set_a,A: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ord_less_eq_set_a @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1084_dual__order_Ostrict__implies__order,axiom,
    ! [B: nat,A: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ord_less_eq_nat @ B @ A ) ) ).

% dual_order.strict_implies_order
thf(fact_1085_order_Ostrict__implies__order,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ord_less_eq_set_a @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1086_order_Ostrict__implies__order,axiom,
    ! [A: nat,B: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ord_less_eq_nat @ A @ B ) ) ).

% order.strict_implies_order
thf(fact_1087_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( ord_less_eq_set_a @ B4 @ A4 )
          & ~ ( ord_less_eq_set_a @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1088_dual__order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ~ ( ord_less_eq_nat @ A4 @ B4 ) ) ) ) ).

% dual_order.strict_iff_not
thf(fact_1089_dual__order_Ostrict__trans2,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_set_a @ B @ A )
     => ( ( ord_less_eq_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1090_dual__order_Ostrict__trans2,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_nat @ B @ A )
     => ( ( ord_less_eq_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans2
thf(fact_1091_dual__order_Ostrict__trans1,axiom,
    ! [B: set_a,A: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ B @ A )
     => ( ( ord_less_set_a @ C @ B )
       => ( ord_less_set_a @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1092_dual__order_Ostrict__trans1,axiom,
    ! [B: nat,A: nat,C: nat] :
      ( ( ord_less_eq_nat @ B @ A )
     => ( ( ord_less_nat @ C @ B )
       => ( ord_less_nat @ C @ A ) ) ) ).

% dual_order.strict_trans1
thf(fact_1093_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( ord_less_eq_set_a @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1094_dual__order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_eq_nat @ B4 @ A4 )
          & ( A4 != B4 ) ) ) ) ).

% dual_order.strict_iff_order
thf(fact_1095_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_a
    = ( ^ [B4: set_a,A4: set_a] :
          ( ( ord_less_set_a @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1096_dual__order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [B4: nat,A4: nat] :
          ( ( ord_less_nat @ B4 @ A4 )
          | ( A4 = B4 ) ) ) ) ).

% dual_order.order_iff_strict
thf(fact_1097_order_Ostrict__iff__not,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ~ ( ord_less_eq_set_a @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1098_order_Ostrict__iff__not,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ~ ( ord_less_eq_nat @ B4 @ A4 ) ) ) ) ).

% order.strict_iff_not
thf(fact_1099_order_Ostrict__trans2,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_set_a @ A @ B )
     => ( ( ord_less_eq_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1100_order_Ostrict__trans2,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_nat @ A @ B )
     => ( ( ord_less_eq_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans2
thf(fact_1101_order_Ostrict__trans1,axiom,
    ! [A: set_a,B: set_a,C: set_a] :
      ( ( ord_less_eq_set_a @ A @ B )
     => ( ( ord_less_set_a @ B @ C )
       => ( ord_less_set_a @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1102_order_Ostrict__trans1,axiom,
    ! [A: nat,B: nat,C: nat] :
      ( ( ord_less_eq_nat @ A @ B )
     => ( ( ord_less_nat @ B @ C )
       => ( ord_less_nat @ A @ C ) ) ) ).

% order.strict_trans1
thf(fact_1103_order_Ostrict__iff__order,axiom,
    ( ord_less_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_eq_set_a @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1104_order_Ostrict__iff__order,axiom,
    ( ord_less_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_eq_nat @ A4 @ B4 )
          & ( A4 != B4 ) ) ) ) ).

% order.strict_iff_order
thf(fact_1105_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_set_a
    = ( ^ [A4: set_a,B4: set_a] :
          ( ( ord_less_set_a @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1106_order_Oorder__iff__strict,axiom,
    ( ord_less_eq_nat
    = ( ^ [A4: nat,B4: nat] :
          ( ( ord_less_nat @ A4 @ B4 )
          | ( A4 = B4 ) ) ) ) ).

% order.order_iff_strict
thf(fact_1107_not__le__imp__less,axiom,
    ! [Y: nat,X: nat] :
      ( ~ ( ord_less_eq_nat @ Y @ X )
     => ( ord_less_nat @ X @ Y ) ) ).

% not_le_imp_less
thf(fact_1108_less__le__not__le,axiom,
    ( ord_less_set_a
    = ( ^ [X3: set_a,Y3: set_a] :
          ( ( ord_less_eq_set_a @ X3 @ Y3 )
          & ~ ( ord_less_eq_set_a @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1109_less__le__not__le,axiom,
    ( ord_less_nat
    = ( ^ [X3: nat,Y3: nat] :
          ( ( ord_less_eq_nat @ X3 @ Y3 )
          & ~ ( ord_less_eq_nat @ Y3 @ X3 ) ) ) ) ).

% less_le_not_le
thf(fact_1110_antisym__conv2,axiom,
    ! [X: set_a,Y: set_a] :
      ( ( ord_less_eq_set_a @ X @ Y )
     => ( ( ~ ( ord_less_set_a @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1111_antisym__conv2,axiom,
    ! [X: nat,Y: nat] :
      ( ( ord_less_eq_nat @ X @ Y )
     => ( ( ~ ( ord_less_nat @ X @ Y ) )
        = ( X = Y ) ) ) ).

% antisym_conv2
thf(fact_1112_antisym__conv1,axiom,
    ! [X: set_a,Y: set_a] :
      ( ~ ( ord_less_set_a @ X @ Y )
     => ( ( ord_less_eq_set_a @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1113_antisym__conv1,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ( ord_less_eq_nat @ X @ Y )
        = ( X = Y ) ) ) ).

% antisym_conv1
thf(fact_1114_nless__le,axiom,
    ! [A: set_a,B: set_a] :
      ( ( ~ ( ord_less_set_a @ A @ B ) )
      = ( ~ ( ord_less_eq_set_a @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1115_nless__le,axiom,
    ! [A: nat,B: nat] :
      ( ( ~ ( ord_less_nat @ A @ B ) )
      = ( ~ ( ord_less_eq_nat @ A @ B )
        | ( A = B ) ) ) ).

% nless_le
thf(fact_1116_leI,axiom,
    ! [X: nat,Y: nat] :
      ( ~ ( ord_less_nat @ X @ Y )
     => ( ord_less_eq_nat @ Y @ X ) ) ).

