TPTP Problem File: SLH0108^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SLH0000^1 : TPTP v8.2.0. Released v8.2.0.
% Domain : Archive of Formal Proofs
% Problem :
% Version : Especial.
% English :
% Refs : [Des23] Desharnais (2023), Email to Geoff Sutcliffe
% Source : [Des23]
% Names : Cotangent_PFD_Formula/0007_Cotangent_PFD_Formula/prob_00330_012648__14055470_1 [Des23]
% Status : Theorem
% Rating : ? v8.2.0
% Syntax : Number of formulae : 1399 ( 998 unt; 131 typ; 0 def)
% Number of atoms : 2935 (1834 equ; 0 cnn)
% Maximal formula atoms : 26 ( 2 avg)
% Number of connectives : 8334 ( 256 ~; 83 |; 126 &;7357 @)
% ( 0 <=>; 512 =>; 0 <=; 0 <~>)
% Maximal formula depth : 25 ( 4 avg)
% Number of types : 17 ( 16 usr)
% Number of type conns : 210 ( 210 >; 0 *; 0 +; 0 <<)
% Number of symbols : 118 ( 115 usr; 24 con; 0-3 aty)
% Number of variables : 2473 ( 51 ^;2391 !; 31 ?;2473 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2023-01-19 12:58:30.385
%------------------------------------------------------------------------------
% Could-be-implicit typings (16)
thf(ty_n_t__Set__Oset_It__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J_J,type,
set_Nu795013586925006960l_num1: $tType ).
thf(ty_n_t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
numera2417102609627094330l_num1: $tType ).
thf(ty_n_t__Extended____Nonnegative____Real__Oennreal,type,
extend8495563244428889912nnreal: $tType ).
thf(ty_n_t__Set__Oset_It__Extended____Nat__Oenat_J,type,
set_Extended_enat: $tType ).
thf(ty_n_t__Set__Oset_It__Complex__Ocomplex_J,type,
set_complex: $tType ).
thf(ty_n_t__Set__Oset_It__Real__Oreal_J,type,
set_real: $tType ).
thf(ty_n_t__Set__Oset_It__Num__Onum_J,type,
set_num: $tType ).
thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
set_nat: $tType ).
thf(ty_n_t__Set__Oset_It__Int__Oint_J,type,
set_int: $tType ).
thf(ty_n_t__Extended____Real__Oereal,type,
extended_ereal: $tType ).
thf(ty_n_t__Extended____Nat__Oenat,type,
extended_enat: $tType ).
thf(ty_n_t__Complex__Ocomplex,type,
complex: $tType ).
thf(ty_n_t__Real__Oreal,type,
real: $tType ).
thf(ty_n_t__Num__Onum,type,
num: $tType ).
thf(ty_n_t__Nat__Onat,type,
nat: $tType ).
thf(ty_n_t__Int__Oint,type,
int: $tType ).
% Explicit typings (115)
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Int__Oint,type,
bit_se545348938243370406it_int: nat > int > int ).
thf(sy_c_Bit__Operations_Osemiring__bit__operations__class_Opush__bit_001t__Nat__Onat,type,
bit_se547839408752420682it_nat: nat > nat > nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Complex__Ocomplex,type,
one_one_complex: complex ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nat__Oenat,type,
one_on7984719198319812577d_enat: extended_enat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Nonnegative____Real__Oennreal,type,
one_on2969667320475766781nnreal: extend8495563244428889912nnreal ).
thf(sy_c_Groups_Oone__class_Oone_001t__Extended____Real__Oereal,type,
one_on4623092294121504201_ereal: extended_ereal ).
thf(sy_c_Groups_Oone__class_Oone_001t__Int__Oint,type,
one_one_int: int ).
thf(sy_c_Groups_Oone__class_Oone_001t__Nat__Onat,type,
one_one_nat: nat ).
thf(sy_c_Groups_Oone__class_Oone_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
one_on3868389512446148991l_num1: numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Oone__class_Oone_001t__Real__Oreal,type,
one_one_real: real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Complex__Ocomplex,type,
plus_plus_complex: complex > complex > complex ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nat__Oenat,type,
plus_p3455044024723400733d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Extended____Nonnegative____Real__Oennreal,type,
plus_p1859984266308609217nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Int__Oint,type,
plus_plus_int: int > int > int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Nat__Onat,type,
plus_plus_nat: nat > nat > nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Num__Onum,type,
plus_plus_num: num > num > num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
plus_p2313304076027620419l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Real__Oreal,type,
plus_plus_real: real > real > real ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Complex__Ocomplex_J,type,
plus_p7052360327008956141omplex: set_complex > set_complex > set_complex ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
plus_p3482335003337316477d_enat: set_Extended_enat > set_Extended_enat > set_Extended_enat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Int__Oint_J,type,
plus_plus_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Nat__Onat_J,type,
plus_plus_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Num__Onum_J,type,
plus_plus_set_num: set_num > set_num > set_num ).
thf(sy_c_Groups_Oplus__class_Oplus_001t__Set__Oset_It__Real__Oreal_J,type,
plus_plus_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Complex__Ocomplex,type,
times_times_complex: complex > complex > complex ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nat__Oenat,type,
times_7803423173614009249d_enat: extended_enat > extended_enat > extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Nonnegative____Real__Oennreal,type,
times_1893300245718287421nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > extend8495563244428889912nnreal ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Extended____Real__Oereal,type,
times_7703590493115627913_ereal: extended_ereal > extended_ereal > extended_ereal ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Int__Oint,type,
times_times_int: int > int > int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Nat__Onat,type,
times_times_nat: nat > nat > nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Num__Onum,type,
times_times_num: num > num > num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
times_8498157372700349887l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Real__Oreal,type,
times_times_real: real > real > real ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Complex__Ocomplex_J,type,
times_6048082448287401577omplex: set_complex > set_complex > set_complex ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Extended____Nat__Oenat_J,type,
times_2438108612031896577d_enat: set_Extended_enat > set_Extended_enat > set_Extended_enat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Int__Oint_J,type,
times_times_set_int: set_int > set_int > set_int ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Nat__Onat_J,type,
times_times_set_nat: set_nat > set_nat > set_nat ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Num__Onum_J,type,
times_times_set_num: set_num > set_num > set_num ).
thf(sy_c_Groups_Otimes__class_Otimes_001t__Set__Oset_It__Real__Oreal_J,type,
times_times_set_real: set_real > set_real > set_real ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Complex__Ocomplex,type,
uminus1482373934393186551omplex: complex > complex ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Extended____Real__Oereal,type,
uminus27091377158695749_ereal: extended_ereal > extended_ereal ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Int__Oint,type,
uminus_uminus_int: int > int ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
uminus7224005126491068675l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Ouminus__class_Ouminus_001t__Real__Oreal,type,
uminus_uminus_real: real > real ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Complex__Ocomplex,type,
zero_zero_complex: complex ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nat__Oenat,type,
zero_z5237406670263579293d_enat: extended_enat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Nonnegative____Real__Oennreal,type,
zero_z7100319975126383169nnreal: extend8495563244428889912nnreal ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Extended____Real__Oereal,type,
zero_z2744965634713055877_ereal: extended_ereal ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Int__Oint,type,
zero_zero_int: int ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
zero_zero_nat: nat ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
zero_z5982384998485459395l_num1: numera2417102609627094330l_num1 ).
thf(sy_c_Groups_Ozero__class_Ozero_001t__Real__Oreal,type,
zero_zero_real: real ).
thf(sy_c_If_001t__Nat__Onat,type,
if_nat: $o > nat > nat > nat ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Complex__Ocomplex,type,
ring_1_Ints_complex: set_complex ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Int__Oint,type,
ring_1_Ints_int: set_int ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
ring_14745913572136535497l_num1: set_Nu795013586925006960l_num1 ).
thf(sy_c_Int_Oring__1__class_OInts_001t__Real__Oreal,type,
ring_1_Ints_real: set_real ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Complex__Ocomplex,type,
semiri8010041392384452111omplex: nat > complex ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nat__Oenat,type,
semiri4216267220026989637d_enat: nat > extended_enat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Extended____Nonnegative____Real__Oennreal,type,
semiri6283507881447550617nnreal: nat > extend8495563244428889912nnreal ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Int__Oint,type,
semiri1314217659103216013at_int: nat > int ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Nat__Onat,type,
semiri1316708129612266289at_nat: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
semiri1795386414920522267l_num1: nat > numera2417102609627094330l_num1 ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat_001t__Real__Oreal,type,
semiri5074537144036343181t_real: nat > real ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Complex__Ocomplex,type,
neg_nu7009210354673126013omplex: complex > complex ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Int__Oint,type,
neg_numeral_dbl_int: int > int ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
neg_nu5590746349488142217l_num1: numera2417102609627094330l_num1 > numera2417102609627094330l_num1 ).
thf(sy_c_Num_Oneg__numeral__class_Odbl_001t__Real__Oreal,type,
neg_numeral_dbl_real: real > real ).
thf(sy_c_Num_Onum_OBit0,type,
bit0: num > num ).
thf(sy_c_Num_Onum_OOne,type,
one: num ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Complex__Ocomplex,type,
numera6690914467698888265omplex: num > complex ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nat__Oenat,type,
numera1916890842035813515d_enat: num > extended_enat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Extended____Nonnegative____Real__Oennreal,type,
numera4658534427948366547nnreal: num > extend8495563244428889912nnreal ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Int__Oint,type,
numeral_numeral_int: num > int ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Nat__Onat,type,
numeral_numeral_nat: num > nat ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
numera2161328050825114965l_num1: num > numera2417102609627094330l_num1 ).
thf(sy_c_Num_Onumeral__class_Onumeral_001t__Real__Oreal,type,
numeral_numeral_real: num > real ).
thf(sy_c_Num_Opow,type,
pow: num > num > num ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Complex__Ocomplex,type,
ord_less_complex: complex > complex > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nat__Oenat,type,
ord_le72135733267957522d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Nonnegative____Real__Oennreal,type,
ord_le7381754540660121996nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Extended____Real__Oereal,type,
ord_le1188267648640031866_ereal: extended_ereal > extended_ereal > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Int__Oint,type,
ord_less_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
ord_less_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Num__Onum,type,
ord_less_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless_001t__Real__Oreal,type,
ord_less_real: real > real > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Complex__Ocomplex,type,
ord_less_eq_complex: complex > complex > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nat__Oenat,type,
ord_le2932123472753598470d_enat: extended_enat > extended_enat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Nonnegative____Real__Oennreal,type,
ord_le3935885782089961368nnreal: extend8495563244428889912nnreal > extend8495563244428889912nnreal > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Extended____Real__Oereal,type,
ord_le1083603963089353582_ereal: extended_ereal > extended_ereal > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Int__Oint,type,
ord_less_eq_int: int > int > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
ord_less_eq_nat: nat > nat > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Num__Onum,type,
ord_less_eq_num: num > num > $o ).
thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Real__Oreal,type,
ord_less_eq_real: real > real > $o ).
thf(sy_c_Power_Opower__class_Opower_001t__Complex__Ocomplex,type,
power_power_complex: complex > nat > complex ).
thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nat__Oenat,type,
power_8040749407984259932d_enat: extended_enat > nat > extended_enat ).
thf(sy_c_Power_Opower__class_Opower_001t__Extended____Nonnegative____Real__Oennreal,type,
power_6007165696250533058nnreal: extend8495563244428889912nnreal > nat > extend8495563244428889912nnreal ).
thf(sy_c_Power_Opower__class_Opower_001t__Extended____Real__Oereal,type,
power_1054015426188190660_ereal: extended_ereal > nat > extended_ereal ).
thf(sy_c_Power_Opower__class_Opower_001t__Int__Oint,type,
power_power_int: int > nat > int ).
thf(sy_c_Power_Opower__class_Opower_001t__Nat__Onat,type,
power_power_nat: nat > nat > nat ).
thf(sy_c_Power_Opower__class_Opower_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
power_7402600760894073284l_num1: numera2417102609627094330l_num1 > nat > numera2417102609627094330l_num1 ).
thf(sy_c_Power_Opower__class_Opower_001t__Real__Oreal,type,
power_power_real: real > nat > real ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Extended____Real__Oereal,type,
divide8893690120176169980_ereal: extended_ereal > extended_ereal > extended_ereal ).
thf(sy_c_Rings_Odivide__class_Odivide_001t__Real__Oreal,type,
divide_divide_real: real > real > real ).
thf(sy_c_Rings_Odvd__class_Odvd_001t__Nat__Onat,type,
dvd_dvd_nat: nat > nat > $o ).
thf(sy_c_Set_OCollect_001t__Complex__Ocomplex,type,
collect_complex: ( complex > $o ) > set_complex ).
thf(sy_c_Set_OCollect_001t__Real__Oreal,type,
collect_real: ( real > $o ) > set_real ).
thf(sy_c_member_001t__Complex__Ocomplex,type,
member_complex: complex > set_complex > $o ).
thf(sy_c_member_001t__Extended____Nat__Oenat,type,
member_Extended_enat: extended_enat > set_Extended_enat > $o ).
thf(sy_c_member_001t__Int__Oint,type,
member_int: int > set_int > $o ).
thf(sy_c_member_001t__Nat__Onat,type,
member_nat: nat > set_nat > $o ).
thf(sy_c_member_001t__Num__Onum,type,
member_num: num > set_num > $o ).
thf(sy_c_member_001t__Numeral____Type__Obit0_It__Numeral____Type__Onum1_J,type,
member2815666790699981905l_num1: numera2417102609627094330l_num1 > set_Nu795013586925006960l_num1 > $o ).
thf(sy_c_member_001t__Real__Oreal,type,
member_real: real > set_real > $o ).
thf(sy_v_x,type,
x: complex ).
% Relevant facts (1264)
thf(fact_0_assms,axiom,
~ ( member_complex @ x @ ring_1_Ints_complex ) ).
% assms
thf(fact_1__092_060open_062x_A_092_060noteq_062_A0_092_060close_062,axiom,
x != zero_zero_complex ).
% \<open>x \<noteq> 0\<close>
thf(fact_2__092_060open_062x_A_092_060notin_062_A_092_060int_062_A_092_060Longrightarrow_062_Ax_A_L_Acomplex__of__nat_A2_A_092_060noteq_062_A0_092_060close_062,axiom,
( ~ ( member_complex @ x @ ring_1_Ints_complex )
=> ( ( plus_plus_complex @ x @ ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
!= zero_zero_complex ) ) ).
% \<open>x \<notin> \<int> \<Longrightarrow> x + complex_of_nat 2 \<noteq> 0\<close>
thf(fact_3__C_K_K_C,axiom,
! [X: complex,N: nat] :
( ~ ( member_complex @ X @ ring_1_Ints_complex )
=> ( ( plus_plus_complex @ X @ ( semiri8010041392384452111omplex @ N ) )
!= zero_zero_complex ) ) ).
% "**"
thf(fact_4_semiring__norm_I85_J,axiom,
! [M: num] :
( ( bit0 @ M )
!= one ) ).
% semiring_norm(85)
thf(fact_5_semiring__norm_I83_J,axiom,
! [N: num] :
( one
!= ( bit0 @ N ) ) ).
% semiring_norm(83)
thf(fact_6_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_7_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_8_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_9_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_10_numeral__plus__numeral,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ M @ N ) ) ) ).
% numeral_plus_numeral
thf(fact_11_add__numeral__left,axiom,
! [V: num,W: num,Z: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_12_add__numeral__left,axiom,
! [V: num,W: num,Z: complex] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_13_add__numeral__left,axiom,
! [V: num,W: num,Z: real] :
( ( plus_plus_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( plus_plus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_14_add__numeral__left,axiom,
! [V: num,W: num,Z: nat] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_15_add__numeral__left,axiom,
! [V: num,W: num,Z: int] :
( ( plus_plus_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( plus_plus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) @ Z ) ) ).
% add_numeral_left
thf(fact_16_add_Oright__neutral,axiom,
! [A: extended_enat] :
( ( plus_p3455044024723400733d_enat @ A @ zero_z5237406670263579293d_enat )
= A ) ).
% add.right_neutral
thf(fact_17_add_Oright__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.right_neutral
thf(fact_18_add_Oright__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.right_neutral
thf(fact_19_add_Oright__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.right_neutral
thf(fact_20_add_Oright__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.right_neutral
thf(fact_21_double__zero__sym,axiom,
! [A: real] :
( ( zero_zero_real
= ( plus_plus_real @ A @ A ) )
= ( A = zero_zero_real ) ) ).
% double_zero_sym
thf(fact_22_double__zero__sym,axiom,
! [A: int] :
( ( zero_zero_int
= ( plus_plus_int @ A @ A ) )
= ( A = zero_zero_int ) ) ).
% double_zero_sym
thf(fact_23_add__cancel__left__left,axiom,
! [B: complex,A: complex] :
( ( ( plus_plus_complex @ B @ A )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_left
thf(fact_24_add__cancel__left__left,axiom,
! [B: real,A: real] :
( ( ( plus_plus_real @ B @ A )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_left
thf(fact_25_add__cancel__left__left,axiom,
! [B: nat,A: nat] :
( ( ( plus_plus_nat @ B @ A )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_left
thf(fact_26_add__cancel__left__left,axiom,
! [B: int,A: int] :
( ( ( plus_plus_int @ B @ A )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_left
thf(fact_27_add__cancel__left__right,axiom,
! [A: complex,B: complex] :
( ( ( plus_plus_complex @ A @ B )
= A )
= ( B = zero_zero_complex ) ) ).
% add_cancel_left_right
thf(fact_28_add__cancel__left__right,axiom,
! [A: real,B: real] :
( ( ( plus_plus_real @ A @ B )
= A )
= ( B = zero_zero_real ) ) ).
% add_cancel_left_right
thf(fact_29_add__cancel__left__right,axiom,
! [A: nat,B: nat] :
( ( ( plus_plus_nat @ A @ B )
= A )
= ( B = zero_zero_nat ) ) ).
% add_cancel_left_right
thf(fact_30_add__cancel__left__right,axiom,
! [A: int,B: int] :
( ( ( plus_plus_int @ A @ B )
= A )
= ( B = zero_zero_int ) ) ).
% add_cancel_left_right
thf(fact_31_add__cancel__right__left,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ B @ A ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_left
thf(fact_32_add__cancel__right__left,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ B @ A ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_left
thf(fact_33_add__cancel__right__left,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ B @ A ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_left
thf(fact_34_add__cancel__right__left,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ B @ A ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_left
thf(fact_35_add__cancel__right__right,axiom,
! [A: complex,B: complex] :
( ( A
= ( plus_plus_complex @ A @ B ) )
= ( B = zero_zero_complex ) ) ).
% add_cancel_right_right
thf(fact_36_add__cancel__right__right,axiom,
! [A: real,B: real] :
( ( A
= ( plus_plus_real @ A @ B ) )
= ( B = zero_zero_real ) ) ).
% add_cancel_right_right
thf(fact_37_add__cancel__right__right,axiom,
! [A: nat,B: nat] :
( ( A
= ( plus_plus_nat @ A @ B ) )
= ( B = zero_zero_nat ) ) ).
% add_cancel_right_right
thf(fact_38_add__cancel__right__right,axiom,
! [A: int,B: int] :
( ( A
= ( plus_plus_int @ A @ B ) )
= ( B = zero_zero_int ) ) ).
% add_cancel_right_right
thf(fact_39_add__eq__0__iff__both__eq__0,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( ( plus_p3455044024723400733d_enat @ X @ Y )
= zero_z5237406670263579293d_enat )
= ( ( X = zero_z5237406670263579293d_enat )
& ( Y = zero_z5237406670263579293d_enat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_40_add__eq__0__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( ( plus_plus_nat @ X @ Y )
= zero_zero_nat )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% add_eq_0_iff_both_eq_0
thf(fact_41_zero__eq__add__iff__both__eq__0,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( zero_z5237406670263579293d_enat
= ( plus_p3455044024723400733d_enat @ X @ Y ) )
= ( ( X = zero_z5237406670263579293d_enat )
& ( Y = zero_z5237406670263579293d_enat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_42_zero__eq__add__iff__both__eq__0,axiom,
! [X: nat,Y: nat] :
( ( zero_zero_nat
= ( plus_plus_nat @ X @ Y ) )
= ( ( X = zero_zero_nat )
& ( Y = zero_zero_nat ) ) ) ).
% zero_eq_add_iff_both_eq_0
thf(fact_43_add__right__cancel,axiom,
! [B: complex,A: complex,C: complex] :
( ( ( plus_plus_complex @ B @ A )
= ( plus_plus_complex @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_44_add__right__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_45_add__right__cancel,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_46_add__right__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add_right_cancel
thf(fact_47_add__left__cancel,axiom,
! [A: complex,B: complex,C: complex] :
( ( ( plus_plus_complex @ A @ B )
= ( plus_plus_complex @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_48_add__left__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_49_add__left__cancel,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_50_add__left__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add_left_cancel
thf(fact_51_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numera1916890842035813515d_enat @ M )
= ( numera1916890842035813515d_enat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_52_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numera6690914467698888265omplex @ M )
= ( numera6690914467698888265omplex @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_53_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_real @ M )
= ( numeral_numeral_real @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_54_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_nat @ M )
= ( numeral_numeral_nat @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_55_numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( numeral_numeral_int @ M )
= ( numeral_numeral_int @ N ) )
= ( M = N ) ) ).
% numeral_eq_iff
thf(fact_56_semiring__norm_I87_J,axiom,
! [M: num,N: num] :
( ( ( bit0 @ M )
= ( bit0 @ N ) )
= ( M = N ) ) ).
% semiring_norm(87)
thf(fact_57_add__0,axiom,
! [A: extended_enat] :
( ( plus_p3455044024723400733d_enat @ zero_z5237406670263579293d_enat @ A )
= A ) ).
% add_0
thf(fact_58_add__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add_0
thf(fact_59_add__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add_0
thf(fact_60_add__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% add_0
thf(fact_61_add__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add_0
thf(fact_62_Ints__add__iff2,axiom,
! [Y: complex,X: complex] :
( ( member_complex @ Y @ ring_1_Ints_complex )
=> ( ( member_complex @ ( plus_plus_complex @ X @ Y ) @ ring_1_Ints_complex )
= ( member_complex @ X @ ring_1_Ints_complex ) ) ) ).
% Ints_add_iff2
thf(fact_63_Ints__add__iff2,axiom,
! [Y: real,X: real] :
( ( member_real @ Y @ ring_1_Ints_real )
=> ( ( member_real @ ( plus_plus_real @ X @ Y ) @ ring_1_Ints_real )
= ( member_real @ X @ ring_1_Ints_real ) ) ) ).
% Ints_add_iff2
thf(fact_64_Ints__add__iff2,axiom,
! [Y: int,X: int] :
( ( member_int @ Y @ ring_1_Ints_int )
=> ( ( member_int @ ( plus_plus_int @ X @ Y ) @ ring_1_Ints_int )
= ( member_int @ X @ ring_1_Ints_int ) ) ) ).
% Ints_add_iff2
thf(fact_65_Ints__add__iff1,axiom,
! [X: complex,Y: complex] :
( ( member_complex @ X @ ring_1_Ints_complex )
=> ( ( member_complex @ ( plus_plus_complex @ X @ Y ) @ ring_1_Ints_complex )
= ( member_complex @ Y @ ring_1_Ints_complex ) ) ) ).
% Ints_add_iff1
thf(fact_66_Ints__add__iff1,axiom,
! [X: real,Y: real] :
( ( member_real @ X @ ring_1_Ints_real )
=> ( ( member_real @ ( plus_plus_real @ X @ Y ) @ ring_1_Ints_real )
= ( member_real @ Y @ ring_1_Ints_real ) ) ) ).
% Ints_add_iff1
thf(fact_67_Ints__add__iff1,axiom,
! [X: int,Y: int] :
( ( member_int @ X @ ring_1_Ints_int )
=> ( ( member_int @ ( plus_plus_int @ X @ Y ) @ ring_1_Ints_int )
= ( member_int @ Y @ ring_1_Ints_int ) ) ) ).
% Ints_add_iff1
thf(fact_68_semiring__norm_I6_J,axiom,
! [M: num,N: num] :
( ( plus_plus_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( plus_plus_num @ M @ N ) ) ) ).
% semiring_norm(6)
thf(fact_69_of__nat__numeral,axiom,
! [N: num] :
( ( semiri4216267220026989637d_enat @ ( numeral_numeral_nat @ N ) )
= ( numera1916890842035813515d_enat @ N ) ) ).
% of_nat_numeral
thf(fact_70_of__nat__numeral,axiom,
! [N: num] :
( ( semiri1316708129612266289at_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ N ) ) ).
% of_nat_numeral
thf(fact_71_of__nat__numeral,axiom,
! [N: num] :
( ( semiri8010041392384452111omplex @ ( numeral_numeral_nat @ N ) )
= ( numera6690914467698888265omplex @ N ) ) ).
% of_nat_numeral
thf(fact_72_of__nat__numeral,axiom,
! [N: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% of_nat_numeral
thf(fact_73_of__nat__numeral,axiom,
! [N: num] :
( ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_real @ N ) ) ).
% of_nat_numeral
thf(fact_74_of__nat__numeral,axiom,
! [N: num] :
( ( semiri6283507881447550617nnreal @ ( numeral_numeral_nat @ N ) )
= ( numera4658534427948366547nnreal @ N ) ) ).
% of_nat_numeral
thf(fact_75_semiring__norm_I2_J,axiom,
( ( plus_plus_num @ one @ one )
= ( bit0 @ one ) ) ).
% semiring_norm(2)
thf(fact_76_add__One__commute,axiom,
! [N: num] :
( ( plus_plus_num @ one @ N )
= ( plus_plus_num @ N @ one ) ) ).
% add_One_commute
thf(fact_77_zero__reorient,axiom,
! [X: extended_enat] :
( ( zero_z5237406670263579293d_enat = X )
= ( X = zero_z5237406670263579293d_enat ) ) ).
% zero_reorient
thf(fact_78_zero__reorient,axiom,
! [X: complex] :
( ( zero_zero_complex = X )
= ( X = zero_zero_complex ) ) ).
% zero_reorient
thf(fact_79_zero__reorient,axiom,
! [X: real] :
( ( zero_zero_real = X )
= ( X = zero_zero_real ) ) ).
% zero_reorient
thf(fact_80_zero__reorient,axiom,
! [X: nat] :
( ( zero_zero_nat = X )
= ( X = zero_zero_nat ) ) ).
% zero_reorient
thf(fact_81_zero__reorient,axiom,
! [X: int] :
( ( zero_zero_int = X )
= ( X = zero_zero_int ) ) ).
% zero_reorient
thf(fact_82_add__right__imp__eq,axiom,
! [B: complex,A: complex,C: complex] :
( ( ( plus_plus_complex @ B @ A )
= ( plus_plus_complex @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_83_add__right__imp__eq,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_84_add__right__imp__eq,axiom,
! [B: nat,A: nat,C: nat] :
( ( ( plus_plus_nat @ B @ A )
= ( plus_plus_nat @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_85_add__right__imp__eq,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
=> ( B = C ) ) ).
% add_right_imp_eq
thf(fact_86_add__left__imp__eq,axiom,
! [A: complex,B: complex,C: complex] :
( ( ( plus_plus_complex @ A @ B )
= ( plus_plus_complex @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_87_add__left__imp__eq,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_88_add__left__imp__eq,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( plus_plus_nat @ A @ B )
= ( plus_plus_nat @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_89_add__left__imp__eq,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
=> ( B = C ) ) ).
% add_left_imp_eq
thf(fact_90_add_Oleft__commute,axiom,
! [B: complex,A: complex,C: complex] :
( ( plus_plus_complex @ B @ ( plus_plus_complex @ A @ C ) )
= ( plus_plus_complex @ A @ ( plus_plus_complex @ B @ C ) ) ) ).
% add.left_commute
thf(fact_91_add_Oleft__commute,axiom,
! [B: real,A: real,C: real] :
( ( plus_plus_real @ B @ ( plus_plus_real @ A @ C ) )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.left_commute
thf(fact_92_add_Oleft__commute,axiom,
! [B: nat,A: nat,C: nat] :
( ( plus_plus_nat @ B @ ( plus_plus_nat @ A @ C ) )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_93_add_Oleft__commute,axiom,
! [B: int,A: int,C: int] :
( ( plus_plus_int @ B @ ( plus_plus_int @ A @ C ) )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.left_commute
thf(fact_94_add_Oleft__commute,axiom,
! [B: extended_enat,A: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ B @ ( plus_p3455044024723400733d_enat @ A @ C ) )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% add.left_commute
thf(fact_95_add_Ocommute,axiom,
( plus_plus_complex
= ( ^ [A2: complex,B2: complex] : ( plus_plus_complex @ B2 @ A2 ) ) ) ).
% add.commute
thf(fact_96_add_Ocommute,axiom,
( plus_plus_real
= ( ^ [A2: real,B2: real] : ( plus_plus_real @ B2 @ A2 ) ) ) ).
% add.commute
thf(fact_97_add_Ocommute,axiom,
( plus_plus_nat
= ( ^ [A2: nat,B2: nat] : ( plus_plus_nat @ B2 @ A2 ) ) ) ).
% add.commute
thf(fact_98_add_Ocommute,axiom,
( plus_plus_int
= ( ^ [A2: int,B2: int] : ( plus_plus_int @ B2 @ A2 ) ) ) ).
% add.commute
thf(fact_99_add_Ocommute,axiom,
( plus_p3455044024723400733d_enat
= ( ^ [A2: extended_enat,B2: extended_enat] : ( plus_p3455044024723400733d_enat @ B2 @ A2 ) ) ) ).
% add.commute
thf(fact_100_add_Oright__cancel,axiom,
! [B: complex,A: complex,C: complex] :
( ( ( plus_plus_complex @ B @ A )
= ( plus_plus_complex @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_101_add_Oright__cancel,axiom,
! [B: real,A: real,C: real] :
( ( ( plus_plus_real @ B @ A )
= ( plus_plus_real @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_102_add_Oright__cancel,axiom,
! [B: int,A: int,C: int] :
( ( ( plus_plus_int @ B @ A )
= ( plus_plus_int @ C @ A ) )
= ( B = C ) ) ).
% add.right_cancel
thf(fact_103_add_Oleft__cancel,axiom,
! [A: complex,B: complex,C: complex] :
( ( ( plus_plus_complex @ A @ B )
= ( plus_plus_complex @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_104_add_Oleft__cancel,axiom,
! [A: real,B: real,C: real] :
( ( ( plus_plus_real @ A @ B )
= ( plus_plus_real @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_105_add_Oleft__cancel,axiom,
! [A: int,B: int,C: int] :
( ( ( plus_plus_int @ A @ B )
= ( plus_plus_int @ A @ C ) )
= ( B = C ) ) ).