% leI
thf(fact_1117_leD,axiom,
    ! [Y: set_a,X: set_a] :
      ( ( ord_less_eq_set_a @ Y @ X )
     => ~ ( ord_less_set_a @ X @ Y ) ) ).

% leD
thf(fact_1118_leD,axiom,
    ! [Y: nat,X: nat] :
      ( ( ord_less_eq_nat @ Y @ X )
     => ~ ( ord_less_nat @ X @ Y ) ) ).

% leD
thf(fact_1119_bot_Oextremum__uniqueI,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
     => ( A = bot_bot_set_a ) ) ).

% bot.extremum_uniqueI
thf(fact_1120_bot_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
     => ( A = bot_bot_nat ) ) ).

% bot.extremum_uniqueI
thf(fact_1121_bot_Oextremum__unique,axiom,
    ! [A: set_a] :
      ( ( ord_less_eq_set_a @ A @ bot_bot_set_a )
      = ( A = bot_bot_set_a ) ) ).

% bot.extremum_unique
thf(fact_1122_bot_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ bot_bot_nat )
      = ( A = bot_bot_nat ) ) ).

% bot.extremum_unique
thf(fact_1123_bot_Oextremum,axiom,
    ! [A: set_a] : ( ord_less_eq_set_a @ bot_bot_set_a @ A ) ).

% bot.extremum
thf(fact_1124_bot_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ bot_bot_nat @ A ) ).

% bot.extremum
thf(fact_1125_bot_Onot__eq__extremum,axiom,
    ! [A: set_a] :
      ( ( A != bot_bot_set_a )
      = ( ord_less_set_a @ bot_bot_set_a @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1126_bot_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != bot_bot_nat )
      = ( ord_less_nat @ bot_bot_nat @ A ) ) ).

% bot.not_eq_extremum
thf(fact_1127_bot_Oextremum__strict,axiom,
    ! [A: set_a] :
      ~ ( ord_less_set_a @ A @ bot_bot_set_a ) ).

% bot.extremum_strict
thf(fact_1128_bot_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ bot_bot_nat ) ).

% bot.extremum_strict
thf(fact_1129_sumset__insert1,axiom,
    ! [A2: set_a,X: a,B2: set_a] :
      ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ A2 )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ A2 ) @ B2 )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ ( insert_a @ X @ bot_bot_set_a ) @ B2 ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ).

% sumset_insert1
thf(fact_1130_sumset__insert2,axiom,
    ! [B2: set_a,A2: set_a,X: a] :
      ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ B2 )
     => ( ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ B2 ) )
        = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ B2 ) ) ) ) ).

% sumset_insert2
thf(fact_1131_finite__linorder__min__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [B3: nat,A6: set_nat] :
              ( ( finite_finite_nat @ A6 )
             => ( ! [X2: nat] :
                    ( ( member_nat @ X2 @ A6 )
                   => ( ord_less_nat @ B3 @ X2 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_nat @ B3 @ A6 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_min_induct
thf(fact_1132_le__numeral__extra_I3_J,axiom,
    ord_less_eq_nat @ zero_zero_nat @ zero_zero_nat ).

% le_numeral_extra(3)
thf(fact_1133_less__numeral__extra_I3_J,axiom,
    ~ ( ord_less_nat @ zero_zero_nat @ zero_zero_nat ) ).

% less_numeral_extra(3)
thf(fact_1134_le__numeral__extra_I4_J,axiom,
    ord_less_eq_nat @ one_one_nat @ one_one_nat ).

% le_numeral_extra(4)
thf(fact_1135_less__numeral__extra_I4_J,axiom,
    ~ ( ord_less_nat @ one_one_nat @ one_one_nat ) ).

% less_numeral_extra(4)
thf(fact_1136_additive__abelian__group_Osumset__insert1,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,A2: set_a,X: a,B2: set_a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ A2 )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ A2 ) @ B2 )
          = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ ( insert_a @ X @ bot_bot_set_a ) @ B2 ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.sumset_insert1
thf(fact_1137_additive__abelian__group_Osumset__insert2,axiom,
    ! [G: set_a,Addition: a > a > a,Zero: a,B2: set_a,A2: set_a,X: a] :
      ( ( pluenn1164192988769422572roup_a @ G @ Addition @ Zero )
     => ( ( nO_MATCH_set_a_set_a @ bot_bot_set_a @ B2 )
       => ( ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ B2 ) )
          = ( sup_sup_set_a @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ ( insert_a @ X @ bot_bot_set_a ) ) @ ( pluenn3038260743871226533mset_a @ G @ Addition @ A2 @ B2 ) ) ) ) ) ).

% additive_abelian_group.sumset_insert2
thf(fact_1138_less__numeral__extra_I1_J,axiom,
    ord_less_nat @ zero_zero_nat @ one_one_nat ).

% less_numeral_extra(1)
thf(fact_1139_ex__min__if__finite,axiom,
    ! [S: set_nat] :
      ( ( finite_finite_nat @ S )
     => ( ( S != bot_bot_set_nat )
       => ? [X4: nat] :
            ( ( member_nat @ X4 @ S )
            & ~ ? [Xa: nat] :
                  ( ( member_nat @ Xa @ S )
                  & ( ord_less_nat @ Xa @ X4 ) ) ) ) ) ).

% ex_min_if_finite
thf(fact_1140_infinite__growing,axiom,
    ! [X5: set_nat] :
      ( ( X5 != bot_bot_set_nat )
     => ( ! [X4: nat] :
            ( ( member_nat @ X4 @ X5 )
           => ? [Xa: nat] :
                ( ( member_nat @ Xa @ X5 )
                & ( ord_less_nat @ X4 @ Xa ) ) )
       => ~ ( finite_finite_nat @ X5 ) ) ) ).