% add.left_cancel
thf(fact_106_add_Oassoc,axiom,
! [A: complex,B: complex,C: complex] :
( ( plus_plus_complex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ A @ ( plus_plus_complex @ B @ C ) ) ) ).
% add.assoc
thf(fact_107_add_Oassoc,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% add.assoc
thf(fact_108_add_Oassoc,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% add.assoc
thf(fact_109_add_Oassoc,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% add.assoc
thf(fact_110_add_Oassoc,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% add.assoc
thf(fact_111_group__cancel_Oadd2,axiom,
! [B3: complex,K: complex,B: complex,A: complex] :
( ( B3
= ( plus_plus_complex @ K @ B ) )
=> ( ( plus_plus_complex @ A @ B3 )
= ( plus_plus_complex @ K @ ( plus_plus_complex @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_112_group__cancel_Oadd2,axiom,
! [B3: real,K: real,B: real,A: real] :
( ( B3
= ( plus_plus_real @ K @ B ) )
=> ( ( plus_plus_real @ A @ B3 )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_113_group__cancel_Oadd2,axiom,
! [B3: nat,K: nat,B: nat,A: nat] :
( ( B3
= ( plus_plus_nat @ K @ B ) )
=> ( ( plus_plus_nat @ A @ B3 )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_114_group__cancel_Oadd2,axiom,
! [B3: int,K: int,B: int,A: int] :
( ( B3
= ( plus_plus_int @ K @ B ) )
=> ( ( plus_plus_int @ A @ B3 )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_115_group__cancel_Oadd2,axiom,
! [B3: extended_enat,K: extended_enat,B: extended_enat,A: extended_enat] :
( ( B3
= ( plus_p3455044024723400733d_enat @ K @ B ) )
=> ( ( plus_p3455044024723400733d_enat @ A @ B3 )
= ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).
% group_cancel.add2
thf(fact_116_group__cancel_Oadd1,axiom,
! [A3: complex,K: complex,A: complex,B: complex] :
( ( A3
= ( plus_plus_complex @ K @ A ) )
=> ( ( plus_plus_complex @ A3 @ B )
= ( plus_plus_complex @ K @ ( plus_plus_complex @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_117_group__cancel_Oadd1,axiom,
! [A3: real,K: real,A: real,B: real] :
( ( A3
= ( plus_plus_real @ K @ A ) )
=> ( ( plus_plus_real @ A3 @ B )
= ( plus_plus_real @ K @ ( plus_plus_real @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_118_group__cancel_Oadd1,axiom,
! [A3: nat,K: nat,A: nat,B: nat] :
( ( A3
= ( plus_plus_nat @ K @ A ) )
=> ( ( plus_plus_nat @ A3 @ B )
= ( plus_plus_nat @ K @ ( plus_plus_nat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_119_group__cancel_Oadd1,axiom,
! [A3: int,K: int,A: int,B: int] :
( ( A3
= ( plus_plus_int @ K @ A ) )
=> ( ( plus_plus_int @ A3 @ B )
= ( plus_plus_int @ K @ ( plus_plus_int @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_120_group__cancel_Oadd1,axiom,
! [A3: extended_enat,K: extended_enat,A: extended_enat,B: extended_enat] :
( ( A3
= ( plus_p3455044024723400733d_enat @ K @ A ) )
=> ( ( plus_p3455044024723400733d_enat @ A3 @ B )
= ( plus_p3455044024723400733d_enat @ K @ ( plus_p3455044024723400733d_enat @ A @ B ) ) ) ) ).
% group_cancel.add1
thf(fact_121_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: complex,J: complex,K: complex,L: complex] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_complex @ I @ K )
= ( plus_plus_complex @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_122_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: real,J: real,K: real,L: real] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_real @ I @ K )
= ( plus_plus_real @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_123_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_nat @ I @ K )
= ( plus_plus_nat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_124_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: int,J: int,K: int,L: int] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_plus_int @ I @ K )
= ( plus_plus_int @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_125_add__mono__thms__linordered__semiring_I4_J,axiom,
! [I: extended_enat,J: extended_enat,K: extended_enat,L: extended_enat] :
( ( ( I = J )
& ( K = L ) )
=> ( ( plus_p3455044024723400733d_enat @ I @ K )
= ( plus_p3455044024723400733d_enat @ J @ L ) ) ) ).
% add_mono_thms_linordered_semiring(4)
thf(fact_126_is__num__normalize_I1_J,axiom,
! [A: complex,B: complex,C: complex] :
( ( plus_plus_complex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ A @ ( plus_plus_complex @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_127_is__num__normalize_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_128_is__num__normalize_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% is_num_normalize(1)
thf(fact_129_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: complex,B: complex,C: complex] :
( ( plus_plus_complex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ A @ ( plus_plus_complex @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_130_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( plus_plus_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ A @ ( plus_plus_real @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_131_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ A @ ( plus_plus_nat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_132_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( plus_plus_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ A @ ( plus_plus_int @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_133_ab__semigroup__add__class_Oadd__ac_I1_J,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) ) ) ).
% ab_semigroup_add_class.add_ac(1)
thf(fact_134_add_Ogroup__left__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% add.group_left_neutral
thf(fact_135_add_Ogroup__left__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% add.group_left_neutral
thf(fact_136_add_Ogroup__left__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% add.group_left_neutral
thf(fact_137_add_Ocomm__neutral,axiom,
! [A: extended_enat] :
( ( plus_p3455044024723400733d_enat @ A @ zero_z5237406670263579293d_enat )
= A ) ).
% add.comm_neutral
thf(fact_138_add_Ocomm__neutral,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% add.comm_neutral
thf(fact_139_add_Ocomm__neutral,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% add.comm_neutral
thf(fact_140_add_Ocomm__neutral,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% add.comm_neutral
thf(fact_141_add_Ocomm__neutral,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% add.comm_neutral
thf(fact_142_mem__Collect__eq,axiom,
! [A: complex,P: complex > $o] :
( ( member_complex @ A @ ( collect_complex @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_143_mem__Collect__eq,axiom,
! [A: real,P: real > $o] :
( ( member_real @ A @ ( collect_real @ P ) )
= ( P @ A ) ) ).
% mem_Collect_eq
thf(fact_144_Collect__mem__eq,axiom,
! [A3: set_complex] :
( ( collect_complex
@ ^ [X2: complex] : ( member_complex @ X2 @ A3 ) )
= A3 ) ).
% Collect_mem_eq
thf(fact_145_Collect__mem__eq,axiom,
! [A3: set_real] :
( ( collect_real
@ ^ [X2: real] : ( member_real @ X2 @ A3 ) )
= A3 ) ).
% Collect_mem_eq
thf(fact_146_comm__monoid__add__class_Oadd__0,axiom,
! [A: extended_enat] :
( ( plus_p3455044024723400733d_enat @ zero_z5237406670263579293d_enat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_147_comm__monoid__add__class_Oadd__0,axiom,
! [A: complex] :
( ( plus_plus_complex @ zero_zero_complex @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_148_comm__monoid__add__class_Oadd__0,axiom,
! [A: real] :
( ( plus_plus_real @ zero_zero_real @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_149_comm__monoid__add__class_Oadd__0,axiom,
! [A: nat] :
( ( plus_plus_nat @ zero_zero_nat @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_150_comm__monoid__add__class_Oadd__0,axiom,
! [A: int] :
( ( plus_plus_int @ zero_zero_int @ A )
= A ) ).
% comm_monoid_add_class.add_0
thf(fact_151_zero__neq__numeral,axiom,
! [N: num] :
( zero_z5237406670263579293d_enat
!= ( numera1916890842035813515d_enat @ N ) ) ).
% zero_neq_numeral
thf(fact_152_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_complex
!= ( numera6690914467698888265omplex @ N ) ) ).
% zero_neq_numeral
thf(fact_153_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_real
!= ( numeral_numeral_real @ N ) ) ).
% zero_neq_numeral
thf(fact_154_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_nat
!= ( numeral_numeral_nat @ N ) ) ).
% zero_neq_numeral
thf(fact_155_zero__neq__numeral,axiom,
! [N: num] :
( zero_zero_int
!= ( numeral_numeral_int @ N ) ) ).
% zero_neq_numeral
thf(fact_156_numeral__Bit0,axiom,
! [N: num] :
( ( numera1916890842035813515d_enat @ ( bit0 @ N ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N ) @ ( numera1916890842035813515d_enat @ N ) ) ) ).
% numeral_Bit0
thf(fact_157_numeral__Bit0,axiom,
! [N: num] :
( ( numera6690914467698888265omplex @ ( bit0 @ N ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ ( numera6690914467698888265omplex @ N ) ) ) ).
% numeral_Bit0
thf(fact_158_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_real @ ( bit0 @ N ) )
= ( plus_plus_real @ ( numeral_numeral_real @ N ) @ ( numeral_numeral_real @ N ) ) ) ).
% numeral_Bit0
thf(fact_159_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_nat @ ( bit0 @ N ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ ( numeral_numeral_nat @ N ) ) ) ).
% numeral_Bit0
thf(fact_160_numeral__Bit0,axiom,
! [N: num] :
( ( numeral_numeral_int @ ( bit0 @ N ) )
= ( plus_plus_int @ ( numeral_numeral_int @ N ) @ ( numeral_numeral_int @ N ) ) ) ).
% numeral_Bit0
thf(fact_161_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_add
thf(fact_162_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri4216267220026989637d_enat @ ( plus_plus_nat @ M @ N ) )
= ( plus_p3455044024723400733d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).
% of_nat_add
thf(fact_163_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).
% of_nat_add
thf(fact_164_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_add
thf(fact_165_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_add
thf(fact_166_of__nat__add,axiom,
! [M: nat,N: nat] :
( ( semiri6283507881447550617nnreal @ ( plus_plus_nat @ M @ N ) )
= ( plus_p1859984266308609217nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) ) ) ).
% of_nat_add
thf(fact_167_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri4216267220026989637d_enat @ M )
= zero_z5237406670263579293d_enat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_168_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1316708129612266289at_nat @ M )
= zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_169_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri8010041392384452111omplex @ M )
= zero_zero_complex )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_170_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_171_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_172_of__nat__eq__0__iff,axiom,
! [M: nat] :
( ( ( semiri6283507881447550617nnreal @ M )
= zero_z7100319975126383169nnreal )
= ( M = zero_zero_nat ) ) ).
% of_nat_eq_0_iff
thf(fact_173_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_z5237406670263579293d_enat
= ( semiri4216267220026989637d_enat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_174_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_175_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_complex
= ( semiri8010041392384452111omplex @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_176_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_int
= ( semiri1314217659103216013at_int @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_177_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_zero_real
= ( semiri5074537144036343181t_real @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_178_of__nat__0__eq__iff,axiom,
! [N: nat] :
( ( zero_z7100319975126383169nnreal
= ( semiri6283507881447550617nnreal @ N ) )
= ( zero_zero_nat = N ) ) ).
% of_nat_0_eq_iff
thf(fact_179_of__nat__0,axiom,
( ( semiri4216267220026989637d_enat @ zero_zero_nat )
= zero_z5237406670263579293d_enat ) ).
% of_nat_0
thf(fact_180_of__nat__0,axiom,
( ( semiri1316708129612266289at_nat @ zero_zero_nat )
= zero_zero_nat ) ).
% of_nat_0
thf(fact_181_of__nat__0,axiom,
( ( semiri8010041392384452111omplex @ zero_zero_nat )
= zero_zero_complex ) ).
% of_nat_0
thf(fact_182_of__nat__0,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% of_nat_0
thf(fact_183_of__nat__0,axiom,
( ( semiri5074537144036343181t_real @ zero_zero_nat )
= zero_zero_real ) ).
% of_nat_0
thf(fact_184_of__nat__0,axiom,
( ( semiri6283507881447550617nnreal @ zero_zero_nat )
= zero_z7100319975126383169nnreal ) ).
% of_nat_0
thf(fact_185_double__eq__0__iff,axiom,
! [A: real] :
( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% double_eq_0_iff
thf(fact_186_double__eq__0__iff,axiom,
! [A: int] :
( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% double_eq_0_iff
thf(fact_187__092_060open_062x_A_L_A1_A_092_060noteq_062_A0_092_060close_062,axiom,
( ( plus_plus_complex @ x @ one_one_complex )
!= zero_zero_complex ) ).
% \<open>x + 1 \<noteq> 0\<close>
thf(fact_188__C_K_C,axiom,
! [X: complex,N: nat] :
( ~ ( member_complex @ X @ ring_1_Ints_complex )
=> ( ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
!= ( power_power_complex @ ( semiri8010041392384452111omplex @ N ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% "*"
thf(fact_189_Ints__double__eq__0__iff,axiom,
! [A: complex] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( ( ( plus_plus_complex @ A @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ) ).
% Ints_double_eq_0_iff
thf(fact_190_Ints__double__eq__0__iff,axiom,
! [A: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( ( ( plus_plus_real @ A @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ) ).
% Ints_double_eq_0_iff
thf(fact_191_Ints__double__eq__0__iff,axiom,
! [A: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( ( ( plus_plus_int @ A @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ) ).
% Ints_double_eq_0_iff
thf(fact_192_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri8010041392384452111omplex @ M )
= ( semiri8010041392384452111omplex @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_193_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_194_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri5074537144036343181t_real @ M )
= ( semiri5074537144036343181t_real @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_195_of__nat__eq__iff,axiom,
! [M: nat,N: nat] :
( ( ( semiri6283507881447550617nnreal @ M )
= ( semiri6283507881447550617nnreal @ N ) )
= ( M = N ) ) ).
% of_nat_eq_iff
thf(fact_196_verit__eq__simplify_I8_J,axiom,
! [X22: num,Y2: num] :
( ( ( bit0 @ X22 )
= ( bit0 @ Y2 ) )
= ( X22 = Y2 ) ) ).
% verit_eq_simplify(8)
thf(fact_197_set__plus__intro,axiom,
! [A: complex,C2: set_complex,B: complex,D: set_complex] :
( ( member_complex @ A @ C2 )
=> ( ( member_complex @ B @ D )
=> ( member_complex @ ( plus_plus_complex @ A @ B ) @ ( plus_p7052360327008956141omplex @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_198_set__plus__intro,axiom,
! [A: real,C2: set_real,B: real,D: set_real] :
( ( member_real @ A @ C2 )
=> ( ( member_real @ B @ D )
=> ( member_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_set_real @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_199_set__plus__intro,axiom,
! [A: num,C2: set_num,B: num,D: set_num] :
( ( member_num @ A @ C2 )
=> ( ( member_num @ B @ D )
=> ( member_num @ ( plus_plus_num @ A @ B ) @ ( plus_plus_set_num @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_200_set__plus__intro,axiom,
! [A: nat,C2: set_nat,B: nat,D: set_nat] :
( ( member_nat @ A @ C2 )
=> ( ( member_nat @ B @ D )
=> ( member_nat @ ( plus_plus_nat @ A @ B ) @ ( plus_plus_set_nat @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_201_set__plus__intro,axiom,
! [A: int,C2: set_int,B: int,D: set_int] :
( ( member_int @ A @ C2 )
=> ( ( member_int @ B @ D )
=> ( member_int @ ( plus_plus_int @ A @ B ) @ ( plus_plus_set_int @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_202_set__plus__intro,axiom,
! [A: extended_enat,C2: set_Extended_enat,B: extended_enat,D: set_Extended_enat] :
( ( member_Extended_enat @ A @ C2 )
=> ( ( member_Extended_enat @ B @ D )
=> ( member_Extended_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( plus_p3482335003337316477d_enat @ C2 @ D ) ) ) ) ).
% set_plus_intro
thf(fact_203_Ints__of__nat,axiom,
! [N: nat] : ( member_complex @ ( semiri8010041392384452111omplex @ N ) @ ring_1_Ints_complex ) ).
% Ints_of_nat
thf(fact_204_Ints__of__nat,axiom,
! [N: nat] : ( member_int @ ( semiri1314217659103216013at_int @ N ) @ ring_1_Ints_int ) ).
% Ints_of_nat
thf(fact_205_Ints__of__nat,axiom,
! [N: nat] : ( member_real @ ( semiri5074537144036343181t_real @ N ) @ ring_1_Ints_real ) ).
% Ints_of_nat
thf(fact_206_int__eq__iff__numeral,axiom,
! [M: nat,V: num] :
( ( ( semiri1314217659103216013at_int @ M )
= ( numeral_numeral_int @ V ) )
= ( M
= ( numeral_numeral_nat @ V ) ) ) ).
% int_eq_iff_numeral
thf(fact_207_of__nat__1,axiom,
( ( semiri1795386414920522267l_num1 @ one_one_nat )
= one_on3868389512446148991l_num1 ) ).
% of_nat_1
thf(fact_208_of__nat__1,axiom,
( ( semiri1316708129612266289at_nat @ one_one_nat )
= one_one_nat ) ).
% of_nat_1
thf(fact_209_of__nat__1,axiom,
( ( semiri8010041392384452111omplex @ one_one_nat )
= one_one_complex ) ).
% of_nat_1
thf(fact_210_of__nat__1,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% of_nat_1
thf(fact_211_of__nat__1,axiom,
( ( semiri5074537144036343181t_real @ one_one_nat )
= one_one_real ) ).
% of_nat_1
thf(fact_212_of__nat__1,axiom,
( ( semiri6283507881447550617nnreal @ one_one_nat )
= one_on2969667320475766781nnreal ) ).
% of_nat_1
thf(fact_213_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_nat
= ( semiri1316708129612266289at_nat @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_214_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_complex
= ( semiri8010041392384452111omplex @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_215_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_int
= ( semiri1314217659103216013at_int @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_216_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_one_real
= ( semiri5074537144036343181t_real @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_217_of__nat__1__eq__iff,axiom,
! [N: nat] :
( ( one_on2969667320475766781nnreal
= ( semiri6283507881447550617nnreal @ N ) )
= ( N = one_one_nat ) ) ).
% of_nat_1_eq_iff
thf(fact_218_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1316708129612266289at_nat @ N )
= one_one_nat )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_219_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri8010041392384452111omplex @ N )
= one_one_complex )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_220_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri1314217659103216013at_int @ N )
= one_one_int )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_221_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri5074537144036343181t_real @ N )
= one_one_real )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_222_of__nat__eq__1__iff,axiom,
! [N: nat] :
( ( ( semiri6283507881447550617nnreal @ N )
= one_on2969667320475766781nnreal )
= ( N = one_one_nat ) ) ).
% of_nat_eq_1_iff
thf(fact_223_add__is__0,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
& ( N = zero_zero_nat ) ) ) ).
% add_is_0
thf(fact_224_Nat_Oadd__0__right,axiom,
! [M: nat] :
( ( plus_plus_nat @ M @ zero_zero_nat )
= M ) ).
% Nat.add_0_right
thf(fact_225_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numera1916890842035813515d_enat @ N )
= one_on7984719198319812577d_enat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_226_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numera6690914467698888265omplex @ N )
= one_one_complex )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_227_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_real @ N )
= one_one_real )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_228_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_nat @ N )
= one_one_nat )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_229_numeral__eq__one__iff,axiom,
! [N: num] :
( ( ( numeral_numeral_int @ N )
= one_one_int )
= ( N = one ) ) ).
% numeral_eq_one_iff
thf(fact_230_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_on7984719198319812577d_enat
= ( numera1916890842035813515d_enat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_231_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_complex
= ( numera6690914467698888265omplex @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_232_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_real
= ( numeral_numeral_real @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_233_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_nat
= ( numeral_numeral_nat @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_234_one__eq__numeral__iff,axiom,
! [N: num] :
( ( one_one_int
= ( numeral_numeral_int @ N ) )
= ( one = N ) ) ).
% one_eq_numeral_iff
thf(fact_235_one__add__one,axiom,
( ( plus_p2313304076027620419l_num1 @ one_on3868389512446148991l_num1 @ one_on3868389512446148991l_num1 )
= ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_236_one__add__one,axiom,
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_237_one__add__one,axiom,
( ( plus_plus_complex @ one_one_complex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_238_one__add__one,axiom,
( ( plus_plus_real @ one_one_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_239_one__add__one,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_240_one__add__one,axiom,
( ( plus_plus_int @ one_one_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% one_add_one
thf(fact_241_numeral__plus__one,axiom,
! [N: num] :
( ( plus_p2313304076027620419l_num1 @ ( numera2161328050825114965l_num1 @ N ) @ one_on3868389512446148991l_num1 )
= ( numera2161328050825114965l_num1 @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_242_numeral__plus__one,axiom,
! [N: num] :
( ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_243_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_complex @ ( numera6690914467698888265omplex @ N ) @ one_one_complex )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_244_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( numeral_numeral_real @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_245_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( numeral_numeral_nat @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_246_numeral__plus__one,axiom,
! [N: num] :
( ( plus_plus_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( numeral_numeral_int @ ( plus_plus_num @ N @ one ) ) ) ).
% numeral_plus_one
thf(fact_247_one__plus__numeral,axiom,
! [N: num] :
( ( plus_p2313304076027620419l_num1 @ one_on3868389512446148991l_num1 @ ( numera2161328050825114965l_num1 @ N ) )
= ( numera2161328050825114965l_num1 @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_248_one__plus__numeral,axiom,
! [N: num] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
= ( numera1916890842035813515d_enat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_249_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_250_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_251_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_252_one__plus__numeral,axiom,
! [N: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( plus_plus_num @ one @ N ) ) ) ).
% one_plus_numeral
thf(fact_253_int__ops_I5_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ A @ B ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(5)
thf(fact_254_int__ops_I1_J,axiom,
( ( semiri1314217659103216013at_int @ zero_zero_nat )
= zero_zero_int ) ).
% int_ops(1)
thf(fact_255_plus__nat_Oadd__0,axiom,
! [N: nat] :
( ( plus_plus_nat @ zero_zero_nat @ N )
= N ) ).
% plus_nat.add_0
thf(fact_256_int__plus,axiom,
! [N: nat,M: nat] :
( ( semiri1314217659103216013at_int @ ( plus_plus_nat @ N @ M ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% int_plus
thf(fact_257_zadd__int__left,axiom,
! [M: nat,N: nat,Z: int] :
( ( plus_plus_int @ ( semiri1314217659103216013at_int @ M ) @ ( plus_plus_int @ ( semiri1314217659103216013at_int @ N ) @ Z ) )
= ( plus_plus_int @ ( semiri1314217659103216013at_int @ ( plus_plus_nat @ M @ N ) ) @ Z ) ) ).
% zadd_int_left
thf(fact_258_one__reorient,axiom,
! [X: numera2417102609627094330l_num1] :
( ( one_on3868389512446148991l_num1 = X )
= ( X = one_on3868389512446148991l_num1 ) ) ).
% one_reorient
thf(fact_259_one__reorient,axiom,
! [X: complex] :
( ( one_one_complex = X )
= ( X = one_one_complex ) ) ).
% one_reorient
thf(fact_260_one__reorient,axiom,
! [X: real] :
( ( one_one_real = X )
= ( X = one_one_real ) ) ).
% one_reorient
thf(fact_261_one__reorient,axiom,
! [X: nat] :
( ( one_one_nat = X )
= ( X = one_one_nat ) ) ).
% one_reorient
thf(fact_262_one__reorient,axiom,
! [X: int] :
( ( one_one_int = X )
= ( X = one_one_int ) ) ).
% one_reorient
thf(fact_263_add__eq__self__zero,axiom,
! [M: nat,N: nat] :
( ( ( plus_plus_nat @ M @ N )
= M )
=> ( N = zero_zero_nat ) ) ).
% add_eq_self_zero
thf(fact_264_int__ops_I3_J,axiom,
! [N: num] :
( ( semiri1314217659103216013at_int @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_int @ N ) ) ).
% int_ops(3)
thf(fact_265_Ints__power,axiom,
! [A: complex,N: nat] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( member_complex @ ( power_power_complex @ A @ N ) @ ring_1_Ints_complex ) ) ).
% Ints_power
thf(fact_266_Ints__power,axiom,
! [A: real,N: nat] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( member_real @ ( power_power_real @ A @ N ) @ ring_1_Ints_real ) ) ).
% Ints_power
thf(fact_267_Ints__power,axiom,
! [A: int,N: nat] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( member_int @ ( power_power_int @ A @ N ) @ ring_1_Ints_int ) ) ).
% Ints_power
thf(fact_268_Ints__1,axiom,
member2815666790699981905l_num1 @ one_on3868389512446148991l_num1 @ ring_14745913572136535497l_num1 ).
% Ints_1
thf(fact_269_Ints__1,axiom,
member_real @ one_one_real @ ring_1_Ints_real ).
% Ints_1
thf(fact_270_Ints__1,axiom,
member_int @ one_one_int @ ring_1_Ints_int ).
% Ints_1
thf(fact_271_Ints__1,axiom,
member_complex @ one_one_complex @ ring_1_Ints_complex ).
% Ints_1
thf(fact_272_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_p2313304076027620419l_num1 @ one_on3868389512446148991l_num1 @ ( numera2161328050825114965l_num1 @ X ) )
= ( plus_p2313304076027620419l_num1 @ ( numera2161328050825114965l_num1 @ X ) @ one_on3868389512446148991l_num1 ) ) ).
% one_plus_numeral_commute
thf(fact_273_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_p3455044024723400733d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ X ) )
= ( plus_p3455044024723400733d_enat @ ( numera1916890842035813515d_enat @ X ) @ one_on7984719198319812577d_enat ) ) ).
% one_plus_numeral_commute
thf(fact_274_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_complex @ one_one_complex @ ( numera6690914467698888265omplex @ X ) )
= ( plus_plus_complex @ ( numera6690914467698888265omplex @ X ) @ one_one_complex ) ) ).
% one_plus_numeral_commute
thf(fact_275_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_real @ one_one_real @ ( numeral_numeral_real @ X ) )
= ( plus_plus_real @ ( numeral_numeral_real @ X ) @ one_one_real ) ) ).
% one_plus_numeral_commute
thf(fact_276_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_nat @ one_one_nat @ ( numeral_numeral_nat @ X ) )
= ( plus_plus_nat @ ( numeral_numeral_nat @ X ) @ one_one_nat ) ) ).
% one_plus_numeral_commute
thf(fact_277_one__plus__numeral__commute,axiom,
! [X: num] :
( ( plus_plus_int @ one_one_int @ ( numeral_numeral_int @ X ) )
= ( plus_plus_int @ ( numeral_numeral_int @ X ) @ one_one_int ) ) ).
% one_plus_numeral_commute
thf(fact_278_Ints__odd__nonzero,axiom,
! [A: complex] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( ( plus_plus_complex @ ( plus_plus_complex @ one_one_complex @ A ) @ A )
!= zero_zero_complex ) ) ).
% Ints_odd_nonzero
thf(fact_279_Ints__odd__nonzero,axiom,
! [A: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( ( plus_plus_real @ ( plus_plus_real @ one_one_real @ A ) @ A )
!= zero_zero_real ) ) ).
% Ints_odd_nonzero
thf(fact_280_Ints__odd__nonzero,axiom,
! [A: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ A ) @ A )
!= zero_zero_int ) ) ).
% Ints_odd_nonzero
thf(fact_281_numeral__One,axiom,
( ( numera2161328050825114965l_num1 @ one )
= one_on3868389512446148991l_num1 ) ).
% numeral_One
thf(fact_282_numeral__One,axiom,
( ( numera1916890842035813515d_enat @ one )
= one_on7984719198319812577d_enat ) ).
% numeral_One
thf(fact_283_numeral__One,axiom,
( ( numera6690914467698888265omplex @ one )
= one_one_complex ) ).
% numeral_One
thf(fact_284_numeral__One,axiom,
( ( numeral_numeral_real @ one )
= one_one_real ) ).
% numeral_One
thf(fact_285_numeral__One,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numeral_One
thf(fact_286_numeral__One,axiom,
( ( numeral_numeral_int @ one )
= one_one_int ) ).
% numeral_One
thf(fact_287_set__plus__elim,axiom,
! [X: complex,A3: set_complex,B3: set_complex] :
( ( member_complex @ X @ ( plus_p7052360327008956141omplex @ A3 @ B3 ) )
=> ~ ! [A4: complex,B4: complex] :
( ( X
= ( plus_plus_complex @ A4 @ B4 ) )
=> ( ( member_complex @ A4 @ A3 )
=> ~ ( member_complex @ B4 @ B3 ) ) ) ) ).
% set_plus_elim
thf(fact_288_set__plus__elim,axiom,
! [X: real,A3: set_real,B3: set_real] :
( ( member_real @ X @ ( plus_plus_set_real @ A3 @ B3 ) )
=> ~ ! [A4: real,B4: real] :
( ( X
= ( plus_plus_real @ A4 @ B4 ) )
=> ( ( member_real @ A4 @ A3 )
=> ~ ( member_real @ B4 @ B3 ) ) ) ) ).
% set_plus_elim
thf(fact_289_set__plus__elim,axiom,
! [X: num,A3: set_num,B3: set_num] :
( ( member_num @ X @ ( plus_plus_set_num @ A3 @ B3 ) )
=> ~ ! [A4: num,B4: num] :
( ( X
= ( plus_plus_num @ A4 @ B4 ) )
=> ( ( member_num @ A4 @ A3 )
=> ~ ( member_num @ B4 @ B3 ) ) ) ) ).
% set_plus_elim
thf(fact_290_set__plus__elim,axiom,
! [X: nat,A3: set_nat,B3: set_nat] :
( ( member_nat @ X @ ( plus_plus_set_nat @ A3 @ B3 ) )
=> ~ ! [A4: nat,B4: nat] :
( ( X
= ( plus_plus_nat @ A4 @ B4 ) )
=> ( ( member_nat @ A4 @ A3 )
=> ~ ( member_nat @ B4 @ B3 ) ) ) ) ).
% set_plus_elim
thf(fact_291_set__plus__elim,axiom,
! [X: int,A3: set_int,B3: set_int] :
( ( member_int @ X @ ( plus_plus_set_int @ A3 @ B3 ) )
=> ~ ! [A4: int,B4: int] :
( ( X
= ( plus_plus_int @ A4 @ B4 ) )
=> ( ( member_int @ A4 @ A3 )
=> ~ ( member_int @ B4 @ B3 ) ) ) ) ).
% set_plus_elim
thf(fact_292_set__plus__elim,axiom,
! [X: extended_enat,A3: set_Extended_enat,B3: set_Extended_enat] :
( ( member_Extended_enat @ X @ ( plus_p3482335003337316477d_enat @ A3 @ B3 ) )
=> ~ ! [A4: extended_enat,B4: extended_enat] :
( ( X
= ( plus_p3455044024723400733d_enat @ A4 @ B4 ) )
=> ( ( member_Extended_enat @ A4 @ A3 )
=> ~ ( member_Extended_enat @ B4 @ B3 ) ) ) ) ).
% set_plus_elim
thf(fact_293_verit__sum__simplify,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ zero_zero_complex )
= A ) ).
% verit_sum_simplify
thf(fact_294_verit__sum__simplify,axiom,
! [A: real] :
( ( plus_plus_real @ A @ zero_zero_real )
= A ) ).
% verit_sum_simplify
thf(fact_295_verit__sum__simplify,axiom,
! [A: nat] :
( ( plus_plus_nat @ A @ zero_zero_nat )
= A ) ).
% verit_sum_simplify
thf(fact_296_verit__sum__simplify,axiom,
! [A: int] :
( ( plus_plus_int @ A @ zero_zero_int )
= A ) ).
% verit_sum_simplify
thf(fact_297_verit__eq__simplify_I10_J,axiom,
! [X22: num] :
( one
!= ( bit0 @ X22 ) ) ).
% verit_eq_simplify(10)
thf(fact_298_Ints__0,axiom,
member_complex @ zero_zero_complex @ ring_1_Ints_complex ).
% Ints_0
thf(fact_299_Ints__0,axiom,
member_real @ zero_zero_real @ ring_1_Ints_real ).
% Ints_0
thf(fact_300_Ints__0,axiom,
member_int @ zero_zero_int @ ring_1_Ints_int ).
% Ints_0
thf(fact_301_Ints__add,axiom,
! [A: complex,B: complex] :
( ( member_complex @ A @ ring_1_Ints_complex )
=> ( ( member_complex @ B @ ring_1_Ints_complex )
=> ( member_complex @ ( plus_plus_complex @ A @ B ) @ ring_1_Ints_complex ) ) ) ).
% Ints_add
thf(fact_302_Ints__add,axiom,
! [A: real,B: real] :
( ( member_real @ A @ ring_1_Ints_real )
=> ( ( member_real @ B @ ring_1_Ints_real )
=> ( member_real @ ( plus_plus_real @ A @ B ) @ ring_1_Ints_real ) ) ) ).
% Ints_add
thf(fact_303_Ints__add,axiom,
! [A: int,B: int] :
( ( member_int @ A @ ring_1_Ints_int )
=> ( ( member_int @ B @ ring_1_Ints_int )
=> ( member_int @ ( plus_plus_int @ A @ B ) @ ring_1_Ints_int ) ) ) ).
% Ints_add
thf(fact_304_Ints__numeral,axiom,
! [N: num] : ( member_complex @ ( numera6690914467698888265omplex @ N ) @ ring_1_Ints_complex ) ).
% Ints_numeral
thf(fact_305_Ints__numeral,axiom,
! [N: num] : ( member_real @ ( numeral_numeral_real @ N ) @ ring_1_Ints_real ) ).
% Ints_numeral
thf(fact_306_Ints__numeral,axiom,
! [N: num] : ( member_int @ ( numeral_numeral_int @ N ) @ ring_1_Ints_int ) ).
% Ints_numeral
thf(fact_307_sum__power2__eq__zero__iff,axiom,
! [X: real,Y: real] :
( ( ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_308_sum__power2__eq__zero__iff,axiom,
! [X: int,Y: int] :
( ( ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_power2_eq_zero_iff
thf(fact_309_zero__eq__power2,axiom,
! [A: complex] :
( ( ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% zero_eq_power2
thf(fact_310_zero__eq__power2,axiom,
! [A: real] :
( ( ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% zero_eq_power2
thf(fact_311_zero__eq__power2,axiom,
! [A: nat] :
( ( ( power_power_nat @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% zero_eq_power2
thf(fact_312_zero__eq__power2,axiom,
! [A: int] :
( ( ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% zero_eq_power2
thf(fact_313_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N: nat] :
( ( ( semiri4216267220026989637d_enat @ Y )
= ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ X ) @ N ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_314_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N: nat] :
( ( ( semiri1316708129612266289at_nat @ Y )
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_315_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N: nat] :
( ( ( semiri8010041392384452111omplex @ Y )
= ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_316_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N: nat] :
( ( ( semiri1314217659103216013at_int @ Y )
= ( power_power_int @ ( numeral_numeral_int @ X ) @ N ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_317_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N: nat] :
( ( ( semiri5074537144036343181t_real @ Y )
= ( power_power_real @ ( numeral_numeral_real @ X ) @ N ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_318_real__of__nat__eq__numeral__power__cancel__iff,axiom,
! [Y: nat,X: num,N: nat] :
( ( ( semiri6283507881447550617nnreal @ Y )
= ( power_6007165696250533058nnreal @ ( numera4658534427948366547nnreal @ X ) @ N ) )
= ( Y
= ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N ) ) ) ).
% real_of_nat_eq_numeral_power_cancel_iff
thf(fact_319_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y: nat] :
( ( ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ X ) @ N )
= ( semiri4216267220026989637d_enat @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_320_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= ( semiri1316708129612266289at_nat @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_321_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y: nat] :
( ( ( power_power_complex @ ( numera6690914467698888265omplex @ X ) @ N )
= ( semiri8010041392384452111omplex @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_322_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ X ) @ N )
= ( semiri1314217659103216013at_int @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_323_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y: nat] :
( ( ( power_power_real @ ( numeral_numeral_real @ X ) @ N )
= ( semiri5074537144036343181t_real @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_324_numeral__power__eq__of__nat__cancel__iff,axiom,
! [X: num,N: nat,Y: nat] :
( ( ( power_6007165696250533058nnreal @ ( numera4658534427948366547nnreal @ X ) @ N )
= ( semiri6283507881447550617nnreal @ Y ) )
= ( ( power_power_nat @ ( numeral_numeral_nat @ X ) @ N )
= Y ) ) ).
% numeral_power_eq_of_nat_cancel_iff
thf(fact_325_power__zero__numeral,axiom,
! [K: num] :
( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ ( numeral_numeral_nat @ K ) )
= zero_z5237406670263579293d_enat ) ).
% power_zero_numeral
thf(fact_326_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ K ) )
= zero_zero_complex ) ).
% power_zero_numeral
thf(fact_327_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ K ) )
= zero_zero_real ) ).
% power_zero_numeral
thf(fact_328_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ K ) )
= zero_zero_nat ) ).
% power_zero_numeral
thf(fact_329_power__zero__numeral,axiom,
! [K: num] :
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ K ) )
= zero_zero_int ) ).
% power_zero_numeral
thf(fact_330_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ M )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_left
thf(fact_331_exp__add__not__zero__imp__left,axiom,
! [M: nat,N: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ M )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_left
thf(fact_332_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_nat )
=> ( ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
!= zero_zero_nat ) ) ).
% exp_add_not_zero_imp_right
thf(fact_333_exp__add__not__zero__imp__right,axiom,
! [M: nat,N: nat] :
( ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( plus_plus_nat @ M @ N ) )
!= zero_zero_int )
=> ( ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N )
!= zero_zero_int ) ) ).
% exp_add_not_zero_imp_right
thf(fact_334_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( power_power_nat @ M @ N ) )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ M ) @ N ) ) ).
% of_nat_power
thf(fact_335_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( power_power_nat @ M @ N ) )
= ( power_power_complex @ ( semiri8010041392384452111omplex @ M ) @ N ) ) ).
% of_nat_power
thf(fact_336_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( power_power_nat @ M @ N ) )
= ( power_power_int @ ( semiri1314217659103216013at_int @ M ) @ N ) ) ).
% of_nat_power
thf(fact_337_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( power_power_nat @ M @ N ) )
= ( power_power_real @ ( semiri5074537144036343181t_real @ M ) @ N ) ) ).
% of_nat_power
thf(fact_338_of__nat__power,axiom,
! [M: nat,N: nat] :
( ( semiri6283507881447550617nnreal @ ( power_power_nat @ M @ N ) )
= ( power_6007165696250533058nnreal @ ( semiri6283507881447550617nnreal @ M ) @ N ) ) ).
% of_nat_power
thf(fact_339_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W )
= ( semiri1316708129612266289at_nat @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_340_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W )
= ( semiri8010041392384452111omplex @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_341_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W )
= ( semiri1314217659103216013at_int @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_342_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W )
= ( semiri5074537144036343181t_real @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_343_of__nat__eq__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ( power_6007165696250533058nnreal @ ( semiri6283507881447550617nnreal @ B ) @ W )
= ( semiri6283507881447550617nnreal @ X ) )
= ( ( power_power_nat @ B @ W )
= X ) ) ).
% of_nat_eq_of_nat_power_cancel_iff
thf(fact_344_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri1316708129612266289at_nat @ X )
= ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_345_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri8010041392384452111omplex @ X )
= ( power_power_complex @ ( semiri8010041392384452111omplex @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_346_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri1314217659103216013at_int @ X )
= ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_347_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri5074537144036343181t_real @ X )
= ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_348_of__nat__power__eq__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ( semiri6283507881447550617nnreal @ X )
= ( power_6007165696250533058nnreal @ ( semiri6283507881447550617nnreal @ B ) @ W ) )
= ( X
= ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_eq_of_nat_cancel_iff
thf(fact_349_power__one,axiom,
! [N: nat] :
( ( power_7402600760894073284l_num1 @ one_on3868389512446148991l_num1 @ N )
= one_on3868389512446148991l_num1 ) ).
% power_one
thf(fact_350_power__one,axiom,
! [N: nat] :
( ( power_1054015426188190660_ereal @ one_on4623092294121504201_ereal @ N )
= one_on4623092294121504201_ereal ) ).
% power_one
thf(fact_351_power__one,axiom,
! [N: nat] :
( ( power_power_complex @ one_one_complex @ N )
= one_one_complex ) ).
% power_one
thf(fact_352_power__one,axiom,
! [N: nat] :
( ( power_power_real @ one_one_real @ N )
= one_one_real ) ).
% power_one
thf(fact_353_power__one,axiom,
! [N: nat] :
( ( power_power_nat @ one_one_nat @ N )
= one_one_nat ) ).
% power_one
thf(fact_354_power__one,axiom,
! [N: nat] :
( ( power_power_int @ one_one_int @ N )
= one_one_int ) ).
% power_one
thf(fact_355_power__one__right,axiom,
! [A: extended_ereal] :
( ( power_1054015426188190660_ereal @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_356_power__one__right,axiom,
! [A: complex] :
( ( power_power_complex @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_357_power__one__right,axiom,
! [A: real] :
( ( power_power_real @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_358_power__one__right,axiom,
! [A: nat] :
( ( power_power_nat @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_359_power__one__right,axiom,
! [A: int] :
( ( power_power_int @ A @ one_one_nat )
= A ) ).
% power_one_right
thf(fact_360_int__ops_I2_J,axiom,
( ( semiri1314217659103216013at_int @ one_one_nat )
= one_one_int ) ).
% int_ops(2)
thf(fact_361_plus__int__code_I2_J,axiom,
! [L: int] :
( ( plus_plus_int @ zero_zero_int @ L )
= L ) ).
% plus_int_code(2)
thf(fact_362_plus__int__code_I1_J,axiom,
! [K: int] :
( ( plus_plus_int @ K @ zero_zero_int )
= K ) ).
% plus_int_code(1)
thf(fact_363_nat__int__comparison_I1_J,axiom,
( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
= ( ^ [A2: nat,B2: nat] :
( ( semiri1314217659103216013at_int @ A2 )
= ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(1)
thf(fact_364_int__if,axiom,
! [P: $o,A: nat,B: nat] :
( ( P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ A ) ) )
& ( ~ P
=> ( ( semiri1314217659103216013at_int @ ( if_nat @ P @ A @ B ) )
= ( semiri1314217659103216013at_int @ B ) ) ) ) ).
% int_if
thf(fact_365_int__int__eq,axiom,
! [M: nat,N: nat] :
( ( ( semiri1314217659103216013at_int @ M )
= ( semiri1314217659103216013at_int @ N ) )
= ( M = N ) ) ).
% int_int_eq
thf(fact_366_odd__nonzero,axiom,
! [Z: int] :
( ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z )
!= zero_zero_int ) ).
% odd_nonzero
thf(fact_367_numerals_I1_J,axiom,
( ( numeral_numeral_nat @ one )
= one_one_nat ) ).
% numerals(1)
thf(fact_368_nat__1__add__1,axiom,
( ( plus_plus_nat @ one_one_nat @ one_one_nat )
= ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ).
% nat_1_add_1
thf(fact_369_power__not__zero,axiom,
! [A: complex,N: nat] :
( ( A != zero_zero_complex )
=> ( ( power_power_complex @ A @ N )
!= zero_zero_complex ) ) ).
% power_not_zero
thf(fact_370_power__not__zero,axiom,
! [A: real,N: nat] :
( ( A != zero_zero_real )
=> ( ( power_power_real @ A @ N )
!= zero_zero_real ) ) ).
% power_not_zero
thf(fact_371_power__not__zero,axiom,
! [A: nat,N: nat] :
( ( A != zero_zero_nat )
=> ( ( power_power_nat @ A @ N )
!= zero_zero_nat ) ) ).
% power_not_zero
thf(fact_372_power__not__zero,axiom,
! [A: int,N: nat] :
( ( A != zero_zero_int )
=> ( ( power_power_int @ A @ N )
!= zero_zero_int ) ) ).
% power_not_zero
thf(fact_373_power__0,axiom,
! [A: numera2417102609627094330l_num1] :
( ( power_7402600760894073284l_num1 @ A @ zero_zero_nat )
= one_on3868389512446148991l_num1 ) ).
% power_0
thf(fact_374_power__0,axiom,
! [A: extended_ereal] :
( ( power_1054015426188190660_ereal @ A @ zero_zero_nat )
= one_on4623092294121504201_ereal ) ).
% power_0
thf(fact_375_power__0,axiom,
! [A: complex] :
( ( power_power_complex @ A @ zero_zero_nat )
= one_one_complex ) ).
% power_0
thf(fact_376_power__0,axiom,
! [A: real] :
( ( power_power_real @ A @ zero_zero_nat )
= one_one_real ) ).
% power_0
thf(fact_377_power__0,axiom,
! [A: nat] :
( ( power_power_nat @ A @ zero_zero_nat )
= one_one_nat ) ).
% power_0
thf(fact_378_power__0,axiom,
! [A: int] :
( ( power_power_int @ A @ zero_zero_nat )
= one_one_int ) ).
% power_0
thf(fact_379_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_7402600760894073284l_num1 @ zero_z5982384998485459395l_num1 @ N )
= one_on3868389512446148991l_num1 ) )
& ( ( N != zero_zero_nat )
=> ( ( power_7402600760894073284l_num1 @ zero_z5982384998485459395l_num1 @ N )
= zero_z5982384998485459395l_num1 ) ) ) ).
% power_0_left
thf(fact_380_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ N )
= one_on7984719198319812577d_enat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ N )
= zero_z5237406670263579293d_enat ) ) ) ).
% power_0_left
thf(fact_381_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= one_one_complex ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_complex @ zero_zero_complex @ N )
= zero_zero_complex ) ) ) ).
% power_0_left
thf(fact_382_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= one_one_real ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_real @ zero_zero_real @ N )
= zero_zero_real ) ) ) ).
% power_0_left
thf(fact_383_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= one_one_nat ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ) ) ).
% power_0_left
thf(fact_384_power__0__left,axiom,
! [N: nat] :
( ( ( N = zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= one_one_int ) )
& ( ( N != zero_zero_nat )
=> ( ( power_power_int @ zero_zero_int @ N )
= zero_zero_int ) ) ) ).
% power_0_left
thf(fact_385_zero__power2,axiom,
( ( power_8040749407984259932d_enat @ zero_z5237406670263579293d_enat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_z5237406670263579293d_enat ) ).
% zero_power2
thf(fact_386_zero__power2,axiom,
( ( power_power_complex @ zero_zero_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_complex ) ).
% zero_power2
thf(fact_387_zero__power2,axiom,
( ( power_power_real @ zero_zero_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_real ) ).
% zero_power2
thf(fact_388_zero__power2,axiom,
( ( power_power_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_nat ) ).
% zero_power2
thf(fact_389_zero__power2,axiom,
( ( power_power_int @ zero_zero_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= zero_zero_int ) ).
% zero_power2
thf(fact_390_one__power2,axiom,
( ( power_7402600760894073284l_num1 @ one_on3868389512446148991l_num1 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_on3868389512446148991l_num1 ) ).
% one_power2
thf(fact_391_one__power2,axiom,
( ( power_power_complex @ one_one_complex @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_complex ) ).
% one_power2
thf(fact_392_one__power2,axiom,
( ( power_power_real @ one_one_real @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_real ) ).
% one_power2
thf(fact_393_one__power2,axiom,
( ( power_power_nat @ one_one_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_nat ) ).
% one_power2
thf(fact_394_one__power2,axiom,
( ( power_power_int @ one_one_int @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= one_one_int ) ).
% one_power2
thf(fact_395_nat__induct2,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ( P @ one_one_nat )
=> ( ! [N2: nat] :
( ( P @ N2 )
=> ( P @ ( plus_plus_nat @ N2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( P @ N ) ) ) ) ).
% nat_induct2
thf(fact_396_nat__add__1__add__1,axiom,
! [N: nat] :
( ( plus_plus_nat @ ( plus_plus_nat @ N @ one_one_nat ) @ one_one_nat )
= ( plus_plus_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% nat_add_1_add_1
thf(fact_397_exists__complex__root__nonzero,axiom,
! [Z: complex,N: nat] :
( ( Z != zero_zero_complex )
=> ( ( N != zero_zero_nat )
=> ~ ! [W2: complex] :
( ( W2 != zero_zero_complex )
=> ( Z
!= ( power_power_complex @ W2 @ N ) ) ) ) ) ).
% exists_complex_root_nonzero
thf(fact_398_dbl__simps_I3_J,axiom,
( ( neg_nu5590746349488142217l_num1 @ one_on3868389512446148991l_num1 )
= ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_399_dbl__simps_I3_J,axiom,
( ( neg_nu7009210354673126013omplex @ one_one_complex )
= ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_400_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_real @ one_one_real )
= ( numeral_numeral_real @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_401_dbl__simps_I3_J,axiom,
( ( neg_numeral_dbl_int @ one_one_int )
= ( numeral_numeral_int @ ( bit0 @ one ) ) ) ).
% dbl_simps(3)
thf(fact_402_power__numeral,axiom,
! [K: num,L: num] :
( ( power_8040749407984259932d_enat @ ( numera1916890842035813515d_enat @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numera1916890842035813515d_enat @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_403_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_complex @ ( numera6690914467698888265omplex @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numera6690914467698888265omplex @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_404_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_real @ ( numeral_numeral_real @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numeral_numeral_real @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_405_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_nat @ ( numeral_numeral_nat @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numeral_numeral_nat @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_406_power__numeral,axiom,
! [K: num,L: num] :
( ( power_power_int @ ( numeral_numeral_int @ K ) @ ( numeral_numeral_nat @ L ) )
= ( numeral_numeral_int @ ( pow @ K @ L ) ) ) ).
% power_numeral
thf(fact_407_exists__complex__root,axiom,
! [N: nat,Z: complex] :
( ( N != zero_zero_nat )
=> ~ ! [W2: complex] :
( Z
!= ( power_power_complex @ W2 @ N ) ) ) ).
% exists_complex_root
thf(fact_408_Euclid__induct,axiom,
! [P: nat > nat > $o,A: nat,B: nat] :
( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
= ( P @ B4 @ A4 ) )
=> ( ! [A4: nat] : ( P @ A4 @ zero_zero_nat )
=> ( ! [A4: nat,B4: nat] :
( ( P @ A4 @ B4 )
=> ( P @ A4 @ ( plus_plus_nat @ A4 @ B4 ) ) )
=> ( P @ A @ B ) ) ) ) ).
% Euclid_induct
thf(fact_409_exhaust__2,axiom,
! [X: numera2417102609627094330l_num1] :
( ( X = one_on3868389512446148991l_num1 )
| ( X
= ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ).
% exhaust_2
thf(fact_410_forall__2,axiom,
( ( ^ [P2: numera2417102609627094330l_num1 > $o] :
! [X3: numera2417102609627094330l_num1] : ( P2 @ X3 ) )
= ( ^ [P3: numera2417102609627094330l_num1 > $o] :
( ( P3 @ one_on3868389512446148991l_num1 )
& ( P3 @ ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ) ) ).
% forall_2
thf(fact_411_pth__d,axiom,
! [X: complex] :
( ( plus_plus_complex @ X @ zero_zero_complex )
= X ) ).
% pth_d
thf(fact_412_pth__d,axiom,
! [X: real] :
( ( plus_plus_real @ X @ zero_zero_real )
= X ) ).
% pth_d
thf(fact_413_dbl__simps_I2_J,axiom,
( ( neg_nu7009210354673126013omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% dbl_simps(2)
thf(fact_414_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_real @ zero_zero_real )
= zero_zero_real ) ).
% dbl_simps(2)
thf(fact_415_dbl__simps_I2_J,axiom,
( ( neg_numeral_dbl_int @ zero_zero_int )
= zero_zero_int ) ).
% dbl_simps(2)
thf(fact_416_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) )
= ( numera6690914467698888265omplex @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_417_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) )
= ( numeral_numeral_real @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_418_dbl__simps_I5_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) )
= ( numeral_numeral_int @ ( bit0 @ K ) ) ) ).
% dbl_simps(5)
thf(fact_419_dbl__def,axiom,
( neg_nu7009210354673126013omplex
= ( ^ [X2: complex] : ( plus_plus_complex @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_420_dbl__def,axiom,
( neg_numeral_dbl_real
= ( ^ [X2: real] : ( plus_plus_real @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_421_dbl__def,axiom,
( neg_numeral_dbl_int
= ( ^ [X2: int] : ( plus_plus_int @ X2 @ X2 ) ) ) ).
% dbl_def
thf(fact_422_pow_Osimps_I1_J,axiom,
! [X: num] :
( ( pow @ X @ one )
= X ) ).
% pow.simps(1)
thf(fact_423_pth__7_I1_J,axiom,
! [X: complex] :
( ( plus_plus_complex @ zero_zero_complex @ X )
= X ) ).
% pth_7(1)
thf(fact_424_pth__7_I1_J,axiom,
! [X: real] :
( ( plus_plus_real @ zero_zero_real @ X )
= X ) ).
% pth_7(1)
thf(fact_425_dbl__simps_I4_J,axiom,
( ( neg_nu5590746349488142217l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= ( uminus7224005126491068675l_num1 @ ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_426_dbl__simps_I4_J,axiom,
( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_427_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_428_dbl__simps_I4_J,axiom,
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% dbl_simps(4)
thf(fact_429_eq__add__iff,axiom,
! [X: complex,Y: complex] :
( ( X
= ( plus_plus_complex @ X @ Y ) )
= ( Y = zero_zero_complex ) ) ).
% eq_add_iff
thf(fact_430_eq__add__iff,axiom,
! [X: real,Y: real] :
( ( X
= ( plus_plus_real @ X @ Y ) )
= ( Y = zero_zero_real ) ) ).
% eq_add_iff
thf(fact_431_eq__add__iff,axiom,
! [X: int,Y: int] :
( ( X
= ( plus_plus_int @ X @ Y ) )
= ( Y = zero_zero_int ) ) ).
% eq_add_iff
thf(fact_432_add__0__iff,axiom,
! [B: complex,A: complex] :
( ( B
= ( plus_plus_complex @ B @ A ) )
= ( A = zero_zero_complex ) ) ).
% add_0_iff
thf(fact_433_add__0__iff,axiom,
! [B: real,A: real] :
( ( B
= ( plus_plus_real @ B @ A ) )
= ( A = zero_zero_real ) ) ).
% add_0_iff
thf(fact_434_add__0__iff,axiom,
! [B: nat,A: nat] :
( ( B
= ( plus_plus_nat @ B @ A ) )
= ( A = zero_zero_nat ) ) ).
% add_0_iff
thf(fact_435_add__0__iff,axiom,
! [B: int,A: int] :
( ( B
= ( plus_plus_int @ B @ A ) )
= ( A = zero_zero_int ) ) ).
% add_0_iff
thf(fact_436_zero__neq__one,axiom,
zero_z5982384998485459395l_num1 != one_on3868389512446148991l_num1 ).
% zero_neq_one
thf(fact_437_zero__neq__one,axiom,
zero_z5237406670263579293d_enat != one_on7984719198319812577d_enat ).
% zero_neq_one
thf(fact_438_zero__neq__one,axiom,
zero_zero_complex != one_one_complex ).
% zero_neq_one
thf(fact_439_zero__neq__one,axiom,
zero_zero_real != one_one_real ).
% zero_neq_one
thf(fact_440_zero__neq__one,axiom,
zero_zero_nat != one_one_nat ).
% zero_neq_one
thf(fact_441_zero__neq__one,axiom,
zero_zero_int != one_one_int ).
% zero_neq_one
thf(fact_442_power2__less__eq__zero__iff,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_real )
= ( A = zero_zero_real ) ) ).
% power2_less_eq_zero_iff
thf(fact_443_power2__less__eq__zero__iff,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ zero_zero_int )
= ( A = zero_zero_int ) ) ).
% power2_less_eq_zero_iff
thf(fact_444_power2__eq__iff__nonneg,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_445_power2__eq__iff__nonneg,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ X )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ Y )
=> ( ( ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_446_power2__eq__iff__nonneg,axiom,
! [X: int,Y: int] :
( ( ord_less_eq_int @ zero_zero_int @ X )
=> ( ( ord_less_eq_int @ zero_zero_int @ Y )
=> ( ( ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( X = Y ) ) ) ) ).
% power2_eq_iff_nonneg
thf(fact_447_push__bit__of__1,axiom,
! [N: nat] :
( ( bit_se545348938243370406it_int @ N @ one_one_int )
= ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ).
% push_bit_of_1
thf(fact_448_push__bit__of__1,axiom,
! [N: nat] :
( ( bit_se547839408752420682it_nat @ N @ one_one_nat )
= ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% push_bit_of_1
thf(fact_449_power2__sum,axiom,
! [X: extended_enat,Y: extended_enat] :
( ( power_8040749407984259932d_enat @ ( plus_p3455044024723400733d_enat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_p3455044024723400733d_enat @ ( plus_p3455044024723400733d_enat @ ( power_8040749407984259932d_enat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_8040749407984259932d_enat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_7803423173614009249d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_450_power2__sum,axiom,
! [X: complex,Y: complex] :
( ( power_power_complex @ ( plus_plus_complex @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_complex @ ( plus_plus_complex @ ( power_power_complex @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_complex @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_451_power2__sum,axiom,
! [X: real,Y: real] :
( ( power_power_real @ ( plus_plus_real @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_real @ ( plus_plus_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_452_power2__sum,axiom,
! [X: nat,Y: nat] :
( ( power_power_nat @ ( plus_plus_nat @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_nat @ ( plus_plus_nat @ ( power_power_nat @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_nat @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_453_power2__sum,axiom,
! [X: int,Y: int] :
( ( power_power_int @ ( plus_plus_int @ X @ Y ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( plus_plus_int @ ( plus_plus_int @ ( power_power_int @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_int @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_int @ ( times_times_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ X ) @ Y ) ) ) ).
% power2_sum
thf(fact_454_zero__less__power2,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_real ) ) ).
% zero_less_power2
thf(fact_455_zero__less__power2,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( A != zero_zero_int ) ) ).
% zero_less_power2
thf(fact_456_set__times__intro,axiom,
! [A: complex,C2: set_complex,B: complex,D: set_complex] :
( ( member_complex @ A @ C2 )
=> ( ( member_complex @ B @ D )
=> ( member_complex @ ( times_times_complex @ A @ B ) @ ( times_6048082448287401577omplex @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_457_set__times__intro,axiom,
! [A: extended_enat,C2: set_Extended_enat,B: extended_enat,D: set_Extended_enat] :
( ( member_Extended_enat @ A @ C2 )
=> ( ( member_Extended_enat @ B @ D )
=> ( member_Extended_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ ( times_2438108612031896577d_enat @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_458_set__times__intro,axiom,
! [A: real,C2: set_real,B: real,D: set_real] :
( ( member_real @ A @ C2 )
=> ( ( member_real @ B @ D )
=> ( member_real @ ( times_times_real @ A @ B ) @ ( times_times_set_real @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_459_set__times__intro,axiom,
! [A: num,C2: set_num,B: num,D: set_num] :
( ( member_num @ A @ C2 )
=> ( ( member_num @ B @ D )
=> ( member_num @ ( times_times_num @ A @ B ) @ ( times_times_set_num @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_460_set__times__intro,axiom,
! [A: nat,C2: set_nat,B: nat,D: set_nat] :
( ( member_nat @ A @ C2 )
=> ( ( member_nat @ B @ D )
=> ( member_nat @ ( times_times_nat @ A @ B ) @ ( times_times_set_nat @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_461_set__times__intro,axiom,
! [A: int,C2: set_int,B: int,D: set_int] :
( ( member_int @ A @ C2 )
=> ( ( member_int @ B @ D )
=> ( member_int @ ( times_times_int @ A @ B ) @ ( times_times_set_int @ C2 @ D ) ) ) ) ).
% set_times_intro
thf(fact_462_semiring__norm_I78_J,axiom,
! [M: num,N: num] :
( ( ord_less_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% semiring_norm(78)
thf(fact_463_semiring__norm_I71_J,axiom,
! [M: num,N: num] :
( ( ord_less_eq_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% semiring_norm(71)
thf(fact_464_semiring__norm_I13_J,axiom,
! [M: num,N: num] :
( ( times_times_num @ ( bit0 @ M ) @ ( bit0 @ N ) )
= ( bit0 @ ( bit0 @ ( times_times_num @ M @ N ) ) ) ) ).
% semiring_norm(13)
thf(fact_465_semiring__norm_I75_J,axiom,
! [M: num] :
~ ( ord_less_num @ M @ one ) ).
% semiring_norm(75)
thf(fact_466_semiring__norm_I68_J,axiom,
! [N: num] : ( ord_less_eq_num @ one @ N ) ).
% semiring_norm(68)
thf(fact_467_semiring__norm_I11_J,axiom,
! [M: num] :
( ( times_times_num @ M @ one )
= M ) ).
% semiring_norm(11)
thf(fact_468_semiring__norm_I12_J,axiom,
! [N: num] :
( ( times_times_num @ one @ N )
= N ) ).
% semiring_norm(12)
thf(fact_469_verit__minus__simplify_I4_J,axiom,
! [B: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_470_verit__minus__simplify_I4_J,axiom,
! [B: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ B ) )
= B ) ).
% verit_minus_simplify(4)
thf(fact_471_neg__equal__iff__equal,axiom,
! [A: int,B: int] :
( ( ( uminus_uminus_int @ A )
= ( uminus_uminus_int @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_472_neg__equal__iff__equal,axiom,
! [A: real,B: real] :
( ( ( uminus_uminus_real @ A )
= ( uminus_uminus_real @ B ) )
= ( A = B ) ) ).
% neg_equal_iff_equal
thf(fact_473_add_Oinverse__inverse,axiom,
! [A: int] :
( ( uminus_uminus_int @ ( uminus_uminus_int @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_474_add_Oinverse__inverse,axiom,
! [A: real] :
( ( uminus_uminus_real @ ( uminus_uminus_real @ A ) )
= A ) ).