% infinite_growing
thf(fact_1141_finite__ranking__induct,axiom,
    ! [S: set_nat,P: set_nat > $o,F: nat > nat] :
      ( ( finite_finite_nat @ S )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [X4: nat,S3: set_nat] :
              ( ( finite_finite_nat @ S3 )
             => ( ! [Y5: nat] :
                    ( ( member_nat @ Y5 @ S3 )
                   => ( ord_less_eq_nat @ ( F @ Y5 ) @ ( F @ X4 ) ) )
               => ( ( P @ S3 )
                 => ( P @ ( insert_nat @ X4 @ S3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_1142_finite__ranking__induct,axiom,
    ! [S: set_a,P: set_a > $o,F: a > nat] :
      ( ( finite_finite_a @ S )
     => ( ( P @ bot_bot_set_a )
       => ( ! [X4: a,S3: set_a] :
              ( ( finite_finite_a @ S3 )
             => ( ! [Y5: a] :
                    ( ( member_a @ Y5 @ S3 )
                   => ( ord_less_eq_nat @ ( F @ Y5 ) @ ( F @ X4 ) ) )
               => ( ( P @ S3 )
                 => ( P @ ( insert_a @ X4 @ S3 ) ) ) ) )
         => ( P @ S ) ) ) ) ).

% finite_ranking_induct
thf(fact_1143_finite__linorder__max__induct,axiom,
    ! [A2: set_nat,P: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ( P @ bot_bot_set_nat )
       => ( ! [B3: nat,A6: set_nat] :
              ( ( finite_finite_nat @ A6 )
             => ( ! [X2: nat] :
                    ( ( member_nat @ X2 @ A6 )
                   => ( ord_less_nat @ X2 @ B3 ) )
               => ( ( P @ A6 )
                 => ( P @ ( insert_nat @ B3 @ A6 ) ) ) ) )
         => ( P @ A2 ) ) ) ) ).

% finite_linorder_max_induct
thf(fact_1144_monoid__axioms,axiom,
    group_monoid_a @ g @ addition @ zero ).

% monoid_axioms
thf(fact_1145_card__le__if__inj__on__rel,axiom,
    ! [B2: set_a,A2: set_nat,R: nat > a > $o] :
      ( ( finite_finite_a @ B2 )
     => ( ! [A3: nat] :
            ( ( member_nat @ A3 @ A2 )
           => ? [B10: a] :
                ( ( member_a @ B10 @ B2 )
                & ( R @ A3 @ B10 ) ) )
       => ( ! [A1: nat,A22: nat,B3: a] :
              ( ( member_nat @ A1 @ A2 )
             => ( ( member_nat @ A22 @ A2 )
               => ( ( member_a @ B3 @ B2 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1146_card__le__if__inj__on__rel,axiom,
    ! [B2: set_a,A2: set_a,R: a > a > $o] :
      ( ( finite_finite_a @ B2 )
     => ( ! [A3: a] :
            ( ( member_a @ A3 @ A2 )
           => ? [B10: a] :
                ( ( member_a @ B10 @ B2 )
                & ( R @ A3 @ B10 ) ) )
       => ( ! [A1: a,A22: a,B3: a] :
              ( ( member_a @ A1 @ A2 )
             => ( ( member_a @ A22 @ A2 )
               => ( ( member_a @ B3 @ B2 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_a @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1147_card__le__if__inj__on__rel,axiom,
    ! [B2: set_nat,A2: set_nat,R: nat > nat > $o] :
      ( ( finite_finite_nat @ B2 )
     => ( ! [A3: nat] :
            ( ( member_nat @ A3 @ A2 )
           => ? [B10: nat] :
                ( ( member_nat @ B10 @ B2 )
                & ( R @ A3 @ B10 ) ) )
       => ( ! [A1: nat,A22: nat,B3: nat] :
              ( ( member_nat @ A1 @ A2 )
             => ( ( member_nat @ A22 @ A2 )
               => ( ( member_nat @ B3 @ B2 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1148_card__le__if__inj__on__rel,axiom,
    ! [B2: set_nat,A2: set_a,R: a > nat > $o] :
      ( ( finite_finite_nat @ B2 )
     => ( ! [A3: a] :
            ( ( member_a @ A3 @ A2 )
           => ? [B10: nat] :
                ( ( member_nat @ B10 @ B2 )
                & ( R @ A3 @ B10 ) ) )
       => ( ! [A1: a,A22: a,B3: nat] :
              ( ( member_a @ A1 @ A2 )
             => ( ( member_a @ A22 @ A2 )
               => ( ( member_nat @ B3 @ B2 )
                 => ( ( R @ A1 @ B3 )
                   => ( ( R @ A22 @ B3 )
                     => ( A1 = A22 ) ) ) ) ) )
         => ( ord_less_eq_nat @ ( finite_card_a @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ) ).

% card_le_if_inj_on_rel
thf(fact_1149_monoid_Oinvertible__left__inverse,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M )
         => ( ( Composition @ ( group_inverse_nat @ M @ Composition @ Unit @ U ) @ U )
            = Unit ) ) ) ) ).

% monoid.invertible_left_inverse
thf(fact_1150_monoid_Oinvertible__left__inverse,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M )
         => ( ( Composition @ ( group_inverse_a @ M @ Composition @ Unit @ U ) @ U )
            = Unit ) ) ) ) ).

% monoid.invertible_left_inverse
thf(fact_1151_monoid_Oinvertible__left__inverse2,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat,V2: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M )
         => ( ( member_nat @ V2 @ M )
           => ( ( Composition @ ( group_inverse_nat @ M @ Composition @ Unit @ U ) @ ( Composition @ U @ V2 ) )
              = V2 ) ) ) ) ) ).

% monoid.invertible_left_inverse2
thf(fact_1152_monoid_Oinvertible__left__inverse2,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,U: a,V2: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M )
         => ( ( member_a @ V2 @ M )
           => ( ( Composition @ ( group_inverse_a @ M @ Composition @ Unit @ U ) @ ( Composition @ U @ V2 ) )
              = V2 ) ) ) ) ) ).

% monoid.invertible_left_inverse2
thf(fact_1153_monoid_Oinvertible__right__inverse,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M )
         => ( ( Composition @ U @ ( group_inverse_nat @ M @ Composition @ Unit @ U ) )
            = Unit ) ) ) ) ).

% monoid.invertible_right_inverse
thf(fact_1154_monoid_Oinvertible__right__inverse,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M )
         => ( ( Composition @ U @ ( group_inverse_a @ M @ Composition @ Unit @ U ) )
            = Unit ) ) ) ) ).

% monoid.invertible_right_inverse
thf(fact_1155_monoid_Oinvertible__inverse__closed,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M )
         => ( member_nat @ ( group_inverse_nat @ M @ Composition @ Unit @ U ) @ M ) ) ) ) ).

% monoid.invertible_inverse_closed
thf(fact_1156_monoid_Oinvertible__inverse__closed,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M )
         => ( member_a @ ( group_inverse_a @ M @ Composition @ Unit @ U ) @ M ) ) ) ) ).

% monoid.invertible_inverse_closed
thf(fact_1157_monoid_Oinvertible__right__inverse2,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat,V2: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M )
         => ( ( member_nat @ V2 @ M )
           => ( ( Composition @ U @ ( Composition @ ( group_inverse_nat @ M @ Composition @ Unit @ U ) @ V2 ) )
              = V2 ) ) ) ) ) ).

% monoid.invertible_right_inverse2
thf(fact_1158_monoid_Oinvertible__right__inverse2,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,U: a,V2: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M )
         => ( ( member_a @ V2 @ M )
           => ( ( Composition @ U @ ( Composition @ ( group_inverse_a @ M @ Composition @ Unit @ U ) @ V2 ) )
              = V2 ) ) ) ) ) ).

% monoid.invertible_right_inverse2
thf(fact_1159_monoid_Oinvertible__inverse__inverse,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M )
         => ( ( group_inverse_nat @ M @ Composition @ Unit @ ( group_inverse_nat @ M @ Composition @ Unit @ U ) )
            = U ) ) ) ) ).

% monoid.invertible_inverse_inverse
thf(fact_1160_monoid_Oinvertible__inverse__inverse,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M )
         => ( ( group_inverse_a @ M @ Composition @ Unit @ ( group_inverse_a @ M @ Composition @ Unit @ U ) )
            = U ) ) ) ) ).

% monoid.invertible_inverse_inverse
thf(fact_1161_monoid_Oinverse__composition__commute,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat,Y: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ X )
       => ( ( group_invertible_nat @ M @ Composition @ Unit @ Y )
         => ( ( member_nat @ X @ M )
           => ( ( member_nat @ Y @ M )
             => ( ( group_inverse_nat @ M @ Composition @ Unit @ ( Composition @ X @ Y ) )
                = ( Composition @ ( group_inverse_nat @ M @ Composition @ Unit @ Y ) @ ( group_inverse_nat @ M @ Composition @ Unit @ X ) ) ) ) ) ) ) ) ).

% monoid.inverse_composition_commute
thf(fact_1162_monoid_Oinverse__composition__commute,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,X: a,Y: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ X )
       => ( ( group_invertible_a @ M @ Composition @ Unit @ Y )
         => ( ( member_a @ X @ M )
           => ( ( member_a @ Y @ M )
             => ( ( group_inverse_a @ M @ Composition @ Unit @ ( Composition @ X @ Y ) )
                = ( Composition @ ( group_inverse_a @ M @ Composition @ Unit @ Y ) @ ( group_inverse_a @ M @ Composition @ Unit @ X ) ) ) ) ) ) ) ) ).

% monoid.inverse_composition_commute
thf(fact_1163_monoid_Oinvertible__inverse__invertible,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M )
         => ( group_invertible_nat @ M @ Composition @ Unit @ ( group_inverse_nat @ M @ Composition @ Unit @ U ) ) ) ) ) ).

% monoid.invertible_inverse_invertible
thf(fact_1164_monoid_Oinvertible__inverse__invertible,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M )
         => ( group_invertible_a @ M @ Composition @ Unit @ ( group_inverse_a @ M @ Composition @ Unit @ U ) ) ) ) ) ).

% monoid.invertible_inverse_invertible
thf(fact_1165_monoid_Omem__UnitsI,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ U )
       => ( ( member_nat @ U @ M )
         => ( member_nat @ U @ ( group_Units_nat @ M @ Composition @ Unit ) ) ) ) ) ).

% monoid.mem_UnitsI
thf(fact_1166_monoid_Omem__UnitsI,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ U )
       => ( ( member_a @ U @ M )
         => ( member_a @ U @ ( group_Units_a @ M @ Composition @ Unit ) ) ) ) ) ).

% monoid.mem_UnitsI
thf(fact_1167_monoid_Omem__UnitsD,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( member_nat @ U @ ( group_Units_nat @ M @ Composition @ Unit ) )
       => ( ( group_invertible_nat @ M @ Composition @ Unit @ U )
          & ( member_nat @ U @ M ) ) ) ) ).

% monoid.mem_UnitsD
thf(fact_1168_monoid_Omem__UnitsD,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,U: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( member_a @ U @ ( group_Units_a @ M @ Composition @ Unit ) )
       => ( ( group_invertible_a @ M @ Composition @ Unit @ U )
          & ( member_a @ U @ M ) ) ) ) ).

% monoid.mem_UnitsD
thf(fact_1169_monoid_Ogroup__of__Units,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( group_group_a @ ( group_Units_a @ M @ Composition @ Unit ) @ Composition @ Unit ) ) ).

% monoid.group_of_Units
thf(fact_1170_monoid_Oinverse__unit,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_inverse_a @ M @ Composition @ Unit @ Unit )
        = Unit ) ) ).

% monoid.inverse_unit
thf(fact_1171_monoid_Oinverse__equality,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,U: nat,V2: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( ( Composition @ U @ V2 )
          = Unit )
       => ( ( ( Composition @ V2 @ U )
            = Unit )
         => ( ( member_nat @ U @ M )
           => ( ( member_nat @ V2 @ M )
             => ( ( group_inverse_nat @ M @ Composition @ Unit @ U )
                = V2 ) ) ) ) ) ) ).

% monoid.inverse_equality
thf(fact_1172_monoid_Oinverse__equality,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,U: a,V2: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( ( Composition @ U @ V2 )
          = Unit )
       => ( ( ( Composition @ V2 @ U )
            = Unit )
         => ( ( member_a @ U @ M )
           => ( ( member_a @ V2 @ M )
             => ( ( group_inverse_a @ M @ Composition @ Unit @ U )
                = V2 ) ) ) ) ) ) ).