% add.inverse_inverse
thf(fact_475_mult__less__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% mult_less_cancel2
thf(fact_476_nat__0__less__mult__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( times_times_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% nat_0_less_mult_iff
thf(fact_477_nat__mult__less__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
& ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel_disj
thf(fact_478_nat__mult__le__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel_disj
thf(fact_479_mult__le__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) )
= ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% mult_le_cancel2
thf(fact_480_less__nat__zero__code,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_nat_zero_code
thf(fact_481_neq0__conv,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% neq0_conv
thf(fact_482_bot__nat__0_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ord_less_nat @ zero_zero_nat @ A ) ) ).
% bot_nat_0.not_eq_extremum
thf(fact_483_mult__cancel2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ( times_times_nat @ M @ K )
= ( times_times_nat @ N @ K ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel2
thf(fact_484_mult__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( M = N )
| ( K = zero_zero_nat ) ) ) ).
% mult_cancel1
thf(fact_485_mult__0__right,axiom,
! [M: nat] :
( ( times_times_nat @ M @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_0_right
thf(fact_486_mult__is__0,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= zero_zero_nat )
= ( ( M = zero_zero_nat )
| ( N = zero_zero_nat ) ) ) ).
% mult_is_0
thf(fact_487_le0,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% le0
thf(fact_488_bot__nat__0_Oextremum,axiom,
! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).
% bot_nat_0.extremum
thf(fact_489_nat__add__left__cancel__less,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% nat_add_left_cancel_less
thf(fact_490_nat__add__left__cancel__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ K @ M ) @ ( plus_plus_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% nat_add_left_cancel_le
thf(fact_491_push__bit__negative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_int @ ( bit_se545348938243370406it_int @ N @ K ) @ zero_zero_int )
= ( ord_less_int @ K @ zero_zero_int ) ) ).
% push_bit_negative_int_iff
thf(fact_492_push__bit__nonnegative__int__iff,axiom,
! [N: nat,K: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( bit_se545348938243370406it_int @ N @ K ) )
= ( ord_less_eq_int @ zero_zero_int @ K ) ) ).
% push_bit_nonnegative_int_iff
thf(fact_493_nat__mult__eq__1__iff,axiom,
! [M: nat,N: nat] :
( ( ( times_times_nat @ M @ N )
= one_one_nat )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_mult_eq_1_iff
thf(fact_494_nat__1__eq__mult__iff,axiom,
! [M: nat,N: nat] :
( ( one_one_nat
= ( times_times_nat @ M @ N ) )
= ( ( M = one_one_nat )
& ( N = one_one_nat ) ) ) ).
% nat_1_eq_mult_iff
thf(fact_495_negative__zle,axiom,
! [N: nat,M: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ ( semiri1314217659103216013at_int @ M ) ) ).
% negative_zle
thf(fact_496_le__zero__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% le_zero_eq
thf(fact_497_le__zero__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_zero_eq
thf(fact_498_not__gr__zero,axiom,
! [N: extended_enat] :
( ( ~ ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% not_gr_zero
thf(fact_499_not__gr__zero,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr_zero
thf(fact_500_mult__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_501_mult__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_502_mult__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_503_mult__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_right
thf(fact_504_mult__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_505_mult__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_506_mult__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( ( C = zero_zero_nat )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_507_mult__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( A = B ) ) ) ).
% mult_cancel_left
thf(fact_508_mult__eq__0__iff,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% mult_eq_0_iff
thf(fact_509_mult__eq__0__iff,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ( times_7803423173614009249d_enat @ A @ B )
= zero_z5237406670263579293d_enat )
= ( ( A = zero_z5237406670263579293d_enat )
| ( B = zero_z5237406670263579293d_enat ) ) ) ).
% mult_eq_0_iff
thf(fact_510_mult__eq__0__iff,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% mult_eq_0_iff
thf(fact_511_mult__eq__0__iff,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% mult_eq_0_iff
thf(fact_512_mult__eq__0__iff,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
= ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% mult_eq_0_iff
thf(fact_513_mult__zero__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% mult_zero_right
thf(fact_514_mult__zero__right,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ zero_z5237406670263579293d_enat )
= zero_z5237406670263579293d_enat ) ).
% mult_zero_right
thf(fact_515_mult__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% mult_zero_right
thf(fact_516_mult__zero__right,axiom,
! [A: nat] :
( ( times_times_nat @ A @ zero_zero_nat )
= zero_zero_nat ) ).
% mult_zero_right
thf(fact_517_mult__zero__right,axiom,
! [A: int] :
( ( times_times_int @ A @ zero_zero_int )
= zero_zero_int ) ).
% mult_zero_right
thf(fact_518_mult__zero__left,axiom,
! [A: complex] :
( ( times_times_complex @ zero_zero_complex @ A )
= zero_zero_complex ) ).
% mult_zero_left
thf(fact_519_mult__zero__left,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ zero_z5237406670263579293d_enat @ A )
= zero_z5237406670263579293d_enat ) ).
% mult_zero_left
thf(fact_520_mult__zero__left,axiom,
! [A: real] :
( ( times_times_real @ zero_zero_real @ A )
= zero_zero_real ) ).
% mult_zero_left
thf(fact_521_mult__zero__left,axiom,
! [A: nat] :
( ( times_times_nat @ zero_zero_nat @ A )
= zero_zero_nat ) ).
% mult_zero_left
thf(fact_522_mult__zero__left,axiom,
! [A: int] :
( ( times_times_int @ zero_zero_int @ A )
= zero_zero_int ) ).
% mult_zero_left
thf(fact_523_vector__space__over__itself_Oscale__cancel__right,axiom,
! [A: complex,X: complex,B: complex] :
( ( ( times_times_complex @ A @ X )
= ( times_times_complex @ B @ X ) )
= ( ( A = B )
| ( X = zero_zero_complex ) ) ) ).
% vector_space_over_itself.scale_cancel_right
thf(fact_524_vector__space__over__itself_Oscale__cancel__right,axiom,
! [A: real,X: real,B: real] :
( ( ( times_times_real @ A @ X )
= ( times_times_real @ B @ X ) )
= ( ( A = B )
| ( X = zero_zero_real ) ) ) ).
% vector_space_over_itself.scale_cancel_right
thf(fact_525_vector__space__over__itself_Oscale__cancel__left,axiom,
! [A: complex,X: complex,Y: complex] :
( ( ( times_times_complex @ A @ X )
= ( times_times_complex @ A @ Y ) )
= ( ( X = Y )
| ( A = zero_zero_complex ) ) ) ).
% vector_space_over_itself.scale_cancel_left
thf(fact_526_vector__space__over__itself_Oscale__cancel__left,axiom,
! [A: real,X: real,Y: real] :
( ( ( times_times_real @ A @ X )
= ( times_times_real @ A @ Y ) )
= ( ( X = Y )
| ( A = zero_zero_real ) ) ) ).
% vector_space_over_itself.scale_cancel_left
thf(fact_527_vector__space__over__itself_Oscale__zero__right,axiom,
! [A: complex] :
( ( times_times_complex @ A @ zero_zero_complex )
= zero_zero_complex ) ).
% vector_space_over_itself.scale_zero_right
thf(fact_528_vector__space__over__itself_Oscale__zero__right,axiom,
! [A: real] :
( ( times_times_real @ A @ zero_zero_real )
= zero_zero_real ) ).
% vector_space_over_itself.scale_zero_right
thf(fact_529_vector__space__over__itself_Oscale__zero__left,axiom,
! [X: complex] :
( ( times_times_complex @ zero_zero_complex @ X )
= zero_zero_complex ) ).
% vector_space_over_itself.scale_zero_left
thf(fact_530_vector__space__over__itself_Oscale__zero__left,axiom,
! [X: real] :
( ( times_times_real @ zero_zero_real @ X )
= zero_zero_real ) ).
% vector_space_over_itself.scale_zero_left
thf(fact_531_vector__space__over__itself_Oscale__eq__0__iff,axiom,
! [A: complex,X: complex] :
( ( ( times_times_complex @ A @ X )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
| ( X = zero_zero_complex ) ) ) ).
% vector_space_over_itself.scale_eq_0_iff
thf(fact_532_vector__space__over__itself_Oscale__eq__0__iff,axiom,
! [A: real,X: real] :
( ( ( times_times_real @ A @ X )
= zero_zero_real )
= ( ( A = zero_zero_real )
| ( X = zero_zero_real ) ) ) ).
% vector_space_over_itself.scale_eq_0_iff
thf(fact_533_add__le__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ord_less_eq_complex @ ( plus_plus_complex @ A @ C ) @ ( plus_plus_complex @ B @ C ) )
= ( ord_less_eq_complex @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_534_add__le__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_535_add__le__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_536_add__le__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_right
thf(fact_537_add__le__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ord_less_eq_complex @ ( plus_plus_complex @ C @ A ) @ ( plus_plus_complex @ C @ B ) )
= ( ord_less_eq_complex @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_538_add__le__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_539_add__le__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_eq_nat @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_540_add__le__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% add_le_cancel_left
thf(fact_541_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_542_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_543_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_544_numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_eq_num @ M @ N ) ) ).
% numeral_le_iff
thf(fact_545_neg__le__iff__le,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_546_neg__le__iff__le,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ B ) ) ).
% neg_le_iff_le
thf(fact_547_neg__equal__zero,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= A )
= ( A = zero_zero_int ) ) ).
% neg_equal_zero
thf(fact_548_neg__equal__zero,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= A )
= ( A = zero_zero_real ) ) ).
% neg_equal_zero
thf(fact_549_equal__neg__zero,axiom,
! [A: int] :
( ( A
= ( uminus_uminus_int @ A ) )
= ( A = zero_zero_int ) ) ).
% equal_neg_zero
thf(fact_550_equal__neg__zero,axiom,
! [A: real] :
( ( A
= ( uminus_uminus_real @ A ) )
= ( A = zero_zero_real ) ) ).
% equal_neg_zero
thf(fact_551_neg__equal__0__iff__equal,axiom,
! [A: complex] :
( ( ( uminus1482373934393186551omplex @ A )
= zero_zero_complex )
= ( A = zero_zero_complex ) ) ).
% neg_equal_0_iff_equal
thf(fact_552_neg__equal__0__iff__equal,axiom,
! [A: int] :
( ( ( uminus_uminus_int @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% neg_equal_0_iff_equal
thf(fact_553_neg__equal__0__iff__equal,axiom,
! [A: real] :
( ( ( uminus_uminus_real @ A )
= zero_zero_real )
= ( A = zero_zero_real ) ) ).
% neg_equal_0_iff_equal
thf(fact_554_neg__0__equal__iff__equal,axiom,
! [A: complex] :
( ( zero_zero_complex
= ( uminus1482373934393186551omplex @ A ) )
= ( zero_zero_complex = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_555_neg__0__equal__iff__equal,axiom,
! [A: int] :
( ( zero_zero_int
= ( uminus_uminus_int @ A ) )
= ( zero_zero_int = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_556_neg__0__equal__iff__equal,axiom,
! [A: real] :
( ( zero_zero_real
= ( uminus_uminus_real @ A ) )
= ( zero_zero_real = A ) ) ).
% neg_0_equal_iff_equal
thf(fact_557_add_Oinverse__neutral,axiom,
( ( uminus1482373934393186551omplex @ zero_zero_complex )
= zero_zero_complex ) ).
% add.inverse_neutral
thf(fact_558_add_Oinverse__neutral,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% add.inverse_neutral
thf(fact_559_add_Oinverse__neutral,axiom,
( ( uminus_uminus_real @ zero_zero_real )
= zero_zero_real ) ).
% add.inverse_neutral
thf(fact_560_add__less__cancel__right,axiom,
! [A: complex,C: complex,B: complex] :
( ( ord_less_complex @ ( plus_plus_complex @ A @ C ) @ ( plus_plus_complex @ B @ C ) )
= ( ord_less_complex @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_561_add__less__cancel__right,axiom,
! [A: real,C: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ C ) @ ( plus_plus_real @ B @ C ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_562_add__less__cancel__right,axiom,
! [A: nat,C: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ C ) @ ( plus_plus_nat @ B @ C ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_563_add__less__cancel__right,axiom,
! [A: int,C: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ C ) @ ( plus_plus_int @ B @ C ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_right
thf(fact_564_add__less__cancel__left,axiom,
! [C: complex,A: complex,B: complex] :
( ( ord_less_complex @ ( plus_plus_complex @ C @ A ) @ ( plus_plus_complex @ C @ B ) )
= ( ord_less_complex @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_565_add__less__cancel__left,axiom,
! [C: real,A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ C @ A ) @ ( plus_plus_real @ C @ B ) )
= ( ord_less_real @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_566_add__less__cancel__left,axiom,
! [C: nat,A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ C @ A ) @ ( plus_plus_nat @ C @ B ) )
= ( ord_less_nat @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_567_add__less__cancel__left,axiom,
! [C: int,A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ C @ A ) @ ( plus_plus_int @ C @ B ) )
= ( ord_less_int @ A @ B ) ) ).
% add_less_cancel_left
thf(fact_568_mult__1,axiom,
! [A: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ one_on3868389512446148991l_num1 @ A )
= A ) ).
% mult_1
thf(fact_569_mult__1,axiom,
! [A: complex] :
( ( times_times_complex @ one_one_complex @ A )
= A ) ).
% mult_1
thf(fact_570_mult__1,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ one_on7984719198319812577d_enat @ A )
= A ) ).
% mult_1
thf(fact_571_mult__1,axiom,
! [A: real] :
( ( times_times_real @ one_one_real @ A )
= A ) ).
% mult_1
thf(fact_572_mult__1,axiom,
! [A: nat] :
( ( times_times_nat @ one_one_nat @ A )
= A ) ).
% mult_1
thf(fact_573_mult__1,axiom,
! [A: int] :
( ( times_times_int @ one_one_int @ A )
= A ) ).
% mult_1
thf(fact_574_mult_Oright__neutral,axiom,
! [A: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ A @ one_on3868389512446148991l_num1 )
= A ) ).
% mult.right_neutral
thf(fact_575_mult_Oright__neutral,axiom,
! [A: complex] :
( ( times_times_complex @ A @ one_one_complex )
= A ) ).
% mult.right_neutral
thf(fact_576_mult_Oright__neutral,axiom,
! [A: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ one_on7984719198319812577d_enat )
= A ) ).
% mult.right_neutral
thf(fact_577_mult_Oright__neutral,axiom,
! [A: real] :
( ( times_times_real @ A @ one_one_real )
= A ) ).
% mult.right_neutral
thf(fact_578_mult_Oright__neutral,axiom,
! [A: nat] :
( ( times_times_nat @ A @ one_one_nat )
= A ) ).
% mult.right_neutral
thf(fact_579_mult_Oright__neutral,axiom,
! [A: int] :
( ( times_times_int @ A @ one_one_int )
= A ) ).
% mult.right_neutral
thf(fact_580_vector__space__over__itself_Oscale__one,axiom,
! [X: complex] :
( ( times_times_complex @ one_one_complex @ X )
= X ) ).
% vector_space_over_itself.scale_one
thf(fact_581_vector__space__over__itself_Oscale__one,axiom,
! [X: real] :
( ( times_times_real @ one_one_real @ X )
= X ) ).
% vector_space_over_itself.scale_one
thf(fact_582_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_583_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_584_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_585_numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ M @ N ) ) ).
% numeral_less_iff
thf(fact_586_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ W ) @ Z ) )
= ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_587_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Z ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_588_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Z ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_589_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( times_times_nat @ ( numeral_numeral_nat @ W ) @ Z ) )
= ( times_times_nat @ ( numeral_numeral_nat @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_590_mult__numeral__left__semiring__numeral,axiom,
! [V: num,W: num,Z: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Z ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Z ) ) ).
% mult_numeral_left_semiring_numeral
thf(fact_591_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( numera1916890842035813515d_enat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_592_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) )
= ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_593_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_594_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) )
= ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_595_numeral__times__numeral,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% numeral_times_numeral
thf(fact_596_neg__less__iff__less,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ B ) @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_597_neg__less__iff__less,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ B ) ) ).
% neg_less_iff_less
thf(fact_598_vector__space__over__itself_Oscale__minus__right,axiom,
! [A: real,X: real] :
( ( times_times_real @ A @ ( uminus_uminus_real @ X ) )
= ( uminus_uminus_real @ ( times_times_real @ A @ X ) ) ) ).
% vector_space_over_itself.scale_minus_right
thf(fact_599_vector__space__over__itself_Oscale__minus__left,axiom,
! [A: real,X: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ X )
= ( uminus_uminus_real @ ( times_times_real @ A @ X ) ) ) ).
% vector_space_over_itself.scale_minus_left
thf(fact_600_mult__minus__left,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ B )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_601_mult__minus__left,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ B )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_left
thf(fact_602_minus__mult__minus,axiom,
! [A: int,B: int] :
( ( times_times_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) )
= ( times_times_int @ A @ B ) ) ).
% minus_mult_minus
thf(fact_603_minus__mult__minus,axiom,
! [A: real,B: real] :
( ( times_times_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) )
= ( times_times_real @ A @ B ) ) ).
% minus_mult_minus
thf(fact_604_mult__minus__right,axiom,
! [A: int,B: int] :
( ( times_times_int @ A @ ( uminus_uminus_int @ B ) )
= ( uminus_uminus_int @ ( times_times_int @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_605_mult__minus__right,axiom,
! [A: real,B: real] :
( ( times_times_real @ A @ ( uminus_uminus_real @ B ) )
= ( uminus_uminus_real @ ( times_times_real @ A @ B ) ) ) ).
% mult_minus_right
thf(fact_606_minus__add__distrib,axiom,
! [A: complex,B: complex] :
( ( uminus1482373934393186551omplex @ ( plus_plus_complex @ A @ B ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( uminus1482373934393186551omplex @ B ) ) ) ).
% minus_add_distrib
thf(fact_607_minus__add__distrib,axiom,
! [A: int,B: int] :
( ( uminus_uminus_int @ ( plus_plus_int @ A @ B ) )
= ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( uminus_uminus_int @ B ) ) ) ).
% minus_add_distrib
thf(fact_608_minus__add__distrib,axiom,
! [A: real,B: real] :
( ( uminus_uminus_real @ ( plus_plus_real @ A @ B ) )
= ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( uminus_uminus_real @ B ) ) ) ).
% minus_add_distrib
thf(fact_609_minus__add__cancel,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ ( plus_plus_complex @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_610_minus__add__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ ( plus_plus_int @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_611_minus__add__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ ( plus_plus_real @ A @ B ) )
= B ) ).
% minus_add_cancel
thf(fact_612_add__minus__cancel,axiom,
! [A: complex,B: complex] :
( ( plus_plus_complex @ A @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_613_add__minus__cancel,axiom,
! [A: int,B: int] :
( ( plus_plus_int @ A @ ( plus_plus_int @ ( uminus_uminus_int @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_614_add__minus__cancel,axiom,
! [A: real,B: real] :
( ( plus_plus_real @ A @ ( plus_plus_real @ ( uminus_uminus_real @ A ) @ B ) )
= B ) ).
% add_minus_cancel
thf(fact_615_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_le3935885782089961368nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_616_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_617_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_618_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_619_of__nat__le__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% of_nat_le_iff
thf(fact_620_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_621_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ M ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_622_neg__numeral__eq__iff,axiom,
! [M: num,N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ M ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( M = N ) ) ).
% neg_numeral_eq_iff
thf(fact_623_semiring__norm_I76_J,axiom,
! [N: num] : ( ord_less_num @ one @ ( bit0 @ N ) ) ).
% semiring_norm(76)
thf(fact_624_semiring__norm_I69_J,axiom,
! [M: num] :
~ ( ord_less_eq_num @ ( bit0 @ M ) @ one ) ).
% semiring_norm(69)
thf(fact_625_num__double,axiom,
! [N: num] :
( ( times_times_num @ ( bit0 @ one ) @ N )
= ( bit0 @ N ) ) ).
% num_double
thf(fact_626_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_le72135733267957522d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_627_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_628_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_629_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_630_of__nat__less__iff,axiom,
! [M: nat,N: nat] :
( ( ord_le7381754540660121996nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) )
= ( ord_less_nat @ M @ N ) ) ).
% of_nat_less_iff
thf(fact_631_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri4216267220026989637d_enat @ ( times_times_nat @ M @ N ) )
= ( times_7803423173614009249d_enat @ ( semiri4216267220026989637d_enat @ M ) @ ( semiri4216267220026989637d_enat @ N ) ) ) ).
% of_nat_mult
thf(fact_632_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1316708129612266289at_nat @ ( times_times_nat @ M @ N ) )
= ( times_times_nat @ ( semiri1316708129612266289at_nat @ M ) @ ( semiri1316708129612266289at_nat @ N ) ) ) ).
% of_nat_mult
thf(fact_633_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri8010041392384452111omplex @ ( times_times_nat @ M @ N ) )
= ( times_times_complex @ ( semiri8010041392384452111omplex @ M ) @ ( semiri8010041392384452111omplex @ N ) ) ) ).
% of_nat_mult
thf(fact_634_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ M @ N ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) ) ) ).
% of_nat_mult
thf(fact_635_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri5074537144036343181t_real @ ( times_times_nat @ M @ N ) )
= ( times_times_real @ ( semiri5074537144036343181t_real @ M ) @ ( semiri5074537144036343181t_real @ N ) ) ) ).
% of_nat_mult
thf(fact_636_of__nat__mult,axiom,
! [M: nat,N: nat] :
( ( semiri6283507881447550617nnreal @ ( times_times_nat @ M @ N ) )
= ( times_1893300245718287421nnreal @ ( semiri6283507881447550617nnreal @ M ) @ ( semiri6283507881447550617nnreal @ N ) ) ) ).
% of_nat_mult
thf(fact_637_power__mult__numeral,axiom,
! [A: extended_ereal,M: num,N: num] :
( ( power_1054015426188190660_ereal @ ( power_1054015426188190660_ereal @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_1054015426188190660_ereal @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_638_power__mult__numeral,axiom,
! [A: complex,M: num,N: num] :
( ( power_power_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_639_power__mult__numeral,axiom,
! [A: real,M: num,N: num] :
( ( power_power_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_640_power__mult__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( power_power_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_641_power__mult__numeral,axiom,
! [A: int,M: num,N: num] :
( ( power_power_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( numeral_numeral_nat @ N ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( times_times_num @ M @ N ) ) ) ) ).
% power_mult_numeral
thf(fact_642_add__gr__0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( plus_plus_nat @ M @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ M )
| ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% add_gr_0
thf(fact_643_less__one,axiom,
! [N: nat] :
( ( ord_less_nat @ N @ one_one_nat )
= ( N = zero_zero_nat ) ) ).
% less_one
thf(fact_644_negative__eq__positive,axiom,
! [N: nat,M: nat] :
( ( ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) )
= ( semiri1314217659103216013at_int @ M ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% negative_eq_positive
thf(fact_645_push__bit__eq__0__iff,axiom,
! [N: nat,A: int] :
( ( ( bit_se545348938243370406it_int @ N @ A )
= zero_zero_int )
= ( A = zero_zero_int ) ) ).
% push_bit_eq_0_iff
thf(fact_646_push__bit__eq__0__iff,axiom,
! [N: nat,A: nat] :
( ( ( bit_se547839408752420682it_nat @ N @ A )
= zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% push_bit_eq_0_iff
thf(fact_647_push__bit__of__0,axiom,
! [N: nat] :
( ( bit_se545348938243370406it_int @ N @ zero_zero_int )
= zero_zero_int ) ).
% push_bit_of_0
thf(fact_648_push__bit__of__0,axiom,
! [N: nat] :
( ( bit_se547839408752420682it_nat @ N @ zero_zero_nat )
= zero_zero_nat ) ).
% push_bit_of_0
thf(fact_649_nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ X @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% nat_zero_less_power_iff
thf(fact_650_zle__add1__eq__le,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ord_less_eq_int @ W @ Z ) ) ).
% zle_add1_eq_le
thf(fact_651_push__bit__push__bit,axiom,
! [M: nat,N: nat,A: int] :
( ( bit_se545348938243370406it_int @ M @ ( bit_se545348938243370406it_int @ N @ A ) )
= ( bit_se545348938243370406it_int @ ( plus_plus_nat @ M @ N ) @ A ) ) ).
% push_bit_push_bit
thf(fact_652_push__bit__push__bit,axiom,
! [M: nat,N: nat,A: nat] :
( ( bit_se547839408752420682it_nat @ M @ ( bit_se547839408752420682it_nat @ N @ A ) )
= ( bit_se547839408752420682it_nat @ ( plus_plus_nat @ M @ N ) @ A ) ) ).
% push_bit_push_bit
thf(fact_653_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_654_zero__le__double__add__iff__zero__le__single__add,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% zero_le_double_add_iff_zero_le_single_add
thf(fact_655_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_656_double__add__le__zero__iff__single__add__le__zero,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% double_add_le_zero_iff_single_add_le_zero
thf(fact_657_le__add__same__cancel2,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_complex @ A @ ( plus_plus_complex @ B @ A ) )
= ( ord_less_eq_complex @ zero_zero_complex @ B ) ) ).
% le_add_same_cancel2
thf(fact_658_le__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel2
thf(fact_659_le__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel2
thf(fact_660_le__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel2
thf(fact_661_le__add__same__cancel1,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_complex @ A @ ( plus_plus_complex @ A @ B ) )
= ( ord_less_eq_complex @ zero_zero_complex @ B ) ) ).
% le_add_same_cancel1
thf(fact_662_le__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_eq_real @ zero_zero_real @ B ) ) ).
% le_add_same_cancel1
thf(fact_663_le__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_eq_nat @ zero_zero_nat @ B ) ) ).
% le_add_same_cancel1
thf(fact_664_le__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_eq_int @ zero_zero_int @ B ) ) ).
% le_add_same_cancel1
thf(fact_665_add__le__same__cancel2,axiom,
! [A: complex,B: complex] :
( ( ord_less_eq_complex @ ( plus_plus_complex @ A @ B ) @ B )
= ( ord_less_eq_complex @ A @ zero_zero_complex ) ) ).
% add_le_same_cancel2
thf(fact_666_add__le__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel2
thf(fact_667_add__le__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel2
thf(fact_668_add__le__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel2
thf(fact_669_add__le__same__cancel1,axiom,
! [B: complex,A: complex] :
( ( ord_less_eq_complex @ ( plus_plus_complex @ B @ A ) @ B )
= ( ord_less_eq_complex @ A @ zero_zero_complex ) ) ).
% add_le_same_cancel1
thf(fact_670_add__le__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% add_le_same_cancel1
thf(fact_671_add__le__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_eq_nat @ A @ zero_zero_nat ) ) ).
% add_le_same_cancel1
thf(fact_672_add__le__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% add_le_same_cancel1
thf(fact_673_neg__less__eq__nonneg,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_674_neg__less__eq__nonneg,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_less_eq_nonneg
thf(fact_675_less__eq__neg__nonpos,axiom,
! [A: real] :
( ( ord_less_eq_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% less_eq_neg_nonpos
thf(fact_676_less__eq__neg__nonpos,axiom,
! [A: int] :
( ( ord_less_eq_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% less_eq_neg_nonpos
thf(fact_677_neg__le__0__iff__le,axiom,
! [A: complex] :
( ( ord_less_eq_complex @ ( uminus1482373934393186551omplex @ A ) @ zero_zero_complex )
= ( ord_less_eq_complex @ zero_zero_complex @ A ) ) ).
% neg_le_0_iff_le
thf(fact_678_neg__le__0__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_eq_real @ zero_zero_real @ A ) ) ).
% neg_le_0_iff_le
thf(fact_679_neg__le__0__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_eq_int @ zero_zero_int @ A ) ) ).
% neg_le_0_iff_le
thf(fact_680_neg__0__le__iff__le,axiom,
! [A: complex] :
( ( ord_less_eq_complex @ zero_zero_complex @ ( uminus1482373934393186551omplex @ A ) )
= ( ord_less_eq_complex @ A @ zero_zero_complex ) ) ).
% neg_0_le_iff_le
thf(fact_681_neg__0__le__iff__le,axiom,
! [A: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_eq_real @ A @ zero_zero_real ) ) ).
% neg_0_le_iff_le
thf(fact_682_neg__0__le__iff__le,axiom,
! [A: int] :
( ( ord_less_eq_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_eq_int @ A @ zero_zero_int ) ) ).
% neg_0_le_iff_le
thf(fact_683_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ A @ A ) )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_684_zero__less__double__add__iff__zero__less__single__add,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ A @ A ) )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% zero_less_double_add_iff_zero_less_single_add
thf(fact_685_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ A ) @ zero_zero_real )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_686_double__add__less__zero__iff__single__add__less__zero,axiom,
! [A: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ A ) @ zero_zero_int )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% double_add_less_zero_iff_single_add_less_zero
thf(fact_687_less__add__same__cancel2,axiom,
! [A: complex,B: complex] :
( ( ord_less_complex @ A @ ( plus_plus_complex @ B @ A ) )
= ( ord_less_complex @ zero_zero_complex @ B ) ) ).
% less_add_same_cancel2
thf(fact_688_less__add__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ B @ A ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel2
thf(fact_689_less__add__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ B @ A ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel2
thf(fact_690_less__add__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ B @ A ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel2
thf(fact_691_less__add__same__cancel1,axiom,
! [A: complex,B: complex] :
( ( ord_less_complex @ A @ ( plus_plus_complex @ A @ B ) )
= ( ord_less_complex @ zero_zero_complex @ B ) ) ).
% less_add_same_cancel1
thf(fact_692_less__add__same__cancel1,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ ( plus_plus_real @ A @ B ) )
= ( ord_less_real @ zero_zero_real @ B ) ) ).
% less_add_same_cancel1
thf(fact_693_less__add__same__cancel1,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ A @ ( plus_plus_nat @ A @ B ) )
= ( ord_less_nat @ zero_zero_nat @ B ) ) ).
% less_add_same_cancel1
thf(fact_694_less__add__same__cancel1,axiom,
! [A: int,B: int] :
( ( ord_less_int @ A @ ( plus_plus_int @ A @ B ) )
= ( ord_less_int @ zero_zero_int @ B ) ) ).
% less_add_same_cancel1
thf(fact_695_add__less__same__cancel2,axiom,
! [A: complex,B: complex] :
( ( ord_less_complex @ ( plus_plus_complex @ A @ B ) @ B )
= ( ord_less_complex @ A @ zero_zero_complex ) ) ).