% monoid.inverse_equality
thf(fact_1173_monoid_Oinvertible__right__cancel,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat,Y: nat,Z: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ X )
       => ( ( member_nat @ X @ M )
         => ( ( member_nat @ Y @ M )
           => ( ( member_nat @ Z @ M )
             => ( ( ( Composition @ Y @ X )
                  = ( Composition @ Z @ X ) )
                = ( Y = Z ) ) ) ) ) ) ) ).

% monoid.invertible_right_cancel
thf(fact_1174_monoid_Oinvertible__right__cancel,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,X: a,Y: a,Z: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ X )
       => ( ( member_a @ X @ M )
         => ( ( member_a @ Y @ M )
           => ( ( member_a @ Z @ M )
             => ( ( ( Composition @ Y @ X )
                  = ( Composition @ Z @ X ) )
                = ( Y = Z ) ) ) ) ) ) ) ).

% monoid.invertible_right_cancel
thf(fact_1175_monoid_Oinvertible__left__cancel,axiom,
    ! [M: set_nat,Composition: nat > nat > nat,Unit: nat,X: nat,Y: nat,Z: nat] :
      ( ( group_monoid_nat @ M @ Composition @ Unit )
     => ( ( group_invertible_nat @ M @ Composition @ Unit @ X )
       => ( ( member_nat @ X @ M )
         => ( ( member_nat @ Y @ M )
           => ( ( member_nat @ Z @ M )
             => ( ( ( Composition @ X @ Y )
                  = ( Composition @ X @ Z ) )
                = ( Y = Z ) ) ) ) ) ) ) ).

% monoid.invertible_left_cancel
thf(fact_1176_monoid_Oinvertible__left__cancel,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,X: a,Y: a,Z: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ X )
       => ( ( member_a @ X @ M )
         => ( ( member_a @ Y @ M )
           => ( ( member_a @ Z @ M )
             => ( ( ( Composition @ X @ Y )
                  = ( Composition @ X @ Z ) )
                = ( Y = Z ) ) ) ) ) ) ) ).

% monoid.invertible_left_cancel
thf(fact_1177_monoid_Ocomposition__invertible,axiom,
    ! [M: set_a,Composition: a > a > a,Unit: a,X: a,Y: a] :
      ( ( group_monoid_a @ M @ Composition @ Unit )
     => ( ( group_invertible_a @ M @ Composition @ Unit @ X )
       => ( ( group_invertible_a @ M @ Composition @ Unit @ Y )
         => ( ( member_a @ X @ M )
           => ( ( member_a @ Y @ M )
             => ( group_invertible_a @ M @ Composition @ Unit @ ( Composition @ X @ Y ) ) ) ) ) ) ) ).

% monoid.composition_invertible
thf(fact_1178_bounded__nat__set__is__finite,axiom,
    ! [N: set_nat,N2: nat] :
      ( ! [X4: nat] :
          ( ( member_nat @ X4 @ N )
         => ( ord_less_nat @ X4 @ N2 ) )
     => ( finite_finite_nat @ N ) ) ).

% bounded_nat_set_is_finite
thf(fact_1179_finite__nat__set__iff__bounded,axiom,
    ( finite_finite_nat
    = ( ^ [N5: set_nat] :
        ? [M4: nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ N5 )
         => ( ord_less_nat @ X3 @ M4 ) ) ) ) ).

% finite_nat_set_iff_bounded
thf(fact_1180_finite__nat__set__iff__bounded__le,axiom,
    ( finite_finite_nat
    = ( ^ [N5: set_nat] :
        ? [M4: nat] :
        ! [X3: nat] :
          ( ( member_nat @ X3 @ N5 )
         => ( ord_less_eq_nat @ X3 @ M4 ) ) ) ) ).

% finite_nat_set_iff_bounded_le
thf(fact_1181_bounded__Max__nat,axiom,
    ! [P: nat > $o,X: nat,M: nat] :
      ( ( P @ X )
     => ( ! [X4: nat] :
            ( ( P @ X4 )
           => ( ord_less_eq_nat @ X4 @ M ) )
       => ~ ! [M5: nat] :
              ( ( P @ M5 )
             => ~ ! [X2: nat] :
                    ( ( P @ X2 )
                   => ( ord_less_eq_nat @ X2 @ M5 ) ) ) ) ) ).

% bounded_Max_nat
thf(fact_1182_sumset__iterated__Suc,axiom,
    ! [A2: set_a,K: nat] :
      ( ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ ( suc @ K ) )
      = ( pluenn3038260743871226533mset_a @ g @ addition @ A2 @ ( pluenn1960970773371692859ated_a @ g @ addition @ zero @ A2 @ K ) ) ) ).

% sumset_iterated_Suc
thf(fact_1183_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_1184_nat_Oinject,axiom,
    ! [X22: nat,Y22: nat] :
      ( ( ( suc @ X22 )
        = ( suc @ Y22 ) )
      = ( X22 = Y22 ) ) ).

% nat.inject
thf(fact_1185_Suc__less__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M3 ) @ ( suc @ N2 ) )
      = ( ord_less_nat @ M3 @ N2 ) ) ).

% Suc_less_eq
thf(fact_1186_Suc__mono,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ord_less_nat @ ( suc @ M3 ) @ ( suc @ N2 ) ) ) ).

% Suc_mono
thf(fact_1187_lessI,axiom,
    ! [N2: nat] : ( ord_less_nat @ N2 @ ( suc @ N2 ) ) ).

% lessI
thf(fact_1188_Suc__le__mono,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ ( suc @ M3 ) )
      = ( ord_less_eq_nat @ N2 @ M3 ) ) ).

% Suc_le_mono
thf(fact_1189_Suc__diff__diff,axiom,
    ! [M3: nat,N2: nat,K: nat] :
      ( ( minus_minus_nat @ ( minus_minus_nat @ ( suc @ M3 ) @ N2 ) @ ( suc @ K ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M3 @ N2 ) @ K ) ) ).

% Suc_diff_diff
thf(fact_1190_diff__Suc__Suc,axiom,
    ! [M3: nat,N2: nat] :
      ( ( minus_minus_nat @ ( suc @ M3 ) @ ( suc @ N2 ) )
      = ( minus_minus_nat @ M3 @ N2 ) ) ).

% diff_Suc_Suc
thf(fact_1191_zero__less__Suc,axiom,
    ! [N2: nat] : ( ord_less_nat @ zero_zero_nat @ ( suc @ N2 ) ) ).

% zero_less_Suc
thf(fact_1192_less__Suc0,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ N2 @ ( suc @ zero_zero_nat ) )
      = ( N2 = zero_zero_nat ) ) ).

% less_Suc0
thf(fact_1193_diff__Suc__1,axiom,
    ! [N2: nat] :
      ( ( minus_minus_nat @ ( suc @ N2 ) @ one_one_nat )
      = N2 ) ).

% diff_Suc_1
thf(fact_1194_Suc__pred,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ ( suc @ zero_zero_nat ) ) )
        = N2 ) ) ).

% Suc_pred
thf(fact_1195_Suc__diff__1,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) )
        = N2 ) ) ).

% Suc_diff_1
thf(fact_1196_Suc__leD,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 )
     => ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% Suc_leD
thf(fact_1197_le__SucE,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ ( suc @ N2 ) )
     => ( ~ ( ord_less_eq_nat @ M3 @ N2 )
       => ( M3
          = ( suc @ N2 ) ) ) ) ).

% le_SucE
thf(fact_1198_le__SucI,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ord_less_eq_nat @ M3 @ ( suc @ N2 ) ) ) ).

% le_SucI
thf(fact_1199_Suc__le__D,axiom,
    ! [N2: nat,M6: nat] :
      ( ( ord_less_eq_nat @ ( suc @ N2 ) @ M6 )
     => ? [M5: nat] :
          ( M6
          = ( suc @ M5 ) ) ) ).

% Suc_le_D
thf(fact_1200_le__Suc__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ ( suc @ N2 ) )
      = ( ( ord_less_eq_nat @ M3 @ N2 )
        | ( M3
          = ( suc @ N2 ) ) ) ) ).

% le_Suc_eq
thf(fact_1201_Suc__n__not__le__n,axiom,
    ! [N2: nat] :
      ~ ( ord_less_eq_nat @ ( suc @ N2 ) @ N2 ) ).

% Suc_n_not_le_n
thf(fact_1202_not__less__eq__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ~ ( ord_less_eq_nat @ M3 @ N2 ) )
      = ( ord_less_eq_nat @ ( suc @ N2 ) @ M3 ) ) ).

% not_less_eq_eq
thf(fact_1203_full__nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ! [N3: nat] :
          ( ! [M2: nat] :
              ( ( ord_less_eq_nat @ ( suc @ M2 ) @ N3 )
             => ( P @ M2 ) )
         => ( P @ N3 ) )
     => ( P @ N2 ) ) ).

% full_nat_induct
thf(fact_1204_nat__induct__at__least,axiom,
    ! [M3: nat,N2: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ( P @ M3 )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ M3 @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_at_least
thf(fact_1205_transitive__stepwise__le,axiom,
    ! [M3: nat,N2: nat,R2: nat > nat > $o] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ! [X4: nat] : ( R2 @ X4 @ X4 )
       => ( ! [X4: nat,Y2: nat,Z3: nat] :
              ( ( R2 @ X4 @ Y2 )
             => ( ( R2 @ Y2 @ Z3 )
               => ( R2 @ X4 @ Z3 ) ) )
         => ( ! [N3: nat] : ( R2 @ N3 @ ( suc @ N3 ) )
           => ( R2 @ M3 @ N2 ) ) ) ) ) ).

% transitive_stepwise_le
thf(fact_1206_Suc__diff__le,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_eq_nat @ N2 @ M3 )
     => ( ( minus_minus_nat @ ( suc @ M3 ) @ N2 )
        = ( suc @ ( minus_minus_nat @ M3 @ N2 ) ) ) ) ).

% Suc_diff_le
thf(fact_1207_One__nat__def,axiom,
    ( one_one_nat
    = ( suc @ zero_zero_nat ) ) ).

% One_nat_def
thf(fact_1208_diff__Suc__eq__diff__pred,axiom,
    ! [M3: nat,N2: nat] :
      ( ( minus_minus_nat @ M3 @ ( suc @ N2 ) )
      = ( minus_minus_nat @ ( minus_minus_nat @ M3 @ one_one_nat ) @ N2 ) ) ).

% diff_Suc_eq_diff_pred
thf(fact_1209_nat_Odistinct_I1_J,axiom,
    ! [X22: nat] :
      ( zero_zero_nat
     != ( suc @ X22 ) ) ).

% nat.distinct(1)
thf(fact_1210_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat2: nat] :
      ( ( suc @ Nat2 )
     != zero_zero_nat ) ).

% old.nat.distinct(2)
thf(fact_1211_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( zero_zero_nat
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_1212_nat_OdiscI,axiom,
    ! [Nat: nat,X22: nat] :
      ( ( Nat
        = ( suc @ X22 ) )
     => ( Nat != zero_zero_nat ) ) ).

% nat.discI
thf(fact_1213_old_Onat_Oexhaust,axiom,
    ! [Y: nat] :
      ( ( Y != zero_zero_nat )
     => ~ ! [Nat3: nat] :
            ( Y
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_1214_nat__induct,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( P @ N3 )
           => ( P @ ( suc @ N3 ) ) )
       => ( P @ N2 ) ) ) ).

% nat_induct
thf(fact_1215_diff__induct,axiom,
    ! [P: nat > nat > $o,M3: nat,N2: nat] :
      ( ! [X4: nat] : ( P @ X4 @ zero_zero_nat )
     => ( ! [Y2: nat] : ( P @ zero_zero_nat @ ( suc @ Y2 ) )
       => ( ! [X4: nat,Y2: nat] :
              ( ( P @ X4 @ Y2 )
             => ( P @ ( suc @ X4 ) @ ( suc @ Y2 ) ) )
         => ( P @ M3 @ N2 ) ) ) ) ).

% diff_induct
thf(fact_1216_zero__induct,axiom,
    ! [P: nat > $o,K: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ zero_zero_nat ) ) ) ).