% add_less_same_cancel2
thf(fact_696_add__less__same__cancel2,axiom,
! [A: real,B: real] :
( ( ord_less_real @ ( plus_plus_real @ A @ B ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel2
thf(fact_697_add__less__same__cancel2,axiom,
! [A: nat,B: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ A @ B ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel2
thf(fact_698_add__less__same__cancel2,axiom,
! [A: int,B: int] :
( ( ord_less_int @ ( plus_plus_int @ A @ B ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel2
thf(fact_699_add__less__same__cancel1,axiom,
! [B: complex,A: complex] :
( ( ord_less_complex @ ( plus_plus_complex @ B @ A ) @ B )
= ( ord_less_complex @ A @ zero_zero_complex ) ) ).
% add_less_same_cancel1
thf(fact_700_add__less__same__cancel1,axiom,
! [B: real,A: real] :
( ( ord_less_real @ ( plus_plus_real @ B @ A ) @ B )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% add_less_same_cancel1
thf(fact_701_add__less__same__cancel1,axiom,
! [B: nat,A: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ B @ A ) @ B )
= ( ord_less_nat @ A @ zero_zero_nat ) ) ).
% add_less_same_cancel1
thf(fact_702_add__less__same__cancel1,axiom,
! [B: int,A: int] :
( ( ord_less_int @ ( plus_plus_int @ B @ A ) @ B )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% add_less_same_cancel1
thf(fact_703_mult__cancel__right2,axiom,
! [A: complex,C: complex] :
( ( ( times_times_complex @ A @ C )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_right2
thf(fact_704_mult__cancel__right2,axiom,
! [A: real,C: real] :
( ( ( times_times_real @ A @ C )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_right2
thf(fact_705_mult__cancel__right2,axiom,
! [A: int,C: int] :
( ( ( times_times_int @ A @ C )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_right2
thf(fact_706_mult__cancel__right1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ B @ C ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_right1
thf(fact_707_mult__cancel__right1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ B @ C ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_right1
thf(fact_708_mult__cancel__right1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ B @ C ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_right1
thf(fact_709_mult__cancel__left2,axiom,
! [C: complex,A: complex] :
( ( ( times_times_complex @ C @ A )
= C )
= ( ( C = zero_zero_complex )
| ( A = one_one_complex ) ) ) ).
% mult_cancel_left2
thf(fact_710_mult__cancel__left2,axiom,
! [C: real,A: real] :
( ( ( times_times_real @ C @ A )
= C )
= ( ( C = zero_zero_real )
| ( A = one_one_real ) ) ) ).
% mult_cancel_left2
thf(fact_711_mult__cancel__left2,axiom,
! [C: int,A: int] :
( ( ( times_times_int @ C @ A )
= C )
= ( ( C = zero_zero_int )
| ( A = one_one_int ) ) ) ).
% mult_cancel_left2
thf(fact_712_mult__cancel__left1,axiom,
! [C: complex,B: complex] :
( ( C
= ( times_times_complex @ C @ B ) )
= ( ( C = zero_zero_complex )
| ( B = one_one_complex ) ) ) ).
% mult_cancel_left1
thf(fact_713_mult__cancel__left1,axiom,
! [C: real,B: real] :
( ( C
= ( times_times_real @ C @ B ) )
= ( ( C = zero_zero_real )
| ( B = one_one_real ) ) ) ).
% mult_cancel_left1
thf(fact_714_mult__cancel__left1,axiom,
! [C: int,B: int] :
( ( C
= ( times_times_int @ C @ B ) )
= ( ( C = zero_zero_int )
| ( B = one_one_int ) ) ) ).
% mult_cancel_left1
thf(fact_715_sum__squares__eq__zero__iff,axiom,
! [X: real,Y: real] :
( ( ( plus_plus_real @ ( times_times_real @ X @ X ) @ ( times_times_real @ Y @ Y ) )
= zero_zero_real )
= ( ( X = zero_zero_real )
& ( Y = zero_zero_real ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_716_sum__squares__eq__zero__iff,axiom,
! [X: int,Y: int] :
( ( ( plus_plus_int @ ( times_times_int @ X @ X ) @ ( times_times_int @ Y @ Y ) )
= zero_zero_int )
= ( ( X = zero_zero_int )
& ( Y = zero_zero_int ) ) ) ).
% sum_squares_eq_zero_iff
thf(fact_717_neg__less__0__iff__less,axiom,
! [A: complex] :
( ( ord_less_complex @ ( uminus1482373934393186551omplex @ A ) @ zero_zero_complex )
= ( ord_less_complex @ zero_zero_complex @ A ) ) ).
% neg_less_0_iff_less
thf(fact_718_neg__less__0__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ zero_zero_int )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_0_iff_less
thf(fact_719_neg__less__0__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ zero_zero_real )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_0_iff_less
thf(fact_720_neg__0__less__iff__less,axiom,
! [A: complex] :
( ( ord_less_complex @ zero_zero_complex @ ( uminus1482373934393186551omplex @ A ) )
= ( ord_less_complex @ A @ zero_zero_complex ) ) ).
% neg_0_less_iff_less
thf(fact_721_neg__0__less__iff__less,axiom,
! [A: int] :
( ( ord_less_int @ zero_zero_int @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% neg_0_less_iff_less
thf(fact_722_neg__0__less__iff__less,axiom,
! [A: real] :
( ( ord_less_real @ zero_zero_real @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% neg_0_less_iff_less
thf(fact_723_neg__less__pos,axiom,
! [A: int] :
( ( ord_less_int @ ( uminus_uminus_int @ A ) @ A )
= ( ord_less_int @ zero_zero_int @ A ) ) ).
% neg_less_pos
thf(fact_724_neg__less__pos,axiom,
! [A: real] :
( ( ord_less_real @ ( uminus_uminus_real @ A ) @ A )
= ( ord_less_real @ zero_zero_real @ A ) ) ).
% neg_less_pos
thf(fact_725_less__neg__neg,axiom,
! [A: int] :
( ( ord_less_int @ A @ ( uminus_uminus_int @ A ) )
= ( ord_less_int @ A @ zero_zero_int ) ) ).
% less_neg_neg
thf(fact_726_less__neg__neg,axiom,
! [A: real] :
( ( ord_less_real @ A @ ( uminus_uminus_real @ A ) )
= ( ord_less_real @ A @ zero_zero_real ) ) ).
% less_neg_neg
thf(fact_727_ab__left__minus,axiom,
! [A: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ A ) @ A )
= zero_zero_complex ) ).
% ab_left_minus
thf(fact_728_ab__left__minus,axiom,
! [A: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ A ) @ A )
= zero_zero_int ) ).
% ab_left_minus
thf(fact_729_ab__left__minus,axiom,
! [A: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ A ) @ A )
= zero_zero_real ) ).
% ab_left_minus
thf(fact_730_add_Oright__inverse,axiom,
! [A: complex] :
( ( plus_plus_complex @ A @ ( uminus1482373934393186551omplex @ A ) )
= zero_zero_complex ) ).
% add.right_inverse
thf(fact_731_add_Oright__inverse,axiom,
! [A: int] :
( ( plus_plus_int @ A @ ( uminus_uminus_int @ A ) )
= zero_zero_int ) ).
% add.right_inverse
thf(fact_732_add_Oright__inverse,axiom,
! [A: real] :
( ( plus_plus_real @ A @ ( uminus_uminus_real @ A ) )
= zero_zero_real ) ).
% add.right_inverse
thf(fact_733_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_734_neg__numeral__le__iff,axiom,
! [M: num,N: num] :
( ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_eq_num @ N @ M ) ) ).
% neg_numeral_le_iff
thf(fact_735_distrib__right__numeral,axiom,
! [A: extended_enat,B: extended_enat,V: num] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ ( numera1916890842035813515d_enat @ V ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ ( numera1916890842035813515d_enat @ V ) ) @ ( times_7803423173614009249d_enat @ B @ ( numera1916890842035813515d_enat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_736_distrib__right__numeral,axiom,
! [A: complex,B: complex,V: num] :
( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ ( numera6690914467698888265omplex @ V ) )
= ( plus_plus_complex @ ( times_times_complex @ A @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ B @ ( numera6690914467698888265omplex @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_737_distrib__right__numeral,axiom,
! [A: real,B: real,V: num] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ ( numeral_numeral_real @ V ) )
= ( plus_plus_real @ ( times_times_real @ A @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ B @ ( numeral_numeral_real @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_738_distrib__right__numeral,axiom,
! [A: nat,B: nat,V: num] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ ( numeral_numeral_nat @ V ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ ( numeral_numeral_nat @ V ) ) @ ( times_times_nat @ B @ ( numeral_numeral_nat @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_739_distrib__right__numeral,axiom,
! [A: int,B: int,V: num] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ ( numeral_numeral_int @ V ) )
= ( plus_plus_int @ ( times_times_int @ A @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ B @ ( numeral_numeral_int @ V ) ) ) ) ).
% distrib_right_numeral
thf(fact_740_distrib__left__numeral,axiom,
! [V: num,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ ( plus_p3455044024723400733d_enat @ B @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ B ) @ ( times_7803423173614009249d_enat @ ( numera1916890842035813515d_enat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_741_distrib__left__numeral,axiom,
! [V: num,B: complex,C: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( plus_plus_complex @ B @ C ) )
= ( plus_plus_complex @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ B ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_742_distrib__left__numeral,axiom,
! [V: num,B: real,C: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( numeral_numeral_real @ V ) @ B ) @ ( times_times_real @ ( numeral_numeral_real @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_743_distrib__left__numeral,axiom,
! [V: num,B: nat,C: nat] :
( ( times_times_nat @ ( numeral_numeral_nat @ V ) @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ B ) @ ( times_times_nat @ ( numeral_numeral_nat @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_744_distrib__left__numeral,axiom,
! [V: num,B: int,C: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( numeral_numeral_int @ V ) @ B ) @ ( times_times_int @ ( numeral_numeral_int @ V ) @ C ) ) ) ).
% distrib_left_numeral
thf(fact_745_mult__minus1,axiom,
! [Z: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ Z )
= ( uminus7224005126491068675l_num1 @ Z ) ) ).
% mult_minus1
thf(fact_746_mult__minus1,axiom,
! [Z: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ Z )
= ( uminus1482373934393186551omplex @ Z ) ) ).
% mult_minus1
thf(fact_747_mult__minus1,axiom,
! [Z: int] :
( ( times_times_int @ ( uminus_uminus_int @ one_one_int ) @ Z )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1
thf(fact_748_mult__minus1,axiom,
! [Z: real] :
( ( times_times_real @ ( uminus_uminus_real @ one_one_real ) @ Z )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1
thf(fact_749_mult__minus1__right,axiom,
! [Z: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ Z @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= ( uminus7224005126491068675l_num1 @ Z ) ) ).
% mult_minus1_right
thf(fact_750_mult__minus1__right,axiom,
! [Z: complex] :
( ( times_times_complex @ Z @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ Z ) ) ).
% mult_minus1_right
thf(fact_751_mult__minus1__right,axiom,
! [Z: int] :
( ( times_times_int @ Z @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ Z ) ) ).
% mult_minus1_right
thf(fact_752_mult__minus1__right,axiom,
! [Z: real] :
( ( times_times_real @ Z @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ Z ) ) ).
% mult_minus1_right
thf(fact_753_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_754_neg__numeral__less__iff,axiom,
! [M: num,N: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( ord_less_num @ N @ M ) ) ).
% neg_numeral_less_iff
thf(fact_755_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_756_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_757_mult__neg__numeral__simps_I1_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ).
% mult_neg_numeral_simps(1)
thf(fact_758_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_759_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_760_mult__neg__numeral__simps_I2_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(2)
thf(fact_761_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ M ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_762_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_763_mult__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( times_times_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ M @ N ) ) ) ) ).
% mult_neg_numeral_simps(3)
thf(fact_764_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ Y ) )
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(169)
thf(fact_765_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( numeral_numeral_int @ W ) @ Y ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(169)
thf(fact_766_semiring__norm_I169_J,axiom,
! [V: num,W: num,Y: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( numeral_numeral_real @ W ) @ Y ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(169)
thf(fact_767_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ V ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
= ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(170)
thf(fact_768_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y: int] :
( ( times_times_int @ ( numeral_numeral_int @ V ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
= ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(170)
thf(fact_769_semiring__norm_I170_J,axiom,
! [V: num,W: num,Y: real] :
( ( times_times_real @ ( numeral_numeral_real @ V ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
= ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(170)
thf(fact_770_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y: complex] :
( ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( times_times_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
= ( times_times_complex @ ( numera6690914467698888265omplex @ ( times_times_num @ V @ W ) ) @ Y ) ) ).
% semiring_norm(171)
thf(fact_771_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y: int] :
( ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( times_times_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
= ( times_times_int @ ( numeral_numeral_int @ ( times_times_num @ V @ W ) ) @ Y ) ) ).
% semiring_norm(171)
thf(fact_772_semiring__norm_I171_J,axiom,
! [V: num,W: num,Y: real] :
( ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( times_times_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
= ( times_times_real @ ( numeral_numeral_real @ ( times_times_num @ V @ W ) ) @ Y ) ) ).
% semiring_norm(171)
thf(fact_773_power__strict__increasing__iff,axiom,
! [B: real,X: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_774_power__strict__increasing__iff,axiom,
! [B: nat,X: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_775_power__strict__increasing__iff,axiom,
! [B: int,X: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_nat @ X @ Y ) ) ) ).
% power_strict_increasing_iff
thf(fact_776_power__inject__exp,axiom,
! [A: real,M: nat,N: nat] :
( ( ord_less_real @ one_one_real @ A )
=> ( ( ( power_power_real @ A @ M )
= ( power_power_real @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_777_power__inject__exp,axiom,
! [A: nat,M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ A )
=> ( ( ( power_power_nat @ A @ M )
= ( power_power_nat @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_778_power__inject__exp,axiom,
! [A: int,M: nat,N: nat] :
( ( ord_less_int @ one_one_int @ A )
=> ( ( ( power_power_int @ A @ M )
= ( power_power_int @ A @ N ) )
= ( M = N ) ) ) ).
% power_inject_exp
thf(fact_779_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ M ) ) @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( uminus1482373934393186551omplex @ ( plus_plus_complex @ ( numera6690914467698888265omplex @ M ) @ ( numera6690914467698888265omplex @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_780_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( uminus_uminus_int @ ( plus_plus_int @ ( numeral_numeral_int @ M ) @ ( numeral_numeral_int @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_781_add__neg__numeral__simps_I3_J,axiom,
! [M: num,N: num] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( uminus_uminus_real @ ( plus_plus_real @ ( numeral_numeral_real @ M ) @ ( numeral_numeral_real @ N ) ) ) ) ).
% add_neg_numeral_simps(3)
thf(fact_782_power__eq__0__iff,axiom,
! [A: complex,N: nat] :
( ( ( power_power_complex @ A @ N )
= zero_zero_complex )
= ( ( A = zero_zero_complex )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_783_power__eq__0__iff,axiom,
! [A: real,N: nat] :
( ( ( power_power_real @ A @ N )
= zero_zero_real )
= ( ( A = zero_zero_real )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_784_power__eq__0__iff,axiom,
! [A: nat,N: nat] :
( ( ( power_power_nat @ A @ N )
= zero_zero_nat )
= ( ( A = zero_zero_nat )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_785_power__eq__0__iff,axiom,
! [A: int,N: nat] :
( ( ( power_power_int @ A @ N )
= zero_zero_int )
= ( ( A = zero_zero_int )
& ( ord_less_nat @ zero_zero_nat @ N ) ) ) ).
% power_eq_0_iff
thf(fact_786_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_nu7009210354673126013omplex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ K ) ) )
= ( uminus1482373934393186551omplex @ ( neg_nu7009210354673126013omplex @ ( numera6690914467698888265omplex @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_787_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ K ) ) )
= ( uminus_uminus_int @ ( neg_numeral_dbl_int @ ( numeral_numeral_int @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_788_dbl__simps_I1_J,axiom,
! [K: num] :
( ( neg_numeral_dbl_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ K ) ) )
= ( uminus_uminus_real @ ( neg_numeral_dbl_real @ ( numeral_numeral_real @ K ) ) ) ) ).
% dbl_simps(1)
thf(fact_789_add__neg__numeral__special_I7_J,axiom,
( ( plus_p2313304076027620419l_num1 @ one_on3868389512446148991l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= zero_z5982384998485459395l_num1 ) ).
% add_neg_numeral_special(7)
thf(fact_790_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_complex @ one_one_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= zero_zero_complex ) ).
% add_neg_numeral_special(7)
thf(fact_791_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) )
= zero_zero_int ) ).
% add_neg_numeral_special(7)
thf(fact_792_add__neg__numeral__special_I7_J,axiom,
( ( plus_plus_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) )
= zero_zero_real ) ).
% add_neg_numeral_special(7)
thf(fact_793_add__neg__numeral__special_I8_J,axiom,
( ( plus_p2313304076027620419l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ one_on3868389512446148991l_num1 )
= zero_z5982384998485459395l_num1 ) ).
% add_neg_numeral_special(8)
thf(fact_794_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ one_one_complex )
= zero_zero_complex ) ).
% add_neg_numeral_special(8)
thf(fact_795_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int )
= zero_zero_int ) ).
% add_neg_numeral_special(8)
thf(fact_796_add__neg__numeral__special_I8_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real )
= zero_zero_real ) ).
% add_neg_numeral_special(8)
thf(fact_797_power__increasing__iff,axiom,
! [B: real,X: nat,Y: nat] :
( ( ord_less_real @ one_one_real @ B )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ X ) @ ( power_power_real @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_798_power__increasing__iff,axiom,
! [B: nat,X: nat,Y: nat] :
( ( ord_less_nat @ one_one_nat @ B )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ X ) @ ( power_power_nat @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_799_power__increasing__iff,axiom,
! [B: int,X: nat,Y: nat] :
( ( ord_less_int @ one_one_int @ B )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ X ) @ ( power_power_int @ B @ Y ) )
= ( ord_less_eq_nat @ X @ Y ) ) ) ).
% power_increasing_iff
thf(fact_800_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ N ) @ one_on7984719198319812577d_enat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_801_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ one_one_real )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_802_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ one_one_nat )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_803_numeral__le__one__iff,axiom,
! [N: num] :
( ( ord_less_eq_int @ ( numeral_numeral_int @ N ) @ one_one_int )
= ( ord_less_eq_num @ N @ one ) ) ).
% numeral_le_one_iff
thf(fact_804_power__strict__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_805_power__strict__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_806_power__strict__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_nat @ N @ M ) ) ) ) ).
% power_strict_decreasing_iff
thf(fact_807_power__mono__iff,axiom,
! [A: real,B: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_real @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_808_power__mono__iff,axiom,
! [A: nat,B: nat,N: nat] :
( ( ord_less_eq_nat @ zero_zero_nat @ A )
=> ( ( ord_less_eq_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ A @ N ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_809_power__mono__iff,axiom,
! [A: int,B: int,N: nat] :
( ( ord_less_eq_int @ zero_zero_int @ A )
=> ( ( ord_less_eq_int @ zero_zero_int @ B )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_eq_int @ ( power_power_int @ A @ N ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_int @ A @ B ) ) ) ) ) ).
% power_mono_iff
thf(fact_810_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_le72135733267957522d_enat @ one_on7984719198319812577d_enat @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_811_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_real @ one_one_real @ ( numeral_numeral_real @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_812_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_nat @ one_one_nat @ ( numeral_numeral_nat @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_813_one__less__numeral__iff,axiom,
! [N: num] :
( ( ord_less_int @ one_one_int @ ( numeral_numeral_int @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral_iff
thf(fact_814_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_le3935885782089961368nnreal @ ( semiri6283507881447550617nnreal @ M ) @ zero_z7100319975126383169nnreal )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_815_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_le2932123472753598470d_enat @ ( semiri4216267220026989637d_enat @ M ) @ zero_z5237406670263579293d_enat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_816_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ M ) @ zero_zero_real )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_817_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ M ) @ zero_zero_nat )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_818_of__nat__le__0__iff,axiom,
! [M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ zero_zero_int )
= ( M = zero_zero_nat ) ) ).
% of_nat_le_0_iff
thf(fact_819_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) )
= ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_820_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ ( numeral_numeral_int @ N ) )
= ( uminus_uminus_int @ one_one_int ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_821_numeral__eq__neg__one__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ ( numeral_numeral_real @ N ) )
= ( uminus_uminus_real @ one_one_real ) )
= ( N = one ) ) ).
% numeral_eq_neg_one_iff
thf(fact_822_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus1482373934393186551omplex @ one_one_complex )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_823_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_int @ one_one_int )
= ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_824_neg__one__eq__numeral__iff,axiom,
! [N: num] :
( ( ( uminus_uminus_real @ one_one_real )
= ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) )
= ( N = one ) ) ).
% neg_one_eq_numeral_iff
thf(fact_825_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_8498157372700349887l_num1 @ ( power_7402600760894073284l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ N ) @ ( power_7402600760894073284l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ N ) )
= one_on3868389512446148991l_num1 ) ).
% minus_one_mult_self
thf(fact_826_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) )
= one_one_complex ) ).
% minus_one_mult_self
thf(fact_827_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) )
= one_one_int ) ).
% minus_one_mult_self
thf(fact_828_minus__one__mult__self,axiom,
! [N: nat] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) )
= one_one_real ) ).
% minus_one_mult_self
thf(fact_829_left__minus__one__mult__self,axiom,
! [N: nat,A: numera2417102609627094330l_num1] :
( ( times_8498157372700349887l_num1 @ ( power_7402600760894073284l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ N ) @ ( times_8498157372700349887l_num1 @ ( power_7402600760894073284l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_830_left__minus__one__mult__self,axiom,
! [N: nat,A: complex] :
( ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ ( times_times_complex @ ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_831_left__minus__one__mult__self,axiom,
! [N: nat,A: int] :
( ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ ( times_times_int @ ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_832_left__minus__one__mult__self,axiom,
! [N: nat,A: real] :
( ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ ( times_times_real @ ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ N ) @ A ) )
= A ) ).
% left_minus_one_mult_self
thf(fact_833_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( semiri4216267220026989637d_enat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_834_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( semiri1316708129612266289at_nat @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_835_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_int @ zero_zero_int @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_836_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_less_real @ zero_zero_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_837_of__nat__0__less__iff,axiom,
! [N: nat] :
( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( semiri6283507881447550617nnreal @ N ) )
= ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% of_nat_0_less_iff
thf(fact_838_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_839_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_840_of__nat__power__le__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_le_of_nat_cancel_iff
thf(fact_841_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_842_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_843_of__nat__le__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_le_of_nat_power_cancel_iff
thf(fact_844_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_845_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_846_of__nat__power__less__of__nat__cancel__iff,axiom,
! [X: nat,B: nat,W: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) )
= ( ord_less_nat @ X @ ( power_power_nat @ B @ W ) ) ) ).
% of_nat_power_less_of_nat_cancel_iff
thf(fact_847_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ B ) @ W ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_848_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ B ) @ W ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_849_of__nat__less__of__nat__power__cancel__iff,axiom,
! [B: nat,W: nat,X: nat] :
( ( ord_less_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ B ) @ W ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_nat @ ( power_power_nat @ B @ W ) @ X ) ) ).
% of_nat_less_of_nat_power_cancel_iff
thf(fact_850_semiring__norm_I167_J,axiom,
! [V: num,W: num,Y: complex] :
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ V ) ) @ ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) @ Y ) )
= ( plus_plus_complex @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(167)
thf(fact_851_semiring__norm_I167_J,axiom,
! [V: num,W: num,Y: int] :
( ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ V ) ) @ ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) @ Y ) )
= ( plus_plus_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(167)
thf(fact_852_semiring__norm_I167_J,axiom,
! [V: num,W: num,Y: real] :
( ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ V ) ) @ ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) @ Y ) )
= ( plus_plus_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ ( plus_plus_num @ V @ W ) ) ) @ Y ) ) ).
% semiring_norm(167)
thf(fact_853_power__add__numeral,axiom,
! [A: extended_ereal,M: num,N: num] :
( ( times_7703590493115627913_ereal @ ( power_1054015426188190660_ereal @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_1054015426188190660_ereal @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_1054015426188190660_ereal @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_854_power__add__numeral,axiom,
! [A: complex,M: num,N: num] :
( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_855_power__add__numeral,axiom,
! [A: extended_enat,M: num,N: num] :
( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_856_power__add__numeral,axiom,
! [A: real,M: num,N: num] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_857_power__add__numeral,axiom,
! [A: nat,M: num,N: num] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_858_power__add__numeral,axiom,
! [A: int,M: num,N: num] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) ) ).
% power_add_numeral
thf(fact_859_power__add__numeral2,axiom,
! [A: extended_ereal,M: num,N: num,B: extended_ereal] :
( ( times_7703590493115627913_ereal @ ( power_1054015426188190660_ereal @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_7703590493115627913_ereal @ ( power_1054015426188190660_ereal @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_7703590493115627913_ereal @ ( power_1054015426188190660_ereal @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_860_power__add__numeral2,axiom,
! [A: complex,M: num,N: num,B: complex] :
( ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_complex @ ( power_power_complex @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_861_power__add__numeral2,axiom,
! [A: extended_enat,M: num,N: num,B: extended_enat] :
( ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_7803423173614009249d_enat @ ( power_8040749407984259932d_enat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_862_power__add__numeral2,axiom,
! [A: real,M: num,N: num,B: real] :
( ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_863_power__add__numeral2,axiom,
! [A: nat,M: num,N: num,B: nat] :
( ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_nat @ ( power_power_nat @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_864_power__add__numeral2,axiom,
! [A: int,M: num,N: num,B: int] :
( ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ M ) ) @ ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ N ) ) @ B ) )
= ( times_times_int @ ( power_power_int @ A @ ( numeral_numeral_nat @ ( plus_plus_num @ M @ N ) ) ) @ B ) ) ).
% power_add_numeral2
thf(fact_865_power__decreasing__iff,axiom,
! [B: real,M: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ B )
=> ( ( ord_less_real @ B @ one_one_real )
=> ( ( ord_less_eq_real @ ( power_power_real @ B @ M ) @ ( power_power_real @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_866_power__decreasing__iff,axiom,
! [B: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ B )
=> ( ( ord_less_nat @ B @ one_one_nat )
=> ( ( ord_less_eq_nat @ ( power_power_nat @ B @ M ) @ ( power_power_nat @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_867_power__decreasing__iff,axiom,
! [B: int,M: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ B )
=> ( ( ord_less_int @ B @ one_one_int )
=> ( ( ord_less_eq_int @ ( power_power_int @ B @ M ) @ ( power_power_int @ B @ N ) )
= ( ord_less_eq_nat @ N @ M ) ) ) ) ).
% power_decreasing_iff
thf(fact_868_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_869_not__neg__one__le__neg__numeral__iff,axiom,
! [M: num] :
( ( ~ ( ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) ) )
= ( M != one ) ) ).
% not_neg_one_le_neg_numeral_iff
thf(fact_870_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( uminus_uminus_int @ one_one_int ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_871_neg__numeral__less__neg__one__iff,axiom,
! [M: num] :
( ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( uminus_uminus_real @ one_one_real ) )
= ( M != one ) ) ).
% neg_numeral_less_neg_one_iff
thf(fact_872_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ ( power_power_nat @ ( semiri1316708129612266289at_nat @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_873_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_int @ zero_zero_int @ ( power_power_int @ ( semiri1314217659103216013at_int @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_874_of__nat__zero__less__power__iff,axiom,
! [X: nat,N: nat] :
( ( ord_less_real @ zero_zero_real @ ( power_power_real @ ( semiri5074537144036343181t_real @ X ) @ N ) )
= ( ( ord_less_nat @ zero_zero_nat @ X )
| ( N = zero_zero_nat ) ) ) ).
% of_nat_zero_less_power_iff
thf(fact_875_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: complex,N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_complex @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_876_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: int,N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_int @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_877_Power_Oring__1__class_Opower__minus__even,axiom,
! [A: real,N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= ( power_power_real @ A @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ) ).
% Power.ring_1_class.power_minus_even
thf(fact_878_power2__minus,axiom,
! [A: complex] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_complex @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_879_power2__minus,axiom,
! [A: int] :
( ( power_power_int @ ( uminus_uminus_int @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_int @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_880_power2__minus,axiom,
! [A: real] :
( ( power_power_real @ ( uminus_uminus_real @ A ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) )
= ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% power2_minus
thf(fact_881_add__neg__numeral__special_I9_J,axiom,
( ( plus_p2313304076027620419l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) )
= ( uminus7224005126491068675l_num1 @ ( numera2161328050825114965l_num1 @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_882_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( uminus1482373934393186551omplex @ one_one_complex ) )
= ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_883_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_int @ ( uminus_uminus_int @ one_one_int ) @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_884_add__neg__numeral__special_I9_J,axiom,
( ( plus_plus_real @ ( uminus_uminus_real @ one_one_real ) @ ( uminus_uminus_real @ one_one_real ) )
= ( uminus_uminus_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) ) ) ).
% add_neg_numeral_special(9)
thf(fact_885_power__minus1__even,axiom,
! [N: nat] :
( ( power_7402600760894073284l_num1 @ ( uminus7224005126491068675l_num1 @ one_on3868389512446148991l_num1 ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_on3868389512446148991l_num1 ) ).
% power_minus1_even
thf(fact_886_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_complex @ ( uminus1482373934393186551omplex @ one_one_complex ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_complex ) ).
% power_minus1_even
thf(fact_887_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_int @ ( uminus_uminus_int @ one_one_int ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_int ) ).
% power_minus1_even
thf(fact_888_power__minus1__even,axiom,
! [N: nat] :
( ( power_power_real @ ( uminus_uminus_real @ one_one_real ) @ ( times_times_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) )
= one_one_real ) ).
% power_minus1_even
thf(fact_889_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_eq_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_890_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_891_numeral__power__le__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_eq_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_le_of_nat_cancel_iff
thf(fact_892_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_eq_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_893_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_eq_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_894_of__nat__le__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
= ( ord_less_eq_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_le_numeral_power_cancel_iff
thf(fact_895_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ ( semiri1316708129612266289at_nat @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_896_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_int @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) @ ( semiri1314217659103216013at_int @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_897_numeral__power__less__of__nat__cancel__iff,axiom,
! [I: num,N: nat,X: nat] :
( ( ord_less_real @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) @ ( semiri5074537144036343181t_real @ X ) )
= ( ord_less_nat @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) @ X ) ) ).
% numeral_power_less_of_nat_cancel_iff
thf(fact_898_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_nat @ ( semiri1316708129612266289at_nat @ X ) @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_899_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_int @ ( semiri1314217659103216013at_int @ X ) @ ( power_power_int @ ( numeral_numeral_int @ I ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_900_of__nat__less__numeral__power__cancel__iff,axiom,
! [X: nat,I: num,N: nat] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ X ) @ ( power_power_real @ ( numeral_numeral_real @ I ) @ N ) )
= ( ord_less_nat @ X @ ( power_power_nat @ ( numeral_numeral_nat @ I ) @ N ) ) ) ).