% zero_induct
thf(fact_1217_Suc__neq__Zero,axiom,
    ! [M3: nat] :
      ( ( suc @ M3 )
     != zero_zero_nat ) ).

% Suc_neq_Zero
thf(fact_1218_Zero__neq__Suc,axiom,
    ! [M3: nat] :
      ( zero_zero_nat
     != ( suc @ M3 ) ) ).

% Zero_neq_Suc
thf(fact_1219_Zero__not__Suc,axiom,
    ! [M3: nat] :
      ( zero_zero_nat
     != ( suc @ M3 ) ) ).

% Zero_not_Suc
thf(fact_1220_not0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( N2 != zero_zero_nat )
     => ? [M5: nat] :
          ( N2
          = ( suc @ M5 ) ) ) ).

% not0_implies_Suc
thf(fact_1221_n__not__Suc__n,axiom,
    ! [N2: nat] :
      ( N2
     != ( suc @ N2 ) ) ).

% n_not_Suc_n
thf(fact_1222_Suc__inject,axiom,
    ! [X: nat,Y: nat] :
      ( ( ( suc @ X )
        = ( suc @ Y ) )
     => ( X = Y ) ) ).

% Suc_inject
thf(fact_1223_zero__induct__lemma,axiom,
    ! [P: nat > $o,K: nat,I: nat] :
      ( ( P @ K )
     => ( ! [N3: nat] :
            ( ( P @ ( suc @ N3 ) )
           => ( P @ N3 ) )
       => ( P @ ( minus_minus_nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_1224_not__less__less__Suc__eq,axiom,
    ! [N2: nat,M3: nat] :
      ( ~ ( ord_less_nat @ N2 @ M3 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M3 ) )
        = ( N2 = M3 ) ) ) ).

% not_less_less_Suc_eq
thf(fact_1225_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] :
            ( ( J
              = ( suc @ I2 ) )
           => ( P @ I2 ) )
       => ( ! [I2: nat] :
              ( ( ord_less_nat @ I2 @ J )
             => ( ( P @ ( suc @ I2 ) )
               => ( P @ I2 ) ) )
         => ( P @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_1226_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P: nat > nat > $o] :
      ( ( ord_less_nat @ I @ J )
     => ( ! [I2: nat] : ( P @ I2 @ ( suc @ I2 ) )
       => ( ! [I2: nat,J2: nat,K2: nat] :
              ( ( ord_less_nat @ I2 @ J2 )
             => ( ( ord_less_nat @ J2 @ K2 )
               => ( ( P @ I2 @ J2 )
                 => ( ( P @ J2 @ K2 )
                   => ( P @ I2 @ K2 ) ) ) ) )
         => ( P @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_1227_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_nat @ I @ J )
     => ( ( ord_less_nat @ J @ K )
       => ( ord_less_nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_1228_Suc__less__SucD,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M3 ) @ ( suc @ N2 ) )
     => ( ord_less_nat @ M3 @ N2 ) ) ).

% Suc_less_SucD
thf(fact_1229_less__antisym,axiom,
    ! [N2: nat,M3: nat] :
      ( ~ ( ord_less_nat @ N2 @ M3 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M3 ) )
       => ( M3 = N2 ) ) ) ).

% less_antisym
thf(fact_1230_Suc__less__eq2,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ ( suc @ N2 ) @ M3 )
      = ( ? [M7: nat] :
            ( ( M3
              = ( suc @ M7 ) )
            & ( ord_less_nat @ N2 @ M7 ) ) ) ) ).

% Suc_less_eq2
thf(fact_1231_All__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
           => ( P @ I4 ) ) )
      = ( ( P @ N2 )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
           => ( P @ I4 ) ) ) ) ).

% All_less_Suc
thf(fact_1232_not__less__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ~ ( ord_less_nat @ M3 @ N2 ) )
      = ( ord_less_nat @ N2 @ ( suc @ M3 ) ) ) ).

% not_less_eq
thf(fact_1233_less__Suc__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ ( suc @ N2 ) )
      = ( ( ord_less_nat @ M3 @ N2 )
        | ( M3 = N2 ) ) ) ).

% less_Suc_eq
thf(fact_1234_Ex__less__Suc,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
            & ( P @ I4 ) ) )
      = ( ( P @ N2 )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
            & ( P @ I4 ) ) ) ) ).

% Ex_less_Suc
thf(fact_1235_less__SucI,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ord_less_nat @ M3 @ ( suc @ N2 ) ) ) ).

% less_SucI
thf(fact_1236_less__SucE,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ ( suc @ N2 ) )
     => ( ~ ( ord_less_nat @ M3 @ N2 )
       => ( M3 = N2 ) ) ) ).

% less_SucE
thf(fact_1237_Suc__lessI,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ( ( suc @ M3 )
         != N2 )
       => ( ord_less_nat @ ( suc @ M3 ) @ N2 ) ) ) ).

% Suc_lessI
thf(fact_1238_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ ( suc @ I ) @ K )
     => ~ ! [J2: nat] :
            ( ( ord_less_nat @ I @ J2 )
           => ( K
             != ( suc @ J2 ) ) ) ) ).

% Suc_lessE
thf(fact_1239_Suc__lessD,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ ( suc @ M3 ) @ N2 )
     => ( ord_less_nat @ M3 @ N2 ) ) ).

% Suc_lessD
thf(fact_1240_Nat_OlessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less_nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J2: nat] :
              ( ( ord_less_nat @ I @ J2 )
             => ( K
               != ( suc @ J2 ) ) ) ) ) ).

% Nat.lessE
thf(fact_1241_zero__notin__Suc__image,axiom,
    ! [A2: set_nat] :
      ~ ( member_nat @ zero_zero_nat @ ( image_nat_nat @ suc @ A2 ) ) ).

% zero_notin_Suc_image
thf(fact_1242_Suc__diff__Suc,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ N2 @ M3 )
     => ( ( suc @ ( minus_minus_nat @ M3 @ ( suc @ N2 ) ) )
        = ( minus_minus_nat @ M3 @ N2 ) ) ) ).