% of_nat_less_numeral_power_cancel_iff
thf(fact_901_push__bit__numeral__minus__1,axiom,
! [N: num] :
( ( bit_se545348938243370406it_int @ ( numeral_numeral_nat @ N ) @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ ( numeral_numeral_nat @ N ) ) ) ) ).
% push_bit_numeral_minus_1
thf(fact_902_mult__le__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_903_mult__le__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_left1
thf(fact_904_mult__le__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_905_mult__le__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_eq_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_left2
thf(fact_906_mult__le__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_eq_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ one_one_real @ B ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ B @ one_one_real ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_907_mult__le__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_eq_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ one_one_int @ B ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ B @ one_one_int ) ) ) ) ).
% mult_le_cancel_right1
thf(fact_908_mult__le__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ A @ one_one_real ) )
& ( ( ord_less_real @ C @ zero_zero_real )
=> ( ord_less_eq_real @ one_one_real @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_909_mult__le__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_eq_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_int @ zero_zero_int @ C )
=> ( ord_less_eq_int @ A @ one_one_int ) )
& ( ( ord_less_int @ C @ zero_zero_int )
=> ( ord_less_eq_int @ one_one_int @ A ) ) ) ) ).
% mult_le_cancel_right2
thf(fact_910_mult__less__cancel__left1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ C @ B ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_911_mult__less__cancel__left1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ C @ B ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_left1
thf(fact_912_mult__less__cancel__left2,axiom,
! [C: real,A: real] :
( ( ord_less_real @ ( times_times_real @ C @ A ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_913_mult__less__cancel__left2,axiom,
! [C: int,A: int] :
( ( ord_less_int @ ( times_times_int @ C @ A ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_left2
thf(fact_914_mult__less__cancel__right1,axiom,
! [C: real,B: real] :
( ( ord_less_real @ C @ ( times_times_real @ B @ C ) )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ one_one_real @ B ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ B @ one_one_real ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_915_mult__less__cancel__right1,axiom,
! [C: int,B: int] :
( ( ord_less_int @ C @ ( times_times_int @ B @ C ) )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ one_one_int @ B ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ B @ one_one_int ) ) ) ) ).
% mult_less_cancel_right1
thf(fact_916_mult__less__cancel__right2,axiom,
! [A: real,C: real] :
( ( ord_less_real @ ( times_times_real @ A @ C ) @ C )
= ( ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_real @ A @ one_one_real ) )
& ( ( ord_less_eq_real @ C @ zero_zero_real )
=> ( ord_less_real @ one_one_real @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_917_mult__less__cancel__right2,axiom,
! [A: int,C: int] :
( ( ord_less_int @ ( times_times_int @ A @ C ) @ C )
= ( ( ( ord_less_eq_int @ zero_zero_int @ C )
=> ( ord_less_int @ A @ one_one_int ) )
& ( ( ord_less_eq_int @ C @ zero_zero_int )
=> ( ord_less_int @ one_one_int @ A ) ) ) ) ).
% mult_less_cancel_right2
thf(fact_918_pos__zmult__eq__1__iff__lemma,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
=> ( ( M = one_one_int )
| ( M
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff_lemma
thf(fact_919_zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( ( M = one_one_int )
& ( N = one_one_int ) )
| ( ( M
= ( uminus_uminus_int @ one_one_int ) )
& ( N
= ( uminus_uminus_int @ one_one_int ) ) ) ) ) ).
% zmult_eq_1_iff
thf(fact_920_square__eq__1__iff,axiom,
! [X: complex] :
( ( ( times_times_complex @ X @ X )
= one_one_complex )
= ( ( X = one_one_complex )
| ( X
= ( uminus1482373934393186551omplex @ one_one_complex ) ) ) ) ).
% square_eq_1_iff
thf(fact_921_square__eq__1__iff,axiom,
! [X: int] :
( ( ( times_times_int @ X @ X )
= one_one_int )
= ( ( X = one_one_int )
| ( X
= ( uminus_uminus_int @ one_one_int ) ) ) ) ).
% square_eq_1_iff
thf(fact_922_square__eq__1__iff,axiom,
! [X: real] :
( ( ( times_times_real @ X @ X )
= one_one_real )
= ( ( X = one_one_real )
| ( X
= ( uminus_uminus_real @ one_one_real ) ) ) ) ).
% square_eq_1_iff
thf(fact_923_less__1__mult,axiom,
! [M: real,N: real] :
( ( ord_less_real @ one_one_real @ M )
=> ( ( ord_less_real @ one_one_real @ N )
=> ( ord_less_real @ one_one_real @ ( times_times_real @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_924_less__1__mult,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ one_one_nat @ M )
=> ( ( ord_less_nat @ one_one_nat @ N )
=> ( ord_less_nat @ one_one_nat @ ( times_times_nat @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_925_less__1__mult,axiom,
! [M: int,N: int] :
( ( ord_less_int @ one_one_int @ M )
=> ( ( ord_less_int @ one_one_int @ N )
=> ( ord_less_int @ one_one_int @ ( times_times_int @ M @ N ) ) ) ) ).
% less_1_mult
thf(fact_926_less__minus__one__simps_I2_J,axiom,
ord_less_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% less_minus_one_simps(2)
thf(fact_927_less__minus__one__simps_I2_J,axiom,
ord_less_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% less_minus_one_simps(2)
thf(fact_928_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% less_minus_one_simps(4)
thf(fact_929_less__minus__one__simps_I4_J,axiom,
~ ( ord_less_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% less_minus_one_simps(4)
thf(fact_930_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_931_neg__numeral__less__numeral,axiom,
! [M: num,N: num] : ( ord_less_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).
% neg_numeral_less_numeral
thf(fact_932_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_933_not__numeral__less__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_numeral_less_neg_numeral
thf(fact_934_le__minus__one__simps_I2_J,axiom,
ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ one_one_real ).
% le_minus_one_simps(2)
thf(fact_935_le__minus__one__simps_I2_J,axiom,
ord_less_eq_int @ ( uminus_uminus_int @ one_one_int ) @ one_one_int ).
% le_minus_one_simps(2)
thf(fact_936_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_real @ one_one_real @ ( uminus_uminus_real @ one_one_real ) ) ).
% le_minus_one_simps(4)
thf(fact_937_le__minus__one__simps_I4_J,axiom,
~ ( ord_less_eq_int @ one_one_int @ ( uminus_uminus_int @ one_one_int ) ) ).
% le_minus_one_simps(4)
thf(fact_938_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( numeral_numeral_real @ M ) ) @ ( numeral_numeral_real @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_939_neg__numeral__le__numeral,axiom,
! [M: num,N: num] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( numeral_numeral_int @ M ) ) @ ( numeral_numeral_int @ N ) ) ).
% neg_numeral_le_numeral
thf(fact_940_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_real @ ( numeral_numeral_real @ M ) @ ( uminus_uminus_real @ ( numeral_numeral_real @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_941_not__numeral__le__neg__numeral,axiom,
! [M: num,N: num] :
~ ( ord_less_eq_int @ ( numeral_numeral_int @ M ) @ ( uminus_uminus_int @ ( numeral_numeral_int @ N ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_942_numeral__times__minus__swap,axiom,
! [W: num,X: complex] :
( ( times_times_complex @ ( numera6690914467698888265omplex @ W ) @ ( uminus1482373934393186551omplex @ X ) )
= ( times_times_complex @ X @ ( uminus1482373934393186551omplex @ ( numera6690914467698888265omplex @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_943_numeral__times__minus__swap,axiom,
! [W: num,X: int] :
( ( times_times_int @ ( numeral_numeral_int @ W ) @ ( uminus_uminus_int @ X ) )
= ( times_times_int @ X @ ( uminus_uminus_int @ ( numeral_numeral_int @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_944_numeral__times__minus__swap,axiom,
! [W: num,X: real] :
( ( times_times_real @ ( numeral_numeral_real @ W ) @ ( uminus_uminus_real @ X ) )
= ( times_times_real @ X @ ( uminus_uminus_real @ ( numeral_numeral_real @ W ) ) ) ) ).
% numeral_times_minus_swap
thf(fact_945_vector__space__over__itself_Oscale__left__commute,axiom,
! [A: real,B: real,X: real] :
( ( times_times_real @ A @ ( times_times_real @ B @ X ) )
= ( times_times_real @ B @ ( times_times_real @ A @ X ) ) ) ).
% vector_space_over_itself.scale_left_commute
thf(fact_946_vector__space__over__itself_Oscale__scale,axiom,
! [A: real,B: real,X: real] :
( ( times_times_real @ A @ ( times_times_real @ B @ X ) )
= ( times_times_real @ ( times_times_real @ A @ B ) @ X ) ) ).
% vector_space_over_itself.scale_scale
thf(fact_947_mult__not__zero,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
!= zero_zero_complex )
=> ( ( A != zero_zero_complex )
& ( B != zero_zero_complex ) ) ) ).
% mult_not_zero
thf(fact_948_mult__not__zero,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ( times_7803423173614009249d_enat @ A @ B )
!= zero_z5237406670263579293d_enat )
=> ( ( A != zero_z5237406670263579293d_enat )
& ( B != zero_z5237406670263579293d_enat ) ) ) ).
% mult_not_zero
thf(fact_949_mult__not__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
!= zero_zero_real )
=> ( ( A != zero_zero_real )
& ( B != zero_zero_real ) ) ) ).
% mult_not_zero
thf(fact_950_mult__not__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
!= zero_zero_nat )
=> ( ( A != zero_zero_nat )
& ( B != zero_zero_nat ) ) ) ).
% mult_not_zero
thf(fact_951_mult__not__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
!= zero_zero_int )
=> ( ( A != zero_zero_int )
& ( B != zero_zero_int ) ) ) ).
% mult_not_zero
thf(fact_952_divisors__zero,axiom,
! [A: complex,B: complex] :
( ( ( times_times_complex @ A @ B )
= zero_zero_complex )
=> ( ( A = zero_zero_complex )
| ( B = zero_zero_complex ) ) ) ).
% divisors_zero
thf(fact_953_divisors__zero,axiom,
! [A: extended_enat,B: extended_enat] :
( ( ( times_7803423173614009249d_enat @ A @ B )
= zero_z5237406670263579293d_enat )
=> ( ( A = zero_z5237406670263579293d_enat )
| ( B = zero_z5237406670263579293d_enat ) ) ) ).
% divisors_zero
thf(fact_954_divisors__zero,axiom,
! [A: real,B: real] :
( ( ( times_times_real @ A @ B )
= zero_zero_real )
=> ( ( A = zero_zero_real )
| ( B = zero_zero_real ) ) ) ).
% divisors_zero
thf(fact_955_divisors__zero,axiom,
! [A: nat,B: nat] :
( ( ( times_times_nat @ A @ B )
= zero_zero_nat )
=> ( ( A = zero_zero_nat )
| ( B = zero_zero_nat ) ) ) ).
% divisors_zero
thf(fact_956_divisors__zero,axiom,
! [A: int,B: int] :
( ( ( times_times_int @ A @ B )
= zero_zero_int )
=> ( ( A = zero_zero_int )
| ( B = zero_zero_int ) ) ) ).
% divisors_zero
thf(fact_957_no__zero__divisors,axiom,
! [A: complex,B: complex] :
( ( A != zero_zero_complex )
=> ( ( B != zero_zero_complex )
=> ( ( times_times_complex @ A @ B )
!= zero_zero_complex ) ) ) ).
% no_zero_divisors
thf(fact_958_no__zero__divisors,axiom,
! [A: extended_enat,B: extended_enat] :
( ( A != zero_z5237406670263579293d_enat )
=> ( ( B != zero_z5237406670263579293d_enat )
=> ( ( times_7803423173614009249d_enat @ A @ B )
!= zero_z5237406670263579293d_enat ) ) ) ).
% no_zero_divisors
thf(fact_959_no__zero__divisors,axiom,
! [A: real,B: real] :
( ( A != zero_zero_real )
=> ( ( B != zero_zero_real )
=> ( ( times_times_real @ A @ B )
!= zero_zero_real ) ) ) ).
% no_zero_divisors
thf(fact_960_no__zero__divisors,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ( ( B != zero_zero_nat )
=> ( ( times_times_nat @ A @ B )
!= zero_zero_nat ) ) ) ).
% no_zero_divisors
thf(fact_961_no__zero__divisors,axiom,
! [A: int,B: int] :
( ( A != zero_zero_int )
=> ( ( B != zero_zero_int )
=> ( ( times_times_int @ A @ B )
!= zero_zero_int ) ) ) ).
% no_zero_divisors
thf(fact_962_mult__left__cancel,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ C @ A )
= ( times_times_complex @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_963_mult__left__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ C @ A )
= ( times_times_real @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_964_mult__left__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ C @ A )
= ( times_times_nat @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_965_mult__left__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ C @ A )
= ( times_times_int @ C @ B ) )
= ( A = B ) ) ) ).
% mult_left_cancel
thf(fact_966_mult__right__cancel,axiom,
! [C: complex,A: complex,B: complex] :
( ( C != zero_zero_complex )
=> ( ( ( times_times_complex @ A @ C )
= ( times_times_complex @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_967_mult__right__cancel,axiom,
! [C: real,A: real,B: real] :
( ( C != zero_zero_real )
=> ( ( ( times_times_real @ A @ C )
= ( times_times_real @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_968_mult__right__cancel,axiom,
! [C: nat,A: nat,B: nat] :
( ( C != zero_zero_nat )
=> ( ( ( times_times_nat @ A @ C )
= ( times_times_nat @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_969_mult__right__cancel,axiom,
! [C: int,A: int,B: int] :
( ( C != zero_zero_int )
=> ( ( ( times_times_int @ A @ C )
= ( times_times_int @ B @ C ) )
= ( A = B ) ) ) ).
% mult_right_cancel
thf(fact_970_ring__class_Oring__distribs_I2_J,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_971_ring__class_Oring__distribs_I2_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_972_ring__class_Oring__distribs_I2_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% ring_class.ring_distribs(2)
thf(fact_973_ring__class_Oring__distribs_I1_J,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ A @ ( plus_plus_complex @ B @ C ) )
= ( plus_plus_complex @ ( times_times_complex @ A @ B ) @ ( times_times_complex @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_974_ring__class_Oring__distribs_I1_J,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_975_ring__class_Oring__distribs_I1_J,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% ring_class.ring_distribs(1)
thf(fact_976_comm__semiring__class_Odistrib,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_977_comm__semiring__class_Odistrib,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ C ) @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_978_comm__semiring__class_Odistrib,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_979_comm__semiring__class_Odistrib,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_980_comm__semiring__class_Odistrib,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% comm_semiring_class.distrib
thf(fact_981_distrib__left,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ A @ ( plus_plus_complex @ B @ C ) )
= ( plus_plus_complex @ ( times_times_complex @ A @ B ) @ ( times_times_complex @ A @ C ) ) ) ).
% distrib_left
thf(fact_982_distrib__left,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ A @ ( plus_p3455044024723400733d_enat @ B @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ B ) @ ( times_7803423173614009249d_enat @ A @ C ) ) ) ).
% distrib_left
thf(fact_983_distrib__left,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ A @ ( plus_plus_real @ B @ C ) )
= ( plus_plus_real @ ( times_times_real @ A @ B ) @ ( times_times_real @ A @ C ) ) ) ).
% distrib_left
thf(fact_984_distrib__left,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ A @ ( plus_plus_nat @ B @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ A @ B ) @ ( times_times_nat @ A @ C ) ) ) ).
% distrib_left
thf(fact_985_distrib__left,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ A @ ( plus_plus_int @ B @ C ) )
= ( plus_plus_int @ ( times_times_int @ A @ B ) @ ( times_times_int @ A @ C ) ) ) ).
% distrib_left
thf(fact_986_distrib__right,axiom,
! [A: complex,B: complex,C: complex] :
( ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ C )
= ( plus_plus_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ C ) ) ) ).
% distrib_right
thf(fact_987_distrib__right,axiom,
! [A: extended_enat,B: extended_enat,C: extended_enat] :
( ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ C )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ C ) @ ( times_7803423173614009249d_enat @ B @ C ) ) ) ).
% distrib_right
thf(fact_988_distrib__right,axiom,
! [A: real,B: real,C: real] :
( ( times_times_real @ ( plus_plus_real @ A @ B ) @ C )
= ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ).
% distrib_right
thf(fact_989_distrib__right,axiom,
! [A: nat,B: nat,C: nat] :
( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ C )
= ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ C ) ) ) ).
% distrib_right
thf(fact_990_distrib__right,axiom,
! [A: int,B: int,C: int] :
( ( times_times_int @ ( plus_plus_int @ A @ B ) @ C )
= ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ C ) ) ) ).
% distrib_right
thf(fact_991_combine__common__factor,axiom,
! [A: complex,E: complex,B: complex,C: complex] :
( ( plus_plus_complex @ ( times_times_complex @ A @ E ) @ ( plus_plus_complex @ ( times_times_complex @ B @ E ) @ C ) )
= ( plus_plus_complex @ ( times_times_complex @ ( plus_plus_complex @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_992_combine__common__factor,axiom,
! [A: extended_enat,E: extended_enat,B: extended_enat,C: extended_enat] :
( ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ A @ E ) @ ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ B @ E ) @ C ) )
= ( plus_p3455044024723400733d_enat @ ( times_7803423173614009249d_enat @ ( plus_p3455044024723400733d_enat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_993_combine__common__factor,axiom,
! [A: real,E: real,B: real,C: real] :
( ( plus_plus_real @ ( times_times_real @ A @ E ) @ ( plus_plus_real @ ( times_times_real @ B @ E ) @ C ) )
= ( plus_plus_real @ ( times_times_real @ ( plus_plus_real @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_994_combine__common__factor,axiom,
! [A: nat,E: nat,B: nat,C: nat] :
( ( plus_plus_nat @ ( times_times_nat @ A @ E ) @ ( plus_plus_nat @ ( times_times_nat @ B @ E ) @ C ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_995_combine__common__factor,axiom,
! [A: int,E: int,B: int,C: int] :
( ( plus_plus_int @ ( times_times_int @ A @ E ) @ ( plus_plus_int @ ( times_times_int @ B @ E ) @ C ) )
= ( plus_plus_int @ ( times_times_int @ ( plus_plus_int @ A @ B ) @ E ) @ C ) ) ).
% combine_common_factor
thf(fact_996_crossproduct__eq,axiom,
! [W: complex,Y: complex,X: complex,Z: complex] :
( ( ( plus_plus_complex @ ( times_times_complex @ W @ Y ) @ ( times_times_complex @ X @ Z ) )
= ( plus_plus_complex @ ( times_times_complex @ W @ Z ) @ ( times_times_complex @ X @ Y ) ) )
= ( ( W = X )
| ( Y = Z ) ) ) ).
% crossproduct_eq
thf(fact_997_crossproduct__eq,axiom,
! [W: real,Y: real,X: real,Z: real] :
( ( ( plus_plus_real @ ( times_times_real @ W @ Y ) @ ( times_times_real @ X @ Z ) )
= ( plus_plus_real @ ( times_times_real @ W @ Z ) @ ( times_times_real @ X @ Y ) ) )
= ( ( W = X )
| ( Y = Z ) ) ) ).
% crossproduct_eq
thf(fact_998_crossproduct__eq,axiom,
! [W: nat,Y: nat,X: nat,Z: nat] :
( ( ( plus_plus_nat @ ( times_times_nat @ W @ Y ) @ ( times_times_nat @ X @ Z ) )
= ( plus_plus_nat @ ( times_times_nat @ W @ Z ) @ ( times_times_nat @ X @ Y ) ) )
= ( ( W = X )
| ( Y = Z ) ) ) ).
% crossproduct_eq
thf(fact_999_crossproduct__eq,axiom,
! [W: int,Y: int,X: int,Z: int] :
( ( ( plus_plus_int @ ( times_times_int @ W @ Y ) @ ( times_times_int @ X @ Z ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z ) @ ( times_times_int @ X @ Y ) ) )
= ( ( W = X )
| ( Y = Z ) ) ) ).
% crossproduct_eq
thf(fact_1000_crossproduct__noteq,axiom,
! [A: complex,B: complex,C: complex,D2: complex] :
( ( ( A != B )
& ( C != D2 ) )
= ( ( plus_plus_complex @ ( times_times_complex @ A @ C ) @ ( times_times_complex @ B @ D2 ) )
!= ( plus_plus_complex @ ( times_times_complex @ A @ D2 ) @ ( times_times_complex @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_1001_crossproduct__noteq,axiom,
! [A: real,B: real,C: real,D2: real] :
( ( ( A != B )
& ( C != D2 ) )
= ( ( plus_plus_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ D2 ) )
!= ( plus_plus_real @ ( times_times_real @ A @ D2 ) @ ( times_times_real @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_1002_crossproduct__noteq,axiom,
! [A: nat,B: nat,C: nat,D2: nat] :
( ( ( A != B )
& ( C != D2 ) )
= ( ( plus_plus_nat @ ( times_times_nat @ A @ C ) @ ( times_times_nat @ B @ D2 ) )
!= ( plus_plus_nat @ ( times_times_nat @ A @ D2 ) @ ( times_times_nat @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_1003_crossproduct__noteq,axiom,
! [A: int,B: int,C: int,D2: int] :
( ( ( A != B )
& ( C != D2 ) )
= ( ( plus_plus_int @ ( times_times_int @ A @ C ) @ ( times_times_int @ B @ D2 ) )
!= ( plus_plus_int @ ( times_times_int @ A @ D2 ) @ ( times_times_int @ B @ C ) ) ) ) ).
% crossproduct_noteq
thf(fact_1004_set__times__elim,axiom,
! [X: complex,A3: set_complex,B3: set_complex] :
( ( member_complex @ X @ ( times_6048082448287401577omplex @ A3 @ B3 ) )
=> ~ ! [A4: complex,B4: complex] :
( ( X
= ( times_times_complex @ A4 @ B4 ) )
=> ( ( member_complex @ A4 @ A3 )
=> ~ ( member_complex @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_1005_set__times__elim,axiom,
! [X: extended_enat,A3: set_Extended_enat,B3: set_Extended_enat] :
( ( member_Extended_enat @ X @ ( times_2438108612031896577d_enat @ A3 @ B3 ) )
=> ~ ! [A4: extended_enat,B4: extended_enat] :
( ( X
= ( times_7803423173614009249d_enat @ A4 @ B4 ) )
=> ( ( member_Extended_enat @ A4 @ A3 )
=> ~ ( member_Extended_enat @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_1006_set__times__elim,axiom,
! [X: real,A3: set_real,B3: set_real] :
( ( member_real @ X @ ( times_times_set_real @ A3 @ B3 ) )
=> ~ ! [A4: real,B4: real] :
( ( X
= ( times_times_real @ A4 @ B4 ) )
=> ( ( member_real @ A4 @ A3 )
=> ~ ( member_real @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_1007_set__times__elim,axiom,
! [X: num,A3: set_num,B3: set_num] :
( ( member_num @ X @ ( times_times_set_num @ A3 @ B3 ) )
=> ~ ! [A4: num,B4: num] :
( ( X
= ( times_times_num @ A4 @ B4 ) )
=> ( ( member_num @ A4 @ A3 )
=> ~ ( member_num @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_1008_set__times__elim,axiom,
! [X: nat,A3: set_nat,B3: set_nat] :
( ( member_nat @ X @ ( times_times_set_nat @ A3 @ B3 ) )
=> ~ ! [A4: nat,B4: nat] :
( ( X
= ( times_times_nat @ A4 @ B4 ) )
=> ( ( member_nat @ A4 @ A3 )
=> ~ ( member_nat @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_1009_set__times__elim,axiom,
! [X: int,A3: set_int,B3: set_int] :
( ( member_int @ X @ ( times_times_set_int @ A3 @ B3 ) )
=> ~ ! [A4: int,B4: int] :
( ( X
= ( times_times_int @ A4 @ B4 ) )
=> ( ( member_int @ A4 @ A3 )
=> ~ ( member_int @ B4 @ B3 ) ) ) ) ).
% set_times_elim
thf(fact_1010_verit__la__disequality,axiom,
! [A: extended_enat,B: extended_enat] :
( ( A = B )
| ~ ( ord_le2932123472753598470d_enat @ A @ B )
| ~ ( ord_le2932123472753598470d_enat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_1011_verit__la__disequality,axiom,
! [A: real,B: real] :
( ( A = B )
| ~ ( ord_less_eq_real @ A @ B )
| ~ ( ord_less_eq_real @ B @ A ) ) ).
% verit_la_disequality
thf(fact_1012_verit__la__disequality,axiom,
! [A: num,B: num] :
( ( A = B )
| ~ ( ord_less_eq_num @ A @ B )
| ~ ( ord_less_eq_num @ B @ A ) ) ).
% verit_la_disequality
thf(fact_1013_verit__la__disequality,axiom,
! [A: nat,B: nat] :
( ( A = B )
| ~ ( ord_less_eq_nat @ A @ B )
| ~ ( ord_less_eq_nat @ B @ A ) ) ).
% verit_la_disequality
thf(fact_1014_verit__la__disequality,axiom,
! [A: int,B: int] :
( ( A = B )
| ~ ( ord_less_eq_int @ A @ B )
| ~ ( ord_less_eq_int @ B @ A ) ) ).
% verit_la_disequality
thf(fact_1015_verit__negate__coefficient_I2_J,axiom,
! [A: real,B: real] :
( ( ord_less_real @ A @ B )
=> ( ord_less_real @ ( uminus_uminus_real @ B ) @ ( uminus_uminus_real @ A ) ) ) ).
% verit_negate_coefficient(2)
thf(fact_1016_mono__nat__linear__lb,axiom,
! [F: nat > nat,M: nat,K: nat] :
( ! [M2: nat,N2: nat] :
( ( ord_less_nat @ M2 @ N2 )
=> ( ord_less_nat @ ( F @ M2 ) @ ( F @ N2 ) ) )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus_nat @ M @ K ) ) ) ) ).
% mono_nat_linear_lb
thf(fact_1017_ex__least__nat__le,axiom,
! [P: nat > $o,N: nat] :
( ( P @ N )
=> ( ~ ( P @ zero_zero_nat )
=> ? [K2: nat] :
( ( ord_less_eq_nat @ K2 @ N )
& ! [I2: nat] :
( ( ord_less_nat @ I2 @ K2 )
=> ~ ( P @ I2 ) )
& ( P @ K2 ) ) ) ) ).
% ex_least_nat_le
thf(fact_1018_mult__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ) ).
% mult_less_mono1
thf(fact_1019_mult__less__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ) ).
% mult_less_mono2
thf(fact_1020_nat__mult__eq__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( M = N ) ) ) ).
% nat_mult_eq_cancel1
thf(fact_1021_nat__mult__less__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_nat @ M @ N ) ) ) ).
% nat_mult_less_cancel1
thf(fact_1022_nat__mult__le__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( ord_less_eq_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% nat_mult_le_cancel1
thf(fact_1023_not__int__zless__negative,axiom,
! [N: nat,M: nat] :
~ ( ord_less_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) ) ).
% not_int_zless_negative
thf(fact_1024_zmult__zless__mono2,axiom,
! [I: int,J: int,K: int] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_int @ zero_zero_int @ K )
=> ( ord_less_int @ ( times_times_int @ K @ I ) @ ( times_times_int @ K @ J ) ) ) ) ).
% zmult_zless_mono2
thf(fact_1025_zle__int,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ M ) @ ( semiri1314217659103216013at_int @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% zle_int
thf(fact_1026_nat__int__comparison_I2_J,axiom,
( ord_less_nat
= ( ^ [A2: nat,B2: nat] : ( ord_less_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(2)
thf(fact_1027_nat__int__comparison_I3_J,axiom,
( ord_less_eq_nat
= ( ^ [A2: nat,B2: nat] : ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ A2 ) @ ( semiri1314217659103216013at_int @ B2 ) ) ) ) ).
% nat_int_comparison(3)
thf(fact_1028_int__ops_I7_J,axiom,
! [A: nat,B: nat] :
( ( semiri1314217659103216013at_int @ ( times_times_nat @ A @ B ) )
= ( times_times_int @ ( semiri1314217659103216013at_int @ A ) @ ( semiri1314217659103216013at_int @ B ) ) ) ).
% int_ops(7)
thf(fact_1029_zmult__zless__mono2__lemma,axiom,
! [I: int,J: int,K: nat] :
( ( ord_less_int @ I @ J )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ord_less_int @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ I ) @ ( times_times_int @ ( semiri1314217659103216013at_int @ K ) @ J ) ) ) ) ).
% zmult_zless_mono2_lemma
thf(fact_1030_neg__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ K @ zero_zero_int )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% neg_int_cases
thf(fact_1031_int__cases4,axiom,
! [M: int] :
( ! [N2: nat] :
( M
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( M
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ) ).
% int_cases4
thf(fact_1032_int__zle__neg,axiom,
! [N: nat,M: nat] :
( ( ord_less_eq_int @ ( semiri1314217659103216013at_int @ N ) @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ M ) ) )
= ( ( N = zero_zero_nat )
& ( M = zero_zero_nat ) ) ) ).
% int_zle_neg
thf(fact_1033_int__one__le__iff__zero__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ one_one_int @ Z )
= ( ord_less_int @ zero_zero_int @ Z ) ) ).
% int_one_le_iff_zero_less
thf(fact_1034_negative__zle__0,axiom,
! [N: nat] : ( ord_less_eq_int @ ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N ) ) @ zero_zero_int ) ).
% negative_zle_0
thf(fact_1035_nonpos__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ K @ zero_zero_int )
=> ~ ! [N2: nat] :
( K
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% nonpos_int_cases
thf(fact_1036_pos__zmult__eq__1__iff,axiom,
! [M: int,N: int] :
( ( ord_less_int @ zero_zero_int @ M )
=> ( ( ( times_times_int @ M @ N )
= one_one_int )
= ( ( M = one_one_int )
& ( N = one_one_int ) ) ) ) ).
% pos_zmult_eq_1_iff
thf(fact_1037_zless__imp__add1__zle,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ Z )
=> ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z ) ) ).
% zless_imp_add1_zle
thf(fact_1038_add1__zle__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_eq_int @ ( plus_plus_int @ W @ one_one_int ) @ Z )
= ( ord_less_int @ W @ Z ) ) ).
% add1_zle_eq
thf(fact_1039_push__bit__int__code_I1_J,axiom,
! [I: int] :
( ( bit_se545348938243370406it_int @ zero_zero_nat @ I )
= I ) ).
% push_bit_int_code(1)
thf(fact_1040_le__num__One__iff,axiom,
! [X: num] :
( ( ord_less_eq_num @ X @ one )
= ( X = one ) ) ).
% le_num_One_iff
thf(fact_1041_infinite__descent0,axiom,
! [P: nat > $o,N: nat] :
( ( P @ zero_zero_nat )
=> ( ! [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
=> ( ~ ( P @ N2 )
=> ? [M3: nat] :
( ( ord_less_nat @ M3 @ N2 )
& ~ ( P @ M3 ) ) ) )
=> ( P @ N ) ) ) ).