% Suc_diff_Suc
thf(fact_1243_diff__less__Suc,axiom,
    ! [M3: nat,N2: nat] : ( ord_less_nat @ ( minus_minus_nat @ M3 @ N2 ) @ ( suc @ M3 ) ) ).

% diff_less_Suc
thf(fact_1244_Suc__leI,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ N2 )
     => ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 ) ) ).

% Suc_leI
thf(fact_1245_Suc__le__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 )
      = ( ord_less_nat @ M3 @ N2 ) ) ).

% Suc_le_eq
thf(fact_1246_dec__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ I )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ N3 )
                 => ( P @ ( suc @ N3 ) ) ) ) )
         => ( P @ J ) ) ) ) ).

% dec_induct
thf(fact_1247_inc__induct,axiom,
    ! [I: nat,J: nat,P: nat > $o] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( P @ J )
       => ( ! [N3: nat] :
              ( ( ord_less_eq_nat @ I @ N3 )
             => ( ( ord_less_nat @ N3 @ J )
               => ( ( P @ ( suc @ N3 ) )
                 => ( P @ N3 ) ) ) )
         => ( P @ I ) ) ) ) ).

% inc_induct
thf(fact_1248_Suc__le__lessD,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ ( suc @ M3 ) @ N2 )
     => ( ord_less_nat @ M3 @ N2 ) ) ).

% Suc_le_lessD
thf(fact_1249_le__less__Suc__eq,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ( ord_less_nat @ N2 @ ( suc @ M3 ) )
        = ( N2 = M3 ) ) ) ).

% le_less_Suc_eq
thf(fact_1250_less__Suc__eq__le,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ ( suc @ N2 ) )
      = ( ord_less_eq_nat @ M3 @ N2 ) ) ).

% less_Suc_eq_le
thf(fact_1251_less__eq__Suc__le,axiom,
    ( ord_less_nat
    = ( ^ [N4: nat] : ( ord_less_eq_nat @ ( suc @ N4 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_1252_le__imp__less__Suc,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_eq_nat @ M3 @ N2 )
     => ( ord_less_nat @ M3 @ ( suc @ N2 ) ) ) ).

% le_imp_less_Suc
thf(fact_1253_less__Suc__eq__0__disj,axiom,
    ! [M3: nat,N2: nat] :
      ( ( ord_less_nat @ M3 @ ( suc @ N2 ) )
      = ( ( M3 = zero_zero_nat )
        | ? [J3: nat] :
            ( ( M3
              = ( suc @ J3 ) )
            & ( ord_less_nat @ J3 @ N2 ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_1254_gr0__implies__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ? [M5: nat] :
          ( N2
          = ( suc @ M5 ) ) ) ).

% gr0_implies_Suc
thf(fact_1255_All__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
           => ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        & ! [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
           => ( P @ ( suc @ I4 ) ) ) ) ) ).

% All_less_Suc2
thf(fact_1256_gr0__conv__Suc,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
      = ( ? [M4: nat] :
            ( N2
            = ( suc @ M4 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_1257_Ex__less__Suc2,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ ( suc @ N2 ) )
            & ( P @ I4 ) ) )
      = ( ( P @ zero_zero_nat )
        | ? [I4: nat] :
            ( ( ord_less_nat @ I4 @ N2 )
            & ( P @ ( suc @ I4 ) ) ) ) ) ).

% Ex_less_Suc2
thf(fact_1258_ex__least__nat__less,axiom,
    ! [P: nat > $o,N2: nat] :
      ( ( P @ N2 )
     => ( ~ ( P @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_nat @ K2 @ N2 )
            & ! [I3: nat] :
                ( ( ord_less_eq_nat @ I3 @ K2 )
               => ~ ( P @ I3 ) )
            & ( P @ ( suc @ K2 ) ) ) ) ) ).

% ex_least_nat_less
thf(fact_1259_diff__Suc__less,axiom,
    ! [N2: nat,I: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ord_less_nat @ ( minus_minus_nat @ N2 @ ( suc @ I ) ) @ N2 ) ) ).

% diff_Suc_less
thf(fact_1260_nat__induct__non__zero,axiom,
    ! [N2: nat,P: nat > $o] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( P @ one_one_nat )
       => ( ! [N3: nat] :
              ( ( ord_less_nat @ zero_zero_nat @ N3 )
             => ( ( P @ N3 )
               => ( P @ ( suc @ N3 ) ) ) )
         => ( P @ N2 ) ) ) ) ).

% nat_induct_non_zero
thf(fact_1261_Suc__diff__eq__diff__pred,axiom,
    ! [N2: nat,M3: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( ( minus_minus_nat @ ( suc @ M3 ) @ N2 )
        = ( minus_minus_nat @ M3 @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% Suc_diff_eq_diff_pred
thf(fact_1262_Suc__pred_H,axiom,
    ! [N2: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N2 )
     => ( N2
        = ( suc @ ( minus_minus_nat @ N2 @ one_one_nat ) ) ) ) ).

% Suc_pred'
thf(fact_1263_inverse__undefined,axiom,
    ! [U: a] :
      ( ~ ( member_a @ U @ g )
     => ( ( group_inverse_a @ g @ addition @ zero @ U )
        = undefined_a ) ) ).

% inverse_undefined
thf(fact_1264_nat__descend__induct,axiom,
    ! [N2: nat,P: nat > $o,M3: nat] :
      ( ! [K2: nat] :
          ( ( ord_less_nat @ N2 @ K2 )
         => ( P @ K2 ) )
     => ( ! [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N2 )
           => ( ! [I3: nat] :
                  ( ( ord_less_nat @ K2 @ I3 )
                 => ( P @ I3 ) )
             => ( P @ K2 ) ) )
       => ( P @ M3 ) ) ) ).

% nat_descend_induct
thf(fact_1265_exists__least__lemma,axiom,
    ! [P: nat > $o] :
      ( ~ ( P @ zero_zero_nat )
     => ( ? [X_12: nat] : ( P @ X_12 )
       => ? [N3: nat] :
            ( ~ ( P @ N3 )
            & ( P @ ( suc @ N3 ) ) ) ) ) ).

% exists_least_lemma

% Conjectures (1)
thf(conj_0,conjecture,
    member_a @ ( v2 @ x ) @ g ).

%------------------------------------------------------------------------------