% infinite_descent0
thf(fact_1042_gr__implies__not0,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( N != zero_zero_nat ) ) ).
% gr_implies_not0
thf(fact_1043_less__zeroE,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% less_zeroE
thf(fact_1044_not__less0,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ zero_zero_nat ) ).
% not_less0
thf(fact_1045_not__gr0,axiom,
! [N: nat] :
( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
= ( N = zero_zero_nat ) ) ).
% not_gr0
thf(fact_1046_gr0I,axiom,
! [N: nat] :
( ( N != zero_zero_nat )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% gr0I
thf(fact_1047_bot__nat__0_Oextremum__strict,axiom,
! [A: nat] :
~ ( ord_less_nat @ A @ zero_zero_nat ) ).
% bot_nat_0.extremum_strict
thf(fact_1048_nat__mult__eq__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( ( times_times_nat @ K @ M )
= ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( M = N ) ) ) ).
% nat_mult_eq_cancel_disj
thf(fact_1049_mult__0,axiom,
! [N: nat] :
( ( times_times_nat @ zero_zero_nat @ N )
= zero_zero_nat ) ).
% mult_0
thf(fact_1050_uminus__int__code_I1_J,axiom,
( ( uminus_uminus_int @ zero_zero_int )
= zero_zero_int ) ).
% uminus_int_code(1)
thf(fact_1051_le__0__eq,axiom,
! [N: nat] :
( ( ord_less_eq_nat @ N @ zero_zero_nat )
= ( N = zero_zero_nat ) ) ).
% le_0_eq
thf(fact_1052_bot__nat__0_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
=> ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_uniqueI
thf(fact_1053_bot__nat__0_Oextremum__unique,axiom,
! [A: nat] :
( ( ord_less_eq_nat @ A @ zero_zero_nat )
= ( A = zero_zero_nat ) ) ).
% bot_nat_0.extremum_unique
thf(fact_1054_less__eq__nat_Osimps_I1_J,axiom,
! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).
% less_eq_nat.simps(1)
thf(fact_1055_less__int__code_I1_J,axiom,
~ ( ord_less_int @ zero_zero_int @ zero_zero_int ) ).
% less_int_code(1)
thf(fact_1056_less__add__eq__less,axiom,
! [K: nat,L: nat,M: nat,N: nat] :
( ( ord_less_nat @ K @ L )
=> ( ( ( plus_plus_nat @ M @ L )
= ( plus_plus_nat @ K @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% less_add_eq_less
thf(fact_1057_trans__less__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_less_add2
thf(fact_1058_trans__less__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_less_add1
thf(fact_1059_add__less__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ I @ J )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_less_mono1
thf(fact_1060_not__add__less2,axiom,
! [J: nat,I: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ J @ I ) @ I ) ).
% not_add_less2
thf(fact_1061_not__add__less1,axiom,
! [I: nat,J: nat] :
~ ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ I ) ).
% not_add_less1
thf(fact_1062_add__less__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_nat @ I @ J )
=> ( ( ord_less_nat @ K @ L )
=> ( ord_less_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_less_mono
thf(fact_1063_add__lessD1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_nat @ ( plus_plus_nat @ I @ J ) @ K )
=> ( ord_less_nat @ I @ K ) ) ).
% add_lessD1
thf(fact_1064_int__cases2,axiom,
! [Z: int] :
( ! [N2: nat] :
( Z
!= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ! [N2: nat] :
( Z
!= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% int_cases2
thf(fact_1065_less__eq__int__code_I1_J,axiom,
ord_less_eq_int @ zero_zero_int @ zero_zero_int ).
% less_eq_int_code(1)
thf(fact_1066_left__add__mult__distrib,axiom,
! [I: nat,U: nat,J: nat,K: nat] :
( ( plus_plus_nat @ ( times_times_nat @ I @ U ) @ ( plus_plus_nat @ ( times_times_nat @ J @ U ) @ K ) )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ I @ J ) @ U ) @ K ) ) ).
% left_add_mult_distrib
thf(fact_1067_add__mult__distrib2,axiom,
! [K: nat,M: nat,N: nat] :
( ( times_times_nat @ K @ ( plus_plus_nat @ M @ N ) )
= ( plus_plus_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) ) ) ).
% add_mult_distrib2
thf(fact_1068_add__mult__distrib,axiom,
! [M: nat,N: nat,K: nat] :
( ( times_times_nat @ ( plus_plus_nat @ M @ N ) @ K )
= ( plus_plus_nat @ ( times_times_nat @ M @ K ) @ ( times_times_nat @ N @ K ) ) ) ).
% add_mult_distrib
thf(fact_1069_times__int__code_I2_J,axiom,
! [L: int] :
( ( times_times_int @ zero_zero_int @ L )
= zero_zero_int ) ).
% times_int_code(2)
thf(fact_1070_times__int__code_I1_J,axiom,
! [K: int] :
( ( times_times_int @ K @ zero_zero_int )
= zero_zero_int ) ).
% times_int_code(1)
thf(fact_1071_nat__le__iff__add,axiom,
( ord_less_eq_nat
= ( ^ [M4: nat,N3: nat] :
? [K3: nat] :
( N3
= ( plus_plus_nat @ M4 @ K3 ) ) ) ) ).
% nat_le_iff_add
thf(fact_1072_trans__le__add2,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ M @ J ) ) ) ).
% trans_le_add2
thf(fact_1073_trans__le__add1,axiom,
! [I: nat,J: nat,M: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ I @ ( plus_plus_nat @ J @ M ) ) ) ).
% trans_le_add1
thf(fact_1074_add__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ K ) ) ) ).
% add_le_mono1
thf(fact_1075_add__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( plus_plus_nat @ I @ K ) @ ( plus_plus_nat @ J @ L ) ) ) ) ).
% add_le_mono
thf(fact_1076_le__Suc__ex,axiom,
! [K: nat,L: nat] :
( ( ord_less_eq_nat @ K @ L )
=> ? [N2: nat] :
( L
= ( plus_plus_nat @ K @ N2 ) ) ) ).
% le_Suc_ex
thf(fact_1077_add__leD2,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ).
% add_leD2
thf(fact_1078_add__leD1,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% add_leD1
thf(fact_1079_le__add2,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ M @ N ) ) ).
% le_add2
thf(fact_1080_le__add1,axiom,
! [N: nat,M: nat] : ( ord_less_eq_nat @ N @ ( plus_plus_nat @ N @ M ) ) ).
% le_add1
thf(fact_1081_add__leE,axiom,
! [M: nat,K: nat,N: nat] :
( ( ord_less_eq_nat @ ( plus_plus_nat @ M @ K ) @ N )
=> ~ ( ( ord_less_eq_nat @ M @ N )
=> ~ ( ord_less_eq_nat @ K @ N ) ) ) ).
% add_leE
thf(fact_1082_nat__mult__1__right,axiom,
! [N: nat] :
( ( times_times_nat @ N @ one_one_nat )
= N ) ).
% nat_mult_1_right
thf(fact_1083_nat__mult__1,axiom,
! [N: nat] :
( ( times_times_nat @ one_one_nat @ N )
= N ) ).
% nat_mult_1
thf(fact_1084_int__distrib_I2_J,axiom,
! [W: int,Z1: int,Z22: int] :
( ( times_times_int @ W @ ( plus_plus_int @ Z1 @ Z22 ) )
= ( plus_plus_int @ ( times_times_int @ W @ Z1 ) @ ( times_times_int @ W @ Z22 ) ) ) ).
% int_distrib(2)
thf(fact_1085_int__distrib_I1_J,axiom,
! [Z1: int,Z22: int,W: int] :
( ( times_times_int @ ( plus_plus_int @ Z1 @ Z22 ) @ W )
= ( plus_plus_int @ ( times_times_int @ Z1 @ W ) @ ( times_times_int @ Z22 @ W ) ) ) ).
% int_distrib(1)
thf(fact_1086_push__bit__int__def,axiom,
( bit_se545348938243370406it_int
= ( ^ [N3: nat,K3: int] : ( times_times_int @ K3 @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% push_bit_int_def
thf(fact_1087_int__cases3,axiom,
! [K: int] :
( ( K != zero_zero_int )
=> ( ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) )
=> ~ ! [N2: nat] :
( ( K
= ( uminus_uminus_int @ ( semiri1314217659103216013at_int @ N2 ) ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ) ).
% int_cases3
thf(fact_1088_zero__less__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( ( ord_less_nat @ zero_zero_nat @ N2 )
& ( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ) ).
% zero_less_imp_eq_int
thf(fact_1089_pos__int__cases,axiom,
! [K: int] :
( ( ord_less_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( ( K
= ( semiri1314217659103216013at_int @ N2 ) )
=> ~ ( ord_less_nat @ zero_zero_nat @ N2 ) ) ) ).
% pos_int_cases
thf(fact_1090_le__imp__0__less,axiom,
! [Z: int] :
( ( ord_less_eq_int @ zero_zero_int @ Z )
=> ( ord_less_int @ zero_zero_int @ ( plus_plus_int @ one_one_int @ Z ) ) ) ).
% le_imp_0_less
thf(fact_1091_push__bit__minus__one,axiom,
! [N: nat] :
( ( bit_se545348938243370406it_int @ N @ ( uminus_uminus_int @ one_one_int ) )
= ( uminus_uminus_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) ) ) ).
% push_bit_minus_one
thf(fact_1092_push__bit__nat__def,axiom,
( bit_se547839408752420682it_nat
= ( ^ [N3: nat,M4: nat] : ( times_times_nat @ M4 @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N3 ) ) ) ) ).
% push_bit_nat_def
thf(fact_1093_less__imp__add__positive,axiom,
! [I: nat,J: nat] :
( ( ord_less_nat @ I @ J )
=> ? [K2: nat] :
( ( ord_less_nat @ zero_zero_nat @ K2 )
& ( ( plus_plus_nat @ I @ K2 )
= J ) ) ) ).
% less_imp_add_positive
thf(fact_1094_mult__eq__self__implies__10,axiom,
! [M: nat,N: nat] :
( ( M
= ( times_times_nat @ M @ N ) )
=> ( ( N = one_one_nat )
| ( M = zero_zero_nat ) ) ) ).
% mult_eq_self_implies_10
thf(fact_1095_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ~ ! [N2: nat] :
( K
!= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% nonneg_int_cases
thf(fact_1096_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq_int @ zero_zero_int @ K )
=> ? [N2: nat] :
( K
= ( semiri1314217659103216013at_int @ N2 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_1097_int__gr__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_int @ K @ I )
=> ( ( P @ ( plus_plus_int @ K @ one_one_int ) )
=> ( ! [I3: int] :
( ( ord_less_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_gr_induct
thf(fact_1098_zless__add1__eq,axiom,
! [W: int,Z: int] :
( ( ord_less_int @ W @ ( plus_plus_int @ Z @ one_one_int ) )
= ( ( ord_less_int @ W @ Z )
| ( W = Z ) ) ) ).
% zless_add1_eq
thf(fact_1099_nat__power__less__imp__less,axiom,
! [I: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ I )
=> ( ( ord_less_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ord_less_nat @ M @ N ) ) ) ).
% nat_power_less_imp_less
thf(fact_1100_int__ge__induct,axiom,
! [K: int,I: int,P: int > $o] :
( ( ord_less_eq_int @ K @ I )
=> ( ( P @ K )
=> ( ! [I3: int] :
( ( ord_less_eq_int @ K @ I3 )
=> ( ( P @ I3 )
=> ( P @ ( plus_plus_int @ I3 @ one_one_int ) ) ) )
=> ( P @ I ) ) ) ) ).
% int_ge_induct
thf(fact_1101_zle__iff__zadd,axiom,
( ord_less_eq_int
= ( ^ [W3: int,Z3: int] :
? [N3: nat] :
( Z3
= ( plus_plus_int @ W3 @ ( semiri1314217659103216013at_int @ N3 ) ) ) ) ) ).
% zle_iff_zadd
thf(fact_1102_int__bit__induct,axiom,
! [P: int > $o,K: int] :
( ( P @ zero_zero_int )
=> ( ( P @ ( uminus_uminus_int @ one_one_int ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2 != zero_zero_int )
=> ( P @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) )
=> ( ! [K2: int] :
( ( P @ K2 )
=> ( ( K2
!= ( uminus_uminus_int @ one_one_int ) )
=> ( P @ ( plus_plus_int @ one_one_int @ ( times_times_int @ K2 @ ( numeral_numeral_int @ ( bit0 @ one ) ) ) ) ) ) )
=> ( P @ K ) ) ) ) ) ).
% int_bit_induct
thf(fact_1103_ex__power__ivl1,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ one_one_nat @ K )
=> ? [N2: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ B @ N2 ) @ K )
& ( ord_less_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl1
thf(fact_1104_ex__power__ivl2,axiom,
! [B: nat,K: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ B )
=> ( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ? [N2: nat] :
( ( ord_less_nat @ ( power_power_nat @ B @ N2 ) @ K )
& ( ord_less_eq_nat @ K @ ( power_power_nat @ B @ ( plus_plus_nat @ N2 @ one_one_nat ) ) ) ) ) ) ).
% ex_power_ivl2
thf(fact_1105_odd__less__0__iff,axiom,
! [Z: int] :
( ( ord_less_int @ ( plus_plus_int @ ( plus_plus_int @ one_one_int @ Z ) @ Z ) @ zero_zero_int )
= ( ord_less_int @ Z @ zero_zero_int ) ) ).
% odd_less_0_iff
thf(fact_1106_not__exp__less__eq__0__int,axiom,
! [N: nat] :
~ ( ord_less_eq_int @ ( power_power_int @ ( numeral_numeral_int @ ( bit0 @ one ) ) @ N ) @ zero_zero_int ) ).
% not_exp_less_eq_0_int
thf(fact_1107_less__exp,axiom,
! [N: nat] : ( ord_less_nat @ N @ ( power_power_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N ) ) ).
% less_exp
thf(fact_1108_power2__nat__le__imp__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_imp_le
thf(fact_1109_power2__nat__le__eq__le,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ ( power_power_nat @ M @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_nat @ N @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( ord_less_eq_nat @ M @ N ) ) ).
% power2_nat_le_eq_le
thf(fact_1110_self__le__ge2__pow,axiom,
! [K: nat,M: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ord_less_eq_nat @ M @ ( power_power_nat @ K @ M ) ) ) ).
% self_le_ge2_pow
thf(fact_1111_pos2,axiom,
ord_less_nat @ zero_zero_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ).
% pos2
thf(fact_1112_numeral__le__real__of__nat__iff,axiom,
! [N: num,M: nat] :
( ( ord_less_eq_real @ ( numeral_numeral_real @ N ) @ ( semiri5074537144036343181t_real @ M ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ N ) @ M ) ) ).
% numeral_le_real_of_nat_iff
thf(fact_1113_real__of__nat__less__numeral__iff,axiom,
! [N: nat,W: num] :
( ( ord_less_real @ ( semiri5074537144036343181t_real @ N ) @ ( numeral_numeral_real @ W ) )
= ( ord_less_nat @ N @ ( numeral_numeral_nat @ W ) ) ) ).
% real_of_nat_less_numeral_iff
thf(fact_1114_numeral__less__real__of__nat__iff,axiom,
! [W: num,N: nat] :
( ( ord_less_real @ ( numeral_numeral_real @ W ) @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ W ) @ N ) ) ).
% numeral_less_real_of_nat_iff
thf(fact_1115_one__less__numeral,axiom,
! [N: num] :
( ( ord_le7381754540660121996nnreal @ one_on2969667320475766781nnreal @ ( numera4658534427948366547nnreal @ N ) )
= ( ord_less_num @ one @ N ) ) ).
% one_less_numeral
thf(fact_1116_nat__le__real__less,axiom,
( ord_less_eq_nat
= ( ^ [N3: nat,M4: nat] : ( ord_less_real @ ( semiri5074537144036343181t_real @ N3 ) @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ M4 ) @ one_one_real ) ) ) ) ).
% nat_le_real_less
thf(fact_1117_nat__less__real__le,axiom,
( ord_less_nat
= ( ^ [N3: nat,M4: nat] : ( ord_less_eq_real @ ( plus_plus_real @ ( semiri5074537144036343181t_real @ N3 ) @ one_one_real ) @ ( semiri5074537144036343181t_real @ M4 ) ) ) ) ).
% nat_less_real_le
thf(fact_1118_less__mono__imp__le__mono,axiom,
! [F: nat > nat,I: nat,J: nat] :
( ! [I3: nat,J2: nat] :
( ( ord_less_nat @ I3 @ J2 )
=> ( ord_less_nat @ ( F @ I3 ) @ ( F @ J2 ) ) )
=> ( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).
% less_mono_imp_le_mono
thf(fact_1119_le__neq__implies__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( M != N )
=> ( ord_less_nat @ M @ N ) ) ) ).
% le_neq_implies_less
thf(fact_1120_Nat_Oex__has__greatest__nat,axiom,
! [P: nat > $o,K: nat,B: nat] :
( ( P @ K )
=> ( ! [Y4: nat] :
( ( P @ Y4 )
=> ( ord_less_eq_nat @ Y4 @ B ) )
=> ? [X4: nat] :
( ( P @ X4 )
& ! [Y5: nat] :
( ( P @ Y5 )
=> ( ord_less_eq_nat @ Y5 @ X4 ) ) ) ) ) ).
% Nat.ex_has_greatest_nat
thf(fact_1121_linorder__neqE__nat,axiom,
! [X: nat,Y: nat] :
( ( X != Y )
=> ( ~ ( ord_less_nat @ X @ Y )
=> ( ord_less_nat @ Y @ X ) ) ) ).
% linorder_neqE_nat
thf(fact_1122_less__or__eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( ( ord_less_nat @ M @ N )
| ( M = N ) )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_or_eq_imp_le
thf(fact_1123_verit__la__generic,axiom,
! [A: int,X: int] :
( ( ord_less_eq_int @ A @ X )
| ( A = X )
| ( ord_less_eq_int @ X @ A ) ) ).
% verit_la_generic
thf(fact_1124_le__eq__less__or__eq,axiom,
( ord_less_eq_nat
= ( ^ [M4: nat,N3: nat] :
( ( ord_less_nat @ M4 @ N3 )
| ( M4 = N3 ) ) ) ) ).
% le_eq_less_or_eq
thf(fact_1125_infinite__descent,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ~ ( P @ N2 )
=> ? [M3: nat] :
( ( ord_less_nat @ M3 @ N2 )
& ~ ( P @ M3 ) ) )
=> ( P @ N ) ) ).
% infinite_descent
thf(fact_1126_nat__less__induct,axiom,
! [P: nat > $o,N: nat] :
( ! [N2: nat] :
( ! [M3: nat] :
( ( ord_less_nat @ M3 @ N2 )
=> ( P @ M3 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% nat_less_induct
thf(fact_1127_less__irrefl__nat,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_irrefl_nat
thf(fact_1128_less__imp__le__nat,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ M @ N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% less_imp_le_nat
thf(fact_1129_less__not__refl3,axiom,
! [S: nat,T: nat] :
( ( ord_less_nat @ S @ T )
=> ( S != T ) ) ).
% less_not_refl3
thf(fact_1130_less__not__refl2,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ N @ M )
=> ( M != N ) ) ).
% less_not_refl2
thf(fact_1131_nat__le__linear,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
| ( ord_less_eq_nat @ N @ M ) ) ).
% nat_le_linear
thf(fact_1132_mult__le__mono2,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ K @ I ) @ ( times_times_nat @ K @ J ) ) ) ).
% mult_le_mono2
thf(fact_1133_mult__le__mono1,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ K ) ) ) ).
% mult_le_mono1
thf(fact_1134_less__not__refl,axiom,
! [N: nat] :
~ ( ord_less_nat @ N @ N ) ).
% less_not_refl
thf(fact_1135_mult__le__mono,axiom,
! [I: nat,J: nat,K: nat,L: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ K @ L )
=> ( ord_less_eq_nat @ ( times_times_nat @ I @ K ) @ ( times_times_nat @ J @ L ) ) ) ) ).
% mult_le_mono
thf(fact_1136_nat__neq__iff,axiom,
! [M: nat,N: nat] :
( ( M != N )
= ( ( ord_less_nat @ M @ N )
| ( ord_less_nat @ N @ M ) ) ) ).
% nat_neq_iff
thf(fact_1137_nat__less__le,axiom,
( ord_less_nat
= ( ^ [M4: nat,N3: nat] :
( ( ord_less_eq_nat @ M4 @ N3 )
& ( M4 != N3 ) ) ) ) ).
% nat_less_le
thf(fact_1138_le__antisym,axiom,
! [M: nat,N: nat] :
( ( ord_less_eq_nat @ M @ N )
=> ( ( ord_less_eq_nat @ N @ M )
=> ( M = N ) ) ) ).
% le_antisym
thf(fact_1139_le__square,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ M ) ) ).
% le_square
thf(fact_1140_eq__imp__le,axiom,
! [M: nat,N: nat] :
( ( M = N )
=> ( ord_less_eq_nat @ M @ N ) ) ).
% eq_imp_le
thf(fact_1141_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq_nat @ I @ J )
=> ( ( ord_less_eq_nat @ J @ K )
=> ( ord_less_eq_nat @ I @ K ) ) ) ).
% le_trans
thf(fact_1142_le__refl,axiom,
! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).
% le_refl
thf(fact_1143_le__cube,axiom,
! [M: nat] : ( ord_less_eq_nat @ M @ ( times_times_nat @ M @ ( times_times_nat @ M @ M ) ) ) ).
% le_cube
thf(fact_1144_power__le__one__iff,axiom,
! [A: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ A )
=> ( ( ord_less_eq_real @ ( power_power_real @ A @ N ) @ one_one_real )
= ( ( N = zero_zero_nat )
| ( ord_less_eq_real @ A @ one_one_real ) ) ) ) ).
% power_le_one_iff
thf(fact_1145_realpow__pos__nth,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [R: real] :
( ( ord_less_real @ zero_zero_real @ R )
& ( ( power_power_real @ R @ N )
= A ) ) ) ) ).
% realpow_pos_nth
thf(fact_1146_realpow__pos__nth__unique,axiom,
! [N: nat,A: real] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( ord_less_real @ zero_zero_real @ A )
=> ? [X4: real] :
( ( ord_less_real @ zero_zero_real @ X4 )
& ( ( power_power_real @ X4 @ N )
= A )
& ! [Y5: real] :
( ( ( ord_less_real @ zero_zero_real @ Y5 )
& ( ( power_power_real @ Y5 @ N )
= A ) )
=> ( Y5 = X4 ) ) ) ) ) ).
% realpow_pos_nth_unique
thf(fact_1147_real__archimedian__rdiv__eq__0,axiom,
! [X: real,C: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ! [M2: nat] :
( ( ord_less_nat @ zero_zero_nat @ M2 )
=> ( ord_less_eq_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ M2 ) @ X ) @ C ) )
=> ( X = zero_zero_real ) ) ) ) ).
% real_archimedian_rdiv_eq_0
thf(fact_1148_numeral__eq__of__nat,axiom,
( numera4658534427948366547nnreal
= ( ^ [A2: num] : ( semiri6283507881447550617nnreal @ ( numeral_numeral_nat @ A2 ) ) ) ) ).
% numeral_eq_of_nat
thf(fact_1149_two__realpow__ge__one,axiom,
! [N: nat] : ( ord_less_eq_real @ one_one_real @ ( power_power_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ N ) ) ).
% two_realpow_ge_one
thf(fact_1150_four__x__squared,axiom,
! [X: real] :
( ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ ( bit0 @ one ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) )
= ( power_power_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ X ) @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% four_x_squared
thf(fact_1151_L2__set__mult__ineq__lemma,axiom,
! [A: real,C: real,B: real,D2: real] : ( ord_less_eq_real @ ( times_times_real @ ( times_times_real @ ( numeral_numeral_real @ ( bit0 @ one ) ) @ ( times_times_real @ A @ C ) ) @ ( times_times_real @ B @ D2 ) ) @ ( plus_plus_real @ ( times_times_real @ ( power_power_real @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ D2 @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( times_times_real @ ( power_power_real @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ C @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ) ).
% L2_set_mult_ineq_lemma
thf(fact_1152_realpow__square__minus__le,axiom,
! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( power_power_real @ U @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ).
% realpow_square_minus_le
thf(fact_1153_incr__mult__lemma,axiom,
! [D2: int,P: int > $o,K: int] :
( ( ord_less_int @ zero_zero_int @ D2 )
=> ( ! [X4: int] :
( ( P @ X4 )
=> ( P @ ( plus_plus_int @ X4 @ D2 ) ) )
=> ( ( ord_less_eq_int @ zero_zero_int @ K )
=> ! [X5: int] :
( ( P @ X5 )
=> ( P @ ( plus_plus_int @ X5 @ ( times_times_int @ K @ D2 ) ) ) ) ) ) ) ).
% incr_mult_lemma
thf(fact_1154_kuhn__lemma,axiom,
! [P4: nat,N: nat,Label: ( nat > nat ) > nat > nat] :
( ( ord_less_nat @ zero_zero_nat @ P4 )
=> ( ! [X4: nat > nat] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ord_less_eq_nat @ ( X4 @ I2 ) @ P4 ) )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ( ( Label @ X4 @ I3 )
= zero_zero_nat )
| ( ( Label @ X4 @ I3 )
= one_one_nat ) ) ) )
=> ( ! [X4: nat > nat] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ord_less_eq_nat @ ( X4 @ I2 ) @ P4 ) )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ( ( X4 @ I3 )
= zero_zero_nat )
=> ( ( Label @ X4 @ I3 )
= zero_zero_nat ) ) ) )
=> ( ! [X4: nat > nat] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ord_less_eq_nat @ ( X4 @ I2 ) @ P4 ) )
=> ! [I3: nat] :
( ( ord_less_nat @ I3 @ N )
=> ( ( ( X4 @ I3 )
= P4 )
=> ( ( Label @ X4 @ I3 )
= one_one_nat ) ) ) )
=> ~ ! [Q: nat > nat] :
( ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ( ord_less_nat @ ( Q @ I2 ) @ P4 ) )
=> ~ ! [I2: nat] :
( ( ord_less_nat @ I2 @ N )
=> ? [R: nat > nat] :
( ! [J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( ord_less_eq_nat @ ( Q @ J3 ) @ ( R @ J3 ) )
& ( ord_less_eq_nat @ ( R @ J3 ) @ ( plus_plus_nat @ ( Q @ J3 ) @ one_one_nat ) ) ) )
& ? [S2: nat > nat] :
( ! [J3: nat] :
( ( ord_less_nat @ J3 @ N )
=> ( ( ord_less_eq_nat @ ( Q @ J3 ) @ ( S2 @ J3 ) )
& ( ord_less_eq_nat @ ( S2 @ J3 ) @ ( plus_plus_nat @ ( Q @ J3 ) @ one_one_nat ) ) ) )
& ( ( Label @ R @ I2 )
!= ( Label @ S2 @ I2 ) ) ) ) ) ) ) ) ) ) ).
% kuhn_lemma
thf(fact_1155_enat__ord__number_I2_J,axiom,
! [M: num,N: num] :
( ( ord_le72135733267957522d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(2)
thf(fact_1156_i0__less,axiom,
! [N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N )
= ( N != zero_z5237406670263579293d_enat ) ) ).
% i0_less
thf(fact_1157_not__real__square__gt__zero,axiom,
! [X: real] :
( ( ~ ( ord_less_real @ zero_zero_real @ ( times_times_real @ X @ X ) ) )
= ( X = zero_zero_real ) ) ).
% not_real_square_gt_zero
thf(fact_1158_real__add__minus__iff,axiom,
! [X: real,A: real] :
( ( ( plus_plus_real @ X @ ( uminus_uminus_real @ A ) )
= zero_zero_real )
= ( X = A ) ) ).
% real_add_minus_iff
thf(fact_1159_enat__ord__number_I1_J,axiom,
! [M: num,N: num] :
( ( ord_le2932123472753598470d_enat @ ( numera1916890842035813515d_enat @ M ) @ ( numera1916890842035813515d_enat @ N ) )
= ( ord_less_eq_nat @ ( numeral_numeral_nat @ M ) @ ( numeral_numeral_nat @ N ) ) ) ).
% enat_ord_number(1)
thf(fact_1160_real__arch__pow__inv,axiom,
! [Y: real,X: real] :
( ( ord_less_real @ zero_zero_real @ Y )
=> ( ( ord_less_real @ X @ one_one_real )
=> ? [N2: nat] : ( ord_less_real @ ( power_power_real @ X @ N2 ) @ Y ) ) ) ).
% real_arch_pow_inv
thf(fact_1161_Bernoulli__inequality,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ ( uminus_uminus_real @ one_one_real ) @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).
% Bernoulli_inequality
thf(fact_1162_sum__le__prod1,axiom,
! [A: real,B: real] :
( ( ord_less_eq_real @ A @ one_one_real )
=> ( ( ord_less_eq_real @ B @ one_one_real )
=> ( ord_less_eq_real @ ( plus_plus_real @ A @ B ) @ ( plus_plus_real @ one_one_real @ ( times_times_real @ A @ B ) ) ) ) ) ).
% sum_le_prod1
thf(fact_1163_real__eq__0__iff__le__ge__0,axiom,
! [X: real] :
( ( X = zero_zero_real )
= ( ( ord_less_eq_real @ zero_zero_real @ X )
& ( ord_less_eq_real @ zero_zero_real @ ( uminus_uminus_real @ X ) ) ) ) ).
% real_eq_0_iff_le_ge_0
thf(fact_1164_ennreal__approx__unit,axiom,
! [Z: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal] :
( ! [A4: extend8495563244428889912nnreal] :
( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ A4 )
=> ( ( ord_le7381754540660121996nnreal @ A4 @ one_on2969667320475766781nnreal )
=> ( ord_le3935885782089961368nnreal @ ( times_1893300245718287421nnreal @ A4 @ Z ) @ Y ) ) )
=> ( ord_le3935885782089961368nnreal @ Z @ Y ) ) ).
% ennreal_approx_unit
thf(fact_1165_ennreal__zero__less__one,axiom,
ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ one_on2969667320475766781nnreal ).
% ennreal_zero_less_one
thf(fact_1166_real__arch__pow,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ one_one_real @ X )
=> ? [N2: nat] : ( ord_less_real @ Y @ ( power_power_real @ X @ N2 ) ) ) ).
% real_arch_pow
thf(fact_1167_complete__real,axiom,
! [S3: set_real] :
( ? [X5: real] : ( member_real @ X5 @ S3 )
=> ( ? [Z4: real] :
! [X4: real] :
( ( member_real @ X4 @ S3 )
=> ( ord_less_eq_real @ X4 @ Z4 ) )
=> ? [Y4: real] :
( ! [X5: real] :
( ( member_real @ X5 @ S3 )
=> ( ord_less_eq_real @ X5 @ Y4 ) )
& ! [Z4: real] :
( ! [X4: real] :
( ( member_real @ X4 @ S3 )
=> ( ord_less_eq_real @ X4 @ Z4 ) )
=> ( ord_less_eq_real @ Y4 @ Z4 ) ) ) ) ) ).
% complete_real
thf(fact_1168_less__eq__real__def,axiom,
( ord_less_eq_real
= ( ^ [X2: real,Y6: real] :
( ( ord_less_real @ X2 @ Y6 )
| ( X2 = Y6 ) ) ) ) ).
% less_eq_real_def
thf(fact_1169_real__minus__mult__self__le,axiom,
! [U: real,X: real] : ( ord_less_eq_real @ ( uminus_uminus_real @ ( times_times_real @ U @ U ) ) @ ( times_times_real @ X @ X ) ) ).
% real_minus_mult_self_le
thf(fact_1170_enat__less__induct,axiom,
! [P: extended_enat > $o,N: extended_enat] :
( ! [N2: extended_enat] :
( ! [M3: extended_enat] :
( ( ord_le72135733267957522d_enat @ M3 @ N2 )
=> ( P @ M3 ) )
=> ( P @ N2 ) )
=> ( P @ N ) ) ).
% enat_less_induct
thf(fact_1171_ennreal__zero__less__mult__iff,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] :
( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ ( times_1893300245718287421nnreal @ A @ B ) )
= ( ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ A )
& ( ord_le7381754540660121996nnreal @ zero_z7100319975126383169nnreal @ B ) ) ) ).
% ennreal_zero_less_mult_iff
thf(fact_1172_enat__0__less__mult__iff,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ ( times_7803423173614009249d_enat @ M @ N ) )
= ( ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ M )
& ( ord_le72135733267957522d_enat @ zero_z5237406670263579293d_enat @ N ) ) ) ).
% enat_0_less_mult_iff
thf(fact_1173_real__add__less__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
= ( ord_less_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_less_0_iff
thf(fact_1174_real__0__less__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
= ( ord_less_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).
% real_0_less_add_iff
thf(fact_1175_reals__Archimedean3,axiom,
! [X: real] :
( ( ord_less_real @ zero_zero_real @ X )
=> ! [Y5: real] :
? [N2: nat] : ( ord_less_real @ Y5 @ ( times_times_real @ ( semiri5074537144036343181t_real @ N2 ) @ X ) ) ) ).
% reals_Archimedean3
thf(fact_1176_not__iless0,axiom,
! [N: extended_enat] :
~ ( ord_le72135733267957522d_enat @ N @ zero_z5237406670263579293d_enat ) ).
% not_iless0
thf(fact_1177_real__add__le__0__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ ( plus_plus_real @ X @ Y ) @ zero_zero_real )
= ( ord_less_eq_real @ Y @ ( uminus_uminus_real @ X ) ) ) ).
% real_add_le_0_iff
thf(fact_1178_real__0__le__add__iff,axiom,
! [X: real,Y: real] :
( ( ord_less_eq_real @ zero_zero_real @ ( plus_plus_real @ X @ Y ) )
= ( ord_less_eq_real @ ( uminus_uminus_real @ X ) @ Y ) ) ).
% real_0_le_add_iff
thf(fact_1179_imp__le__cong,axiom,
! [X: int,X6: int,P: $o,P5: $o] :
( ( X = X6 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
=> ( P = P5 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
=> P )
= ( ( ord_less_eq_int @ zero_zero_int @ X6 )
=> P5 ) ) ) ) ).
% imp_le_cong
thf(fact_1180_conj__le__cong,axiom,
! [X: int,X6: int,P: $o,P5: $o] :
( ( X = X6 )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X6 )
=> ( P = P5 ) )
=> ( ( ( ord_less_eq_int @ zero_zero_int @ X )
& P )
= ( ( ord_less_eq_int @ zero_zero_int @ X6 )
& P5 ) ) ) ) ).
% conj_le_cong
thf(fact_1181_kuhn__labelling__lemma_H,axiom,
! [P: ( nat > real ) > $o,F: ( nat > real ) > nat > real,Q2: nat > $o] :
( ! [X4: nat > real] :
( ( P @ X4 )
=> ( P @ ( F @ X4 ) ) )
=> ( ! [X4: nat > real] :
( ( P @ X4 )
=> ! [I3: nat] :
( ( Q2 @ I3 )
=> ( ( ord_less_eq_real @ zero_zero_real @ ( X4 @ I3 ) )
& ( ord_less_eq_real @ ( X4 @ I3 ) @ one_one_real ) ) ) )
=> ? [L2: ( nat > real ) > nat > nat] :
( ! [X5: nat > real,I2: nat] : ( ord_less_eq_nat @ ( L2 @ X5 @ I2 ) @ one_one_nat )
& ! [X5: nat > real,I2: nat] :
( ( ( P @ X5 )
& ( Q2 @ I2 )
& ( ( X5 @ I2 )
= zero_zero_real ) )
=> ( ( L2 @ X5 @ I2 )
= zero_zero_nat ) )
& ! [X5: nat > real,I2: nat] :
( ( ( P @ X5 )
& ( Q2 @ I2 )
& ( ( X5 @ I2 )
= one_one_real ) )
=> ( ( L2 @ X5 @ I2 )
= one_one_nat ) )
& ! [X5: nat > real,I2: nat] :
( ( ( P @ X5 )
& ( Q2 @ I2 )
& ( ( L2 @ X5 @ I2 )
= zero_zero_nat ) )
=> ( ord_less_eq_real @ ( X5 @ I2 ) @ ( F @ X5 @ I2 ) ) )
& ! [X5: nat > real,I2: nat] :
( ( ( P @ X5 )
& ( Q2 @ I2 )
& ( ( L2 @ X5 @ I2 )
= one_one_nat ) )
=> ( ord_less_eq_real @ ( F @ X5 @ I2 ) @ ( X5 @ I2 ) ) ) ) ) ) ).
% kuhn_labelling_lemma'
thf(fact_1182_linear__plus__1__le__power,axiom,
! [X: real,N: nat] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ord_less_eq_real @ ( plus_plus_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) @ one_one_real ) @ ( power_power_real @ ( plus_plus_real @ X @ one_one_real ) @ N ) ) ) ).
% linear_plus_1_le_power
thf(fact_1183_triangle__lemma,axiom,
! [X: real,Y: real,Z: real] :
( ( ord_less_eq_real @ zero_zero_real @ X )
=> ( ( ord_less_eq_real @ zero_zero_real @ Y )
=> ( ( ord_less_eq_real @ zero_zero_real @ Z )
=> ( ( ord_less_eq_real @ ( power_power_real @ X @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( plus_plus_real @ ( power_power_real @ Y @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_power_real @ Z @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) )
=> ( ord_less_eq_real @ X @ ( plus_plus_real @ Y @ Z ) ) ) ) ) ) ).
% triangle_lemma
thf(fact_1184_power__mono__ennreal,axiom,
! [X: extend8495563244428889912nnreal,Y: extend8495563244428889912nnreal,N: nat] :
( ( ord_le3935885782089961368nnreal @ X @ Y )
=> ( ord_le3935885782089961368nnreal @ ( power_6007165696250533058nnreal @ X @ N ) @ ( power_6007165696250533058nnreal @ Y @ N ) ) ) ).
% power_mono_ennreal
thf(fact_1185_ennreal__mult__right__cong,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( ( A != zero_z7100319975126383169nnreal )
=> ( B = C ) )
=> ( ( times_1893300245718287421nnreal @ B @ A )
= ( times_1893300245718287421nnreal @ C @ A ) ) ) ).
% ennreal_mult_right_cong
thf(fact_1186_ennreal__mult__left__cong,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal,C: extend8495563244428889912nnreal] :
( ( ( A != zero_z7100319975126383169nnreal )
=> ( B = C ) )
=> ( ( times_1893300245718287421nnreal @ A @ B )
= ( times_1893300245718287421nnreal @ A @ C ) ) ) ).
% ennreal_mult_left_cong
thf(fact_1187_imult__is__0,axiom,
! [M: extended_enat,N: extended_enat] :
( ( ( times_7803423173614009249d_enat @ M @ N )
= zero_z5237406670263579293d_enat )
= ( ( M = zero_z5237406670263579293d_enat )
| ( N = zero_z5237406670263579293d_enat ) ) ) ).
% imult_is_0
thf(fact_1188_ile0__eq,axiom,
! [N: extended_enat] :
( ( ord_le2932123472753598470d_enat @ N @ zero_z5237406670263579293d_enat )
= ( N = zero_z5237406670263579293d_enat ) ) ).
% ile0_eq
thf(fact_1189_i0__lb,axiom,
! [N: extended_enat] : ( ord_le2932123472753598470d_enat @ zero_z5237406670263579293d_enat @ N ) ).
% i0_lb
thf(fact_1190_sum__of__squares__ge__ennreal,axiom,
! [A: extend8495563244428889912nnreal,B: extend8495563244428889912nnreal] : ( ord_le3935885782089961368nnreal @ ( times_1893300245718287421nnreal @ ( times_1893300245718287421nnreal @ ( numera4658534427948366547nnreal @ ( bit0 @ one ) ) @ A ) @ B ) @ ( plus_p1859984266308609217nnreal @ ( power_6007165696250533058nnreal @ A @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) @ ( power_6007165696250533058nnreal @ B @ ( numeral_numeral_nat @ ( bit0 @ one ) ) ) ) ) ).
% sum_of_squares_ge_ennreal
thf(fact_1191_real__of__nat__ge__one__iff,axiom,
! [N: nat] :
( ( ord_less_eq_real @ one_one_real @ ( semiri5074537144036343181t_real @ N ) )
= ( ord_less_eq_nat @ one_one_nat @ N ) ) ).
% real_of_nat_ge_one_iff
thf(fact_1192_square__bound__lemma,axiom,
! [X: real] : ( ord_less_real @ X @ ( times_times_real @ ( plus_plus_real @ one_one_real @ X ) @ ( plus_plus_real @ one_one_real @ X ) ) ) ).
% square_bound_lemma
thf(fact_1193_Multiseries__Expansion_Ointyness__simps_I3_J,axiom,
! [A: nat,N: nat] :
( ( power_power_real @ ( semiri5074537144036343181t_real @ A ) @ N )
= ( semiri5074537144036343181t_real @ ( power_power_nat @ A @ N ) ) ) ).
% Multiseries_Expansion.intyness_simps(3)
thf(fact_1194_Multiseries__Expansion_Ointyness__uminus,axiom,
! [X: real,N: nat] :
( ( X
= ( semiri5074537144036343181t_real @ N ) )
=> ( ( uminus_uminus_real @ X )
= ( uminus_uminus_real @ ( semiri5074537144036343181t_real @ N ) ) ) ) ).
% Multiseries_Expansion.intyness_uminus
thf(fact_1195_Multiseries__Expansion_Ointyness__0,axiom,
( zero_zero_real
= ( semiri5074537144036343181t_real @ zero_zero_nat ) ) ).
% Multiseries_Expansion.intyness_0
thf(fact_1196_Multiseries__Expansion_Ointyness__simps_I6_J,axiom,
( numeral_numeral_real
= ( ^ [Num: num] : ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ Num ) ) ) ) ).
% Multiseries_Expansion.intyness_simps(6)
thf(fact_1197_Multiseries__Expansion_Ointyness__numeral,axiom,
! [Num2: num] :
( ( Num2 = Num2 )
=> ( ( numeral_numeral_real @ Num2 )
= ( semiri5074537144036343181t_real @ ( numeral_numeral_nat @ Num2 ) ) ) ) ).
% Multiseries_Expansion.intyness_numeral
thf(fact_1198_Multiseries__Expansion_Ointyness__1,axiom,
( one_one_real
= ( semiri5074537144036343181t_real @ one_one_nat ) ) ).
% Multiseries_Expansion.intyness_1
thf(fact_1199_Multiseries__Expansion_Ointyness__simps_I2_J,axiom,
! [A: nat,B: nat] :
( ( times_times_real @ ( semiri5074537144036343181t_real @ A ) @ ( semiri5074537144036343181t_real @ B ) )
= ( semiri5074537144036343181t_real @ ( times_times_nat @ A @ B ) ) ) ).
% Multiseries_Expansion.intyness_simps(2)
thf(fact_1200_Multiseries__Expansion_Ointyness__simps_I1_J,axiom,
! [A: nat,B: nat] :
( ( plus_plus_real @ ( semiri5074537144036343181t_real @ A ) @ ( semiri5074537144036343181t_real @ B ) )
= ( semiri5074537144036343181t_real @ ( plus_plus_nat @ A @ B ) ) ) ).
% Multiseries_Expansion.intyness_simps(1)
thf(fact_1201_bounded__Max__nat,axiom,
! [P: nat > $o,X: nat,M5: nat] :
( ( P @ X )
=> ( ! [X4: nat] :
( ( P @ X4 )
=> ( ord_less_eq_nat @ X4 @ M5 ) )
=> ~ ! [M2: nat] :
( ( P @ M2 )
=> ~ ! [X5: nat] :
( ( P @ X5 )
=> ( ord_less_eq_nat @ X5 @ M2 ) ) ) ) ) ).
% bounded_Max_nat
thf(fact_1202_seq__mono__lemma,axiom,
! [M: nat,D2: nat > real,E: nat > real] :
( ! [N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_real @ ( D2 @ N2 ) @ ( E @ N2 ) ) )
=> ( ! [N2: nat] :
( ( ord_less_eq_nat @ M @ N2 )
=> ( ord_less_eq_real @ ( E @ N2 ) @ ( E @ M ) ) )
=> ! [N4: nat] :
( ( ord_less_eq_nat @ M @ N4 )
=> ( ord_less_real @ ( D2 @ N4 ) @ ( E @ M ) ) ) ) ) ).
% seq_mono_lemma
thf(fact_1203_landau__o_OR__mult__left__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ A ) @ ( times_times_real @ C @ B ) ) ) ) ).
% landau_o.R_mult_left_mono
thf(fact_1204_landau__o_OR__mult__right__mono,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ A @ C ) @ ( times_times_real @ B @ C ) ) ) ) ).
% landau_o.R_mult_right_mono
thf(fact_1205_landau__o_OR__trans,axiom,
! [A: real,B: real,C: real] :
( ( ord_less_eq_real @ A @ B )
=> ( ( ord_less_eq_real @ B @ C )
=> ( ord_less_eq_real @ A @ C ) ) ) ).
% landau_o.R_trans
thf(fact_1206_landau__o_OR__linear,axiom,
! [X: real,Y: real] :
( ~ ( ord_less_eq_real @ X @ Y )
=> ( ord_less_eq_real @ Y @ X ) ) ).
% landau_o.R_linear
thf(fact_1207_landau__omega_OR__refl,axiom,
! [X: real] : ( ord_less_eq_real @ X @ X ) ).
% landau_omega.R_refl
thf(fact_1208_landau__omega_OR__trans,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ C @ B )
=> ( ord_less_eq_real @ C @ A ) ) ) ).
% landau_omega.R_trans
thf(fact_1209_landau__omega_OR__linear,axiom,
! [Y: real,X: real] :
( ~ ( ord_less_eq_real @ Y @ X )
=> ( ord_less_eq_real @ X @ Y ) ) ).
% landau_omega.R_linear
thf(fact_1210_landau__omega_OR__mult__right__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ B @ C ) @ ( times_times_real @ A @ C ) ) ) ) ).
% landau_omega.R_mult_right_mono
thf(fact_1211_landau__omega_OR__mult__left__mono,axiom,
! [B: real,A: real,C: real] :
( ( ord_less_eq_real @ B @ A )
=> ( ( ord_less_eq_real @ zero_zero_real @ C )
=> ( ord_less_eq_real @ ( times_times_real @ C @ B ) @ ( times_times_real @ C @ A ) ) ) ) ).
% landau_omega.R_mult_left_mono
thf(fact_1212_Multiseries__Expansion__Bounds_Oeq__zero__imp__nonneg,axiom,
! [X: real] :
( ( X = zero_zero_real )
=> ( ord_less_eq_real @ zero_zero_real @ X ) ) ).
% Multiseries_Expansion_Bounds.eq_zero_imp_nonneg
thf(fact_1213_nat__dvd__1__iff__1,axiom,
! [M: nat] :
( ( dvd_dvd_nat @ M @ one_one_nat )
= ( M = one_one_nat ) ) ).
% nat_dvd_1_iff_1
thf(fact_1214_nat__mult__dvd__cancel__disj,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( ( K = zero_zero_nat )
| ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel_disj
thf(fact_1215_gcd__nat_Oextremum,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ zero_zero_nat ) ).
% gcd_nat.extremum
thf(fact_1216_gcd__nat_Oextremum__strict,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ zero_zero_nat @ A )
& ( zero_zero_nat != A ) ) ).
% gcd_nat.extremum_strict
thf(fact_1217_gcd__nat_Oextremum__unique,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
= ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_unique
thf(fact_1218_gcd__nat_Onot__eq__extremum,axiom,
! [A: nat] :
( ( A != zero_zero_nat )
= ( ( dvd_dvd_nat @ A @ zero_zero_nat )
& ( A != zero_zero_nat ) ) ) ).
% gcd_nat.not_eq_extremum
thf(fact_1219_gcd__nat_Oextremum__uniqueI,axiom,
! [A: nat] :
( ( dvd_dvd_nat @ zero_zero_nat @ A )
=> ( A = zero_zero_nat ) ) ).
% gcd_nat.extremum_uniqueI
thf(fact_1220_nat__dvd__not__less,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( ord_less_nat @ M @ N )
=> ~ ( dvd_dvd_nat @ N @ M ) ) ) ).
% nat_dvd_not_less
thf(fact_1221_dvd__pos__nat,axiom,
! [N: nat,M: nat] :
( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ( dvd_dvd_nat @ M @ N )
=> ( ord_less_nat @ zero_zero_nat @ M ) ) ) ).
% dvd_pos_nat
thf(fact_1222_gcd__nat_Onot__eq__order__implies__strict,axiom,
! [A: nat,B: nat] :
( ( A != B )
=> ( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) ) ) ) ).
% gcd_nat.not_eq_order_implies_strict
thf(fact_1223_gcd__nat_Ostrict__implies__not__eq,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( A != B ) ) ).
% gcd_nat.strict_implies_not_eq
thf(fact_1224_gcd__nat_Ostrict__implies__order,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( dvd_dvd_nat @ A @ B ) ) ).
% gcd_nat.strict_implies_order
thf(fact_1225_gcd__nat_Ostrict__iff__order,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) ) ) ).
% gcd_nat.strict_iff_order
thf(fact_1226_gcd__nat_Oorder__iff__strict,axiom,
( dvd_dvd_nat
= ( ^ [A2: nat,B2: nat] :
( ( ( dvd_dvd_nat @ A2 @ B2 )
& ( A2 != B2 ) )
| ( A2 = B2 ) ) ) ) ).
% gcd_nat.order_iff_strict
thf(fact_1227_gcd__nat_Ostrict__iff__not,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
= ( ( dvd_dvd_nat @ A @ B )
& ~ ( dvd_dvd_nat @ B @ A ) ) ) ).
% gcd_nat.strict_iff_not
thf(fact_1228_gcd__nat_Ostrict__trans2,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans2
thf(fact_1229_gcd__nat_Ostrict__trans1,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans1
thf(fact_1230_gcd__nat_Ostrict__trans,axiom,
! [A: nat,B: nat,C: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ( ( ( dvd_dvd_nat @ B @ C )
& ( B != C ) )
=> ( ( dvd_dvd_nat @ A @ C )
& ( A != C ) ) ) ) ).
% gcd_nat.strict_trans
thf(fact_1231_gcd__nat_Oantisym,axiom,
! [A: nat,B: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ A )
=> ( A = B ) ) ) ).
% gcd_nat.antisym
thf(fact_1232_gcd__nat_Oirrefl,axiom,
! [A: nat] :
~ ( ( dvd_dvd_nat @ A @ A )
& ( A != A ) ) ).
% gcd_nat.irrefl
thf(fact_1233_gcd__nat_Oeq__iff,axiom,
( ( ^ [Y3: nat,Z2: nat] : ( Y3 = Z2 ) )
= ( ^ [A2: nat,B2: nat] :
( ( dvd_dvd_nat @ A2 @ B2 )
& ( dvd_dvd_nat @ B2 @ A2 ) ) ) ) ).
% gcd_nat.eq_iff
thf(fact_1234_gcd__nat_Otrans,axiom,
! [A: nat,B: nat,C: nat] :
( ( dvd_dvd_nat @ A @ B )
=> ( ( dvd_dvd_nat @ B @ C )
=> ( dvd_dvd_nat @ A @ C ) ) ) ).
% gcd_nat.trans
thf(fact_1235_gcd__nat_Orefl,axiom,
! [A: nat] : ( dvd_dvd_nat @ A @ A ) ).
% gcd_nat.refl
thf(fact_1236_gcd__nat_Oasym,axiom,
! [A: nat,B: nat] :
( ( ( dvd_dvd_nat @ A @ B )
& ( A != B ) )
=> ~ ( ( dvd_dvd_nat @ B @ A )
& ( B != A ) ) ) ).
% gcd_nat.asym
thf(fact_1237_dvd__antisym,axiom,
! [M: nat,N: nat] :
( ( dvd_dvd_nat @ M @ N )
=> ( ( dvd_dvd_nat @ N @ M )
=> ( M = N ) ) ) ).
% dvd_antisym
thf(fact_1238_bezout__lemma__nat,axiom,
! [D2: nat,A: nat,B: nat,X: nat,Y: nat] :
( ( dvd_dvd_nat @ D2 @ A )
=> ( ( dvd_dvd_nat @ D2 @ B )
=> ( ( ( ( times_times_nat @ A @ X )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y ) @ D2 ) )
| ( ( times_times_nat @ B @ X )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y ) @ D2 ) ) )
=> ? [X4: nat,Y4: nat] :
( ( dvd_dvd_nat @ D2 @ A )
& ( dvd_dvd_nat @ D2 @ ( plus_plus_nat @ A @ B ) )
& ( ( ( times_times_nat @ A @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ Y4 ) @ D2 ) )
| ( ( times_times_nat @ ( plus_plus_nat @ A @ B ) @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y4 ) @ D2 ) ) ) ) ) ) ) ).
% bezout_lemma_nat
thf(fact_1239_bezout__add__nat,axiom,
! [A: nat,B: nat] :
? [D3: nat,X4: nat,Y4: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( ( times_times_nat @ A @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ D3 ) )
| ( ( times_times_nat @ B @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ A @ Y4 ) @ D3 ) ) ) ) ).
% bezout_add_nat
thf(fact_1240_dvd__imp__le,axiom,
! [K: nat,N: nat] :
( ( dvd_dvd_nat @ K @ N )
=> ( ( ord_less_nat @ zero_zero_nat @ N )
=> ( ord_less_eq_nat @ K @ N ) ) ) ).
% dvd_imp_le
thf(fact_1241_nat__mult__dvd__cancel1,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ K )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
= ( dvd_dvd_nat @ M @ N ) ) ) ).
% nat_mult_dvd_cancel1
thf(fact_1242_dvd__mult__cancel,axiom,
! [K: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( times_times_nat @ K @ M ) @ ( times_times_nat @ K @ N ) )
=> ( ( ord_less_nat @ zero_zero_nat @ K )
=> ( dvd_dvd_nat @ M @ N ) ) ) ).
% dvd_mult_cancel
thf(fact_1243_bezout__add__strong__nat,axiom,
! [A: nat,B: nat] :
( ( A != zero_zero_nat )
=> ? [D3: nat,X4: nat,Y4: nat] :
( ( dvd_dvd_nat @ D3 @ A )
& ( dvd_dvd_nat @ D3 @ B )
& ( ( times_times_nat @ A @ X4 )
= ( plus_plus_nat @ ( times_times_nat @ B @ Y4 ) @ D3 ) ) ) ) ).
% bezout_add_strong_nat
thf(fact_1244_dvd__mult__cancel1,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ M @ N ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel1
thf(fact_1245_dvd__mult__cancel2,axiom,
! [M: nat,N: nat] :
( ( ord_less_nat @ zero_zero_nat @ M )
=> ( ( dvd_dvd_nat @ ( times_times_nat @ N @ M ) @ M )
= ( N = one_one_nat ) ) ) ).
% dvd_mult_cancel2
thf(fact_1246_power__dvd__imp__le,axiom,
! [I: nat,M: nat,N: nat] :
( ( dvd_dvd_nat @ ( power_power_nat @ I @ M ) @ ( power_power_nat @ I @ N ) )
=> ( ( ord_less_nat @ one_one_nat @ I )
=> ( ord_less_eq_nat @ M @ N ) ) ) ).
% power_dvd_imp_le
thf(fact_1247_odd__pos,axiom,
! [N: nat] :
( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_nat @ zero_zero_nat @ N ) ) ).
% odd_pos
thf(fact_1248_dvd__power__iff__le,axiom,
! [K: nat,M: nat,N: nat] :
( ( ord_less_eq_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ K )
=> ( ( dvd_dvd_nat @ ( power_power_nat @ K @ M ) @ ( power_power_nat @ K @ N ) )
= ( ord_less_eq_nat @ M @ N ) ) ) ).
% dvd_power_iff_le
thf(fact_1249_Bernoulli__inequality__even,axiom,
! [N: nat,X: real] :
( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ord_less_eq_real @ ( plus_plus_real @ one_one_real @ ( times_times_real @ ( semiri5074537144036343181t_real @ N ) @ X ) ) @ ( power_power_real @ ( plus_plus_real @ one_one_real @ X ) @ N ) ) ) ).
% Bernoulli_inequality_even
thf(fact_1250_ereal__power__uminus,axiom,
! [N: nat,X: extended_ereal] :
( ( ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_1054015426188190660_ereal @ ( uminus27091377158695749_ereal @ X ) @ N )
= ( power_1054015426188190660_ereal @ X @ N ) ) )
& ( ~ ( dvd_dvd_nat @ ( numeral_numeral_nat @ ( bit0 @ one ) ) @ N )
=> ( ( power_1054015426188190660_ereal @ ( uminus27091377158695749_ereal @ X ) @ N )
= ( uminus27091377158695749_ereal @ ( power_1054015426188190660_ereal @ X @ N ) ) ) ) ) ).
% ereal_power_uminus
thf(fact_1251_real__divide__square__eq,axiom,
! [R2: real,A: real] :
( ( divide_divide_real @ ( times_times_real @ R2 @ A ) @ ( times_times_real @ R2 @ R2 ) )
= ( divide_divide_real @ A @ R2 ) ) ).
% real_divide_square_eq
thf(fact_1252_ereal__uminus__divide,axiom,
! [X: extended_ereal,Y: extended_ereal] :
( ( divide8893690120176169980_ereal @ ( uminus27091377158695749_ereal @ X ) @ Y )
= ( uminus27091377158695749_ereal @ ( divide8893690120176169980_ereal @ X @ Y ) ) ) ).
% ereal_uminus_divide
thf(fact_1253_ereal__uminus__eq__iff,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ( uminus27091377158695749_ereal @ A )
= ( uminus27091377158695749_ereal @ B ) )
= ( A = B ) ) ).
% ereal_uminus_eq_iff
thf(fact_1254_ereal__uminus__uminus,axiom,
! [A: extended_ereal] :
( ( uminus27091377158695749_ereal @ ( uminus27091377158695749_ereal @ A ) )
= A ) ).
% ereal_uminus_uminus
thf(fact_1255_ereal__minus__less__minus,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ord_le1188267648640031866_ereal @ ( uminus27091377158695749_ereal @ A ) @ ( uminus27091377158695749_ereal @ B ) )
= ( ord_le1188267648640031866_ereal @ B @ A ) ) ).
% ereal_minus_less_minus
thf(fact_1256_ereal__uminus__zero,axiom,
( ( uminus27091377158695749_ereal @ zero_z2744965634713055877_ereal )
= zero_z2744965634713055877_ereal ) ).
% ereal_uminus_zero
thf(fact_1257_ereal__0__le__uminus__iff,axiom,
! [A: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ ( uminus27091377158695749_ereal @ A ) )
= ( ord_le1083603963089353582_ereal @ A @ zero_z2744965634713055877_ereal ) ) ).
% ereal_0_le_uminus_iff
thf(fact_1258_ereal__uminus__le__0__iff,axiom,
! [A: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ ( uminus27091377158695749_ereal @ A ) @ zero_z2744965634713055877_ereal )
= ( ord_le1083603963089353582_ereal @ zero_z2744965634713055877_ereal @ A ) ) ).
% ereal_uminus_le_0_iff
thf(fact_1259_ereal__uminus__zero__iff,axiom,
! [A: extended_ereal] :
( ( ( uminus27091377158695749_ereal @ A )
= zero_z2744965634713055877_ereal )
= ( A = zero_z2744965634713055877_ereal ) ) ).
% ereal_uminus_zero_iff
thf(fact_1260_neg__0__less__iff__less__erea,axiom,
! [A: extended_ereal] :
( ( ord_le1188267648640031866_ereal @ zero_z2744965634713055877_ereal @ ( uminus27091377158695749_ereal @ A ) )
= ( ord_le1188267648640031866_ereal @ A @ zero_z2744965634713055877_ereal ) ) ).
% neg_0_less_iff_less_erea
thf(fact_1261_ereal__mult__minus__right,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( times_7703590493115627913_ereal @ A @ ( uminus27091377158695749_ereal @ B ) )
= ( uminus27091377158695749_ereal @ ( times_7703590493115627913_ereal @ A @ B ) ) ) ).
% ereal_mult_minus_right
thf(fact_1262_ereal__mult__minus__left,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( times_7703590493115627913_ereal @ ( uminus27091377158695749_ereal @ A ) @ B )
= ( uminus27091377158695749_ereal @ ( times_7703590493115627913_ereal @ A @ B ) ) ) ).
% ereal_mult_minus_left
thf(fact_1263_ereal__minus__le__minus,axiom,
! [A: extended_ereal,B: extended_ereal] :
( ( ord_le1083603963089353582_ereal @ ( uminus27091377158695749_ereal @ A ) @ ( uminus27091377158695749_ereal @ B ) )
= ( ord_le1083603963089353582_ereal @ B @ A ) ) ).
% ereal_minus_le_minus
% Helper facts (3)
thf(help_If_3_1_If_001t__Nat__Onat_T,axiom,
! [P: $o] :
( ( P = $true )
| ( P = $false ) ) ).
thf(help_If_2_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $false @ X @ Y )
= Y ) ).
thf(help_If_1_1_If_001t__Nat__Onat_T,axiom,
! [X: nat,Y: nat] :
( ( if_nat @ $true @ X @ Y )
= X ) ).
% Conjectures (1)
thf(conj_0,conjecture,
( ( plus_plus_complex @ x @ ( numera6690914467698888265omplex @ ( bit0 @ one ) ) )
!= zero_zero_complex ) ).
%------------------------------------------------------------------------------